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Targeted attacks using breached credentials exploit the fact that users reuse
some semantic or syntactic structure of passwords across websites to make them
easy to remember. Adversaries try to log in to a victim’s account using the stolen
passwords or variants of these passwords. Protecting accounts from these at-
tacks remains challenging. Adversaries have wide-scale access to billions of
stolen credentials from breach compilations, while users and identity providers
remain in the dark about which accounts require attention. Our contribution is
to show that it is possible to build a large-scale system that allows users to check
for vulnerabilities against these attacks without sacrificing the functionality, se-
curity, and performance properties.

We initiate the work by addressing the core challenge — modeling how hu-
mans choose similar passwords. We train models using modern machine learn-
ing techniques and exhibit its efficacy by simulating the most damaging attack
to date. Then we formalize the security goals for existing breach checking ser-
vices that warn if the exact credential is publicly exposed. In the process we
also propose novel exact-checking protocols with better security guarantees. All
this helped educate the design of the second-generation, similarity-aware, and
privacy-preserving credential checking service — Might I get Pwned (MIGP).
Finally, we collaborate with Cloudflare to deploy MIGP as part of the web ap-

plication firewall to notify login servers about potential attacks.
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CHAPTER 1
INTRODUCTION

Passwords are the most prevalent way to authenticate people on the web,
despite being easy-to-guess [95] and hard-to-remember [31]. For convenience,
users often pick same or similar passwords across different web services. Nearly
40% of users reuse their passwords or use slight variations [106]. The web ser-
vice accounts with the same or similar passwords are as secure as the weakest
ones among them. A breach at any one of these services also puts the other

accounts at risk.

Against this backdrop, the sharing of breach compilations containing aggre-
gated compromised data on underground forums has steadily increased [67].
For example, the compilation known as “Collections 1-5” includes 2.2 billion
credentials. The widespread availability of breached credentials and password
reuse across accounts makes credential stuffing attacks one of the most promi-
nent security threats online. In credential stuffing attacks, the adversary uses a
victim’s leaked password from one website to compromise accounts associated
with the victim on other websites. An incredible 90% of login traffic now con-
sists of credential stuffing attack attempts [115]; it is the most prevalent form of

account compromise [115].

A generalization of credential stuffing arises when the attacker picks com-
mon variants of a breached password to guess other active passwords of the
user. These attacks can be damaging, which makes sense given the well-known
tendency of users to select similar passwords [106], even after a password re-
set notification to prevent credential stuffing attacks [136]. The emergence of

these large breached credential compilations accompanied by the increase in



computational power and data analysis tools also lead to new opportunities for

modeling how users choose these similar passwords.

Recently, some companies, such as HavelBeenPwned (HIBP) [122], have
started providing web services that actively collect the latest breaches and pro-
vide interfaces to query if a credential is leaked as a countermeasure against
credential stuffing. HIBP has publicly documented APIs to check if a username
or password is present in some breach. Such safeguards, now actively recom-
mended by NIST [66], inform users about the at-risk usernames and passwords.
These countermeasures, however, don’t address the risk associated with users
selecting or resetting the breached password to a similar password [50, 104].
Moreover, a rigorous formal and empirical analysis of how to design and im-

plement such services is critical to prevent misuse.

This dissertation is about designing, implementing, and deploying a ro-
bust and efficient end-to-end system for checking and preventing attacks from
breached credentials. Our research focuses on both studying the landscape of at-
tacks that exploit breaches and building secure infrastructure to defend against
them. We use a combination of cryptographic techniques to build protocols for
checking the user’s private input (their username and password) against sensi-
tive breached data, and formal and empirical analysis for security evaluations
as well as performance analysis to address questions that arise when incorpo-

rating these novel techniques into real systems.

The starting point for building such a system is to better understand the at-
tack ecosystem. Users often reuse or pick similar passwords across different
websites, making breached credential-based attacks effective. For example, a

user selecting “qwertyl” as their password may often make minor modifica-



tions to generate a password for another website, e.g., “qwerty12”. We use “cre-
dential tweaking” to refer to attacks that submit variants of a leaked password.
Credential stuffing is the more specific attack scenario where an adversary tries

to compromise accounts by submitting the breached passwords unchanged.

A small number of prior academic works have investigated the efficacy of
credential tweaking attacks that choose variants of leaked passwords based on
mangling rules [50] or probabilistic context-free grammars (PCFG) [127]. In this
work, we build a more damaging credential tweaking attack using state-of-the-
art deep learning techniques. We demonstrate the attack’s effectiveness using
simulations; 16% of user accounts can be compromised in less than 1000 guesses,

despite the use of a credential stuffing countermeasure.

The standard countermeasure is to have users or websites proactively check
if user credentials are present in known data breaches. This has given rise
to web services, such as HavelBeenPwned (HIBP) [122] and Google Password
Checkup (GPC) [121], that released APIs to check for breached passwords. We
refer to such services as compromised credential checking (C3) services. These
services have to make various tradeoffs spanning from user privacy, accuracy,
and performance. We provide the first formal description of C3 services, detail-
ing different settings, operational requirements for deployment, relevant threat
models and rigorous security analysis. We also introduce two new protocols
that provide better security guarantees than HIBP and GPC, with comparable

performance.

Finally, we initiate work on C3 services that protect users from credential
tweaking attacks. This second-generation compromised credential checking

system allows private similarity checking of passwords. We are interested in



solving the decisional version of the problem: given a breach database D con-
taining a set of username, password pairs (u;, w;), and a client’s query contain-
ing username, password pair (u,w), is there an element u,w’ in D, such that
w = w' or w is similar to w’. The owner of the C3 database D learns nothing
about the user input and final query output. Also, a malicious client can not
retrieve additional information about D. Therefore, the core underlying chal-
lenges of building such a system that scales with the size of D and satisfies the
required privacy guarantees are: 1) Explore ways to define similarity in pass-
words, 2) Building a similarity-checking cryptographic protocol that preserves
honest clients” privacy, 3) Preventing malicious clients from quickly extracting

the breach data D, and 4) Ensuring the system is fast for deployment in practice.

We overcome these challenges and design “Might I Get Pwned” (MIGP), a
new kind of breach alerting service. Our simulations show that MIGP reduces
the efficacy of state-of-the-art 1000-guess credential tweaking attacks by 94%.
MIGP preserves user privacy and limits potential exposure of sensitive breach
entries. We show that the protocol is fast, with response time close to existing C3
services. We also worked with Cloudflare, a major computer security company,

to deploy MIGP in practice.

1.1 Overview

This dissertation is organized into three parts. In the first part (Chapter 2), we
study the existing attacks based on leaked credentials and develop the most
damaging credential tweaking attack to date. The second part (Chapter 3) fo-
cuses on the design and implementation of compromised credential checking

(C3) systems that protect users against credential stuffing attacks. We also ex-



plore the existing C3 services like HIBP and GPC and analyze the security guar-
antees of these services. These services, however, only check if the exact pass-
word is leaked, and therefore do not mitigate credential tweaking attacks. This
motivates the design of a second-generation C3 system, Might I Get Pwned
(MIGP), that also warns users about passwords similar to the breached ones.
The third part (Chapter 4) presents the detailed cryptographic protocol and sys-
tem design of MIGP along with security and performance evaluation for de-
ployment in practice. In the remainder of the introduction, I will explain the

problem in detail and outline the upcoming chapters in the body of the thesis.

1.1.1 Attacks against breached credentials

Text passwords continue to be used widely for online authentication. Given hu-
man constraints on memorizing a large number of passwords, users often adopt
various strategies — including reuse and weak passwords — for managing their
growing online accounts. Das et al. [50] estimated (based on breached data) the
percentage of users that have reused passwords across multiple websites to be
in the 43-51% range. The use of password managers for the generation of ran-
dom passwords is still not widely adopted by users. These factors contribute
to the increasing threat of credential tweaking and stuffing attacks; inverting
a hash of a single weak password or a breach in a single account makes other

accounts vulnerable to these attacks.

Credential stuffing attacks are straightforward — breached passwords from
one website are used to make login attempts to another. Credential tweaking at-

tacks, however, require generating similar passwords as login attempts to other



websites. A key differentiator between our work and prior password credential
tweaking attacks is a novel data-driven, machine-learning approach that learns
the similarity between passwords of the same user. The similarity can be in-
terpreted as the conditional probability P(w'|w), where w is a leaked password

from one site and w’ is a user’s chosen password at another website.

An estimate of this conditional probability, for all relevant w, was learned
using a compilation of password leaks containing 1.4 billion email-password
pairs. We cleaned and joined this dataset using different heuristics to identity
passwords corresponding to the same user. A generative model was trained on
the dataset, capturing the conditional probability P(w|w’) using the sequence-
to-sequence (seq2seq) architecture [119]. The model predicts the modifications
to w to generate w’, which gives better accuracy than trying to predict the full
password w” itself. This model-based attack is 1.2 times more effective than the
previous best credential tweaking attack and 3 times more effective than the
best untargeted attack (attacks that don’t take a leaked password into account

to tailor guesses).

To evaluate the efficacy of credential tweaking attacks on real-world authen-
tication systems, we performed experiments in collaboration with Cornell Uni-
versity’s IT security group. In a first-of-its-kind experiment, we tested the ef-
ticacy of remote credential tweaking attacks on real user accounts. The breach
compilation dataset mentioned above included 19,868 Cornell emails. Pass-
words associated with 1, 316 active Cornell user accounts were guessed by our
attack in less than 1,000 guesses. These accounts were put under a watchlist
by the Cornell IT security office; our research directly improved the security of

these accounts.



Possible defenses

An obvious solution to stop these attacks is to perform audits based on the at-
tack techniques described in the previous paragraph. But these audits are ex-
pensive to run. To solve this problem, we introduce the notion of a personal-
ized password strength meter (PPSM), which also considers the similarity of
the selected password to the user’s leaked password(s) to estimate the selected

password’s strength.

We implemented a PPSM using embedding-based neural networks. The em-
bedding maps a password to a d-dimensional vector in R?. The property of
the embedding vector is that vectors corresponding to similar passwords (pass-
words that are chosen by the same user) are closer in vector space. Therefore, we
can measure the similarity score between two passwords: compute the embed-
ding vectors and the distance between them. The similarity score warns users
from picking vulnerable passwords and guides them towards selecting pass-
words that will resist credential tweaking attacks. We also made sure that the
neural network is lightweight (3 Mb) and fast (0.3 ms) so that it is deployable in

a variety of useful contexts.

There are a few different deployment scenarios where PPSMs will help im-
prove security. A PPSM can be integrated as a part of password managers to flag
similar selected passwords. One can also use a PPSM in the password-change
workflow to determine whether the new password is a variant of the old one.
A PPSM, combined with compulsory password change after a breach notifica-
tion, should be effective at preventing credential tweaking attacks. A PPSM can

also be deployed with login functionality. Whenever the user logins, the server



checks whether the input password is unsafe based on leaked passwords asso-

ciated with that account.

Information on what credentials have appeared in breaches is tedious for
websites to maintain and often outsourced to third-party like C3 services. GPC,
a C3 service discussed earlier, performs scalable private set intersection [121]
with the server containing breached datasets. We provide a more detailed anal-
ysis of the C3 services in the following subsection 1.1.2. However, current C3
services don’t warn users if the input password is similar to any breached pass-
words. We explore the question of building an improved C3 service with this

ability in the subsection 1.1.3.

