
DEEP LEARNING FOR DETECTING TREES IN THE

URBAN ENVIRONMENT FROM LIDAR

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Julian Rice

August 2022



© 2022

Julian Rice

ALL RIGHTS RESERVED

ii



COMMITTEE MEMBERSHIP

TITLE: Deep Learning for Detecting Trees in the

Urban Environment from LIDAR

AUTHOR: Julian Rice

DATE SUBMITTED: August 2022

COMMITTEE CHAIR: Jonathan Ventura, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Franz Kurfess, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: G. Andrew Fricker, Ph.D.

Professor of Geography

iii



ABSTRACT

Deep Learning for Detecting Trees in the

Urban Environment from LIDAR

Julian Rice

Cataloguing and classifying trees in the urban environment is a crucial step in urban

and environmental planning. However, manual collection and maintenance of this

data is expensive and time-consuming. Algorithmic approaches that rely on remote

sensing data have been developed for tree detection in forests, though they generally

struggle in the more varied urban environment. This work proposes a novel method for

the detection of trees in the urban environment that applies deep learning to remote

sensing data. Specifically, we train a PointNet-based neural network to predict tree

locations directly from LIDAR data augmented with multi-spectral imaging. We

compare this model to numerous high-performant baselines on a large and varied

dataset in the Southern California region. We find that our best model outperforms

all baselines with a 75.5% F-score and 2.28 meter RMSE, while being highly efficient.

We then analyze and compare the sources of errors, and how these reveal the strengths

and weaknesses of each approach.

iv



ACKNOWLEDGMENTS

Thanks to Dr. Ventura, for your guidance and insight throughout this project. Thanks

also to Cami Pawlak, Cameron Gonsalves, Milo Honsberger, Skyler Han, Viet Nguyen

and all other students who assisted with data acquisition, cleanup, and annotation,

and worked on preceding and related projects which made my work easier. Last but

not least, thank you all to my friends and family who made this possible.

v



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview & Motivations . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives & Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Remote Sensing for Forestry . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Remote Sensing for Forestry . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Algorithmic & Statistical Methods . . . . . . . . . . . . . . . 12

3.1.1.1 Methods for Imagery . . . . . . . . . . . . . . . . . . 12

3.1.1.2 Methods for LIDAR . . . . . . . . . . . . . . . . . . 13

3.1.1.3 Methods for Multimodal Data . . . . . . . . . . . . . 14

3.1.2 Deep Learning Approaches . . . . . . . . . . . . . . . . . . . . 15

3.2 Pointcloud Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Voxel Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.2 PointNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

vi



3.3 Pointcloud Deep Learning for Forestry . . . . . . . . . . . . . . . . . 18

4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Point-Matching: A Method-Agnostic Scoring Metric . . . . . . . . . . 20

4.2.1 Derived Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.1 NAIP Imagery . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.2 LIDAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.3 Ground-Truth Tree Annotations . . . . . . . . . . . . . . . . . 27

4.3.4 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4.1 Modified PointNet . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4.2 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4.2.1 DeepSTORM Loss . . . . . . . . . . . . . . . . . . . 33

4.4.2.2 DeepLOCO Loss . . . . . . . . . . . . . . . . . . . . 33

4.4.3 Model Output Post-Processing . . . . . . . . . . . . . . . . . . 35

4.4.4 Model Optimization . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.4.1 Training Procedure . . . . . . . . . . . . . . . . . . . 36

4.4.4.2 Post-Processing Parameter Estimation . . . . . . . . 37

4.4.4.3 Hyper-Optimization . . . . . . . . . . . . . . . . . . 38

4.5 Alternative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5.1 PyCrown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5.2 PyCrown-Spectral . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5.3 SFANet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

vii



5.1 Overview of Results, by Method . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 PyCrown & PyCrown-Spectral . . . . . . . . . . . . . . . . . 41

5.1.2 SFANet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.3 PointNet & PointNet 2 . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Analysis of Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.2.1 Identification . . . . . . . . . . . . . . . . . . . . . . 50

5.2.2.2 Delineation . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.2.3 Localization . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.2.4 Data Effects . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.2.5 The “Unclear” Category . . . . . . . . . . . . . . . . 52

5.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4.1 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.2.1 RQ1: How effectively can deep learning be applied
directly to LIDAR pointclouds to detect trees in the
urban environment? . . . . . . . . . . . . . . . . . . 54

5.4.2.2 RQ2: What structures in the urban environment are
difficult to distinguish from trees? . . . . . . . . . . . 54

5.4.2.3 RQ3: Can deep learning for LIDAR pointclouds pro-
vide information that is complementary to that from
other methods? . . . . . . . . . . . . . . . . . . . . . 55

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

viii



6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

APPENDICES

A Estimated CO2 Emissions Related to Experiments . . . . . . . . . . . 70

ix



LIST OF TABLES

Table Page

2.1 Common acronyms & terms . . . . . . . . . . . . . . . . . . . . . . 6

4.1 Dataset statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Post-processing methods & parameters . . . . . . . . . . . . . . . . 37

4.3 Summary of important hyper-optimization parameters . . . . . . . 38

5.1 Summary of test-set results . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Comparison of final PointNet 1 & 2 parameters . . . . . . . . . . . 45

5.3 Sources of error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 Sources of error by category . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Input channels ablation results . . . . . . . . . . . . . . . . . . . . 52

x



LIST OF FIGURES

Figure Page

4.1 Illustration of Point-Matching . . . . . . . . . . . . . . . . . . . . . 21

4.2 Spectral and raster visualizations for an example patch (Santa Mon-
ica #88), with ground-truth tree markings. . . . . . . . . . . . . . . 26

4.3 Visualization of raw LIDAR for an example patch (Santa Monica
#88), colored by height . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Modified PointNet architecture, with example tensor shapes . . . . 31

4.5 Visual depiction of loss functions in one spatial dimension, for three
predicted and two ground-truth tree locations . . . . . . . . . . . . 34

5.1 Visual comparison of PyCrown and PyCrown-Spectral . . . . . . . 42

5.2 Visual comparison of SFANet and PointNet predictions, on an ex-
ample patch (Santa Monica #5) . . . . . . . . . . . . . . . . . . . . 44

5.3 The five patches randomly selected for source-of-error analysis, from
Claremont, Claremont, Long Beach, Riverside, and Santa Monica
respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xi



Chapter 1

INTRODUCTION

1.1 Overview & Motivations

Trees hold a crucial place in our local and global ecosystems, no matter where we

live. Even in the urban environment, where we tend not to take particular notice of

the trees around us, they serve a variety of beneficial purposes, including mitigating

pollution, improving home heating and cooling efficiency, and creating outdoor social

spaces [1].

Identification and classification of trees is a crucial component of accurate, data-

driven forestry and urban management. In forestry, this includes applications for

tree biodiversity analysis and monitoring [59], and wildlife habitat assessment and

protection [26]. In urban areas, tree inventories can be utilized in similar ways, and

further assist with urban and environmental planning [69]. While rural forests have

been researched extensively, urban forests have generally been less of a focus, and

accurate monitoring of trees is key to improving our understanding especially as the

climate changes [54]. Further, accurate tree inventories and monitoring is crucial for

unlocking trees’ own positive environmental impacts; research has shown that planting

trees does not automatically result in a positive environmental impact (particularly in

the urban environment), and that selection of ideal planting locations and monitoring

throughout trees’ lifetimes can be key to realizing their potential [44]. Yet, keeping

an up-to-date record via manual surveying of trees is difficult given the prohibitive

associated costs and the ever-changing nature of any forest [18]—a manual survey

1



of all street trees (i.e. not including trees in backyards or on private land) in Los

Angeles required 18 months of effort and cost $2 million [6].

Because of these issues, the task of automating tree detection and classification has

been of interest to researchers for decades [19]. This approach has been made pos-

sible by the advent and widespread collection of a wide variety of remote sensing

data sources in recent decades, including multi-band and multi-perspective imaging,

LIDAR, and RADAR, usually collected from aircraft, UAV, or satellite [36]. Alone

as well as in combination, these sources capture a wide spectrum of features of trees

and their environments. From these features, we can attempt to firstly identify where

trees occur, and subsequently may be interested in determining attributes of them

such species, size, health, foliage coverage, or growth over time [36].

Although hand-crafted algorithmic approaches to these problems have been devel-

oped [18], the size and novel nature of these data make data-driven machine learning

approaches appealing. However, these new data sources bring with them new chal-

lenges. For example, aerial LIDAR captures surfaces in the form of an un-ordered

cloud of points in XYZ space, a format which requires more sophisticated algorithms

that tend to be computationally expensive [71][36] (compared to, for example, im-

age analysis). Further challenges are introduced in the urban environment for all

data sources, because of the relative sparsity, irregular distribution, and heterogene-

ity of its trees, not to mention the myriad of human-made objects and structures

with which the trees coexist (and may appear similar to). Still, it is hypothesized

that LIDAR represents the most promising path toward successfully detecting and

analyzing individual trees in the urban environment, especially when combined with

imagery sources [36].

Given the recent and dramatic rise in the effectiveness of deep learning neural net-

works for a variety of tasks [33][31], it is natural to question whether they could

2



be useful in this domain as well. Various deep learning methods have in fact been

proposed that utilize various forms of imagery data, for both rural [19][51][59][47],

and to a lesser extent urban [3] forests. However, with the advent of networks de-

signed specifically to operate on pointclouds [56], new deep learning approaches to

this problem that utilize raw LIDAR are appealing, but little-explored so far.

1.2 Objectives & Approach

In this work, we are interested in applying deep neural networks directly to LIDAR

data augmented by multi-spectral imagery. Though many previous tree detection

approaches are premised on generating some form of raster (image) from LIDAR

[25][24][66], this is a destructive operation by nature which may obscure useful infor-

mation contained in the data [71]. We instead evaluate approaches to deep learning

for tree detection that operate directly on LIDAR from the urban environment.

1.2.1 Research Questions

• RQ1: How effectively can deep learning be applied directly to LIDAR point-

clouds to detect trees in the urban environment?

• RQ2: What structures in the urban environment are difficult to distinguish

from trees?

• RQ3: Can deep learning for LIDAR pointclouds provide information that is

complementary to that from other methods?

3



1.2.2 Hypothesis

A sufficiently well-tuned deep neural network, learning directly from imagery-augmented

LIDAR, will outperform other methods for tree detection in the urban environment

including:

1. methods which do not utilize deep neural networks,

2. methods which only utilize spectral data, and

3. methods which utilize LIDAR in a summarized form (e.g. rasters).

1.3 Contributions

We develop a technique for urban tree detection that is efficient and effective. We

find that:

• Our method outperforms our baselines in terms of predictive capability, achiev-

ing the best F-score of 75.5% on our test set.

• Our method outperforms our baselines in terms of localization accuracy, achiev-

ing a best root-mean-squared error of 2.28 meters on true positive predictions.

• Our method is significantly more efficient than the other deep learning baseline

we compare against.

• Our method synthesizes deep learning techniques developed in a variety of

disparate fields, including microscopy, crowd-counting, remote sensing, and

forestry.

4



• Our method is capable of achieving high performance from publicly available

datasets.

5



Chapter 2

BACKGROUND

This chapter will provide a brief overview of common background information, tech-

niques, and terminology from forestry and deep learning that will be required for

understanding future chapters. Those with a background in deep learning may find

it useful to read the section on remote sensing for forestry, and vice versa.

