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Abstract: The sudden increase in containerization volumes around the globe has increased the overall
number of cargo losses, infrastructure damage, and human errors. Most critical losses occur during
handling procedures performed by port cranes while sliding the containers to the inner bays of
the ship along the vertical cell guides, damaging the main metal frames and causing the structure
to deform and lose its integrity and stability. Strong physical impacts may occur at any given
moment, thus in-time information is critical to ensure the clarity of the processes without halting
operations. This problem has not been addressed fully in the recent literature, either by researchers
of the engineering community or by the logistics companies’ representatives. In this paper, we
have analyzed the conventional means used to detect these critical impacts and found that they
are outdated, having no real-time assessment capability, only post-factum visual evaluation results.
More reliable and in-time information could benefit many actors in the transportation chain, making
transportation processes more efficient, safer, and reliable. The proposed solution incorporates
the monitoring hardware unit and the analytics mechanism, namely the auto-encoder technology,
that uses the acceleration parameter to identify sensor data anomalies and informs the end-user if
these critical impacts occurred during handling procedures. The proposed auto-encoder analytical
method is compared with the impacts detection methodology (IDM), and the result indicates that the
proposed solution is well capable of detecting critical events by analyzing the curves of reshaped
signals, detecting the same impacts as the IDM, while improving the speed of the short-term detection
periods. We managed to detect–predict between 9 and 18 impacts, depending on the axis of container
sway. An experimental study suggests that if programmed correctly, the auto-encoder (AE) can be
used to detect deviations in time-series events in different container handling scenarios.

Keywords: auto-encoder; transportation; signal processing; data analytics

1. Introduction

Shipping containers have become the main driving force for logistics companies world-
wide since their introduction, transporting various cargo, especially for ocean-going cargo
ships. This is mainly due to the many advantages of efficient cargo storage and fast logis-
tics, including the simplicity of the transportation of casual materials and their increasing
volumes. However, the cost of transportation is increasing constantly due to human error,
resulting in the loss of containers and cargo and halting handling/transportation processes
in ports. The autonomous operation of various modes of transport in recent years has
become attractive to the whole logistics industry, and it has gradually become a hotspot
of academic research in recent years [1,2]. New container handling machinery, such as
the autonomous Quay Cranes (QC), are now being adopted around the world, yet old
problems remain the same, with no serious technological improvements in the mechanical
parts of the cranes, the control of movements and estimation of real-time dynamics of both
the spreader, the container and the cargo inside. Therefore, novel and updated data-driven
predictive maintenance and monitoring systems have become a real necessity for logistic

Machines 2022, 10, 734. https://doi.org/10.3390/machines10090734 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10090734
https://doi.org/10.3390/machines10090734
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0001-5135-7980
https://doi.org/10.3390/machines10090734
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10090734?type=check_update&version=2


Machines 2022, 10, 734 2 of 14

and insurance companies, ensuring the reliability of cargo handling operations, visibility of
responsibilities in real-time, and security of the transport processes in the port environment,
ensuring the future perspectives and strong agility of logistics processes, technologies,
systems, and management strategies.

From an operational perspective, cargo and infrastructure damage detection problems
are a real engineering headache for specialists working in the relevant fields [3], especially
if carried out remotely as accurate prognostics are required. Specialists from LKAB “Smelte”
container terminal in Klaipeda city demonstrated the importance of the in-time detection
of damages, the frequency of their occurrences, and the entire network of responsibilities,
which helped to establish the problem area presented in this work.

The detection of container impacts (examples presented in Figure 1) in the vicinity
of the heavy machinery in container terminals is a critical factor, influencing the cost of
transportation, the responsibilities, and operational actions. These issues are tackled by
many scholars and practitioners in their respective research [4]. The detection of these
damages in due time, remotely, has not been researched by scholars in this specific area. It
is therefore a priority for port operators and insurance and logistics companies.
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Figure 1. Examples of damaged containers due to external impacts.