1.1.2 Compromised Credential Checking System

We compare the security leakage in various deployed C3 services like Google
Password Checker and HavelBeenPwned by formalizing the security require-
ments of such systems. The secrecy of the client’s credential is paramount in
these systems; the privacy of the C3 database is also desired. GPC was released
as a chrome-extension, concurrently with our paper, in 2019 and later integrated
into Chrome. GPC checks if a username-password pair is present in the leak in-
stead of just the username or password, in the case of HIBP, leading to fewer

false positives.

All the deployed protocols split the C3 database into smaller buckets and
engage in a private set intersection (PSI) protocol [79] to reduce bandwidth use.
The current C3 systems use the prefix of the user’s credential as the bucket iden-

tifier, but we show that this can make the user password easy to guess for an



attacker that observes the client’s queries. We evaluate the security of such sys-
tems using theoretical and empirical analysis and show that knowing the bucket
identifier can lead to a 12x increase in attack success. We reported this to Google,

who later switched to our suggested improved approach (discussed later).

We also introduce new protocols that provide better security guarantees for
both settings - HIBP, where only passwords are stored at the C3 server and GPC,
where both username and passwords are stored. The main idea is that parti-
tioning the leaks more effectively reduces security leakage. In password-only
setting, we propose a novel bucketization technique, frequency-based bucketi-
zation, where the passwords are assigned to buckets in a way so that the bucket

access pattern is flattened.

In the username-password setting, we propose a simple modification to
the already deployed GPC protocol. The partitioning of the database should
be done using the hash prefix of just the username instead of the username-
password pair. This change ensures that no information about passwords is re-
vealed to the C3 server (assuming username and passwords are independent).
We refer to this protocol as ID-based bucketization (IDB). This change in proto-
col gives comparable performance guarantees. We reported this to Google, who
later transitioned to our suggested improved approach. As mentioned, Google

has transitioned to this scheme.

1.1.3 MightI Get Pwned

Existing C3 services only prevent credential stuffing attacks, and leave the

users susceptible to credential tweaking attacks. As discussed earlier, cre-



dential tweaking attacks exploit the fact that users select similar passwords
across websites [106]. Attackers can therefore guess variations of a leaked pass-
word to compromise other vulnerable accounts. Our work, discussed earlier,
showed that the state-of-the-art credential tweaking attack techniques can com-
promise 16% of the user accounts in less than a thousand guesses given access
to breached passwords for the user, despite existing C3 services in place that

prevents selection of the breached password.

This motivates the design of a second-generation breach alerting system
called Might I Get Pwned, MIGP, that checks if a password is vulnerable to
credential tweaking attacks without revealing the password to the server. We
explore the inherent tension between efficacy, security, and performance and

tackle the primary challenges of building such a system.

MIGP builds off the first generation C3 protocol, the IDB protocol, that per-
forms an private set intersection (PSI) to check for equality. The IDB protocol
executes the PSI over buckets (subsets) of breach data, partitioned based on the
hash prefix of usernames. To extend the IDB protocol with similarity check-
ing feature, we augment the breached dataset with n variants of each leaked
password and allow users to generate m variants on client-side. We then per-
form the IDB protocol between the client’s queried data and the server’s origi-
nal breached and respective variants. The desired outcome of the protocol is the

user getting informed, in case of a match, if it is a variant or original password.

To concretize this approach, we need to answer the following questions —
how to generate the similar variants, and what are the optimal values of m and
n are. We empirically evaluate the effectiveness of different similarity measures.

We show that with the values of m = 10 and n = 10, the success rate of state-
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of-the-art credential tweaking attacker with 1000 guesses reduces by 94% com-
pared to using only exact-checking, even when the attacker adapts its strategy

to the use of MIGP.

C3 services can be used by malicious users to attempt to extract sensitive
and sometimes confidential breach data. We refer to these attacks as breach
extraction attacks. The upgrade to similarity-aware breach alerting raises the
natural question: Will the extra information regarding similarity to breached
data make breach extraction attacks easier? We formalize this attack setting and
analyze it both analytically and empirically. We discuss some mitigation tech-
niques against this leakage — such as blocklisting common passwords and rate-
limiting client-side queries using proof-of-work, which can significantly reduce

the attack success rate.

Finally, we implement MIGP and show that online computational cost is
comparable to the existing C3 services (less than 500 ms), showing its feasibility

for deployment in practice.

1.1.4 Impactin practice

We worked with Cloudflare, a major CDN and computer security company [24],
to deploy the MIGP protocol — (1) as a public-facing API, and (2) as an internal
component of Cloudflare’s web application firewall (WAF) product for breach
alerting [24].

Cloudflare has released their Exposed Credential Check feature as part of

their Web Application Firewall (WAF). Websites can opt-in for this feature,
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which informs the websites about login attempts to their sites that used com-
promised credentials. Underlying this feature is the MIGP service deployed on
Cloudflare Workers. The MIGP service latency is under 135 ms for over 50% of
client requests and under 573ms for 95% of requests. The source code underly-

ing the MIGP implementation at Cloudflare is publicly available [23].

To estimate the effectiveness of the MIGP service, we instrumented a mea-
surement study on the WAF deployment. We concluded that MIGP flags 20%
more vulnerable login attempts than exact-checking C3 systems. With the
large-scale deployment of MIGP at Cloudflare, we demonstrate the feasibility,
practicality, and usefulness of checking for breached credentials in a privacy-

preserving way.
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CHAPTER 2
BEYOND CREDENTIAL STUFFING: PASSWORD SIMILARITY MODELS
USING NEURAL NETWORKS

2.1 Introduction

Despite repeated calls to replace passwords entirely with different authentica-
tion mechanisms [40,87,89,117], human-chosen passwords remain widespread
today and will continue for the foreseeable future. This is true despite their
notoriety for being easy-to-guess [95], hard-to-remember [31], and difficult-to-
type-correctly [44]. The latter two issues tend to encourage reuse of similar
passwords across websites: nearly 40% of users reuse their passwords or use

slight variations [106].

Password reuse and the rising prevalence of password leaks make targeted
guessing attacks an increasingly severe threat. The most prevalent form of tar-
geted attack is so-called credential stuffing, where the attacker simply tries to
log into a user’s account using password(s) associated to that user found in a
leak. The threat is acute: more than five billion leaked accounts were being dis-
tributed on the Internet by the end of 2017 [29,122]; bot-driven credential stuff-
ing attacks account for 90% of the login traffic to some of the world’s largest
websites [115]; and these attacks represent the largest source of account take

over [115].

Website operators, sometimes with the help of third-party services such as
HIBP [122], reset user passwords if their usernames or passwords are found

in breaches. Such safeguards, which are now actively being recommended by
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NIST [66], may only prevent credential stuffing — the user can select some small
variant of the breached password as their password. A small number of aca-
demic works have investigated generalizations of credential stuffing, picking
variants of the leaked passwords based on mangling rules [50] or probabilistic
context-free grammars (PCFG) [127]. They show such targeted attacks can be
damaging, which makes sense given the well-known tendency of users to pick
similar passwords [106], even after a password reset [136]. We use credential

tweaking to refer to attacks that submit variants of a leaked password.

In this work, we investigate credential tweaking attacks from the viewpoint
of understanding similarity between human-chosen passwords. We explore
data-driven methods for modeling similarity using modern machine learning
techniques. This gives rise to a new targeted password guessing attack that out-
performs all previous ones, as well as the design of a new kind of password
strength meter that includes, in strength estimates, vulnerability to targeted at-

tacks.

Briefly, we treat similarity by learning models that estimate Pr [w | @], where
w is a leaked password from one site and w represents a user’s choice of pass-
word at another website. We then cast estimating this family of conditional
probability distributions (one for each w) as a learning task, where we use a com-
pilation of password leaks containing 1.4 billion email, password pairs. We ex-
plore various heuristics for identifying passwords used by a single user within
the dataset. Ultimately this results in a huge amount of data on password simi-

larity.

We first use this dataset to learn a compact, generative model capturing

Pr[w | @] for all @ using sequence-to-sequence (seq2seq) algorithms [120].
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These are widely used in the natural language processing literature for lan-
guage translation and other tasks. Here we treat an input “source” password
as w and the model learns how to generate new passwords w in a way that re-
flects similarity patterns seen in the data. Using seq2seq in this way, however,
led to results that do not outperform previous attacks. We therefore took a dif-
ferent approach, training the model to predict the modifications to w needed to
transform it into w. While seemingly equivalent, this proved significantly more
effective. Intuitively, it focused the model better on learning common trans-
formations found in the data. We call the resulting algorithm password-to-path

(pass2path), the path denoting the sequence of transformations.

Using the pass2path model, we build a credential tweaking attack that we
show via simulation can compromise more than 48% of users” accounts in less
than a thousand guesses, should one of their passwords from another account
appear in a breach. The baseline algorithm for credential tweaking attack to
guess the leaked passwords only, works about 40% of the time due to password
reuse. So, more interesting is how well our attacks work in the case of credential
stuffing countermeasures. = We perform (separate) simulations for that case,
which suggest that 16% of user accounts could be breached with our attack.
This is 1.2 times more effective than the previous best targeted attack and 3

times more than the best untargeted attack.

Simulation may not accurately represent efficacy in the real world, and so
we evaluate credential tweaking attacks on a real-world system via a collabora-
tion with Cornell University’s IT Security Office (ITSO).! ITSO deploys creden-
tial stuffing countermeasures, as well as other state-of-the-art defenses. Never-

theless, a pass2path-based credential tweaking attack successfully guessed the

10Our experiment design passed review both by our university IRB as well as by ITSO staff.
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passwords of over 8.4% of the 15, 665 active Cornell user accounts that appeared
in public breaches, in 1,000 guesses. Our experiments here not only confirm
the danger of credential tweaking attacks in practice, but helped us get one step
ahead of attackers and identify thousands of potentially vulnerable Cornell ac-
counts for special monitoring. Unfortunately forcing these users to pick new
passwords won't necessarily prevent attacks, because they may end up choos-

ing a variant of their previous passwords.

We therefore introduce personalized password strength meters (PPSMs). These
estimate the strength (non-guessability) of a password considering the user’s
other (leaked) passwords. We build a PPSM, called vec-ppsm, using neu-
ral network-based word embedding techniques [37,99], which represents an-
other way of modeling password similarity more amenable to deployment as a
strength meter than pass2path. Our PPSM can identify passwords unsafe in the
face of targeted guessing attacks, and can be used in conjunction with existing
password strength meters to give an accurate strength estimate of passwords
against all known attacks. In the body we discuss various deployment settings

for vec-ppsm.

In summary, our contributions include the following;:

e We recast the core technical challenge in targeted guessing attacks as a task of
modeling password similarity. This viewpoint allows us to adapt state-of-the-
art machine learning tools and apply them to the billions of leaked credentials
publicly available. We designed a model pass2path that accurately generates

likely user-selected transformations of a given leaked password .
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e Using pass2path, we build the most effective targeted password guessing at-
tack to date. It can compromise 16% of user accounts that have been protected

against credential stuffing in just 1, 000 guesses.

o We measure targeted attacks in practice for the first time, showing that 1, 316
in-use accounts at Cornell University could have been compromised via our

credential tweaking attack, despite credential-stuffing countermeasures.

e We introduce the idea of personalized password strength meters (PPSMs).
We build a PPSM using word embedding techniques, and show how it can be

used to help prevent credential tweaking attacks.

