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Abstract: In this paper, we analyze the interpretable models from real gasification datasets of the
project “Centre for Energy and Environmental Technologies” (CEET) discovered by symbolic regres-
sion. To evaluate CEET models based on input data, two different statistical metrics to quantify their
accuracy are usually used: Mean Square Error (MSE) and the Pearson Correlation Coefficient (PCC).
However, if the testing points and the points used to construct the models are not chosen randomly
from the continuum of the input variable, but instead from the limited number of discrete input
points, the behavior of the model between such points very possibly will not fit well the physical
essence of the modelled phenomenon. For example, the developed model can have unexpected
oscillatory tendencies between the used points, while the usually used statistical metrics cannot detect
these anomalies. However, using dynamic system criteria in addition to statistical metrics, such
suspicious models that do fit well-expected behavior can be automatically detected and abandoned.
This communication will show the universal method based on dynamic system criteria which can
detect suitable models among all those which have good properties following statistical metrics. The
dynamic system criteria measure the complexity of the candidate models using approximate and
sample entropy. The examples are given for waste gasification where the output data (percentage of
each particular gas in the produced mixture) is given only for six values of the input data (temperature
in the chamber in which the process takes place). In such cases instead, to produce expected simple
spline-like curves, artificial intelligence tools can produce inappropriate oscillatory curves with sharp
picks due to the known tendency of symbolic regression to produce overfitted and relatively more
complex models if the nature of the physical model is simple.

Keywords: symbolic regression; Mean Square Error; Pearson Correlation Coefficient; oscillations in
solutions; dynamic system criteria; waste gasification; Occam’s Razor

MSC: 11Y16: 46N30; 65C60; 94A17

1. Introduction

We developed a set of curves for the gasification of municipal solid waste [1] using
symbolic regression [2]. The curves were tested statistically, and among those with satisfac-
tory results in terms of Mean Square Error (MSE) and Pearson Correlation Coefficient (PCC)
some are not acceptable because they show unexpected oscillatory behavior. To eliminate
them, we applied dynamic system criteria by measuring complexity using approximate
and sample entropy where the inappropriate curves can be eliminated to persist Occam’s
Razor [3]. We prefer not to present more statistical metrics aside MSE and PCC because
they cannot measure behavior between the testing points (on the other hand, dynamic
system criteria can).
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Gasification of municipal solid waste and biomass gives the different compositions
of the synthetic gas (syngas) depending on the gasification temperature in the process [4].
Based on real measurements of a plasma gasifier, a symbolic model for an important
component of the produced syngas is constructed where the percentage in the mixture
is given depending on the gasification temperature. To construct these symbolic syngas
composition models, the artificial intelligence provided outcomes using symbolic regression
software tools AI Feynman [5] and PySR [6]. The candidate symbolic models were chosen
among those with better statistical metrics; those with a lower Mean Square Error (MSE) and
with the Pearson Correlation Coefficient (PCC) close to one. However, it was discovered
that some of the obtained symbolic models, which fit very well the measured gasification
datasets using statistical metrics, are of oscillatory nature, which was not expected and
does not reflect the true physical properties of the modelled gasification process. However,
using dynamic system criteria in addition to statistical metrics, such suspicious symbolic
models that do fit well the measured gasification datasets were automatically detected
and abandoned. This communication will show the universal method based on dynamic
system criteria which can detect suitable models among all those which has good properties
following statistical metrics. The dynamic system criteria measure the complexity of
the candidate models using approximate and sample entropy. Our results indicate that
candidate symbolic regression models with oscillations and other non-physical phenomena
have higher complexity and can be automatically detected and excluded by approximate
and sample entropy to persist Occam’s Razor “science always prefers the simpler model or
representation of two which give similar accuracy” [6]. Consequently, we propose that the
dynamic system criteria based on approximate or sample entropy should be used for the
automated evaluation of symbolic regression models, as it is not enough to evaluate the
models by statistical metrics.