Table 2.1: Common acronyms & terms

Term Description
LIDAR Light Detection And Ranging: pointcloud data
RGB Red, Green, and Blue, the visible light channels
NIR Near-Infrared: a non-visible light channel
NDVI Normalized Difference Vegetation Index, a measure of foliage
CHM Canopy Height Model, a raster of tree height
ANN Artificial Neural Network, also abbreviated as NN
CNN Convolutional Neural Network, an ANN specialized for images
Dense Densely connected layer, a simple neural network layer
ReLU Rectified Linear Unit, the function f(x) = max(0, x)

2.1 Remote Sensing for Forestry

Remote sensing refers to the collection and use of geo-referenced data gathered re-

motely, usually by aircraft or satellite. Remote sensing data can assist in many tasks

of interest to the forestry community, including assessing forest size and diversity, cal-

culating urban green volume, and monitoring forests over time. Perhaps the two most

common forms of remote sensing data utilized for forestry are imagery and LIDAR.

Remote sensing imagery can take many forms, usually captured from satellite. The

most common is standard three-band RGB (Red-Green-Blue) imagery, which captures

6



the same spectrum of information that our eyes perceive. We will use the term ”multi-

spectral” (or ”multi-band”) to refer to imagery that contains additional wavelengths

outside of the RGB channels; a common addition is near-infrared (NIR) channel.

We will further use ”hyper-spectral” to refer to imagery with a much larger number

of bands, in the dozens or hundreds (although the literature is inconsistent in this

terminology).

Although our eyes cannot perceive NIR wavelengths, they are quite useful because

photosynthetic cells (the cells that make plant leaves green) tend to strongly reflect

NIR, while strongly absorbing red and blue wavelengths. Given this unique trait of

plant greenery, we can calculate a measure called the Normalized Difference Vegeta-

tion Index (NDVI), which utilizes the NIR and Red bands to give a metric of how

much leafy vegetation is present in each pixel [30]:

NDVI =
NIR− Red

NIR + Red
(2.1)

This metric ranges from -1 to 1, where values close to 1 signify leafy vegetation, and

values close to or less than 0 tend to be other objects. It is of course not a foolproof

method of detecting trees for a number of reasons: deciduous trees that have lost

their leaves in the winter will not register high values; non-trees such as grass and

shrubs will register high values; and interference from clouds, pollution, and shadows

can result in misleading values.

Another common form of remote sensing data is LIDAR, or Light Detection and

Ranging. LIDAR is analogous to radar in that is uses the response time of waves

to determine the distance from the source to some reflective surface. The difference

is that while RADAR uses radio waves, LIDAR uses light waves. LIDAR, which is

usually captured by piloted or unpiloted aircraft, returns a nominally unordered set

7



of points in XYZ space where each point represents a location where a light ray was

reflected from a surface back to the source. These points do not have even spacing or

density (especially since the aircraft passes can overlap in some areas but not others).

They are also subject to noise in measurement, as well as detecting transient objects

such as birds or small surfaces such as telephone wires.

Because of the unwieldy nature of raw LIDAR, a common approach is to rasterize it,

which converts it to an image-like format, where each pixel represents some property

of the spatial extent of the pixel. Commonly generated rasters are the Digital Terrain

Model (DTM), which measures the absolute height of the ground, the Digital Surface

Model (DSM), which measures the absolute height of the tallest object, and the

Canopy Height Model (CHM), which is the height of the tallest object relative to the

ground, and is computed as the difference between the DSM and DTM. It is most

commonly the CHM that is then used for further forestry applications.

Literature reviews [15, 36] note that the most multi-model approachs—those which

combine multiple sources of data, particularly LIDAR and multi-spectral imagery—

are most promising for challenging forestry problems.

2.2 Deep Learning

Although the purpose of this work is not to provide an in-depth explanation of the

basis of deep learning, a general background is provided here. For a more involved

discussion of the history and workings of deep learning, we recommend Lecun et al.

2015 [33].

Deep learning refers to the use of artificial neural networks that are able to learn

their own parameters. Similar to the way a linear regression is able to approximate

8



the data to which it is fit, neural networks can learn to approximate functions, albeit

usually much more complicated functions than a line of best fit. Artificial neural

networks (ANNs) are called such because they mimic the way we understand the

human brain’s neurons to transmit information and learn, though the term “artificial”

is often dropped in the literature since it is implied.

Given a set of numeric input features, and some numeric target labels, a typical deep

learning approach will be to train a neural network to predict the correct label for

each input. A typical neural network accepts a vector of real numbers as input, and

applies a variety of operations with learned weights to generate an output vector. A

commonly used operation is the matrix multiplication of the input vector by a matrix

of learned weights, and the addition of a learned bias term. Each of these operations

is then commonly followed by the application of a non-linear function element-wise

to the output vector, called an “activation function” in analogy to the way neurons

are activated in the human brain. The weight operation and nonlinearity together

are generally called one “layer” in the network; when many such layers are applied

one after another, the network is considered deep (though there is no well-defined

threshold for when a network becomes deep). We will refer to this particular type of

layer as a Dense layer, which gets its name from the fact that each output element is

affected by every input element, and thus in a graph representation the network is very

densely connected. This layer is alternately called a fully-connected layer, and many

of them together is often called a multi-layer perceptron or feed-foward network in the

literature. Another common type of neural network is convolutional neural network

(CNN), which is primarily used on image data. These networks function by learning

sliding window filters that identify patterns in gridded data, like RGB images.

A neural network is trained to minimize the error between its predictions and the

target labels. This is done via the Backpropogation algorithm [23], which determines

9



how much each individual weight contributed to the overall error by taking the partial

derivative of the error with respect to each weight, and adjusting them accordingly.

This is done repeatedly until the weights have converged to a (potentially local) min-

ima in the loss space. Commonly, a subset of the data is held out as a validation set,

and is evaluated after each iteration, to ensure that the model is not over-fitting to

its training data. Note that the training process outlined here is a simplified abstrac-

tion; in practice, it is complicated by learning on mini-batches, using more advanced

weight-update algorithms that incorporate adaptive learning rates and momentum,

and other enhancements such as batch normalization and dropout.

10



Chapter 3

RELATED WORK

This chapter will provide an overview of relevant research conducted along two fronts:

Remote Sensing for Trees (Section 3.1), and Pointcloud Deep Learning (Section 3.2).

Lastly, we will introduce the methods that are bridging the gap between the two,

in Section 3.3. Remote Sensing for Trees will cover various algorithmic, statistical,

machine learning, and deep learning approaches to tasks such as tree detection (iden-

tifying which areas contain trees), delineation (identifying individual tree locations or

tree crowns), and classification (identifying traits of individual trees, usually family

or species, though attempting to identify size, age, or any other attribute is possible

as well). In our work, we are primarily interested in tree detection and delineation,

which is a necessary precursor to classification. Pointcloud Deep Learning will cover

various approaches to deep learning applied pointcloud data.

3.1 Remote Sensing for Forestry

Remote sensing for forestry has a long history, dating back to at least the 1970’s

with the launch of Landsat-1 [8]. Boyd & Danson [8] in 2005 review the first three

decades of forestry applications of satellite remote sensing, finding that it had enabled

three primary avenues of research: “(1) the spatial extent of forest cover, which

can be used to assess the spatial dynamics of forest cover; (2) forest type and (3)

biophysical and biochemical properties of forests.” More recent surveys find that

improved spatial resolution has led to increased work on individual tree-level metrics

(as opposed to focus on forests or stands)[18], and an increased prevalence of fusing

11



data from different sources and scales particularly in the urban environment [36].

We seek to continue these trends, by introducing a new method for individual tree

detection in the urban forest.

This section covers research into techniques that utilize remote sensing data to achieve

various tree detection, delineation, and classification tasks, in both urban and rural

forests.

3.1.1 Algorithmic & Statistical Methods

Various algorithmic, statistical, and traditional machine learning methods have been

utilized for forestry applications. In recent decades, the number of publications deal-

ing with such tasks have been steadily increasing, suggesting an increased interest in

these problems [18].

3.1.1.1 Methods for Imagery

One common approach is to predict tree features directly from multi-spectral imagery.

The most basic method is to use spectral analysis to identify which pixels contain

trees, and classify those trees’ species based on their unique spectral properties; this

is the approach taken by Xiao et al. [69], applied to relatively low spatial resolu-

tion (3.5m/pixel) imagery in urban Modesto, CA. More recently, Alonzo et al. [3]

and Jensen et al. [27] applied statistical methods to various spectral properties to

classify individual tree species in urban environments. Shang & Chisolm [59] instead

compared multiple traditional machine learning techniques—support-vector machine

(SVM), AdaBoost, and random forest—against traditional statistical methods, using

multi-spectral imagery as input. They found these techniques outperformed statisti-

12



cal methods for species classification in the challenging region of the Australian rural

forest, which contains many varieties of similar species.

A less common approach with imagery data is to instead use multi-view imagery; that

is, imagery that contains multiple different perspectives of the same tree. Perhaps

the most comprehensive dataset of this kind to date, from Beery et al. [6], combines

Google Maps imagery with one or more Google Street View images of each tree.

3.1.1.2 Methods for LIDAR

Alternatively, LIDAR-based approaches seek to identify trees by structure, instead

of spectral reflectance. Detection and classification based on LIDAR-derived CHMs

is common. Early work 2000s by Popescu & Wynne [52, 53] found that LIDAR-

derived CHMs are useful for the detection of trees, and estimation of individual tree

properties such as height and crown size, as well as forest-scale metrics such as forest

volume and biomass. The “watershed method” [45] has become a standard approach

for tree detection and segmentation with CHMs [38, 60, 66]. Watershed methods

involve finding local maxima in the CHM, segmenting or contouring them at saddle

points and valleys, and combining or filtering these points with various algorithms to

achieve final tree delineations. An efficient and well-performing modern example of

the watershed method for tree detection is PyCrown [74].

However, it is obvious that rasterizing 3-dimensional LIDAR into a 2-dimensional

CHM loses information that may be helpful, and thus researchers have been interested

in techniques that operate more directly on LIDAR pointclouds. Li et al. [35] develop

an approach that which claims to be the first to segment trees directly from a LIDAR

pointcloud. They do so with a top-down method that works from the highest points

down to the lowest, similar to the theory behind the watershed method. Jakubowski

13



et al. [25] evaluate this approach in comparison with a CHM watershedding method,

and finds neither outperforms the other in all cases. Another technique that operates

directly on pointclouds, by Ayrey et al. [4], is based on horizontally slicing the

pointcloud at 1-meter intervals, clustering points within each slice, and aggregating

the slices to generate delineated tree canopies. An obvious deficit of these LIDAR-only

approaches is their struggle in delineating between trees and human-made structures,

especially for non-learning methods like the watershed method. For this reason they

are almost exclusively tested and utilized in rural instead of urban areas, where there

are few buildings and thus nearly anything more than a few meters off the ground

can be assumed to be a tree.

3.1.1.3 Methods for Multimodal Data

Perhaps most promising are the approaches that combine both LIDAR and imagery,

especially in the urban environment where it cannot be assumed that high points rep-

resent treetops, as can be assumed in most rural forests. One of the simplest methods

for combining LIDAR and spectral information is to filter a CHM by an aligned NDVI

image. Huang et al. [24] utilize this approach, to detect trees for the calculation of

urban green volume. Alternatively, instead of interpolating the LIDAR to the im-

agery, some researchers opt to go the other direction. Parmehr et al. [48] interpolate

imagery-derived NDVI values to each LIDAR point, to assist in tree detection and

delineation in the urban environment. Zhang et al. [71] develop a similar approach,

first filtering LIDAR points by the closest associated NDVI pixel, then using a simple

local maximum-based algorithm to determine treetops and crowns, which are further

filtered. The obvious benefit of interpolating imagery to the LIDAR pointcloud is

that the full 3-D structure of the LIDAR data is preserved [48].

14



3.1.2 Deep Learning Approaches

In recent years, with the remarkable success of deep learning in a wide variety of

disciplines [33], a number of deep-learning approaches to tree detection, delineation,

and classification have been developed. Specifically, researchers have been inspired to

leverage the demonstrated success of convolutional neural networks (CNNs) [31, 33].