2.2 Background

Password models. Human-chosen passwords have previously been analyzed
using tools from natural language processing (NLP). Early examples include
using Markov models to help improve dictionary-based cracking tools [28,101].
Subsequently many data-driven approaches were proposed to learn language
models for passwords using password leaks. Weir et al. used probabilistic
context-free grammars (PCFGs) [130]. They were later improved by Koman-
duri et al. in [82] to estimate the distribution of human-chosen passwords. Ma
et al. [91] improved upon Markov model-based techniques with some carefully
chosen parameters, showing that they outperform PCFG-based models when

used to generate a large number of passwords. In 2016, Melicher et al. [97] used
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recurrent neural networks (RNNs) and Hitaj et al. [70] proposed using deep

generative adversarial networks (GAN) to model passwords.

Password guessing attacks. A primary application of password models is to
educate brute-force guessing attacks. Such attacks fall into two main categories:
offline and online. Offline attacks occur when an attacker obtains cryptographic
hashes of some users” passwords and attempts to recover user passwords by
guessing-and-checking billions (or even trillions) of passwords. The primary
challenge for the attacker is to generate an ordered list of password guesses
w1, Wy, . .. for which the true user password is likely to appear early. The index

of a password w in this list is called the guess rank (3) of the password.

An online attack occurs when an attacker uses a login interface or other API
to submit password guesses against some account. Because modern authen-
tication systems should lock accounts after a small number of failed attempts
(e.g., 10), online attacks are more limited than offline in terms of the number
of guesses an attacker can make. The primary challenge, however, is the same.
Given a number of guesses or query budget ¢, the success probability of an at-
tack is what we call the ¢-success rate, denoted ),. For this study, we will focus

on the online setting, restricting the query budget to 1,000 or less.

Most password guessing literature focuses on untargeted attacks that gen-
erate password guess sequences in a way that is agnostic to the account being
attacked. Targeted attacks instead try to take advantage of extra knowledge
about the account being attacked. Credential stuffing attacks submit a leaked
password for an account to an associated account at another website. These are

a growing concern, in large part due to the vast number of password leaks: user
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accounts, on any given service, are very likely to be associated with at least one

account leaked from another source.

Das et al. [50] is the first academic work on targeted attacks exploiting such
side information. They showed that around 43% of users reuse the same pass-
word across different websites. They also manually developed a rule-based al-
gorithm to guess a user’s password with information about one of their other
passwords. We refer to this kind of generalization of credential stuffing as cre-
dential tweaking because the adversary also submits modifications to the leaked
password. Later, Wang et al. [127] constructed a personalized PCFG model
to guide credential tweaking based on personal information, including leaked
passwords. These targeted attacks outperform untargeted attacks for the small
query budgets relevant to online guessing. These existing techniques, however,
are not suitable for taking more advantage of the vast amounts of leaked data
now available. We will turn to more modern machine learning techniques to do

SO.

Password strength meters. Password models are also used to develop strength
meters [97,131], which are used most often as a “nudge” to help guide users
towards selecting stronger passwords. Password strength estimation was ini-
tially done using various statistical methods like Shannon entropy [41]. This ap-
proach has various deficiencies, see [52,55]. More recently, password strength is
estimated by calculating a password’s guess rank under some password model.
Given a password model, guess ranks can be efficiently estimated using the

Monte Carlo techniques introduced by Dell and Filippone [53].
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2.3 Preliminaries

Users choose similar and related passwords for different accounts. Therefore,
knowledge of one password of a user can be leveraged to guess their other pass-
words more efficiently. While there might be many latent factors affecting user’s
choice of passwords, such as their demographics, sensitivity of the website con-
tents, and the website’s password policy, previous studies [127] suggest that a
user’s previous passwords are the most dominant factor in the choice of their
other passwords. Therefore to understand the similarity between passwords,
we will focus only on a user’s passwords, agnostic to the user who is choosing
the password and the website for which the password is being chosen for. We

consider two passwords to be ‘similar’ if they are often chosen together by users.

More formally, let > be the set of characters allowed in a password (e.g., all
ASCII characters) and ¢ be the maximum allowed length of a password (e.g.,
50). Let p denote the probability that a user selects a password w € £* for an
account. We denote the support of that distribution by /. We model similarity
between two passwords w and @ as the conditional probability P (w | @) that a
user selects the password w € W given that another of their password is w € W.
We can extend this definition of similarity to consider multiple of a user’s past
passwords w0y, ws, . . ., and compute the probability that w is chosen by the user.
In that case, we can model the conditional probability distribution of passwords

aSP(’lU‘?I}l,UF‘}Q,...).

Prior studies have implicitly attempted to understand similarity of human-
chosen passwords using manually curated mangling rules [50] or using prob-

abilistic context-free grammars (PCFG) [127]. In recent years neural networks
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have proved to be very effective for many natural language tasks, such as un-
derstanding word similarity or translating natural language texts from one lan-
guage to another. We adapt neural networks-based NLP tools for modeling
password similarity. Using these tools, we build a more efficient attack and an

effective defense against targeted attacks.

Applications of password similarity models. A good password similarity
model can be used to perform targeted attacks against a user should an attacker
have access to user’s passwords from other websites. Such model can also be
useful to create defenses against state-of-the-art targeted attacks. A client-side
application can warn / prevent users when choosing a password w that can be
dangerous for them in the face of targeted attacks, by looking at the similar-
ity between w and various other passwords of the user. Another application
of password similarity can be in correcting password typos [44], as typos often

comprise of similar passwords.

Though all these applications of password similarity requires learning con-
ditional probability distributions, they need different interfaces from the trained
model. For example, to construct a targeted attack, one must be able to effi-
ciently enumerate the conditional probability distribution to generate guesses.
However, in case of password strength meter, we don’t need the capability of
efficient enumeration. As such we target two different kinds of models for pass-

word similarity.

The first model is a generative model, built using a sequence-to-sequence-
style model previously proposed for language translation [120]. Given a pass-
word @, this model can be used to enumerate similar passwords in decreasing

order of their conditional probability P (w | ).
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The second model we train is based on word embedding techniques, usu-
ally used proposed to understand similarity between words [99]. This model is
useful to get a similarity score between a pair of passwords (which is represen-
tative of the conditional probability), but does not provide an efficient way to
enumerate similar passwords given only one input password. While the gener-
ative model can be used to obtain similarity scores too, the embedding model
is sufficient to build a strength meter. As we show in Section 2.7, it is easier to
train an embedding model, and it is more efficient to compute similarity score

between passwords than our generative model.

Password breach dataset. The dataset we used for learning password similar-
ity is a leaked compilation of various password breaches over time. The dataset
was first discovered by 4iQ in the Dark Web [42].> The dataset consists of 1.4
billion email-password pairs, with 1.1 billion unique emails and 463 million
unique passwords. The (unknown) curator of the dataset removed duplicate

email, password pairs.

Although we do not know the exact leaks that were used to compile this
dataset, the folder contained a file called “imported.log” that indicates the
presence of all major leaks before December 5,2017. The listed leaks include
Linkedin, Myspace, Badoo, Yahoo, Twitter, Zoosk, Neopet, etc. Although there
was no official way to guarantee the authenticity of the leak, a subset of the
passwords have been verified as legitimate by various researchers. (Alarmingly,

passwords of two authors appear in the leak.)

2While the leak is publicly available on the Internet, we do not want to further publicize it
via including its URL here. Researchers can contact the authors for information.
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Property Values % of PWs

3-5 2
6—-38 48
Length 9_192 40
13 - 50 10
Lower case only 80
Upper case only 3
Letters only 38
Composition  Digits only 8
Special characters only <0.1
Letters & digits only 55
Containing at least one letter,
one digit and one special char 5

Figure 2.1: The distribution of password length and composition in the data
after cleaning.

Dataset cleaning. Several of the passwords in the dataset were uncracked hash
values. To clean the dataset, we removed any string that contains a substring
of 20 or more characters long containing only hex characters. This removed 1.5
million passwords. We also removed passwords containing non-ASCII charac-
ters and passwords that were longer than 30 characters or shorter than 4 charac-
ters. Overall we removed 2.6 million passwords (0.6%), reducing the number of
valid passwords to 460.4 million. We also found 4, 528 users were associated to
thousands of passwords. These are very unlikely to be passwords of a real user,

so we removed these accounts.

The most popular password in the clean dataset (123456) is used by 0.9%
of all users. Therefore, the min-entropy of the password distribution is 6.68
bits. The g-success rate ), is defined as the expected success probability of an
attacker who can make ¢ guesses per account. It is upper-bounded by the sum
of the probabilities of the ¢ most probable passwords. For our dataset A\;ps =
0.11. These values are in-line with what prior work has reported for password

distributions [39,127]. Figure 2.1 shows statistics about composition and lengths
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of passwords in our cleaned dataset. More than 88% of passwords were within

length 6 and 12, and 80% of passwords contain only lower case letters.

Joining accounts. The leak dataset contains account credentials in the form
of email-password pairs, with duplicate pairs removed. We want to merge the
accounts to find sets of accounts belonging to an individual user. This will give
us the list of passwords corresponding to a user. We explored three heuristics to

merge accounts as described below.

e Email based (Df,,). In the first (and the most obvious) strategy, we identify
users and join accounts based on the email addresses. We can claim that this
strategy will only merge accounts that belong to the same user as in most
of the cases, an email address belongs to a unique user. However, because
duplicate email-passwords were removed from the dataset, we are not able
to observe reuse of passwords by a user in this method. A user can also have

multiple emails, which this strategy fails to capture.

e Username based (D}},). We therefore consider another approach, in partic-
ular, using the username field of the email address — the string preceding
the domain name and ‘@ symbol (also called local-part [132]) to further join
accounts that might belong to the same user. We merge two emails if their
usernames are equal. In this process, we found 30% of passwords are reused
by users (see Figure 2.2), which is slightly below what prior works reported
(40%) [106]. Also, as we can see in Figure 2.2, the distribution of number of
passwords per user and the distribution of edit distances between password
pairs belonging to a user drastically changed from what we get after email
based joining. This, we anticipate, is due to incorrect merging of accounts

belonging to different users.
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E u M
Dian Dfn D
Number of users (millions) 146 195 174
Number of passwords (millions) 183 210 190
2 77.0 571 749
Passwords per user 3 15,5 19.1 16.3
>4 7.5 238 8.8
Password reuse rate 0.0 30.3 39.7
1 9.4 6.8 9.1
e 1 2 5.2 3.9 5.9
Edit distance 3 3.3 o4 3.9
>4 821 869 81.8

Figure 2.2: Comparison of the datasets under three account joining techniques:
email address (D), username (Df;,), and a combination of email and username

(D})). We only consider users with at least two leaked passwords. The final set
of rows give the fraction of distinct passwords from the same user within the
indicated edit distance. Except for the first two rows, all values are percentages

(%).

e Mixed method (D};). To reduce false merges, we finally consider a two-step
approach. We first join accounts based on email addresses. Then, two emails
are considered “connected” if the username parts of those emails are equal,
and the two password sets associated to those emails have at least one pass-
word in common. All connected emails are then considered belonging to a
single user. Thus, two emails belonging to a user might not have a direct
common password but they might share common passwords with another
email. This heuristic led to a password reuse rate of 40%, while keeping the

distributions of edit distances and number of passwords per user very similar

to what we observed from only email based joining.

Another possible heuristic would be to look at more relaxed policies for match-
ing usernames across accounts. For example, attackers may reasonably be able
to conclude that “Alice.Chang@servicel.com” and “AliceChang@service2.com”

are accounts owned by the same person. We did not explore this heuristic in de-

tail.

26



After joining the accounts, we only consider users who have at least two
leaked passwords in the dataset, because training and testing our targeted at-
tacks, as well as personalized strength meters, requires at least two passwords
from a user — one password is used as the target account password and another

as the one leaked.

