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Abstract
The classification problem for simple sl(2)-modules leads in a natural way to the study of
the category of finite rank torsion free sl(2)-modules and its subcategory of rational sl(2)-
modules. We prove that the rationalization functor induces an identification between the
isomorphism classes of simple modules of these categories. This raises the question of what
is the precise relationship between other invariants associated with them.We give a complete
solution to this problem for the Grothendieck and Picard groups, obtaining along the way
several new results regarding these categories that are interesting in their own right.

Keywords Torsion free sl(2)-modules · Rational sl(2)-modules · Grothendieck group -
Picard group

Mathematics Subject Classification Primary 17B10; Secondary 18F30

1 Introduction

Simple sl(2)-modules are quotients of the universal enveloping algebra of sl(2) and hence
have countable C-dimension. Thus the generalized version of the Schur Lemma, due to
Dixmier, applies to them, showing that every simple sl(2)-module is a Casimir module, (see
Theorem3.2). This is the first reduction in the classification problemof simple sl(2)-modules.

The next important step in this program is the following key dichotomy: a simple sl(2)-
module is either a weight module or a torsion free module; we refer the reader to [12,Thm.
6.3] for further details.

There is a well known [12,Theorem 3.32] explicit classification of simple weight modules
into four families consisting of finite dimensional, Verma, anti-Verma and dense modules.
This classification has allowed us in [14] to establish the extension properties of weight
sl(2)-modules to Witt and Virasoro algebras.
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On the other hand, Block proved in [4] that simple torsion free modules can also be
classified, although admittedly in a less explicit way, since they are parametrized by the
similarity classes of irreducible elements of a certain non commutative euclidean algebra.
See Theorem 4.5 and Bavula’s paper [2] for the precise statement.

In a previous paper [13] we proved that every simple torsion free module has finite rank,
(Theorem 4.9). Therefore, in the context of the classification program it is sensible to study
in detail the category sl(2)-Modtffr of torsion free finite rank sl(2)-modules. The finite rank
result, together with Bavula’s approach, lead us in a natural way to introduce the full subcat-
egory R of sl(2)-Modtffr formed by rational sl(2)-modules. One advantage of considering
rational representations is that they are finite dimensionalC(z)-vector spaces, and torsion free
finite rank sl(2)-modules are exactly their sl(2)-submodules. However, as we shall prove,
their major convenience lies in the existence of a bijection between the isomorphism classes
of simple torsion free modules ̂Spl(sl(2)-Modtffr) and the isomorphism classes of rational
representations that are R- irreducible, (see Theorem 4.20). This allows us to reduce the
determination of ̂Spl(sl(2)-Modtffr) to a problem on finite dimensional C(z)-vector spaces
instead of a problem on C[z]-modules. The situation is reminiscent of that encountered in
integral representation theory, see for instance [16]. A key role for understanding this rela-
tionship is played by the rationalization functor Frat : sl(2)-Modtffr → R that sends a torsion
free finite rank sl(2)-module to the rational module obtained by localization, (see Definition
4.19).

One of the central motivations of this paper is precisely to study to what extent the equiv-
alence between the isomorphism classes of simple objects in the categories sl(2)-Modtffr ,R
can be extended to other types of invariants associated to them. In particular, wewill endeavor
to analyze in detail the relationship between their Grothendieck groups. To achieve this goal,
we start with a careful study of R.

A key result of this paper, on which many others depend, is the existence of minimal
polynomials over C for the Casimir operators of rational representations:

Theorem (6.1) If (W , ρ) is a rational sl(2)-representation, then the minimal polynomial
MCρ (t) of its Casimir operator Cρ , considered as a C(z)-linear endomorphism of W, has
its coefficients in C; that is, MCρ (t) ∈ C[t]. Therefore, the Casimir operator Cρ understood
as a C-linear endomorphism of W has minimal polynomial MCρ (t).

From this we obtain that every sl(2)-endomorphism of a rational representation also has
a minimal polynomial over C, (Proposition 6.3). Another key result that we obtain from
Theorem 6.1 is that every rational representation decomposes into a finite direct sum of
generalized Casimir rational sl(2)-modules, (Theorem 6.8). This gives a decomposition of
the abelian category R into the Hom-orthogonal direct sum of the abelian subcategories of
generalized rational Casimir modules:

R =
⊕

μ∈C
RC•μ .

We also obtain important consequences regarding the problem of classification of simple
torsion free sl(2)-modules. In Theorem 6.13 we prove that one has the following identifica-
tions

̂Spl(sl(2)-Modtf ) = ̂Spl(sl(2)-Modtffr)
̂Frat−−→∼ ̂SplRC(RC) = ̂SplR(R).

Therefore, determining the isomorphismclasses of simple torsion free sl(2)-modules is equiv-
alent to the determination of the isomorphism classes of R-simple rational sl(2)-modules.
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The latter is an easier problem since we are dealing with C(z)-vector spaces instead of
C[z]-modules. Taking into account the above mentioned dichotomy, this gives a complete
description of the isomorphism classes of simple sl(2)-modules

̂Spl(sl(2)-Mod) = ̂Spl(sl(2)-Modweight)
∐

̂Spl(sl(2)−Modtf )

� ̂Spl(sl(2)-Modweight)
∐

̂SplR(R).

The categorical properties of rational representations are also very interesting. We prove
in Theorems 6.5 and 6.7 that R is an essentially small abelian category of finite length, and
therefore it is a Jordan–Hölder category and a Krull–Schmidt category. Moreover, we will
see in Proposition 6.17 that the sl(2)-endomorphisms of anR-simple rational module are just
the C multiples of the identity. This result can not be obtained either by means of Dixmier’s
generalization of Schur’s Lemma, because rational modules have C-dimension equal to the
continuum, or by Quillen’s Lemma, because rational modules are never sl(2)-simple. From
this we also get that R is a HomC-finite category, (Theorem 6.20).

Most of these properties of rational modules have their reflection on the category
sl(2)-Modtffr. This is the case for the existence ofminimal polynomials for Casimir operators,
(Theorem 7.1), and sl(2)-endomorphisms, (Proposition 7.3). We also obtain in Theorem 7.9
a decomposition of the exact category sl(2)-Modtffr into the Hom-orthogonal direct sum of
the exact subcategories of generalized Casimir modules:

sl(2)-Modtffr =
⊕

μ∈C
C•μ,tffr .

As far as categorical properties are concerned, the behavior of torsion free finite rankmodules
is nearly as good as in the rational case. We prove in Proposition 7.4 and Theorem 7.8 that
sl(2)-Modtffr is an essentially small exact category. Furthermore, in Theorem 7.13wewill see
that it is HomC-finite and therefore it is a Krull–Schmidt category.We also have a very precise
relationship betweenR and the ambient category sl(2)-Modtffr. Indeed we will prove thatR
is a thick subcategory, (Proposition 7.4), and the rationalization functor Frat is a retraction of
the natural embedding itffr : R ↪→ sl(2)-Modtffr, (Proposition 7.6). Moreover, in Theorem
7.7 we show that R is a faithful reflective localization of sl(2)-Modtffr with localization
functor Frat.

The most notable property missing from the rational case is the finite length condition,
(see Remark 7.5). However, wewill prove in Proposition 7.36 that sl(2)-Modtffr satisfies both
the ascending and descending chain conditions on pure submodules and thus is a finite pure
length category. By Proposition 7.38, pure length agrees on rational modules withR-length.
Moreover, introducing the concept of purely simple sl(2)-module, we show in Proposition
7.39 that every torsion free finite rank sl(2)-module admits pure composition series and we
prove in Theorem 7.41 the key result that the Jordan–Hölder theorem holds for them.

Armed with the knowledge we have gained about the structural properties of these cat-
egories, we proceed to study their Grothendieck groups. The main tools we use in their
computation are devissage subcategories and a generalization of Heller’s devissage theorem
that identifies special instances of them, (Theorem 8.2).

The additive Grothendieck group K⊕0 (R) of the category of rational representations is
completely determined by the Krull–Schmidt property of R, which implies that indecom-
posable generalized Casimir rational modules form a devissage subcategory, as shown in
Theorem 8.3, and also yields the decompositionR = ⊕

μ∈C RC•μ provided by the minimal
polynomial of theCasimir operator, (see Theorem8.4 andCorollary 8.6). In turn, the structure
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of the general Grothendieck group K0(R) is completely determined by the above decompo-
sition and the devissage subcategory formed by the R-simple Casimir modules, since R is
a Jordan–Hölder category, (Theorems 8.7 and 8.8). We also analyze the compatibility of the
devissage procedure with respect to the canonical filtration of a generalized Casimir rational
moduleW ∈ RC• described in Proposition 5.2, proving that rational Casimir modules form a
devissage subcategory forRC•, (Theorem 8.9 and Corollary 8.11). Therefore, the algorithm
for disassembling (devissage) the class of a rational module W in the Grothendieck group
[W ] ∈ K0(R) into a sum of classes of simple Casimir modules in K0(Spl(RC)) proceeds in
stages. First, we decompose W into a sum of generalized Casimir representations according
to the minimal polynomial of its Casimir operator. Then these classes of generalized Casimir
modules are decomposed into a sum of Casimir rational representations by means of the
canonical filtration. Finally, each one of these Casimir classes is decomposed by means of a
composition series into a sum of classes of simple Casimir modules.

We obtain analogous results for the Grothendieck groups of sl(2)-Modtffr, (Theorems
8.13 and 8.14,) where now the key points are to prove that the category of purely simple
modules PSpl(sl(2)) is a devissage subcategory, and use the decomposition sl(2)-Modtffr =
⊕

μ∈C C•μ,tffr obtained from the minimal polynomial of the Casimir operator. We also have
compatibility with the canonical filtration, (Theorem 8.15), although the proof is more
involved since now we cannot use Theorem 8.2.

The relationship between the general Grothendieck groups ofR and sl(2)-Modtffr can be
established by an analogue of Heller’s localization theorem for the quotient of an abelian
category under a Serre subcategory. There is a well known one to one correspondence
between Serre subcategories and torsion theories. The localization theorem says that the
map induced on Grothendieck groups by the quotient functor is a surjection and has in its
kernel the Grothendieck group of the corresponding torsion theory, [18,Theorem 5.13, pag.
115]. Although the situation here is different because sl(2)-Modtffr is only an exact category,
we are able to establish our localization result due to the fact that the rationalization functor
Frat : sl(2)-Modtffr → R, as explained above, is a reflective localization. Indeed, we prove
in Theorem 8.20 that there exists a naturally split short exact sequence

0→ VT (sl(2)-Modtffr)→ K0(sl(2)-Modtffr)
Frat∗−−→ K0(R)→ 0

where VT (sl(2)-Modtffr) are the virtual torsion modules of finite rank. This is the best
analogue one could hope for, since the kernel of Frat is just the zero module.

The categories sl(2)-Modtffr , R are stratified according to rank and C(z)-dimension,
respectively. The rationalization functor is compatible with these stratifications and therefore
induces an identification between the isomorphism classes of simple objects of the corre-
sponding strata

̂Spl(sl(2)-Modmtffr)
̂Frat−−→∼ ̂SplR(Rm).

We study in detail the one dimensional stratum since it plays a key role for several results
ranging from the rationalization and extension problems to the Picard group. In the first place,
by Corollary 6.14 one has the identificationsR1 = SplR(R1) = RC1 and by Theorem 6.13
weget̂Spl(sl(2)-Mod1tffr) � ̂R1.WedescribêR1 explicitly as a quotient of the spaceC(z)× of
invertible rational functions, (Theorem 9.1). This makes it possible to answer the question as
to whether a one dimensional rational representation arises as the rationalization of a rank one
polynomial representation, (Theorem9.3).We also analyze the extension problem for rational
representations. It is a classical result of Bavula [2,Theorem 3], (see also [12,Theorem 6.40
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pag. 210]) that the extension groups of finite length sl(2)-modules have finite C-dimension.
We have proved in Theorem 6.20 that the space of sl(2)-homomorphisms between rational
sl(2)-modules is also finite C-dimensional. Therefore it is natural to analyze whether this is
also true for the higher extension groups between rational modules. However, we show that
this is not the case in Corollary 9.6 where, thanks to the explicit characterization of R1, we
describe explicit rational modules whose first extension group has infinite dimension over C.

Since the category of rational representations R is a C-linear abelian subcategory of the
category of finite dimensionalC(z)-vector spaces, it is natural to study which of its properties
remain valid forR. It is remarkable that the tensor product⊗ of C(z)-vector spaces restricts
to R, because this is not the usual construction for sl(2)-modules, where the tensor product
is taken over C. Moreover, we show that this rational tensor product has very nice properties
that can be summarized by saying that (R,⊗) is a closed symmetric monoidal category, (see
Theorem 10.5 where we also describe the internal Hom). This makes it possible, following
May [11], to define the Picard group Pic(R) of the category of rational representations. In
Theorem 10.8 we show that it is completely determined by the one dimensional stratum and
that Pic(R) = ̂R1. Moreover, we prove that the level map gives rise to a split short exact
sequence

0→ Pic0(R)→ Pic(R)
lev−→ C→ 0

and that we have an identification Pic0(R) = C(z)×0 with the multiplicative subgroup of
C(z)× formed by the invertible rational functions without zeros or poles at the origin, (The-
orem 10.10). The symmetric monoidal structure also makes it possible to introduce ring
structures on the Grothendieck groups (see Sect. 10.3).

The identification ̂Frat : ̂Spl(sl(2)-Mod1tffr)
∼−→ ̂R1 = Pic(R) given in Theorem 6.13

allows one to formally define the Picard group of the category sl(2)-Modtffr as the
group Pic(sl(2)-Modtffr) = ̂Spl(sl(2)-Mod1tffr). The existence of this group structure on
̂Spl(sl(2)-Mod1tffr) might point to the existence of an appropriate symmetric monoidal struc-
ture on the category sl(2)-Modtffr such that its Picard group is the one introduced above. We
plan to investigate this in future work.

We summarize the notation used in the paper.

• sl(2)-Mod is the category of sl(2)-modules;
• C is the full subcategory of sl(2)-Mod formed by all Casimir sl(2)-modules;
• R (resp. RC) is the full subcategory of sl(2)-Mod formed by all rational sl(2)-modules

(resp. rational Casimir sl(2)-modules).

For any subcategory A of sl(2)-Mod, we have the following full subcategories of A:

• Atf , of torsion free sl(2)-modules;
• Atffr , of torsion free, finite rank sl(2)-modules;
• Atfft , of torsion free, finite type sl(2)-modules;
• Ind(A), of indecomposable sl(2)-modules of A;
• IndA(A), of A-indecomposable objects of A;
• Spl(A), of simple sl(2)-modules of A;
• SplA(A), of A-simple objects of A.

and we denote:

• ̂Ind(A), the isomorphism classes of indecomposable sl(2)-modules of A;
• ̂IndA(A), the isomorphism classes of A-indecomposable objects of A;
• ̂Spl(A), the isomorphism classes of simple sl(2)-modules of A;
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• ̂SplA(A), the isomorphism classes of A-simple objects of A;

Finally, given two subcategories A1,A2 of A, we write:

• ⊥ (A1,A2) if HomA(M, N ) = 0 for every M ∈ Ob(A1), N ∈ Ob(A2);
• A1 ⊥ A2 if one has ⊥ (A1,A2) and also ⊥ (A2,A1). In this case we say that A1,A2

are Hom-orthogonal.

2 sl(2)-modules

Let sl(2) be the Lie algebra of the Lie group SL(2, C) and recall that sl(2) is a simple Lie
algebra.We have setC as the base field but everything admits a straightforward generalization
to an arbitrary algebraically closed field of characteristic 0. Let {e, f , h} be a Chevalley basis
of sl(2) satisfying the commutation relations:

[e, f ] = h , [h, e] = 2e , [h, f ] = −2 f . (2.1)

For the purposes of this paper, it will be more convenient to consider the basis
{

L−1 := f , L0 := −1

2
h, L1 := −e

}

. (2.2)

Every sl(2)-module V has a natural C[z]-module structure, where z acts on V by L0.
That is, z · v := L0(v), for every v ∈ V . Let us now consider the ring automorphism
∇ : C[z] → C[z] such that ∇(z) = z + 1. For any k ∈ Z, we denote by Endk

C[z](V ) the

C[z]-module of ∇k-semilinear endomorphisms of V ; i.e.,

Endk
C[z](V ) := {

ϕ ∈ EndC(V ) s.t. ϕ(z · v) = ∇k(z) · ϕ(v) = (z + k) · ϕ(v)
}

.

In particular, one has End0
C[z](V ) = EndC[z](V ). The C[z]-module of ∇k-semilinear

automorphisms of V , Autk
C[z](V ), is defined similarly.

Notice that an sl(2)-module is just a C[z]-module V endowed with two C[z]-semilinear
endomorphisms

ρ(L−1) ∈ End−1
C[z](V ), ρ(L1) ∈ End1

C[z](V ), (2.3)

that satisfy

[ρ(L−1), ρ(L1)] = −2z. (2.4)

In what follows we think of every sl(2)-module in this way. Given such a ρ defined on a
C[z]-module V , we denote by Vρ the corresponding sl(2)-module.

3 Casimir modules

The Casimir element C of the universal enveloping algebra of sl(2) can be expressed in the
following equivalent ways:

C = 1

4
[(h + 1)2 − 1] + f e = L0(L0 − 1)− L−1L1 ,

C = 1

4
[(h − 1)2 − 1] + e f = L0(L0 + 1)− L1L−1 . (3.1)
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Definition 3.1 The Casimir operator of an sl(2)-module (V , ρ), is the endomorphism Cρ :=
ρ(C) ∈ Endsl(2)(V ). We say that (V , ρ) is a Casimir module of level μ ∈ C if Cρ = μ IdV .
We denote by C (resp. Cμ) the full preadditive (resp. additive) subcategory of sl(2)-Mod
formed by all Casimir modules (resp. of level μ).

