

INDOOR POSITIONING USING SYNCHRONIZED ULTRASONIC OFDMA

SIGNALS

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

Julian Bartolone

December 2021

ii

© 2021

Julian Bartolone

ALL RIGHTS RESERVED

iii

COMMITTEE MEMBERSHIP

TITLE: Indoor Ultrasonic Positioning Using Synchronized

Ultrasonic OFDMA Signals

AUTHOR:

Julian Bartolone

DATE SUBMITTED:

December 2021

COMMITTEE CHAIR:

Vladimir Prodanov, Ph.D.

Professor of Electrical Engineering

COMMITTEE MEMBER: Tina Smilkstein, Ph.D.

Professor of Electrical Engineering

COMMITTEE MEMBER:

John Oliver, Ph.D.

Professor of Computer Engineering

iv

ABSTRACT

Indoor Positioning Using Synchronized Ultrasonic OFDMA Signals

Julian Bartolone

This paper proposes a method of short-range indoor localization using differential phase measurements of

synchronized two-tone ultrasonic signals in an Orthogonal Frequency Multiple Access (OFDMA) scheme.

This indoor positioning system (IPS) operates at an ultrasonic frequency of approximately 40kHz and

synchronizes using an infrared signal. The OFDMA scheme allows for a receiver to process the signals

from multiple transmitters continuously without the signals interfering with each other. The phases of the

signals are measured using Goertzel Filters, allowing for low-complexity frequency content analysis. A

MATLAB simulation using the proposed localization method is performed using four transmitter nodes in

the corners of a 2.5m x 2.5m room and a receiver node within. The designs for the synchronizing

transmitter node and the receiver node are then implemented in hardware and tested at 22cm and 28cm.

The work described in this paper found that the proposed IPS functions correctly in simulation, and the

hardware implementation of the receiver and transmitter provides accurate distance measurements with

variance as low as 0.05cm. This variance is on the same order of magnitude as the wavelength of the

ultrasonic signals used. The hardware used in the implementation of this design is low-power, low-cost,

and easy to implement, but it carries with it design tradeoffs. The main difficulty introduced by the

hardware is the generation of imperfectly orthogonal signals due to a time-discretization error imposed by

the clock of the transmitter's general purpose microcontroller. This error is theoretically and experimentally

analyzed yielding closely matching values.

Keywords: Ultrasound, Infrared, Positioning System, OFDMA, Goertzel Filter

v

ACKNOWLEDGMENTS

I'd like to extend my sincere thanks to my advisor, Dr. Vladimir Prodanov, for his friendliness, wisdom,

and patience in guiding me and teaching me throughout my thesis and before that in the classroom. I'd also

like to thank Dr. Tina Smilkstein and Dr. John Oliver for their time and their participation in my thesis

committee. Thank you, as well, to the rest of the Cal Poly Electrical Engineering faculty. The wonderful

professors, lecturers, and administration provide their students with a high-quality education and foster a

supportive environment that encourages curiosity, diligence, and integrity.

Finally, to my parents, my sister, my grandmother, my family, and my friends: I can't thank you enough for

giving me the love and support needed to pursue my degree and life goals. I truly would not be where I am

today without you all. Thank you Anna, for being the best lab partner I've ever had. Thank you Tristan,

Kurt, Austin, Jason, and Nolan for being the best friends and roommates I could ever ask for. Thanks to all

of you, my time at Cal Poly was fulfilling, enriching, and fun.

vi

TABLE OF CONTENTS

 Page

LIST OF TABLES .. ix

LIST OF FIGURES .. x

CHAPTER

1. Introduction .. 1

 1.1 Motivation and Use Cases ... 1

 1.2 Project Scope .. 2

2. Background .. 3

 2.1 The Global Positioning System .. 3

2.2 Indoor Positioning Systems ... 5

2.3 Ultrasonic Signals ... 5

2.4 Multiple Access Schemes ... 6

 2.4.1 Orthogonal Frequency Division Multiple Access .. 7

2.5 Distance Measurement .. 8

2.6 Calculating Distance by Phase Measurement ... 8

 2.6.1 Single Tone Signaling .. 8

 2.6.1 Two-Tone Signaling .. 9

2.7 Receiver-Transmitter Time Synchronization .. 12

2.8 Goertzel Filter ... 13

2.9 Multilateration ... 16

2.8 Related Works .. 17

3. Simulation ... 18

 3.1 Position Measurement via Multilateration .. 19

3.2 Ideal Simulation .. 20

 3.2.1 Receiver-Transmitter Link Model.. 21

 3.2.2 τ = 0, Object Position = (0, 0) .. 23

vii

 3.2.3 τ = 0, Object Position = (

ଶ
 m,

ଶ
 m) ... 24

 3.2.4 τ = 5ms, Object Position = (0, 0) .. 26

 3.2.5 τ = Random, Object Position = (Random, Random) ... 28

3.3 System Simulation ... 30

 3.3.1 Receiver-Transmitter Link .. 31

 3.3.2 τ = 0, Object Position = (0, 0) .. 32

 3.3.3 τ = 0, Object Position = (

ଶ
 m,

ଶ
 m) ... 33

 3.3.4 τ = 5.19583ms, Object Position = (0, 0) .. 35

 3.3.5 τ = Random, Object Position = (Random, Random) ... 36

4. Implementation ... 38

4.1 Transmitter TXa .. 38

 4.1.1 Ultrasonic Channel ... 42

 4.1.2 Real Tone Frequencies .. 43

4.2 Receiver ... 45

 4.2.1 Verification of Design with AD2 and MATLAB .. 47

 4.2.2 Effect of Non-Orthogonality ... 53

 4.2.3 MSP432-Based Receiver .. 54

5. Conclusion... 58

5.1 COVID-19 and Remote Work ... 58

5.2 Reflection and Lessons Learned ... 58

5.3 Future Work .. 59

 5.3.1 Full IPS Implementation.. 59

 5.3.2 Better Tone Orthogonality... 59

 5.3.3 Stronger Signals .. 59

 5.3.4 Power Grid Synchronization ... 60

REFERENCES ... 61

APPENDICES 65

A. MATLAB Simulation Code .. 65

viii

B. Transmitter Code ... 88

C. Receiver Code .. 90

ix

LIST OF TABLES

Table Page

3.1 Ideal Simulation Parameters .. 21

3.2 Phase Shifts, φ, for Ideal Simulation in Units of Radians ... 22

3.3 System Simulation Parameters .. 30

3.4 Phase Shifts, φ, for Ideal Simulation in Units of Radians ... 31

4.1 Tone Frequencies .. 43

4.2 Tone Frequencies .. 43

4.3 IR Synchronization Frequency Error .. 44

4.4 Phase Shifts, φ, for AD2 Receiver Implementation in Units of Radians ... 49

4.5 Means (μ) and Variances (σ2) of 28cm and 22cm Experiments ... 52

4.6 Means (μ) and Variances (σ2) of 22cm Experiment with MSP432 Receiver ... 56

x

LIST OF FIGURES

Figure Page

2.1 The Global Positioning System Receiver-Transmitter Distance Measurement [3] .. 4

2.2 Trilateration Process [2] .. 4

2.3 Multiple Access Schemes [15] .. 7

2.4 Orthogonal Frequency Division Multiplexing [20] .. 7

2.5 Calculating Distance by Phase Shift; f1 = 40kHz, f2 = 40.1kHz, f12 = 100Hz .. 11

2.6 IR Synchronization Example ... 13

2.7 Fast Fourier Transform ... 14

2.8 Goertzel Filter .. 14

2.9 Block Diagram of Goertzel Filter .. 14

3.1 Proposed System in an Indoor Space.. 18

3.2 Multilateration Circles .. 19

3.3 Intersections of Adjacent Transmitters’ Multilateration Circles .. 20

3.4 Block Diagram of Ideal Simulation of TXa ... 21

3.5 Received Signals, τ = 0, Object Position = (0, 0) ... 23

3.6 Signal Phases, τ = 0, Object Position = (0, 0) ... 23

3.7 Position Measurement, τ = 0, Object Position = (0, 0).. 24

3.8 Received Signals, τ = 0, Object Position = (

ଶ
 m,

ଶ
 m) ... 25

3.9 Signal Phases, τ = 0, Object Position = (

ଶ
 m,

ଶ
 m) ... 25

3.10 Position Measurement, τ = 0, Object Position = (

ଶ
 m,

ଶ
 m) .. 26

3.11 Received Signals, τ = 5ms, Object Position = (0, 0) ... 27

3.12 Signal Phases, τ = 5ms, Object Position = (0, 0) ... 27

3.13 Position Measurement, τ = 5ms, Object Position = (0, 0) .. 28

3.14 Received Signals, τ = 8.212ms, Object Position = (0.5678m, 0.8540m) ... 29

3.15 Signal Phases, τ = 8.212ms, Object Position = (0.5678m, 0.8540m) ... 29

3.16 Position Measurement, τ = 8.212ms, Object Position = (0.5678m, 0.8540m) .. 30

xi

3.17 Block Diagram of System Simulation of TXa ... 31

3.18 Received Signals, τ = 0, Object Position = (0, 0) .. 32

3.19 Signal Phases, τ = 0, Object Position = (0, 0) .. 32

3.20 Position Measurement, τ = 0, Object Position = (0, 0) ... 33

3.21 Received Signals, τ = 0, Object Position = (

ଶ
 m,

ଶ
 m) ... 33

3.22 Signal Phases, τ = 0, Object Position = (

ଶ
 m,

ଶ
 m) ... 34

3.23 Position Measurement, τ = 0, Object Position = (

ଶ
 m,

ଶ
 m) .. 34

3.24 Received Signals, τ = 5.19583ms, Object Position = (0, 0) ... 35

3.25 Signal Phases, τ = 5.19583ms, Object Position = (0, 0) ... 35

3.26 Position Measurement, τ = 5.19583ms, Object Position = (0, 0) .. 36

3.27 Received Signals, τ = 4.89539ms, Object Position = (1.7963m, 1.2614m) .. 36

3.28 Signal Phases, τ = 4.89539ms, Object Position = (1.7963m, 1.2614m) .. 37

3.29 Position Measurement, τ = 4.89539ms, Object Position = (1.7963m, 1.2614m) 37

4.1 Photograph of Transmitter Node ... 38

4.2 Schematic of Transmitter Node ... 39

4.3 Square Waves of a1 and a2 as Created by the FPGA and Measured by the AD2; Square Wave a12 as

 Created by Addition of Measured Square Waves of a1 and a2 in MATLAB .. 40

4.4 Extended Square Wave a12 as Created by MATLAB .. 41

4.5 Zoom of Destructive Interference in Square Wave Version of a12.. 41

4.6 Test Setup for Obtaining Frequency Response of Ultrasonic Channel. ... 42

4.7 Frequency Response of Ultrasonic Channel [30] .. 42

4.8 Impedance of Ultrasonic Transmitter [30] ... 42

4.9 Photograph of Receiver Node. .. 45

4.10 Schematic of Receiver .. 46

4.11 Scope Capture of Generated IR Signal and Received IR Signal at the Output of The

 TLC3702CP Comparator ... 47

4.12 Schematic of Receiver Using AD2 and MATLAB ... 48

xii

4.13 Measured Distances With the Receiver Fixed at 28cm Away from the Transmitter Without φ Correction 49

4.14 Measured Distances With the Receiver Fixed at 28cm Away from the Transmitter With φ Correction 49

4.15 Scope Capture of Received Signals at 28cm Distance, Test 0 .. 49

4.16 Histogram of 28cm Experiment .. 50

4.17 Photograph of 28cm Experiment .. 50

4.18 Measured Distances With the Receiver Fixed at 22cm Away from the Transmitter With φ Correction 51

4.19 Scope Capture of Received Signals at 22cm Distance, Test 0 .. 51

4.20 Histogram of 22cm Experiment .. 51

4.21 Photograph of 22cm Experiment .. 52

4.22 Measured Distances Obtained by Moving the Receiver a Distance of 22cm to 32cm Away from the

 Transmitter With φ Correction .. 53

4.23 Measured Distances With the Receiver Fixed at 28cm Away from the Transmitter With φ Correction,

 Extended Capture Period ... 54

4.24 Schematic of Receiver Using MSP432P401R ... 55

4.25 Measured Distances With the Receiver Fixed at 22cm Away from the Transmitter Using MSP432 Receiver .. 56

4.26 Plot of Received Signals at 22cm Distance Using MSP432 Receiver, Test 0 .. 56

1 Introduction

Positioning systems are highly integrated into modern life [1] [2]. The purpose of a positioning system is

to let a user know the location of an object within a defined space without any physical attachment to the

object. The most common example is the Global Positioning System (GPS) which uses satellite trilateration

to measure an object’s positioning on the surface of the Earth [3]. GPS is excellent for use in navigation

systems in cars, planes, ships, smartphones, and many other outdoor, long-distance applications. However,

it falls short when considering indoor, short-range scenarios like in a building [4]. This calls forth the need

for an Indoor Positioning System (IPS) to allow for accurate object-tracking and navigation indoors. Imagine

how helpful it would be if a system could give its users precise directions to a gate in an airport, to a vendor

in a large convention center, or to a patient or doctor in a medical facility.

1.1 Motivation and Use Cases

The motivation for this IPS project is to provide a low-cost, low-complexity solution to indoor localization in

applications where GPS can’t provide accurate results. A system like this is useful in warehouses for tracking

automated robots, in hospitals for tracking patients and doctors, in airports and large buildings of high traffic

for indoor navigation, in consumers’ homes for Internet of Things (IoT) purposes, andmanymore applications

left up to the reader’s imagination [5].

Some ultrasonic-based IPSs are currently available to purchase, with most targeting businesses and hospitals

[6]. These include Cricket and Sonitor which use proprietary combinations of electromagnetic and ultrasonic

signals. The former is a 2004 project from MIT which uses signal chirps between fixed ultrasonic and elec-

tromagnetic receivers and a moving transmitter. The Cricket system leverages the propagation delay between

the ultrasonic and electromagnetic signals to calculate distance, as ultrasound travels much slower. It uses

the same trilateration concept as GPS to measure the position of the transmitter using the distances to four

receivers [7]. Sonitor, on the other hand, uses a building’s existing Wi-Fi infrastructure in conjunction with

custom 40kHz ultrasonic nodes to perform the task of indoor positioning [8]. However, both of these systems

are complicated and more expensive than the design proposed in this thesis.

1

1.2 Project Scope

The hardware implementation explored in this work models the link between the synchronization transmitter

node and the receiver node. The results of this link design are analyzed and extrapolated to model a hypo-

thetical full system with four transmitter nodes and a receiver node. The system can easily scaled to include

many receiver nodes to be localized. In future work, the same transmitter design can be repeated three times to

create the full system, where each transmitter produces orthogonal two-tone ultrasonic signals ideally spaced

at 100Hz, with design tradeoffs discussed in Section 4.

2

2 Background

This background section provides an introduction to the concepts used in the design. It starts with a more in-

depth description of positioning systems and then transitions into describing the specific techniques used for

this thesis, specifically the method for obtaining a distance measurement from a continuous ultrasonic signal.

The chosen techniques are compared with other common methods used in similar systems. The goal of this

section is to explain the math and derivations of the system.

2.1 The Global Positioning System

To begin the background information for this thesis, GPS is first explained to give a comparison against

Indoor Positioning Systems. GPS functions via a network of 24 Medium Earth Orbit (MEO) satellites that

continuously transmit their current time measured by highly accurate atomic clocks. Each measure of time is

encoded into sinusoidal electromagnetic radio-frequency (RF) waves using a Code Division Multiple Access

(CDMA) scheme, explained more in Section 2.4. The GPS receiver on the surface of the Earth collects these

signals from at least four satellites and measures the difference between its current time and the time encoded

in the received signals. Using this time difference, and since the satellites are in known locations along their

orbits, the distance between the receiver and each satellite is calculated using the speed of the RF signal

(approximately the speed of light, 2.99 ∗ 108 m
s) as in Eq. (2.1) [3].

dRF = vRF ∗ (tRX – tTX) (2.1)

Using the distances to the satellites, the receiver is able to compute its position by trilateration. Letting the

Earth’s surface be an ideal 2D plane, a receiver would need to process the signals from 3 satellites in order

to obtain the unique triplet of distances that correspond to its current position on Earth. Using 4 satellites,

multiple location measurements can be determined by trilateration and averaged to eliminate error associated

with the equipment [1].

3

Figure 2.1: The Global Positioning System Receiver-Transmitter Distance Measurement [3]

Trilateration works by creating a circle centered at each transmitter with radius equal the transmitter’s mea-

sured distance. The receiver’s position is then the intersection of these three circles. This concept is illustrated

in Fig. 2.1.

Figure 2.2: Trilateration Process [2]

With four transmitters, three trilateration measurements can be produced and averaged for a more accurate

result in the presence of inaccuracies due to random system noise and jitter as well as receiver clock frequency.

These concepts will be discussed in further detail in the following sections. In a typical GPS location measure-

ment, more than four satellites are visible from the receiver, and an even more accurate result can be produced

by averaging.

4

2.2 Indoor Positioning Systems

An Indoor Positioning System is a type of positioning system that, much like GPS, uses forms of traveling-

wave-based communication to sense and approximate the position of an object, but in smaller space such as

within a room. GPS fails indoors due to satellite signal attenuation by the construction materials of a building

[9]. Also, GPS has an approximate accuracy of 5 meters which could span an entire room, rendering an indoor

position measurement useless [3].

Some IPSs use digital wireless technology such as Wi-Fi or Bluetooth to measure Time of Arrival (ToA)

or received strength of a signal and calculate an object’s approximate location [10]. However, due to their

high frequency and fast propagation speed of roughly the speed of light (2.99 ∗ 108 m/s), these RF signals

can penetrate walls thus causing interference between two adjacent rooms with IPSs installed. They also

require more complex designs and more expensive materials [4] [11]. An alternative wireless communication

technique that solves these problems uses ultrasonic signals.

2.3 Ultrasonic Signals

Ultrasonic signals are acoustic waves with frequency higher than the audible frequency spectrum for humans.

Humans can typically hear from about 20Hz to 20kHz, so an ultrasound wave is defined as a sound wave

above this frequency range [12]. Since it is a physical sound wave, an ultrasonic signal does not pass clearly

through walls because its kinetic energy gets absorbed by any obstructing object. This means that an IPS

based on ultrasonic technology will not have inaccuracies due to interference from adjacent rooms [10]. To

determine the characteristics of an IPS based on ultrasonic technology, the velocities and wavelengths of

the acoustic signals are highly important. This thesis assumes an ultrasonic velocity of 343 m
s , but in reality

this value varies slightly due to the characteristics of medium of travel (in this case, air) [12]. The dominant

characteristic of air that can affect the speed of sound is temperature, with the relationship shown in Eq. (2.2)

where T is temperature in Celsius. [13]

vUS = 20.05 ∗
√
T+ 273.15 m/s (2.2)

And the wavelength of an ultrasonic (US) signal is given by:

5

λ =
vUS
fUS

(2.3)

The ultrasonic transducers used in this project are inexpensive, widely available, and simple to implement

[14]. They are designed to operate at 40kHz, so the wavelength in air becomes:

λ =
343 m

s
40 kHz

= 8.6 mm (2.4)

2.4 Multiple Access Schemes

An important feature of this proposed IPS is that the transmitters can emit their signals continuously and

simultaneouslywithout interferingwith one another. This concept, called signal orthogonality, is a requirement

for a positioning system with multiple transmitters. There are three main methods of attaining this signal

orthogonality.