As the username-based merging technique was not accurate, we discard this
from further discussion. The rates of password reuse (40%) and substring per-
mutations (18.2%) in DfMu“ (see Figure 2.2) are in line with prior studies [50, 127].
Though we do not have ground truth that the accounts generated by the mixed
method are correct, we believe, given the information we have in the dataset,

this is the best approximation of the distribution of passwords chosen by a user.

We split the cleaned email-based dataset D, into two parts: DE (80%) and
DE (20%). Similarly the mixed-dataset into D{\f (80%) and D{‘g (20%). Unless
otherwise specified, for all training and validation (during training) we use Dj.
This is because the distribution of similar (unique) passwords of a user in D}/
and D were almost identical. Since we only consider similar passwords of a
user during training, we do not use D} for training separately. For testing, we

use random samples from both Df and DY/

24 Generative models of Password Similarity

In this section we describe how to construct a generative model that estimates
the conditional probability distribution p; for an input password w, where
pa(w) = P(w|®). A password can be viewed as a sequence of characters

w = ¢,...,¢. Therefore we can model the conditional distribution of a se-
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quence of characters given another as follows,

P('UJ‘?I)):P(Cl,...,Cl‘él,...,él/)
z 2.1)
:HP(Ci’@’---751,01,---,@71)-
i=1

This formulation of password similarity matches very closely to the problem
of statistical machine translation (SMT), or more generally learning sequence-
to-sequence translation. Sutskever et al. [120] provided a very effective generic
framework for training sequence-to-sequence (seq2seq) models, without need-
ing to explicitly specify what the sequences represent. Their seq2seq model
uses an encoder-decoder-based architecture. The encoder function maps the in-
put sequence onto a real valued vector v € R? for some hyperparameterized
dimension d. The vector succinctly “summarizes” the details of the input se-
quence. The decoder takes the vector v and outputs a conditional probability

distribution of tokens of the output sequence space.

A straw proposal for learning password similarity would be to apply the
seq2seq approach directly on passwords as character sequences. We call this
model password-to-password or pass2pass. However, this technique did not
results in improved performance compared to prior work. In Appendix A.0.1
we give the details of how we trained this model. Below we describe an other
(more effective) approach to modeling password similarity using an encoder-

decoder based architecture.

Password-to-path model. Inpass2pass, we tried to learn the conditional proba-
bility of a complete password. As that did not perform well, we decided to learn
the modifications a user is likely to apply to their previous password. Pass-

word policy of a website might impact choices of some of these modifications.
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Though, our similarity model can be easily extended to consider website pass-
word policies, for simplicity, we will ignore the effect of password policy for

now and consider all passwords alike.

We treat a modification to a password as a sequence of transformations de-
tined as follows. A unit transformation 7 € T specifies what edit to apply and
where, in a password. Therefore, 7 is denoted by a triplet of the form (e, ¢, 1),
where e denotes an edit to apply, ¢ € ¥ U {1} is character or empty string,
and | € Z, is a location of the edit in a password. We consider three types of
edits: substitution (sub), insertion (ins), and deletion (del). For insertion and
substitution edits, ¢ denotes the character to insert or to substitute with; in case
of deletion ¢’ is always the empty string L. For example, applying a transfor-

l'l

mation (sub, ‘¥, 8) on the string ‘password1l” implies substituting the 8" (last)
character in the password with the character *!", which will result in the string

‘password!”.

Given a pair of passwords (w, w) with edit-distance ¢, we can find a sequence
of transformations 7,..., 7 that when applied to w in a cumulative manner
will produce w. Such transformations are what we call a path T;_,.,, € T*. To
compute the path between two passwords, we pick the one that is the short-
est, where ties are broken by favoring deletion over insertion over substitu-
tion. The transformations in the path are ordered by the location of the edit.
(See Appendix A.0.3 for more details.) For example, the path from ‘cats’ to
“kates’ (edit distance of 2) is: {(sub, ‘k’, 0), (ins, ‘e’, 3)}.
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In pass2path, we define the conditional probability of a password w given

another password w as follows.
P(w}ﬁ;):P w_m‘w HP Tz}w 7'1,...,72-_1), (2.2)

where ¢ is the minimum edit distance between two passwords w and @, and

Tpsw = T1y. o, Tt

We use an encoder-decoder based model where the output of the decoder
function is the probability distribution over transformations in 7. With this, we

can rewrite the above equation as

P(w}u?) :ﬁp(n’vo,ﬁ,...,n_l)

t
= HP (Ti ‘ Uz’—laTi—l) )
i=1

where vy is the output of the encoder, v;;; is the output of the decoder on in-
put v; and 7;, and 7y is a special beginning-of-path symbol. v;,_; contains the
information from 7y ... 7,_ and thus replaces 7, . . . 7,_, in the final equation. We
set up the task of learning this probability model as a supervised learning task,
with the training objective being to find the parameter # that maximizes the log
probability of the correct edit paths between password pairs chosen by individ-
ual users. Let D be the set of such password pairs, then the training objective
is

argmax— Z logP w_m‘w 9)

| | (w,w)eD

The model architecture of pass2path is similar to encoder-decoder based ar-
chitecture used for seq2seq instantiated using two recurrent neural networks
(RNN) [120]. The encoder and decoder RNNs are trained together. The details

of the model architecture are given in Appendix A.0.2. Below we will describe
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some further training details for pass2path. Once trained, the model can be
used to generate similar passwords given a leaked password w. The details on

how to generate the ¢ most probable passwords are given in Section 2.5.

Training pass2path. We train our password models using the data created
based on the email dataset (DtEr). For each user in the dataset, we compute all
pairs of passwords including re-ordering of the pairs, resulting in 823 million

password-pairs.

We represent the passwords as a sequence of key-presses (key-sequence) on a
US keyboard. For example, 'PASSWORDY’ is represented as ‘stc)passwordsts)1’,
where stc) and sts) represents caps-lock and shift key on the keyboard. Chatter-
jee et al. [44] showed that key-sequence representation of passwords are effec-
tive for improving password typo correction, and we use it here as it captures

capitalization-related transforms better than standard edit distance.

For each pair of passwords in the training set, we generated the minimum
path between them using a dynamic programming based algorithm. The al-
gorithm is an extension of the seminal algorithm for calculating minimum edit
distance between strings [86]. Given a pair of passwords w and w, we first con-
vert the passwords into key-sequences, and then find a path of transitions that

can transform @ into w. We describe our algorithm in detail in Appendix A.0.4.

A manual sample of a small number of password pairs revealed that a large
fraction of them were completely different without any apparent semantic or
syntactic similarity. Therefore, we decided to filter the passwords before train-
ing based on path length (which is also equal to the key-sequence edit distance

between the passwords). Given a cutoff §, we only consider password pairs
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with path length at most 6. We begin with § = 2, finish three epochs of training,
and then transfer-learn the network incrementally by adding more pairs with
0 = 3 and then § = 4. We found this way the model converges faster, and attains
higher accuracy. Overall the model was trained on 144 million password pairs

More details on training pass2path is given in Appendix A.0.3.

The pass2path model has 2.4 million parameters and takes 60 megabytes of
storage space on disk. It took about two days to train the model with batch
size 256 on an Nvidia GTX 1080 GPU and Intel Core i9 processor. The training,

however, required less than 2 GB of physical memory.

2.5 Targeted Guessing Attack using Pass2Path

As discussed in Section 4.2, a primary motivating application for learning pass-
word similarity is to understand the danger of targeted guessing attacks, where
an adversary generates password guesses educated from a user’s other pass-
word(s). In this section, we will describe how to generate thousands of guesses
from our trained pass2path model to build an effective targeted attack. We will

show via simulation that our attack outperforms all prior guessing attacks.

Generating similar passwords. To utilize a password similarity model for a
targeted attack, we need to be able to generate, given a leaked password w,
a list of passwords w, ws,...,w, in decreasing order of likelihood. Namely,
P (w; |w) > P (w;|w) fori < j. Here q is some number of guesses, a param-
eter we will concretize below. Generating w; is pretty straightforward given

our pass2path model. First, convert the input password « into a fixed dimen-
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sion vector v cge, and feed it to the decoder along with a special beginning-of-
sequence symbol. The decoder outputs a probability distribution over the set
of transformations 7. Pick the most probable output in each iteration and use
that as the input to the next invocation of the decoder until the end-of-sequence
symbol is reached. The output sequence of transformation is then applied to the

input password to generate a new password.

This procedure however only outputs the most probable password. To gen-
erate more than one output, we used breadth-first beam search technique [133].
The beam search algorithm uses a set of size ¢ — called the beam — which, at
each iteration of decode, stores the ¢ most probable paths (and network states
and probabilities) generated so far. We call a path complete if it ends with the
end-of-sequence transformation, and incomplete otherwise. The beam is initial-
ized with the ¢ most probable transformations output by the decoder on the
input of the vector v; and the beginning-of-sequence symbol. Next, for each in-
complete path 7y, . .., 7; currently stored in the beam, the decoder is called on the
last transformation 7; of the path, and new paths are computed by appending
the transformations to the path. Only the ¢ most probable newly constructed
paths are kept in the beam for the next iteration. This step is repeated until a
predefined maximum iteration count is reached, or all the paths in the beam are

complete.

Beam search is a greedy algorithm and not guaranteed to provide the ¢ most
probable paths. However, it is a widely used heuristic alternative for finding
the top-¢ guesses given limited memory and time. To find ¢ paths for a input

password, beam search will make at most ¢ - ¢ calls to the decode procedure,
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where ¢ is a parameter denoting the maximum length of the output path allowed

in the model.

As there can be multiple paths that when applied to a password @ outputs
the same password w, the beam search with beam width ¢ might not generate
q unique passwords. We, therefore, generate ¢’ > ¢ passwords and then output
the first ¢ unique passwords. In our experiment, we found taking ¢ = 2 - ¢ is

sufficient for finding ¢ unique passwords for more than 99.9% of passwords.

Evaluating targeted guessing attacks. We evaluate a targeted attack based on
what fraction of user accounts can be compromised with the knowledge of an-
other of their leaked passwords. We focus on the online attack setting, where
an account should be blocked (i.e., login will be disallowed without an out-
of-band authentication) after too many failed login attempts. The number of
attempts, and therefore maximal guesses available to an attacker before an ac-
count is blocked is what we call the query budget ¢. For evaluation of attacks,
we will use a guessing budget of ¢ € {10,100,1000}. These are typical values

used by authentication services.

We use both test datasets: Df, generated using only the email to identify
users, and D{\g, generated using the mixed method (see Section 3.3). The first
simulates attacking a service that has deployed credential-stuffing countermea-
sures, e.g., by forcing users to select new passwords should their previous pass-
word exist in a leak. Because repeat use of passwords across two accounts is
disallowed, we refer to this below as the “without-repeats” setting. The second

simulates attacking a service that has not deployed such a countermeasure, and

we, therefore, refer to it as the “with-repeats” setting.
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Attack Method g=10 ¢=10®2 g¢=103

Untargeted-empirical 1.6 2.5 52
Targeted-empirical 6.5 7.8 9.0
Das et al. [50] 5.8 9.2 11.0
Wang et al. [127] 6.5 9.3 13.1
Pass2pass 6.9 9.5 10.9
Pass2path 9.9 13.1 15.8
Attack Method g=10 g¢=102 ¢=1083
Untargeted-empirical 0.9 1.9 4.8
Targeted-empirical 42.6 434 43.9
Deas et al. [50] 427 44.8 459
Wang et al. [127] 432 443 47.0
Pass2pass 43.7 45.0 45.8
Pass2path 44.8 46.7 48.3

Figure 2.3: Percentage of passwords guessed by various attacks in ¢ guesses

on the two test sets generated from (left) DY, the without-repeats setting, and

(right) D}, the with-repeats setting. In the latter case, a major boost in guessing
performance comes from the fact that 40% of target passwords were the same as
the one leaked.