Having in mind (3.1) and defining the polynomial:

πμ(z) = z(z − 1)− μ ∈ C[z] ,
one easily checks that Casimir modules of level μ are exactly the C[z]-modules endowed
with C[z]-semilinear endomorphisms ρ(L−1), ρ(L1) as in (2.3) that verify:

ρ(L−1) ◦ ρ(L1) = πμ(z), ρ(L1) ◦ ρ(L−1) = πμ(z + 1). (3.2)

The commutation relation (2.4) follows automatically from (3.2)
Casimir (simple) sl(2)-modules of level μ are exactly the (simple) modules over the

generalized Weyl algebra:

A(μ) := U/〈C − μ〉 = U/〈L−1L1 − πμ(z)〉 = U/〈L1L−1 − πμ(z + 1)〉 ,
where U := U (sl(2)) is the universal enveloping algebra of sl(2) and 〈x〉 denotes the left
ideal generated by x , see for instance [12,Chapter 6]. Moreover,A(μ) is aZ-graded algebra:

A(μ) =
⊕

i∈Z
A(μ)i ,

with A(μ)0 = C[z] and A(μ)−i = A(μ)0 · (L−1)i , A(μ)i = A(μ)0 · (L1)
i , for i > 0.

The key role played by Casimir modules follows from the generalized version of Schur
Lemma introduced byDixmier, see [9,Lemma4.1.4], since simple sl(2)-modules have count-
able C-dimension. We get the next result [12,Theorem 4.7].

Theorem 3.2 Every simple sl(2)-module is a Casimir module. Hence, one has

Spl(sl(2)-Mod) = Spl(C).

Proposition 3.3 Let (V1, ρ1), (V2, ρ2) be two Casimir sl(2)-modules of levels μ1 and μ2,
respectively. Then one has:

1. If μ1 �= μ2, then Homsl(2)(V1, V2) = 0. Therefore, the categories Cμ1 , Cμ2 are Hom-
orthogonal and there is a natural identification C =∐μ∈C Cμ.

2. If μ1 = μ2 and V2 is torsion free, then

Homsl(2)(V1, V2) = {φ ∈ HomC[z](V1, V2) : ρ2(L1) ◦ φ = φ ◦ ρ1(L1)}.
Proof (1) The first claim follows sinceφ ∈ Homsl(2)(V1, V2) intertwines bothCasimir opera-
tors. The second is a consequence of the first and the definition of the coproduct of preadditive
categories. (2) One implication is obvious. On the other hand, given φ ∈ HomC[z](V1, V2)
such that ρ2(L1) ◦ φ = φ ◦ ρ1(L1) we have

πμ2(z)[ρ2(L−1) ◦ φ − φ ◦ ρ1(L−1)]
= ρ2(L−1) ◦ ρ2(L1) ◦ [ρ2(L−1) ◦ φ − φ ◦ ρ1(L−1)]
= ρ2(L−1) ◦ [ρ2(L1) ◦ ρ2(L−1) ◦ φ − ρ2(L1) ◦ φ ◦ ρ1(L−1)]
= ρ2(L−1) ◦ [ρ2(L1) ◦ ρ2(L−1) ◦ φ − φ ◦ ρ1(L1) ◦ ρ1(L−1)]
= ρ2(L−1) ◦ [πμ2(z)φ − φ ◦ (πμ1(z))]
= ρ2(L−1) ◦ [(πμ2(z)− πμ1(z))φ].

123



94 Page 8 of 50 F. J. Plaza Martín, C. Tejero Prieto

Since μ1 = μ2 we get πμ2(z)[ρ2(L−1) ◦ φ− φ ◦ ρ1(L−1)] = 0 and bearing in mind that V2
is torsion free we have ρ2(L−1) ◦ φ − φ ◦ ρ1(L−1) = 0. ��

4 Torsion freemodules

4.1 Polynomial modules

Definition 4.1 Let V be an sl(2)-module. We say that V is a polynomial sl(2)-module or that
we have a polynomial representation of sl(2) if V is a finite type free C[z]-module.

The study of polynomial Casimir representations was one of the main achievements of
[13]. Its relevance follows from their close relationship with simple modules as the following
result shows.

Theorem 4.2 [13,Thm. 2.10] Every simple, torsion free, finite type sl(2)-module is a polyno-
mial Casimir representation of sl(2). Furthermore, a torsion free, finite type sl(2)-module is
simple in sl(2)-Modtfft if and only if it is simple in the subcategory consisting of polynomial
Casimir representations.

4.2 Rational modules

Now we introduce rational sl(2)-modules and describe the role that Casimir modules play in
this case.

The description given byBavula [2, 3] of all simple sl(2)-modules is based on the euclidean
algebra B of skew Laurent polynomials over the field of rational fractions C(z) defined
by the extension of the automorphism ∇. Following the standard notation, we write B =
C(z)[X , X−1; ∇] whose product is determined by the condition:

Xi · ξ(z) = ∇ i (ξ(z)) · Xi = ξ(z + i) · Xi ,

for every ξ(z) ∈ C(z) and every i ∈ Z. Notice that a B-module is just a pair (W , σ ) formed
by a C(z)-vector space W endowed with a ∇-semilinear automorphism σ .

We denote by B-Mod the category of B-modules and B-Modfd is the subcategory formed
by those B-modules that are finite dimensional C(z)-vector spaces. For any subcategory B of
B-Mod, we denote by Spl(B) the simpleB-modules ofB and ̂Spl(B) is the set of isomorphism
classes of simple B-modules.

If one considers themultiplicative subset S = C[z]\{0}, then the generalizedWeyl algebra
A(μ) embeds naturally in the localization S−1A(μ) and there is a natural identification
B � S−1A(μ) providing a natural embedding ofC-algebras	μ : A(μ) ↪→ B that at the same
time is a morphism of left C[z]-modules such that 	μ(L1) = X , 	μ(L−1) = πμ(z)X−1.
From now on, we identify A(μ) with its image under 	μ inside B. The natural functor of
extension of scalars

F := B⊗A(μ) (−) : Cμ −→ B-Mod (4.1)

sends an sl(2)-module V to its localization S−1V = B⊗A(μ)V as aB-module. Restricting the
action ofB toA(μ) via the embedding	μ : A(μ) ↪→ B, one obtains a functor iμ : B-Mod→
Cμ which is the right adjoint functor of F and there is a functorial isomorphism F ◦ iμ ∼=
IdB-Mod.
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Remark 4.3 For any Casimir sl(2)-module V defined by a representation ρ, the B-module
structure of S−1V is given by the ∇-semilinear automorphism

S−1(ρ(L1)) : S−1V → S−1V

that is, one has

X ·
(

v

p(z)

)

:= S−1(ρ(L1))

(

v

p(z)

)

= ρ(L1)(v)

∇(p(z))
= ρ(L1)(v)

p(z + 1)
.

Therefore, the functor of extension of scalars is just F(V , ρ) = (S−1V , S−1(ρ(L1))), show-
ing that F is an exact functor.

A key property of the euclidean algebra B is that it is both a left and a right principal
ideal domain, see [12,Corollary 6.11]. This implies the following pleasant consequence, see
[12,Propositions 6.14, 6.15].

Proposition 4.4 The isomorphism classes of simple B-modules form a set

̂Spl(B-Mod) = (Irr(B)/ ∼) := ̂Irr(B)

that gets naturally identified with the similarity classes ̂Irr(B) of irreducible elements of B.

One has the following crucial result, see [2, 3] and [12,Thm. 6.3.6, Cor. 6.3.9].

Theorem 4.5 The functor of extension of scalars F : Cμ −→ B-Mod induces a bijection

̂F : ̂Spl(Cμ,tf )
∼−→ ̂Spl(B-Mod)

between the isomorphism classes ̂Spl(Cμ,tf ) of simple, torsion free, Casimir sl(2)-modules
of level μ and the set ̂Spl(B-Mod) of isomorphism classes of simple B-modules. The inverse
bijection maps a simple B-module to its A(μ)-socle.

Hence we have the following “reasonable size” property.

Corollary 4.6 The categories Spl(Cμ,tf ), Spl(B-Mod) are essentially small.

We would like to extend this type of result to other invariants of the category of torsion
free sl(2)-modules. In order to do this we need to recall the next property.

Proposition 4.7 [13,Lemmas 2.11, 2.12] Any simple B-module is a finite dimensional vector
space over the field of rational functions C(z). That is, one has

Spl(B-Mod) = Spl(B-Modfd).

Therefore, the category Spl(B-Modfd) is essentially small.

This motivates the following:

Definition 4.8 We say that an sl(2)-module W is rational or that we have a rational rep-
resentation of sl(2) if W endowed with its C[z]-module structure is a finite dimensional
C(z)-vector space. We denote by R the abelian category of rational sl(2)-modules and RC
(resp. RCμ) is the full preadditive subcategory formed by rational Casimir representations
(resp. of level μ).
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Thanks toProposition3.3wehave anatural identificationRC =∐μ∈C RCμ of preadditive
categories. On the other hand, Proposition 4.7 just states that the image of simple B-modules
under iμ : B-Mod ↪→ Cμ is contained inRCμ. Combining this with Remark 4.3 and Theorem
4.5, we get:

Theorem 4.9 Every simple, torsion free sl(2)-module has finite rank and thus

Spl(sl(2)-Modtf ) = Spl(sl(2)-Modtffr).

Considering the extension of scalars functor, we have the following dichotomy:

Corollary 4.10 A simple, torsion free sl(2)-module is either a polynomial module or a non
finite type sl(2)-submodule of a rational module.

Corollary 4.11 The simple sl(2)-modules of the categories Cμ,tf and Cμ,tffr coincide. That is,
one has

Spl(Cμ,tf ) = Spl(Cμ,tffr)

and therefore, the category Spl(Cμ,tffr) is essentially small.

Remark 4.12 The category of rational representationsR is a full subcategory of sl(2)-Modtffr.
Given two rational representations W1, W2, one easily checks that

HomR(W1,W2) = Homsl(2)(W1,W2)

is a C-vector subspace of HomC(z)(W1,W2).

Definition 4.13 If W is a C(z)-vector space, we denote by RC(W ) (resp. RCμ(W )) the set
of rational Casimir sl(2)-module structures (resp. of level μ) such that ρ(L0) = z.

Having in mind (3.2), one proves straightforwardly the following result.

Proposition 4.14 There is a bijective correspondence betweenRCμ(W ) and the set of C(z)-
semilinear automorphisms Aut1

C(z)(W ), such that

ρ(L−1) := πμ(z)ρ(L1)
−1 ∈ Aut−1

C(z)(W ), ρ(L1) ∈ Aut1
C(z)(W )

noting that the commutation relation (2.4) follows automatically.

Example 4.15 For any μ ∈ C one has a Casimir representation ρ(μ) defined on C(z) by

ρ(μ)(L−1) = πμ(z)∇−1, ρ(μ)(L0) = z, ρ(μ)(L1) = ∇.

Via the embedding iμ : B-Mod ↪→ Cμ one has that B-modules are exactly the sl(2)-
Casimir modules of level μ that are C(z)-vector spaces. In particular, those B-modules that
are finite dimensional C(z)-vector spaces belong to RCμ. Taking into account (3.2) one has
the following:

Theorem 4.16 The functor iμ : B-Modfd → RCμ is an equivalence of categories whose
inverse is the functor F : RCμ → B-Modfd of extension of scalars; that is, F ◦ iμ ∼= IdB-Mod,
iμ ◦ F ∼= IdRCμ . Moreover, F is naturally isomorphic to the forgetful functor jμ : RCμ →
B-Modfd defined by jμ(W , ρ) = (W , ρ(L1)).
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Corollary 4.17 The isomorphism of categories iμ : B-Modfd → RCμ induces an identifica-
tion

Spl(B-Mod)
iμ−→∼ SplRCμ

(RCμ)

between the categories of simple objects.

For any two levels μ, ν ∈ C, we define a functor

	μν : RCμ → RCν

by 	μν = iν ◦ jμ. Taking into account Proposition 4.14 the proof of the following result is
straightforward.

Corollary 4.18 The categories RCμ, RCν are isomorphic through the pair of exact func-
tors 	μν : RCμ → RCν , 	νμ : RCν → RCμ. Moreover, given (W , ρ) ∈ RCμ one has
	μν(W , ρ) = (W ,	μν(ρ)) with

	μν(ρ)(L−1) = πν(z)

πμ(z)
ρ(L−1), 	μν(ρ)(L1) = ρ(L1).

By means of the natural embedding C[z] ↪→ C(z) = S−1C[z] we can generalize now the
functor of extension of scalars to rational representations, see (4.1) and Remark 4.3.

Definition 4.19 The rationalization functor

Frat : sl(2)-Modtffr → R

sends a finite rank sl(2)-module (V , ρ) to Frat(V , ρ) = (S−1V , ρrat) where the C(z)-vector
space S−1V obtained by localization of the C[z]-module V is endowed with the sl(2)-
representation ρrat = S−1(ρ) defined by

ρrat(L−1)
(

v

p(z)

)

:= ρ(L−1)(v)

p(z − 1)
,

ρrat(L0)

(

v

p(z)

)

:= z · v
p(z)

,

ρrat(L1)

(

v

p(z)

)

:= ρ(L1)(v)

p(z + 1)
.

One straightforwardly checks that Frat is a faithful and exact functor that by restriction
induces faithful and exact functors Frat : Ctffr → RC, Frat : Cμ,tffr → RCμ.

These results and Theorem 3.2 show that Theorem 4.5 can be restated as follows:

Theorem 4.20 The rationalization functor Frat : Ctffr −→ RC induces a bijection

̂Frat : ̂Spl(Ctffr) ∼−→ ̂SplRC(RC).

Furthermore, given μ ∈ C, there is a bijection

̂Frat : ̂Spl(Cμ,tffr)
∼−→ ̂SplRCμ

(RCμ),

hence SplRCμ
(RCμ) is an essentially small category.

Remark 4.21 Notice that every rational sl(2)-module is torsion free. However, rational mod-
ules are always not simple as sl(2)-modules since they have uncountable dimension as
C-vector spaces, whereas simple sl(2)-modules, which can be realized as quotients of the
universal enveloping algebra U (sl(2)), have at most countable C-dimension due to the
Poincaré–Birkhoff–Witt theorem.
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5 Generalized Casimir modules

Definition 5.1 We say that an sl(2)-module (V , ρ) is a generalized Casimir sl(2)-module of
level μ ∈ C, if its Casimir operator Cρ fulfills

(Cρ − μ)n = 0,

for some n ∈ N. Moreover, if (Cρ − μ)n = 0 and (Cρ − μ)n−1 �= 0, then we say that the
generalized Casimir module V has exponent n.

The full subcategory of sl(2)-Mod (resp. R) consisting of generalized Casimir sl(2)-
modules of level μ ∈ C will be denoted by C•μ (resp. RC•μ) and C(n)

μ (resp. RC(n)
μ ) denotes

its full subcategory formed by all modules of exponent n. We denote by C• (resp. RC•) the
category formed by all (resp. rational) generalized Casimir sl(2)-modules.

One easily checks that generalized Casimir modules of levelμ and exponent n are exactly
theC[z]-modules endowedwithC[z]-semilinear endomorphisms ρ(L−1), ρ(L1) and aC[z]-
linear n-th nilpotent endomorphism N that verify:

ρ(L−1) ◦ ρ(L1) = πμ(z)− N , ρ(L1) ◦ ρ(L−1) = πμ(z + 1)− N . (5.1)

The commutation relation, [ρ(L−1), ρ(L1)] = −2z, follows automatically from these
expressions and the nilpotent endomorphism N is related to the Casimir operator Cρ by the
equality N = Cρ − μ. The next result follows straightforwardly.

Proposition 5.2 Every generalized Casimir sl(2)-module (V , ρ) of level μ and exponent n,
has a canonical strictly increasing filtration of length n by sl(2)-submodules:

V 0 := (0) � V 1
� . . . � V n := V (5.2)

where V i = ker(Cρ − μ)i , for i = 1, . . . , n, is a generalized Casimir sl(2)-module of level
μ and exponent i and V i/V i−1 is a Casimir sl(2)-module of level μ.

Moreover, if V is a finite rank torsion free module, then V i and V i/V i−1 are also torsion
free modules and for every i = 1, . . . , n − 1, one has

rk
(

V i/V i−1) ≥ rk
(

V i+1/V i
)

.

In particular, if V is a rational module, then V i and V i/V i−1 are rational modules.

Proposition 5.3 Let us consider μ1, μ2 ∈ C. If μ1 �= μ2, then for any n1, n2 ∈ N the
categories C(n1)

μ1 , C(n2)
μ2 are Hom-orthogonal.

Proof Let us suppose that μ1 �= μ2. For any Vi ∈ C(ni )
μi we have to check that

Homsl(2)(V1, V2) = 0. Let V •i be the filtration of Vi described in Proposition 5.2. By the
first part of Proposition 3.3 it follows that Homsl(2)(V 1

1 , V 1
2 ) = 0. Proceeding by induction

on the terms of the filtration V •1 one easily shows by considering its successive quotients
that Homsl(2)(V1, V 1

2 ) = 0. By means of the natural filtration V •2 of V2 one shows now in a
similar way that Homsl(2)(V1, V2) = 0. ��
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6 Rational sl(2)-modules

6.1 C-rationality of Casimir operators and endomorphisms

Let us recall that a C-linear endomorphism of a complex vector space of infinite dimension
does not have in general a minimal polynomial. Therefore, if we take into account that a
rational module has complex dimension equal to c -the cardinality of the continuum- it is
remarkable, and also crucial for obtaining further results, that theCasimir operators of rational
sl(2)-modules always have a minimal polynomial.

Theorem 6.1 If (W , ρ) is a rational sl(2)-representation, then the minimal polynomial
MCρ (t) of its Casimir operator Cρ , considered as a C(z)-linear endomorphism of W, has
its coefficients in C; that is, MCρ (t) ∈ C[t]. Therefore, the Casimir operator Cρ understood
as a C-linear endomorphism of W has minimal polynomial MCρ (t).

Proof Notice that the field automorphisms ∇ and ∇−1 of C(z) induce in a natural way
automorphisms of the polynomial ring C(z)[t] such that given P = antn + · · · + a1t + a0 ∈
C(z)[t] one has ∇(P) := ∇(an)tn + · · · + ∇(a1)t + ∇(a0) and a similar formula holds
for ∇−1(P). The minimal polynomial of Cρ is the monic generator of its annihilating ideal
Ann(Cρ) ⊂ C(z)[t]. One has

ρ(L1) ◦ ρ(L−1) ◦ ∇(MCρ )(Cρ) = ρ(L1) ◦ MCρ (Cρ) ◦ ρ(L−1) = 0. (6.1)

By (3.1) we have ρ(L1) ◦ ρ(L−1) = z(z + 1)− Cρ , plugging this into (6.1) we get
(

z(z + 1)− Cρ

) ◦ ∇(MCρ )(Cρ) = 0.