From a research and systematic point of view, these impacts can be categorized as
statistical anomalies of the sensory data, regarding digital accelerators or any other means
of vibration or shock detection. In general terms, anomaly detection is an important
key component of all novel data-driven solutions, highly anticipated by managers and
insurance companies.

Quay and yard cranes are very complicated heavy types of machinery, and due to
human factor errors, environmental impacts and extremely complex mechanical/dynamic
processes, the probability of abnormal occurrences during container handling is relatively
high by comparison. At the same time, due to the sheer volumes of transportation, the
constant stress on the operators and the elements of the control systems, the majority
of shipping containers are often impossible to investigate manually by port personnel.
Furthermore, it is not possible to monitor the dynamic parameters of the cargo or the
entire container in a real-time manner. Physical complexity, harsh working conditions, and
other relevant ICT boundaries limit the efficiency of regular solutions that require high
reliability during the critical execution of the inspection tasks, so the detection of abnormal
dynamic parameters fluctuation and the technologies supporting these methods have been
paid much attention in the literature recently [5], but not in the containers handling and
security areas.

Currently, the most advanced, container tracking and monitoring system is the
“42 Container” project (“https://weare42.io”, accessed on 28 July 2022), which uses conven-
tional means to accumulate data from the surrounding environment without any means of
self-awareness and Edge computing. This smart container prototype continuously records

https://weare42.io
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its location and inner status, which includes: humidity and temperature parameter fluctua-
tion inside and outside of the container, the closing or opening of the door or the container,
structural vibrations and sudden shock position during the route, as well as sound and air
pollution parameters. For security reasons and insurance-related affairs, the Container 42
also utilizes several cameras that take time-lapse images or start recording during specific
measurable events and with the help of the Tesla 42 sensor, measures the movement of
assets inside the container. The doors are sealed with advanced event-based or place-based
programmable high-end SBS locks and the entire system is powered either by inner power
banks or solar panels soon to be approved and certified by Lloyd’s Register.

Knowledge extraction, on the other hand, is carried out remotely by servers in a Cloud-
Fog infrastructure, which imposes stress on the supporting wireless systems and computing
units. This puts a significant amount of strain on the wireless channels, increasing the
probabilities of packet losses in shielded environments of the container terminal. Yet,
Edge computing systems that rely on inner knowledge extraction algorithms and other
means of signal manipulation, with the help of many powerful computing units, pose
new and prospective challenges to researchers, as well as promising results for decision
support specialists. Currently, the level of fidelity of the existing systems does not allow
the monitoring of individual containers with exact precision [4], limiting the applicability
of any complex knowledge extraction technique in handling processes [6]. Such complexity
requires understanding the dynamics of the processes, the dynamics of the machinery [7],
and their influence on other systems in use. New computational methods and remote
process control solutions have advanced virtualization to new heights [8] by allowing the
simulation of the complexity on different levels of fidelity, controlling real processes in
real-time by using remote sensors with Edge computing capabilities [9].

However, in previous studies, the auto-detection of potential damages in the heavy
transportation industry has been prioritized by several authors, most notably
Molodova et al. [10], who presented an automatic method for detecting railway surface
defects called “squats”, using axle box acceleration (ABA) measurements on trains, and
Wiseman [11], who suggested a safety tool for an incessant inspection of “SkyTran” tracks
by employing digital surveillance technology. Regarding the AI paradigm and the nov-
elty of smart IoT, the following research is mostly based on research findings in Neural
networks (NN) [12,13]. While most researchers treat damage detection tasks in heavy
industry in a supervised manner, which can be regarded as pattern recognition problems
in most cases, supervised learning requires massive amounts of labeled training data from
all possible handling scenarios to achieve efficiency [14]. However, it is nearly impossible
to gain such a significant amount of data from all possible damaged conditions during
container transportation in different modes while using different handling machinery. This
is because the damage cases are chaotic and quite rare in real-life applications. Although
some researchers attempt to fabricate the missing parameters [15], the labeled damage state
data, through numerical simulation, there is no guarantee that all damage states will be
covered at a high-fidelity simulation level with a high level of accuracy to be adopted in
real-life scenarios. Therefore, the performance of supervised learning models for container
damage detection is limited when encountering unseen damage cases, transport means,
handling operations, and weather conditions. Access to genuine container handling data
in our case study and the lack of tracked true cases of anomalous ones favor the adoption
of the so-called trained auto-encoders (AE).