For example, Li et al. [34] applied CNNs to multi-spectral imagery for the purpose

of palm oil tree detection and delineation. However, more approaches have been

developed that leverage LIDAR in combination with this imagery. Fricker et al. [19]

demonstrate the benefits of multi-spectral imagery over RGB imagery, by training

CNNs to predict tree species on imagery filtered by a CHM to exclude pixels less

than 5 meters above the ground; they find that the multi-spectral CNN outperforms

the RGB model significantly. Onishi & Ise [47] also apply a CNN to RGB imagery,

with a CHM being utilized in preprocessing. Ples,oianu et al. [51] create an ensemble

of models trained on a variety of LIDAR raster-derived and imagery sources, finding

that an ensemble of two different models often outperforms a model trained on just

one data source (though why they did not compare this to a model trained on a stack

of more than one data source is not exactly clear). In Weinstein et al. [65], LIDAR is

used in a more inventive way: they use the CHM-based technique developed by Silva

et al. [60] to generate tree crowns, which they treat as ”noisy labels.” They then

pre-train a convolutional neural network on corresponding RGB images, with these

noisy labels as the target, and finally fine tune the model on hand-annotated trees.

15



3.2 Pointcloud Deep Learning

3.2.1 Voxel Methods

The initial approaches to deep learning on pointclouds (aside from applying standard

CNNs to rasters, as described in previous sections) was to convert the pointcloud

to a 3D grid of ”voxels” (the 3-dimensional extension of a pixel), where each voxel

contains some feature of the pointcloud within its space, usually the point density or

just a binary encoding of whether points are present in that voxel. These voxel grids

could then be learned on by 3D convolutional neural networks [28, 43, 68]. However,

and the 3D convolution is computationally expensive, and since these 3D voxel grids

tend to be very sparse much of that computation is essentially wasted [56].

3.2.2 PointNet

Though deep learning had been applied to pointcloud-derived data (for example,

LIDAR-derived CHMs) it was not until PointNet, by Qi et al. [56], that a deep learn-

ing technique was invented that was effective at operating directly on pointclouds.

The main difficulty is that while neural networks had proven quite effective at learning

from uniformly spaced and gridded information such as images, pointclouds contain

spatial information but the points themselves are unstructured and ordered only by

arbitrary collection order. This means any network that learns from them should be

invariant to the order of the points. The key insight of PointNet is that this can be

done by the use of symmetric functions; that is, functions like addition or maximum

are invariant to the order of their inputs:

max(a, ..., z) ≡ max(z, ..., a)

16



PointNet thus learns by generating local feature independently for each input point,

and then computing a global feature as the element-wise maximum of all the local

feature vectors. To make their approach further invariant to orientation of the object

described by the pointcloud, they included alignment sub-networks (also referred to

as T-Nets) which learn to reorient pointclouds to a canonical orientation.

From this basic structure, the original PointNet authors propose two different output

modes for two common tasks related to pointcloud learning:

• Classification, for classifying the scene as a whole. For example, we might want

to know if a certain pointcloud represents a lamp or a chair. The PointNet

authors propose applying a standard multi-layer perceptron network to the

global feature vector followed by a softmax activation, to output a vector of

representing a probability distribution over all possible classes.

• Segmentation, for classifying each point in the scene individually. For example,

when there are multiple objects in a single scene, we may want to know which

points represent the extents of which objects. The PointNet authors propose

concatenating the global feature vector to each local feature, and then applying

simple

PointNet++ (aka PointNet 2) [57] extended upon the original by iteratively grouping

points, so that features could be learned for scales larger than single points but smaller

than the scene as a whole. Specifically, three steps are used:

1. Sampling: Farthest-Point Samping (FPS) is used to select centroids in the

pointcloud.

2. Grouping: Ball Query clustering is used to select all points in the neighborhood

of each centroid. Ball Query clustering works by simply selecting all points

17



within a fixed distance of each centroid, which the authors find performs better

than approaches like K-Nearest Neighbors.

3. Learning: A standard PointNet network is applied to each group, to learn a

feature vector for each group.

These three stages, which together are called a Set Abstraction operation, can be

repeated by taking the output features for each group as the new input points to

the next layer. In the original PointNet++, they use two successive Set Abstraction

layers before the final segmentation/classification output layers.

3.3 Pointcloud Deep Learning for Forestry

Only a few others have attempted to apply deep learning directly to LIDAR data (as

opposed to LIDAR-derived rasters such as a CHM) for forestry purposes. Inspired

by voxel-based methods, Ayrey et al. [5] voxelize LIDAR pointclouds, and apply 3D

convolutional neural networks, testing this approach in rural forested areas in New

England. However, they do note that training a single model takes upwards of one

day, as might be expected given the computational complexity of 3-D convolutions.

To the best of our knowledge, Chen et al. [10] is the only attempt to apply a PointNet-

style network directly to tree detection and classification, which they do in both city

parks and nearby rural forests. However, they do it in a somewhat odd way; they

split the space it into a grid of large voxels in XY space, such that they are applying

PointNet within a vertically-oriented rectangular prism roughly the size of one tree,

and classify only whether a tree is present in that voxel or not. For the actual tree

location and segmentation, another CHM-based local maxima algorithm was used,

but only on the voxels that their PointNet labeled as containing trees. Thus, their

method still does not exploit the full information contained in the pointcloud for tree

18



detection and segmentation. However, they do demonstrate the general ability of a

PointNet-style network to discriminate between trees, buildings, and other objects.

Methods operating directly on LIDAR have been applied to closely related tasks as

well. For example, Liu et al. [37] detect trees using the watershed method and then

use a novel vertically-segmented PointNet variant for species classification.

19



Chapter 4

METHODS

4.1 Overview

First, we define our evaluation metrics (Sec. 4.2) and dataset (Sec. 4.3). Then, we

introduce our proposed method: a PointNet-based architecture for learning directly

from spectrally-augmented LIDAR data, detailed in section 4.4. Section 4.5 details

various competing methods which we compare against.

4.2 Point-Matching: A Method-Agnostic Scoring Metric

In order to fairly compare any two methods for urban tree detection, we define a

simple metric that can be used to evaluate how well a set of predicted locations

corresponds to actual tree locations. The goal is to find a 1-to-1 mapping between

as many ground-truth and predicted trees as possible. We want a 1-to-1 mapping so

that each predicted tree is matched with exactly one ground-truth tree; otherwise,

a predicted tree could be interpreted as predicting the existence of greater than or

less than one trees in its vicinity, making the predictions difficult to interpret. Our

approach is inspired by similar metrics used in forestry [17] and crowd-counting [62].

To ensure predictions are sufficiently localized to the trees they are matched with,

matches are only allowed within a certain Euclidean distance, for which we use 6

meters. This threshold is somewhat arbitrary; a larger threshold will in general give

better matching scores, and a smaller threshold worse scores.

20



Informally, the algorithm seeks to find the most optimistic interpretation of a method’s

predictions. As an illustrative example, consider Fig. 4.1, where we assume two

ground-truth trees, A and B (squares), and two predictions, P and Q (circles). If we

use a sub-optimal matching scheme (Fig. 4.1a) by matching each prediction with its

nearest ground-truth, both P and Q are assigned to A, with P being the only one

matched (to preserve the 1-to-1 property) since it is closest. An optimal matching

scheme on the other hand (Fig. 4.1b) matches P with B, since Q can be matched

with A. Finding the optimal solution to this problem turns out to be a version of the

linear assignment problem, for which efficient algorithms are already known [12].

(a) A sub-optimal matching. Predic-
tions are circles, squares are ground-
truth, and the dashed rings show the
maximum match distance threshold for
each ground-truth. Matches (true pos-
itives) have green borders and connect-
ing lines, while incorrect predictions
(false negative for B and false positive
for Q) are red.

(b) An optimal matching. All are now
true positive. Note that even though P
is closer to A than B, matching it with
B allows for a more optimal matching
overall.

Figure 4.1: Illustration of Point-Matching

Formally, consider a set of ground-truth tree locations Y = {y1, ..., ym}, and predicted

tree locations Ŷ = {ŷ1, ..., ŷn}. LetD be the maximum distance threshold for matches,

and dij be the distance between yi and ŷj; thus we consider any assignment between

two points where dij > D to be “unmatched”. We compute the optimal linear

assignment—via the algorithm as described in [12] and implemented in Scikit-Learn

21



[50]—by evaluating the cost of matching yi to ŷj with the following function:

Cost =


dij if dij ≤ D

L otherwise, where L is a large constant ≫ D

(4.1)

This cost function will always maximize the number of matches, since any reduction

in the cost of unmatched points—case #2 in the cost function—will always outweigh

any costs accumulated in case #1. We use L = 1010, but anything a few orders of

magnitude larger than D should be sufficient.

4.2.1 Derived Metrics

The point-matching method naturally lends itself to a common set of machine learning

metrics—precision, recall, and F-score—by taking the following definitions:

• True Positives (TP): The number of matched predictions, or equivalently the

number of matched ground truth since matching is 1-to-1 (count of green-

bordered circles in Fig. 4.1).

• False Positives (FP): The number of unmatched predictions (count of red circles

in Fig. 4.1).

• False Negatives (FN): The number of unmatched ground-truth trees (count of

red squares in Fig. 4.1).

22



The metrics are computed in the standard manner:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1-score =
2 · Precision · Recall
Precision + Recall

Recall measures the proportion of ground-truth trees that are matched to a prediction,

while precision measures the proportion of predictions that are are matched to a

ground-truth. To illustrate the difference, imagine a scenario in which the model

greatly over-predicts, such as predicting there is a tree on every pixel; in this case,

every ground-truth will be positively matched to a prediction, so recall will be 100%.

However, precision will be very low, since only a small fraction of predictions are

matched to a ground-truth. F1-score is harmonic mean of the two. For all three

of these metrics, values closer to 1.0 (or 100% when expressed as a percentage) are

better.

We also define a metric that determines the extent to which a method consistently

over- or under-estimates the number of trees, which we will call bias. It essentially

measures the percentage difference between the number of predictions and the number

of ground-truth trees, which can be expressed in multiple ways (including in terms of

precision and recall):

Bias =
count(predictions)

count(ground-truth)
− 1 =

TP + FP

TP + FN
− 1 =

Recall

Precision
− 1

Subtracting one gives us the difference between that ratio and an unbiased estimator’s

expected ratio of one. Bias is positive when a prediction over-estimates the number of

trees, and negative when it under-estimates; values closer to zero are better. Another

23



useful feature of bias is that it can be used to compute an unbiased estimate of the

true tree count for an area:

countunbiased = countbiased ·
1

1 + bias

For example, consider a model which we believe has a bias of -15%. We expect it to

predict 15% fewer trees than actually exist. To get an unbiased count, we multiply

by (1 − 0.15)−1 = 1.176, or increase our biased count by 17.6%. Of course, this

method does not tell you where the trees are that you over or under counted; only

their expected number.

Lastly, we compute the Root-Mean-Squared Error (RMSE) between matches. This

is a measure of the average distance between correctly matched ground-truth and

predictions, and thus serves to measure how well a model is able to localize the exact

location of the tree trunk. Given the set of all distances between matched pairs

{d1, ..., dk}:

RMSE =

√√√√1

k

k∑
i=1

d2i

It should be noted that this metric is not entirely independent of precision and recall.

If a model is extremely cautious, and only predicts a tree when it is almost certain it

knows the tree trunk is, it would have a very good RMSE and precision, but a quite

low recall. The converse example, where the model always predicts a huge number of

trees everywhere (low precision, high recall), results in at least one prediction being

very close to each ground-truth by chance, and thus a good RMSE since the point-

matching metric will generally choose the closest candidate. With this in mind, RMSE

is only truly comparable when models have the same precision and recall, which rarely

occurs. Thus, comparisons of RMSE should be seen only as approximations of actual

localization skill.