This shows that the polynomial (t − z(z + 1))·∇(MCρ )(t)belongs toAnn(Cρ). SinceMCρ (t)
is the monic generator of this ideal and ∇(MCρ )(t) is also monic of the same degree, there
exists ξ ∈ C(z) such that we have the equality

(t − z(z + 1)) · ∇(MCρ )(t) = (t − ξ) · MCρ (t). (6.2)

Proceeding in a similar way with ρ(L−1)◦ρ(L1)◦∇(MCρ )(Cρ) one proves that there exists
ζ ∈ C(z) satisfying the identity

(t − z(z − 1)) · ∇−1(MCρ )(t) = (t − ζ ) · MCρ (t).

Applying to it the automorphism ∇ we get

(t − z(z + 1)) · MCρ (t) = (t −∇(ζ )) · ∇(MCρ )(t). (6.3)

Now, equations (6.2) and (6.3) straightforwardly imply that

∇(MCρ )(t) = MCρ (t)

and thus the claim follows. ��
Corollary 6.2 If (W , ρ) is a rational representation, then ρ(L1) and ρ(L−1) are C(z)-
semilinear automorphisms of W.

Proof Bearing inmind theCayley–Hamilton theorem, it follows thatTheorem6.1 implies that
all eigenvalues ofCρ belong toC, hence theC(z)-endomorphismsCρ−z(z−1),Cρ−z(z+1)
are invertible. By the first equality of (3.1) one has Cρ − z(z − 1) = −ρ(L−1) ◦ ρ(L1),
thus ρ(L1) is injective and ρ(L−1) is surjective. Similarly, the second equality of (3.1) gives
Cρ − z(z + 1) = −ρ(L1) ◦ ρ(L−1) and thus ρ(L1) is surjective and ρ(L−1) is injective. ��
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Proposition 6.3 Let (W , ρ) be a rational sl(2)-representation. For every T ∈ Endsl(2)(W )

the minimal polynomial MT (t) of T considered as a C(z)-linear endomorphism of W has its
coefficients inC; that is, MT (t) ∈ C[t]. Therefore, T understood as aC-linear endomorphism
of W has minimal polynomial MT (t).

Proof One has ρ(L1) ◦ ∇−1(MT )(T ) = MT (T ) ◦ ρ(L1) = 0. Since ρ(L1) is invertible by
Corollary 6.2, it follows that∇−1(MT )(t) belongs to the annihilating idealAnn(T ) ⊂ C(z)[t]
of T as a C(z)-linear map. Taking into account that Ann(T ) is generated by the monic
polynomial MT (t) and that deg(∇−1(MT )(t)) = deg(MT (t)), we conclude ∇−1(MT )(t) =
MT (t) and the proof is finished. ��

6.2 Categorical properties of rational modules

Proposition 6.4 R is a C-linear abelian subcategory of the category C(z)-Vectfd of finite
dimensional C(z)-vector spaces.

Proof Thanks to Remark 4.12, it follows that R is a C-linear subcategory of the category
of finite dimensional C(z)-vector spaces, which is an abelian category. It is straightforward
to check that R is an abelian category. Moreover, since every exact sequence of rational
sl(2)-modules is an exact sequence of C(z)-vector spaces, the claim is proved. ��
Theorem 6.5 R is a finite-length abelian category and thus every rational module has ratio-
nal Jordan–Hölder filtrations. Moreover,R is a Krull–Schmidt category and therefore every
rational module has a Remak decomposition into a finite direct sum of indecomposable
rational modules, unique up to reordering of the direct summands.

Proof SinceR is an abelian subcategory ofC(z)-Vectfd, it follows that every rational module
(W , ρ) is both Artinian and Noetherian. Hence R is a finite-length abelian category. By
[10,Lemma 5.1 and Theorem 5.5] it follows that R is Krull–Schmidt. The existence of
a Remak decomposition, which is essentially the Krull–Schmidt Theorem, follows from
[1,Theorem 1] taking into account [10,Lemma 5.1]. ��
Definition 6.6 For a rational representation W , we define its length, lengthR(W ), as the
maximal length of all filtrations of W by rational subrepresentations; that is, by subobjects
of W in R.

It is clear that for any rational sl(2)-module W it holds that:

lengthR(W ) ≤ dimC(z) W .

Now we prove that R has a “reasonable size” to have a Grothendieck group.

Theorem 6.7 R is an essentially small category. Therefore, RC•, RC, RC•μ and RCμ, for
every μ ∈ C, are also essentially small categories.

Proof Let (W , ρ) be an sl(2)-rational representation such that dimC(z) W = m. Choosing an

isomorphism of C(z)-vector spaces ϕ : W ∼−→ C(z)m one has that (W , ρ) is R-isomorphic
to (C(z)m, ρ′) where ρ′ = ϕ ◦ ρ ◦ ϕ−1. One has

ρ′(L1) = σ(z) ◦ ∇, ρ′(L0) = z, ρ′(L−1) = τ(z) ◦ ∇−1
for certain σ(z), τ (z) ∈ M(m, C(z)) such that (2.4) holds. One has an identification

R(C(z)m) � {(σ (z), τ (z)) ∈ M(m, C(z))2 : σ(z) ◦ τ(z + 1)− τ(z) ◦ σ(z − 1) = 2z Idm}.
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By Remark 4.12 it follows that T (z) ∈ GL(m, C(z)) acts on R(C(z)m) by conjugation. In
terms of the previous identification this action is written

T (z) • (σ (z), τ (z)) = (T (z) ◦ σ(z) ◦ T (z + 1)−1, T (z) ◦ τ(z) ◦ T (z − 1)−1).

Thus, the isomorphism classes of sl(2)-representations on C(z)m is given by the set

Iso(R(C(z)m)) = R(C(z)m)/GL(m, C(z)).

Finally, the isomorphism classes of rational representations in given by the set

Iso(R) =
∐

m≥0
Iso(R(C(z)m).

ThereforeR is essentially small. The other claims follow immediately since all the categories
considered are full subcategories of R. ��

6.3 Decomposition of the category of rational modules

Theorem 6.8 The abelian category R of rational sl(2)-modules decomposes into the Hom-
orthogonal direct sum of the abelian subcategories of generalized rational Casimir modules:

R =
⊕

μ∈C
RC•μ .

This is compatible with the coproduct decomposition RC = ∐

μ∈C RCμ .

Proof Let (W , ρ) be a rational sl(2)-module. Theorem 6.1 implies that the minimal polyno-
mial MCρ (t) of its Casimir operator Cρ as a C(z)-endomorphism of W space splits over C;
that is,

MCρ (t) = (t − μ1)
n1 · . . . · (t − μr )

nr

(where μi �= μ j for i �= j) and, accordingly, W decomposes as a C(z)-vector space as
follows:

W = ker(Cρ − μ1)
n1 ⊕ · · · ⊕ ker(Cρ − μr )

nr .

Having in mind that Cρ commutes with ρ(Li ) for i ∈ {−1, 0, 1}, the previous expression
is also a decomposition as sl(2)-modules, where ker(Cρ − μi )

ni belongs to R(ni )
μi . The

orthogonality of the decomposition follows from Proposition 5.3. Thus R is the direct sum
of the abelian subcategories RC•μ, see [7, page 3]. ��

As a formal consequence we get the:

Corollary 6.9 For every μ ∈ C, the abelian category RC•μ is closed under extensions in R.

6.4 Indecomposable and simple rational modules

Let us recall that a rational sl(2)-module (W , ρ) is sl(2)-indecomposable or simply inde-
composable, (resp.R-indecomposable) if it can not be written as W = W1⊕W2 where W1,
W2 are sl(2)-modules (resp. rational sl(2)-modules).
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Proposition 6.10 A rational sl(2)-module is indecomposable if and only if it is R-
indecomposable. Moreover, every indecomposable rational module is a generalized Casimir
module. Hence, we have IndR(R) = Ind(R) = IndRC•(RC•) = Ind(RC•).
Proof For the first statement, one implication is obvious. On the other hand, let W be a
rational sl(2)-module that is R-indecomposable and suppose that there is a decomposition
W = V1 ⊕ V2 as sl(2)-modules. It follows that V1, V2 are C[z]-submodules. Given v1 ∈ V1
and ξ = p(z)

q(z) ∈ C(z), since W is a C(z)-vector space one has

ξ · (v1, 0) = (u1, u2),

for certain u1 ∈ V1, u2 ∈ V2. On the other hand

q(z) · (ξ · v) = (q(z) · u1, q(z) · u2) = (q(z) · ξ) · (v1, 0) = (p(z) · v1, 0).
Therefore, q(z)·u2 = 0 and this implies u2 = 0. Hence, ξ ·v1 ∈ V1 and so V1 is aC(z)-vector
space. In a similar way one shows that V2 is also aC(z)-vector subspace. Hence,W would be
R-decomposable, giving a contradiction. Therefore,W is necessarily sl(2)-indecomposable.
This finishes the proof of the first claim. The second one is an immediate consequence of
Theorem 6.8. ��
Proposition 6.11 If (W , ρ) is an indecomposable rational sl(2)-module, then every φ ∈
Endsl(2)(W ) is either an isomorphism or nilpotent.

Proof By Proposition 6.3 any φ ∈ Endsl(2)(W ) has minimal polynomial Mφ(t) in C[t].
Since φ commutes with ρ(L1) and ρ(L−1), the ideas used in the proof of Theorem 6.8
show that (W , ρ)would be decomposable unless Mφ(t) has a unique root, sayμ ∈ C. Hence
Mφ(t) = (t−μ)m for certain integerm ≥ 1. This implies (φ−μ)m = 0 and thus φ = μ+N
with N an m-th nilpotent endomorphism, proving the claim. ��

In a similar way let us recall that a rational module is sl(2)-simple or just simple, (resp.
R-simple) if it has no non-trivial sl(2)-submodules (resp. rational sl(2)-submodules). In
particular, W is R-simple if and only if lengthR(W ) = 1. Notice that one has the following
implications:

R-simple �⇒ R-indecomposable⇐⇒ sl(2)-indecomposable.

Proposition 6.12 AnR-simple, rational sl(2)-module is a Casimir module. Hence, one has

SplR(R) = SplRC•(RC•) = SplRC(RC), SplRC•μ(RC•μ) = SplRCμ
(RCμ).

Proof A rational sl(2)-module that is R-simple is R-indecomposable, and therefore is a
generalized Casimir module by Proposition 6.10. Furthermore, its exponent has to be 1 since
otherwise by Proposition 5.2 it would have a non trivial filtration and therefore it could not
be R-simple. ��
Theorem 6.13 One has the following identifications

̂Spl(sl(2)-Modtf ) = ̂Spl(sl(2)-Modtffr)
̂Frat−−→∼ ̂SplRC(RC) = ̂SplR(R).

Proof The first one is due to Theorems 3.2 and 4.9, whereas the second one is given by
Theorem 4.20. The last equality follows from Proposition 6.12. ��

In particular, it is clear that every rational sl(2)-module that is one dimensional over C(z)
is R-simple. Therefore we get the:

Corollary 6.14 Every rational sl(2)-module that is one dimensional overC(z) is anR-simple
Casimir sl(2)-module.
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6.5 Action of automorphisms on rational Casimir representations

Recalling Proposition 4.14 and Corollary 6.2, one proves the following fact.

Proposition 6.15 Given a C(z)-vector space W, there is an identification:

Aut1
C(z)(W )←→ RCμ(W ) ,

defined by sending ϕ ∈ Aut1
C(z)(W ) to the sl(2)-representation ρ defined on W by ρ(L−1) :=

πμ(z) ϕ−1 ∈ Aut−1
C(z)(W ), ρ(L1) := ϕ ∈ Aut1

C(z)(W ).

More generally, given a rational representation (W , ρ) and an automorphism ϕ ∈
AutC(z)(W ) we define a map ϕ · ρ : sl(2)→ EndC(W ) such that

ϕ · ρ(L−1) := ρ(L−1) ◦ ϕ−1 ∈ Aut−1
C(z)(W ),

ϕ · ρ(L0) := z,

ϕ · ρ(L1) := ϕ ◦ ρ(L1) ∈ Aut1
C(z)(W ). (6.4)

One checks that ϕ · ρ is a rational sl(2)-representation if and only if

ϕ ◦ Cρ = Cρ ◦ ϕ.

Therefore, the group AutC(z)(W ;Cρ) = {ϕ ∈ AutC(z)(W ) : [ϕ,Cρ] = 0}, which naturally
contains C

×(z), acts on ρ ∈ R(W ). This action preserves the Casimir operator, that is
Cϕ·ρ = Cρ . In what follows we denote ϕ · (W , ρ) := (W , ϕ · ρ).

In particular, one has:

Proposition 6.16 AutC(z)(W ) acts freely on RC(W ) and its orbits are RCμ(W ). Thus,
AutC(z)(W ) acts freely and transitively on RCμ(W ), for every μ ∈ C.

6.6 Hom-finiteness of the category of rational modules

Let k be a commutative ring. Recall that an additive categoryA is Homk-finite if it is k-linear
and HomA(A, B) is a k-module of finite length for all objects A, B.

Proposition 6.17 Let W be a rational sl(2)-representation. If W is R-simple, then
Endsl(2)(W ) = C.

Proof Let φ ∈ Endsl(2)(W ). By Proposition 6.3, the minimal polynomial of φ, Mφ(t), has its
coefficients inC. Considering a rootα ofMφ(t), the space of eigenvectors ker(φ−α) is a non-
zero rational subrepresentation of W . Hence, the hypothesis implies that W = ker(φ − α);
that is, φ = α ∈ C. ��
Remark 6.18 Let us point out that Proposition 6.17 can not be obtained by more conventional
means. On the one hand, Dixmier’s generalization, [9,Lemma 4.1.4], of Schur’s Lemma can
not be applied since rational sl(2)-modules have C-dimension equal to c. On the other hand,
Quillen’s Lemma, [15], can not be applied since, by Remark 4.21, rational sl(2)-modules are
never simple as sl(2)-modules.

Proposition 6.19 If (W1, ρ1), (W2, ρ2) are twoR-irreducible rational sl(2)-representations,
then every element ofHomsl(2)(W1,W2) is either zero or an isomorphism. Moreover, if W1 is
not isomorphic to W2, then Homsl(2)(W1,W2) = 0, whereas dimC Homsl(2)(W1,W2) = 1
if W1 � W2.
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Proof Let φ ∈ Homsl(2)(W1,W2) be a non-zero homomorphism. Since ker φ is a rational
subrepresentation ofW1, we conclude that φ is injective. On the other hand, since Im φ ⊂ W2

is a rational subrepresentation, φ is surjective. Hence, φ is an isomorphism. Let us consider
an arbitrary homomorphism φ′ ∈ Homsl(2)(W1,W2). Then, φ′ ◦ φ−1 ∈ Endsl(2)(W2) and,
by Proposition 6.17, we obtain that φ′ ◦φ−1 ∈ C and thus Homsl(2)(W1,W2) is of dimension
1 over C. ��
Theorem 6.20 Let (W1, ρ1), (W2, ρ2) be two rational sl(2)-representations. Then,

dimC Homsl(2)(W1,W2) ≤ lengthR W1 · lengthR W2 .

Therefore, the category R of rational sl(2)-modules is HomC-finite.

Proof We proceed by double induction on lengthR W1 and lengthR W2. If we have
lengthR W1 = lengthR W2 = 1, then the claim follows from Proposition 6.19. Suppose
now that lengthR W1 = 1 and lengthR W2 > 1 and choose a non-trivial rational subrepre-
sentation of W2, say W ′2. Consider the exact sequence:

Homsl(2)(W1,W
′
2) −→ Homsl(2)(W1,W2) −→ Homsl(2)(W1,W2/W

′
2) .

Due to the induction hypothesis, the statement holds for the terms on the left and on the right.
Bearing in mind how the dimension varies with the above exact sequences, the claim holds
for the central term.

Finally, if lengthR W1 > 1 and lengthR W2 > 1, we consider a non-trivial rational
subrepresentation of W1, say W ′1, and the exact sequence:

Homsl(2)(W1/W
′
1,W2) −→ Homsl(2)(W1,W2) −→ Homsl(2)(W

′
1,W2) .

A similar argument as above yields the result. ��

6.7 Extensions of rational sl(2)-representations

Let (W ′, ρ′) and (W ′′, ρ′′) be rational sl(2)-representations. Any rational sl(2)-extension
(W , ρ) of (W ′′, ρ′′) by (W ′, ρ′) gives rise to a short exact sequence of rational representations

0→ W ′ → W → W ′′ → 0,

that splits as C(z)-vector spaces, thus W = W ′ ⊕W ′′ and we can write

ρ(L−1) =
(

ρ′(L−1) B−1
0 ρ′′(L−1)

)

, ρ(L1) =
(

ρ′(L1) B1

0 ρ′′(L1)

)

where B−1 ∈ Hom−1
C(z)(W

′′,W ′), B1 ∈ Hom1
C(z)(W

′′,W ′). The representation condition for
ρ is equivalent to the equality of C(z)-linear maps in HomC(z)(W ′′,W ′)

T := ρ′(L−1) ◦ B1 + B−1 ◦ ρ′′(L1) = ρ′(L1) ◦ B−1 + B1 ◦ ρ′′(L−1). (6.5)

This implies the identity

ρ′(L1) ◦ T − T ◦ ρ′′(L1) = ρ′(L1) ◦ ρ′(L−1) ◦ B1 − B1 ◦ ρ′′(L−1) ◦ ρ′′(L1)

= 1

4
(B1 ◦ Cρ′′ − Cρ ◦ B1), (6.6)

123



The Grothendieck and Picard groups of finite rank... Page 19 of 50 94

whereCρ′ ,Cρ′′ are the Casimir operators of (W ′, ρ′) and (W ′′, ρ′′), respectively. Conversely,
given any T ∈ HomC(z)(W ′′,W ′) that satisfies (6.6), since ρ′′(L−1) is invertible byCorollary
6.2, we can define B−1 := [T − ρ′(L−1) ◦ B1] ◦ ρ′′(L1)

−1, then B−1, B1 satisfy (6.5).
Therefore, the space Ext1R(W ′′

ρ′′ ,W
′
ρ′) of data for rational extensions of the rational sl(2)-

module W ′′
ρ′′ by the rational sl(2)-module W ′

ρ′ is given by

Ext1R(W ′′ρ′′ ,W
′
ρ′) =

{

(B1, T ) ∈ Hom1
C(z)(W

′′,W ′)× HomC(z)(W
′′,W ′) :

ρ′(L1) ◦ T − T ◦ ρ′′(L1) = 1

4
(B1 ◦ Cρ′′ − Cρ′ ◦ B1)

}

.