In general terms, auto-encoders are unsupervised Machine Learning (ML) models
often used for anomaly detection in various industrial applications. These models use a
first network called the encoder that encodes the input sensory data into a latent repre-
sentation, which is then decoded by a second network called the decoder. The differences
between the input data and the output show anomalies in data samples in the initial data
logs. The structure of these input and output artificial neural networks (ANNs) may vary,
depending on the application cases. These may include the Recurrent Neural Networks
(RNN) [16], convolutional neural network (CNN) [17], and long/short term memory net-
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works (LSTM) [18], etc. Unsupervised feature learning auto-encoder systems showed
promising results in the recent literature, where Nayeeb et al. [19] developed a two-stage
auto-encoder-based features enrichment technique to detect COVID-19 from chest X-ray im-
ages, and Zhu et al. [20] proposed a novel method called Adaptive Aggregation-Distillation
AutoEncoder (AADAE) for unsupervised anomaly detection of sensor-based data in order
to solve industrial engineering tasks, while also broadening the whole AE applications
domain. Other researchers such as Yong et al. [21] optimized the adaptability of the AE
in sensor-based solutions by proposing novel explanation methods based on the mean
and epistemic uncertainty of log-likelihood estimates, and Haosen et al. [22] explored a
novel data-driven approach for long-term real-time and robust voltage stability assess-
ment based on variational autoencoder (VAE), solving the problem of increased uncertain
elements in power systems and the extensive deployment of online monitoring devices.
More interestingly, AE-based sensor systems and analytics methods are more frequently
being used, even in space exploration agendas. For example, Yan et al. [23] developed a
Memory-augmented skip-connected deep autoencoder (Mem-SkipAE) system, ensuring
the safety and stability of the space rocket, while safely implementing accurate anomaly
detection on key parts such as the liquid rocket engine (LRE), and Hong et al. [24], who,
focusing on the problem of the unlabeled ISAR image clustering of space targets, proposed
a new unsupervised clustering method based on an adversarial autoencoder (AAE) and
density peak-spectral clustering (Dpeak-SC).

Overall, the development of information and communication technologies (ICT) stim-
ulates the evolvement of new data-driven systems and embedded computing techniques
to obtain real operational time-constrained status data, informing users only of the re-
quired operational updates about the status of the containers and the cargo. With the
development of AI-enriched data-driven methods [25], real-time monitoring [26] and prog-
nostics techniques have made great progress. The rapid progress of machine learning (ML)
techniques [27] based on embedded technologies found many areas of applicability in
transport and logistics for detecting anomalies in technical and highly dynamical processes.
Among them, AE technology has achieved remarkable success recently due to a large
number of normal data samples in anomaly detection industrial applications [28], while the
number of abnormal samples is quite limited. Therefore, the adoption of the unsupervised
auto-encoder computing paradigm [29] can efficiently exploit the functionality of auto-
matic feature extraction from normal data samples remotely, identifying the sample size
accordingly to identify abnormal conditions for separate events, detecting their true causes.

This paper presents the application of auto-encoders for anomaly detection in real-time
sensor data. The innovation of this paper lies in the design and realization of an anomaly
detection system embedded in an IoT sensor. An anomaly detection method based on an
auto-encoder is developed and tested in a real operational environment. This research
intends to show the potential of these techniques in Edge computing systems, solving
complex engineering and monitoring tasks that are more conducive to systematic early
warnings to repair personnel of the ports, managers, and operators of the cranes, intended
to adopt reasonable ways to avoid further critical damage to the containers and the cargo.
The main contribution of this work is listed as follows:

To the best of our knowledge, this is the first time auto-encoders have been embedded
in IoT sensors for container dynamic condition monitoring for anomaly detection via
time-series analytics.