2. Gasification Models

Gasification models were developed for the production of hydrogen (H2) and carbon
dioxide (CO2) from municipal solid waste for only six different temperatures, while the
measurements were repeated four times.

These functions were introduced in symbolic regression software to provide nu-
merically stable logarithm-based functions, which are defined for all real numbers. As
logarithms are defined only for positive non-zero numbers, logarithms pose numerical
problems in the symbolic regression procedure, when the argument is negative.

Mean Square Error (MSE) and with the Pearson Correlation Coefficient (PCC) were
calculated using functions of Python 3.9 by:

MSE = np.square(np.subtract(data,y_pred)).mean()

coef = np.corrcoef(data,y_pred)[0][1]

where “data” means the measured data set and “y_pred” means the predicted values using
the selected symbolic regression model.

MSE and corr.coef were calculated for all measured data.
The presented models in Matlab notifications are given in Appendix A to this Com-

munication.

2.1. Hydrogen H2

The train set for hydrogen H2 is given in Table 1 while three test sets are given in
Table 2.

Table 1. Train data for H2.

t (◦C) 750 800 900 1000 1050 1100

H2 (%) 9.75 10.98 16.05 12.88 12.33 11.83
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Table 2. Test data for H2.

t (◦C) 750 800 900 1000 1050 1100

H2 (%) 9.69 11.54 15.91 12.77 12.48 11.56
H2 (%) 1 9.88 10.29 16.23 13.29 12.44 12.12
H2 (%) 2 9.68 11.12 16.01 12.58 12.08 11.82

1 Second test measurement, 2 Third test measurement.

The expected shape of the modelled curves for hydrogen H2 is given in Figure 1 where
the trendline is based on data from Table 1 and was produced in MS Excel as a polynomial
curve of order 4.
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Using symbolic regression tools, three different models were produced as follows.

2.1.1. Model 1 of Hydrogen H2

The first developed model is given in Equation (1)

H2(%) =
8.9065269419

cos
(
cos
(
esin (t+1) − 2

)) . (1)

This model performs good statistical metrics; MSE = 0.2897 and PCC = 0.9728 while
anyway, it shows oscillatory tendencies as can be seen in Figure 2.
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2.1.2. Model 2 of Hydrogen H2

The second developed model is given in Equation (2)

H2(%) = logm2(7.744805·(−9.837645 + logm2(t))−1.5165994) + 0.0054770974·t
logm2(t) = log2

(
|t|+ 10−8) }

. (2)

This model performs good, as indicated by statistical metrics, MSE = 0.08143851 and
PCC = 0.989470395. Model 2 has improved shape compared with Model 1, despite the
undesired tendency towards a sharp peak. It is given in Figure 3.
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2.1.3. Model 3 of Hydrogen H2

The second developed model is given in Equation (3)

H2(%) = 6.5368786 + logm2(|−9.864973 + logm2(t)|−2.1570945)
logm2(t) = log2

(
|t|+ 10−8) }

. (3)

This model performs good statistical metrics, MSE = 0.362862372 and PCC = 0.952248777.
It shows the same tendency as Model 2. Model 3 is given in Figure 4.
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2.2. Hydrogen CO2

The train set for hydrogen CO2 is given in Table 3 while three test sets are given in
Table 4.

Table 3. Train data for CO2.

t (◦C) 750 800 900 1000 1050 1100

CO2 (%) 8.13 9.8 11.93 11.33 11.53 12.3

Table 4. Test data for CO2.

t (◦C) 750 800 900 1000 1050 1100

CO2 (%) 8.05 9.52 11.63 11.5 11.56 12.27
CO2 (%) 1 8.09 9.83 12.31 11.23 11.5 12.21
CO2 (%) 2 8.24 10.05 11.84 11.27 11.54 12.43

1 Second test measurement, 2 Third test measurement

The expected shape of the modelled curves for hydrogen CO2 is given in Figure 5
where the trendline is based on data from Table 3 and was produced in MS Excel as a
polynomial curve of order 4.
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Using the symbolic regression tools, three different models were produced as follows.