24



Table 4.1: Dataset statistics

Region Patches LIDAR Pts Trees Trees Per Patch
Avg Median Min Max

Santa Monica 92 17.7 M 4109 44.66 46 8 71
Long Beach 100 10.3 M 5845 58.45 60 6 140
Claremont 92 20.2 M 4678 50.85 46.5 6 115
Riverside 90 9.9 M 4087 45.41 41.5 0 111
Total 374 58.1 M 18719 50.05 48 0 140

4.3 Dataset

Three primary sources of data are used: satellite imagery, aerial LIDAR, and manual

ground-truth tree annotations. We select four regions in the greater Los Angeles

region as a testbed, for their quantity of trees, variety of tree phenotypes and human-

made structures, and availability of data: Santa Monica, Long Beach, Riverside, and

Claremont. See Table 4.1 for summary statistics of our dataset.

Patches are selected throughout each region as training tiles, and are annotated with

ground-truth tree locations. We randomly select patches with the following split:

80% training, 10% validation (for applicable methods, otherwise it is grouped in with

training), and 10% for testing. Each set is stratified so that a proportional number

of patches are selected from each of the four dataset regions. Every method uses the

same training and testing set, making their results directly comparable.

4.3.1 NAIP Imagery

Spectral data (imagery) is collected by the National Agricultural Imagery Program

(NAIP), and is publicly accessible at no charge1. It is collected at 60 cm resolution,

1https://fsa.usda.gov/programs-and-services/aerial-photography/imagery-
programs/naip-imagery/index

25



(a) RGB Image

(b) NDVI Image (c) Canopy Height Model (CHM)

Figure 4.2: Spectral and raster visualizations for an example patch (Santa
Monica #88), with ground-truth tree markings.

and contains a Near-Infrared (NIR) band in addition to the standard Red-Green-Blue

bands, from which we can further calculate NDVI. We use NAIP imagery from 2018.

We select a number of patches from each region, in 153.6 x 153.6 meter (256 x 256

pixel) squares aligned with NAIP imagery pixels. Patches are selected throughout

the area of interest to provide a variety of tree appearances and counts.

26



4.3.2 LIDAR

LIDAR is provided freely to the public by the U.S. Geological Survey’s 3-D Elevation

Program (USGS 3DEP)2. It is captured overhead by aircraft, with the data we selected

being gathered between 2016 and 2019. The 3DEP standards specify that the root

mean-squared error in the vertical direction (RMSEz) will be less than or equal to

10 cm, and the density of points will be at least 2 per square meter. However, we

measure a density of closer to 6.58 points per square meter in our final data patches.

Density does vary substantially throughout the dataset, caused by the fact that each

pass of the aircraft overlaps partially with previous passes in some areas but not

others, and the fact that LIDAR was captured on different dates and under different

conditions in each region. A visualization of an example LIDAR patch is shown in

Fig. 4.3 (visualization generated with Open3D [72]).

4.3.3 Ground-Truth Tree Annotations

To develop a consistent inventory of ground-truth tree locations, we manually anno-

tated tree locations as they appeared in the NAIP imagery, and utilized additional

sources of data (such as higher resolution imagery and NDVI images) to verify lo-

cations. Inventories gathered by the cities were used as the starting point for our

ground-truth tree location annotations, though these inventories did not include trees

in yards and on private property, and we made adjustments to the majority of points

to better align with the imagery. Tree annotations were placed at the main trunk, or

the peak of the canopy when the trunk location was not possible to determine.

2https://usgs.entwine.io/

27



(a) Overhead view

(b) Side view

Figure 4.3: Visualization of raw LIDAR for an example patch (Santa Mon-
ica #88), colored by height

28



4.3.4 Preprocessing

The data processing pipeline is as follows:

1. Once for each LIDAR data source:

(a) The raw LIDAR point cloud is processed using PDAL [49] to generate a

HeightAboveGround (HAG) dimension, a normalized version of the raw z

dimension, and reproject to a common coordinate reference system (EPSG:26911).

(b) Processed LIDAR is separated into the grid squares which have been iden-

tified for training, validation, or testing.

(c) Red, Green, Blue, NIR, and NDVI are added as additional features to each

LIDAR point, by nearest-neighbor interpolation of the NAIP values.

2. Once during model instantiation:

(a) Remove points with spurious HeightAboveGround values, which we define

to be less than -10 meters or than greater 50 meters.

(b) Patches are subdivided. Assuming a user-provided subdivision parameter

of k, subpatches are generated with a height and width equal to the full-

sized patch’s side length divided by k. These subpatches are designed to

be overlapping exactly halfway with each of its cardinal neighbors, such

that the total number of subpatches is (2k − 1)2.

(c) For each subpatch, if there are fewer than n points in the patch (where n

is the number of input points to the model, a user parameter), one of three

actions is taken as determined by another user parameter:

• The subpatch is skipped, or

• The subpatch is filled with “no data” points (with -1000 HeightAbove-

Ground values) until it reaches n total points, or

29



• The subpatch is filled by randomly re-sampling existing points until n

total points is reached.

3. For each example generated during training or inference:

(a) Read n points randomly from the subpatch (where n is a user parameter).

(b) Scale the x and y dimensions to be between zero and one.

(c) Scale the input HAG dimension so that the range 0 to 50 meters in the

input correspond to the range 0 to 1 in the output.

(d) If this sample is for training, the following augmentation may be applied:

• Add zero-centered Gaussian noise to the input points, with the stan-

dard deviation being a user parameter.

• Randomly rotate the input and ground-truth xy locations around the

center of the patch by a multiple of 90 degrees.

4.4 Model Architecture

We seek a deep-learning architecture capable of accepting an un-ordered set of points—

{p1, ..., pN}, each with C features representing spatial and spectral information—and

outputting a set of points representing predictions for the locations of trees found

within that scene, {ŷ1, ..., ŷn}. Each output point ŷi will have three features: pre-

dicted x and y location, and confidence in the closed interval [0, 1]. We allow the

network to output many more predictions than the expected number of trees in a

given scene, and thus we expect it will output many predictions with confidence close

to zero, which can be considered non-predictions. The methodology for determining

the final predicted tree locations from the PointNet’s outputs is explored in a 4.4.3.

30



4.4.1 Modified PointNet

Figure 4.4: Modified PointNet architecture, with example tensor shapes

The backbone of our design is the PointNet [56] or PointNet++ [57] architecture, as

described in 3.2.2. To this backbone we make two major modifications.

The first modification is derived from the fact that we can make some stronger as-

sumptions about our input data than the PointNet authors could; we do not need to

be invariant to arbitrary 3-D rotation. The PointNet authors were interested in clas-

sication of arbitrary objects; a lamp that is upside-down (or in any other orientation)

is still a lamp, and should be recognized as such. We, however, know we will never

see trees in any orientation other than vertical in the z dimension. Thus, we may

drop the Alignment Networks (a.k.a. Transformation Nets or T-Net) in their original

formulation, which were present to allow the network to learn to apply an arbitrary

transformation to the pointcloud.

The second modification is derived from our desire for a different output format.

The initial formulation of PointNet proposed two output modes for two different

problems: classification and segmentation. We seek neither to classify the pointcloud

as a whole, or classify each point within it. Instead, we want to output a set of

confidence-weighted points which represent predicted tree locations. Thus we define

two new output modes for this task:

31



• Segmentation mode: Though not actually performing segmentation, this method

is named so because it is essentially the same as the original segmentation mode,

except that the final output is three values for each point (x, y, and confidence)

instead of a probability distribution over classes.

• Dense mode: This method generates predictions from only the global feature

vector, by using a simple multi-layer perceptron.

To constrain the final outputs of the model, predicted (x, y) tree locations are con-

strained to be between zero and one by clipping (recall that the model input and

target coordinate system is scaled to be between zero and one). The predicted confi-

dences are also constrained to be between zero and one by either sigmoid activation

or clipping.

4.4.2 Loss Functions

Two loss functions are evaluated, originally published as a component of approaches

called DeepLOCO [9] and DeepSTORM [46]. These are borrowed from single molecule

localization in microscopy, which similarly requires predicting a confidence-weighted

set of coordinates, and comparing them to ground truth coordinates. Let Y will

represent a set of m ground truth coordinates, {θ1, ..., θm}, while Ŷ represents a set

of n predicted coordinates with confidence weights, {(θ̂1, ω1), ..., (θ̂n, ωn)}.

The concept behind both losses is very similar, as noted in the DeepLOCO publi-

cation [9]. Both consider predicted points to be expressing high confidence in their

immediate vicinity, and increasingly less confidence as one moves further and fur-

ther away. They model this confidence as a Gaussian curve, with which they can

then evaluate how similar the predicted confidence space is to the actual tree loca-

tion space. A simplified illustration of this concept is presented in Figure 4.5, which

32



demonstrates the losses working on a toy example in one spatial dimension. In that

figure, note that both losses lead to similar optimization conclusions: the leftmost

prediction is over-confident, while the rightmost two are under-confident. A more

technical description of the loss functions follows.

4.4.2.1 DeepSTORM Loss

The first loss, from DeepSTORM [46], blurs each point (predicted or ground-truth) to

a fine grid (we chose 128 x 128) by convolution with a Gaussian kernel, the standard

deviation of which is a hyperparameter. The predicted location grids are each scaled

by their confidence. These grids for predictions and ground-truth are then respectively

aggregated, either by taking the element-wise maximum or the element-wise sum. The

loss is defined as the mean squared error between these final two aggregated grids:

lossDeepSTORM(Y, Ŷ ) =
∥∥∥( m∑

i=1

g ⊛ θi

)
−
( n∑

j=1

ωj(g ⊛ θ̂j)
)∥∥∥2

2
(4.2)

where g is the Gaussian kernel, and ⊛ represents the convolution operation, and

the sums are elementwise operations. For max aggregation, apply the element-wise

maximum function in the sums’ place.

4.4.2.2 DeepLOCO Loss

The second loss is from DeepLOCO [9], which is similar to the above except that a

set of points is rendered as an infinite-dimensional functional, instead of an image.

For a weighted point set Y ,

R(Y ) = x 7→
∑
i

ωi g(θ̂i − x) (4.3)

33



(a) Gaussian curves are placed at each of the predicted and ground truth location.
Ground-truth trees are given a peak height of one, while predictions use their confidence
as their peak height. All curves are given the same standard deviation (σ), which is a
hyperparameter.

(b) The curves of predictions and ground-truth are respectively aggregated. This and
the following figures use summing as that aggregation; taking the maximum is another
option (tracing the highest of each color at every location).

(c) DeepLOCO Loss: Error is the sum of the absolute difference between the aggregated
curves evaluated only at the locations of all predictions and ground-truth (the peaks of
all curves in Fig. 4.5a).

(d) DeepSTORM Loss: Error is the sum of the absolute difference between the aggre-
gated curves evaluated at fixed intervals (in practice, on a fixed-resolution grid since
locations are in two-dimensional space).

Figure 4.5: Visual depiction of loss functions in one spatial dimension, for
three predicted and two ground-truth tree locations

34



defines the functional. The loss is then computed as mean-squared error between

these functionals evaluated at all prediction and ground-truth locations:

lossDeepLOCO(Y, Ŷ ) =
∥∥∥(R(Y )−R(Ŷ ))|Y ∪Ŷ

∥∥∥2

2
(4.4)

For expansions useful to the implementation of this loss, see Equations 4, 5, and 6 in

[9].

4.4.3 Model Output Post-Processing

Once the network is sufficiently trained, we must have a way of converting the its

predicted collection of confidence-weighted points into final predicted locations. We

evaluate four methods for achieving this goal:

1. Raw: The simplest method; simply keep all points above a certain confidence

threshold, and discard the rest.

2. k-means: Clustering by the classic k-means algorithm [40] (specifically, the

MiniBatch variant described in [58]), with the points weighted by their predicted

confidence. The centroids of the clusters are determined to be the new tree

predictions, and are given a confidence of either the maximum or the mean con-

fidence of their cluster. We apply confidence thresholding both to the model’s

outputs, and to k-means’ final centroids. The rationale for the first threshold

is that we expect that many predicted points will essentially non-predictions,

with very low confidence, and thus we do not want them to influence clustering.