As mentioned, GPS uses CDMA, a scheme in which each satellite has a unique code that it transmits along

with it’s atomic clock’s time. The receiver can then use these codes to discern which received signal came

from which satellite in order to perform position trilateration [3] [15]. CDMA effectively creates signals that

are orthogonal in power. This the approach used in [16].

The second method is Time Division Multiple Access (TDMA) in which each transmitter of a system has an

allotted time to send its signal, thus creating signals that are orthogonal in time. The receiver knows which

signal came from which transmitter by measuring according to the transmitters’ schedule. This approach is

used in Cricket [7] and in [17].

Lastly, received signals can also be distinguished in the frequency domain by leveraging a Frequency Division

Multiple Access scheme such as in [18], [10], and [4]. Fig. 2.3 illustrates these three methods. These related

works are discussed in more detail in Section 2.10.

6

Figure 2.3:Multiple Access Schemes [15]

2.4.1 Orthogonal Frequency Division Multiple Access

Orthogonal Frequency Division Multiple Access (OFDMA) is a variation of FDMA used in wireless commu-

nication to send parallel data streams over multiple sub-carriers (tones) that are orthogonal in frequency and

uniquely measurable [19]. Frequency orthogonality means that performing a Fast Fourier Transform (FFT) on

the received signal allows for distinction between the sub-carriers because their spectra don’t overlap, and thus

each channel can be read without interference from the other channels [4] [16]. Fig. 2.4 shows the spectra of

signals in an OFDMA system, where the peaks of one sub-carrier align with the nulls of all other sub-carriers.

Figure 2.4: Orthogonal Frequency Division Multiplexing [20]

This thesis uses an OFDMA setup because it lends well to the method of distance measurement explained in

the following section. It employs frequency orthogonality in two aspects: between the tones, or sub-carriers, of

the two-tone ultrasonic signals of each transmitter and between the two-tone ultrasonic signals of the separate

transmitters themselves. This allows for the distinction between the signals from each transmitter as well as

the distinction between the two tones each of the signals at the receiver. One condition of this orthogonality

is that the sub-carriers tones must be spaced evenly in frequency and evaluated in blocks that capture integer

7

numbers of periods of the tones. This concept is explained further in Section 2.6.

2.5 Distance Measurement

There are a number of techniques to determine an object’s position from the received ultrasonic OFDMA

signals [9] [10] [18]. One method is to measure the intensity of the received signals and make an estimatation

of distance based on its magnitude relative to the generated signal. This estimation is based on the ideal wave

magnitude’s inverse square proportionality to the distance it travels [4]. However, there are many factors that

affect the attenuation of the ultrasonic signal during generation, transmission, and reception. These factors

can be nonlinear and difficult to model, and thus distance measuring using received signal intensity is not ac-

curate enough for practical use. A more favorable method is to send two-tone, i.e. two-sub-carrier, orthogonal

ultrasonic signals through each transmitter and calculate distance with the received relative phase shifts of the

tones of the signals.

2.6 Calculating Distance by Phase Measurement

2.6.1 Single Tone Signaling

First, consider a system that uses a single-tone (sinusoidal) ultrasonic signal, a1. The equation for this gener-

ated signal is shown in Eq. (2.6), where A1 is the signal’s amplitude, f1 is the time frequency of the wave in

Hertz, and t is the time elapsed since the signal was first generated with zero phase.

a1(t) = A1sin(2πf1t) (2.5)

As the signal travels through its medium, air, it incurs a phase shift relative to the distance it has traveled.

Thus, the equation for the received signal is as follows, where d is the distance traveled in meters, λ1 is the

wavelength of the signal in meters, and ϕUS is a deterministic phase shift exerted on the signal by the filtering

characteristics of the ultrasonic transducers (discussed in Section 4.1.1).

a1(d, t) = A1sin(
2πd
λ1

+ 2πf1t+ ϕUS) (2.6)

8

By synchronizing the transmitter and receiver nodes in time using an electromagnetic signal traveling at the

speed of light such as infrared, a concept explained further in Section 2.7, the equation becomes:

a1(d) = A1sin(
2πd
λ1

+ ϕUS) (2.7)

This signal’s phase, Φ1, is solely a function of distance:

Φ1(d) =
2πd
λ1

+ ϕUS (2.8)

Φ1 can be measured via an FFT or alternative filter (explored in Section 2.8), thus producing a distance

measurement:

d1 =
(Φ1 – ϕUS)λ1

2π
(2.9)

However, the phase of a single tone will only be a value in the range [0, 2π]. For f1 = 40 kHz, the maximum

distance that can be measured with one tone without abmbiguity is (letting ϕUS = 0 because it does not affect

the maximum distance):

d1,max =
2πλ1
2π

= λ1 = 8.6 mm (2.10)

So, at distances beyond 8.6 mm, the phase of the 40kHz ultrasonic signal and, therefore, the perceived distance

resets to 0, thus creating ambiguity in the distance measurement. This range cannot support an IPS as it is not

nearly long enough to cover the dimensions of a room.

2.6.2 Two-Tone Signaling

Instead, consider a system using a two-tone ultrasonic signal, a12 consisting of sinusoids a1 and a2 where

upon generation (letting ϕUS = 0 for simplicity’s sake):

a1(t) = A1sin(2πf1t) (2.11)

9

a2(t) = A2sin(2πf2t) (2.12)

a12(t) = a1(t) + a2(t) (2.13)

Assuming the tones have equal amplitudes A1 = A2 = A, using the sum of sines trigonometric identity, the

two-tone signal becomes:

a12(t) = 2Asin(2π
f1 + f2

2
t)cos(2π

f1 – f2
2

t) (2.14)

This appears as a sideband-suppressed amplitude-modulated (AM) signal with carrier frequency fc = f1+f2
2

and envelope, or beat, frequency f12 = |f1–f2| [21]. The two tones are orthogonal on this beat period, meaning

they align to zero phase every beat period T12 = 1
f12 .

As shown in Section 4.1.1, the tone frequencies for transmitter TXa are 40kHz and 40.1kHz. Fig. 2.5 shows

these two tones and their phases as well as their two-tone signal and its phase. These plots are only a function

of distance, meaning time t is held constant and the waveforms are synchronized.

10

Figure 2.5: Calculating Distance by Phase Shift; f1 = 40kHz, f2 = 40.1kHz, f12 = 100Hz

The beat frequency, and thus the IR synchronization frequency, in this example is 100Hz. These two terms

are used interchangeably throughout this thesis. With this frequency, the maximum measurable distance for

each transmitter is calculated:

d12,max =
2πλ12
2π

= λ12 =
343 m

s
100 Hz

= 3.43 m (2.15)

This is shown in the plot of the Φ12, where the phase measurements start to repeat after 3.43 m.

Therefore, by mapping every value of Φ12 from 0 to 2π to a unique distance from 0 meters to λ12 = 3.43

meters, a distance measurement can be obtained from the phase shifts of the two-tone signal. This mapping

by a linear transform.

11

2.7 Receiver-Transmitter Time Synchronization

As mentioned previously, the receiver and transmitters must be synchronized in time in order to obtain a

simple relationship between the phase measurements of the two-tone signal and distance or the receiver. This

is because the two tones will experience phase shifting due to time delays, ϕτ,1 = 2πf1τ and ϕτ,2 = 2πf2τ

calculated according to Eq. (2.16):

ϕτ = 2πfτ (2.16)

Where τ is the time elapsed since the signals were first generated with 0 phase. These phase shifts are equal

to 0 when τ is an integer multiple of the beat period of the two-tone signal. This means that the receiver can

measure the phase of a signal with period equal to the beat period in order to measure the delay, τ. This signal

is the synchronization signal, and it must not incur any phase shift due to distance traveled. This is because it

must provide the receiver a measure of the phase shift of the two-tone signal before it travels in the air.

There are a number of techniques to attain this synchronization. One method is to plant anchor transmitters at

known locations within an IPS’s area. This eliminates the dependence of the phase shift on distance between

these anchors, thus allowing the receiver to calculate the received time delay [18] [9]. Another method, the

method used in this thesis, is to transmit the two-tone signal’s phase via an Infrared link between the receiver

and transmitter [22]. Assuming the travel time of the IR signal is negligible because it travels at nearly the

speed of light, the IR signal will not be phase shifted due to distance, and will thus produce a measure of τ.

τ =
ΦIR
2πfIR

(2.17)

Fig. 2.6 illustrates this concept. The top plots show the signals as received, meaning they are subject to phase

shifts from elapsed time and distance traveled. In this example, the elapsed time is set to 3ms and the distance

is set to 1m. The bottom plots show the result of subtracting the phase of the IR synchronization signal (shown

in red) from all of the signals, thus eliminating time shift τ from the system.

12

Figure 2.6: IR Synchronization Example

The phase shifts of the tones in the bottom plots of the figure are thus a function of only distance, and they

can be extracted and transformed to yield a distance measurement.

2.8 Goertzel Filter

So far, the method for obtaining a distance measurement given the received phases of the tones of a two-tone

ultrasonic signal and the received phase of an IR signal transmitting at the beat frequency of the ultrasonic

signal has been established. Now, a method for obtaining these phases from the received signals is required.

The most popular method of analyzing a periodic signal for its frequency content is by using an Fast Fourier

Transform implemented on a digital device [23]. The signal is sampled into a block of N samples using an

Analog-to-Digital Converter (ADC) with sampling rate fs. This block is then fed into the FFT to obtain the

magnitude and phase of the signal at N2 frequencies within a defined range.

13

Figure 2.7: Fast Fourier Transform

However, the design proposed in this thesis only requires the analysis of two frequencies per transmitter plus

one synchronization frequency for a total of nine frequencies for a 4-transmitter IPS. Therefore, using an

FFT to compute the phases of the signals is wasteful in terms of power and speed because many unimportant

frequencies are computed. This is especially relevant in a low-power, embedded environment such as the

proposed design.

Figure 2.8: Goertzel Filter

To circumvent the issues associated with using an FFT, the design attempted in this work instead uses a

Goertzel Filter [24], whose block diagram and transfer function can be seen in Fig. 2.9 and Eq. (2.18). The

filter takes the form of a second-order inifinte impulse response (IIR) filter.

Figure 2.9: Block Diagram of Goertzel Filter

H(z) =
1 – Wk

Nz
–1

1 – 2cos(2πk/N)z–1 + z–2
(2.18)

The Goertzel Filter is quite simple in practice. Like the FFT, is accepts a block of N samples obtained from

an ADC and iterates through each sample to compute the signal’s frequency content. Unlike an FFT, how-

14

ever, it requires that the user specify the frequency to be analyzed. Whereas an FFT wastefully computes
N
2 frequencies within its defined window [23], the Goertzel Filter only analyzes one target frequency. This

essentially makes it a bandpass filter, allowing only the specified frequency to pass through for magnitude

and phase analysis so long as the signals are properly orthogonal. With decreasing orthogonality, the Goertzel

Filter resembles a bandpass due to spectral leakage from other tone frequencies. This is explored further in

Section 3.

In order to maintain orthogonality between the two tones, as mentioned in Section 2.4.1, the block size, N,

must capture an integer multiple of the period of the target signal [24]. Eq. (2.19) shows the formula used to

calculate N that satisfies this requirement, where α is an integer representing the number of periods captured.

N = int(α ∗ fs
ftarget

), α = 1, 2, 3, ... (2.19)

For example, to capture 3 full beat periods of a two-tone signal spaced at 100Hz with a sampling rate of fs =

1MHz, N must be:

N = int(3 ∗ 1MHz
100Hz

) = 30000 samples (2.20)

For comparison, an FFT performed on this sample set would yield N
2 = 15000 frequency measures, 14991

more than needed. Implementing nine separate Goertzel Filters tuned to the required frequencies eliminates

this waste.

It is N that specifies the target frequency for the Goertzel Filter. After N is determined, two more constants

are calculated:

k = int(0.5 +
N ∗ Target Frequency

fs
) (2.21)

ω =
2πk
N

(2.22)

Then, the filter iterates through each sample in the block of N samples to perform the following computations.

Here, a[n] represents the value of the current sample (n : 1 → N), and the running parameters Q0, Q1, and

15

Q2 are used to store values as the block is parsed. These running parameters have an initial value of 0.

Q0 = 2cos(ω) ∗ Q1 – Q2 + a[n] (2.23)

Q2 = Q1 (2.24)

Q1 = Q0 (2.25)

When the whole block has been parsed (n = N), the frequency components are determined with the following

formulas.

Real = Q1 – Q2 ∗ cos(ω) (2.26)

Imaginary = Q2 ∗ sin(ω) (2.27)

Magnitude =
√
Real2 + Imag2 (2.28)

Phase = tan–1(
Imag
Rreal

) (2.29)

After obtaining the phases of the two tones in the synchronized two-tone ultrasonic signal, the distance be-

tween the transmitter and receiver is determined via the aforementioned linear transform in Section 2.6.2.

2.9 Multilateration

Thus far, the process for obtaining the distance measurement between one transmitter and the receiver has

been established. Applying the same procedure to the remaining three transmitters yields their distances to

16

the receiver as well, where the tone frequencies are shown in Table 4.1. Using these four distances, the position

of the object is calculated via multilateration. This is similar to the trilateration process used by GPS described

in Section 2.1. The exact method is discussed further in Section 3.1.

2.10 Related Works

This section briefly describes some related works in order to form a basis for comparison of the proposed

system’s performance.

The approach used in [4] is similar to this design, as it uses the differential phase shift of ultrasonic OFDMA

signals to measure the distance between a transmitter and receiver. Its method of obtaining this distance

measurement is by creating a fourth-order bandpass model of the ultrasonic channel formed by the same

transducers and extracting its phase characteristics. Then, assuming the system is already time-synchronized,

the channel model is used to map the received differential phases of a multitone signal into unique distance

measurements. This related work provides a simulation of its design achieving a standard deviation in its

distance measurements of about 5mm, which is on the same order of magnitude of the accuracy achieved in

this work’s simulations. However, a hardware implementation was outside of the scope of [4], so therefore it

cannot provide a comparison for the hardware built in this thesis.

The IPS designed in [16] is also comparable, but it uses audible sound frequency ranges and a CDMA scheme,

rather than ultrasonic frequencies and OFDMA. It was able to both simulate the IPS design and implement it

in hardware. Much like the work done in this thesis, [16] attempts a fully embedded receiver but forfeits it for

a more robust laptop computer during testing. With this, it was able to achieve an accuracy of 1mm to 10cm,

depending on the receiver’s position within the room. This is directly comparable to the lowest variance of

0.05cm found in the hardware implementation of this thesis. The drawbacks of this related work, however,

are that by using audible sound frequencies, humans can hear the positioning signals and the transducers are

much larger than those used in this thesis.

17

3 Simulation

Before the hardware of the IPS is explored, the system is first modeled in software using MATLAB. This

simulation section explores both ideal and and real-world scenarios, which will be explained in further detail

in a later section. The simulations performed yielded errors in the position measurement ranging from approx-

imately 0.1mm to 1mm in the ideal case and approximately 1cm to 5cm. The MATLAB code used to produce

these simulations can be found in the Appendix.

Figure 3.1: Proposed System in an Indoor Space

The setup in Fig. 3.1 depicts the full system, with four transmitter nodes placed in the corners of a room and an

object with a receiver node placed in the middle of the room. Each transmitter node consists of an ultrasonic

transmitter, with one of the nodes (TXa) containing an IR transmitter as well. The receiver node contains

one ultrasonic receiver and one IR receiver. Due to the OFDM scheme, the receiver can accept the two-tone

ultrasonic signals from all four transmitters while still maintaining the ability to distinguish between them.

The dimensions of the room are chosen to be W = 2.42 m by L = 2.42 m. This length and width mean the

diagonal of the room is:

Diagonal =
√
W2 + L2 =

√
(2)(2.422) ≃ 3.42m (3.1)

This ensures that each transmitter can provide accurate distance measurements throughout the entire room,

given the maximum distance of one transmitter (3.43m) calculated in Eq. (2.15).

18

3.1 Position Measurement via Multilateration

The technique for obtaining the measured position of the receiver given the measured distances to each trans-

mitter is similar to the trilateration method used by GPS discussed in Section 2.1.

First, circles centered at each transmitter are drawn with radii equal to the measured distance from the receiver

to each transmitter. Zooming out of the room setup in Fig. 3.1, reveals these circles.

Figure 3.2:Multilateration Circles

The dimensions of the room are chosen such that the maximummeasurable radius of each transmitter is greater

than or equal to the diagonal of the room. This ensures that adjacent transmitters only intersect at one single

point within the room. For example, transmitters TXa (blue circle) and TXb (green circle), intersect once

outside of the room at about (1.3m, -0.8m) and once inside the room at the correct receiver position. The story

is the same for transmitters TXb and TXc, TXc and TXd, and TXd and TXa.

Therefore, by measuring the four intersections of adjacent transmitters, four unique position measurements

are obtained.

19

Figure 3.3: Intersections of Adjacent Transmitters’ Multilateration Circles

These four position measurements are then averaged to produce one measurement. This averaging helps to

eliminate error associated with the ultrasonic channel, the medium of travel, and random noise and jitter

injected into the system.

This method is advantageous because it is easy to implement and relatively efficient in terms of computation

time and power. The circles of adjacent transmitters intersect at two points, as seen in Fig. 2.1. To produce

one unique position measurement, the intersection of all three transmitters must be calculated. This requires

that the distance between each point in each circle be calculated. For K data points in the equation of a circle,

this would be K3 calculations. For the multilateration technique used in this thesis, 4 ∗ K2 calculations are

made to find the four intersections. Also, this multilaterationmethod provides error-reduction unlike the single

measurement produced by trilateration.

3.2 Ideal Simulation

First, the system is simulated as described in Section 2. The following table gives the characteristics of this

simulation.

20

Table 3.1: Ideal Simulation Parameters

fs N fIR λ12 Tone Frequencies Beat Frequency

1MHz 30000 100Hz 3.43m

a1: 40kHz
a2: 40.1kHz
b1: 39.8kHz
b2: 39.9kHz
c1: 39.6kHz
c2: 39.7kHz
d1: 39.4kHz
d2: 39.5kHz

TXa: 100Hz
TXb: 100Hz
TXc: 100Hz
TXd: 100Hz

3.2.1 Receiver-Transmitter Link Model

To begin the IPS simulation, the link between the receiver and the transmitter must be established. Fig. 3.4

shows a block diagram of this link for transmitter TXa.