We denote the extension data (B1, T ) by (ρ′, ρ′′; B1, T ) when we want to express explicitly
the underlying representations involved. Moreover, W (ρ′, ρ′′; B1, T ) ∈ R(W ) denotes the
representation defined by (ρ′, ρ′′; B1, T ) ∈ Ext1R(W ′′

ρ′′ ,W
′
ρ′). There is a natural injective

map

Ext : Ext1R(W ′′ρ′′ ,W
′
ρ′) ↪→ R(W )

defined by Ext(ρ′, ρ′′; B1, T ) := W (ρ′, ρ′′; B1, T ).
In particular, we get:

Proposition 6.21 If W ′
ρ′ ,W

′′
ρ′′ belong to RCμ, then one has

Ext1R(W ′′ρ′′ ,W
′
ρ′) = Hom1

C(z)(W
′′,W ′)× Homsl(2)(W

′′
ρ′′ ,W

′
ρ′)

and Ext1R(W ′′
ρ′′ ,W

′
ρ′) = Ext1RC•μ(W ′′

ρ′′ ,W
′
ρ′) ⊂ RC(2)

μ (W ).

To determine the isomorphism classes of extensions we have to find those morphisms
φ ∈ Homsl(2)(W (ρ′, ρ′′; B(1)

1 , T (1)),W (ρ′, ρ′′; B(2)
1 , T (2))), such that the diagram

0 W ′ W (ρ′, ρ′′; B(1)
1 , T (1))

φ

W ′′ 0

0 W ′ W (ρ′, ρ′′; B(2)
1 , T (2)) W ′′ 0

is commutative. Therefore

φ =
(

IdW ′ α

0 IdW ′′

)

with α ∈ HomC(z)(W ′′,W ′) and one checks that the condition that φ is a morphism of
sl(2)-modules is equivalent to the equalities

B(2)
1 − B(1)

1 = α ◦ ρ′′(L1)− ρ′(L1) ◦ α,

T (2) − T (1) = 1

4
(Cρ′ ◦ α − α ◦ Cρ′′).

Equivalently, HomC(z)(W ′′,W ′) acts on ExtR(W ′′
ρ′′ ,W

′
ρ′) and the C-vector space Ext1R

(W ′′
ρ′′ ,W

′
ρ′) of extensions of W

′′
ρ′′ by W ′

ρ′ is the quotient under this action

Ext1R(W ′′ρ′′ ,W
′
ρ′) = Ext1R(W ′′ρ′′ ,W

′
ρ′)/HomC(z)(W

′′,W ′).
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Taking into account the previous results and Theorem 6.8, we obtain for rational Casimir
representations the following description of the extension groups.

Proposition 6.22 Let W ′
ρ′ ,W

′′
ρ′′ be two rational Casimir representations of levelsμ′, μ′′ ∈ C,

respectively.

1. If μ′ �= μ′′, then Ext1R(W ′′
ρ′′ ,W

′
ρ′) = 0.

2. If μ′ = μ′′, then one has

Ext1R(W ′′ρ′′ ,W
′
ρ′) =

(

Hom1
C(z)(W

′′,W ′)/HomC(z)(W
′′,W ′)

)

× Homsl(2)(W
′′
ρ′′ ,W

′
ρ′),

where α ∈ HomC(z)(W ′′,W ′) acts on B1 ∈ Hom1
C(z)(W

′′,W ′) by

α · B1 := B1 + α ◦ ρ′′(L1)− ρ′(L1) ◦ α.

Corollary 6.23 If W ′
ρ′ ,W

′′
ρ′′ are two rational Casimir representations of level μ, then

W (ρ′, ρ′′; B1, T ) is a Casimir representation of level μ, if and only if T = 0. Therefore, the
category RCμ is not closed under extensions in R.

7 Finite rank torsion free sl(2)-modules

Notice that the abelian category of rational representations R is a full subcategory of the
category sl(2)-Modtffr of finite rank torsion free sl(2)-modules. In this section we aim at
studying what properties of R are valid in the larger category sl(2)-Modtffr .

7.1 Minimal polynomials for Casimir operators and endomorphisms

Since finite rank torsion free sl(2)-modules always have infinite dimension as C-vector
spaces, the following result is not obvious.

Theorem 7.1 If (V , ρ) is a finite rank torsion free sl(2)-module, then its Casimir operator
Cρ considered as a C-linear endomorphism has a minimal polynomial and it coincides with
the minimal polynomial of the Casimir operator Cρrat of its rationalization.

Proof The rationalization of (V , ρ) gives an injection of sl(2)-modules (V , ρ) ↪→
(S−1V , ρrat). Therefore, one has Cρ = Cρrat|V and so the result follows from Theorem 6.1.

��
Corollary 7.2 If (V , ρ) is a finite rank torsion free sl(2)-module, then ρ(L1) and ρ(L−1)
are injective C[z]-semilinear endomorphisms of V and their images are essential C[z]-
submodules.

Proof By Corollary 6.2 we know that S−1(ρ(L1)), S−1(ρ(L−1)) are C(z)-semilinear auto-
morphisms of S−1V . This implies the injectivity of ρ(L1) and ρ(L−1) and also that their
images are essential C[z]-submodules. ��

Taking into account Proposition 6.3 and using the same ideas as in the proof of Theorem
7.1 we get the following result.
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Proposition 7.3 Let (V , ρ) be a finite rank torsion free sl(2)-representation. Every sl(2)-
endomorphism φ ∈ Endsl(2)(V ) considered as a C-linear endomorphism has a minimal
polynomial and it coincides with the minimal polynomial of its rationalization S−1(φ) ∈
Endsl(2)(Frat(V , ρ)).

7.2 Categorical properties of finite rank torsion freemodules

We begin by analyzing the exact structure.

Proposition 7.4 The natural inclusion sl(2)-Modtffr ↪→ sl(2)-Mod makes the category
sl(2)-Modtffr into a C-linear exact category. The abelian category R is a thick subcate-
gory of the exact category sl(2)-Modtffr .

Proof Since sl(2)-Modtffr is a full additive subcategory of the abelian category sl(2)-Mod,
according to [6,Lemma10.20]weget thefirst claim if sl(2)-Modtffr is closed under extensions
in sl(2)-Mod. This follows from the exactness of the rationalization functor and the left
exactness of the torsion subfunctor. To prove the second claim we must show that if 0 →
V ′ → V → V ′′ → 0 is exact in sl(2)-Modtffr, then V ∈ R if and only if V ′, V ′′ ∈ R.
Since V ∈ R if and only if the underlying C[z]-module structure on V is such that for every
λ ∈ Cmultiplication by z−λ is an isomorphism, the result follows immediately by the snake
Lemma. ��
Remark 7.5 The main difference with rational representations is that sl(2)-Modtffr is not a
finite length category. This is so because although every rational module W has finite R-
length, it never has finite length as an object of sl(2)-Modtffr , because if this were true then
W would have countable C-dimension, which is impossible.

Following the ideas of Remark 4.3 one gets the following result.

Proposition 7.6 Let Frat : sl(2)-Modtffr → R be the rationalization functor. If itffr : R ↪→
sl(2)-Modtffr is the natural embedding, then there is an isomorphism of functors Frat ◦ itffr ∼=
IdR and thus Frat is a retraction of itffr .

Nowweprove a result that laterwill be crucial for studying the structure of theGrothedieck
group of the category sl(2)-Modtffr.

Theorem 7.7 The embedding functor itffr : R ↪→ sl(2)-Modtffr is a right adjoint of the ratio-
nalization functor Frat : sl(2)-Modtffr → R. Therefore, R is a reflective localization of
sl(2)-Modtffr with localization functor Frat. Moreover, Frat is faithful.

Proof One checks the first claim straightforwardly. The second follows from the first one
thanks to [8,Proposition 1.3, pag. 7] since itffr : R ↪→ sl(2)-Modtffr is fully faithful. Finally,
it is well known that Frat is faithful precisely if the component of the unit of the adjunction η

over a finite rank torsion free sl(2)-module V is a monomorphism. This is immediate since
ηV is the natural inclusion V ↪→ S−1V . ��

We end this section proving that sl(2)-Modtffr has a “suitable size” for K0-groups.

Theorem 7.8 The category sl(2)-Modtffr is essentially small and thus C•tffr , Ctffr , C•μ,tffr and
Cμ,tffr , for every μ ∈ C, are also essentially small categories.
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Proof The rationalization functor induces a map Frat : Iso(sl(2)-Modtffr) → Iso(R). By
Theorem 6.7 the category R is essentially small. Therefore, to prove the claim it is enough
to show that given {W } ∈ Iso(R), the isomorphism classes {V } of finite rank torsion free
sl(2)-modules such that Frat(V ) � W form a set. Without loss of generality we may assume
that V is an sl(2)-submodule of W . Now the condition Frat(V ) = W is equivalent to saying
that V has rank r = rk(W ). It is well known, [17, 10.6.2, pag. 92], that sl(2)-Mod, as the
category of modules over the enveloping algebra U (sl(2)), is well powered and therefore
there is a set Sub(W ) of sl(2)-submodules of W . The collection Subr (W ) formed by those
submodules of W whose rank is r is a subset of Sub(W ), finishing the proof. ��

7.3 Decomposition of the category of finite rank torsion freemodules

Taking into account Theorem 7.1, the following result is proved in the same way as Theorem
6.8.

Theorem 7.9 The exact category sl(2)-Modtffr decomposes into the Hom-orthogonal direct
sum of the exact subcategories of generalized Casimir modules:

sl(2)-Modtffr =
⊕

μ∈C
C•μ,tffr .

This is compatible with the coproduct decomposition Ctffr = ∐

μ∈C Cμ,tffr.

7.4 Indecomposable and simple finite rank torsion freemodules

Proposition 7.10 Let V be an object of sl(2)-Modtffr . If V is

1. Indecomposable, then V ∈ C•tffr; that is, Ind(sl(2)-Modtffr) = Ind(C•tffr). Moreover,
every φ ∈ Endsl(2)(V ) is either an isomorphism or nilpotent;

2. Simple, then V ∈ Ctffr; that is, Spl(sl(2)-Modtffr) = Spl(Ctffr).

Proof (1)The first part follows fromTheorem 7.9. For the second one, having inmind Propo-
sition 7.3, onemay argue as in Proposition 6.11. (2) follows fromTheorem 3.2. Alternatively,
a finite rank torsion free module that is simple is also indecomposable. Therefore, recalling
the proof of Proposition 6.12, we are done. ��

7.5 Hom-finiteness and Krull–Schmidt property for finite rank torsion freemodules

Bearing in mind Proposition 7.3, Proposition 6.17 gives:

Proposition 7.11 Let (V , ρ) be a finite rank torsion free sl(2)-module. If (V , ρ) is isimple,
then Endsl(2)(V ) = C.

This result and the same ideas used in the proof of Proposition 6.19 give the following:

Proposition 7.12 If (V1, ρ1), (V2, ρ2) are two simple finite rank torsion free sl(2)-modules,
then every element of Homsl(2)(V1, V2) is either zero or an isomorphism. Moreover, if V1 is
not isomorphic to V2, then Homsl(2)(V1, V2) = 0, whereas dimC Homsl(2)(V1, V2) = 1 if
V1 � V2.

By Theorem 7.7, Frat is faithful, this together with Theorem 6.20, yields:
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Theorem 7.13 Let (V1, ρ1), (V2, ρ2) be two finite rank torsion free sl(2)-modules. Then,

dimC Homsl(2)(V1, V2) ≤ rank(V1) · rank(V2) .

Therefore, the category sl(2)-Modtffr of finite rank torsion free sl(2)-modules isHomC-finite.

This in turn implies:

Corollary 7.14 The category sl(2)-Modtffr of finite rank torsion free sl(2)-modules is a Krull–
Schmidt category.

Proof If k is a field, then a Homk-finite exact category is a Krull–Schmidt category, this
follows from [1,Corollary pag. 310, Theorem 1 pag. 313]. Therefore, the claim follows from
Theorem 7.13. ��

7.6 Purely simple modules

Let us recall the following:

Definition 7.15 Given a finite rank torsion free C[z]-module V , one says that a C[z]-
submodule V ′ is:
1. A pure submodule if V /V ′ is a torsion free C[z]-module,
2. An essential submodule if V /V ′ is a torsion C[z]-module.

The following is well known.

Proposition 7.16 If V is a finite rank torsion free C[z]-module and V ′ ⊂ V is a C[z]-
submodule, then

P(V ′) := (S−1V ′) ∩ V

is a pure submodule of V and V ′ is an essential submodule of P(V ′). Moreover, P(V ′) = V ′
if and only if V ′ is a pure submodule and P(V ′) = V if and only if V ′ is an essential
submodule.

Definition 7.17 Let V be a finite rank torsion free C[z]-module. For any C[z]-submodule
V ′ ⊂ V , the pure submodule P(V ′) is called the purification of V ′ in V .

Proposition 7.18 If (W , ρ) is anR-simple rational sl(2)-module, then it has no proper pure
sl(2)-submodules. Therefore, every proper sl(2)-submodule of W is an essential submodule.

Proof Let V ↪→ W be an sl(2)-submodule. Then there is a commutative diagram of short
exact sequences

0 0

0 V W W/V 0

0 Frat(V ) Frat(W ) Frat(W/V ) 0

Since, Frat(W ) � W and W is R-simple, we get either Frat(V ) = 0 or Frat(V ) = Frat(W ).
In the first case we have V = 0, whereas in the second one Frat(W/V ) = 0 and this is
equivalent to say that W/V is either zero or a torsion C[z]-module. ��
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Proposition 7.19 Let (V , ρ) be a finite rank torsion free sl(2)-module. Frat(V , ρ) is an R-
simple rational-module if and only if V has no proper pure sl(2)-submodules, if and only if
every proper sl(2)-submodule of V is an essential submodule.

Proof Let V ′ ↪→ V be a proper sl(2)-submodule. Then there is a commutative diagram of
short exact sequences

0 0

0 V ′ V V /V ′ 0

0 Frat(V ′) Frat(V ) Frat(V /V ′) 0

If Frat(V ) is R-simple, then we get that either Frat(V ′) = 0 or Frat(V ′) = Frat(V ). In the
first case we would have V ′ = 0, whereas in the second one Frat(V /V ′) = 0 and this is
equivalent to say that V /V ′ is either (0) or a torsion C[z]-module. Since V ′ is proper, the
only possibility left is that V /V ′ is a torsion C[z]-module and thus V ′ is essential.

In a similar way, let W ⊂ Frat(V ) be a proper rational sl(2)-submodule. Then there is a
commutative diagram of short exact sequences

0 0

0 W ∩ V V V /W ∩ V 0

0 W Frat(V ) Frat(V /W ∩ V ) 0

Hence rank(W ∩ V ) ≤ rank(W ) < rank(V ) and thus V /W ∩ V is not a torsion module.
This implies that W ∩ V is a pure sl(2)-submodule of V and therefore either W ∩ V = 0 or
W ∩ V = V . In the first case the commutative diagram gives W = 0 whereas in the second
W = Frat(V ). This finishes the proof. ��
Theorem 7.20 Let (V , ρ) be a finite rank torsion free sl(2)-module. If (V , ρ) is sl(2)-simple
then its rationalization Frat(V , ρ) is an R-simple rational module.

Conversely, if Frat(V , ρ) is anR-simple rational module then either (V , ρ) is sl(2)-simple
or it has a unique sl(2)-simple essential sl(2)-submodule (V ′, ρ′) ↪→ (V , ρ).

Proof If (V , ρ) is a simple finite rank torsion free sl(2)-module, then it has no proper sl(2)-
submodules and therefore Frat(V , ρ) is R-simple by Proposition 7.19. On the other hand,
if Frat(V , ρ) is an R-simple rational module, then it follows from [12,Lemma 6.26] that it
has an sl(2)-simple sl(2)-submodule (V ′, ρ′) ↪→ Frat(V , ρ). At the same time we have an
inclusion of sl(2)-modules (V , ρ) ↪→ Frat(V , ρ), henceweget an inclusion of sl(2)-modules

(V ′, ρ′) ∩ (V , ρ) ↪→ (V ′, ρ′)

and since (V ′, ρ′) is sl(2)-simple we must have either V ′ ∩V = 0 or V ′ ∩V = V ′. However,
the first possibility never occurs because V ′ ⊂ S−1V always intersects V non trivially.
Therefore, there is an injection of sl(2)-modules (V ′, ρ′) ↪→ (V , ρ) and by Proposition 7.19
this is either an equality or an essential submodule. If there were two sl(2)-simple essential
sl(2)-submodules (V ′1, ρ′1), (V ′2, ρ′2) of (V , ρ), then either one has V ′1 ∩ V ′2 = 0 or V ′1 = V ′2.
However, the first possibility never occurs since S−1V ′1 = S−1V ′2 = S−1V . ��
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Taking into account the previous results we can give the following:

Definition 7.21 We say that an sl(2)-module (V , ρ) is purely simple if it is a finite rank
torsion free module and it satisfies the equivalent conditions:

1. It has no proper pure sl(2)-submodules,
2. Its proper sl(2)-submodules are essential,
3. Frat(V , ρ) is R-simple.

We denote by PSpl(sl(2)) the category formed by all purely simple sl(2)-modules.

Remark 7.22 Thanks to Theorem 7.20, every simple sl(2)-module is purely simple. There-
fore, there is an inclusion of categories Spl(sl(2)-Mod) ↪→ PSpl(sl(2)).