Either of the datasets contains millions of users. Some of the targeted attacks
that we evaluate are computationally very expensive. We need to pick a smaller
but representative sample of the test data. We computed the variances of the
rates of using the same and similar passwords by a user for different test set
sizes. We found the variance is sufficiently low (< 0.5%) for test sets of size
> 10°. Therefore, we randomly sample 10° random users for each dataset to
run our evaluation. For each selected user, we pick two passwords at random
without replacement from the multiset of passwords associated to the user —
one of them (chosen randomly) is considered as the leaked password @ and the

other as the target password w.

We compare our attack algorithms against the two existing targeted guess-
ing attacks. Das et al. [50] created a manually curated list of transformations to
generate similar passwords. Wang et al. [127] provided multiple attacks based
on information about a user, including their demographics, their other pass-

words, and a combination of these. We will focus on the TarGuess-II attack
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from [127] which operates with the knowledge of prior passwords only. Wang
et al. generously provided an implementation of both the Das et al. algorithm
and their TarGuess-II algorithm. The latter requires training from a dataset;

see Appendix A.0.5 for details.

We also compare against two attacks based solely on the empirical distri-
butions of passwords in the training set. The first one is an untargeted attack,
which simply guesses (for any leaked password) the ¢ most-used password by
users in the training dataset DE. We found this untargeted empirical model out-
performs the state-of-the-art untargeted guessing attack [97] for a small number

of guesses, such as ¢ < 104

The second one is a targeted empirical attack, where for a given leaked pass-
word w the attacker outputs the ¢ most popular passwords for the users who
also use the password w. While this targeted empirical attack is conceptually
straightforward, it would require a prohibitive amount of efficiently accessible
memory to implement. We, therefore, simulate the efficacy of this attack by
computing the empirical distributions of passwords that occur as leaked in the

test data.

We use the leaked password as the first guess for all targeted attacks in all
settings. The untargeted empirical attack uses a fixed list of ¢ guesses for all

accounts in all settings.

For higher values of the query budget ¢, some attacks fail to produce ¢
guesses for some leaked passwords. In those cases, we just abort the attack
without using up the remaining query budget. In practice, one might try to

extend the number of guesses in some ad hoc way, e.g., by adding untargeted
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guesses. Looking ahead, such an embellishment would not improve the attacks

sufficiently to catch up with pass2path.

In Figure 2.3 we show the different attacks’ efficacy in the two settings. We

discuss the results for each setting in turn.

Attack efficacy in the without-repeats setting. First we discuss the Df results
(the left table), where the target password is distinct from the one leaked. No-
tably, for query budget ¢ = 10, the targeted attack based on the empirical dis-
tribution performs better than all prior targeted attacks. However, its lack of
generalizability hampers its efficacy at higher query budgets. On average only
a few associated passwords are in the training dataset for each password, and

this attack can only guess passwords observed in the training dataset.

The Das et al. attack doesn’t require training data and is the fastest to execute
among all targeted attacks we tested. It performed comparatively well, crack-
ing 11% of user accounts in less than a thousand guesses. For many passwords,
however, this targeted attack was not able to produce 1,000 guesses (because
it runs out of mangling rules to apply to the leaked password). The Wang et
al. [127] algorithm was the state-of-the-art targeted guessing attack before our
work. It cracks 13% of user accounts in less than 1, 000 targeted guesses. How-
ever, the guess generation is very slow taking more than three days to generate
the guesses for all the passwords in just one of our test sets on one thread of a
machine with Core i9 CPU and 128 GBs of memory. While in online guessing
attacks, computational complexity isn’t particularly important (unlike in offline
guessing attacks that attempt to crack hashes), we mention it because it proved

a significant engineering challenge in our simulations.
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Finally, pass2path performed the best among all the attacks, cracking about
13% of passwords in 100 guesses(40% more than what Wang et al. could crack),
and 15.8% of passwords in 1, 000 guesses (20% more). The pass2path algorithm
is also relatively slow computationally, requiring four hours of computation to

evaluate a test set. This was still significantly faster than Wang et al.

Attack efficacy in the with-repeats setting. We now discuss the results on the
test set derived from D}i. Here about 40% of passwords are reused by users,
making them an easy target for credential stuffing. As such, in this case for
each attack, we use as the first guess the leaked password. The remaining ¢ — 1

guesses are drawn according to the attack technique.

The untargeted empirical attack performs poorly, probably unsurprisingly,
as it does not take advantage of the leaked password. The baseline efficacy
of other attacks is very high in this context, as 40% accounts are cracked via
credential stuffing alone. Our attack pass2path again outperforms all previous
algorithms, though here proportionally the improvements are smaller due to
high baseline efficacy. For example, the improvement in 1,000 guesses over the
best prior attack (Wang et al.) is only a few percentage points. That said, abso-
lutely speaking pass2path compromises nearly half of user accounts appearing

in a leak using 1, 000 guesses.

Without credential stuffing defenses, a user’s vulnerability to having their

account compromised in 1, 000 guesses increases by a factor of ten compared to
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an untargeted attack, should one of their previous passwords be revealed in a

leak.

Attack with multiple leaked passwords. The targeted attack we explained so
far assumes access to only one leaked password. But in some cases, attackers
will have access to multiple leaked passwords for a target account. In theory,
one can train a model similar to pass2path but that uses a sequence of passwords

as input instead of only one.

We, however, decided to take a simpler ad hoc approach. We independently
generate sorted lists of guesses for each of the input passwords and then merge
the lists by picking one from each list in a round robin manner, until the guess-
ing budget is exhausted. To test this attack strategy we picked 10° users ran-
domly from without-repeat D dataset, who have at least three or more pass-
words leaked. For each user, we pick one password randomly as target and the
remaining passwords as the leaked passwords. Our heuristic attack approach
could compromise 23% of users accounts in 10° guesses — a 47% improvement
over using just a single leaked password. Future work could explore more ad-

vanced models that more carefully utilize multiple leaked passwords.

Attacking any of the accounts. In this experiment, we consider cracking any
of a user’s accounts given that the attacker knows one of their passwords. In
this case, the attacker gets ¢ queries for each account. To test the efficacy of this
attack, we sample 10° users from D; who had more than two leaked passwords
and pick one of the passwords as the leaked password and the rest as target
passwords. For each account, we generate 10° guesses for the leaked password

using our pass2path targeted attack and check if any of the target passwords is
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Figure 2.4: The relative advantage of targeted attacks and untargeted attacks for
large guessing budgets, and crossover point where untargeted attacks becomes
more effective than targeted attacks. Due to computational limits, we did not
compute points for greater than 10* guesses using pass2path, and so the dotted
line reflects the observed trend.

in the list of guesses. We found 18% of users who lost one of their passwords
to an attacker has at least one other account that is susceptible to a targeted
attack, even though passwords used in those accounts are different from the

one leaked.

Crossover between targeted and untargeted attacks. The targeted attacks are
very effective for a small number of guesses (¢ < 10%), compared to an untar-
geted guessing attack. We observed, however, that as ¢ increases the value of
tailoring attacks to the target diminishes. We plot the efficacy of pass2path (tar-
geted) and the untargeted empirical attacks in Figure 2.4 for different number of
guesses. To generate this graph, we sampled 10° random users from D, and for
each user sampled two passwords randomly. Thus we compare the advantage
of our targeted attack against the best performing untargeted attack, ignoring

the advantage of credential stuffing.

As can be seen, in a guessing budget of ¢ = 10, the pass2path targeted at-

tack can compromise six times more accounts (10% of the test accounts) than
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what the untargeted attack could (1.6% of the test accounts) . This is also shown
by the first column of the left table in Figure 2.3. This relative advantage how-
ever reduces with increased query budget, and if the attacker can make many
(say, ¢ > 10°) guesses the untargeted attack becomes more advantageous. In
an offline attack setting, where an attacker steals the password hash database
of a web service and tries to crack the password hashes by making billions of

guesses, targeted attacks will be of limited use.

Discussion. In line with prior work, we have used simulations to assess the
efficacy of targeted guessing attacks. In practice some additional complications
will arise for attackers, such as website-specific rules about password compo-
sition. A great advantage of the pass2path model is that it can be adapted to
generate passwords matching a website password policy easily. As we show
in Section 2.6, using transfer-learning pass2path model can be retrained only on

a subset of the dataset that meets the policy.

Successful password guessing may not alone be sufficient to access modern
services that employ two-factor authentication mechanisms. The use of two-
factor authentication has increased in recent years, but is still not widespread.
Some two-factor authentication systems have vulnerabilities [94,113] that could

be exploited in conjunction with our password guessing attacks.

Finally for the test simulation, we joined accounts using various heuristics
but there was no way of determining the number of usernames that were cor-
rectly matched. The test dataset also consisted of passwords present in the leaks
and thus may be biased towards weaker passwords in general. We wanted to
validate the efficiency of the attacks on actual accounts which motivated us to

perform real cracking experiments as discussed in the next Section 2.6.
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2.6 Targeted Attack Efficacy in Practice

The evaluation of various targeted attacks, in the previous section, was done by
comparing their performance against a hold-out test dataset. Here, we turn to
evaluating the efficacy of targeted attacks against real accounts, thereby simu-
lating exactly how an attack would proceed in the wild. To do so, we partnered
with the IT Security Office of Cornell University (ITSO). We test what fraction of
Cornell users” accounts are vulnerable to online guessing attacks. Though un-
targeted attacks have been analyzed on real-user accounts (e.g., in [95]), to our

knowledge, this is the first evaluation of targeted attacks on real user accounts.

In the breach compilation data, we found 19, 868 emails with valid Cornell
accounts. From the password change logs that ITSO maintained since 2009, we
verified at least 15, 776 accounts definitely have a password selected by the user.
Unless otherwise specified, all experiment results below are presented with re-
spect to these 15, 776 accounts. We experimented with three online guessing at-

tacks against these accounts: untargeted empirical, Wang et al., and pass2path.

Cornell uses the L8C3 password policy, that is, a password must have at
least 8 characters from at least three different character classes: upper-case let-
ters, lower-case letters, digits, and symbols. We used transfer learning to retrain
pass2path on training data for which the target passwords meet Cornell’s pass-
word composition requirements. We also adapt untargeted-empirical attacks by
considering the most popular passwords that meet the Cornell password com-

position requirements. However, there is no simple way to tailor the guesses
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Attack ¢g=10 g¢=102 ¢=103

Untargeted-empirical 0 0 0.1
Wang et al. [127] 0.2 0.6 2.6
Pass2path 3.3 6.0 8.4

Figure 2.5: The percentage of the 15,776 active Cornell accounts found in the
breach dataset that can be compromised within the indicated number of guesses
for three attack approaches.

generated by the Wang et al. attack algorithm. More details about the experi-

ment setup are given in Appendix A.0.6.

Results. The results of the experiments are summarized in Figure 2.5. The
untargeted empirical attack performed quite poorly: it was able to crack only
0.1% of the target accounts. The Wang et al. attack did a bit better, cracking
up to 2.6% of these accounts but as mentioned, its performance is negatively

affected by the difficulty of customizing it to Cornell’s password requirements.

Pass2path performed the best, cracking over 8.4% of the accounts in less
than 1,000 guesses. Among which, only 22 (0.1%) accounts were cracked using
the same password as the one leaked. This is because ITSO uses a third-party

service to help prevent credential stuffing attacks.