Figure 3.4: Block Diagram of Ideal Simulation of TXa

At the transmitter side, the two sinusoidal ultrasonic tones and IR synchronization square wave signal must

be synthesized using a high sampling rate fs = 1MHz and block size N = 30000 samples. This ensures that

the system captures 3 full beat periods, T12 = 10ms, of the two-tone signal. Then, all three signals undergo

the same time delay, τ, which models the arbitrary start time of the waveform capture. The ultrasonic tones a1

and a2 undergo another delay that models the distance the waves have traveled. These two delays, distance

and time, form the argument of the sine function in Eq. (2.6) without the phase shift, ϕUS, imposed by the

ultrasonic channel, meaning that they model the phases of the ideal tones. The synchronization signal does

not have a delay associated with distance traveled because the signal transmission of infrared light is assumed

to be instantaneous due to its high velocity (the speed of light). Next the two-tone signal a12 is produced by

summing the two tones, thus completing the model of the transmitter.

The two-tone signal is processed by two Goertzel Filters tuned to the individual tone frequencies in order

to measure the phases of the tones. The synchronization signal is processed by a third Goertzel Filter tuned

21

to the synchronization frequency. All three phases undergo a correction by constant ϕ + π
2 radians, which

models the error associated with sampling a continuous signal. The π2 reflects the fact that the Goertzel Filter

calculates phase as if the input is a cosine wave, but the signals are sythesized as sine waves. In Section 3.3,

these errors are caused by sampling and by real-world error such as ϕUS, noise, and jitter. These constants are

found experimentally by placing the receiver at known a distance, d, with known time shift, τ, and correcting

the Goertzel Filters’ output phases to match the expected phases for the known position. Using this method,

the ϕ phase shifts are found:

Table 3.2: Phase Shifts, ϕ, for Ideal Simulation in Units of Radians

ϕa,IR ϕa,1 ϕa,2 ϕb,1 ϕb,2 ϕc,1 ϕc,2 ϕd,1 ϕd,2
3.1416*10–4 0.252 0.252 0.2507 0.2507 0.2494 0.2494 0.2482 0.2482

Note that ϕ is equal for tones that belong to the same transmitter. This means that these ϕ values don’t have

an effect on the actual distance measurement because the values cancel out upon measuring the relative phase

shifts of the two tones. These ϕ values only adjust the phases such that they display correctly in the simulation

plots.

The phase output of the IR signal is used to calculate the perceived time delay of the sample set according

to Eq. (2.17). This time delay is a measure of how much time has elapsed since the last zero-crossing of the

ultrasonic signal, and it will always be less than or equal to 10ms (the beat period).

Using this measured time delay, the phases of the ultrasonic tones are synchronized in time by subtracting out

the phase shift due to the time delay. These time phase shifts, ϕτ,1 and ϕτ,2, are calculated using Eq. (2.16)

and then undergo a modulo by 2π block ensuring that they range from 0 to 2π. The modulo function returns

the remainder after the division of the input by the specified divisor, in this case 2π. The resulting corrected

phases, Φ′
1 and Φ′

2, are subtracted to yield the combined phase Φ12’, which is purely a function of distance,

d.

Finally, the phase Φ12’ is transformed to a distance measurement via a linear transform which maps each

phase measurement ranging from 0 to 2π radians into a unique distance measurement from 0 meters to the

beat wavelength of the two-tone signal, in this case 3.43 meters.

This receiver-transmitter link design is repeated three times to create all four transmitters, TXa, TXb, TXc,

and TXd, according to Table 3.1.

22

3.2.2 τ = 0, Object Position = (0, 0)

The first simulation explored is with both τ and the object position set to 0. The object position input is

translated into the input, d, in the simulation block diagram via calculating the distance between the object’s

coordinates and each respective transmitter.

Figure 3.5: Received Signals, τ = 0, Object Position = (0, 0)

Figure 3.6: Signal Phases, τ = 0, Object Position = (0, 0)

From Fig. 3.5 and Fig. 3.6, there is no phase shift in the IR signal, because τ is set to 0 and the IR signal is

unaffected by distance. Also, observing the plot of the two-tone signal of TXa, there is no phase shift because

its distance to the receiver is 0. Note also from Fig. 3.6 that the measured and synchronized phases of the

tones are identical because of the lack of time shift.

23

Figure 3.7: Position Measurement, τ = 0, Object Position = (0, 0)

The actual and measured position of the receiver is then displayed within the room using the multilateration

method. The TXa and TXc circles are not visible because they are just outside the bounds of the plot.

3.2.3 τ = 0, Object Position = (W2 m,
L
2m)

Next, a simulation with the receiver in the center of the room is performed.

24

Figure 3.8: Received Signals, τ = 0, Object Position = (W2 m,
L
2m)

Figure 3.9: Signal Phases, τ = 0, Object Position = (W2 m,
L
2m)

The phase of the IR synchronization signal stays at 0 because τ remains at 0. However, the two-tone ultrasonic

signals from all of the transmitters have a relative phase shift of π radians, as they are measuring half of their

maximum distances.

25

Figure 3.10: Position Measurement, τ = 0, Object Position = (W2 m,
L
2m)

This is shown in the preceding plot, where the receiver is exactly in the middle of the room.

3.2.4 τ = 5ms, Object Position = (0, 0)

After two tests of distance phase shifts, a time phase shift test is performed by setting τ = 5ms, or half of the

beat period.

26

Figure 3.11: Received Signals, τ = 5ms, Object Position = (0, 0)

Figure 3.12: Signal Phases, τ = 5ms, Object Position = (0, 0)

Now, the figures show an observed phase shift of π radians for the IR signal because the time delay is half of

its period. The two-tone signals also exhibit a phase shift of π radians since their beat period is equal to the

IR signal’s period.

27

Figure 3.13: Position Measurement, τ = 5ms, Object Position = (0, 0)

However, there is no change in the object’s measured position between this simulation and the simulation in

Section 3.2.2, suggesting the system’s time synchronization is functioning properly.

3.2.5 τ = Random, Object Position = (Random, Random)

Finally, a simulation is performedwith randomvalues of τ and the object’s position. τ is a uniformly distributed

variable on the interval [0:10ms] and W and L are independent uniformly distributed random variables on the

interval [0:2.4183m]. These variables are τ = 8.212ms and Object Position = (0.5678m, 0.8540m).

28

Figure 3.14: Received Signals, τ = 8.212ms, Object Position = (0.5678m, 0.8540m)

Figure 3.15: Signal Phases, τ = 8.212ms, Object Position = (0.5678m, 0.8540m)

29

Figure 3.16: Position Measurement, τ = 8.212ms, Object Position = (0.5678m, 0.8540m)

3.3 System Simulation

Now that the ideal system has been proven in simulation, the real-world system simulation is performed using

the parameters of the hardware in Section 4. The sampling rate for the ADC onboard the MSP432P401R

microctroller was found to be approximately 101.1kHz, slightly above the Nyquist sampling rate of 80kHz

for a 40kHz-based system [25]. The tones were found to be not perfectly orthogonal, as seen by the non-

constant tone spacing in Table 3.3. The reason for this imperfect orthogonality is related to the hardware

and is discussed further in Section 4.2.2. Both of these non-idealities manifest themselves as deterministic

error which is corrected for in the simulation using ϕ. However, as discussed in Section 4, the issue of non-

orthogonality is more pronounced in the hardware implementation.

The same four test setups are used: 0 time, 0 position; 0 time, middle position; half-beat period, 0 position;

random time, random position.

Table 3.3: System Simulation Parameters

fs N fIR λ12 Tone Frequencies Beat Frequency

101.1kHz 3152 96.231Hz 3.5643m

a1: 40kHz
a2: 40.09623kHz
b1: 39.8089kHz
b2: 39.9042kHz
c1: 39.5883kHz
c2: 39.6833kHz
d1: 39.4011kHz
d2: 39.4945kHz

TXa: 96.231Hz
TXb: 95.313Hz
TXc: 94.258Hz
TXd: 93.366Hz

30

Because the beat wavelength, λ12, has changed compared to the ideal simulation, the room size must change

too. The new beat wavelength is 3.5643m calculated using Eq. (2.3), so the new (W,L) becomes (2.5133,

2.5133) where:

Diagonal =
√
W2 + L2 =

√
(2)(2.51332) = 3.5543m (3.2)

Using the same method as in Section 3.2, the new ϕ values are found:

Table 3.4: Phase Shifts, ϕ, for Ideal Simulation in Units of Radians

ϕa,IR ϕa,1 ϕa,2 ϕb,1 ϕb,2 ϕc,1 ϕc,2 ϕd,1 ϕd,2
1.4946*10–2 0.9838 0.9858 0.8553 0.9579 0.4859 0.7067 0.0046 0.3021

3.3.1 Receiver-Transmitter Link

Figure 3.17: Block Diagram of System Simulation of TXa

The block diagram of the system simulation of TXa is shown in Fig. 3.17. The only difference between it and

the ideal simulation’s block diagram are the parameters in Table 3.3 and Table 3.4.

31

3.3.2 τ = 0, Object Position = (0, 0)

Figure 3.18: Received Signals, τ = 0, Object Position = (0, 0)

Figure 3.19: Signal Phases, τ = 0, Object Position = (0, 0)

32

Figure 3.20: Position Measurement, τ = 0, Object Position = (0, 0)

3.3.3 τ = 0, Object Position = (W2 m,
L
2m)

Figure 3.21: Received Signals, τ = 0, Object Position = (W2 m,
L
2m)

33

Figure 3.22: Signal Phases, τ = 0, Object Position = (W2 m,
L
2m)

Figure 3.23: Position Measurement, τ = 0, Object Position = (W2 m,
L
2m)

34

3.3.4 τ = 5.19583ms, Object Position = (0, 0)

Figure 3.24: Received Signals, τ = 5.19583ms, Object Position = (0, 0)

Figure 3.25: Signal Phases, τ = 5.19583ms, Object Position = (0, 0)

35

Figure 3.26: Position Measurement, τ = 5.19583ms, Object Position = (0, 0)

3.3.5 τ = Random, Object Position = (Random, Random)

Figure 3.27: Received Signals, τ = 4.89539ms, Object Position = (1.7963m, 1.2614m)

36

Figure 3.28: Signal Phases, τ = 4.89539ms, Object Position = (1.7963m, 1.2614m)

Figure 3.29: Position Measurement, τ = 4.89539ms, Object Position = (1.7963m, 1.2614m)

The preceding four simulations show that the real-world systemmodeled byMATLAByields favorable results,

where the error is only slightly higher in magnitude than that of the ideal simulation. This proves true for small

block size, N, but the error grows larger in magnitude as N increases because the signal phases begin to drift

apart. This phenomenon is explained further in the next section.

37

4 Implementation

As mentioned in Section 1.2, the hardware implementation of this design explored in this section consists

of the link between one transmitter with IR synchronization, TXa, and the receiver. The concepts here can

easily be repeated three times to create the full IPS, but such an attempt is beyond the scope of this thesis. The

Verilog code used to program the transmitter and the C code used to program the receiver can be found in the

Appendix.

4.1 Transmitter TXa

Figure 4.1: Photograph of Transmitter Node

The first subsystem explained is the transmitter node, TXa, with real tone frequencies of 40kHz and 40.09623kHz

and IR synchronization frequency of 96.231Hz. The 40T12B-R ultrasonic transmitter [14] and EK8443 IR

diode [27] are chosen because they are inexpensive and widely available. All signals are generated by an Arty

S7 FPGA development board [26] powered and programmed by a laptop computer.

38

Figure 4.2: Schematic of Transmitter Node

The block diagram of the transmitter node is shown in Fig. 4.2. The L17, L18, and M14 pins of the FPGA

belong to the PMOD header JA on the Arty S7 board. The waveforms a1 and a2 are output through L17 and

L18. Note that at this stage in the design, a1 and a2 are square waves with fundamental frequencies equal to

the desired tone frequencies. These desired tone frequencies are then extracted by the bandpass characteristics

of the ultrasonic channel, leaving only the fundamental tone at the receiver side. This effect is discussed in

Section 4.1.1.

The square waves are fed into the two inputs of the TC4428A 1.5ADual High-Speed PowerMOSFETDrivers

[28] whose outputs are connected across the terminals of the ultrasonic receiver. The Arty S7 board pro-

duces the +5V supply voltage to the TC4428A. This setup creates the high-power, square wave version of the

two-tone signal a12 at the input of the ultrasonic receiver, which gets converted into the sum of the desired

sinusoidal tones by the ultrasonic channel.

39

Figure 4.3: Square Waves of a1 and a2 as Created by the FPGA and Measured by the AD2;
Square Wave a12 as Created by Addition of Measured Square Waves of a1 and a2 in MATLAB

Fig. 4.3 and Fig. 4.4 show these signals at the output of the FPGA. An Analog Discovery 2 (AD2) USB

Oscilloscope [29] is used to capture the two waveforms, and then the data is exported to MATLAB in Comma

Separated Value (CSV) files for plotting. The right plot shows the result of adding the measured square waves

of a1 and a2 in MATLAB, creating the square wave version of a12. During the time period of this capture,

the square waves are in alignment, or nearly zero phase, and are constructively interfering. However, just as

in the plots of the two-tone signals in the simulations in Section 3, these square waves destructively interfere

once every beat period, creating the nulls seen in Fig. 4.4 (circled in red).

This summed square wave represents the signal that the ultrasonic transducer sees. By Kirchoff’s Voltage Law

(KVL), the voltage across the terminals of the transducer will be the difference of the outputs of the TC4482A

IC. Since a1 is inverted in the TC4482A and the ultrasonic transmitter is bidirectional, the voltage seen by

the transducer is |a1 + a2|. This, in conjunction with the bandpass channel that selects only the fundamental

frequencies of the square waves, is highly favorable as it provides an easy method of transmitting a strong,

sinusoidal two-tone signal using an inexpensive, nonlinear, and low-power amplifier with a simple switching

input.

Extending the time axis on the plot of the square wave a12 in Fig. 4.3 reveals its beat period of about 1
96.231Hz

= 10.039ms in Fig. 4.4. Since this plot was created by adding the two measured square waves in MATLAB

and not measured at the terminals of the ultrasonic transmitter, the display peak-to-peak voltage is the sum

of the logic high voltages of a1 and a2, 3.3VPP + 3.3VPP = 6.6VPP. However, since the TC4428A uses a 5V

supply, effectively converting the logic high voltage to 5V, the peak-to-peak voltage that the transducer will

see is 10VPP. This is well within the operating range of the device as defined by its datasheet (<30VPP).

40

Figure 4.4: Extended Square Wave a12 as Created by MATLAB

Fig. 4.5 shows the null zone of the signal encircled in red in the Fig. 4.4. This is the destructive interference

that creates the beat period of the ultrasonic signal.

Figure 4.5: Zoom of Destructive Interference in Square Wave Version of a12

Pin M14 of the FPGA drives the IR synchronization signal via a square wave with 50% duty cycle and fre-

quency equal to the beat frequency of the two-tone ultrasonic signal. As calculated in Eq. (4.3), this frequency

is fIR = 96.231Hz.

From the IR LED’s data sheet, the forward voltage of the diode and its maximum current rating are approx-

imately 1.2V and 30mA, respectively. Using the standard 3.3V logic level output of the FPGA PMOD pins,

the maximum current through the photodiode is 21mA per the following:

Imax =
(3.3V – 1.2V)

100Ω
= 21mA (4.1)

41

4.1.1 Ultrasonic Channel

In this section, the characteristics of the ultrasonic transducers are analyzed to select the best tone frequen-

cies. The transducers chosen are the 40T/R12B-R for their affordable price and wide availability. The data is

gathered from work performed in a previous class, EE 449 Electronic Design Laboratory, in which the same

transducers were used. [30] [31]

Figure 4.6: Test Setup for Obtaining Frequency Response of Ultrasonic Channel

The following figures show the impedance of the transmitter and the frequency response of the channel ac-

counting for both the ultrasonic transmitter and receiver. These measurements is obtained by sweeping input

frequencies at the transmitter and measuring the response of the receiver using a paper tube to isolate the

transducers, shown in Fig. 4.6.

Figure 4.7: Frequency Response of
Ultrasonic Channel [30]

Figure 4.8: Impedance of Ultrasonic
Transmitter [30]

The channel is bandpass in nature with a bandwidth of about 700Hz and 3dB points at 39.4kHz and 40.1kHz.

This works favorably, as it smooths the combined square wave input to the transmitter into a two-tone sinu-

soidal signal at the receiver by eliminating the harmonics of the square waves, leaving only sinusoids at the

fundamental frequencies.

The magnitude of the impedance of the transmitter is lowest at about 40kHz, suggesting the highest transfer of

42

electrical energy to acoustic energy occurs at that frequency. The plot also displays the phase of the ultrasonic

transmitter’s impedance. This phase shift is one of the contributors to ϕUS, as discussed in Section 2.6.1, along

with phase shifts associated with propagation through the medium of travel (air).

Table 4.1: Tone Frequencies

Transmitter f1 f2 fIR
TXa 40kHz 40.1kHz 100Hz
TXb 39.8kHz 39.9kHz -
TXc 39.6kHz 39.7kHz -
TXd 39.4kHz 39.5kHz -

Given the ultrasonic channel’s characteristics and the desired beat frequency of 100Hz as stated in Section 2,

the most ideal selection of tone frequencies is shown in Table 3.1.

4.1.2 Real Tone Frequencies

The tone frequencies presented in Table 4.1 are ideal and perfectly spaced at 100Hz. However, late in the

implementation of TXa, this thesis found that these exact tone frequencies could not be achieved with the Arty

S7 board [26]. This is due to the limitation imposed by the board’s clock frequency on its ability to generate

square waves. The signals are generated by counting clock cycles up to defined constants and changing the

state of an output when its respective counter is full. For the maximum allowable onboard clock frequency of

100MHz, the equation to calculate the generated 50% duty cycle square wave’s frequency is:

ftone = 0.5 ∗ fCLK
Counter

(4.2)

And, rounded for viewing’s sake, the tones become:

Table 4.2: Tone Frequencies

Transmitter Counter 1 f1 Counter 2 f2 f12
TXa 1250 40kHz 1247 40.0962kHz 96.231Hz
TXb 1256 39.8089kHz 1253 39.9042kHz 95.313Hz
TXc 1263 39.5883kHz 1260 39.6833kHz 94.258Hz
TXd 1269 39.4011kHz 1266 39.4945kHz 93.366Hz

The IR synchronization signal is victim to the same time-discretization error imposed by the device’s clock.

Since TXa is built in hardware, its beat frequency is used as the IR synchronization frequency. The counter

43

value found to produce a square wave with frequency closest to the beat period of TXa is 519,583.

fIR = 0.5 ∗ 100MHz
519, 583

= 96.231Hz (4.3)

Table 4.3 shows the error in IR synchronization frequency for each transmitter. The error is very small, but

not 0, for TXa because the synchronization frequency is determined by TXa. It is much larger for all other

transmitters.