2.2.1. Model 1 of Carbon Dioxide CO2

The first developed model is given in Equation (4)

CO2(%) = logm10
(

x·esin (x+0.6718609)
)2

logm10(t) = ln
(
|t|+ 10−8)

}
(4)

This model performs good statistical metrics, MSE = 0.3481 and PCC = 0.9171, while it
shows oscillatory tendencies, as can be seen in Figure 6.
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2.2.2. Model 2 of Carbon Dioxide CO2

The first developed model is given in Equation (5)

CO2(%) = logm
(
−0.060511474·t2)+ 2.0503674

logm(t) = ln
(
|t|+ 10−8) }

. (5)

This model performs good statistical metrics, MSE = 0.1985 and PCC = 0.9519, with a
good shape of the developed curve, as can be seen in Figure 7.
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3. Dynamic System Criteria for Selection of Appropriate Models

As observed, it is possible to construct many different models of the investigated
phenomena having comparable precision. Now, the task is to select one of them that can be
signed as the best choice under the assumption of Occam’s Razor [3]. For this purpose, the
qualification tools from the area of dynamical systems, like approximate Eapp and sample
Esamp entropy [7–11], can be applied.

Hence, the selection process, based on observation of the measure of complexity, works
as follows. Firstly, construct models (e.g., as in the previous section). Secondly, measure
the complexity of each model and order them with respect to this measure (in our case
approximate and sample entropy). Finally, pick the model with the smallest complexity
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value (at this stage the assumption of Occam’s Razor [3] is applied). Here, note that since
the minimum need not be unique the output of this selection process will always exist, but
should not be unique in general as we will show in the next section.

3.1. Entropy Notions

Approximate entropy Eapp and sample entropy Esamp are tools of complexity measure-
ment that were investigated by many authors and applied in numerous research fields
(e.g., [12–14]) to measure and compare studied cases’ complexity.

3.1.1. Approximate Entropy Eapp

Recall these notions are defined for the input vector X = x1, x2, . . . , xN of length N.
Approximate entropy Eapp is defined in Equation (6)

Eapp(X, m, r) = Φm(r)−Φm+1(r), (6)

where Φm(r) = (N−m + 1)∑M−m+1
i=1 log

(
Cm

i (r)
)

and Cm
i (r) is the number of um(j) such that

d(um(i), um(j)) ≤ r, divided by N−m + 1. Here, um(i) = [x(i), x(i + 1), . . . , x(i + m− 1)] is
an element of m-dimensional real space, m, r are test parameters and d(p, q) = max

a
|p(a)−

q(a)| is the maximum metric. For these parameters holds: m is the length of the window, r
is the diameter of the region with a similar subsequence.

3.1.2. Sample Entropy Esamp

On the other hand, sample entropy Esamp is given in Equation (7)

Esamp(X, m, r) = − ln
A
B

, (7)

where A is the number of template vector pairs such that dc(um+1(i), um+1(i)) < r, and B
is the number of template vector pairs such dc(um(i), um(i)) < r. Here, dc is the Chebyshev
distance and parameters m, r have the same meaning as in the case of Eapp.