Recall that our simulations using hold-out data from the breach suggested a
success rate of 16%. While it is unclear what explains the gap, we believe it is
due to differences in the distribution of passwords at Cornell compared to those
found in these breaches. In other words, targeted attacks are slightly overfit to
these public data breaches and rates will vary when assessing vulnerability in

real systems.

Nevertheless, this experiment shows the vulnerability of accounts to tar-

geted attacks, with 1, 374 active accounts were vulnerable to at least one of the
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remote guessing attacks. We notified ITSO about these vulnerable accounts and

we are working with ITSO to safeguard them.

2.7 Defending Against Targeted Attacks

The previous section highlights the danger of targeted guessing attacks even
when using state-of-the-art credential-stuffing countermeasures. Can we pro-
tect accounts against these attacks? One approach would be for site operators
to simulate targeted attack as we did for ITSO, and reset passwords for those
vulnerable within the site’s threshold of incorrect login attempts. But even do-
ing this, users might in turn pick variants of their passwords that are themselves
vulnerable. We would therefore like to additionally have a method for gauging

password strength in the face of both standard and targeted guessing attacks.

Password strength meters. Password strength meters (PSMs) give real-time
feedback to users about the strength of their passwords. Historically, pass-
word strength was measured using Shannon entropy or heuristic variants [41],
but these measures are wildly inaccurate [52,54]. State-of-the-art strength me-
ters [97,131] instead infer the strength of a password by estimating its guess rank
(8) under the best known guessing attack. The guess rank of a password is
the number of guesses an attack makes before reaching the password. But the
guessing attacks considered so far are user agnostic and therefore rather inac-

curate relative to targeted guessing attacks, as we now explain.

Consider the following example situation. A wuser goes to register

“

a password “atbaub183417a” at some website under the username “al-
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ice@gmail.com”. The zxcvbn strength meter [131], which is currently in use
on the Internet and considered to be a best-of-breed PSM, suggests that the
guess rank of the password is 10'?, implying that it is a very strong choice.
But should alice@gmail.com exist in an easily accessible leak with password
“atbaub183417123”, our targeted attack guesses it in less than five guesses.
Later we will quantify more broadly how often existing PSMs overestimate the

strength of passwords easily cracked by pass2path.

Personalized password strength meters. To deal with the above gap, we pro-
pose personalized password strength meters (PPSM). PPSMs can be used to give
users feedback about their passwords during password selection, either as a
nudge or as a strict requirement that passwords be of a requisite strength. A
PPSM takes as input a target (potential) password w and a set P of associated
passwords of a user, and returns a guess rank under the best-known attack, in-
cluding targeted attacks. In the future we might extend PPSMs to take into ac-
count additional user- and context-specific information, such as username and

site domain name.

One approach for estimating the guess rank of a password w would be
to return the guess rank under the best known attack, such as the one using
pass2path. However, generating guesses using a neural network based model is
both computationally expensive and bandwidth intensive (if needed to be sent
to a client over the network).Melicher et al. [97] use various clever optimizations
to reduce an RNN model to be more efficient. We could potentially adapt these
techniques to our RNN-based encoder-decoder architectures. Instead we will

explore a fundamentally different approach that will be more efficient.
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Traditionally, password strength meters provide a score (approximately re-
flecting guess rank) that is easy to compute and easy to interpret. For example,
zxcvbn [131] gives a score in {0, ...,5} and nn-pwmeter [124] gives a score be-
tween [0, 100]. Therefore, we observe that for most uses, a PPSM need only out-
put a strength score, and not necessarily output a guess rank. Therefore, under-
lying our PPSM will be a binary classifier C that takes as input two passwords w
and @ and outputs 0 if the target password w is probably easily guessed given
another password @ using a targeted guessing attack, and outputs 1 otherwise.
The reason for building a binary classifier is because passwords susceptible to
targeted attacks are passwords that can be guessed in few guesses. We use 1,000

as “few”, but our framework can be easily used with other values.

To build such a classifier we will use a password similarity measure based
on word embedding techniques. The benefit of all this is that we can get by
without a (generally more expensive) generative password model, instead using
an embedding-based similarity model that quickly outputs a similarity score
between two passwords but does not provide an efficient way to enumerate

similar passwords from a leaked one.

Looking ahead, we will then show how one can build our PPSM in a way
that combines multiple strength estimates, in particular a conventional untar-
geted strength meter and our similarity score. This will yield a strength meter
that accurately measures the strength of a target password w under both tar-

geted and untargeted attacks.
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In the rest of this section, we will discuss how we build the classifier C using

a password similarity measure based on word embedding techniques.

Password similarity via embeddings. Similarity between words has been ex-
plored in NLP for decades. Recently neural network-based word embedding
techniques have been shown to be very effective [37,99,107]. Following word
embedding models, we define a password embedding as a function that maps a
password to a d-dimensional vector in R?. The dimension d is a parameter, of-
ten chosen to be relatively small, such as 100 or 200. The embedding is trained
so that vectors of similar passwords have low distance (for some measure of
distance). Similarity will be context-dependent. In the case of our personalized
strength meter two passwords should be considered similar if they are often
chosen by the same user. An embedding gives a way to define a score function
s : W x W — |[—1, 1] that measures the similarity of two passwords: apply the

embedding and then compute the distance between the resulting vectors.

We build password embeddings using the FastText model described in [37].
The FastText model learns similarities by splitting a large corpus of texts into a
set of contexts (short sequences of words). Words that often appear in a context
together are considered similar. We apply this to passwords by treating pass-
words chosen by the same user as being in a context together. FastText takes
into account n-grams of words and, as such, can produce an embedding that
handles words outside of the training set. This will be important for our appli-

cation.

For our purposes, a password is represented as a union of its n-grams for

1 € [Mmin, Mmax)- Let 2, denote the set of n-grams of password w.
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The beginning and end of each word is clearly denoted by adding two spe-
cial symbols “st” and “)” (that are not otherwise in ). For example, a pass-
word w = gwerty with my;, = 4 and muax = 5, will have the following
n-grams. z, = {stqwerty), stqwe, qwer, wert, erty, rty), stqwer,
qwert, werty, erty)}. (Note, the full password is always included in z,.)
Then, the score function is:

s(w,w) = (ﬁ Z ug> (ﬁ Z ug> (2.3)

gE€zw g€z
Here u, is the vector embedding of an element g € V, and V is the union of all

2, for w’s seen in the training data. We denote the embedding of a password

w € W as v, which is computed as v, = u,, if w € V else, v,, = m S uy.
Y gezny

If neither the password w nor any of its n-grams is present in V), the embedding

of w is set to a random vector in R¢.

Training a password embedding. To train our password embedding FastText
model we used the skip-gram approach with negative sampling. We represent
each password as a sequence of key-presses, as we did for training pass2path in

Section 2.4. The model requires choosing various hyperparameters.

We set the dimension of the vectors to be d = 100. This results in much faster
training compared to the normally recommended d = 300, as well as better
performance of the classifier we build using the embeddings (See below.) We set
the sub-sampling to 107, Sub-sampling smooths out the frequency of updates
between frequent and infrequent passwords by randomly ignoring some of the
frequent passwords. We also only consider passwords that appeared at least 10

times or more in our training dataset. Finally, we set the minimum size of the
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n-grams to consider m,,;, = 1 to ensure that we can construct an embedding for

any password that is not seen during training. We set m,x = 4.

Classifying passwords using similarity scores. We want to use the password
similarity function s to build a binary classifier C, which takes a pair of pass-
words and outputs a binary score. To do so, we determine a threshold o: for
any password pair whose similarity score is greater than a we assign them a
score of 0, and 1 otherwise. We denote a classifier with threshold « as C,. We
call a password pair vulnerable if the target password w can be guessed within
10? guesses by any of the three targeted attacks known so far — Das et al., Wang
et al., and pass2path — given w. We want to choose « so that it correctly iden-
tifies vulnerable password pairs (by outputting 0 on them), while otherwise
maximizing the number of password pairs for which it outputs 1. The latter
competing goal stems from usability of the classifier during password registra-
tion, which would be hampered by overzealous marking of password pairs as

vulnerable when, in fact, they are not.

Relative to some set of password pairs, the recall of C, is the fraction of vul-
nerable password pairs whose similarity falls above the threshold «. The preci-
sion is the fraction of password pairs whose similarity is above the threshold o

that are actually vulnerable.

We compute the threshold in the following way. We pick randomly 10° users
from DE,. For each user, we pick two passwords randomly from the set of pass-
words associated with them without replacement. One of the passwords (cho-
sen arbitrarily) is considered as the target w, and another as the one leaked .
For each pair (w;, w;), we flag them as vulnerable or not using the three targeted

guessing attack as discussed above. This constitute our ground truth. Now we
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Figure 2.6: Precision and recall of our PPSM classifier for different values of the
threshold o computed over a random sample of 10° password pairs from DE,.

compute the similarity scores s(w;, ;) between each pair. For a sequence of
thresholds o € [0, 1] we compute the precision and recall of C,. The resulting
precisions and recalls are shown in Figure 2.6. As can be seen from the graph,
there exists a trade-off between precision and recall. To ensure a recall of 99% —
being able to detect 99% of vulnerable password pairs — we pick a threshold of

a = 0.5. The precision of Cy 5 is 60%.

Compressing embedding models. Underlying our password embedding
model is a look-up table with keys being a list of frequent passwords and their
n-grams, and values being d-dimensional real valued vectors. Therefore, it re-
quires O(()d - |V|) space to store the embedding. This is more than 1.5 gigabytes
for our best performing model. Here we explore two techniques to reduce the
size of the model while maintaining good accuracy in identifying weak pass-

words for targeted guessing.

First, we observed that the quality of the model remains almost the same

even after removing all the stored password embedding values v,, = u,, for w €

1

V. Instead these values can be estimated via v,, = By

> u, Removing
gEzywNV
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n Size (MB)  Precision (%) Recall (%)

100 50.0 59.1 99.3
10 53 48.5 99.0
5 3.0 41.3 98.6

Figure 2.7: Effect on the precision and recall of the classifier Cy5; when com-
pressing the underlying password embedding model using product quantiza-
tion (PQ) for different values of 7.

the vocabulary of words from the model reduced the size from 1.5 gigabytes

to only 195 megabytes, without any noticeable change in the accuracy of the

strength estimate.

Next, we used the product quantization (PQ) technique [75] to further com-
press the vectors, which has been shown to be effective for compressing neural
network models [97]. PQ takes a parameter  which determines the compres-
sion ratio — the lower the value of 1 the smaller the model size, but also the
worse the accuracy of reconstruction of the input vectors after compression. The
reconstruction error of the n-gram vectors in turn impact the score function and

the classifier C,,.

We construct the classifier C, for different values of 7, and compute their
precision and recall on a sample of 10° password pairs chosen from that many
random users from Dj,. The results are noted in Figure 2.7. We can see there is
little effect on recall even after compressing the model to 3 MB (with = 5). The

precision reduced from 59% to 41%, which we believe to be acceptable.

2.8 PPSM Evaluation

We build our PPSM, called vec-ppsm, with two components — one responsi-

ble for estimating strength against targeted attacks and another for estimating
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strength against untargeted attacks. For the former we use our classifier C,
from Section 2.7, and for the latter we will use zxcvbn due to its accuracy and
performance. Vec-ppsm estimates the strength of a password w in the range 0

(least secure) to 4 (secure), given a set of (leaked) passwords P.

Recall C, can classify a password given only one other password. To use it
in vec-ppsm, when there can be more than one password in the given password
set P, we use a min-strength approach also used by zxcvbn. That is to say, we
compute the strength score of w given each w € P, and output the minimum,

mingep Co (w, w). If P is empty it outputs 1.