Table 4.3: IR Synchronization Frequency Error

TXa TXb TXb TXb

6.1736 ∗ 10–5 Hz 0.9184Hz 1.9732Hz 2.8635Hz
6.4154*10–5 % 0.95% 2.05% 2.98%

44

4.2 Receiver

Figure 4.9: Photograph of Receiver Node

The receiver node contains a 40R12B-R ultrasonic receiver [14] and EK8443 phototransistor [27], the comple-

mentary receivers to the inexpensive and readily available transmitters. After some conditioning, the ultrasonic

signal from the transmitter is sampled using an ADC and processed using a computer, and the IR signal is

captured by checking the input on a digital pin for logic high or logic low. Two different ADC and computer

setups are tested. The first setup uses the ADC of the Analog Discovery 2 to sample the signal then uses

MATLAB to process the exported data. The second consists solely of the MSP432P401R (MSP432) micro-

controller [33] with onboard ADC, in use for both sampling and processing. The latter setup is the ultimate

goal of the system, since it allows for a fully embedded receiver rather than one that requires a laptop for

signal processing.

45

Figure 4.10: Schematic of Receiver

Fig. 4.10 shows the general receiver schematic. The ultrasonic receiver operates at half-supply via the capacitor-

bypassed, resistive divider in the bottom right of the image. Without this DC biasing, the received ultrasonic

waveform would have an DC value of 0V, meaning half of the waveform would be negative valued. With a

reference voltage of 0V, the MSP432’s ADC requires an operating range of 0-3.3V [33]. Therefore, using Vdd

= 3.3V sourced from the MPS432, the transducer must be biased at approximately 1.65V. Using Vdd = 5V

sourced from the AD2, the transducer is biased at roughly 2.5V. The output of the transducer is then sampled

and processed by the ADC and processor.

The IR receiver device is a phototransistor, meaning that light incident on the device induces a small current

at its base, allowing current proportional to this base current to flow from the collector through the emitter.

Thus, a 1kΩ pull-up resistor tied to the supply voltage of the microctrontroller board (MSP432 or AD2) is

used to induce a voltage at the collector node of the device. This technique inverts the input IR signal, since

the phototransistor pulls this node down to ground when it senses light (input high) and the resistor pulls the

node up to the supply when the device senses no light (input low). This corresponds to a π phase shift of the

received IR signal, which must be accounted for within ϕIR. This effect is demonstrated in Fig. 4.11.

46

Figure 4.11: Scope Capture of Generated IR Signal and Received IR Signal at the Output of
The TLC3702CP Comparator

From the scope capture, there is an apparent inversion between the generated (blue) waveform and the received

(red) waveform, resulting in a π phase shift of the fundamental. The generated aIR shows has an approximate

amplitude of 1.2VPP, which is consistent with the current calculation in Eq. (4.1).

The EK8443 phototransistor is sensitive to all light, not just IR light. For this reason, it has a constant DC bias

due to the ambient light surrounding the device. The two 10kΩ resistors and 390nF bypass capacitor form a

circuit that allows the TLC3702CP [34] to compare the IR signal with its DC point. This effectively measures

only the AC component of the received signal, where the AC component is the received square wave emitted

by the IR transmitter.

4.2.1 Verification of Design with AD2 and MATLAB

First, the system is implemented using the data capture feature of the Analog Discovery 2 (AD2) set to fs =

1MHz and N = 31175. This captures approximately 3.000002 periods of the IR synchronization signal, exactly

1247 periods of the 40kHz tone, exactly 1250 periods of the 40.09623kHz tone, and exactly 3 beat periods of

the two-tone signal. These are calculated with the following equations:

Number of Periods in IR Signal =
31175 ∗ fIR

fs
=

31175 ∗ 96.231Hz
1MHz

= 3.000002 Periods (4.4)

Number of Periods in a1 =
31175 ∗ 40kHz

1MHz
= 1250 Periods (4.5)

47

Number of Periods in a2 =
31175 ∗ 40.09623095kHz

1MHz
= 1247 Periods (4.6)

Number of Periods in a12 =
31175 ∗ 96.23095Hz

1MHz
= 3 Periods (4.7)

The block diagram for this implementation is seen in Fig. 4.12. The signals are sampled by the AD2 through

its two probe channels, and the data is then exported into MATLAB on a laptop computer via CSV files.

Figure 4.12: Schematic of Receiver Using AD2 and MATLAB

As in Section 3, the phase correction parameter, ϕ, is used to account for deterministic error associated with

the channel and the air. Note that due to the π phase shift introduced by the IR receiver circuit as seen in

Fig. 4.11, ϕIR has 3π
2 added to it rather than π2 . To find ϕ experimentally, distance measurements are taken

at known distances between the receiver and transmitter. For simplicity, ϕ1 and ϕ2 are the same as used in

Section 3.3 and ϕIR is modified to produce the correct distance measurement. Since the measurement uses

the relative phases of the signals, the individual phase measurements need not be correct, and correcting the

IR signal’s phase is equivalent to correct the two-tone signal’s phase.

48

Figure 4.13:Measured Distances With the Receiver Fixed at 28cm Away from the
Transmitter Without ϕ Correction

Fig. 4.13 shows the measured distance of 50 tests at a fixed receiver distance of 28cm without any ϕIR correc-

tion, where each test corresponds to a captured block of N = 31175 samples. Increasing ϕIR until the distance

measurement is correct yields the following ϕ values.

Table 4.4: Phase Shifts, ϕ, for AD2 Receiver Implementation in Units of Radians

ϕa,IR ϕa,1 ϕa,2
2.65 0.9838 0.9858

Using these phase corrections, the correct distance measurements can be obtained as in Fig. 4.14.

Figure 4.14:Measured Distances With
the Receiver Fixed at 28cm Away from
the Transmitter With ϕ Correction

Figure 4.15: Scope Capture of
Received Signals at 28cm Distance,

Test 0

Fig. 4.15 shows a scope capture for test 0 at 28cm with N = 31175 samples collected at fs = 1MHz. The

49

time shift τ shifts both signals equally and is subtracted out of the ultrasonic signal to extract a distance

measurement as shown in Section 3.

The histogram of the distance measurements in Fig. 4.14 is shown in Fig. 4.16. The measurements have a

fairly tight spread, with one outlier due to the spike in the data at around test 25.

Figure 4.16: Histogram of 28cm Experiment

Fig. 4.17 shows the physical test setup for the 28cm experiment.

Figure 4.17: Photograph of 28cm Experiment

The implementation is then tested at a fixed distance of 22cm between the receiver and transmitter using the

same ϕ correction. The reason these two distances are chosen for test data is because they are the lengths of

the paper tubes created to isolate both channels (US and IR) from the environment during testing. However,

these experiments are performed without the channel-isolating tubes for a more realistic representation of the

system.

50

Figure 4.18:Measured Distances With
the Receiver Fixed at 22cm Away from
the Transmitter With ϕ Correction

Figure 4.19: Scope Capture of
Received Signals at 22cm Distance,

Test 0

The histogram for the 22cm experiment in Fig. 4.20 shows an even tighter spread due to the lack of an outlier

data point. In this scenario, the tighter the spread of the histogram the better, as it shows that the system is

able to maintain a constant distance measurement when the receiver is kept at a constant distance from the

receiver.

Figure 4.20: Histogram of 22cm Experiment

51

Figure 4.21: Photograph of 22cm Experiment

Both distance experiments yield solid results with only one small dip in the 28cm tests. The means and vari-

ances of the results of the two experiments are shown in Table 4.5.

Table 4.5:Means (μ) and Variances (σ2) of 28cm and 22cm Experiments

Distance μ Errorμ σ2

28cm 28.53cm 0.53cm 0.11cm
22cm 22.37cm 0.37cm 0.05cm

The slightly higher variance exhibited by the 28cm experiment is likely a result of the dip in distance measure-

ments around test 25. The cause of this dip could be a bad capture from the ADC or a momentary disturbance

in the operation of the circuit. The two fixed distances were measured using a tape measure and are thus sub-

ject to human error, therefore the best indication that the system is functioning properly is a low variance in

the measurement data. This means that the synchronization is working properly, evidenced by the fact that τ

is different (increasing) for each test, but the measurement stays nearly constant.

The scope captures in Fig. 4.15 and Fig. 4.19 show the attenuation of the ultrasonic signal as the distance

increases. The amplitude of a12 at a distance of 22cm is about 0.8VPP while the amplitude of a12 at 28cm is

about 0.35VPP. This attenuation is not an issue at small distances, but for distances larger than about 32cm,

the signal becomes small ans noisy enough to affect the accuracy of the measurements. Also at this distance,

the IR signal begins to become unreliable likely due to the low-power, inexpensive diode and phototransistor.

These effects are discussed further in Section 5.3.

52

Next, the receiver-transmitter link is tested by moving the receiver away from the transmitter starting at a

distance of 22cm and ending at 32cm during data capture, again with the same ϕ correction.

Figure 4.22:Measured Distances Obtained by Moving the Receiver a Distance of 22cm to
32cm Away from the Transmitter With ϕ Correction

Fig. 4.22 shows the result of this experiment as well as the theoretical distance measurements modeled by a

line from 22cm to 32 cm. The experimental data matches this line fairly well, but the measurements do exhibit

larger variance as the distance increases. This is likely due to noisy data resulting from moving the transmitter

and its wires.

4.2.2 Effect of Non-Orthogonality

The preceding three experimental distance measurements are all taken immediately after programming the

FPGA. This is important because it more closely resembles the simulations in Section 3 where the signals

are generated at t = τ and τ ranges from 0 to 10ms. In the real-world, however, τ never stops increasing and

becomes very large. This would have no effect if the signals were perfectly orthogonal, because they would

always align to 0 phase every beat period of 10ms. However, due to the slight error between the beat frequency

of the two-tone ultrasonic signal and the synchronization frequency of the IR signal seen in Table 4.3, the

signals begin to drift for large τ and no longer align to zero phase at each beat period. This misalignment is

cyclical with a frequency of 6.1736 ∗ 10–5 Hz, the error between the beat frequency and the synchronization

frequency. This means that approximately every 16198 seconds, or about 4.5 hours, the two signals align

momentarily and then begin to drift apart again.

This error appears as a slope in the data when taken at a fixed distance over a large period of time. Fig. 4.23

shows this effect for 10000 tests at a fixed distance of 28cm.

53

Figure 4.23:Measured Distances With the Receiver Fixed at 28cm Away from the
Transmitter With ϕ Correction, Extended Capture Period

To model this error, linear regression is performed on the distance measurements to obtain the approximate

slope, 4.3521 ∗ 10–5 m
test . By measuring the elapsed time of the data capture at approximately 2012 seconds,

this slope can be converted to units of ms .

Slope = 4.3521 ∗ 10–5 m
test

∗ 10000 tests
2012 s

= 2.1631 ∗ 10–4 m
s

(4.8)

Finally, to measure the experimental error frequency, the slope is divided by the beat wavelength.

Experimental Error Frequency = 2.1631 ∗ 10–4 m
s
∗ 1

λ12 m
= 2.1631 ∗ 10–4 m

s
∗ 1

3.5643 m
(4.9)

Experimental Error Frequency = 6.0687 ∗ 10–5 Hz (4.10)

This measured value of the frequency error between the beat frequency of the ultrasonic signal and the synchro-

nization frequency of the IR signal is very close to the analytical error frequency of 6.1736*10–5Hz found

in Table 4.3. This suggests that the theorized error associated with signals that aren’t perfectly orthogonal

translates into almost exactly the same error in the hardware implementation.

4.2.3 MSP432-based Receiver

In this section, the system is implemented using the MSP432 microcontroller as illustrated in the schematic

in Fig. 4.24.

54

Figure 4.24: Schematic of Receiver Using MSP432P401R

TheMSP432 implements the same receiver shown in the simulation block diagram in Fig. 3.17. TheMSP432’s

onboard ADC is used to capture approximately 3 beat periods of the two-tone signal through pin 5.4, and the

IR synchronization signal is captured by checking digital pin 2.5 for logic high or logic low upon capturing

a sample in the ADC. This ensures the sampling rate is the same for both signals while not having to capture

the IR signal using another ADC channel, which would reduce the performance of the system.

Using an ADC resolution of 10 bits, the sampling rate was found to be 101.1kHz by observing approximately

1011 samples in one period of a 100Hz signal generated by the AD2. Then, N must be calculated such that 3

beat periods are captured with the given sampling rate:

N = int(3 ∗ fs
f12

) = int(3 ∗ 101.1kHz
96.231Hz

) = 3152 (4.11)

This gives the following number of periods of each of the signals:

Number of Periods in IR Signal =
3152 ∗ fIR

fs
=

3152 ∗ 96.231Hz
101.1kHz

= 3.0002 Periods (4.12)

Number of Periods in a1 =
3152 ∗ 40kHz
101.1kHz

= 1247.082 Periods (4.13)

Number of Periods in a2 =
3152 ∗ 40.09623095kHz

101.1kHz
= 1250.082 Periods (4.14)

55

Number of Periods in a12 =
3152 ∗ 96.23095Hz

101.1kHz
= 3.0002 Periods (4.15)

The error in the number of periods calculated in the preceding equations appear as phase measurement error

in the Goertzel Filters. This results in a higher variance in the distance measurements.

The distance measurements are taken at 22cm and observed by setting a breakpoint in the MSP432’s code

within Code Composer Studio (CCS), its Integrated Design Environment (IDE). The software then allows the

user to print out the value of a variable, in this case distance, within the code. These distance measurements

are then plotted using MATLAB in Fig. 4.25 for 20 tests.

Figure 4.25:Measured Distances With
the Receiver Fixed at 22cm Away from

the Transmitter Using MSP432
Receiver

Figure 4.26: Plot of Received Signals
at 22cm Distance Using MSP432

Receiver, Test 0

The IDE also exports values of arrays as CSV files, allowing the received signals for test 0 to be plotted using

MATLAB in Fig. 4.26.

Table 4.6:Means (μ) and Variances (σ2) of 22cm Experiment with MSP432 Receiver

Distance μ Errorμ σ2

22cm 110.4cm 88.4cm 4.62cm

While the plot of test 0 and the distance measurements for the 22cm experiment looked promising, it was

found that the experiment was not repeatable after a certain amount of time elapsed. This was not due to the

imperfect orthogonality of the signals, however, because then the distance measurements would be observed

to have the same approximate 6*10–5 Hz slope that was found in the AD2 receiver in Section 4.2.1. Instead,

the distance measurements became seemingly random and uncorrelated with high variance after roughly 10

56

minutes of taking data. Upon inspection of the signals, the sampling rate of the MSP432’s ADC had dropped

to approximately 97.1kHz. This value is even closer to the Nyquist sampling rate for the fastest tone (approx.

80.2kHz for an approx. 40.1kHz tone), leading to aliasing of the sampled signal. This also caused large error

in the Goertzel phase measurements, as the calculated constants were no longer based on the correct sampling

rate and N captured less than beat periods of the signals.

One speculated reason for the variation in the sampling rate of the ADC is operating temperature of the device.

TheMSP432microprocessor was observed to be very hot during operation, likely due to running at the highest

available clock frequency and attempting to achieve the fastest performance. A higher operating temperature

may also inject more noise into the ADC measurements. The sampling rate was also highly sensitive to the

code, meaning adjusting resolution (by adjusting the number of decimal points in the constants) and adjusting

where calculations are performed within the code affecting the sampling rate.

Because themeasurements became unrepeatable over time, the correct values ofϕwere not able to be obtained,

and therefore the Errorμ in Table 4.6 is large. However, the relatively low variance suggests a functioning

system at least during the time the experiment was performed.

It is possible to calibrate the receiver to new sampling rates to once again obtain distance measurements with

low variance. This is tedious, however, because changing N changes the amount of data that needs to be stored

during runtime of the program. This effectively changes the load on the device, thus effecting the sampling

rate. The found sampling rate of fs = 101.1kHz and calculated N = 3152 samples was, at the time of the

experiment, the perfect combination required to capture as close to 3 beat periods of the signal as possible.

However, this required combination changes over time making the system unreliable.

57

5 Conclusion

The design proposed in this thesis introduces a low-cost solution to indoor localization using parts that can be

easily obtained and implemented. The simulations showed that the design is viable and attains good position

measurement accuracy, even in the face of time-discretization error due to transmitter clock frequency and

sampling error due to finite sampling rate. By comparing the relative phase shifts of received signals, the

system is robust against error and noise that all signals experience equally. With the multilateration method

using averaging, the system becomes even less sensitive to common errors. In comparison to two of the most

closely related works, this designwas able to achieve similar accuracy to [4] in simulation and similar accuracy

to [16] in hardware, while maintaining the advantage of using ultrasound over audible sound.

5.1 COVID-19 and Remote Work

Regretfully, the COVID-19 pandemic forced the work in this thesis to be done completely remotely, without

access to Cal Poly facilities or in-person advising. The AD2, while capable for its purpose in this design, is not

nearly as accurate or robust as the oscilloscopes, function generators, and other test equipment in the Cal Poly

electrical engineering labs. The inability to debug hardware or observe data collaboratively was frustrating at

times, and it lead to important errors being discovered late.

5.2 Reflection and Lessons Learned

Upon reflection of the work performed in this thesis, many lessons can be learned. Most importantly, if this

work were to be performed again, more care would have been put into the generation of the signals in the

system. Early in the design, the signals’ frequencies were measured with low accuracy, and thus the imper-

fect orthogonality was discovered late and was unable to be accounted for in the final design. Had this work

discovered the error associated with the signals’ imperfect orthogonality earlier, more work could have been

done to correct it. Also, in retrospect, more thought could have gone into the selection of the microcontrollers

for both the transmitter and the receiver, seeing as the major drawbacks in this design are rooted in the micro-

controllers. For example, an FPGA-based receiver might have been able to achieve a greater sampling rate

and performance given less overhead compared to the C program used on the MSP432 in this design.

58

5.3 Future Work

5.3.1 Full IPS Implementation

The design proposed in this thesis has good potential for future expansion and improvement. The next step in

the continuation of the designwould be to implement all four transmitters in hardware as described. In addition,

the receiver node could be optimized to only use one, capable microcontroller with a high sampling rate and

data storage capability. This would effectively combine the two efforts made towards the receiver design in

this thesis by wrapping a high-sampling-rate ADC and high-performance processor into one embedded device.

The attempt at doing so in this thesis using the MSP432 microcontroller resulted in unfavorable results. It is

highly recommended that a future implementation uses a receiver with a high and, more importantly, constant

sampling rate such that the Goertzel Filters stay tuned to the correct frequencies and collect integer numbers

of periods of the signals. Ideally, the Goertzel Filters could be implemented on an embedded device such that

the device would not have to store N data points, just data points that represent the running parameters Q0,

Q1, and Q3. This would further lighten the system leading to possible improvements in speed, size, and/or

power.