2. Materials and Methods
2.1. Detection Module

The proposed detection framework primarily consists of the prototype of the detection
module (see Figure 2) used in the experiments. To acquire the impact events data, a data
logging system was developed with a local storage unit and a Bluetooth wireless sensor
data transmission module. The system also includes components of other electronics, most
notably other sensors, intended to be used in further experimental studies of the research
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group. The detection system was tested in a laboratory environment, collecting acceleration
data and other key parameters with a scaled prototype of the quay crane. The system
was mounted on the experimental spreader with a load, with more details of the test-bed
already demonstrated in [30].
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Edge computing capability was established using the Raspberry Pi 4 electronics unit
to perform an inner analysis of the acquired data samples, performing pre-defined signal
filtering and prediction tasks. The end-node device system consisted of:

• A data transmission unit using Bluetooth;
• Raspberry Pi 4 (four ARM A72 1.5 GHz cores, 8 Gb of RAM) with a 128 Gb SD UHS-I

memory card;
• A SINDT-232 digital accelerometer with high-stability 200 Hz MPU6050 3-Axis accel-

eration, having 0.05-degree accuracy and an acceleration range of ±16 g;
• An inner 6000 mAh battery.

2.2. The Embedded Data Analytics Method and Its Experimental Setup

The key idea of the proposed Edge computing solution is to reduce the space of
considered sensors’ signal functions using an appropriate low-dimensional basis adopting
the auto-encoder technology [31]. At this point, model order reduction is state-of-the-art
in computational engineering and is a highly active field of research in other fields of
engineering, where non-linearity of the processes is observed. Hence, semi-supervised
machine learning techniques based on auto-encoders can capture non-linear relationships
and observe the processes by controlling operations. Container handling is not a linear
process to start with, therefore, to find the exact collisions of the container and the ship’s
interior structures (as an example), a semi-supervised machine learning technique based on
an autoencoder to detect an anomaly in the accelerator sensor data is proposed and tested
in a real-life application. A trained autoencoder was deployed on the Edge computing
embedded system running on Raspberry Pi 4, logic programmed through automatic code
generation from the MATLAB simulation environment (refer to Figure 3).

Recently, these techniques have proven to be very effective [28,32] because they can
be trained to detect anomalies with data representing normal operations with ordinary
technological processes. Data from failed operations are not needed and they are compu-
tationally practical and fast to be deployed on Edge computing devices and embedded
systems. Generally, in normal conditions, when “normal” data from container handling
processes are fed into the network (with known operational conditions and physically
detected abnormalities), the network can restore the input. The error between the input
and output is then small enough to be neglected. On the other hand, when abnormalities
occur in the process and data is corrupted without knowing the level and the place of the
corruption, with no time stamps and checkpoints, and such data containing anomalies is fed
into the network, the network fails to restore the input, and the error becomes substantial
and detectable if the network is well trained.

The research framework includes the detection module, the embedded logic used to
compute events, the level or virtual fidelity of the process in the generalized GUI interface,
as well as the IoT placement and detection scheme. As shown, we have developed a
detection system with a graphical representation of the results, which was acquired using
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the system and transferred from the IoT to the user via Bluetooth in a closed experimental
environment in Port. The detection was carried out along the X, Y and Z-axes (refer also to
Figure 4) during container handling by the Yard crane of the Limited Liability Stevedoring
Company “Klaipėdos Smeltė” container terminal.
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Autoencoders are based on neural networks and the network consists of two parts: an
encoder and a decoder. The encoder compresses the N-dimensional frame of the sensor data
input into a code called the Latent space. It contains most of the information carried in the
signal input, but with fewer data, though it is capable of capturing non-linear relationships
quite accurately. The basic structure of the AE is shown in Figure 1. It is composed of
the input layer, the hidden layers, and the output layer. The input layer is used to input
original signal data (features vector), defined as Xi. The hidden layer is used to perform
feature conversion concerning the input data, expressed as Hm. The output layer is used to
reconstruct the features that were transformed by the hidden layer, and it is expressed as
X̂i. The process of feature conversion from the input layer to the hidden layer is called the
encoder process and is generally presented as (1):

Hm = f (W1Xi + b1) (1)

Here: f (·)is the defined encoder activation function and W1 is the encoder weight
matrix defined for the time frame F1, while b1 is the bias vector for the weight matrix.