After this, in order to estimate strength against untargeted attack, vec-ppsm
works in conjunction with a conventional, untargeted strength meter, such as
zxcvbn: if the targeted strength score of w given P is 0, vec-ppsm outputs 0,

otherwise it outputs the score output by zxcvbn.

Other approaches for comparison. We compare the efficacy of vec-ppsm
against two state-of-the-art strength meters: zxcvbn [131] and nn-pwmeter, a
neural network based strength meter proposed in [97,124]. The default behavior
of these strength meters is to be agnostic to user’s other passwords. However,
zxcvbn accepts an optional argument to add site-specific password blacklists.
We used this option to simulate a targeted strength meter version of zxcvbn,
what we will refer to as tar-zx. It applies zxcvbn, setting the optional argument
to the set of (leaked) passwords P. The vanilla use of zxcvbn without such mod-

ification is called untar-zx in the following.

Both untar-zx and tar-zx gives a score 0 for passwords that could be guessed

in less than a thousand guesses. nn-pwmeter returns a percentage value with
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0 representing weak passwords and 100 representing very strong. Thus we di-
vided it into 5 parts and assigned a score of 0 to passwords with score less than

20.

In theory, previous targeted attacks [50,127] can be used to construct a per-
sonalized strength meter, but Das et al. performs poorly as a targeted attack
(see Figure 2.3), and Wang et al.’s guess generation procedure is too slow to
generate many guesses (e.g., 10°) in real time. Thus neither are immediately

suitable to be used for constructing a strength meter.

Evaluating vec-ppsm. We sampled 10° users randomly from the test dataset
DE, and for each user, we picked two passwords randomly without replacement
as the target password w and the user’s other password w. Then we try to crack
the target passwords using the pass2path targeted attack from Section 2.5. We
also compute the strength of the target passwords under all the strength meters

under consideration.

In Figure 2.8, we show the percentage of vulnerable passwords — guessable
in less than 10 and 1,000 guesses by pass2path — that are assigned strength 0
(unsafe to be used) by the various strength meters. Unsurprisingly, all the prior
strength meters perform poorly: they assign 70-90% of vulnerable passwords a
score of 1 or more (meaning that the passwords are safe against online guessing
attacks). However, these passwords are guessable in less than 1, 000 guesses by

our targeted attack, and therefore dangerous to use.

The scenario is perhaps even more concerning when we only focus on the
passwords that can be guessed in ¢ = 10 attempts: more than 60% of them are

considered safe by prior strength meters. The best-performing strength meter
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Strength Meter ¢<10(%) ¢<10% (%) Uncracked (%)

tar-zx 40 29 8
untar-zx 12 9 8
nn-pwmeter 35 29 23
vec-ppsm 100 96 20
vec-ppsm (compressed) 99 96 31

Figure 2.8: Comparing the percentage of vulnerable passwords that are as-
signed strength zero (“unsafe” to be used) by the considered strength meters.
We used untar-zx as the untargeted strength estimate component in vec-ppsm.
The last row to vec-ppsm using the compressed embedding model. The right-
most column gives scores for passwords that are not cracked in 10° guesses by
any of the targeted attacks.

among the three prior meters is tar-zx, which constructs a blacklist by applying
a set of mangling rules to the input password, deletes all occurrence of those
blacklisted strings from the target password, and then computes its strength.

Even then, tar-zx can only detect 40% of passwords that are severely vulnerable

to targeted attack in less than 10 guesses.

Finally, vec-ppsm, can detect 96% of all passwords that can be guessed in
1,000 guesses. The compressed version of vec-ppsm performs similarly, except

with increased rate of false positives. (See the last column in Figure 2.8.)

We also investigated whether or not vec-ppsm flags the Cornell account
passwords found to be vulnerable to one of the three online guessing attacks as
per Section 2.6. We found vec-ppsm assigns score 0 (flags unsafe) to 99.1% of the
vulnerable passwords, given the associated leaked passwords. The remaining
0.9% are actually passwords that were vulnerable to the untargeted empirical
attack, not a targeted attack. In theory the untargeted attack strength meter un-

derlying vec-ppsm should have flagged these passwords as weak, but it does
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not take into account the Cornell password policies. This could be addressed by

modifying the untargeted attack strength meter to do so.

Deploying vec-ppsm. There are a few different deployment scenarios where

PPSMs will help improve security, which we discuss now.

Perhaps the simplest place to immediately deploy a PPSM is during a pass-
word change workflow in which the user provides the old password as well
as new password. The user’s old password can be used as the “leaked” pass-
word, and the PPSM can therefore determine if the new password is sufficiently
strong even if the previous password has leaked. Coupled with breach notifi-
cations that result in a user changing their password, this prevents credential
tweaking attacks entirely. The PPSM can be sent as a JavaScript payload, and
the strength check performed on the client side, thereby ensuring that candidate

passwords need not be sent to the remote server.

We note that in this case the embedding models are sent to a client’s machine,
and we must consider what risks this may entail. For example, an attacker
might try to discover the set of passwords present in the leak dataset used to
train the model. But our compressed embedding model does not contain any
information about individual passwords, nor the accounts to which they were
associated to in the training data. Instead, it contains n-grams of size 1 to 4.
It also does not contain any information about their popularity in the training
data. It reveals to an attacker some information about password similarity but
it does not provide a generative model sufficient for targeted guessing attacks,

unlike some other strength meters (e.g., Nn-pwmeter).
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The second deployment scenario can be using vec-ppsm during login. We
assume the service has access to breached password data (possibly via a third
party service). Every time a user successfully logs in, the service checks whether
or not the entered password is unsafe according to vec-ppsm, given the leaked
passwords associated to that account. If so, it takes necessary steps to warn the

user or otherwise safeguard the account. This can all be done on the server side.

Another potential place for use of a PPSM is during initial password regis-
tration with an authentication service. However a PPSM requires access to a
user’s other (leaked) passwords to accurately estimate the strength of the pass-
word being selected. Without access to the user’s other passwords — leaked or
not — vec-ppsm will default to an untargeted strength estimate. In typical web
registrations, we would want to send the PPSM as a JavaScript payload to the
client side, but then it would require sending leaked passwords to the client as
well, which is a security risk. Instead, one could perform PPSM checks on the

server side, but then this requires revealing candidate passwords to the server.

Finally, one can use vec-ppsm on a client device, in conjunction with a pass-
word manager. The password manager, on behalf of the client, could use a
third-party leak checking service (e.g., [2,122]) to check if any of the client’s pass-
words are leaked. Then vec-ppsm can be used to evaluate the strength of the
user’s other passwords given those leaked passwords (or all other passwords),
similar to how they already provide feedback on untargeted attack strength [1].
Of course, modern password managers provide the option of selecting random
passwords, a case that obviates the need for vec-ppsm (or any strength meter).
However, many users nevertheless use their own choice of password, and sim-

ply store them in password managers. Here vec-ppsm will provide benefit.
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We have shown that vec-ppsm can warn users about choosing vulnerable,
similar passwords. However, we have not yet addressed the user interface ques-
tions regarding how to provide constructive feedback and help guide them to-
wards creating strong passwords. For example, users might get confused in
case a password is rejected due to being too similar to a leaked password. How

to best inform them about this remains an open question.

Proof-of-concept implementation. We implemented vec-ppsm in Python 3.6.
For compressing the embedding models, we used product quantization func-
tionality provided by Facebook’s Faiss library [76]. We tested our strength meter
on a single thread of a Core i9 processor by randomly sampling 100 password
pairs and computing the similarity scores. We record the time to load the model
from disk, and the average time taken to compute the similarity score for each
pair. The average (across 10 runs) time to load and decompress the model with
n = 5 (size on the disk 3.3 MB) is 0.2 seconds. After loading the model, it takes
on an average 0.3 millisecond to compute the similarity score for a pair of pass-

words, with 99 percentile being within 0.1 millisecond.

2.9 Conclusion

In this work, we tackled modeling similarity of human-chosen passwords, and
showed how this enables building both damaging targeted guessing attacks and
new defenses against them. We explored two approaches to learning password
similarity: a generative model based on sequence-to-sequence style learning as
used previously for language translation, and a discriminative model based on

word embedding techniques.
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The generative model enables us to construct a new targeted attack, in which
the adversary makes tailored guesses against a user account using knowledge of
the user’s other password(s). We show our best performing attack can, in less
than a thousand guesses, compromise 8.4% of active user accounts at Cornell
University, for which a previous password was leaked. This attack outperforms

the best previous attack by 3.2x.

Though targeted attacks are already a widespread threat, there are few de-
fenses available against them. The only ones we are aware of stop credential
stuffing, but do not prevent our credential tweaking attacks. We therefore pro-
posed personalized password strength meters (PPSMs), which can be used to
warn against choosing passwords that are easily guessable under different at-
tacks, including targeted attacks. We built a prototype of a PPSM, called vec-
ppsm, using word embedding techniques, and showed how it can be used to

mitigate attacks.

58



CHAPTER 3
PROTOCOLS FOR CHECKING COMPROMISED CREDENTIALS

3.1 Introduction

Password database breaches have become routine [11]. Such breaches enable
credential stuffing attacks, in which attackers try to compromise accounts by
submitting one or more passwords that were leaked with that account from
another website. To counter credential stuffing, companies and other organiza-
tions have begun checking if their users’ passwords appear in breaches, and, if
so, they deploy further protections (e.g., resetting the user’s passwords or oth-
erwise warning the user). Information on what usernames and passwords have
appeared in breaches is gathered either from public sources or from a third-
party service. The latter democratizes access to leaked credentials, making it
easy for others to help their customers gain confidence that they are not using
exposed passwords. We refer to such services as compromised credential checking

services, or C3 services in short.

Two prominent C3 services already operate. HavelBeenPwned (HIBP) [122]
was deployed by Troy Hunt and CloudFlare in 2018 and is used by many web
services, including Firefox [16], EVE Online [12], and 1Password [7]. Google
released a Chrome extension called Password Checkup (GPC) [111,121] in 2019
that allows users to check if their username-password pairs appear in a compro-
mised dataset. Both services work by having the user share with the C3 server a
prefix of the hash of their password or of the hash of their username-password
pair. This leaks some information about user passwords, which is problematic

should the C3 server be compromised or otherwise malicious. But until now
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there has been no thorough investigation into the damage from the leakage of

current C3 services or suggestions for protocols that provide better privacy.

We provide the first formal treatment of C3 services for different settings,
including an exploration of their security guarantees. A C3 service must pro-
vide secrecy of client credentials, and ideally, it should also preserve secrecy of
the leaked datasets held by the C3 server. The computational and bandwidth
overhead for the client and especially the server should also be low. The server
might hold billions of leaked records, precluding use of existing cryptographic
protocols for private set intersection (PSI) [64,96], which would use a prohibitive

amount of bandwidth at this scale.

Current industry-deployed C3 services reduce bandwidth requirements by
dividing the leaked dataset into buckets before executing a PSI protocol. The
client shares with the C3 server the identifier of the bucket where their creden-
tials would be found, if present in the leak dataset. Then, the client and the
server engage in a protocol between the bucket held by the server and the cre-
dential held by the client to determine if their credential is indeed in the leak.
In current schemes, the prefix of the hash of the user credential is used as the
bucket identifier. The client shares the hash prefix (bucket identifier) of their

credentials with the C3 server.