5.3.2 Better Tone Orthogonality

Another suggestion for future work on this topic is to create equally-spaced, orthogonal tones at the transmitter

side, ensuring the system implements a properOFDMAscheme. Asmentioned in Section 4, the errors imposed

by the non-ideal tone frequencies stemming from the resolution of the Arty S7 FPGA board are difficult to

overcome. The simulation in Section 3.2 showed that the system works very well for equally-spaced tones.

This can be achieved using a microcontroller board with a higher clock frequency or oscillator circuits tuned

to the desired frequencies. As found in Section 4.2.2, the tones need only be spaced evenly ensuring they have

equal beat frequencies, so long as the actual frequencies fall reasonably within the bandwidth of the ultrasonic

channel and the exact beat frequency can be synthesized for synchronization.

5.3.3 Stronger Signals

As mentioned in Section 4.2.1, the received signals are very small in amplitude and not very reliable past

a certain distance. Future work for this design would need to include more received signal conditioning to

realize a system that can make distance measurements up to the full theoretical range of one beat wavelength

59

of the ultrasonic signal. This signal conditioning could come in the form of linear amplification and filtering

of the received signals. The IR transducers were also observed to be highly sensitive to orientation, meaning

the link had to line up a certain way for the signal to be properly transmitted. Devices with less directionality

would function better for this design. For these reasons, an upgrade in IR devices is suggested so that the range

of the system may increase.

5.3.4 Power Grid Synchronization

One interesting topic to explore in future work on this design is the possibility of synchronizing the tones

of the system using the nominal frequency (60Hz for the United States) of the power grid that supplies the

room with power. Electromagnetic energy at this frequency is emitted from power lines, outlets, and any

metal connected to the grid. Therefore, by affixing an antenna to sense this 60Hz energy to the receiver and

synchronizing the transmitters’ tones to this same 60Hz energy, the system can be synchronized without the

use of the IR link proposed in this design.

60

References

[1] Geotab Team, ”What is GPS?” Geotab, May 2020. [Online]. Available: https://www.geotab.com/b

log/what-is-gps/. [Accessed: 2021].

[2] A.Witze, ”GPS Is DoingMore Than You Thought,” Scientific American, October 2019. [Online]. Avail-

able: https://www.scientificamerican.com/article/gps-is-doing-more-than-you-th

ought/. [Accessed: 2021].

[3] C. Shaffer, ”GPS/GIS,” The International Encyclopedia of Primatology, April 2017. [Online]. Available:

https://www.researchgate.net/publication/316658355_GPSGIS. [Accessed: 2021].

[4] K. Huang, “DISTANCE ESTIMATION USING OFDM SIGNALS FOR ULTRASONIC POSITION-

ING,” MSEE Thesis, Cal Poly Digital Commons, 2020.

[5] N. Rose, ”How ultrasonic local positioning system works,” Navigine, May 2021. [Online]. Available:

https://navigine.com/blog/how-ultrasonic-indoor-positioning-works/. [Accessed:

2021].

[6] M. Gifford, ”Indoor Positioning with Ultrasonic/Ultrasound,” Navigine, October 2018. [Online]. Avail-

able: https://www.leverege.com/blogpost/ultrasonic-indoor-positioning. [Accessed:

2021].

[7] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, “The Cricket Location-Support System,” MIT

Laboratory for Computer Science, 2004. [Online]. Available: http://nms.lcs.mit.edu/papers/c

ricket.pdf. [Accessed: 2021].

[8] “Sonitor Sense Technology Brief,” Sonitor. [Online]. Available: https://static1.squarespace.

com/static/59cac734cf81e0d666427339/t/5f6b728fdcc756640a9bb36f/1600877203872/0

92320+Sonitor-Sonitor-Sense+Brief.pdf. [Accessed: 2021].

[9] J. Qi and G.-P. Liu, “A robust high-accuracy ultrasound indoor positioning system based on a wireless

sensor network,” Sensors (Basel, Switzerland), 06-Nov-2017. [Online]. Available: https://www.nc

bi.nlm.nih.gov/pmc/articles/PMC5713469/. [Accessed: 2021].

[10] W. Jiang and W. M. D. Wright, “Indoor Airborne Ultrasonic Wireless Communication Using OFDM

Methods,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control (Volume: 64, Is-

sue: 9 11-July-2017. [Online]. Available: https://ieeexplore.ieee.org/document/7973160.

[Accessed: 2021].

61

https://www.geotab.com/blog/what-is-gps/
https://www.geotab.com/blog/what-is-gps/
https://www.scientificamerican.com/article/gps-is-doing-more-than-you-thought/
https://www.scientificamerican.com/article/gps-is-doing-more-than-you-thought/
https://www.researchgate.net/publication/316658355_GPSGIS
https://navigine.com/blog/how-ultrasonic-indoor-positioning-works/
https://www.leverege.com/blogpost/ultrasonic-indoor-positioning
http://nms.lcs.mit.edu/papers/cricket.pdf
http://nms.lcs.mit.edu/papers/cricket.pdf
https://static1.squarespace.com/static/59cac734cf81e0d666427339/t/5f6b728fdcc756640a9bb36f/1600877203872/092320+Sonitor-Sonitor-Sense+Brief.pdf
https://static1.squarespace.com/static/59cac734cf81e0d666427339/t/5f6b728fdcc756640a9bb36f/1600877203872/092320+Sonitor-Sonitor-Sense+Brief.pdf
https://static1.squarespace.com/static/59cac734cf81e0d666427339/t/5f6b728fdcc756640a9bb36f/1600877203872/092320+Sonitor-Sonitor-Sense+Brief.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5713469/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5713469/
https://ieeexplore.ieee.org/document/7973160

[11] B. Ray, ”Wi-Fi Indoor Positioning Systems: The Good, The Bad & The Alternatives,” Link Labs, Feb.

2020. [Online]. Available: https://www.link-labs.com/blog/wifi-indoor-positioning-s

ystems-pros-cons. [Accessed: 2021].

[12] “Ultrasound,” Wikipedia, 03-Aug-2021. [Online]. Available: https://en.wikipedia.org/wiki/Ul

trasound. [Accessed: 2021].

[13] R. Nave, ”Sound Speed in Gases,” Georgia State University , 2019. [Online]. Available: http://hype

rphysics.phy-astr.gsu.edu/hbase/Sound/souspe3.html. [Accessed 2021].

[14] Ultrasonic Sensor Set 40Khz Transmitter and Receiver, Jameco Electronics. Accessed: 2021. [Online].

Available: https://www.jameco.com/z/40TR12B-R-Jameco-Valuepro-Ultrasonic-Sensor

-Set-40Khz-Transmitter-and-Receiver_139492.html.

[15] ”Code Division Multiple Access (CDMA),” Network Encyclopedia. [Online]. Available: https://ne

tworkencyclopedia.com/code-division-multiple-access-cdma/. [Accessed: 2021]

[16] N. Luong, “Indoor Positioning Using Acoustic Pseudo-Noise Based Time Difference of Arrival,” MSEE

Thesis, Cal Poly Digital Commons, 2020.

[17] L. Williams, “Fast Chirped Signals for a TDMA Ultrasonic Indoor Positioning System,” MSEE Thesis,

Cal Poly Digital Commons, 2020.

[18] H. Dun, C. Tiberius, andG. Janssen, “Positioning based onOFDM signals through phasemeasurements,”

Google, 2018. [Online]. Available: https://repository.tudelft.nl/islandora/object/uuid:

971a17cd-8755-4438-875d-a78a83ce3717/datastream/OBJ/download. [Accessed: 2021].

[19] “Orthogonal frequency-division multiplexing,” Wikipedia, 30-Sep-2021. [Online]. Available: https:

//en.wikipedia.org/wiki/Orthogonal_frequency-division_multiplexing. [Accessed:

2021].

[20] Keysight, Concepts of orthogonal frequency division multiplexing (OFDM) and 802.11 wlan. [Online].

Available: https://rfmw.em.keysight.com/wireless/helpfiles/89600B/WebHelp/Subsyst

ems/wlan-ofdm/Content/ofdm_basicprinciplesoverview.html. [Accessed: 2021].

[21] ”How to calculate the perceived frequency of two sinusoidal waves added together?”Mathematics Stack-

Exchange, 2012. [Online]. Available: https://math.stackexchange.com/questions/164369/

how-to-calculate-the-perceived-frequency-of-two-sinusoidal-waves-added-toget

her/164385. [Accessed: 2021].

62

https://www.link-labs.com/blog/wifi-indoor-positioning-systems-pros-cons
https://www.link-labs.com/blog/wifi-indoor-positioning-systems-pros-cons
https://en.wikipedia.org/wiki/Ultrasound
https://en.wikipedia.org/wiki/Ultrasound
http://hyperphysics.phy-astr.gsu.edu/hbase/Sound/souspe3.html
http://hyperphysics.phy-astr.gsu.edu/hbase/Sound/souspe3.html
https://www.jameco.com/z/40TR12B-R-Jameco-Valuepro-Ultrasonic-Sensor-Set-40Khz-Transmitter-and-Receiver_139492.html
https://www.jameco.com/z/40TR12B-R-Jameco-Valuepro-Ultrasonic-Sensor-Set-40Khz-Transmitter-and-Receiver_139492.html
https://networkencyclopedia.com/code-division-multiple-access-cdma/
https://networkencyclopedia.com/code-division-multiple-access-cdma/
https://repository.tudelft.nl/islandora/object/uuid:971a17cd-8755-4438-875d-a78a83ce3717/datastream/OBJ/download
https://repository.tudelft.nl/islandora/object/uuid:971a17cd-8755-4438-875d-a78a83ce3717/datastream/OBJ/download
https://en.wikipedia.org/wiki/Orthogonal_frequency-division_multiplexing
https://en.wikipedia.org/wiki/Orthogonal_frequency-division_multiplexing
https://rfmw.em.keysight.com/wireless/helpfiles/89600B/WebHelp/Subsystems/wlan-ofdm/Content/ofdm_basicprinciplesoverview.html
https://rfmw.em.keysight.com/wireless/helpfiles/89600B/WebHelp/Subsystems/wlan-ofdm/Content/ofdm_basicprinciplesoverview.html
https://math.stackexchange.com/questions/164369/how-to-calculate-the-perceived-frequency-of-two-sinusoidal-waves-added-together/164385
https://math.stackexchange.com/questions/164369/how-to-calculate-the-perceived-frequency-of-two-sinusoidal-waves-added-together/164385
https://math.stackexchange.com/questions/164369/how-to-calculate-the-perceived-frequency-of-two-sinusoidal-waves-added-together/164385

[22] H. Yucel, R. Edizkan, T. Ozkir and A. Yazici, ”Development of indoor positioning system with ultra-

sonic and infrared signals,” 2012 International Symposium on Innovations in Intelligent Systems and

Applications, 2012, pp. 1-4, doi: 10.1109/INISTA.2012.6246983.

[23] ”Why can’t I see very low frequencies in the Spectrum FFT window in LabChart?” ADInstruments.

[Online]. Available: https://www.adinstruments.com/support/knowledge-base/why-cant-

i-see-very-low-frequencies-spectrum-fft-window-labchart. [Accessed: 2021].

[24] Embedded Staff, “The Goertzel Algorithm,” Embedded, 28-Aug-2002. [Online]. Available: https://

www.embedded.com/the-goertzel-algorithm/. [Accessed: 2021]

[25] T. Smyth, ”Nyquist Sampling Theorem,” UCSD, Oct. 2019. [Online]. Available: http://musicweb.u

csd.edu/~trsmyth/digitalAudio171/Nyquist_Sampling_Theorem.html. [Accessed: 2021].

[26] Arty S7 Reference Manual, Digilent. Accessed: 2021. [Online]. Available: https://digilent.com/r

eference/programmable-logic/arty-s7/reference-manual.

[27] Multiple Commenters, Gikfun 5mm 940nm LEDs Infrared Emitter and IR Receiver Diode for Arduino

(Pack of 20pcs) EK8443. [Online]. Available: https://www.amazon.com/Gikfun-Infrared-Emi

tter-Receiver-Arduino/dp/B01HGIQ8NG. [Accessed: 2021].

[28] TC4428A 1.5A Dual High-Speed Power MOSFET Drivers Datasheet, Microchip. Accessed: 2021. [On-

line]. Available: https://ww1.microchip.com/downloads/en/DeviceDoc/20001423J.pdf.

[29] Analog Discovery 2 Reference Manual, Digilent. Accessed: 2021. [Online]. Available: https://digi

lent.com/reference/test-and-measurement/analog-discovery-2/reference-manual.

[30] T. Hula, “EE 449 Receiver Sub-System,” EE 449 Electronics Design Laboratory. California Polytechnic

State University, San Luis Obispo, 2019.

[31] J. Bartolone, “EE 449 Transmitter Sub-System,” EE 449 Electronics Design Laboratory. California Poly-

technic State University, San Luis Obispo, 2019.

[32] LMx58-N Low-Power, Dual-Operational Amplifiers Datasheet, Texas Instruments. Accessed: 2021. [On-

line]. Available: https://www.ti.com/lit/ds/symlink/lm358-n.pdf?ts=1635206535464&r

ef_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FLM358-N.

[33] MSP432P401R, MSP432P401MMixed-Signal Microcontrollers Technical Reference Manual, Texas In-

struments, 2016. Accessed: 2021. [Online] Available: https://www.ti.com/lit/ds/slas826e/s

las826e.pdf.

63

https://www.adinstruments.com/support/knowledge-base/why-cant-i-see-very-low-frequencies-spectrum-fft-window-labchart
https://www.adinstruments.com/support/knowledge-base/why-cant-i-see-very-low-frequencies-spectrum-fft-window-labchart
https://www.embedded.com/the-goertzel-algorithm/
https://www.embedded.com/the-goertzel-algorithm/
http://musicweb.ucsd.edu/~trsmyth/digitalAudio171/Nyquist_Sampling_Theorem.html
http://musicweb.ucsd.edu/~trsmyth/digitalAudio171/Nyquist_Sampling_Theorem.html
https://digilent.com/reference/programmable-logic/arty-s7/reference-manual
https://digilent.com/reference/programmable-logic/arty-s7/reference-manual
https://www.amazon.com/Gikfun-Infrared-Emitter-Receiver-Arduino/dp/B01HGIQ8NG
https://www.amazon.com/Gikfun-Infrared-Emitter-Receiver-Arduino/dp/B01HGIQ8NG
https://ww1.microchip.com/downloads/en/DeviceDoc/20001423J.pdf
https://digilent.com/reference/test-and-measurement/analog-discovery-2/reference-manual
https://digilent.com/reference/test-and-measurement/analog-discovery-2/reference-manual
https://www.ti.com/lit/ds/symlink/lm358-n.pdf?ts=1635206535464&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FLM358-N
https://www.ti.com/lit/ds/symlink/lm358-n.pdf?ts=1635206535464&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FLM358-N
https://www.ti.com/lit/ds/slas826e/slas826e.pdf
https://www.ti.com/lit/ds/slas826e/slas826e.pdf

[34] TLC3702 DUAL MICROPOWER LinCMOS™ VOLTAGE COMPARATORS Datasheet, Texas Instru-

ments. Accessed: 2021. [Online]. Available: https://www.ti.com/lit/ds/symlink/tlc3702.pd

f?ts=1634608684967&ref_url=https%253A%252F%252Fwww.google.com%252F.

64

https://www.ti.com/lit/ds/symlink/tlc3702.pdf?ts=1634608684967&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ds/symlink/tlc3702.pdf?ts=1634608684967&ref_url=https%253A%252F%252Fwww.google.com%252F

Appendix

A MATLAB Simulation Code

Listing A.1: Ideal Simulation Code
1 %% Clear

2 clear; close all; clc;

3 NumTests = 1;

4

5 %% Plot Stuff

6 Yellow = '#7B7A00';

7 Blue = '#003F7B';

8 Green = '#3E7B00';

9 Red = '#7B0000';

10 Orange = '#FFA449';

11 Purple = '#CE8AFF';

12 MakePlots = 1;

13

14 %% Parameters

15 a1Frequency = 40000;

16 a2Frequency = 40100;

17 b1Frequency = 39800;

18 b2Frequency = 39900;

19 c1Frequency = 39600;

20 c2Frequency = 39700;

21 d1Frequency = 39400;

22 d2Frequency = 39500;

23 BeatFrequency = 100;

24

25 SamplingRate = 1E+6;

26 N = 300000;

27 t = (0:N-1)./SamplingRate;

28

29 for i = 1:NumTests

30 %% Initialize Room and Object

31 VSound = 343;

32 BeatWavelength = VSound/BeatFrequency;

33 MaxDistance = sqrt(((BeatWavelength-0.01)^2)/2);

34 RoomLength = 0:0.0001:MaxDistance;

35 RoomWidth = 0:0.0001:MaxDistance;

65

36 ObjectPosition = [MaxDistance*rand(1) MaxDistance*rand(1)];

37 aDistance = sqrt(ObjectPosition(1)^2 + ObjectPosition(2)^2);

38 bDistance = sqrt((MaxDistance-ObjectPosition(1))^2 + ObjectPosition(2)^2);

39 cDistance = sqrt((MaxDistance-ObjectPosition(1))^2 +

(MaxDistance-ObjectPosition(2))^2);↪→

40 dDistance = sqrt(ObjectPosition(1)^2 + (MaxDistance-ObjectPosition(2))^2);

41

42 if MakePlots == 1

43

44 figure(1); hold on; box on;

45 plot(ObjectPosition(1), ObjectPosition(2),'Marker', '.', 'MarkerSize', 20, 'Color',

'black');↪→

46 title('Room Setup: Four Transmitter Nodes, One Receiver Node');

47 xlabel('Distance [m]');

48 ylabel('Distance [m]');

49 xlim([0 RoomLength(end)]);

50 ylim([0 RoomLength(end)]);

51 text(ObjectPosition(1)-0.3, ObjectPosition(2)-0.15, ['Rx

(',num2str(fix(10^4*ObjectPosition(1))/10^4),',

',num2str(fix(10^4*ObjectPosition(2))/10^4),')']);

↪→

↪→

52 text(0.05, 0.15, 'TXa');

53 text(RoomLength(end)-0.225, 0.15, 'TXb');

54 text(RoomLength(end)-0.225, RoomLength(end)-0.15, 'TXc');

55 text(0.05, RoomLength(end)-0.15, 'TXd');

56

57 plot(linspace(0, 0.3, 1000), linspace(0.3, 0.3, 1000), 'Linewidth', 2, 'Color',

Blue);↪→

58 plot(linspace(0.3, 0.3, 1000), linspace(0, 0.3, 1000), 'Linewidth', 2, 'Color',

Blue);↪→

59

60 plot(linspace(RoomLength(end)-0.3, RoomLength(end), 1000), linspace(0.3, 0.3,

1000), 'Linewidth', 2, 'Color', Green);↪→

61 plot(linspace(RoomLength(end)-0.3, RoomLength(end)-0.3, 1000), linspace(0, 0.3,