The second confidence threshold after clustering is to eliminate clusters which

do not have enough confidence to be final predictions.

35



3. DBSCAN: Same as the previous method, except clustering is done using the

DBSCAN algorithm [16].

4. Peak-local-maxima (PLM) filtering: This method is similar in concept to the

DeepSTORM loss. We blur each predicted point to a grid, with a Gaussian peak

height equal to the predicted confidence for that point. After aggregating all

these grids together (either element-wise sum or max), we apply a peak-local-

maxima filter which identifies all points which are the local maxima in their

neighborhood. Similar to the clustering methods, two confidence thresholds are

applied both before and after filtering.

Each of these methods has one or more parameters, such as confidence thresholds

or the numbers of clusters for K-means. These parameters are estimated on the

validation set, as described in the next section.

4.4.4 Model Optimization

4.4.4.1 Training Procedure

The model is built and trained with Keras [11] and TensorFlow [42], on an NVIDIA

V100 GPU. Training is executed in minibatches, with a whole pass through the train-

ing set being considered one epoch. After each epoch, the loss is evaluated on the

validation set. If a new best validation loss has been achieved the model is saved.

Otherwise, if three epochs have passed without validation loss improvement, learning

rate is reduced by a factor of 0.2; if five epochs pass with no improvement, training

is stopped.

36



Table 4.2: Post-processing methods & parameters

Method Parameter Description
All Thresholds Confidence thresholds on model outputs and final pre-

dictions.
k-Means k The number of clusters to create.

Aggregation How confidence of centroids is determined: average or
max of cluster confidences.

DBSCAN ϵ Maximum distance allowed between directly connected
points.

Min Samples Total confidence a cluster must achieve to be consid-
ered.

PLM σ Standard deviation of Gaussian blur.
Min Dist Minimum distance allowed between local maxima.

Aggregation How to aggregate all Gaussian blurs together: pixelwise
sum or max.

4.4.4.2 Post-Processing Parameter Estimation

Once a model is trained, we must determine the optimal post-processing method

and parameters (see Sec. 4.4.3). This is done by estimating the best parameters on

the validation set: given the model’s validation set predictions, we run a heuristic

search over all reasonable method/parameter combinations, as summarized in 4.2.

The parameters that result in the best validation F-score at the end of the search are

kept as the final parameters. This search is implemented using the Tree of Parzen

Estimators (TPE) algorithm [7] as implemented in Optuna [2], constrained to explore

all methods equally. The search is run for 140 trials (25 are random startup trials)

or 35 minutes, whichever comes first (these values are picked somewhat arbitrarily

but we find they are more than sufficient for well-trained models). Each trial tends

to take between a few seconds and one minute.

37



Table 4.3: Summary of important hyper-optimization parameters

Parameter Possible Values
Optimizer Adam [29], AdaMax [29], NAdam [14], Adadelta [70]
Batch size 8 to 128 by powers of 2

Initial learning rate 1e−5 to 1e−1, logarithmic scale
Output flow “Dense” or “Segmentation”

Model size factor 2n for n in [−2, 2]
Confidence activation Sigmoid, ReLU

Loss function DeepLOCO, DeepSTORM
Loss σ 0.5 to 6, in steps of 0.5 (units in meters)

Num inputs points 100 · 2n for n in [1, 4]
Patch subdivision k Integers 1 to 10

4.4.4.3 Hyper-Optimization

A number of hyper-parameters have to be set for training, including learning rate,

batch size, and model size. To estimate the optimal parameters, we again utilize the

TPE algorithm [7] implemented by Optuna [2]. For each trial, a model is fully trained

and post-processing parameters are determined. The final validation-set F-score is

returned as the optimization metric to Optuna. Training is limited at 500 epochs and

4 hours for each trial, though these limits are rarely reached; we find the best models

use a fraction of each.

4.5 Alternative Methods

We compare our proposed solution against a number of baseline methods.

4.5.1 PyCrown

PyCrown [74] is a leading method for tree detection and tree-crown delineation. It

uses a variation of the watershed method, described in Dalponte & Coomes [13], along

38



with enhancements that correct for trees on steep slopes. This approach accepts only

LIDAR rasters as input and was developed for rural forests, so—like any purely

watershed-based method—it is expected to misclassify buildings as trees at a high

rate. Their code is publicly available3.

The approach has a number of parameters, such as the amount of pre-smoothing

applied to the CHM, size of the peak-local-maxima filter, and maximum tree-crown

size; these are estimated with Optuna. We use the both the training and validation

set for parameter estimation, as we find there is no noticeable over-fitting to account

for.

4.5.2 PyCrown-Spectral

For urban applications, a common alteration to the typical watershed-based methods

is to filter the Canopy Height Model so that all pixels with too low of an NDVI value

are set to zero height. This is the exact approach used by [24] (albeit with a less

sophisticated watershedding algorithm), and similar in concept to others such as [71].

Following their lead, we also evaluate a modification of PyCrown that incorporates

this NDVI thresholding stage, which we will call PyCrown-Spectral. While these

previous approaches have relied on fixed parameters, such as an NDVI threshold of

zero or a pre-defined peak-local-max window size, we instead estimate them from

the training set. This, combined with the fact that PyCrown is a sophisticated

watershedding algorithm, leads us to believe that PyCrown-Spectral is a baseline as

least as strong as the previously mentioned approaches that inspire it.

Parameters are estimated in the same manner as our standard PyCrown approach.

3https://datastore.landcareresearch.co.nz/dataset/pycrown, provided under the
GNU GPLv3 license.

39



4.5.3 SFANet

For a purely imagery-based approach, we test against a sophisticated convolutional

neural network (CNN) trained only on the multi-spectral imagery (RGB, NIR, and

NDVI). We utilize SFANet [73]—originally developed for the task of croud-counting—

which is itself build on top of a VGG-16 backbone [61]. SFANet’s primary contribution

is that the tasks of identification and localization are separated, and delegated to two

separate portions of the network. SFANet uses a loss similar to DeepSTORM loss,

i.e. the mean-squared error between the predicted and actual confidence rasters. The

final network utilizes roughly 17 million parameters, and ∼12 hours to train on one

NVIDIA V100 GPU.

A more thorough description of this network is included in a forthcoming manuscript

by Ventura et al. [63].

40



Chapter 5

RESULTS

We evaluate each method on the 39 patches of the test-set, which no methods have

been trained or otherwise calibrated on. In Section 5.1, we compute and analyze

summary statistics of each model’s performance, and qualitatively assess their per-

formance by visual comparison. Then in Section 5.2, we make a more granular as-

sessment of the causes of errors in each model. In Section 5.3, we conduct an ablation

study to analyze the effect of various spectral channels’ contributions to the network’s

performance. Lastly, we revisit the hypothesis and research questions in Section 5.4.

5.1 Overview of Results, by Method

5.1.1 PyCrown & PyCrown-Spectral

As expected, the PyCrown approach—which was developed for non-urban areas—

does not fair too well in the urban environment. Its precision and recall close to 50%

suggest that only half of its predictions are correct, and that those correct predictions

Table 5.1: Summary of test-set results

Method Precision (%) Recall (%) F1-score (%) RMSE (m) Bias (%)
PyCrown 52.4 51.1 51.8 2.72 -2.4

PC-Spectral 69.6 56.6 62.4 2.64 -18.6
SFANet 71.3 72.7 72.0 2.29 1.9

PointNet (ours) 75.9 71.0 73.4 2.38 -6.5
PointNet2 (ours) 77.6 73.6 75.5 2.28 -5.1

Metrics are reported for the parameterization of each model that achieved the best
training/validation F-score. Best result in each column is bold.

41



(a) PyCrown: Long Beach 55 (b) PyCrown-Spectral: Long Beach 55

(c) PyCrown: Santa Monica 5 (d) PyCrown-Spectral: Santa Monica 5

Figure 5.1: Visual comparison of PyCrown and PyCrown-Spectral

42



only account for half of the ground-truth trees. A visual inspection (see the lefthand

figures in Fig. 5.1) confirms that standard PyCrown predicts often at the peaks of

buildings and other human-made structures.

PyCrown-Spectral does noticeably better, with a 17% improvement in precision, and

6% improvement in recall, which Figure 5.1 confirms is largely due to its ability to

avoid predictions on human-made structures. This greater improvement in precision

compared to recall comes with a corresponding increase in negative bias. It appears

that while PyCrown had essentially no chance at distinguishing between trees and

structures, PyCrown-Spectral is better able to, and with more “stringent” parameters

can be more “careful” with its predictions; this trend is best depicted in Figs. 5.1 (c)

and (d), where the best performing PyCrown-Spectral parameters end up achieving

one fewer true-positive than PyCrown, but at the benefit of a 75% reduction in

false-positives. Note that a more “balanced” set of parameters could be selected for

PyCrown-Spectral that would result in lower bias and more even precision and recall,

but these parameters would result in an overall decrease in F-score.

5.1.2 SFANet

Two things stand out about this approach’s results. Firstly, it is the only method with

a positive bias (or equivalently, the only method with a higher recall than precision),

and has the smallest absolute bias of all methods. This bias term means the SFANet

tends to predict around 2% more trees than actually exist. Secondly, it has very nearly

the best RMSE, beat out by PointNet 2 by a margin of one centimeter. However,

as is noted in Sec. 4.2.1, it is difficult to directly compare RMSEs, especially when

one method has a positive bias and another has negative bias. We report RMSE as

calculated, but it should not be concluded that one method is definitively better than

the other at localization without further inquisition.

43



(a) SFANet

(b) PointNet 1 (c) PointNet 2

Figure 5.2: Visual comparison of SFANet and PointNet predictions, on an
example patch (Santa Monica #5)

44



Table 5.2: Comparison of final PointNet 1 & 2 parameters

PointNet 1 PointNet 2
Differing Params
Loss DeepLOCO DeepSTORM
Output Mode Dense Segmentation
Learning Rate 1e−4 1e−2.5
Noise on Input Pts σ = 0.2m none
Aggregation Sum Max
Same/Similar Params
Batch size 64 64
Confidence activation Sigmoid Sigmoid
Optimizer Adam Adam
Loss σ 3.5m 3.0m
Total Weights 12.4 M 250 K
Training Time ∼1 hr. ∼2 hr.

5.1.3 PointNet & PointNet 2

Our PointNet-based methods have the best overall performance in our experiments,

with the best PointNet 2 achieving the best F-score of 75.5% and RMSE of 2.28 m

(only 1 cm better than SFANet). It also achieves the best precision (77.6%) and recall

(73.6%).

For PointNet 1 and 2, hyper-optimization settled on a fairly different set of parame-

ters; the main differences are shown in Table 5.2. The fact that both losses and output

modes are represented in the best parameters demonstrates that each is useful and

effective for this problem. Overall the most striking difference between the two mod-

els is the number of weights; PointNet 1 settles on a model with around 50 times

more trainable weights than PointNet 2. This is in part because of the sampling and

grouping operations that PointNet 2 uses behind the scenes, which do not utilize any

weights but do provide the model with significant information. Additionally, these

operations can be computationally and memory intensive with large inputs, forcing

the model toward smaller solutions; PointNet 2 ran in to memory limitations on our

45



GPUs when the model got too large. Still, that large of a difference suggests that the

PointNet 2 model is able to use its weights more efficiently than PointNet 1.

In post-processing, both the best PointNet 1 and 2 found that the peak-local-max

filtering method for determining final predicted tree locations was most effective. The

DBSCAN clustering method was a close second.