Definition 7.23 If (V , ρ) is a purely simple sl(2)-module, let (V ′ρ′) be its unique sl(2)-
simple essential sl(2)-submodule and let i(V ,ρ) : (V ′, ρ) ↪→ (V , ρ) be the natural inclusion.
We say that the subobject of (V , ρ) defined by the pair (i(V ,ρ), (V ′, ρ′)) is the type of (V , ρ)

and we denote it τ(V , ρ). The injection i(V ,ρ) is called the structural morphism of the purely
simple module (V , ρ) and when there is no danger of confusion we identify τ(V , ρ) with
the simple sl(2)-module (V ′, ρ′).

Proposition 7.24 A purely simple module is indecomposable.

Proof Let (V , ρ) be a purely simple sl(2)-module. Suppose there exists twofinite rank torsion
free sl(2)-modules (V1, ρ1), (V2, ρ2) such that (V , ρ) = (V1, ρ1)⊕ (V2, ρ2) then

Frat(V , ρ) = Frat(V1, ρ1)⊕ Frat(V2, ρ2).

Since Frat(V , ρ) is R-simple, we have either Frat(V1, ρ1) = 0 or Frat(V2, ρ2) = 0 and this
implies that either V1 = 0 or V2 = 0, proving the claim. ��
Proposition 7.25 Every torsion free sl(2)-module of rank 1 is purely simple.

Proof Every proper submodule of a rank 1 torsion free sl(2)-module has rank 1 and therefore
is an essential submodule. ��

We also have an equivalence for rational modules.

Proposition 7.26 A rational module is R-simple if and only if it is purely simple.

Proof The direct implication follows from Proposition 7.18. On the other hand if W ∈ R is
purely simple and it has a proper rational submodule W ′ ⊂ W , then W ′ would be essential
and thus dimC(z) W ′ = dimC(z) W . This would imply W ′ = W which is impossible. ��
Proposition 7.27 Let (V ′, ρ′) be a simple finite rank torsion free sl(2)-module. An sl(2)-
module (V , ρ) is a purely simple module of type V ′ if and only if V is an sl(2)-submodule
of Frat(V ′, ρ′) that contains V ′; that is, if and only if one has a chain of sl(2)-modules
(V ′, ρ′) ⊆ (V , ρ) ⊆ Frat(V ′, ρ′).

Proof The direct implication follows from Theorem 7.20. On the other hand, if (V , ρ) is an
sl(2)-module and we have a chain of sl(2)-modules (V ′, ρ′) ⊆ (V , ρ) ⊆ Frat(V ′, ρ′), it is
clear that (V , ρ) is a finite rank torsion free sl(2)-module. Moreover, one has

Frat(V
′, ρ′) ⊆ Frat(V , ρ) ⊆ Frat(V

′, ρ′),

hence Frat(V ′, ρ′) = Frat(V , ρ) and therefore (V , ρ) is purely simple. ��
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Proposition 7.28 If (V , ρ) is a purely simple sl(2)-module, then it is a Casimir module and
Endsl(2)((V , ρ)) = C.

Proof Let (V ′, ρ′) be the type of (V , ρ). The chain of sl(2)-modules (V ′, ρ′) ⊆ (V , ρ) ⊆
Frat(V ′, ρ′) gives that the Casimir operators satisfy Cρ = Cρ′rat |V and so the first claim

follows from Proposition 7.10.
On the other hand, since Frat is faithful by Theorem 7.7, the equality Frat(V ′, ρ′) =

Frat(V , ρ) obtained by applying the rationalization functor yields an injection

Frat : Endsl(2)((V , ρ)) ↪→ Endsl(2)(Frat(V , ρ)) = Endsl(2)(Frat(V
′, ρ′))

and since Endsl(2)(Frat((V ′, ρ′)) = C, due to Proposition 7.11, we conclude that
Endsl(2)((V , ρ)) = C. ��
Remark 7.29 As a consequence of Theorem 7.9 and Proposition 7.28, one has that the cate-
gory PSpl(sl(2)) decomposes as follows

PSpl(sl(2)) =
∐

μ∈C
PSpl(sl(2))μ,

where PSpl(sl(2))μ is the full subcategory of PSpl(sl(2)) formed by those purely simple
sl(2)-modules that are Casimir modules in Cμ,tffr . This decomposition is compatible with the
one given in Theorem 7.9 and there is a commutative diagram

PSpl(sl(2))
∐

μ∈C PSpl(sl(2))μ

Spl(Ctffr)
∐

μ∈C Spl(Cμ,tffr)

Proposition 7.30 If (V1, ρ1), (V2, ρ2) are two purely simple sl(2)-modules, then every ele-
ment of Homsl(2)(V1, V2) is either zero or injective. Moreover, if τ(V1, ρ1) �� τ(V2, ρ2),
then

Homsl(2)(V1, V2) = 0,

whereas if τ(V1, ρ1) � τ(V2, ρ2) and Homsl(2)(V1, V2) �= 0, then the rationalization mor-
phism

Frat : Homsl(2)(V1, V2)
∼−→ Homsl(2)(Frat(V1, ρ1), Frat(V2, ρ2))

is an isomorphism of one dimensional vector spaces.

Proof ByTheorem7.7 the functor Frat is faithful, hence the rationalizationmorphism is injec-
tive. Since the rationalizations ofV1 andV2 areR-simple, fromProposition 6.19 it follows that
for any φ ∈ Homsl(2)(V1, V2) its rationalization Frat(φ) ∈ Homsl(2)(Frat(V1), Frat(V2)) �
C is either zero or an isomorphism. In the first case φ = 0, whereas in the second φ is injec-
tive. If τ(V1, ρ1) �� τ(V2, ρ2), then Frat(V1) �� Frat(V2) and bearing in mind Proposition
6.19 we get

Homsl(2)(Frat(V1, ρ1), Frat(V2, ρ2)) = 0,

thus Homsl(2)((V1, ρ1), (V2, ρ2)) = 0. On the other hand, if τ(V1, ρ1) � τ(V2, ρ2), then
Frat(V1, ρ1) � Frat(V2, ρ2) and again by Proposition 6.19 we get

Homsl(2)(Frat(V1, ρ1), Frat(V2, ρ2)) � C .
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Hence, if Homsl(2)((V1, ρ1), (V2, ρ2)) �= 0, the rationalization morphism is also an isomor-
phism. ��

Therefore, we give the following:

Definition 7.31 Given two purely simple sl(2)-modules (V1, ρ1), (V2, ρ2) we write

(V1, ρ1) ≤ (V2, ρ2)

if τ(V1, ρ1) = τ(V2, ρ2) and there is an injective morphism V1 ↪→ V2 of sl(2)-modules.

It is straightforward to check that this defines a partial order relation among the objects of
the categoryPSpl(sl(2))μ of purely simplemodules of levelμ. For any (V , ρ) ∈ PSpl(sl(2))μ
we always have

τ(V , ρ) ≤ (V , ρ) ≤ Frat(V , ρ).

It also induces an order relation on the full subcategory PSpl(sl(2); τ)μ (resp.
PSpl(sl(2); τ̂ )μ) of PSpl(sl(2))μ formed by those purely simple modules of level μ with
fixed type a simple Casimir module τ ∈ Spl(Cμ,tffr) (resp. fixed isomorphic type defined by
a class τ̂ ∈ ̂Spl(Cμ,tffr)).

Proposition 7.32 One has the following decomposition compatible with the order relation

PSpl(sl(2))μ =
∐

τ̂∈̂Spl(Cμ,tffr)

PSpl(sl(2); τ̂ )μ.

This in turn gives rise to a decomposition of isomorphism classes

P̂Spl(sl(2))μ =
∐

τ̂∈̂Spl(Cμ,tffr)

P̂Spl(sl(2); τ̂ )μ.

Notice that any isomorphism of sl(2)-modules φ : τ1 � τ2, induces an isomorphism of
categories 	 : PSpl(sl(2); τ1)μ → PSpl(sl(2); τ2)μ that maps (V1, ρ1) ∈ PSpl(sl(2); τ1)μ
to the same sl(2)-module (V1, ρ1) but now endowedwith the structuralmap i(V1,ρ1)◦φ−1. The
inverse functor 	−1 : PSpl(sl(2); τ2)μ → PSpl(sl(2); τ1)μ maps (V2, ρ2) ∈ PSpl(sl(2); τ2)
to (V2, ρ2) with structural map i(V2,ρ2) ◦ φ. It is obvious that the functors 	 and 	−1 are
monotonic, that is they are compatible with the order relations.

Proposition 7.33 Let (V1, ρ1), (V2, ρ2) be two purely simple sl(2)-modules. One has
(V1, ρ1) ≤ (V2, ρ2) and (V2, ρ2) ≤ (V1, ρ1) if and only if (V1, ρ1) � (V2, ρ2).

Proof If (V1, ρ1) ≤ (V2, ρ2) and (V2, ρ2) ≤ (V1, ρ1), then there are injective morphisms
of sl(2)-modules i : V1 ↪→ V2, j : V2 ↪→ V1. Then j ◦ i ∈ Endsl(2)(V1) is injective and
therefore by Proposition 7.28 there exists z1 ∈ C

× such that j ◦ i = z1 IdV1 . In a similar
way, there exists z2 ∈ C

× such that i ◦ j = z2 IdV2 . Hence i and j are isomorphisms. The
other implication is obvious. ��
Proposition 7.34 If 0 → V1 → V2 → V3 → 0 is a non vanishing short exact sequence of
purely simple modules, then either V1 = 0 and V2 � V3 or V3 = 0 and V1 � V2.

Proof Applying the rationalization functor we get a non vanishing short exact sequence
0→ Frat(V1)→ Frat(V2)→ Frat(V3)→ 0 ofR-simple rational sl(2)-modules. Therefore,
either Frat(V1) = 0 or Frat(V3) = 0, this implies the claim. ��
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Corollary 7.35 The type functor τ : PSpl(sl(2))→ Spl(sl(2)-Modtffr) is exact.

Moreover, it is easy to see that τ : PSpl(sl(2))→ Spl(sl(2)-Modtffr) is compatible with
the decompositions given in Remark 7.29 and Proposition 7.32.

Proposition 7.36 The category sl(2)-Modtffr satisfies both the ascending and descending
chain conditions on pure submodules.

Proof This follows since the length of a chain of pure submodules cannot be greater than the
rank of the module. ��
Definition 7.37 For a finite rank torsion free sl(2)-module V , we define its pure-length,
p-length(V ), as the maximal length of all filtrations of V by pure submodules.

Proposition 7.38 For any W ∈ R (resp. V ∈ sl(2)-Modtffr) one has

p-length(W ) = lengthR(W ), (resp. p-length(V ) ≤ rank(V )).

Proof The first claim follows from Proposition 7.26. The second is clear since p-length(V ) ≤
lengthR(Frat(V )) ≤ rank(V ). ��

Moreover, one has:

Proposition 7.39 Every finite rank torsion free sl(2)-module (V , ρ) has a finite filtration

(0) = V0 ⊂ V1 ⊂ · · · ⊂ Vm = V (7.1)

such that every Vi is a pure sl(2)-submodule and the successive quotients Vi/Vi−1 are purely
simple sl(2)-modules.

Proof Notice first that the length of a chain of pure submodules cannot be greater than the
rank of the entire module.We proceed by induction on the rank of V . If rank(V ) = 1 then V
is purely simple by Proposition 7.25, hence (0) ⊂ V is the required filtration. Therefore, let
us assume that the claim is true for modules of rank less than or equal to n and let us prove
it for modules of rank n + 1. So let us consider a torsion free sl(2)-module V of rank n + 1.
If V is purely simple then (0) ⊂ V has the required properties. If V is not purely simple,
then it has at least one proper pure sl(2)-module V ′ ⊂ V . Since rank(V ′) < rank(V ), by the
induction hypothesis V ′ has a filtration V ′• verifying the required conditions. Then V1 := V ′1
is a purely simple submodule and V /V1 is a torsion free sl(2)-module of rank at most n.
Then by the induction hypothesis U = V /V1 has a filtration

(0) = U0 ⊂ U1 ⊂ · · · ⊂ Um−1 = U

such that every Ui is a pure sl(2)-submodule and the successive quotients Ui/Ui−1 are
purely simple sl(2)-modules. If π : V → U = V /V1 is the natural projection, we define
now Vi = π−1(Ui−1) for i ≥ 2. Then

(0) = V0 ⊂ V1 ⊂ · · · ⊂ Vm = V

is the desired filtration. ��
Definition 7.40 Given a finite rank torsion free sl(2)-module (V , ρ), a filtration having the
same properties as (7.1) is called a pure composition series or a pure Jordan–Hölder filtration
of (V , ρ).

Now we have the key result:
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Theorem 7.41 (Jordan–Hölder) Let (V , ρ) be a finite rank torsion free sl(2)-module and let

(0) = V0 ⊂ V1 ⊂ · · · ⊂ Vm = V ,

(0) = V ′0 ⊂ V ′1 ⊂ · · · ⊂ V ′n = V ,

be two pure composition series of (V , ρ) with purely simple successive quotients {Ei :=
Vi/Vi−1}mi=1, {E ′j := V ′j/V ′j−1}nj=1, respectively. Then n = m, and there exists a permutation
σ of 1, . . . , n such that Ei is isomorphic to E ′σ(i).

Proof Applying the rationalization functor we get two composition series of the rational
sl(2)-module Frat(V , ρ). Since the Jordan–Hölder theorem holds onR by Theorem 6.5, we
conclude that m = n.

Now, we make an induction on the rank of V . If rank(V ) = 1, then V is purely simple
by Proposition 7.25 and thus (0) ⊂ V is its unique pure composition series. Therefore, let
us assume that the claim is true for modules or rank at most r and let us prove it for modules
of rank r + 1. Suppose that rank(V ) = r + 1.

If V1 = V ′1, then V /V1 has rank less than r . Taking the quotient under V1 of the original
filtrations we get two filtrations of V /V1

(0) ⊂ V2/V1 ⊂ · · · ⊂ Vn−1/V1 ⊂ V /V1,

(0) ⊂ V ′2/V1 ⊂ · · · ⊂ V ′n−1/V1 ⊂ V /V1,

whose successive quotients are {Ei }ni=2, {E ′i }ni=2. By the induction assumption there exists a
permutation σ of 2, . . . , n such that Ei is isomorphic to E ′σ(i). Since the successive quotients
of the original filtrations are {V1} ∪ {Ei }ni=2, {V1} ∪ {E ′i }ni=2, we are done.

So let us assume V1 �= V ′1. Since V1 and V ′1 are purely simple modules, and V1 ∩ V ′1 is a
submodule of both of them, we conclude that either V1 ∩ V ′1 is not a proper submodule or is
an essential submodule of V1 and V ′1. Therefore, there are four possibilities

1. V1 ∩ V ′1 ↪→ V1, V1 ∩ V ′1 ↪→ V ′1,
2. V ′1 ↪→ V1,
3. V1 ↪→ V ′1,
4. V1 ∩ V ′1 = 0.

Let us analyze these cases separately.

(1) We have a commutative diagram

0

0 0 V1/V1 ∩ V ′1

0 V1 ∩ V ′1 V2 V2/V1 ∩ V ′1 0

0 V1 V2 V2/V1 0

V1/V1 ∩ V ′1 0 0

0
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Since V1∩V ′1 is essential in V1 we have rank(V1∩V ′1) = rank(V1), hence rank(V1/V1∩
V ′1) = 0 and rank(V2/V1 ∩ V ′1) = rank(V2/V1) > 0 since V1 is a pure submodule of
V2. Thus V2/V1 ∩ V ′1 is a torsion free module and its zero rank submodule V1/V1 ∩ V ′1
is zero. Therefore V1 ⊂ V ′1. A similar argument shows that V ′1 ⊂ V1, hence V1 = V ′1
but this is not possible since we have assumed V1 �= V ′1.

(2) Using the same commutative diagram as above we would also get V1 = V ′1 and this is
again not possible.

(3) In this case the roles of V1 and V ′1 are interchanged, and thus the same reasoning would
show that this case is not possible.

(4) Since V1 ∩ V ′1 = 0 we have an natural inclusion of sl(2)-modules i : V1 ⊕ V ′1 ↪→ V .
We consider the quotient module U = V /(V1 ⊕ V ′1) and the quotient map π : V →
V /(V1⊕ V ′1). By Proposition 7.39,U has a pure composition series (0) = U0 ⊂ U1 ⊂
· · · ⊂ Uk = U and we denote its successive quotients by Ēi := Ui/Ui−1. We have a
commutative diagram

0 0 0

0 V1 V1 ⊕ V ′1
i

V ′1 0

0 V V

π

0 0

0 V ′1 V /V1
q

U 0 0

0 0 0

and a similar one interchanging the roles of V1 and V ′1 providing an exact sequence

0 V1 V /V ′1
q ′

U 0 .

Therefore we can define pure composition series {q−1(Ui )}ki=0, {q ′−1(Ui )}ki=0 of V /V1
and V /V ′1, respectively, with successive quotients E ′1 ∪ {Ēi }ki=1, E1 ∪ {Ēi }ki=1.

On the other hand taking the quotient of the original pure composition series by V1 and
V ′1, respectively, we get filtrations for V /V1 and V /V ′1 given by

(0) ⊂ V2/V1 ⊂ · · · ⊂ Vn−1/V1 ⊂ V /V1,

(0) ⊂ V ′2/V ′1 ⊂ · · · ⊂ V ′n−1/V ′1 ⊂ V /V ′1,

whose successive quotients are {Ei }ni=2, {E ′i }ni=2. Since both V /V1 and V /V ′1 have rank less
than r , by the induction hypothesis we have the following equivalences, up to permutation
and isomorphism, between collections of purely simple sl(2)-modules

{E2, . . . , En} ∼ {E ′1, Ē1, . . . Ēk}, {E ′2, . . . , E ′n} ∼ {E1, Ē1, . . . Ēk}.
Therefore, k = n − 2 and we also have equivalences

{E1, E2, . . . , En} ∼ {E1, E
′
1, Ē1, . . . Ēn−2} ∼ {E1, E

′
2, . . . , E

′
n},

finishing the proof. ��
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8 Grothendieck groups

If A is an abelian category and B is a full subcategory that is essentially small, then one can
define its Grothendieck group K0(B), see [18,Definition, pag. 72], as the quotient of the free
abelian group Z[Iso(B)] on the set of isomorphism classes of objects of B by the subgroup
of relations R(B) generated by the short exact sequences of A whose terms all belong to B.
Moreover, ifB is additive then there is also the additiveGrothendieck group K⊕0 (B) defined as
the quotient ofZ[Iso(B)] by the subgroup of relations R⊕(B) ⊂ R(B) generated by split short
exact sequences. Therefore, there is a natural surjective group morphism π⊕ : K⊕0 (B) →
K0(B) → 0. Besides the compatibility of K0 with direct sums of exact categories, see
[19, 7.1.6, pag. 142], there are two basic techniques, introduced by A. Heller, for computing
K0-groups: devissage and localization, see [18,Theorems 3.1, 5.13, pags. 92, 115].