1000), 'Linewidth', 2, 'Color', Green);↪→

62

63 plot(linspace(RoomLength(end)-0.3, RoomLength(end), 1000),

linspace(RoomLength(end)-0.3, RoomLength(end)-0.3, 1000), 'Linewidth', 2, 'Color',

Red);

↪→

↪→

64 plot(linspace(RoomLength(end)-0.3, RoomLength(end)-0.3, 1000),

linspace(RoomLength(end)-0.3, RoomLength(end), 1000), 'Linewidth', 2, 'Color', Red);↪→

65

66

66 plot(linspace(0, 0.3, 1000), linspace(RoomLength(end)-0.3, RoomLength(end)-0.3,

1000), 'Linewidth', 2, 'Color', Orange);↪→

67 plot(linspace(0.3, 0.3, 1000), linspace(RoomLength(end)-0.3, RoomLength(end),

1000), 'Linewidth', 2, 'Color', Orange);↪→

68

69 end

70

71 %% Initialize Transmitters

72 TimeDelay = (1/BeatFrequency)*rand(1);

73 [a12, aIR] = TX(a1Frequency, a2Frequency, BeatFrequency, SamplingRate, N, TimeDelay,

aDistance);↪→

74 [b12, ~] = TX(b1Frequency, b2Frequency, BeatFrequency, SamplingRate, N, TimeDelay,

bDistance);↪→

75 [c12, ~] = TX(c1Frequency, c2Frequency, BeatFrequency, SamplingRate, N, TimeDelay,

cDistance);↪→

76 [d12, ~] = TX(d1Frequency, d2Frequency, BeatFrequency, SamplingRate, N, TimeDelay,

dDistance);↪→

77

78 if MakePlots == 1

79

80 figure(2);

81 set(gcf, 'Position', [100, 175, 750, 500]);

82

83 subplot(223);

84 plot(1000.*t, a12, 'LineWidth', 2, 'Color', Blue); hold on;

85 plot(1000.*t, aIR, 'LineWidth', 2, 'Color', Purple); hold off;

86 title(['Transmitter a: f_1 = ', num2str(a1Frequency/1000), ' kHz, f_2 = ',

num2str(a2Frequency/1000), ' kHz']);↪→

87 xlabel('t [msec]');

88 ylabel('Amplitude [V]');

89 legend({'a_{12}', 'a_{IR}'}, 'Location', 'northeast');

90 ylim([-2 8.6]);

91

92 subplot(224);

93 plot(1000.*t, b12, 'LineWidth', 2, 'Color', Green); hold on;

94 plot(1000.*t, aIR, 'LineWidth', 2, 'Color', Purple); hold off;

95 title(['Transmitter b: f_1 = ', num2str(b1Frequency/1000), ' kHz, f_2 = ',

num2str(b2Frequency/1000), ' kHz']);↪→

96 xlabel('t [msec]');

97 ylabel('Amplitude [V]');

98 legend({'b_{12}', 'a_{IR}'}, 'Location', 'northeast');

67

99 ylim([-2 8.6]);

100

101 subplot(222);

102 plot(1000.*t, c12, 'LineWidth', 2, 'Color', Red); hold on;

103 plot(1000.*t, aIR, 'LineWidth', 2, 'Color', Purple); hold off;

104 title(['Transmitter c: f_1 = ', num2str(c1Frequency/1000), ' kHz, f_2 = ',

num2str(c2Frequency/1000), ' kHz']);↪→

105 xlabel('t [msec]');

106 ylabel('Amplitude [V]');

107 legend({'c_{12}', 'a_{IR}'}, 'Location', 'northeast');

108 ylim([-2 8.6]);

109

110 subplot(221);

111 plot(1000.*t, c12, 'LineWidth', 2, 'Color', Orange); hold on;

112 plot(1000.*t, aIR, 'LineWidth', 2, 'Color', Purple); hold off;

113 title(['Transmitter d: f_1 = ', num2str(d1Frequency/1000), ' kHz, f_2 = ',

num2str(d2Frequency/1000), ' kHz']);↪→

114 xlabel('t [msec]');

115 ylabel('Amplitude [V]');

116 legend({'d_{12}', 'a_{IR}'}, 'Location', 'northeast');

117 ylim([-2 8.6]);

118

119 figure(3);

120 set(gcf, 'Position', [100, 175, 750, 500]);

121

122 subplot(223);

123 plot(1000.*t, a12, 'LineWidth', 2, 'Color', Blue); hold on;

124 plot(1000.*t, aIR, 'LineWidth', 2, 'Color', Purple); hold off;

125 title(['Transmitter a: Zoom to 1^{st} Period']);

126 xlabel('t [msec]');

127 ylabel('Amplitude [V]');

128 legend({'a_{12}', 'a_{IR}'}, 'Location', 'northeast');

129 xlim([0 10*ceil(1/BeatFrequency)]);

130 ylim([-2 8.6]);

131

132 subplot(224);

133 plot(1000.*t, b12, 'LineWidth', 2, 'Color', Green); hold on;

134 plot(1000.*t, aIR, 'LineWidth', 2, 'Color', Purple); hold off;

135 title(['Transmitter b: Zoom to 1^{st} Period']);

136 xlabel('t [msec]');

137 ylabel('Amplitude [V]');

68

138 legend({'b_{12}', 'a_{IR}'}, 'Location', 'northeast');

139 xlim([0 10*ceil(1/BeatFrequency)]);

140 ylim([-2 8.6]);

141

142 subplot(222);

143 plot(1000.*t, c12, 'LineWidth', 2, 'Color', Red); hold on;

144 plot(1000.*t, aIR, 'LineWidth', 2, 'Color', Purple); hold off;

145 title(['Transmitter c: Zoom to 1^{st} Period']);

146 xlabel('t [msec]');

147 ylabel('Amplitude [V]');

148 legend({'c_{12}', 'a_{IR}'}, 'Location', 'northeast');

149 xlim([0 10*ceil(1/BeatFrequency)]);

150 ylim([-2 8.6]);

151

152 subplot(221);

153 plot(1000.*t, c12, 'LineWidth', 2, 'Color', Orange); hold on;

154 plot(1000.*t, aIR, 'LineWidth', 2, 'Color', Purple); hold off;

155 title(['Transmitter d: Zoom to 1^{st} Period']);

156 xlabel('t [msec]');

157 ylabel('Amplitude [V]');

158 legend({'d_{12}', 'a_{IR}'}, 'Location', 'northeast');

159 xlim([0 10*ceil(1/BeatFrequency)]);

160 ylim([-2 8.6]);

161

162 end

163

164 %% Process Using Receiver

165 aIRPhase = wrapTo2Pi(GoertzelFilter(aIR, BeatFrequency, SamplingRate, N) + pi/2 +

3.1415889e-04);↪→

166 a1Phase = wrapTo2Pi(GoertzelFilter(a12, a1Frequency, SamplingRate, N) + pi/2 +

0.2519558);↪→

167 a2Phase = wrapTo2Pi(GoertzelFilter(a12, a2Frequency, SamplingRate, N) + pi/2 +

0.2519558);↪→

168 b1Phase = wrapTo2Pi(GoertzelFilter(b12, b1Frequency, SamplingRate, N) + pi/2 +

0.2506991);↪→

169 b2Phase = wrapTo2Pi(GoertzelFilter(b12, b2Frequency, SamplingRate, N) + pi/2 +

0.2506991);↪→

170 c1Phase = wrapTo2Pi(GoertzelFilter(c12, c1Frequency, SamplingRate, N) + pi/2 +

0.2494425);↪→

171 c2Phase = wrapTo2Pi(GoertzelFilter(c12, c2Frequency, SamplingRate, N) + pi/2 +

0.2494425);↪→

69

172 d1Phase = wrapTo2Pi(GoertzelFilter(d12, d1Frequency, SamplingRate, N) + pi/2 +

0.2481859);↪→

173 d2Phase = wrapTo2Pi(GoertzelFilter(d12, d2Frequency, SamplingRate, N) + pi/2 +

0.2481859);↪→

174

175 if MakePlots == 1

176

177 figure(4);

178 set(gcf, 'Position', [100, 175, (3/2)*750, 250]);

179

180 subplot(131);

181 stem(BeatFrequency, aIRPhase, 'LineWidth', 2, 'Color', Purple);

182 title('Phase of a_{IR}');

183 xlabel('Frequency [Hz]');

184 ylabel('Phase [rad]');

185 ylim([-1 2*pi+1]);

186

187 subplot(132);

188 stem([a1Frequency a2Frequency]./1000, [a1Phase a2Phase], 'LineWidth', 2, 'Color',

Blue); hold on;↪→

189 stem([b1Frequency b2Frequency]./1000, [b1Phase b2Phase], 'LineWidth', 2, 'Color',

Green);↪→

190 stem([c1Frequency c2Frequency]./1000, [c1Phase c2Phase], 'LineWidth', 2, 'Color',

Red);↪→

191 stem([d1Frequency d2Frequency]./1000, [d1Phase d2Phase], 'LineWidth', 2, 'Color',

Orange);↪→

192 title('Phase of All 8 Tones');

193 xlabel('Frequency [Hz]');

194 ylabel('Phase [rad]');

195 legend({'a_{1,2}', 'b_{1,2}', 'c_{1,2}', 'd_{1,2}'}, 'Location', 'northeast');

196 xlim([38.6 40.9]);

197 ylim([-1 2*pi+1]);

198 end

199

200 %% Synchronize Tones

201 [a1PhaseCorrected, a2PhaseCorrected, aPhaseSynchronized] = Synchronize(a1Phase,

a2Phase, aIRPhase, a1Frequency, a2Frequency, BeatFrequency, SamplingRate);↪→

202 [b1PhaseCorrected, b2PhaseCorrected, bPhaseSynchronized] = Synchronize(b1Phase,

b2Phase, aIRPhase, b1Frequency, b2Frequency, BeatFrequency, SamplingRate);↪→

203 [c1PhaseCorrected, c2PhaseCorrected, cPhaseSynchronized] = Synchronize(c1Phase,

c2Phase, aIRPhase, c1Frequency, c2Frequency, BeatFrequency, SamplingRate);↪→

70

204 [d1PhaseCorrected, d2PhaseCorrected, dPhaseSynchronized] = Synchronize(d1Phase,

d2Phase, aIRPhase, d1Frequency, d2Frequency, BeatFrequency, SamplingRate);↪→

205

206 if MakePlots == 1

207 figure(4);

208 subplot(133);

209 stem([a1Frequency a2Frequency]./1000, [a1PhaseCorrected a2PhaseCorrected],

'LineWidth', 2, 'Color', Blue); hold on;↪→

210 stem([b1Frequency b2Frequency]./1000, [b1PhaseCorrected b2PhaseCorrected],

'LineWidth', 2, 'Color', Green);↪→

211 stem([c1Frequency c2Frequency]./1000, [c1PhaseCorrected c2PhaseCorrected],

'LineWidth', 2, 'Color', Red);↪→

212 stem([d1Frequency d2Frequency]./1000, [d1PhaseCorrected d2PhaseCorrected],

'LineWidth', 2, 'Color', Orange);↪→

213 title('Synchronized Phase of All 8 Tones');

214 xlabel('Frequency [Hz]');

215 ylabel('Phase [rad]');

216 legend({'a_{1,2}', 'b_{1,2}', 'c_{1,2}', 'd_{1,2}'}, 'Location', 'northeast');

217 xlim([38.6 40.9]);

218 ylim([-1 2*pi+1]);

219 end

220

221 %% Measure Distances

222 aDistanceMeasure = PhaseToDistance(aPhaseSynchronized, BeatWavelength);

223 bDistanceMeasure = PhaseToDistance(bPhaseSynchronized, BeatWavelength);

224 cDistanceMeasure = PhaseToDistance(cPhaseSynchronized, BeatWavelength);

225 dDistanceMeasure = PhaseToDistance(dPhaseSynchronized, BeatWavelength);

226

227

228 figure(1);

229 Arc = 0:0.01:2*pi;

230 TXaCircle = plot(aDistanceMeasure*cos(Arc), aDistanceMeasure*sin(Arc), 'LineStyle',

':', 'LineWidth', 2, 'Color', Blue);↪→

231 TXbCircle = plot(bDistanceMeasure*cos(Arc)+MaxDistance, bDistanceMeasure*sin(Arc),

'LineStyle', ':', 'LineWidth', 2, 'Color', Green);↪→

232 TXcCircle = plot(cDistanceMeasure*cos(Arc)+MaxDistance,

cDistanceMeasure*sin(Arc)+MaxDistance, 'LineStyle', ':', 'LineWidth', 2, 'Color',

Red);

↪→

↪→

233 TXdCircle = plot(dDistanceMeasure*cos(Arc), dDistanceMeasure*sin(Arc)+MaxDistance,

'LineStyle', ':', 'LineWidth', 2, 'Color', Orange);↪→

234

71

235 [MeasuredPosition, abIntersection, bcIntersection, cdIntersection, daIntersection] =

Multilaterate(TXaCircle, TXbCircle, TXcCircle, TXdCircle);↪→

236

237 Error = MeasuredPosition - ObjectPosition';

238

239 if MakePlots ~= 1

240 close all;

241 end

242

243 if MakePlots == 1

244 figure(1);

245 FillColor = 'green';

246 if abs(Error(1)) +abs(Error(2)) > 0.5

247 FillColor = Orange;

248 if abs(Error(1))+abs(Error(2)) > 1

249 FillColor = 'red';

250 end

251 end

252 plot(MeasuredPosition(1), MeasuredPosition(2),'Marker', '.', 'MarkerSize', 20,

'Color', FillColor);↪→

253 text(MeasuredPosition(1)-0.5, MeasuredPosition(2)+0.15, ['Measured Rx, Error: (',

num2str(fix(10^4*Error(1))/10^4),', ', num2str(fix(10^4*Error(2))/10^4),')']);↪→

254 plot(abIntersection(1), abIntersection(2), 'Marker', 'x', 'Color', 'blue',

'MarkerSize', 10, 'LineWidth', 2);↪→

255 plot(bcIntersection(1), bcIntersection(2), 'Marker', 'x', 'Color', 'blue',

'MarkerSize', 10, 'LineWidth', 2);↪→

256 plot(cdIntersection(1), cdIntersection(2), 'Marker', 'x', 'Color', 'blue',

'MarkerSize', 10, 'LineWidth', 2);↪→

257 plot(daIntersection(1), daIntersection(2), 'Marker', 'x', 'Color', 'blue',

'MarkerSize', 10, 'LineWidth', 2);↪→

258 end

259

260 end

261

262

263

72

Listing A.2: System Simulation Code

1 %% Clear

2 clear; close all; clc;

3 NumTests = 1;

4

5 %% Plot Stuff

6 Yellow = '#7B7A00';

7 Blue = '#003F7B';

8 Green = '#3E7B00';

9 Purple = '#CE8AFF';

10 Orange = '#FFA449';

11 Red = '#7B0000';

12 MakePlots = 1;

13

14 %% From FPGA Program

15 CLK = 100000000;

16 a1Count = 1250;

17 a2Count = 1247;

18 b1Count = 1256;

19 b2Count = 1253;

20 c1Count = 1263;

21 c2Count = 1260;

22 d1Count = 1269;

23 d2Count = 1266;

24 IRCount = 519583;

25

26 a1Frequency = 0.5*CLK/a1Count;

27 a2Frequency = 0.5*CLK/a2Count;

28 b1Frequency = 0.5*CLK/b1Count;

29 b2Frequency = 0.5*CLK/b2Count;

30 c1Frequency = 0.5*CLK/c1Count;

31 c2Frequency = 0.5*CLK/c2Count;

32 d1Frequency = 0.5*CLK/d1Count;

33 d2Frequency = 0.5*CLK/d2Count;

34 BeatFrequency = 0.5*CLK/IRCount;

35

36 %% Parameters

37 SamplingRate = 101.1E+3;

38 N = 3152;

73

39 t = (0:N-1)./SamplingRate;

40

41 for i = 1:NumTests

42 %% Initialize Room and Object

43 VSound = 343;

44 BeatWavelength = VSound/BeatFrequency;

45 MaxDistance = sqrt(((BeatWavelength-0.01)^2)/2);

46 RoomLength = 0:0.0001:MaxDistance;

47 RoomWidth = 0:0.0001:MaxDistance;

48 ObjectPosition = [MaxDistance*rand(1) MaxDistance*rand(1)];

49 aDistance = sqrt(ObjectPosition(1)^2 + ObjectPosition(2)^2);

50 bDistance = sqrt((MaxDistance-ObjectPosition(1))^2 + ObjectPosition(2)^2);

51 cDistance = sqrt((MaxDistance-ObjectPosition(1))^2 +

(MaxDistance-ObjectPosition(2))^2);↪→

52 dDistance = sqrt(ObjectPosition(1)^2 + (MaxDistance-ObjectPosition(2))^2);

53

54 if MakePlots == 1

55

56 figure(1); hold on; box on;

57 plot(ObjectPosition(1), ObjectPosition(2),'Marker', '.', 'MarkerSize', 20, 'Color',

'black');↪→

58 title('Room Setup: Four Transmitter Nodes, One Receiver Node');

59 xlabel('Distance [m]');

60 ylabel('Distance [m]');

61 xlim([0 RoomLength(end)]);

62 ylim([0 RoomLength(end)]);

63 text(ObjectPosition(1)-0.3, ObjectPosition(2)-0.15, ['Rx

(',num2str(fix(10^4*ObjectPosition(1))/10^4),',

',num2str(fix(10^4*ObjectPosition(2))/10^4),')']);

↪→

↪→

64 text(0.05, 0.15, 'TXa');

65 text(RoomLength(end)-0.225, 0.15, 'TXb');

66 text(RoomLength(end)-0.225, RoomLength(end)-0.15, 'TXc');

67 text(0.05, RoomLength(end)-0.15, 'TXd');

68

69 plot(linspace(0, 0.3, 1000), linspace(0.3, 0.3, 1000), 'Linewidth', 2, 'Color',

Blue);↪→

70 plot(linspace(0.3, 0.3, 1000), linspace(0, 0.3, 1000), 'Linewidth', 2, 'Color',

Blue);↪→

71

72 plot(linspace(RoomLength(end)-0.3, RoomLength(end), 1000), linspace(0.3, 0.3,

1000), 'Linewidth', 2, 'Color', Green);↪→

74

73 plot(linspace(RoomLength(end)-0.3, RoomLength(end)-0.3, 1000), linspace(0, 0.3,

1000), 'Linewidth', 2, 'Color', Green);↪→

74

75 plot(linspace(RoomLength(end)-0.3, RoomLength(end), 1000),

linspace(RoomLength(end)-0.3, RoomLength(end)-0.3, 1000), 'Linewidth', 2, 'Color',

Red);

↪→

↪→

76 plot(linspace(RoomLength(end)-0.3, RoomLength(end)-0.3, 1000),

linspace(RoomLength(end)-0.3, RoomLength(end), 1000), 'Linewidth', 2, 'Color', Red);↪→