5.2 Analysis of Errors

5.2.1 Methodology

For a more granular analysis of the causes of errors for each model, we qualitatively

identify the cause of each error in five randomly selected test-set patches. For each

false positive and negative, we identify what the most likely apparent cause is; in

most cases this is fairly clear. In cases where multiple causes could be the culprit, we

assign the error to the one we believe to be the most likely source. We identify the

following causes of errors, in three categories: identification (determining which things

are trees), delineation (separating out individual trees), localization (determining the

location of the tree trunk):

1. Identification errors:

• Structures: Mistaking human-made structures for trees.

• Bushes/shrubs: Mistaking bushes or shrubs for trees.

• Grass: Mistaking grass for trees.

• Tree is small: Mistaking a tree for a non-tree because of its short height

or small width.

2. Delineation errors:

46



• Over/under-predict dense trees: Predicting too many or few trees exist in

an area where multiple tree canopies overlap.

• Mistake one for multiple: Predicting multiple trees on a canopy that is

actually just one tree.

3. Localization error: a prediction is correctly placed on a tree canopy, but the

canopy is large enough that the prediction falls more than 6 meters from the

trunk, resulting in both a false positive and a false negative.

We also find a few rarer cases where inconsistencies in the data contribute to errors:

• LIDAR/image mismatch: When a tree appears in the image but not the LIDAR,

or vice versa.

• Patch edge effects: Trees that appear only partially in the tile, leaving the model

at a disadvantage.

Lastly, some errors have no obvious cause, and are included in the catch-all “Unclear”

category.

5.2.2 Analysis

The results of this analysis are compiled in Tables 5.3 and 5.4. It should first be noted

that there are certainly small-sample-size effects present in this data; if you read into

individual numbers too closely you will be misled (e.g., it suggests that PointNet 1

outperforms PointNet 2, which is not is true on the test set as a whole), but it still

illustrates general trends well.

47



Figure 5.3: The five patches randomly selected for source-of-error analysis,
from Claremont, Claremont, Long Beach, Riverside, and Santa Monica
respectively

48



Table 5.3: Sources of error

PyCrown PC-Spectral SFANet PointNet PointNet2
False Positives (FP) Count (Percentage of FP in Parentheses)
1. Structures 91 (87%) 2 (5%) 0 1 (3%) 1 (3%)
2. Bushes/shrubs 4 (4%) 21 (57%) 26 (46%) 26 (81%) 30 (77%)
3. Grass 0 0 12 (21%) 0 0
4. Over-predict dense trees 3 (3%) 7 (19%) 11 (20%) 2 (6%) 3 (8%)
5. Mistake one for multiple 3 (3%) 7 (19%) 5 (9%) 2 (6%) 4 (10%)
6. Localization 1 (1%) 0 2 (4%) 0 0
7. Unclear 3 (3%) 0 0 0 1 (3%)
Total FP 105 37 56 32 39
False Negatives (FN) Count (Percentage of FN in Parentheses)
1. Tree is small 45 (64%) 57 (83%) 31 (74%) 26 (70%) 28 (78%)
2. Under-predict dense trees 16 (23%) 6 (9%) 7 (17%) 6 (16%) 4 (11%)
3. Localization 1 (1%) 0 1 (2%) 0 0
4. LIDAR/image mismatch 1 (1%) 1 (1%) 0 0 0
5. Patch edge effects 5 (7%) 5 (7%) 3 (7%) 5 (14%) 4 (11%)
6. Unclear 2 (3%) 0 0 3 (11%) 0
Total FN 70 69 42 37 36
Grand Total 175 106 98 69 75

Source of each error is qualitatively determined on a subset of 5 randomly selected
test-set patches. Numbering order of error sources is only included to more easily

make reference to specific rows.

Table 5.4: Sources of error by category

PyCrown PC-Spectral SFANet PointNet PointNet2
Category Count (Percentage of Total Errors in Parentheses)
Identification 140 (80%) 80 (75%) 69 (70%) 53 (77%) 59 (79%)
Delineation 22 (13%) 20 (19%) 23 (23%) 11 (16%) 11 (15%)
Localization 2 (1%) 0 3 (3%) 0 0
Data effects 6 (3%) 6 (6%) 3 (3%) 5 (7%) 4 (5%)
Unclear 5 (3%) 0 0 0 1 (1%)
Total 175 106 98 69 75

Best result in each row is bolded.

49



5.2.2.1 Identification

One of the most noticeable trends in Table 5.3 is the difficulty many methods have

distinguishing between bushes and small trees, which is understandable given that

they can appear very similar (especially from an aerial view). The false positive of

mistaking bushes for trees (row FP-2), and its twin false negative of not predicting

trees because of their small size (row FN-1), make up a sizeable portion of most

models’ errors. It is along this bush vs. small tree axis that almost all identification

errors occur (excepting the standard PyCrown approach which is easily fooled by

buildings). Identification as a whole is the task where most errors occur for every

model; it makes up at least 70% of all errors for every kind of model (see Tab. 5.4).

The SFANet is unique in that it mistakes grass for trees, an error which no other

model makes. This is obviously caused by the fact that it does not have access

to LIDAR data, making greenery at zero feet and 30 feet above ground difficult to

distinguish between. The PointNet variants are overall best in this sub-task, with

PointNet 1 slightly outperforming PointNet 2 in this sample.

5.2.2.2 Delineation

Generally the next-most common source of error was in delineation: determining how

many trees are actually present in a region of thick overlapping canopies (FP-4 and

FN-2 in Tab. 5.3), or alternately mistaking a single canopy for multiple overlapping

canopies (FP-5). The PointNet variants are again the best at this sub-task.

50



5.2.2.3 Localization

Localization within the 6 meters threshold presents little challenge for most methods.

This is partially because of the fact that a tree must be fairly large for a prediction

to even be able to miss the trunk by at least 6 meters and still be on the canopy, so

there are fewer chances for this sort of error to occur in the first place. Additionally,

the center of the crown and the highest point of the tree tend to be good estimates

of the tree trunk location (the latter is in fact the exact heuristic used by wastershed

methods).

Though not a large portion of its overall errors, SFANet makes the most localization

errors (while most other methods make none at all). This suggests that the struc-

tural information contained in LIDAR is greatly helpful particularly for the task of

localizing the tree trunk.

5.2.2.4 Data Effects

Although we do find a few instances of errors potentially caused by the data itself

(rows FN-4 and 5), we find that they do not make up a significant portion of any

model’s errors (around 5% of total errors), and contribute fairly equally across all

methods.

A few more errors are caused by imperfections in the data, but of the sort that are

essentially unavoidable and that a best-performing method will have to learn to avoid.

One example is PointNet 2’s single false positive on a structure: this occurred building

that stood directly next to grass. Likely, a bit of the grass’s spectral information got

interpolated to the top of the building, which made it look a bit like a tree. While

more perfect data could have avoided this error, the inherent spacial precision and

51



resolution limitations of this dataset are constraints that we consciously want to work

within.

5.2.2.5 The “Unclear” Category

The unclear category is a catch-all to include errors with no clear cause. These errors

occur very rarely.

5.3 Ablation Study

In order to test the importance of spectral information, we conduct an ablation study

to test the importance of various spectral channels. We utilize the architecture of

the best-performing PointNet 2 model, and only vary which spectral channels are

added to the LIDAR points. We test four variants: removing NDVI, removing NIR

& NDVI, removing all channels except NDVI, and removing all spectral information.

For each variant, we run three trials and select the best-performing by validation

F-score, to reduce the probability of selecting a bad network initialization by chance.

The test-set results, shown in Table 5.5, indicate that the full spectral information

we include is informative, and removing channels decreases performance in terms of

both F-score and RMSE.

Table 5.5: Input channels ablation results

Channels Precision Recall F-score RMSE Bias
R, G, B, NIR, & NDVI 77.6 73.6 75.5 2.28 -5.1
R, G, B & NIR 74.1 75.5 74.8 2.34 2.0
R, G, B 77.6 72.0 74.7 2.37 -7.3
NDVI only 75.7 73.2 74.5 2.35 -3.3
no spectral channels 73.1 66.7 69.7 2.59 -8.7

52



Notably, the model variant with no spectral information included does noticeably

worse, with a 6-point drop in F-score. This would put it below the best-performing

SFANet’s results in our study, which utilizes only spectral information. This suggests

that multi-band imagery information is on its own more informative than to LIDAR

on its own—or is at least easier to learn from given its convenient gridded structure.

Our results here reaffirm the utility of NDVI as a metric; the methods with only

NDVI as its spectral information performs very nearly as well as the method with all

four mutli-band imagery channels (RGBN).

5.4 Summary

We find that our proposed networks, modifications of PointNet and PointNet 2, out-

perform all other methods in predictive ability as measured by F-score, and in local-

ization accuracy as measured by RMSE. Our error analysis reveals that our networks

outperform others in skill for the sub-tasks of identification, delineation, and local-

ization. Our ablation study shows that the combination of spectral and LIDAR

information is key to the network’s success.

5.4.1 Hypothesis

Our hypothesis is that a sufficiently well-tuned deep neural network, learning directly

from imagery-augmented LIDAR, will outperform other methods for tree detection

in the urban environment, including non-neural-networks, those which do not utilize

LIDAR, and those which use summarized LIDAR. Our experiments support this

hypothesis, by demonstrating the existence of a neural network approach capable

53



of learning directly from LIDAR point-clouds that outperforms multiple other high-

performing methods.

5.4.2 Research Questions

Our experiments directly address the research questions in multiple ways.

5.4.2.1 RQ1: How effectively can deep learning be applied directly to LIDAR

pointclouds to detect trees in the urban environment?

We find that deep learning can be directly applied to LIDAR pointclouds with high

effectiveness. As shown in our ablation study (Sec. 5.3), a well-tuned network learn-

ing from only LIDAR information (i.e., no spectral information) still performs well,

achieving an F-score of nearly 70%. When multi-band spectral information and NDVI

is included however, our network is able to achieve the best F-score with 75.5%, as

well as the best RMSE of 2.28 meters.

5.4.2.2 RQ2: What structures in the urban environment are difficult to dis-

tinguish from trees?

When conceiving of the difficulties of tree detection in the urban environment com-

pared to traditional forests, the primary difference seems to be the existence of human-

made structures. However, as our error analysis (Sec. 5.2) reveals, most sophisticated

methods rarely mistake buildings and other structures for trees. In fact, the most

challenging “structures” tend to be bushes and shrubs, specifically in distinguishing

them from smaller trees. Thus, the most challenging aspect of the urban environment

54



for the task of tree detection is not the existent of structures, but the great variety

in appearance and structure of human-curated plants.

5.4.2.3 RQ3: Can deep learning for LIDAR pointclouds provide information

that is complementary to that from other methods?

We found that our network was the clear best performer in our experiments. However,

we do see more generally that the LIDAR-based approaches do seem to be somewhat

complementary to the spectral-only SFANet approach. Our best PointNet 2 variant

achieves the best RMSE and has a negative bias. SFANet conversely has positive

bias, and while it achieves very nearly the same RMSE (Table 5.1), we do find that

it makes more localization errors in our error analysis (Table 5.4). If a spectral-only

method was found that outperformed ours in terms of F-score, the better localization

skills of our method could be used to fine-tune the location of tree trunks.

55



Chapter 6

CONCLUSION

6.1 Overview

In this study, we propose a novel method for tree detection in the urban environ-

ment. Our method is build around a modified PointNet architecture [56][57], which

learns directly from spectrally-augmented LIDAR data. To this backbone we add

loss targets and post-processing methods specific to our task, utilizing and synthe-

sizing techniques borrowed from numerous related fields including forestry, remote

sensing, crowd-counting, and microscopy in the process. To validate our solution,

we identify five regions in Southern California, and hand annotate tree locations for

training and testing. Our results demonstrate the efficacy of our proposed method,

with performance quantitatively and qualitatively compared to multiple baselines.