3.2. Benchmark Models Application

To depict previously mentioned complexity measurement tools, classical models from
the theory of dynamical systems can be applied. The well-known logistic function can
be used as example of normalized models (also can be thought as predictive one). Recall
L1(x) = 4x(1− x) and L1 : [0, 1] → [0, 1] , this model is well understood from dynamical
point of view [15]. The next model can be constructed as a second iteration of L1(x) that is
L2 = L1 · L1 = L2

1, and analogously L3 = L1 · L1· L1 = L3
1, L4 = L4

1, L5 = L5
1. The evolution

of these models is shown in Figure 8a and their corresponding entropies are in Figure 8b,
clearly showing increase of entropy while the complexity of the model increases.
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3.3. Simulation Outputs

The numerical simulations of our models were performed in Matlab while the contin-
uous models were discretized from 750 ◦C to 1100 ◦C by the step of 0.001 ◦C. Entropies
tests were set classically, that is, r was picked as 20% of the standard deviation of the
investigated vector and m was set to 1 as the minimum window length. Firstly, note that
the test performed on all models coincides so, for simplicity, we can use the abbreviation of
entropy for both tests. These outputs, rounded on four decimal places, are summarized in
Table 5 for hydrogen H2 and in Table 6 for carbon dioxide CO2.

Table 5. Dynamic system criteria for hydrogen H2.

Model 1 Model 2 Model 3

Approximate entropy Eapp 0.0442 0.0015 0.0015
Sample entropy Esamp 0.0197 0.0003 0.0003

Table 6. Dynamic system criteria for carbon dioxide CO2.

Model 1 Model 2

Approximate entropy Eapp 0.0252 0
Sample entropy Esamp 0.0235 0

Model 1 of H2 (which is periodic with a period of 6.283183 ◦C) has higher complexity
than Model 2 of H2 and Model 3 of H2, so Model 1 of H2 can be denied. It is also observable
from Table 5 that entropies of Model 2 of H2 and Model 3 of H2 are comparable and much
less than Model 1 of H2.

It is observable from Table 6 that entropy of the Model 1 of CO2 is much higher than
that of Model 2 of CO2, proving that Model 2 has lower complexity than Model 1 and is
then a better choice.

4. Conclusions

We developed symbolic regression models for the gasification of municipal solid
waste [16–21]. However, these models were developed using limited points of data and so,
between these points, it shows unpredicted behavior (sharp picks or oscillatory motions)
where all such models were acceptable using statistic metrics (Mean Square Error and
the Pearson Correlation Coefficient) as criteria. In the end, the proposed application of
approximate Eapp and sample Esamp entropy automatically detected those models with
higher complexity contradicting Occam’s Razor assumption. Hence, the models with
higher complexity can be excluded from further investigation. Moreover, it is possible to
use these dynamic tools automatically in general for decision mechanisms. The example is
about gasification of waste, but the shown method for rejection of inappropriate models is
of general value and can be used in various scientific fields. It is based on dynamic system
criteria and it is based on the measurement of entropy. In future, we would like to also test
Symbolic Functional Evolutionary Search (SyFES), that automatically constructs accurate
functionals in the symbolic form, which is more explainable to humans, cheaper to evaluate,
and easier to integrate into existing software codes [22].

However, the proposed selection method is based on approximate and sample entropy,
there are also other tools in the mathematical theory of dynamical systems that can be
applied [23,24]. For example, metrics from recurrence quantification analysis (RQA) can be
applied (or relevant alternatives mentioned in [25]). We propose these promising tools for
further research.

In the end, since the proposed method is addressed in general to any set of models it
can be also applied to prediction models. The application of the method to the prediction
models is left for future research.
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Appendix A

The models in Matlab notifications are:
H2 models:
= 8.9065269419/cos(cos(exp(sin(x + 1)) − 2))
= logm2(7.744805 * pow(-9.837645 + logm2(x), −1.5165994)) + (0.0054770974*x)
= 6.5368786+logm2(pow(abs(−9.864973 + logm2(x)), −2.1570945))
CO2 models:
= logm10(x.*exp(sin(x + 0.6718609))).ˆ2
= logm(−0.060511474*x.ˆ2+44.81684*x) + 2.0503674
pow = @(x,y) x.ˆy
logm = @(x) log(abs(x) + 1e-8);
logm2 =@(x) log2(abs(x) + 1e-8);
logm10 = @(x) log10(abs(x) + 1e-8)

References
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