The process of feature reconstruction from the hidden layer to the output layer is
called the decoder process and is generally presented as (2):

X̂i = h(W2Hm + b2) (2)

Here, h(·) is the decoder activation function. Both, the encoder and decoder use
sigmoid in the activation functions that are in symmetry, and W2 is the decoder weight
matrix W1 = WT

1 , which is transposed, while b2 is the bias vector.
The decoder regenerates the input from the lower-dimensional code of the latent space

(see Figure 5), with its size defined as Hm.
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In general terms, the input layer is a matrix that becomes a low-dimensional matrix of
the latent space (the so-called code) through a transformation-E (Encoder) and D (Decoder),
resulting in the full restoration of the X̂. The essence of the AE method is to find the
E (and D) through ANN so that the matrices X and X̂ be as consistent as possible. In
ideal situations, when normal sensory data are fed into the auto-encoder, the auto-encoder
can regenerate the input, and the error between the input and output is thus quite small,
ranging between statistically neglectable errors. However, when sensory data containing
crucial and undetected anomalies is fed into the auto-encoder, it fails to regenerate the
input ideally, and the error increases with each new iteration.

Therefore, the objective function is to minimize the total reconstruction error for
each handling procedure—minimizing the loss estimation function L(·) by employing
root-mean-square error estimation criteria—expressed as (3):

Minimize LT
(
Xi, X̂i

)
=

1
N

N

∑
i=1

√(
Xi − X̂i

)2 (3)

here:

- the number of data frames for the measurement period T is set as N, being N ∈ Z;
- with the latent space code being E(X) , and the restored data frame being D(E(X));
- and i being the sensor data sample input to the AE.

The structure of the ANN in our case study included the exact number of hidden
neurons (representing the exact dimension of the latent space “code”):

- A total of 10 hidden neurons, representing the input (N-dimensional frame of sensor
data) with 10 weights.

- A total of 20 hidden neurons, representing the input (N-dimensional frame of sensor
data) with 20 weights.

- A total of 30 hidden nodes, representing the input (N-dimensional frame of sensor
data) with 30 weights.

The number of hidden neurons ranged between 10 and 30, with a step of 10. In our test
setup, we compared two different approaches, namely the auto-encoder (AE) and the IDM.
Additionally, the following pre-processing parameters of the IDM, based on [5], were used:

- High-pass filter frequency—3.8 Hz,
- Threshold—73%,
- Filter queue—200.

These parameters were chosen for the IDM, as they proved to be the most accurate
in detecting the impact events. Next, the device was placed on the side wall of the tested
container and handling operations were performed according to the work standards and
safety regulations (see Figure 6).
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operational environment of the repairs area and the test-bed container.

3. Results
3.1. Initial Results

Initial test samples, acquired during previous experiments, paved the way for the AE
improvement in a laboratory environment. Testing of the AE was performed as a computa-
tional experiment using the previous data sample, also used as a training background for
the embedded use case AE. As can be seen, the anomalies in the data samples, acquired via
IoT remotely, are not visible. No clear results can be observed, with clearly distinguished
sway of the container, obstructed with systematic noise (see Figure 7), which may be a
result of multiple physical impacts, environmental impacts, the noise of electronics, etc.
During a closer inspection, we observed that the regular pattern was broken at around 65th
and 600th ms.
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Initial results show that a chosen fit function can generate similar patterns of accel-
erated movement. In our example, Sub of sine with several terms equal to 4 showed the
exact sway pattern, with clearly visible peaks in the amplitude and noisiness that is clearly
out of shape. A similar fit function generated by the AE in the latent space in the validation
phase squeezes the signal frame into a latent representation function effectively, clearly
demonstrated in Figure 8 (middle section: time frames from 400th until 800th ms).
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Figure 8. AE validation phase—reconstruction of the anomalous signal.