In Chapter 1, we introduce the problem at hand, our research questions, and hy-

pothesis. Chapter 2 provides an overview of common approaches and terminol-

ogy in forestry and deep learning that are crucial to understanding the remaining

manuscript. In Chapter 3, we take a more detailed dive into specific works address-

ing the same or similar tasks, finding a wealth of related research but no approaches

that utilize the same method as we do. Chapter 4 introduces that method, which is

the use of modified PointNet architectures applied to spectrally-augmented LIDAR.

That chapter also introduces the metrics we will use to evaluate our methods, and

the baselines that we will compare it against. Chapter 5 does just that, analyzing the

results of our experiments from multiple angles.

56



6.2 Contributions

We develop a technique for urban tree detection that is efficient and effective. Our

contributions are that:

• Our method outperforms our baselines in terms of predictive capability, achiev-

ing the best F-score of 75.5% on our test set.

• Our method outperforms our baselines in terms of localization accuracy, achiev-

ing a best root-mean-squared error of 2.28 meters on true positive predictions.

• Our method is significantly more efficient than the other deep learning baseline

we compare against, SFANet. Our method is 5x faster to train, and requires

over 50x fewer trainable weights.

• Our method synthesizes deep learning techniques developed in a variety of

disparate fields, including microscopy, crowd-counting, remote sensing, and

forestry.

• Our method is capable of achieving high performance from publicly available

datasets.

We believe the primary reason for the success of our method is that our network is

capable from learning directly from un-modified, un-summarized LIDAR point clouds.

This allows it access to the entirety of the spatial information captured in LIDAR—

in contrast to a summarized form such as a raster or voxelization—while still being

highly efficient.

Lastly, an important feature of our work is that we rely exclusively on publicly-

available datasets. While more accurate and high-resolution data certainly exists in

57



some areas, any method that wants to have broad application must be capable of

working with this quality of data and overcoming the deficiencies inherent to it.

6.3 Future Work

Most broadly, our results indicate that the most promising path forward for tree

detection in the urban environment involves multi-modal data, particularly those

which combine spectral and structural information. Although we propose one well-

performing method for this sort of multi-modal data, further research can almost

certainly uncover a more sophisticated one.

Perhaps the biggest drawback of our research is that it is geographically limited;

that is not to say that our method would not perform well elsewhere, but at the

very least without being trained on a more varied dataset it would likely struggle

more in different climate zones. Further experiments in more varied regions can

improve the model’s ability to generalize, as well as perhaps identify new issues that

were not apparent in our experiments. Particularly since all methods struggled with

densely overlapping tree crowns, an area where this is more prevalent may provide

the methods with more data to address this issue, or better highlight the fundamental

reasons why this is a particularly difficult sub-task.

A possible avenue of improvement for our approach could be to experiment with

losses that more directly optimize for the ground-truth targets. For example, since

our losses treat predictions and ground-truths as Gaussian confidence curves, a since

prediction can sometimes be used to match two ground-truth, or vice versa. We in

fact did experiment with a loss—originally developed for dense crowd counting, as

part of a network called Point To Point Net (P2PNet) [62]—that operates directly

on a sets of predicted and ground-truth points such that the mapping between them

58



is guaranteed to be one-to-one. However we found the loss to be unstable in our

experiments, and were not able to get it to train effectively. This could be because

the ground-truth in our domain are much sparser, or because we simply did not find

the right combination of hyper-parameters that suit this loss. More exploration of

losses of this sort, that operate directly on point-sets instead of transforming them to

an intermediate representation, is a worthwhile avenue of research.

Lastly, an obvious area of continuing research in this domain is to apply our network

to downstream forestry tasks, including tree crown delineation (finding the exact

borders of the tree crown, instead of just the center) and tree genus/species classifi-

cation. Given the success of our model in the task of tree detection, and the fact that

structural information likely becomes even more important for making these precise

assessments, we believe our proposed approach is a promising one. However, these

more challenging tasks naturally come with a requirement for more stringently anno-

tated training data, which requires at the very least more time and expertise on the

part of the annotator, or even in-person surveying by forestry experts. Thus, as is

common in deep learning tasks, there is a need for better and more publicly accessible

datasets, comprised not just of tree locations but accompanied by features such as

crown size and species, and paired with LIDAR, satellite imagery, and other forms of

collected temporally near the date of annotation.

59



BIBLIOGRAPHY

[1] Forest Inventory and Analysis National Program – Urban FIA Program, Oct.

2021. https://www.fia.fs.fed.us/program-features/urban/.

[2] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-

generation hyperparameter optimization framework. In Proceedings of the 25th

ACM SIGKDD international conference on knowledge discovery & data mining,

pages 2623–2631, 2019.

[3] M. Alonzo, K. Roth, and D. Roberts. Identifying Santa Bar-

bara’s urban tree species from AVIRIS imagery using canonical dis-

criminant analysis. Remote Sensing Letters, 4(5):513–521, May 2013.

https://doi.org/10.1080/2150704X.2013.764027.

[4] E. Ayrey, S. Fraver, J. A. Kershaw, L. S. Kenefic, D. Hayes, A. R. Weiskittel,

and B. E. Roth. Layer Stacking: A Novel Algorithm for Individual Forest Tree

Segmentation from LiDAR Point Clouds. Canadian Journal of Remote Sensing,

43(1):16–27, Jan. 2017. https://doi.org/10.1080/07038992.2017.1252907.

[5] E. Ayrey and D. J. Hayes. The Use of Three-Dimensional Convolutional Neural

Networks to Interpret LiDAR for Forest Inventory. Remote Sensing, 10(4):649,

Apr. 2018.

[6] S. Beery, G. Wu, T. Edwards, F. Pavetic, B. Majewski, S. Mukherjee, S. Chan,

J. Morgan, V. Rathod, and J. Huang. The Auto Arborist Dataset: A Large-Scale

Benchmark for Multiview Urban Forest Monitoring Under Domain Shift. pages

21294–21307, 2022.

60



[7] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-

parameter optimization. Advances in neural information processing systems, 24,

2011.

[8] D. S. Boyd and F. M. Danson. Satellite remote sensing of forest resources: three

decades of research development. Progress in Physical Geography: Earth and

Environment, 29(1):1–26, 2005. https://doi.org/10.1191/0309133305pp432ra.

[9] N. Boyd, E. Jonas, H. Babcock, and B. Recht. DeepLoco: Fast 3D Localization

Microscopy Using Neural Networks. Technical report, Feb. 2018.

[10] X. Chen, K. Jiang, Y. Zhu, X. Wang, and T. Yun. Individual Tree Crown

Segmentation Directly from UAV-Borne LiDAR Data Using the PointNet of

Deep Learning. Forests, 12(2):131, Feb. 2021.

[11] F. Chollet and others. Keras, 2015.

[12] D. F. Crouse. On implementing 2D rectangular assignment algorithms. IEEE

Transactions on Aerospace and Electronic Systems, 52(4):1679–1696, 2016.

[13] M. Dalponte and D. A. Coomes. Tree-centric mapping of for-

est carbon density from airborne laser scanning and hyperspectral

data. Methods in Ecology and Evolution, 7(10):1236–1245, 2016.

https://onlinelibrary.wiley.com/doi/pdf/10.1111/2041-210X.12575.

[14] T. Dozat. Incorporating nesterov momentum into adam. 2016.

[15] R. O. Dubayah and J. B. Drake. Lidar Remote Sensing for Forestry. Jour-

nal of Forestry, 98(6):44–46, June 2000. https://academic.oup.com/jof/article-

pdf/98/6/44/22558157/jof0044.pdf.

[16] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for

Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of

61



the Second International Conference on Knowledge Discovery and Data Mining,

KDD’96, pages 226–231. AAAI Press, 1996.

[17] L. Eysn, M. Hollaus, E. Lindberg, F. Berger, J.-M. Monnet, M. Dalponte,

M. Kobal, M. Pellegrini, E. Lingua, D. Mongus, and N. Pfeifer. A Benchmark

of Lidar-Based Single Tree Detection Methods Using Heterogeneous Forest Data

from the Alpine Space. Forests, 6(5):1721–1747, May 2015.

[18] F. E. Fassnacht, H. Latifi, K. Stereńczak, A. Modzelewska, M. Lefsky, L. T.

Waser, C. Straub, and A. Ghosh. Review of studies on tree species classification

from remotely sensed data. Remote Sensing of Environment, 186:64–87, Dec.

2016.

[19] G. A. Fricker, J. D. Ventura, J. A. Wolf, M. P. North, F. W. Davis, and

J. Franklin. A Convolutional Neural Network Classifier Identifies Tree Species in

Mixed-Conifer Forest from Hyperspectral Imagery. Remote Sensing, 11(19):2326,

Jan. 2019.

[20] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun. Deep Learning

for 3D Point Clouds: A Survey. arXiv:1912.12033 [cs, eess], June 2020. arXiv:

1912.12033.

[21] Y. Guo, H. Zhang, Q. Li, Y. Lin, and J. Michalski. New morphological features

for urban tree species identification using LiDAR point clouds. Urban Forestry

& Urban Greening, Apr. 2022.

[22] I. Harmon, S. Marconi, B. Weinstein, S. Graves, D. Z. Wang, S. Bohlman,

A. Zare, A. Singh, and E. White. Injecting Domain Knowledge Into Deep Neural

Networks for Tree Crown Delineation. July 2022. Publisher: TechRxiv.

[23] R. Hecht-nielsen. III.3 - Theory of the Backpropagation Neural Network**Based

on “nonindent” by Robert Hecht-Nielsen, which appeared in Proceedings of the

62



International Joint Conference on Neural Networks 1, 593–611, June 1989. ©

1989 IEEE. In H. Wechsler, editor, Neural Networks for Perception, pages 65–93.

Academic Press, Jan. 1992.

[24] Y. Huang, B. Yu, J. Zhou, C. Hu, W. Tan, Z. Hu, and J. Wu. Toward automatic

estimation of urban green volume using airborne LiDAR data and high resolution

Remote Sensing images. Frontiers of Earth Science, 7(1):43–54, Mar. 2013.

[25] M. K. Jakubowski, W. Li, Q. Guo, and M. Kelly. Delineating Individual Trees

from Lidar Data: A Comparison of Vector- and Raster-based Segmentation Ap-

proaches. Remote Sensing, 5(9):4163–4186, Sept. 2013.

[26] G. Jansson and P. Angelstam. Threshold levels of habitat composition for the

presence of the long-tailed tit (Aegithalos caudatus) in a boreal landscape. Land-

scape Ecology, 14(3):283–290, June 1999.

[27] R. R. Jensen, P. J. Hardin, and A. J. Hardin. Classification of urban tree species

using hyperspectral imagery. Geocarto International, 27(5):443–458, Aug. 2012.

https://doi.org/10.1080/10106049.2011.638989.

[28] S. Ji, W. Xu, M. Yang, and K. Yu. 3D Convolutional Neural Networks for Hu-

man Action Recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 35(1):221–231, 2013.

[29] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[30] F. J. Kriegler, W. A. Malila, R. F. Nalepka, and W. Richardson. Preprocessing

Transformations and Their Effects on Multispectral Recognition. In Remote

Sensing of Environment, VI, Jan. 1969.

63



[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with Deep

Convolutional Neural Networks. In Advances in Neural Information Processing

Systems, volume 25. Curran Associates, Inc., 2012.

[32] A. Lacoste, A. Luccioni, V. Schmidt, and T. Dandres. Quantifying the carbon

emissions of machine learning. arXiv preprint arXiv:1910.09700, 2019.

[33] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444,

May 2015.

[34] W. Li, H. Fu, L. Yu, and A. Cracknell. Deep Learning Based Oil Palm Tree

Detection and Counting for High-Resolution Remote Sensing Images. Remote

Sensing, 9(1):22, Jan. 2017.

[35] W. Li, Q. Guo, M. K. Jakubowski, and M. Kelly. A New Method for Segmenting

Individual Trees from the Lidar Point Cloud. Photogrammetric Engineering &

Remote Sensing, 78(1):75–84, Jan. 2012.