77

78 plot(linspace(0, 0.3, 1000), linspace(RoomLength(end)-0.3, RoomLength(end)-0.3,

1000), 'Linewidth', 2, 'Color', Orange);↪→

79 plot(linspace(0.3, 0.3, 1000), linspace(RoomLength(end)-0.3, RoomLength(end),

1000), 'Linewidth', 2, 'Color', Orange);↪→

80

81 end

82

83 %% Initialize Transmitters

84 TimeDelay = (1/BeatFrequency)*rand(1);

85 [a12, aIR] = TX(a1Frequency, a2Frequency, BeatFrequency, SamplingRate, N, TimeDelay,

aDistance);↪→

86 [b12, ~] = TX(b1Frequency, b2Frequency, BeatFrequency, SamplingRate, N, TimeDelay,

bDistance);↪→

87 [c12, ~] = TX(c1Frequency, c2Frequency, BeatFrequency, SamplingRate, N, TimeDelay,

cDistance);↪→

88 [d12, ~] = TX(d1Frequency, d2Frequency, BeatFrequency, SamplingRate, N, TimeDelay,

dDistance);↪→

89

90 if MakePlots == 1

91

92 figure(2);

93 set(gcf, 'Position', [100, 175, 750, 500]);

94

95 subplot(221);

96 plot(1000.*t, a12, 'LineWidth', 2, 'Color', Blue); hold on;

97 plot(1000.*t, aIR, 'LineWidth', 2, 'Color', Purple); hold off;

98 title(['Transmitter a: f_1 = ', num2str(a1Frequency/1000), ' kHz, f_2 = ',

num2str(a2Frequency/1000), ' kHz']);↪→

99 xlabel('t [msec]');

100 ylabel('Amplitude [V]');

101 legend({'a_{12}', 'a_{IR}'}, 'Location', 'northeast');

102 ylim([-2 8.6]);

75

103

104 subplot(222);

105 plot(1000.*t, b12, 'LineWidth', 2, 'Color', Green); hold on;

106 plot(1000.*t, aIR, 'LineWidth', 2, 'Color', Purple); hold off;

107 title(['Transmitter b: f_1 = ', num2str(b1Frequency/1000), ' kHz, f_2 = ',

num2str(b2Frequency/1000), ' kHz']);↪→

108 xlabel('t [msec]');

109 ylabel('Amplitude [V]');

110 legend({'b_{12}', 'a_{IR}'}, 'Location', 'northeast');

111 ylim([-2 8.6]);

112

113 subplot(223);

114 plot(1000.*t, c12, 'LineWidth', 2, 'Color', Red); hold on;

115 plot(1000.*t, aIR, 'LineWidth', 2, 'Color', Purple); hold off;

116 title(['Transmitter c: f_1 = ', num2str(c1Frequency/1000), ' kHz, f_2 = ',

num2str(c2Frequency/1000), ' kHz']);↪→

117 xlabel('t [msec]');

118 ylabel('Amplitude [V]');

119 legend({'c_{12}', 'a_{IR}'}, 'Location', 'northeast');

120 ylim([-2 8.6]);

121

122 subplot(224);

123 plot(1000.*t, c12, 'LineWidth', 2, 'Color', Orange); hold on;

124 plot(1000.*t, aIR, 'LineWidth', 2, 'Color', Purple); hold off;

125 title(['Transmitter d: f_1 = ', num2str(d1Frequency/1000), ' kHz, f_2 = ',

num2str(d2Frequency/1000), ' kHz']);↪→

126 xlabel('t [msec]');

127 ylabel('Amplitude [V]');

128 legend({'d_{12}', 'a_{IR}'}, 'Location', 'northeast');

129 ylim([-2 8.6]);

130

131 figure(3);

132 set(gcf, 'Position', [100, 175, 750, 500]);

133

134 subplot(221);

135 plot(1000.*t, a12, 'LineWidth', 2, 'Color', Blue); hold on;

136 plot(1000.*t, aIR, 'LineWidth', 2, 'Color', Purple); hold off;

137 title(['Transmitter a: Zoom to 1^{st} Period']);

138 xlabel('t [msec]');

139 ylabel('Amplitude [V]');

140 legend({'a_{12}', 'a_{IR}'}, 'Location', 'northeast');

76

141 xlim([0 10*ceil(1/BeatFrequency)]);

142 ylim([-2 8.6]);

143

144 subplot(222);

145 plot(1000.*t, b12, 'LineWidth', 2, 'Color', Green); hold on;

146 plot(1000.*t, aIR, 'LineWidth', 2, 'Color', Purple); hold off;

147 title(['Transmitter b: Zoom to 1^{st} Period']);

148 xlabel('t [msec]');

149 ylabel('Amplitude [V]');

150 legend({'b_{12}', 'a_{IR}'}, 'Location', 'northeast');

151 xlim([0 10*ceil(1/BeatFrequency)]);

152 ylim([-2 8.6]);

153

154 subplot(223);

155 plot(1000.*t, c12, 'LineWidth', 2, 'Color', Red); hold on;

156 plot(1000.*t, aIR, 'LineWidth', 2, 'Color', Purple); hold off;

157 title(['Transmitter c: Zoom to 1^{st} Period']);

158 xlabel('t [msec]');

159 ylabel('Amplitude [V]');

160 legend({'c_{12}', 'a_{IR}'}, 'Location', 'northeast');

161 xlim([0 10*ceil(1/BeatFrequency)]);

162 ylim([-2 8.6]);

163

164 subplot(224);

165 plot(1000.*t, c12, 'LineWidth', 2, 'Color', Orange); hold on;

166 plot(1000.*t, aIR, 'LineWidth', 2, 'Color', Purple); hold off;

167 title(['Transmitter d: Zoom to 1^{st} Period']);

168 xlabel('t [msec]');

169 ylabel('Amplitude [V]');

170 legend({'d_{12}', 'a_{IR}'}, 'Location', 'northeast');

171 xlim([0 10*ceil(1/BeatFrequency)]);

172 ylim([-2 8.6]);

173

174 end

175

176 %% Process Using Receiver

177 aIRPhase = wrapTo2Pi(GoertzelFilter(aIR, BeatFrequency, SamplingRate, N) + pi/2 +

0.0014946);↪→

178 a1Phase = wrapTo2Pi(GoertzelFilter(a12, a1Frequency, SamplingRate, N) + pi/2 +

0.9838190);↪→

77

179 a2Phase = wrapTo2Pi(GoertzelFilter(a12, a2Frequency, SamplingRate, N) + pi/2 +

0.9858353);↪→

180 b1Phase = wrapTo2Pi(GoertzelFilter(b12, b1Frequency, SamplingRate, N) + pi/2 +

0.8553438);↪→

181 b2Phase = wrapTo2Pi(GoertzelFilter(b12, b2Frequency, SamplingRate, N) + pi/2 +

0.9578522);↪→

182 c1Phase = wrapTo2Pi(GoertzelFilter(c12, c1Frequency, SamplingRate, N) + pi/2 +

0.4858836);↪→

183 c2Phase = wrapTo2Pi(GoertzelFilter(c12, c2Frequency, SamplingRate, N) + pi/2 +

0.7067454);↪→

184 d1Phase = wrapTo2Pi(GoertzelFilter(d12, d1Frequency, SamplingRate, N) + pi/2 -

0.0046242);↪→

185 d2Phase = wrapTo2Pi(GoertzelFilter(d12, d2Frequency, SamplingRate, N) + pi/2 +

0.3020730);↪→

186

187 if MakePlots == 1

188

189 figure(4);

190 set(gcf, 'Position', [100, 175, (3/2)*750, 250]);

191

192 subplot(131);

193 stem(BeatFrequency, aIRPhase, 'LineWidth', 2, 'Color', Purple);

194 title('Phase of a_{IR}');

195 xlabel('Frequency [Hz]');

196 ylabel('Phase [rad]');

197 ylim([-1 2*pi+1]);

198

199 subplot(132);

200 stem([a1Frequency a2Frequency]./1000, [a1Phase a2Phase], 'LineWidth', 2, 'Color',

Blue); hold on;↪→

201 stem([b1Frequency b2Frequency]./1000, [b1Phase b2Phase], 'LineWidth', 2, 'Color',

Green);↪→

202 stem([c1Frequency c2Frequency]./1000, [c1Phase c2Phase], 'LineWidth', 2, 'Color',

Red);↪→

203 stem([d1Frequency d2Frequency]./1000, [d1Phase d2Phase], 'LineWidth', 2, 'Color',

Orange);↪→

204 title('Phase of All 8 Tones');

205 xlabel('Frequency [Hz]');

206 ylabel('Phase [rad]');

207 legend({'a_{1,2}', 'b_{1,2}', 'c_{1,2}', 'd_{1,2}'}, 'Location', 'northeast');

208 xlim([38.6 40.9]);

78

209 ylim([-1 2*pi+1]);

210 end

211

212 %% Synchronize Tones

213 [a1PhaseCorrected, a2PhaseCorrected, aPhaseSynchronized] = Synchronize(a1Phase,

a2Phase, aIRPhase, a1Frequency, a2Frequency, BeatFrequency, SamplingRate);↪→

214 [b1PhaseCorrected, b2PhaseCorrected, bPhaseSynchronized] = Synchronize(b1Phase,

b2Phase, aIRPhase, b1Frequency, b2Frequency, BeatFrequency, SamplingRate);↪→

215 [c1PhaseCorrected, c2PhaseCorrected, cPhaseSynchronized] = Synchronize(c1Phase,

c2Phase, aIRPhase, c1Frequency, c2Frequency, BeatFrequency, SamplingRate);↪→

216 [d1PhaseCorrected, d2PhaseCorrected, dPhaseSynchronized] = Synchronize(d1Phase,

d2Phase, aIRPhase, d1Frequency, d2Frequency, BeatFrequency, SamplingRate);↪→

217

218 if MakePlots == 1

219 figure(4);

220 subplot(133);

221 stem([a1Frequency a2Frequency]./1000, [a1PhaseCorrected a2PhaseCorrected],

'LineWidth', 2, 'Color', Blue); hold on;↪→

222 stem([b1Frequency b2Frequency]./1000, [b1PhaseCorrected b2PhaseCorrected],

'LineWidth', 2, 'Color', Green);↪→

223 stem([c1Frequency c2Frequency]./1000, [c1PhaseCorrected c2PhaseCorrected],

'LineWidth', 2, 'Color', Red);↪→

224 stem([d1Frequency d2Frequency]./1000, [d1PhaseCorrected d2PhaseCorrected],

'LineWidth', 2, 'Color', Orange);↪→

225 title('Synchronized Phase of All 8 Tones');

226 xlabel('Frequency [Hz]');

227 ylabel('Phase [rad]');

228 legend({'a_{1,2}', 'b_{1,2}', 'c_{1,2}', 'd_{1,2}'}, 'Location', 'northeast');

229 xlim([38.6 40.9]);

230 ylim([-1 2*pi+1]);

231 end

232

233

234 %% Measure Distances

235 aDistanceMeasure = PhaseToDistance(aPhaseSynchronized, BeatWavelength);

236 bDistanceMeasure = PhaseToDistance(bPhaseSynchronized, BeatWavelength);

237 cDistanceMeasure = PhaseToDistance(cPhaseSynchronized, BeatWavelength);

238 dDistanceMeasure = PhaseToDistance(dPhaseSynchronized, BeatWavelength);

239

240 figure(1);

241 Arc = 0:0.01:2*pi;

79

242 TXaCircle = plot(aDistanceMeasure*cos(Arc), aDistanceMeasure*sin(Arc), 'LineStyle',

':', 'LineWidth', 2, 'Color', Blue);↪→

243 TXbCircle = plot(bDistanceMeasure*cos(Arc)+MaxDistance, bDistanceMeasure*sin(Arc),

'LineStyle', ':', 'LineWidth', 2, 'Color', Green);↪→

244 TXcCircle = plot(cDistanceMeasure*cos(Arc)+MaxDistance,

cDistanceMeasure*sin(Arc)+MaxDistance, 'LineStyle', ':', 'LineWidth', 2, 'Color',

Red);

↪→

↪→

245 TXdCircle = plot(dDistanceMeasure*cos(Arc), dDistanceMeasure*sin(Arc)+MaxDistance,

'LineStyle', ':', 'LineWidth', 2, 'Color', Orange);↪→

246

247 [MeasuredPosition, abIntersection, bcIntersection, cdIntersection, daIntersection] =

Multilaterate(TXaCircle, TXbCircle, TXcCircle, TXdCircle);↪→

248

249 Error = MeasuredPosition - ObjectPosition';

250

251 if MakePlots ~= 1

252 close all;

253 end

254

255 if MakePlots == 1

256 figure(1);

257 FillColor = 'green';

258 if abs(Error(1)) +abs(Error(2)) > 0.5

259 FillColor = Orange;

260 if abs(Error(1))+abs(Error(2)) > 1

261 FillColor = 'red';

262 end

263 end

264 plot(MeasuredPosition(1), MeasuredPosition(2),'Marker', '.', 'MarkerSize', 20,

'Color', FillColor);↪→

265 text(MeasuredPosition(1)-0.5, MeasuredPosition(2)+0.15, ['Measured Rx, Error: (',

num2str(fix(10^4*Error(1))/10^4),', ', num2str(fix(10^4*Error(2))/10^4),')']);↪→

266 plot(abIntersection(1), abIntersection(2), 'Marker', 'x', 'Color', 'blue',

'MarkerSize', 10, 'LineWidth', 2);↪→

267 plot(bcIntersection(1), bcIntersection(2), 'Marker', 'x', 'Color', 'blue',

'MarkerSize', 10, 'LineWidth', 2);↪→

268 plot(cdIntersection(1), cdIntersection(2), 'Marker', 'x', 'Color', 'blue',

'MarkerSize', 10, 'LineWidth', 2);↪→

269 plot(daIntersection(1), daIntersection(2), 'Marker', 'x', 'Color', 'blue',

'MarkerSize', 10, 'LineWidth', 2);↪→

270 end

80

271

272 end

273

274

275

276

277

81

Listing A.3: Goertzel Filter Function Code

1 function Phase = GoertzelFilter(Signal, Frequency, SamplingRate, N)

2

3 K = floor(N * Frequency / SamplingRate);

4 W = 2 * pi * K / N;

5 Coeff = 2 * cos(W);

6 Q1 = 0;

7 Q2 = 0;

8

9 for Index = 1:N

10 Q0 = Coeff * Q1 - Q2 + Signal(Index);

11 Q2 = Q1;

12 Q1 = Q0;

13 end

14

15 Real = Q1 - Q2 * cos(W);

16 Imag = Q2 * sin(W);

17 Phase = wrapTo2Pi(atan2(Imag , Real));

18

19 end

20

82

Listing A.4: Synchronize Function Code

1 function [Tone1PhaseCorrected, Tone2PhaseCorrected, PhaseCorrected] =

Synchronize(Tone1Phase, Tone2Phase, IRPhase, Tone1Frequency, Tone2Frequency,

IRFrequency, SamplingRate)

↪→

↪→

2

3 MeasuredTimeOffset = IRPhase/(2*pi*IRFrequency);

4 Tone1PhaseCorrected = wrapTo2Pi(Tone1Phase -

mod(2*pi*MeasuredTimeOffset*Tone1Frequency, 2*pi));↪→

5 Tone2PhaseCorrected = wrapTo2Pi(Tone2Phase -

mod(2*pi*MeasuredTimeOffset*Tone2Frequency, 2*pi));↪→

6 PhaseCorrected = fix(SamplingRate/10 * wrapTo2Pi(Tone2PhaseCorrected -

Tone1PhaseCorrected)) / (SamplingRate/10);↪→

7

8 end

83

Listing A.5: TX Function Code

1 function [Sig12, SigIR] = TX(Tone1Frequency, Tone2Frequency, BeatFrequency, SamplingRate,

N, TimeDelay, Distance)↪→

2

3 DCOffset = 1.65;

4 A = 1.65;

5 t = (0:N-1) ./ SamplingRate;

6 Lambda1 = 343 / Tone1Frequency;

7 Lambda2 = 343 / Tone2Frequency;

8 Tone1 = DCOffset + A * sin(2*pi*Tone1Frequency.*(t+TimeDelay) +

2*pi*Distance/Lambda1);↪→

9 Tone2 = DCOffset + A * sin(2*pi*Tone2Frequency.*(t+TimeDelay) +

2*pi*Distance/Lambda2);↪→

10 Sig12 = Tone1 + Tone2;

11 SigIR = 2*DCOffset + 2*A * square(2*pi*BeatFrequency.*(t+TimeDelay));

12

13 end

14

15

16

84

Listing A.6: Phase→ Distance Function Code

1 function Distance = PhaseToDistance(Phase, BeatWavelength)

2

3 Distance = BeatWavelength*Phase/(2*pi);

4

5 end

85

Listing A.7:Multilaterate Function Code

1 function [MeasuredPosition, abIntersection, bcIntersection, cdIntersection,

daIntersection] = Multilaterate(TXaCircle, TXbCircle, TXcCircle, TXdCircle)↪→

2

3 aQuadrant = 1:ceil(length(TXaCircle.XData)/4);

4 bQuadrant = ceil(length(TXaCircle.XData)/4):ceil(length(TXaCircle.XData)/2);

5 cQuadrant = ceil(length(TXaCircle.XData)/2):ceil(3*length(TXaCircle.XData)/4);

6 dQuadrant = ceil(3*length(TXaCircle.XData)/4):ceil(length(TXaCircle.XData));

7

8

9 TXaCircle = fix(10^5.*[TXaCircle.XData(aQuadrant); TXaCircle.YData(aQuadrant)])./10^5;

10 TXbCircle = fix(10^5.*[TXbCircle.XData(bQuadrant); TXbCircle.YData(bQuadrant)])./10^5;

11 TXcCircle = fix(10^5.*[TXcCircle.XData(cQuadrant); TXcCircle.YData(cQuadrant)])./10^5;

12 TXdCircle = fix(10^5.*[TXdCircle.XData(dQuadrant); TXdCircle.YData(dQuadrant)])./10^5;

13

14 abVectors = 10.*ones(length(TXaCircle), length(TXaCircle));

15 bcVectors = 10.*ones(length(TXbCircle), length(TXbCircle));

16 cdVectors = 10.*ones(length(TXcCircle), length(TXcCircle));

17 daVectors = 10.*ones(length(TXdCircle), length(TXdCircle));

18

19 for aIndex = 1:length(TXaCircle)

20 for bIndex = 1:length(TXbCircle)