The validation of the AE using 10 hidden neurons in the ANN structure proved
to effectively regenerate the signal, showing the potential time stamps of the anomalies.
Error estimation is in the ±0.1 range on average, yet starting from the 400th millisecond,
reconstruction of the signal tends to change drastically. Further results of the embedment
of the AE with the varying structure of the decoder and encoder are demonstrated in the
following sub-section.

3.2. Experimental Results Using the Proposed Method

The auto-encoder is trained on data without anomalies from handling operations
without any impacts, where sway is natural with no visible obstacles. As a result, we
learned that network weights minimize the reconstruction error for load signals without
faults. The statistics of the reconstruction error for the training data can be used to select the
right thresholds in the anomaly detection block that determines the detection performance
of the pre-selected auto-encoder. The detection block declares the presence of an anomaly
when it encounters a reconstruction error above the threshold.

The developed anomaly detection method proved to work in the actual container
handling conditions, detecting events effecting the dynamic stability of the container.

The proposed detection method was trained using data from a single handling proce-
dure (see Figure 9), representing the container movement procedure, identical to the actual
experiment. The best detection accuracy was achieved using 20 hidden neuron structures
of the AE, resulting in the minimal total average RMSE of 0.12, while the 10 hidden neuron
structures resulted in 0.33, and the 30 hidden neuron structures resulted in 0.59, during
the three different experimental handling procedures. It is worth mentioning that each
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procedure was performed accurately, with an almost identical period for each control and
maneuvering operation.
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The following figures demonstrate the actual impacts detected by the embedded IDM,
marked by crosses, and the AE method with the Encoder-Decoder structure with minimal
loss, marked by circles. As stated, the most accurate impact detections should be carried
out using the X-axis as the basis, due to the limited directions of container sway when the
handling procedures are performed by the spreaders of the yard or quay cranes, especially
in the inner sections of the ship while handling is carried out along the vertical cell guides.
Figure 9 demonstrates the prediction of impacts along the X and Y axes during the initial
extraction procedures of the container from the hull of the ship, detected by the system in
due time.

During the experiment, 9 impacts were predicted along the X-axis and 12 impacts
were detected along the Y-axis using the AE, while the IDM method detected 49 potential
impacts along the X-axis and 40 impacts along the Y-axis. It is visible that the embedded AE
detected the same anomalies as the IDM, yet eliminated the less plausible ones, according
to the RMSE of each data frame, set as 10 milliseconds. However, future research must
include other structures of the AE to justify the adaptability in real-life operations.

4. Discussion

In this paper, we have analyzed the real-life applicability of a trained auto-encoder to
detect acceleration data anomalies while examining separate frames of data in real-time.
The proposed system was tested as an Edge computing unit in real handling operations,
receiving experimental data about potential impacts on the vertical cell guides of the ship
while transporting empty containers of the same mass during each experiment. The AE
was compared to the IDM, which used pre-defined parameters calculated in the previous
study, and the following results were gained: the AE method detected fewer impacts than
IDM, yet IDM detected all the plausible ones and the ones also detected by the AE. The
real-life applicability of this system is efficient, but more experimental studies are required
with varying numbers of hidden layers, and several hidden neurons in the ANN structures
of the Encoder-Decoder. Future research must also consider changing the IDM parameters
to detect less critical impacts and keep the ones that matter most.

The detection of dangerous impacts to the containers is a serious computational task
for the Edge computing IoT devices, because:

• The measured signals are contaminated by noise components from several other nat-
urally occurring and unnatural processes extraneous to the natural motion of the
container [33], including the quay crane and spreader dynamics, as well as environ-
mental and electronic noise.
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• This vast disparity in time scales, as well as the issues with signal contamination, pose
serious signal processing and de-noising challenges for conventional methods [5],
operating in harsh working conditions.

Therefore, simplified, yet efficient solutions that include optimal algorithms should be
developed in further studies to efficiently monitor the container handling tasks and predict
dangers, while minimizing the computational strains on the Edge computing devices.
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