[36] X. Li, W. Y. Chen, G. Sanesi, and R. Lafortezza. Remote Sensing in Ur-

ban Forestry: Recent Applications and Future Directions. Remote Sensing,

11(10):1144, Jan. 2019.

[37] M. Liu, Z. Han, Y. Chen, Z. Liu, and Y. Han. Tree species classification of

LiDAR data based on 3D deep learning. Measurement, 177:109301, June 2021.

[38] T. Liu, J. Im, and L. J. Quackenbush. A novel transferable individual tree crown

delineation model based on Fishing Net Dragging and boundary classification.

ISPRS Journal of Photogrammetry and Remote Sensing, 110:34–47, Dec. 2015.

[39] Z. Liu, H. Tang, Y. Lin, and S. Han. Point-Voxel CNN for Efficient 3D Deep

Learning. arXiv:1907.03739 [cs], Dec. 2019. arXiv: 1907.03739.

64



[40] S. Lloyd. Least squares quantization in PCM. IEEE transactions on information

theory, 28(2):129–137, 1982. Publisher: IEEE.

[41] H. Lu and H. Shi. Deep Learning for 3D Point Cloud Understanding: A Survey.

arXiv:2009.08920 [cs], May 2021. arXiv: 2009.08920.

[42] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay

Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Y. Jia,

Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion

Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,

Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-

cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,

Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems, 2015.

[43] D. Maturana and S. Scherer. Voxnet: A 3d convolutional neural network for

real-time object recognition. In 2015 IEEE/RSJ international conference on

intelligent robots and systems (IROS), pages 922–928. IEEE, 2015.

[44] E. G. McPherson and A. Kendall. A life cycle carbon dioxide inventory of the

Million Trees Los Angeles program. The International Journal of Life Cycle

Assessment, 19(9):1653–1665, 2014.

[45] F. Meyer. Topographic distance and watershed lines. Signal Processing,

38(1):113–125, July 1994.

[46] E. Nehme, L. E. Weiss, T. Michaeli, and Y. Shechtman. Deep-STORM: super-

resolution single-molecule microscopy by deep learning. Optica, 5(4):458–464,

Apr. 2018. Publisher: OSA.

65



[47] M. Onishi and T. Ise. Explainable identification and mapping of trees using UAV

RGB image and deep learning. Scientific Reports, 11(1):903, Jan. 2021.

[48] E. G. Parmehr, M. Amati, and C. S. Fraser. Mapping urban tree canopy cover

using fused airborne LiDAR and satellite imagery data. ISPRS Annals of Pho-

togrammetry, Remote Sensing & Spatial Information Sciences, 3(7), 2016.

[49] PDAL Contributors. PDAL Point Data Abstraction Library, Nov. 2018.

[50] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[51] A.-I. Ples,oianu, M.-S. Stupariu, I. S, andric, I. Pătru-Stupariu, and L. Drăgut, .

Individual Tree-Crown Detection and Species Classification in Very High-

Resolution Remote Sensing Imagery Using a Deep Learning Ensemble Model.

Remote Sensing, 12(15):2426, Jan. 2020.

[52] S. C. Popescu and R. H. Wynne. Seeing the Trees in the Forest. Photogrammetric

Engineering & Remote Sensing, 70(5):589–604, 2004.

[53] S. C. Popescu, R. H. Wynne, and R. F. Nelson. Measuring individual tree

crown diameter with lidar and assessing its influence on estimating forest vol-

ume and biomass. Canadian Journal of Remote Sensing, 29(5):564–577, 2003.

https://doi.org/10.5589/m03-027.

[54] H. Pretzsch, P. Biber, E. Uhl, J. Dahlhausen, G. Schütze, D. Perkins, T. Rötzer,

J. Caldentey, T. Koike, T. v. Con, A. Chavanne, B. d. Toit, K. Foster, and

B. Lefer. Climate change accelerates growth of urban trees in metropolises world-

wide. Scientific Reports, 7(1):15403, Nov. 2017.

66



[55] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas. Frustum PointNets for 3D

Object Detection from RGB-D Data. Nov. 2017.

[56] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. PointNet: Deep Learning on Point

Sets for 3D Classification and Segmentation. arXiv:1612.00593 [cs], Apr. 2017.

arXiv: 1612.00593.

[57] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. PointNet++: Deep Hierarchical

Feature Learning on Point Sets in a Metric Space. arXiv:1706.02413 [cs], June

2017. arXiv: 1706.02413.

[58] D. Sculley. Web-scale k-means clustering. In Proceedings of the 19th international

conference on World wide web, pages 1177–1178, 2010.

[59] X. Shang and L. A. Chisholm. Classification of Australian Native Forest Species

Using Hyperspectral Remote Sensing and Machine-Learning Classification Al-

gorithms. IEEE Journal of Selected Topics in Applied Earth Observations and

Remote Sensing, 7(6):2481–2489, June 2014. Conference Name: IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing.

[60] C. A. Silva, A. T. Hudak, L. A. Vierling, E. L. Loudermilk, J. J. O’Brien, J. K.

Hiers, S. B. Jack, C. Gonzalez-Benecke, H. Lee, M. J. Falkowski, and A. Khos-

ravipour. Imputation of Individual Longleaf Pine (Pinus palustris Mill.) Tree

Attributes from Field and LiDAR Data. Canadian Journal of Remote Sensing,

42(5):554–573, Sept. 2016. https://doi.org/10.1080/07038992.2016.1196582.

[61] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-

Scale Image Recognition. Sept. 2014.

[62] Q. Song, C. Wang, Z. Jiang, Y. Wang, Y. Tai, C. Wang, J. Li, F. Huang,

and Y. Wu. Rethinking counting and localization in crowds: A purely point-

67



based framework. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 3365–3374, 2021.

[63] J. Ventura, M. Honsberger, C. Gonsalves, J. Rice, C. Pawlak, N. L. S. Han,

V. Nguyen, K. Sugano, J. Doremus, G. A. Fricker, J. Yost, and M. Ritter. In-

dividual tree detection in large-scale urban environments using high-resolution

multispectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing,

2022. Note: Forthcoming publication.

[64] M. S. Warren, S. P. Brumby, S. W. Skillman, T. Kelton, B. Wohlberg, M. Mathis,

R. Chartrand, R. Keisler, and M. Johnson. Seeing the Earth in the Cloud:

Processing one petabyte of satellite imagery in one day. In 2015 IEEE Applied

Imagery Pattern Recognition Workshop (AIPR), pages 1–12, Oct. 2015. ISSN:

2332-5615.

[65] B. G. Weinstein, S. Marconi, S. Bohlman, Alina Zare, and E. White. Individual

Tree-Crown Detection in RGB Imagery Using Semi-Supervised Deep Learning

Neural Networks. Technical report, Feb. 2021.

[66] B. Wu, B. Yu, Q. Wu, Y. Huang, Z. Chen, and J. Wu. Individual tree crown de-

lineation using localized contour tree method and airborne LiDAR data in conif-

erous forests. International Journal of Applied Earth Observation and Geoinfor-

mation, 52:82–94, Oct. 2016.

[67] W. Wu, Z. Qi, and L. Fuxin. PointConv: Deep Convolutional Networks on 3D

Point Clouds. arXiv:1811.07246 [cs], Nov. 2020. arXiv: 1811.07246.

[68] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3D ShapeNets:

A Deep Representation for Volumetric Shapes. pages 1912–1920, 2015.

[69] Q. Xiao, S. L. Ustin, and E. G. McPherson. Using AVIRIS data

and multiple-masking techniques to map urban forest tree species. In-

68



ternational Journal of Remote Sensing, 25(24):5637–5654, Dec. 2004.

https://doi.org/10.1080/01431160412331291224.

[70] M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701, 2012.

[71] C. Zhang, Y. Zhou, and F. Qiu. Individual Tree Segmentation from LiDAR Point

Clouds for Urban Forest Inventory. Remote Sensing, 7(6):7892–7913, June 2015.

[72] Q.-Y. Zhou, J. Park, and V. Koltun. Open3D: A Modern Library for 3D Data

Processing. arXiv:1801.09847, 2018.

[73] L. Zhu, Z. Zhao, C. Lu, Y. Lin, Y. Peng, and T. Yao. Dual path multi-scale fusion

networks with attention for crowd counting. arXiv preprint arXiv:1902.01115,

2019.

[74] J. Zörner, J. R. Dymond, J. D. Shepherd, S. K. Wiser, and B. Jolly. LiDAR-Based

Regional Inventory of Tall Trees—Wellington, New Zealand. Forests, 9(11):702,

Nov. 2018.

69



APPENDICES

Appendix A

ESTIMATED CO2 EMISSIONS RELATED TO EXPERIMENTS

Experiments were conducted using private infrastructure, which has an estimated car-

bon efficiency of 0.2376824 kgCO2eq/kWh. 1144 cumulative GPU-hours of computa-

tion were performed on hardware of type Tesla V100-PCIE-16GB (TDP of 300W).

Total emissions are estimated to be 81.57 kg of CO2 equivalent. This is approximately

the emissions caused by 366 km (227 mi) driven with an average internal combustion

engine car.

Estimations were conducted using the MachineLearning Impact calculator1 presented

in [32].

1https://mlco2.github.io/impact#compute

70


	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	1.1 Overview & Motivations
	1.2 Objectives & Approach
	1.2.1 Research Questions
	1.2.2 Hypothesis

	1.3 Contributions

	2 Background
	2.1 Remote Sensing for Forestry
	2.2 Deep Learning

	3 Related Work
	3.1 Remote Sensing for Forestry
	3.1.1 Algorithmic & Statistical Methods
	3.1.1.1 Methods for Imagery
	3.1.1.2 Methods for LIDAR
	3.1.1.3 Methods for Multimodal Data

	3.1.2 Deep Learning Approaches

	3.2 Pointcloud Deep Learning
	3.2.1 Voxel Methods
	3.2.2 PointNet

	3.3 Pointcloud Deep Learning for Forestry

	4 Methods
	4.1 Overview
	4.2 Point-Matching: A Method-Agnostic Scoring Metric
	4.2.1 Derived Metrics

	4.3 Dataset
	4.3.1 NAIP Imagery
	4.3.2 LIDAR
	4.3.3 Ground-Truth Tree Annotations
	4.3.4 Preprocessing

	4.4 Model Architecture
	4.4.1 Modified PointNet
	4.4.2 Loss Functions
	4.4.2.1 DeepSTORM Loss
	4.4.2.2 DeepLOCO Loss

	4.4.3 Model Output Post-Processing
	4.4.4 Model Optimization
	4.4.4.1 Training Procedure
	4.4.4.2 Post-Processing Parameter Estimation
	4.4.4.3 Hyper-Optimization


	4.5 Alternative Methods
	4.5.1 PyCrown
	4.5.2 PyCrown-Spectral
	4.5.3 SFANet


	5 Results
	5.1 Overview of Results, by Method
	5.1.1 PyCrown & PyCrown-Spectral
	5.1.2 SFANet
	5.1.3 PointNet & PointNet 2

	5.2 Analysis of Errors
	5.2.1 Methodology
	5.2.2 Analysis
	5.2.2.1 Identification
	5.2.2.2 Delineation
	5.2.2.3 Localization
	5.2.2.4 Data Effects
	5.2.2.5 The ``Unclear" Category


	5.3 Ablation Study
	5.4 Summary
	5.4.1 Hypothesis
	5.4.2 Research Questions
	5.4.2.1 RQ1: How effectively can deep learning be applied directly to LIDAR pointclouds to detect trees in the urban environment?
	5.4.2.2 RQ2: What structures in the urban environment are difficult to distinguish from trees?
	5.4.2.3 RQ3: Can deep learning for LIDAR pointclouds provide information that is complementary to that from other methods?



	6 Conclusion
	6.1 Overview
	6.2 Contributions
	6.3 Future Work

	A Estimated CO2 Emissions Related to Experiments