21

22 abVectors(aIndex, bIndex) = sqrt((TXaCircle(1, aIndex) - TXbCircle(1,

bIndex))^2 + (TXaCircle(2, aIndex) - TXbCircle(2, bIndex))^2);↪→

23 bcVectors(aIndex, bIndex) = sqrt((TXbCircle(1, aIndex) - TXcCircle(1,

bIndex))^2 + (TXbCircle(2, aIndex) - TXcCircle(2, bIndex))^2);↪→

24 cdVectors(aIndex, bIndex) = sqrt((TXcCircle(1, aIndex) - TXdCircle(1,

bIndex))^2 + (TXcCircle(2, aIndex) - TXdCircle(2, bIndex))^2);↪→

25 daVectors(aIndex, bIndex) = sqrt((TXdCircle(1, aIndex) - TXaCircle(1,

bIndex))^2 + (TXdCircle(2, aIndex) - TXaCircle(2, bIndex))^2);↪→

26

27 if abVectors(aIndex, bIndex) == min(abVectors(:))

28 abIntersection = TXaCircle(:, aIndex);

29 end

30

31 if bcVectors(aIndex, bIndex) == min(bcVectors(:))

32 bcIntersection = TXbCircle(:, aIndex);

33 end

86

34

35 if cdVectors(aIndex, bIndex) == min(cdVectors(:))

36 cdIntersection = TXcCircle(:, aIndex);

37 end

38

39 if daVectors(aIndex, bIndex) == min(daVectors(:))

40 daIntersection = TXdCircle(:, aIndex);

41 end

42

43 end

44

45 end

46

47 MeasuredPosition = (abIntersection + bcIntersection + cdIntersection +

daIntersection)./4;↪→

48

49 end

87

B Transmitter Code

Listing B.1: Transmitter FPGA Verilog Code
1 `timescale 1ns / 1ps

2

3 module sq_wave_gen(

4 input CLK100MHZ,

5 input reset_n,

6 output sq_wave40k,

7 output sq_wave40_1k,

8 output ir

9);

10

11 parameter count_40k = 1249;

12 parameter count_40_1k = 1246;

13 parameter count_ir = 519582;

14

15 reg [31:0] counter_40k;

16 reg [31:0] counter_40_1k;

17 reg [31:0] counter_ir;

18

19 reg sq_wave40k_reg;

20 reg sq_wave40_1k_reg;

21 reg ir_reg;

22

23 always @ (posedge CLK100MHZ, posedge reset_n)

24 if (reset_n)

25 begin

26 sq_wave40k_reg <= 0;

27 sq_wave40_1k_reg <= 0;

28 ir_reg <= 0;

29 counter_40k <= 0;

30 counter_40_1k <= 0;

31 counter_ir <= 0;

32 end

33 else

34 begin

35 if (counter_40_1k == count_40_1k)

36 begin

37 sq_wave40_1k_reg <= !sq_wave40_1k_reg;

38 counter_40_1k <= 0;

88

39 end

40 else

41 begin

42 counter_40_1k <= counter_40_1k + 1;

43 end

44

45 if (counter_40k == count_40k)

46 begin

47 sq_wave40k_reg <= !sq_wave40k_reg;

48 counter_40k <= 0;

49 end

50 else

51 begin

52 counter_40k <= counter_40k + 1;

53 end

54

55 if (counter_ir == count_ir)

56 begin

57 ir_reg <= !ir_reg;

58 counter_ir <= 0;

59 end

60 else

61 begin

62 counter_ir <= counter_ir + 1;

63 end

64 end

65

66 assign sq_wave40k = sq_wave40k_reg;

67 assign sq_wave40_1k = sq_wave40_1k_reg;

68 assign ir = ir_reg;

69

70 endmodule

89

C Receiver Code

Listing C.1:MATLAB System Code
1 %% Clear

2 clear; close all; clc;

3 NumTests = 50;

4

5 %% Plot Stuff

6 Blue = '#003F7B';

7 Red = '#7B0000';

8 MakePlots = 0;

9

10 Distances = zeros(1, NumTests);

11 for FileNum = 0:NumTests-1

12 %% Initialize Signals

13 CLK = 100000000;

14 a1Count = 1250;

15 a2Count = 1247;

16 aIRCount = 519583;

17

18 a1Frequency = 0.5*CLK/a1Count;

19 a2Frequency = 0.5*CLK/a2Count;

20

21 SamplingRate = 1E+6;

22 BeatFrequency = 0.5*CLK/aIRCount;

23 N = 31175;

24 t = (0:N-1)./SamplingRate;

25 VSound = 343;

26 BeatWavelength = VSound/BeatFrequency;

27

28 a12 = readmatrix("ScopeData/US"+num2str(FileNum)+".csv");

29 aIR = readmatrix("ScopeData/IR"+num2str(FileNum)+".csv");

30

31 %% Process Using Receiver

32 aIRPhase = wrapTo2Pi(GoertzelFilter(aIR, BeatFrequency, SamplingRate, N) + 3*pi/2 +

2.65);↪→

33 a1Phase = wrapTo2Pi(GoertzelFilter(a12, a1Frequency, SamplingRate, N) + pi/2 +

0.9838190);↪→

34 a2Phase = wrapTo2Pi(GoertzelFilter(a12, a2Frequency, SamplingRate, N) + pi/2 +

0.9858353);↪→

35

90

36 %% Synchronize Tones

37 [a1PhaseCorrected, a2PhaseCorrected, aPhaseSynchronized] = Synchronize(a1Phase,

a2Phase, aIRPhase, a1Frequency, a2Frequency, BeatFrequency, SamplingRate);↪→

38

39 %% Measure Distances

40 Distances(FileNum+1) = PhaseToDistance(aPhaseSynchronized, BeatWavelength);

41

42 if MakePlots == 1

43

44 figure();

45 set(gcf, 'Position', [100, 175, 750, 250]);

46

47 subplot(121);

48 plot(1000.*t, a12, 'LineWidth', 2, 'Color', Blue); hold on;

49 plot(1000.*t, aIR, 'LineWidth', 2, 'Color', Red); hold off;

50 title(['Transmitter a: f_1 = ', num2str(a1Frequency/1000), ' kHz, f_2 = ',

num2str(a2Frequency/1000), ' kHz']);↪→

51 xlabel('t [msec]');

52 ylabel('Amplitude [V]');

53 legend({'a_{12}', 'a_{IR}'}, 'Location', 'northeast');

54 ylim([-2 8.6]);

55

56 subplot(122);

57 plot(1000.*t, a12, 'LineWidth', 2, 'Color', Blue); hold on;

58 plot(1000.*t, aIR, 'LineWidth', 2, 'Color', Red); hold off;

59 title(['Transmitter a: Zoom to 1^{st} Period']);

60 xlabel('t [msec]');

61 ylabel('Amplitude [V]');

62 legend({'a_{12}', 'a_{IR}'}, 'Location', 'northeast');

63 xlim([0 10*ceil(1/BeatFrequency)]);

64 ylim([-2 8.6]);

65

66 figure();

67 set(gcf, 'Position', [100, 175, 750, 250]);

68

69 subplot(121);

70 stem(BeatFrequency, aIRPhase, 'LineWidth', 2, 'Color', Red);

71 title('Phase of a_{IR}');

72 xlabel('Frequency [Hz]');

73 ylabel('Phase [rad]');

74 ylim([-1 2*pi+1]);

91

75

76 subplot(122);

77 stem([a1Frequency a2Frequency]./1000, [a1Phase a2Phase], 'LineWidth', 2, 'Color',

Blue);↪→

78 title('Phase of All 8 Tones');

79 xlabel('Frequency [Hz]');

80 ylabel('Phase [rad]');

81 legend({'a_{1,2}'}, 'Location', 'northeast');

82 xlim([38.6 40.9]);

83 ylim([-1 2*pi+1]);

84

85 end

86

87 end

88

89 %% Plot

90 figure;

91 plot(0:length(Distances)-1, Distances, 'LineWidth', 2, 'Color', Blue); hold on;

92 set(gcf, 'Position', [100, 175, (1/2)*750, 250]);

93 title("Distance Measurement for "+num2str(NumTests)+" Tests at 28cm");

94 xlabel("Test Number");

95 ylabel("Distance Measurement [m]");

96 ylim([-1 3.43+1]);

97 xlim([0 NumTests-1]);

92

Listing C.2:MSP432 Receiver Code

1 #include "stdint.h"

2 #include "msp.h"

3 #include "math.h"

4 #include "clock.h"

5

6 #define FREQ FREQ_48_MHZ

7

8 #define a1Frequency 40000.0

9 #define a2Frequency 40096.23

10 #define aIRFrequency 96.231

11

12 #define pi 3.1416

13 #define SamplingRate 101100

14 #define N 3152

15

16 float A0results[N];

17 int A1results[N];

18

19 static uint16_t Index = 0;

20

21 int main(void)

22 {

23

24 WDT_A->CTL = WDT_A_CTL_PW | WDT_A_CTL_HOLD; // Halt Watchdog Timer

25

26 // Setup 48 MHz Clock

27 init_dco();

28 set_dco(FREQ);

29

30 // GPIO Setup

31 P2->SEL0 &= ~BIT5;

32 P2->SEL1 &= ~BIT5;

33 P2->DIR &= ~BIT5; // Configure P2.5 for input

34

35 P5->SEL1 |= BIT5;

36 P5->SEL0 |= BIT5; // Configure P5.5 (A0) for ADC

37

38 // Sampling time, S&H=4, ADC14 on

93

39 ADC14->CTL0 = ADC14_CTL0_SHT0_0 | ADC14_CTL0_SHP | ADC14_CTL0_ON |ADC14_CTL0_SSEL_4;

40 ADC14->CTL1 = ADC14_CTL1_RES_0; // Use sampling timer, 10-bit conversion

41

42 ADC14->MCTL[0] |= ADC14_MCTLN_INCH_0; // A0 ADC input select; Vref=AVCC

43 ADC14->IER0 |= ADC14_IER0_IE0; // Enable ADC conversion complete interrupt

44 ADC14->CTL0 |= ADC14_CTL0_ENC; // Enable conversions

45

46 // Enable ADC interrupt in NVIC module

47 NVIC->ISER[0] = 1 << ((ADC14_IRQn) & 31);

48

49 __enable_irq();

50

51 int K1 = N * a1Frequency / SamplingRate;

52 float W1 = 2 * pi * K1 / N;

53

54 int K2 = N * a2Frequency / SamplingRate;

55 float W2 = 2 * pi * K2 / N;

56

57 int K3 = N * aIRFrequency / SamplingRate;

58 float W3 = 2 * pi * K3 / N;

59

60 while (1)

61 {

62 ADC14->CTL0 |= ADC14_CTL0_SC;

63 if (Index == N) {

64

65 float Q11 = 0.0;

66 float Q21 = 0.0;

67

68 float Q12 = 0.0;

69 float Q22 = 0.0;

70

71 float Q13 = 0.0;

72 float Q23 = 0.0;

73

74 int i = 0;

75 for (i = 0; i < N; i++){

76 float Q01 = 2*cos(W1) * Q11 - Q21 + A0results[i];;

77 Q21 = Q11;

78 Q11 = Q01;

79 float Q02 = 2*cos(W2) * Q12 - Q22 + A0results[i];;

94

80 Q22 = Q12;

81 Q12 = Q02;

82 float Q03 = 2*cos(W3) * Q13 - Q23 + A1results[i];;

83 Q23 = Q13;

84 Q13 = Q03;

85 }

86

87 float Real1 = Q11 - Q21 * cos(W1);

88 float Imag1 = Q21 * sin(W1);

89 float Mag1 = Real1 * Real1 + Imag1 * Imag1;

90 float Phase1 = atan2(Imag1, Real1) + pi/2 + 0.984;

91 if (Phase1 < 0) {

92 Phase1 += 2*pi;

93 }

94

95 float Real2 = Q12 - Q22 * cos(W2);

96 float Imag2 = Q22 * sin(W2);

97 float Mag2 = Real2 * Real2 + Imag2 * Imag2;

98 float Phase2 = atan2(Imag2, Real2) + pi/2 + 0.986;

99 if (Phase2 < 0) {

100 Phase2 += 2*pi;

101 }

102

103 float Real3 = Q13 - Q23 * cos(W3);

104 float Imag3 = Q23 * sin(W3);

105 float Mag3 = Real3 * Real3 + Imag3 * Imag3;

106 float Phase3 = atan2(Imag3, Real3) + 3*pi/2 + 0.0015;

107 if (Phase3 < 0) {

108 Phase3 += 2*pi;

109 }

110

111 float TimeDelay = Phase3/(2*pi*aIRFrequency);

112 float Delay1 = 2*pi*TimeDelay*a1Frequency;

113 int Div1 = (int)floor(Delay1/(2*pi));

114 float Remainder1 = Delay1 - Div1*2*pi;

115 float Phase1Corrected = Phase1 - Remainder1;

116 if (Phase1Corrected < 0) {

117 Phase1Corrected += 2*pi;

118 }

119 float Delay2 = 2*pi*TimeDelay*a2Frequency;

120 int Div2 = (int)floor(Delay2/(2*pi));

95

121 float Remainder2 = Delay2 - Div2*2*pi;

122 float Phase2Corrected = Phase2 - Remainder2;

123 if (Phase2Corrected < 0) {

124 Phase2Corrected += 2*pi;

125 }

126

127 float PhaseDifference = Phase2Corrected - Phase1Corrected;

128 if (PhaseDifference < 0) {

129 PhaseDifference += 2*pi;

130 }

131

132 float Distance = (343/(aIRFrequency))*PhaseDifference/(2*pi);

133

134 Index = 0;

135 }

136 }

137 }

138

139 // ADC14 interrupt service routine

140 void ADC14_IRQHandler(void) {

141

142 if (Index != N) {

143 A0results[Index] = ADC14->MEM[0]; // Move A0 results, IFG is cleared

144 A1results[Index] = P2->IN & BIT5; // Check P2.5 for IR Signal

145 Index = (Index + 1); // Increment results Index

146 }

147 else {

148 ADC14->CLRIFGR0 |= BIT0 | BIT1;

149 }

150 }

96

Listing C.3:MSP432 Receiver Clock Initialization Code

1 #include "msp.h"

2 #include "clock.h"

3

4 // Initialize DCO and other clock values

5 void init_dco(void){

6 CS->KEY = CS_KEY_VAL; // Unlock key

7 CS->CTL0 = 0; // Reset

8 CS->CTL0 = CS_CTL0_DCORSEL_3; // 12 MHz

9 CS->CTL1 = CS_CTL1_SELA_2 | // Set ACLK to REFCLK

10 CS_CTL1_SELS_3 | // Set SMCLK to DCO

11 CS_CTL1_DIVS__16 | // Divide SMCLK

12 CS_CTL1_SELM_3; // Set MCLK to DCO

13 CS->KEY = LOCK_CS_KEY; // Lock key

14 }

15

16 // Apply safe settings for 48MHz operation

17 static inline void safe_48(){

18 // Transition to VCORE Level 1: AM0_LDO --> AM1_LDO

19 while ((PCM->CTL1 & PCM_CTL1_PMR_BUSY));

20 PCM->CTL0 = PCM_CTL0_KEY_VAL | PCM_CTL0_AMR_1;

21 while ((PCM->CTL1 & PCM_CTL1_PMR_BUSY));

22

23 // Configure Flash wait-state to 1 for both banks 0 & 1

24 FLCTL->BANK0_RDCTL = (FLCTL->BANK0_RDCTL &

25 ~(FLCTL_BANK0_RDCTL_WAIT_MASK)) | FLCTL_BANK0_RDCTL_WAIT_1;

26 FLCTL->BANK1_RDCTL = (FLCTL->BANK0_RDCTL &

27 ~(FLCTL_BANK1_RDCTL_WAIT_MASK)) | FLCTL_BANK1_RDCTL_WAIT_1;

28 }

29

30 // Set DCO to provide frequency

31 void set_dco(unsigned int freq){

32 CS->KEY = CS_KEY_VAL; // Unlock key

33 CS->CTL0 = 0; // Reset

34 switch(freq){

35 case(FREQ_1_5_MHZ):

36 CS->CTL0 = CS_CTL0_DCORSEL_0;

37 break;

38 case(FREQ_3_MHZ):

97

39 CS->CTL0 = CS_CTL0_DCORSEL_1;

40 break;

41 case(FREQ_6_MHZ):

42 CS->CTL0 = CS_CTL0_DCORSEL_2;

43 break;

44 case(FREQ_12_MHZ):

45 CS->CTL0 = CS_CTL0_DCORSEL_3;

46 break;

47 case(FREQ_24_MHZ):

48 CS->CTL0 = CS_CTL0_DCORSEL_4;

49 break;

50 case(FREQ_48_MHZ):

51 safe_48(); // Apply settings for safe 48MHz operation

52 CS->CTL0 = CS_CTL0_DCORSEL_5;

53 break;

54 default:

55 // Default to 1.5MHz

56 CS->CTL0 = CS_CTL0_DCORSEL_0;

57 }

58 CS->KEY = LOCK_CS_KEY;

59 }

98

Listing C.4:MSP432 Receiver Clock Header File

1 #ifndef __CLOCK_H__

2 #define __CLOCK_H__

3

4 #include "msp.h"

5

6 #define LOCK_CS_KEY 0

7 #define CLK_PER_LOOP 4

8

9 #define FREQ_1_5_MHZ 0

10 #define FREQ_3_MHZ 1

11 #define FREQ_6_MHZ 2

12 #define FREQ_12_MHZ 3

13 #define FREQ_24_MHZ 4

14 #define FREQ_48_MHZ 5

15

16 // Initialize DCO and other clock values

17 void init_dco(void);

18

19 // Set DCO to provide frequency

20 void set_dco(unsigned int freq);

21

22 #endif

99

	Introduction
	Motivation and Use Cases
	Project Scope

	Background
	The Global Positioning System
	Indoor Positioning Systems
	Ultrasonic Signals
	Multiple Access Schemes
	Orthogonal Frequency Division Multiple Access

	Distance Measurement
	Calculating Distance by Phase Measurement
	Single Tone Signaling
	Two-Tone Signaling

	Receiver-Transmitter Time Synchronization
	Goertzel Filter
	Multilateration
	Related Works

	Simulation
	Position Measurement via Multilateration
	Ideal Simulation
	Receiver-Transmitter Link Model
	 = 0, Object Position = (0, 0)
	 = 0, Object Position = (W2m, L2m)
	 = 5ms, Object Position = (0, 0)
	 = Random, Object Position = (Random, Random)

	System Simulation
	Receiver-Transmitter Link
	 = 0, Object Position = (0, 0)
	 = 0, Object Position = (W2m, L2m)
	 = 5.19583ms, Object Position = (0, 0)
	 = Random, Object Position = (Random, Random)

	Implementation
	Transmitter TXa
	Ultrasonic Channel
	Real Tone Frequencies

	Receiver
	Verification of Design with AD2 and MATLAB
	Effect of Non-Orthogonality
	MSP432-based Receiver

	Conclusion
	COVID-19 and Remote Work
	Reflection and Lessons Learned
	Future Work
	Full IPS Implementation
	Better Tone Orthogonality
	Stronger Signals
	Power Grid Synchronization

	References
	Appendix
	MATLAB Simulation Code
	Transmitter Code
	Receiver Code