However in order to achieve our goals we need to generalize Heller’s devissage theorem.
Let K •0 denote either K⊕0 or K0. We give the following:

Definition 8.1 LetA be an abelian category,B, C be full subcategories.We say that C is a K •0 -
devissage subcategory forB ifC is a subcategory ofB such that the embedding functor i : C ↪→
B induces a group isomorphism K •0 (i) : K •0 (C)

∼−→ K •0 (B). Then K0(i)−1 : K0(B)
∼−→ K •0 (C)

is called the devissage isomorphism defined by C.

Heller’s devissage theorem says that if C is closed in A under subobjects and quotients
and every object of B has a C-filtration (i.e an increasing finite filtration with all succes-
sive quotients in C), then C is a K0-devissage subcategory for B. We need the following
generalization.

Theorem 8.2 Let A be an abelian category, B, C be full subcategories. If C is a subcategory
of B, such that

1. Every object of B has a C-filtration.
2. If B1 ⊆ B2 ⊆ B3 are objects of B with B3/B1 ∈ C, then B2/B1, B3/B2 ∈ C.

then C is a K0-devissage subcategory for B. Moreover, the devissage isomorphism

χ := K0(i)
−1 : K0(B)→ K0(C)

is given by

χ([B]) =
m
∑

i=1
[Bi/Bi−1]

where Bi/Bi−1 are the quotients of a C-filtration B• = (Bi )mi=1 of B ∈ B.

Proof Theembedding functor i : C ↪→ B gives raise to amorphismofgroups K0(i) : K0(C)→
K0(B) and we write i∗ = K0(i). Let us define a group morphism ϕ : K0(B) → K0(C)

that is the inverse of i∗. By hypothesis every object B of B has a finite C-filtration
0 = B0 ⊆ B1 ⊆ · · · ⊆ Bm = B. Let

ϕ(B) :=
m
∑

i=1

[

Bi/Bi−1
] ∈ K0(C).

In order to see thatϕ is correctly definedwe have to prove that it does not depend on the chosen
C-filtration of B. By Schreier’s Theorem for abelian categories [19, 6.2, pag. 137], any two
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C-filtrations admit equivalent refinements; that is, their successive quotients are isomorphic
up to a permutation. By induction we only need to check it for one insertion. Suppose that
Bi−1 ⊆ Bi is changed to Bi−1 ⊆ B ′ ⊆ Bi , then we have a short exact sequence

0→ B ′/Bi−1 → Bi/Bi−1 → Bi/B
′ → 0

and since Bi/Bi−1 ∈ C, by condition (1) this is a short exact sequence in C and thus in K0(C)

we have the equality [Bi/Bi−1] = [B ′/Bi−1] + [Bi/B ′]. This shows that ϕ is well defined.
By the universal property of K0(B), to prove that ϕ induces a group morphism

χ : K0(B)→ K0(C) we must show that for any short exact sequence in B

0→ B ′ → B
π−→ B ′′ → 0

one has ϕ(B) = ϕ(B ′)+ ϕ(B ′′). This is easy, because if

B ′• ≡ 0 = B ′0 ⊆ B ′1 ⊆ · · · ⊆ B ′m′ = B ′, B ′′• ≡ 0 = B ′′0 ⊆ B ′′1 ⊆ · · · ⊆ B ′′m′′ = B ′′

are C-filtrations, then

0 = B ′0 ⊆ B ′1 ⊆ · · · ⊆ B ′m′ ⊆ π−1(B ′′1 ) ⊆ · · · ⊆ π−1(B ′′m′′) = π−1(B ′′) = B

is a C-filtration whose successive quotients are those of B ′• together with those of B ′′• , proving
thus the additivity of ϕ on short exact sequences. For every C ∈ C one has χ(i∗([C])) = [C]
because 0 ⊆ C is a C-filtration. On the other hand, if B• is a C-filtration of B ∈ B, writing
down the short exact sequences defined by the successive quotients, 0 → Bi−1 → Bi →
Bi/Bi−1 → 0, it follows that i∗(χ([B])) = [B]. Thus i∗ : K0(C) → K0(B) is a group
isomorphism whose inverse is χ . ��

8.1 Grothendieck groups of the category of rational modules

We have proved in Theorem 6.7 that the abelian category R of rational sl(2)-modules is
essentially small, therefore we can define its Grothendieck groups K⊕0 (R) and K0(R). For
the first one, if we denote by [W ]⊕ ∈ K⊕0 (R) the class defined by a rational module W , we
have the following result.

Theorem 8.3 (globalKrull–Schmidt–Remakdevissage)The category IndRC•(RC•) is a K⊕0 -
devissage subcategory for the abelian category R. Therefore, K⊕0 (R) is isomorphic to the
free abelian group on the isomorphism classes of R-indecomposable generalized Casimir
rational sl(2)-modules. Moreover, the Krull–Schmidt–Remak devissage isomorphism

χKSR : K⊕0 (R)
∼−→ Z[̂IndRC•(RC•)]

is given by

χK SR ([W ]⊕) =
m
∑

i=1
[Wi ]⊕

with Wi the factors of a Remak decomposition W = ⊕m
i=1Wi of a module W ∈ R.

Proof By Proposition 6.10 one has IndR(R) = Ind(R) = IndRC•(RC•) = Ind(RC•). The
K •0 -devissage property follows from [18,Theorem 2.1, pag. 76] since we know, thanks to
Theorem 6.5, that R is a Krull–Schmidt category. The result follows since on Ind(R) there
are no nontrivial split exact sequences. ��

Now we refine this result by means of the particular structure of the category R.
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Theorem 8.4 (decomposition) There is a decomposition isomorphism

	⊕ : K⊕0 (R)
∼−→
⊕

μ∈C
K⊕0 (RC•μ)

given by

	⊕([W ]⊕) =
p
∑

i=1
[Wμi ]⊕

where Wμi ∈ RC•μi
are the factors of the decomposition of the rational sl(2)-module W

provided by the minimal polynomial of its Casimir operator. There is also a decomposition
isomorphism �⊕ : Z[̂IndRC•(RC•)] ∼−→⊕

μ∈C Z[̂IndRC•μ(RC•μ)].

Proof The first decomposition is obtained by taking into account that K⊕0 is compatible
with direct sums of abelian categories, see [19, pag. 125], and the identification of cate-
gories φ : R ∼−→ ⊕

μ∈C RC•μ proved in Theorem 6.8. We define 	⊕ := K0(φ). For the

second decomposition, notice that φ induces also an identification ψ : IndRC•(RC•) ∼−→
∐

μ∈C IndRC•μ(RC•μ). We put �⊕ := K0(ψ) and consider the identification used in the
proof of Theorem 8.3. ��

Following the proof of Theorem 8.3 we get now:

Theorem 8.5 (Krull–Schmidt–Remak devissage of level μ) For every μ ∈ C the category
IndRC•μ(RC•μ) is a K⊕0 -devissage subcategory for the abelian category RC•μ. Moreover, the
Krull–Schmidt–Remak devissage isomorphism of level μ

χK SR ,μ : K⊕0 (RC•μ)
∼−→ Z[̂IndRC•μ(RC•μ)]

is given by

χK SR ,μ([W ]⊕) =
m
∑

i=1
[Wi ]⊕

with Wi the factors of a Remak decomposition W = ⊕m
i=1Wi of a module W ∈ RC•μ.

As a consequence of Theorems 8.3, 8.4 and 8.5 we get the next result.

Corollary 8.6 (compatibility) There is an identification

χK RS =
⊕

μ∈C
χK RS ,μ :

⊕

μ∈C
K⊕0 (RC•μ)

∼−→
⊕

μ∈C
Z[̂IndRC•μ(RC•μ)].

From now on in this section devissage will mean K0-devissage. For the general
Grothedieck group, we have:

Theorem 8.7 (global Jordan–Hölder devissage) The category SplRC(RC) is a devissage sub-
category for the abelian categoryR. Thus K0(R) is isomorphic to the free abelian group on
the isomorphism classes ofR-simple rational Casimir sl(2)-modules. Moreover, the Jordan–
Hölder devissage isomorphism

χJ H : K0(R)
∼−→ Z[̂SplRC(RC)]
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is given by

χJ H ([W ]) =
m
∑

i=1
[Wi/Wi−1]

with Wi/Wi−1 the quotients of a composition series W• = (Wi )
m
i=0 of W ∈ R.

Proof We have proved in Theorem 6.5 that R is a finite length category. In this case,
Heller’s devissage theorem [18,Theorem 3.1, pag. 92] does apply to SplRC(RC) and R,
see [18,Corollary 3.2, pag. 93]. The result follows since on SplR(R) there are no nontrivial
short exact sequences. ��

Now we reflect the structure of R on the Grothendieck group. We begin with a natural
decomposition that, as Theorem 8.4, is a consequence of Theorem 6.8.

Theorem 8.8 (decomposition) There is a decomposition isomorphism

	 : K0(R)
∼−→
⊕

μ∈C
K0(RC•μ)

given by

	([W ]) =
p
∑

i=1
[Wμi ]

where Wμi ∈ RC•μi
are the factors of the decomposition of the rational sl(2)-module W

provided by the minimal polynomial of its Casimir operator. There is also a decomposition
isomorphism � : Z[̂SplRC(RC)] ∼−→⊕

μ∈C Z[̂SplRCμ
(RCμ)].

Moreover, we have:

Theorem 8.9 (canonical filtration devissage of level μ) The category RCμ is a devissage
subcategory for the abelian categoryRC•μ and the canonical filtration devissage isomorphism
of level μ

χCF ,μ : K0(RC•μ)
∼−→ K0(RCμ)

is given by

χCF ,μ([W ]) =
l
∑

i=1
[Wi/Wi−1]

where Wi/Wi−1 ∈ RCμ are the quotients of the canonical filtration W• = (Wi )
l
i=0 of a

generalized Casimir rational sl(2)-module W of level μ.

Proof Let us show thatRCμ andRC•μ satisfy the conditions of Theorem 8.2 with C = RCμ

and B = A = RC•μ. This choice is possible since we know that RC•μ is an abelian category.
The existence of RCμ-filtrations for every object of RC•μ is guaranteed by the existence of
the canonical filtration given in Proposition 5.2. Let us assume now that we have on RC•μ a
chain V1 ⊆ V2 ⊆ V3 such that V3/V1 ∈ RCμ. From the short exact sequence in RC•μ

0→ V2/V1 → V3/V1 → V3/V2 → 0

it follows that all of its terms belong to RCμ. ��
Proceeding as in Theorem 8.7 we get:
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Theorem 8.10 (Jordan–Hölder devissage of level μ) The category SplRCμ
(RCμ) is a devis-

sage subcategory for RCμ. Hence K0(RCμ) is isomorphic to the free abelian group on the
isomorphism classes of R-simple Casimir rational sl(2)-modules of level μ. Moreover, the
Jordan–Hölder devissage isomorphism of level μ

χJ H ,μ : K0(RCμ)
∼−→ Z[̂SplRCμ

(RCμ)]
is given by

χJ H ,μ([W ]) =
m
∑

i=1
[Wi/Wi−1]

with Wi/Wi−1 the quotients of a composition series W• = (Wi )
m
i=0 of W ∈ RCμ.

As a consequence of Theorems 8.7, 8.8, 8.9 and 8.10 we get the following result.

Corollary 8.11 (compatibility) There is an identification

χJ H =
⊕

μ∈C
χJ H ,μ ◦ χCF ,μ :

⊕

μ∈C
K0(RC•μ)

∼−→
⊕

μ∈C
Z[̂SplRCμ

(RCμ)].

Remark 8.12 Given two levels μ, ν ∈ C, by Corollary 4.18 there is an exact functor
	μν : RCμ → RCν inducing an equivalence of categories. Therefore, we have an iso-

morphism 	μν : K0(RCμ)
∼−→ K0(RCν). Hence, fixing μ0 ∈ C we get an identification

K0(R)
∼−→ ⊕μ∈CK0(RCμ0) � ⊕μ∈CZ[̂Spl(RCμ0)].

8.2 Grothendieck groups of the category of finite rank torsion freemodules

We have proved in Theorem 7.8 that the category of finite rank torsion free mod-
ules sl(2)-Modtffr is essentially small. Therefore we can define its Grothendieck groups
K⊕0 (sl(2)-Modtffr) and K0(sl(2)-Modtffr). The determination of these groups in the present
case runs in parallel to the computations carried out for rational modules. For the sake of
brevity, we just indicate how the theorems proved in Sect. 8.1 can be obtained for finite rank
torsion free modules, we use the notation introduced there.

Theorems 8.3, 8.4, 8.5 and 8.6 regarding the additive Grothendieck group K⊕0 remain
valid replacing R by sl(2)-Modtffr , RC• by C•tffr and RC•μ by C•μ,tffr . The proofs are the
same, save that now in Theorem 8.3 we use Proposition 7.10 that gives Ind(sl(2)-Modtffr) =
Ind(C•tffr) and in Theorems 8.4 we use the identification of categories φ : sl(2)-Modtffr

∼−→
⊕

μ∈C C•μ,tffr proved in Theorem 7.9.
For the general Grothendieck group K0, Theorems 8.7, 8.8, 8.9, 8.10 and 8.11 remain

valid but the situation is more involved. Therefore we present now the precise statements and
indicate the changes needed in their proofs.

Theorem 8.13 (global Pure Jordan–Hölder devissage) The category PSpl(sl(2)) is a devis-
sage subcategory for the exact category sl(2)-Modtffr . Thus K0(sl(2)-Modtffr) is isomorphic
to the free abelian group on the isomorphism classes of purely simple sl(2)-modules. More-
over, the Pure Jordan–Hölder devissage isomorphism

χP J H : K0(sl(2)-Modtffr)
∼−→ Z[P̂Spl(sl(2))]
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is given by

χP J H ([V ]) =
m
∑

i=1
[Vi/Vi−1]

with Vi/Vi−1 the quotients of a pure composition series V• of V ∈ sl(2)-Modtffr .

Proof We have proved that sl(2)-Modtffr is exact, Proposition 7.4, and of finite pure-length,
Lemma 7.36. Therefore any V ∈ sl(2)-Modtffr has a pure composition series V• = (Vi )mi=0.
Let us put

ϕ(V ) :=
m
∑

i=1
[Vi/Vi−1] ∈ K0(PSpl(sl(2)).

This is well defined since by Theorem 7.41 the Jordan–Hölder theorem is valid for pure
composition series. Now one proceeds as in the proof of Theorem 8.2, showing that ϕ is
additive on short exact sequences because if we join two composition series, as we did there,
one checks easily that we get a pure composition series. The rest of the proof is completely
analogous. The claim follows since according to Proposition 7.34 there are no nontrivial
short exact sequences on PSpl(sl2). ��

The following result is a consequence of Theorem 7.9.

Theorem 8.14 (decomposition) There is a decomposition isomorphism

	tffr : K0(sl(2)-Modtffr)
∼−→
⊕

μ∈C
K0(C•μ,tffr)

given by

	([V ]) =
p
∑

i=1
[Vμi ]

where Vμi ∈ C•μ,tffr are the factors of the decomposition of V ∈ C•μ,tffr provided by the
minimal polynomial of its Casimir operator. There is also a decomposition isomorphism
�tffr : Z[P̂Spl(sl(2))] ∼−→⊕

μ∈C Z[P̂Spl(sl(2))μ)].
With respect to this decompositionwe have the following commutative diagram of embed-

dings of categories

PSpl(sl(2))μ
a•μ

bμ

C•μ,tffr

Cμ,tffr

c•μ

We use it to prove the following result.

Theorem 8.15 (canonical filtration devissage of level μ) The category Cμ,tffr is a devissage
subcategory for the exact category C•μ,tffr and the canonical filtration devissage isomorphism
of level μ

χCF ,μ : K0(C•μ,tffr)
∼−→ K0(Cμ,tffr)
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is given by

χCF ,μ([V ]) =
l
∑

i=1
[Vi/Vi−1]

where Vi/Vi−1 ∈ Cμ,tffr are the quotients of the canonical filtration V• = (Vi )li=0 of a
generalized torsion free Casimir sl(2)-module V of level μ.

Proof The commutative diagram of category embeddings gives the equality

K0(a
•
μ) = K0(c

•
μ) ◦ K0(bμ).

Proceeding as in Theorem 8.13 one has that both K0(a•μ) and K0(bμ) are isomorphisms and
therefore K0(cμ) is also an isomorphism. This proves that Cμ,tffr is a devissage subcategory
for the exact category C•μ,tffr . We denote (c•μ)∗ := K0(c•μ).

Given V ∈ C•μ,tffr we define

ϕCF ,μ(V ) :=
m
∑

i=1
[Vi/Vi−1] ∈ K0(Cμ,tffr)

where Vi/Vi−1 ∈ Cμ,tffr are the quotients of the canonical filtration V• = (Vi )li=0 of V
described in Proposition 5.2. Let us prove now that ϕCF ,μ is additive on short exact sequences.
In first place, by considering the short exact sequences of the canonical filtration V•, one
checks that (c•μ)∗(ϕCF ,μ(V )) = [V ] ∈ K0(Cμ,tffr). Given a short exact sequence 0→ V ′ →
V

π−→ V ′′ → 0 in Cμ,tffr let V ′• = (V ′i )m
′

i=0, V• = (Vi )mi=0, V ′′• = (V ′′i )m
′′

i=0 be the canonical
filtrations of V ′, V , V ′′, respectively. Proceeding as in the proof of Theorem 8.2, joining V ′•
to π−1(V ′′• ) we get another filtration ˜V• of V whose successive quotients are those of V ′•
together with those of V ′′• . Therefore, the short exact sequences of the filtration ˜V• of V give
us

[V ] = (c•μ)∗

⎛

⎝

m′
∑

i=1
[V ′i /V ′i−1] +

m′′
∑

i=0
[V ′′i /V ′′i−1]

⎞

⎠ = (c•μ)∗(ϕCF ,μ(V ′)+ ϕCF ,μ(V ′′)).

Since we also have [V ] = (c•μ)∗(ϕCF ,μ(V )) and we have proved that (c•μ)∗ is injective, we
conclude that ϕCF ,μ(V ) = ϕCF ,μ(V ′)+ ϕCF ,μ(V ′′) as claimed. Therefore, by the universal
property of the Grothendieck group, ϕCF ,μ induces a group morphism χCF ,μ : K0(C•μ,tffr)→
K0(Cμ,tffr) such that (c•μ)∗ ◦ χCF ,μ = IdK0(C•μ,tffr)

. If C ∈ Cμ,tffr , then its canonical filtration
is 0 � C , thus χCF ,μ((c•μ)∗([C])) = [C]. This shows that χCF ,μ ◦ (c•μ)∗ = IdK0(Cμ,tffr),
finishing the proof. ��

Proceeding as in Theorem 8.13 we get:

Theorem 8.16 (Jordan–Hölder devissage of level μ) The category PSpl(sl(2))μ is a devis-
sage subcategory for Cμ,tffr . Hence K0(Cμ,tffr) is isomorphic to the free abelian group on the
isomorphism classes of purely simple Casimir torsion free sl(2)-modules of finite rank and
level μ. Moreover, the Jordan–Hölder devissage isomorphism of level μ

χP J H ,μ : K0(Cμ,tffr))
∼−→ Z[P̂Spl(sl(2))μ]

is given by

χP J H ,μ([V ]) =
m
∑

i=1
[Vi/Vi−1]
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with Vi/Vi−1 the quotients of a composition series V• = (Vi )mi=0 of V ∈ Cμ,tffr .

As a consequence of Theorems 8.13, 8.14, 8.15 and 8.16 we get the following result.

Corollary 8.17 (compatibility) There is an identification

χP J H =
⊕

μ∈C
χP J H ,μ ◦ χCF ,μ :

⊕

μ∈C
K0(C•μ)

∼−→
⊕

μ∈C
Z[P̂Spl(sl(2))μ].

Moreover, by Proposition 7.32 there is a further decomposition

Z[P̂Spl(sl(2))μ] =
⊕

τ̂∈̂Spl
(Cμ,tffr)Z[P̂Spl(sl(2); τ̂ )μ].

Remark 8.18 The algorithm for disassembling (devissage) the class of a finite rank torsion
free module V in the Grothendieck group [V ] ∈ K0(sl(2)-Modtffr) into a sum of classes of
purely simple modules in K0(PSpl(sl(2))) proceeds in stages:

1. First, we perform the decomposition V = Vμ1 ⊕ · · · ⊕ Vμp into generalized Casimir

representations, where P
Cρ

min(t) = (t − μ1)
n1 · · · (t − μp)

n p is the minimal polynomial
of the Casimir operator of V . Hence, one has

[V ] = [Vμ1 ] + · · · + [Vμp ].
2. The class [Vμi ] ∈ K0(C•μi ,tffr

) is decomposedbymeans of the canonical filtrationVμi ,• =
(Vμi , j )

ni
j=1 of Vμi to give

[Vμi ] =
ni
∑

j=1
[Vμi , j/Vμi , j−1] ∈ K0(Cμi ,tffr).

3. The class [Vμi , j/Vμi , j−1] ∈ K0(Cμi ,tffr) is finally decomposed by means of a pure
composition series Pμi , j,• = (Pμi , j,k)

ri j
k=0 of Vμi , j/Vμi , j−1, yielding

[Vμi , j/Vμi , j−1] =
ri j
∑

k=1
[Pμi , j,k/Pμi , j,k−1] ∈ K0(PSpl(sl(2))μi ).

4. Summing all together we get

[V ] =
p,ni ,ri j
∑

i=1, j=1,k=1
[Pμi , j,k/Pμi , j,k−1].

Remark 8.19 By Proposition 7.28 we know that purely simple modules are Casimir modules.
For every pair of levels μ, ν ∈ C there is an exact functor

�μν : PSpl(sl(2))μ → PSpl(sl(2))ν

that maps (V , ρ) ∈ PSpl(sl(2))μ to �μν((V , ρ)) = (S−1πμ(z)V , �μν(ρ)) where Sπμ(z) is the

smallestmultiplicative systemofC[z] that is left invariant underπμ(z)∇−1 and∇ (the precise
description of Sπμ(z) can be determined easily) and

�μν(ρ)(L−1)
(v

s

)

= πν(z)
ρ(L−1)(v)

πμ(z)∇−1(s) , �μν(ρ)(L1)
(v

s

)

= ρ(L1)(v)

∇(s)
.
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This functor is compatible with the isomorphisms established in Corollary 4.18 for the cate-
gory of rational Casimir sl(2)-modules. That is, there is a commutative diagram of functors:

PSpl(sl(2))μ
Frat

�μν

RCμ

	μν�

PSpl(sl(2))ν
Frat RCμ

Although there is a morphism of functors IdPSpl(sl(2))μ → �νμ ◦ �μν , one checks that
�νμ ◦ �μν is not the identity functor. Thus, in contrast to what happens for rational sl(2)-
modules, the Grothendieck group K0(sl(2)-Modtffr) can not be determined by knowing
K0(Cμ0,tffr) � Z[P̂Spl(sl(2))μ0 ] for a particular level μ0 ∈ C.

8.3 Relationship between the Grothedieck groups of rational and torsion free finite
rankmodules. The localization theorem

The rationalization functor Frat : sl(2)-Modtffr → R is exact and therefore it induces a group
morphism between the Grothendieck groups of these categories:

Frat∗ := K0(Frat) : K0(sl(2)-Modtffr)→ K0(R).

Moreover, we have seen in Theorem 7.7 that R is a reflective localization of the category
sl(2)-Modtffr with quotient functor Frat. We prove now the analogue of Heller’s localization
theorem, [18,Theorem 5.13, pag. 115].

Theorem 8.20 There is a short exact sequence

0→ Ker(Frat∗)→ K0(sl(2)-Modtffr)
Frat∗−−→ K0(R)→ 0

that splits naturally by the section itffr∗ : K0(R)→ K0(sl(2)-Modtffr) defined by the embed-
ding itffr : R ↪→ sl(2)-Modtffr . Therefore, the corresponding retraction R : K0(sl(2)-Modtffr)→
Ker(Frat∗) maps the class [V ] ∈ K0(sl(2)-Modtffr) of a module to R([V ]) = [V ] −
itffr∗[Frat(V )] ∈ Ker(Frat∗). It follows thatKer(Frat∗) gets identified with the group of virtual
torsion modules of finite rank

VT (sl(2)-Modtffr) = {[V1] − [V2] : V1 ⊆ V2 ∈ sl(2)-Modtffr, V1/V2 is torsion}
and

K0(sl(2)-Modtffr)
∼−→ VT (sl(2)-Modtffr)⊕ K0(R).

Moreover, given W ∈ RCμ we have F−1rat∗([W ]) = P̂Spl(sl(2), τ ([W ]))μ.

Proof We have seen in Proposition 7.6 that Frat is a retraction of itffr . This implies the first
claim. The form of the associated retraction is obvious. It is clear that VT (sl(2)-Modtffr) ⊆
Ker(Frat∗). The other inclusion follows since R is surjective. The final claim follows from
Proposition 7.32. ��

To conclude this section let us point out that, thanks to the universal property of the
Grothendieck group, the additive functions rank and dim induce surjective group morphisms
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that fit into the following commutative diagram of groups

K0(sl(2)-Modtffr)
K0(Frat)

rank

K0(R)

dim

Z

Finally, there is an analogous diagram replacing rank by p-length and dim by lengthR. It
follows that virtual torsion modules have zero rank and zero p-length.

9 Rational representations of dimension 1

The dimension of rational representations as C(z)-vector spaces stratifies the category R
into strataRm of representations of dimension m. In this section we focus on the stratumR1

of dimension 1 and we establish when these representations do arise as rationalization of a
polynomial representation of rank 1. We also give the structure of all sl(2)-submodules of a
one dimensional rational representation.

9.1 The stratum of one dimensional rational representations

Let W be a one dimensional C(z)-vector space. We are interested in sl(2)-representations ρ

defined on W such that ρ(L0) = z. By Corollary 6.14 it follows that (W , ρ) is an R-simple
rational Casimir module, of level μ, for a certain μ ∈ C. Hence we haveR1 = SplR(R1) =
RC1 and from Theorem 6.13 we get ̂Spl(sl(2)-Mod1tffr) � ̂R1.

Let us consider ∇ ∈ Aut1
C(z)(W ), then by Proposition 6.15 it determines a representation

ρ(μ) ∈ RCμ(W ). Bearing in mind Proposition 6.16 and the fact that dimC(z) W = 1, we
know that there is a bijection

C(z)× ←→ RCμ(W ) (9.1)

that maps r(z) ∈ C(z)× to the representation ρ
(μ)
r = r(z) · ρ(μ) according to (6.4). That is:

ρ(μ)
r (L−1) := πμ(z)

r(z − 1)
◦ ∇−1, ρ(μ)

r (L0) := z, ρ(μ)
r (L1) := r(z) ◦ ∇ . (9.2)

However, there can be different rational functions giving rise to isomorphic representa-
tions.

Theorem 9.1 Two rational functions r1(z), r2(z) ∈ C(z)× yield isomorphic representations
ρ

(μ)
r1 , ρ(μ)

r2 on W, and we write r1(z) ∼ r2(z), if and only if there exist α1, . . . , αn ∈ C and
a1, . . . , an ∈ Z such that:

r2(z)

r1(z)
=

n
∏

i=1

z − αi

z + ai − αi
.

Proof By the previous discussion, the rational representations defined by r1(z), r2(z) ∈ C(z)

are isomorphic if and only if there exists an isomorphism of sl(2)-modules, T : (W , ρr1)
∼→

(W , ρr2), where T is defined by t(z) ∈ C(z)×. By Proposition 3.3, T is a morphism of
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sl(2)-modules if and only if ρ
(μ)
r2 (L1) ◦ T = T ◦ ρ

(μ)
r1 (L1):

r2(z) ◦ ∇ ◦ t(z) = t(z) ◦ r1(z) ◦ ∇
or, what amounts to the same

r2(z)

r1(z)
= t(z)

t(z + 1)
.

The claim follows from the following proposition. ��

Proposition 9.2 Let f (z) ∈ C(z)× be given. Then, the functional equation for t(z) ∈ C(z)
defined by:

t(z)

t(z + 1)
= f (z)

has a solution if and only if there are α1, . . . , αn ∈ C and a1, . . . , an ∈ Z such that:

f (z) =
n
∏

i=1

z − αi

z + ai − αi

and, if this is the case, then the solution is:

t(z) = c ·
n
∏

i=1
P(z − αi , ai )

where c ∈ C
× is arbitrary and P(z,m) ∈ C(z) is the m-th Pochhammer rational function.

Recall that the Pochhammer function is defined by:

P(z, n) :=

⎧

⎪

⎨

⎪

⎩

z(z + 1) · . . . · (z + n − 1) for n > 0

1 for n = 0
1

(z+n)(z+n+1)...(z−1) for n ≤ −1
(9.3)

Proof If f (z) and t(z) are as in the statement, it is clear that the functional equation holds
by the properties of the Pochhammer rational functions.

Assume that the functional equation has a solution, t(z), and write it as t(z) = p(z)
q(z) with

p(z), q(z) ∈ C[z], we get

f (z) = p(z)

p(z + 1)
· q(z + 1)

q(z)
.

If p(z) = β · (z − β1) · · · (z − βm), q(z) = γ · (z − γ1) · · · (z − γn) then

f (z) = (z − β1)

(z − β1 + 1)
· · · (z − βm)

(z − βm + 1)
· (z − γ1 + 1)

(z − γ1)
· · · (z − γn + 1)

(z − γn)

and this has the required form. ��
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9.2 Rationalization of polynomial representations

In this section we study when a 1-dimensional rational Casimir representation is the ratio-
nalization of a polynomial Casimir representation of rank 1. That is, given (W , ρr ) with
W � C(z) and ρr defined by r(z) ∈ C(z) as in (9.2), we wonder whether there exists (V , ρ)

with V � C[z] and an isomorphism of sl(2)-modules (W , ρr ) � Frat(V , ρ) .

Theorem 9.3 Let (W , ρr ) be a 1-dimensional rational Casimir representation defined by
r(z) ∈ C(z)×. There exists a polynomial Casimir representation of rank 1, (V , ρ′), such that
(W , ρr ) � Frat(V , ρ′) if and only if there are α1, . . . , αn ∈ C and a1, . . . , an ∈ Z such that
r(z) is of the following four possible types:

(I) r(z) = γ · πμ(z + 1)
∏n

i=1
z+ai−αi
z−αi

;

(II) r(z) = γ · αμ(z + 1)
∏n

i=1
z+ai−αi
z−αi

;

(III) r(z) = γ · βμ(z + 1)
∏n

i=1
z+ai−αi
z−αi

;

(IV) r(z) = γ
∏n

i=1
z+ai−αi
z−αi

.

with γ ∈ C
× and πμ(z) = αμ(z) · βμ(z) is the product of degree 1 monic polynomials.

Proof First, recall the following classification of polynomial Casimir representations of rank
1 given in [13,Theorem 5.3]: the Casimir representations of level μ on a rank one free
C[z]-module V , are:

(I) ρ(L−1) = 1
γ
· ∇−1, ρ(L0) = z, ρ(L1) = γ · πμ(z + 1)∇.

(II) ρ(L−1) = 1
γ
· βμ(z)∇−1, ρ(L0) = z, ρ(L1) = γ · αμ(z + 1)∇.

(III) ρ(L−1) = 1
γ
· αμ(z)∇−1, ρ(L0) = z, ρ(L1) = γ · βμ(z + 1)∇.

(IV) ρ(L−1) = 1
γ
· πμ(z)∇−1, ρ(L0) = z, ρ(L1) = γ · ∇.

where γ ∈ C
× is arbitrary and αμ(z), βμ(z) are monic polynomials of degree 1 such that

πμ(z) = αμ(z) · βμ(z).
Now, let (W , ρr ) be defined by the relations (9.2) with r(z) ∈ C(z). Suppose that there

exists a polynomial Casimir representation of rank 1, (V , ρ′), of type I as above such that
Frat(V , ρ′) � (W , ρ). By Theorem 9.1, it follows that (W , ρr ) is equivalent to Frat(V , ρ′)
if and only if there exist α1, . . . , αn ∈ C and a1, . . . , an ∈ Z such that:

γ · πμ(z + 1)

r(z)
=

n
∏

i=1

z − αi

z + ai − αi
,

proving the claim for type I. The proof for types II, III and IV is similar. ��
Remark 9.4 The description of all sl(2)-submodules of an arbitrary 1-dimensional ratio-
nal representation is rather complicated. Let us illustrate this claim with the following
example. We begin by constructing non-trivial rank 1 torsion free sl(2)-submodules of any
1-dimensional rational Casimir representation. Let r(z) ∈ C(z)× and consider its associated
rational sl(2)-module (W , ρr ), with ρr given by (9.2). Every 0 �= w ∈ W generates a non
trivial sl(2)-submodule Vw of (W , ρr ) that is also a Casimir module, and therefore we have
Vw = A(μ) ·w. Taking into account the graded decomposition of the algebra A(μ) given in
Sect. 3, it follows that Vw is the C[z]-submodule of W generated by {wm}m∈Z with

wm :=

⎧

⎪

⎨

⎪

⎩

ρr (L−1)−m(w) for m < 0,

w for m = 0,

ρr (L1)
m(w) for m > 0.
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A straightforward computation shows that

wm :=
{

P
(

r(z)
πμ(z+1) ,m

)

· ∇m(w) for m < 0,

P(r(z),m) · ∇m(w) for m ≥ 0.

Here P(ξ(z),m) ∈ C(z) denotes the m-th Pochhammer expression on the rational fraction
ξ(z) ∈ C(z). That is

P(ξ(z),m) :=

⎧

⎪

⎨

⎪

⎩

1
ξ(z+m)ξ(z+m+1)···ξ(z−1) for m < 0,

1 for m = 0,

ξ(z)ξ(z + 1) · · · ξ(z + m − 1) for m > 0.

It is worth pointing out that Vw is not a finite type C[z]-module. However, since
Vw � A(μ)/Iw , where Iw is the left ideal of A(μ) that annihilates w, it follows from
[12,Theorem 4.26 pag. 128] that Vw is a finite length sl(2)-module. On the other hand, since
Frat(Vm, ρr |Vw

) = (W , ρ) isR-simple, we conclude that (Vw, ρr |Vw
) is a purely simple sl(2)-

module. Moreover, every sl(2)-submodule V of (W , ρr ) is a Casimir module, and therefore
it is of the form

V =
∑

i∈I
Vwi ,

for a certain family {wi }i∈I of elements of W .

9.3 The Ext1R groups for rank 1 rational representations

Given ri (z) ∈ C(z) for i = 1, 2, let us denote byWi the rational Casimir sl(2)-module of level
μ defined on a one dimensionalC(z)-vector spaceW by the representation ρi (L1) := ri (z)∇
built as in (9.2).

By Proposition 6.22 one has

Ext1R(W2,W1) =
(

End1
C(z)(W )/EndC(z)(W )

)

× Homsl(2)(W2,W1),

where α ∈ EndC(z)(W ) acts on B ∈ Hom1
C(z)(W ) by

α · B := B + α ◦ ρ2(L1)− ρ1(L1) ◦ α. (9.4)

By Proposition 6.19, ifW1 is not isomorphic toW2, then Homsl(2)(W2,W1) = 0, whereas
Homsl(2)(W2,W1) is a one dimensional complex vector space if W1 is isomorphic to W2.

On the other hand,C(z) = EndC(z)(W ) and via∇ we have an identification ofC(z)-vector

spaces C(z)
∼−→ End1

C(z)(W ) that maps b(z) ∈ C(z) to b(z)∇. Therefore, given α(z) ∈ C(z),
the equation (9.4) is equivalent to

α · b = b + r2(z)α(z)− r1(z)α(z + 1).

Hence, two elements b1(z), b2(z) ∈ C(z) define the same class in Ext1R(W2,W1) if and only
if they satisfy the equality

r1(z)α(z + 1)− r2(z)α(z) = b1(z)− b2(z).

This equation is a first order linear difference equation of the form

α(z + 1)− r(z)α(z) = ξ(z),
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where r(z) = r2(z)
r1(z)

, ξ(z) = b1(z)−b2(z)
r1(z)

∈ C(z). By Theorem 9.1, W1 is isomorphic to W2 if

and only if there exist t(z) ∈ C(z) such that r2(z)
r1(z)

= t(z)
t(z+1) . Substituting above we get the

first order linear difference equation φ(z + 1) − φ(z) = s(z) where φ(z) = t(z)α(z) and
s(z) = t(z + 1)ξ(z). Now we have the:

Lemma 9.5 Given s(z) ∈ C(z), there exists a rational function φ(z) ∈ C(z) solving the
difference equation:

φ(z + 1)− φ(z) = s(z)

if and only if there are α1, . . . , αn ∈ C and a1, . . . , an ∈ Z such that:

Resz=αi s(z)(z − αi )
j d z = −Resz=αi−ai s(z)(z − (αi − ai ))

j d z ∀ j ≥ 0.

Proof Recall that, by the partial fraction decomposition, a rational function can be expressed
as a sum of a polynomial plus fractions of type β

(z−α)k
. The polynomial will be called the

polynomial part of the rational function. Note that it suffices to prove the statement for these
two cases; namely, for polynomials and for rational functions with zero polynomial part.

Let us show that there is a polynomialφ(z) solving the equation for an arbitrary polynomial
s(z) ∈ C[z]. Having in mind that the set of Pochhammer’s functions {P(z, n)|n ≥ 0}
(see (9.3)) is a basis of C[z] and that:

P(z + 1, n)− P(z, n) = P(z + 1, n − 1)

the statement follows.
Now, let us deal with the case of rational functions with zero polynomial part. Let φ(z)

be a solution. Let us write:

φ(z) :=
n
∑

j=1

−1
∑

i=r j

β j i

(z − α j )i
.

It is straightforward that s(z) satisfies the condition of the statement.
Conversely, let s(z) be rational function with zero polynomial part fulfilling the condition;

that is,

s(z) :=
n
∑

i=1

−1
∑

j=ri
βi j

(

1

(z − (αi − ai )) j
− 1

(z − αi ) j

)

for certain complex numbers βi j ∈ C. It is easy to check that it can be assumed that n = 1

and a1 = 1. Then φ(z) :=∑−1j=r1
β1 j

(z−αi )
j is the solution. ��

As a consequence of the previous results we get the:

Corollary 9.6 If W1,W2 are 1-dimensional rational Casimir sl(2)-modules such that W1 �
W2, then

1
(z−α)i

, 1
(z−β) j

∈ C(z)define the sameclass inExt1R(W2,W1) if andonly ifα−β ∈ Z

and i = j .
In particular, for a 1-dimensional rational Casimir sl(2)-module W, one has:

dimC Ext1R(W ,W ) = ∞ .

Remark 9.7 This is in sharp contrast with what happens for finite rank torsion free sl(2)-
modules of finite length, for which Bavula proved in [2] that all the Ext’s groups are finite
dimensional C-vector spaces.
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10 Picard Group and Grothedieck rings of rational representations

We recall from Proposition 6.4 that the category of rational sl(2)-modules, R, is a C-linear
abelian subcategory of the categoryC(z)-Vectfd of finite dimensionalC(z)-vector spaces. It is
therefore natural to wonder what properties or constructions of C(z)-Vectfd can be restricted
to R.

It is remarkable that, thanks to Theorem 6.5, the tensor product ⊗ of C(z)-vector spaces
does restrict to R and that it satisfies very nice properties that can be summarized by saying
that (R,⊗) is a closed symmetric monoidal category, see Theorem 10.5. This makes possible
to define the Picard group Pic(R) of the category of rational representations, see [11].

10.1 Themonoidal structure

We begin by constructing the tensor product of rational Casimir sl(2)-modules.

Definition 10.1 Let (W1, ρ1), (W2, ρ2) be two rational Casimir sl(2)-modules of levels
μ1, μ2 ∈ C, respectively. We define on the C(z)-vector space W1 ⊗C(z) W2 the semilin-
ear endomorphisms

(ρ1 ⊗ ρ2)(L−1) := πμ1+μ2(z)

πμ1(z)πμ2(z)
ρ1(L−1)⊗ ρ2(L−1) ∈ End−1

C(z)(W1 ⊗C(z) W2),

(ρ1 ⊗ ρ2)(L1) := ρ1(L1)⊗ ρ2(L1) ∈ End1
C(z)(W1 ⊗C(z) W2).

An easy application of Proposition 4.14 proves that (W1 ⊗C(z) W2, ρ1 ⊗ ρ2) is a rational
Casimir sl(2)-module of level μ1 + μ2 that we call the rational Casimir tensor product of
(W1, ρ1) with (W2, ρ2) and we denote it (W1, ρ1)⊗C(z) (W2, ρ2). Given (W , ρ) ∈ RC we
denote by lev((W , ρ)) ∈ C its level, then for every (W1, ρ1), (W2, ρ2) ∈ RC we have

lev((W1, ρ1)⊗C(z) (W2, ρ2)) = lev((W1, ρ1))+ lev((W2, ρ2)).

Definition 10.2 Let (W1, ρ1), (W2, ρ2) be two rational Casimir sl(2)-modules of levels
μ1, μ2 ∈ C, respectively. We define on the C(z)-vector space HomC(z)(W1,W2) the semi-
linear endomorphisms such that for any ϕ ∈ HomC(z)(W1,W2) one has

HomC(z)(ρ1, ρ2)(L−1)(ϕ) := πμ2−μ1(z)

πμ2(z)
ρ2(L−1) ◦ ϕ ◦ ρ1(L1),

HomC(z)(ρ1, ρ2)(L1)(ϕ) := 1

πμ1(z + 1)
ρ2(L1) ◦ ϕ ◦ ρ1(L−1).

By mean of Proposition 4.14 one shows that (HomC(z)(W1,W2),HomC(z)(ρ1, ρ2)) is a
rational Casimir representation of level μ2 − μ1 and we denote it by

HomC(z)((W1, ρ1), (W2, ρ2)).

A lengthy but straightforward check of the axioms, see [5,Section 6.1], proves the following
key result, where (C(z), ρ(0)) has been defined in Example 4.15.

Theorem 10.3 The category RC endowed with the tensor product ⊗ of rational Casimir
sl(2)-modules is a closed symmetric monoidal category with unit (C(z), ρ(0)). Moreover,
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given any two rational Casimir representations (W1, ρ1), (W2, ρ2), their internal Hom is
given by HomC(z)((W1, ρ1), (W2, ρ2)); that is, one has

Homsl(2)((W0, ρ0)⊗C(z) (W1, ρ1), (W2, ρ2))

= Homsl(2)((W0, ρ0),HomC(z)((W1, ρ1), (W2, ρ2))).

It is straightforward to show that Definitions 10.1 and 10.2 can be used also to endow
the tensor product of generalized rational Casimir sl(2)-modules with the structure of an
sl(2)-module. Furthermore, one has the following results.

Lemma 10.4 If (W1, ρ1) ∈ RC(n1)
μ1 , (W2, ρ2) ∈ RC(n2)

μ2 , then one has:

1. The tensor product (W1 ⊗C(z) W2, ρ1 ⊗ ρ2) is a generalized rational Casimir sl(2)-
module and

(W1 ⊗C(z) W2, ρ1 ⊗ ρ2) ∈ RC(n)
μ1+μ2

where n ≤ n1 + n2 +min{n1, n2} − 2.
2. The sl(2)-moduleHomC(z)((W1, ρ1), (W2, ρ2)) is a generalized rationalCasimir sl(2)-

module that is their internal Hom and

HomC(z)((W1, ρ1), (W2, ρ2)) ∈ RC(n)
μ2−μ1

where n ≤ n1 + n2 +min{n1, n2} − 2.

Theorem 10.5 The category R endowed with the tensor product ⊗ of rational sl(2)-
modules is a closed symmetric monoidal category with unit (C(z), ρ(0)). Moreover, given
any two rational representations (W1, ρ1), (W2, ρ2), their internal Hom is given by
HomC(z)((W1, ρ1), (W2, ρ2)).

Proof If (W1, ρ1), (W2, ρ2) are two rational sl(2)-modules and

W1 =
k
⊕

i=1
W (mi )

1,μi
, W2 =

l
⊕

j=1
W

(n j )

2,ν j

are their decompositions into a direct sum of generalized rational Casimir modules described
in Theorem 6.8, then we introduce an sl(2)-module structure on their tensor product

W1 ⊗C(z) W2 =
k,l
⊕

i=1, j=1
W (mi )

1,μi
⊗C(z) W

(n j )

2,ν j

by declaring this to be a direct sum of sl(2)-modules and endowing each component with
the sl(2)-module structure defined by the tensor product of generalized rational Casimir
modules, see Lemma 10.4. In a similar way one has

HomC(z)(W1,W2) =
k,l
⊕

i=1, j=1
HomC(z)(W

(mi )
1,μi

,W
(n j )

2,ν j
)

and we introduce an sl(2)-module structure on it by declaring again this to be a direct sum of
sl(2)-modules and endowing each component with the sl(2)-module structure defined by the
internal Homof generalized rational Casimirmodules, see Lemma 10.4.We denote this sl(2)-
module structure by HomC(z)((W1, ρ1), (W2, ρ2)). The claims follow straightforwardly. ��
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Remark 10.6 Recalling Theorem 9.3, we observe that if we tensor out two rational represen-
tations that come from polynomial representations through the rationalization functor, then
we obtain a rational representation which may not arise from a polynomial representation.
Indeed, it is straightforward to see that the tensor product of two rational representations of
type I can not be obtained as the rationalization of a polynomial representation.

10.2 The Picard group

An essentially small closed symmetric monoidal category (C,⊗) has a Picard group Pic(C)

that was introduced by May in [11]. In order to describe the Picard group Pic(R) of (R,⊗),
one defines the dual of a rational representation (W , ρ) as

(W , ρ)∗ := HomC(z)((W , ρ), (C(z), ρ(0)))

where as before HomC(z)(−,−) denotes the internal Hom of (R,⊗). There is a canonical
map

ν : (W , ρ)∗ ⊗ (W , ρ)→ HomC(z)((W , ρ), (W , ρ))

and one says that (W , ρ) is dualizable if ν is an isomorphism. One checks straightforwardly
that this is always the case.

Proposition 10.7 Every object of the symmetric monoidal category (R,⊗) is dualizable.

One says that (W , ρ) ∈ R is invertible if there exists (W ′, ρ′) ∈ R such that

(W , ρ)⊗C(z) (W ′, ρ′) � (C(z), ρ(0)).

We denote by Inv(R) the subcategory ofR formed by the invertible elements. Taking C(z)-
dimensions in the above identity it follows that we must necessarily have dimC(z)(W , ρ) =
dimC(z)(W ′, ρ′) = 1 and as we have seen in Sect. 9.1, this implies that both representations
are Casimir. Moreover, one proves, see [11,Theorem 2.6, Lemma 2.9], that the invertibility
of (W , ρ) forces the equality (W ′, ρ′) = (W , ρ)∗.

Theorem 10.8 The subcategory Inv(R) of invertible elements of the closed symmetric
monoidal category (R,⊗) is the stratumR1 of one dimensional rational representations, or
equivalently the one dimensional rational Casimir representations RC1.

Proof We have already seen that an invertible representation necessarily belongs to R1 =
RC1. On the other hand, given (W , ρ) ∈ RC1μ since we have seen in Proposition 10.7 that
every object is dualizable, we have a canonical isomorphism

ν : (W , ρ)∗ ⊗C(z) (W , ρ)
∼−→ HomC(z)((W , ρ), (W , ρ)).

Composing this with the trace isomorphism

Tr : HomC(z)((W , ρ), (W , ρ))
∼−→ (C(z), ρ(0))

we get the desired isomorphism (W , ρ)∗ ⊗C(z) (W , ρ)
∼−→ (C(z), ρ(0)). ��

We recall now the definition of the Picard group, see [11,Definition 2.10].
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Definition 10.9 The Picard group Pic(R) of the closed symmetric monoidal category (R,⊗)

is the set of isomorphism classes ̂Inv(R) = ̂R1 = ̂RC1 of invertible objects endowed with
the product and inverses given by

[(W , ρ)] · [(W ′, ρ′)] = [(W , ρ)⊗C(z) (W ′, ρ′)], [(W , ρ)]−1 = [(W , ρ)∗],
for every [(W , ρ)], [(W ′, ρ′)] ∈ ̂Inv(R).

Now we state the main result of this section.

Theorem 10.10 The level morphism gives rise to a short exact sequence

0→ Pic0(R)→ Pic(R)
lev−→ C→ 0.

The Picard group Pic(R) gets identified with the group ̂RC(C(z)) = C × (C(z)×/∼).
This induces a group morphism section σ : C→ Pic(R) given by σ(μ) = (C(z), ρ(μ)) that
splits the short exact sequence. Furthermore, there are isomorphism of groups

Pic0(R)
∼−→ C(q)×0 , Pic(R)

∼−→ C× C(q)×0 (10.1)

compatible with the above exact sequence, where C(q)×0 are the rational functions without
zeros or poles at 0.

Proof We have the identifications ̂Inv(R) = ̂RC1 = ̂RC(C(z)). Moreover, we have seen
that there is a bijection betweenRCμ(C(z)) and C(z)×, see (9.1) and (9.2). Hence, we have
̂RC(C(z)) = C× (C(z)×/∼), where the C component is the level of the representation and
∼ is the equivalence relation described in Theorem 9.1.

Let us show the second claim. Let r1(z), r2(z) ∈ C(z) be such that they yield isomor-
phic sl(2)-representations ρ

(μ)
r1 , ρ(μ)

r2 on W ; hence, by Theorem 9.1, it means that there are
α1, . . . , αn ∈ C and a1, . . . , an ∈ Z such that

r1(z)

r2(z)
=

n
∏

i=1

z − αi

z + ai − αi
. (10.2)

This equation holds if and only if the following three conditions are fulfilled: 1) the zeroes
of r1(z) and those of r2(z) are equal mod Z; 2) the poles of r1(z) and those of r2(z) are equal
mod Z; 3) the quotient r∞1 of the leading coefficient of the numerator of r1(z) by the leading
coefficient of its denominator is equal to the analogous quotient r∞2 for r2(z). For a non-zero
rational function r(z) ∈ C(z)×, define

r̃(q) := r∞
∏

i

(

q − exp(−2π iαi )
)

∏

j

(

q − exp(−2π iβ j )
) ∈ C(q)×0

where α1, . . . , αn is the set of zeroes of r(z), β1, . . . , βm its set of poles, r∞ the quotient of
the leading coefficient of the numerator of r(z) by the leading coefficient of its denominator
and i := √−1. This gives a surjection (̃ ) : C(z)× → C(q)×0 .

Moreover, the representations associated to r1(z) and r2(z) are isomorphic if and only if
r̃1(q) = r̃2(q). Hence, there is a bijection of sets ̂RC(C(z))

∼→ C× C(q)×0 .
It remains to show that it is a homomorphism of groups. But this is straightforward since

the trivial representation, which is given by ρ(0)(L1) = ∇; i.e. r(z) = 1, corresponds
to r̃(q) = 1 and the tensor product of representations corresponds to the product of the
associated functions. ��
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Remark 10.11 Pursuing the above identifications, one sees that (10.1) establishes a one to
one correspondence between the rational Casimir representations of level 0 arising from
polynomial ones and the following rational functions, where γ ∈ C

×:

{γ, γ (q + exp(π i
√

1+ 4μ)), γ (q + exp(−π i
√

1+ 4μ)),

γ (q + exp(π i
√

1+ 4μ))(q + exp(−π i
√

1+ 4μ))}.
The identification ̂Frat : ̂Spl(sl(2)-Mod1tffr)

∼−→ ̂R1 = Pic(R) given in Theorem 6.13
makes possible to give the following formal:

Definition 10.12 The Picard group of the category sl(2)-Modtffr is the group

Pic(sl(2)-Modtffr) = ̂Spl(sl(2)-Mod1tffr)

obtained by declaring ̂Frat : ̂Spl(sl(2)-Mod1tffr)
∼−→ ̂R1 to be a group isomorphism.

The existence of this group structure on ̂Spl(sl(2)-Mod1tffr) might point to the existence
of an appropriate symmetric monoidal structure on the category sl(2)-Modtffr such that its
Picard group is the one introduced above. We will analyze this in future work.

10.3 The Grothendieck rings

The monoidal structure (R,⊗) of the category of rational representations allow us to intro-
duce a ring structure on K⊕0 (R) with ⊕ as addition and ⊗ as multiplication. One says that
(K⊕0 (R),⊕,⊗) is the additive Grothendieck ring ofR. Taking into account that every ratio-
nal representation is dualizable, we have a natural map of semi-rings α : Iso(R)→ K (R).
For more details see [11,Section 3].

One says that two rational sl(2)-modules W1, W2 are stably isomorphic if there exist a
rational module W such that W1 ⊕ W � W2 ⊕ W . We have proved in Theorem 6.5 that
R is a Krull–Schmidt category and thus R satisfies the cancellation property; that is, stably
isomorphic rational representations are isomorphic. Therefore, from [11,Propositions 3.4,
3.6] it follows that the natural map α : Iso(R)→ K (R) is injective and induces an injective
group morphism β : Pic(R) → K⊕0 (R)× into the group of invertible elements giving rise
to a commutative diagram

Pic(R)

β

Iso(R)

α

K⊕0 (R)× K⊕0 (R).

This is a pullback diagram because, thanks to the cancellation property of R, given W ∈ R
one has that α([W ]) ∈ K⊕0 (R)× if and only if [W ] ∈ Pic(R). The monoidal structure of R
is compatible with short exact sequences since every C(z)-vector space is flat. This implies
that the kernel of the natural surjective map π⊕ : K⊕0 (R) → K0(R) → 0 is an ideal and
thus K0(R) is a quotient ring of K⊕0 (R).
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