Revealing hash prefixes of credentials may be dangerous. We outline an
attack scenario against such prefix-revealing C3 services. In particular, we con-
sider a conservative setting where the C3 server attempts to guess the password,
while knowing the username and the hash prefix associated with the queried
credential. We rigorously evaluate the security of HIBP and GPC under this

threat model via a mixture of formal and empirical analysis.
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We start by considering users with a password appearing in some leak and
show how to adapt a recent state-of-the-art credential tweaking attack [104] to
take advantage of the knowledge of hash prefixes. In a credential tweaking at-
tack, one uses the leaked password to determine likely guesses (usually, small
tweaks on the leaked password). Via simulation, we show that our variant of
credential tweaking successfully compromises 83% of such accounts with 1,000
or fewer attempts, given the transcript of a query made to the HIBP server.
Without knowledge of the transcript, only 56% of these accounts can be com-

promised within 1,000 guesses.

We also consider user accounts not present in a leak. Here we found that the
leakage from the hash prefix disproportionately affects security compared to
the previous case. For these user accounts, obtaining the query to HIBP enables
the attacker to guess 71% of passwords within 1,000 attempts, which is a 12x
increase over the success with no hash prefix information. Similarly, for GPC,
our simulation shows 33% of user passwords can be guessed in 10 or fewer
attempts (and 60% in 1,000 attempts), should the attacker learn the hash prefix

shared with the GPC server.

The attack scenarios described are conservative because they assume the at-
tacker can infer which queries to the C3 server are associated to which user-
names. This may not be always possible. Nevertheless, caution dictates that we
would prefer schemes that leak less. We therefore present two new C3 proto-
cols, one that checks for leaked passwords (like HIBP) and one that checks for
leaked username-password pairs (like GPC). Like GPC and HIBP, we partition
the password space before performing PSI, but we do so in a way that reduces

leakage significantly.
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Our first scheme works when only passwords are queried to the C3 server. It
utilizes a novel approach that we call frequency-smoothing bucketization (FSB).
The key idea is to use an estimate of the distribution of human-chosen pass-
words to assign passwords to buckets in a way that flattens the distribution of
accessed buckets. We show how to obtain good estimates (using leaked data),
and, via simulation, that FSB reduces leakage significantly (compared to HIBP).
In many cases the best attack given the information leaked by the C3 proto-
col works no better than having no information at all. While the benefits come
with some added computational complexity and bandwidth, we show via ex-
perimentation that the operational overhead for the FSB C3 server or client is
comparable with the overhead from GPC, while also leaking much less infor-

mation than hash-prefix-based C3 protocols.

We also describe a more secure bucketizing scheme that provides better pri-
vacy/bandwidth trade-off for C3 servers that store username-password pairs.
This scheme was also (independently) proposed in [121], and Google states that
they plan to transition to using it in their Chrome extension. It is a simple mod-
ification of their current protocol. We refer to it as IDB, ID-based bucketization,
as it uses the hash prefix of only the user identifier for bucketization (instead
of the hash prefix of the username-password pair, as currently used by GPC).
Not having password information in the bucket identifier hides the user’s pass-
word perfectly from an attacker who obtains the client queries (assuming that
passwords are independent of usernames). We implement IDB and show that

the average bucket size in this setting for a hash prefix of 16 bits is similar to
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that of GPC (average 16,122 entries per bucket, which leads to a bandwidth of
1,066 KB).

Contributions. In summary, the main contributions of this paper are the fol-

lowing;:

* We provide a formalization of C3 protocols and detail the security goals

for such services.

* We discuss various threat models for C3 services, and analyze the security
of two widely deployed C3 protocols. We show that an attacker that learns
the queries from a client can severely damage the security of the client’s

passwords, should they also know the client’s username.

* We give a new C3 protocol (FSB) for checking only leaked passwords that
utilizes knowledge of the human-chosen password distribution to reduce

leakage.

* We give a new C3 protocol for checking leaked username-password pairs

(IDB) that bucketizes using only usernames.

* We analyze the performance and security of both new C3 protocols to

show feasibility in practice.

We will release as public, open source code our server and client implementa-

tions of FSB and IDB.
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Figure 3.1: A C3 service allows a client to ascertain whether a username and
password appear in public breaches known to the service.

3.2 Overview

We investigate approaches to checking credentials present in previous breaches.
Several third party services provide credential checking, enabling users and
companies to mitigate credential stuffing and credential tweaking attacks [50,

104,127] , an increasingly daunting problem for account security.

To date, such C3 services have not received in-depth security analyses. We
start by describing the architecture of such services, and then we detail relevant

threat models.

C3 settings. We provide a diagrammatic summary of the abstract architecture
of C3 services in Figure 3.1. A C3 server has access to a breach database S. We
can think of S as a set of size N, which consists of either a set of passwords
{wy, ..., wy} or username-password pairs {(uy,wy),..., (uy,wy)}. This corre-
sponds to two types of C3 services — password-only C3 services and username-
password C3 services. For example, HIBP [8] is a password-only C3 service,' and

Google’s service GPC [111] is an example of a username-password C3 service.

'HIBP also allows checking if a user identifier (email) is leaked with a data breach. We focus
on password-only and username-password C3 services.
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A client has as input a credential s = (u, w) and wants to determine if s is at
risk due to exposure. The client and server therefore engage in a set membership
protocol to determine if s € S. Here, clients can be users themselves (querying
the C3 service using, say, a browser extension), or other web services can query
the C3 service on behalf of their users. Clients may make multiple queries to the

C3 service, though the number of queries might be rate limited.

The ubiquity of breaches means that, nowadays, the breach database S will
be quite large. A recently leaked compilation of previous breached data contains
1.4 billion username password pairs [42]. The HIBP database has 501 million
unique passwords [8]. Google’s blog specifies that there are 4 billion username-

password pairs in their database of leaked credentials [111].

C3 protocols should be able to scale to handle set membership requests for
these huge datasets for millions of requests a day. HIBP reported serving around
600,000 requests per day on average [9]. The design of a C3 protocol should
therefore not be expensive for the server. Some clients may have limited com-
putational power, so the C3 protocol should also not be expensive on the client-
side. The number of network round trips required must be low, and we restrict
attention to protocols that can be completed with a single HTTPS request. Fi-

nally, we will want to minimize bandwidth usage.

Threat model. We consider the security of C3 protocols relative to two distinct
threat models: (1) a malicious client that wants to learn a different user’s pass-
word; and (2) an honest-but-curious C3 server that aims to learn the password

corresponding to a C3 query. We discuss each in turn.
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A malicious client may want to use the C3 server to discover another user’s
password. The malicious client may know the target’s username and has the
ability to query the C3 server. The C3 server’s database S should therefore be
considered confidential, and our security goal here is that each query to the
C3 server can at most reveal whether a particular w or (u,w) is found within
the breach database, for password-only and username-password services, re-
spectively. Without some way of authenticating ownership of usernames, this
seems the best possible way to limit knowledge gained from queries. We note
that most breach data is in fact publicly available, so we should assume that
dedicated adversaries in this threat model can find (a substantial fraction of)
any C3 service’s dataset. For such adversaries, there is little value in attempt-
ing to exploit the C3 service via queries. Nevertheless, deployments should
rate-limit clients via IP-address-based query throttling as well as via slow-to-

compute hash functions such as Argon2 [4].

The trickier threat model to handle is (2), and this will consume most of our
attention in this work. Here the C3 server may be compromised or otherwise
malicious, and it attempts to exploit a client’s queries to help it learn that client’s
password for some other target website. We assume the adversary can submit
password guesses to the target website, and that it knows the client’s username.
We refer to this setting as a known-username attack (KUA). We conservatively?
assume the adversary has access to the full breach dataset, and thus can take
advantage of both leaked passwords available in the breach dataset and infor-
mation leaked about the client’s password from C3 queries. Looking ahead, for
our protocols, the information potentially leaked from C3 queries is the bucket

identifier.

2This is conservative because the C3 server need not, and should not, store passwords in-
the-clear, and it should instead obfuscate them using an oblivious PRE.
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It is context-dependent whether a compromised C3 server will be able to
mount KUAs. For example, in deployments where a web server issues queries
on behalf of their users, queries associated to many usernames may be inter-
mingled. In some cases, however, an adversary may be able to link usernames
to queries by observing meta-data corresponding to a query (e.g., IP address of
the querying user or the timing of a request). One can imagine cross-site script-
ing attacks that somehow trigger requests to the C3 service, or the adversary
might send tracking emails to leaked email addresses in order to infer an IP
address associated to a username [59]. We therefore conservatively assume the

malicious server’s ability to know the correct username for a query.

In our KUA model, we focus on online attack settings, where the attacker
tries to impersonate the target user by making remote login attempts at another
web service, using guessed passwords. These are easy to launch and are one
of the most prevalent forms of attacks [29,60]. However, in an online setting,
the web service should monitor failed login attempts and lock an account after
too many incorrect password submissions. Therefore, the attacker gets only a
small number of attempts. We use a variable ¢, called the guessing budget, to

represent the allowed number of attempts.

Should the adversary additionally have access to password hashes stolen
from the target web site, they can instead mount an offline cracking attack. Of-
fline cracking could be sped up by knowledge of client C3 queries, and one
can extend our results to consider the offline setting by increasing ¢ to reflect
computational limits on adversaries (e.g., ¢ = 10'°) rather than limits on remote
login attempts. Roughly speaking, we expect the leakage of HIBP and GPC to

be proportionally as damaging here, and that our new protocol FSB will not

67



provide as much benefit for very large ¢ (see discussion in Section 3.6). IDB will
provide no benefit to offline cracking attacks (assuming they already know the

username).

Finally, we focus in threat model (2) on honest-but-curious adversaries,
meaning that the malicious server does not deviate from its protocol. Such ac-
tively malicious servers could lie to the client about the contents of S in order
to encourage them to pick a weak password. Monitoring techniques might be
useful to catch such misdeeds. For the protocols we consider, we do not know
of any other active attacks advantageous to the adversary, and do not consider

them further.

Potential approaches. A C3 protocol requires, at core, a secure set member-
ship query. Existing protocols for private set intersection (a generalization of set
membership) [47,81,109,110] cannot currently scale to the set sizes required in
C3 settings, N =~ 2%. For example, the basic PSI protocol that uses an oblivious
pseudorandom function (OPRF) [81] computes y; = F(u;, w;) for (u;, w;) € S
where F, is the secure OPRF with secret key « (held by the server). It sends
all y1,...,yny to the client, and the client obtains y = F,(u,w) for its input
(u,w) by obliviously computing it with the server. The client can then check
if y € {y1,...,yn}. But clearly for large N this is prohibitively expensive in
terms of bandwidth. One can use Bloom filters to more compactly represent the
set y1,...,yn, but the result is still too large. While more advanced PSI proto-
cols exist that improve on these results asymptotically, they are unfortunately

not yet practical for this C3 setting [79, 81].

Practical C3 schemes therefore relax the security requirements, allowing the

protocol to leak some information about the client’s queried (u, w) but hopefully
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Credentials Name Bucket identifier B/w RTL Security loss

checked (KB) (ms)

Password  HIBP  20-bits of SHAT (w) 32 220 12x
FSB Figure 3.6, ¢ = 102 558 527 2x

(Username, GPC  16-bits of Argon2(u|w) 1,066 489 10x

password) IDB 16-bits of Argon2(u) 1,066 517 1x

Figure 3.2: Comparison of different C3 protocols. HIBP [8] and GPC [111] are
two C3 services used in practice. We introduce frequency-smoothing bucketiza-
tion (FSB) and identifier-based bucketization (IDB). Security loss is computed
assuming query budget ¢ = 10° for users who have not been compromised be-
fore.

not too much. To date no one has investigated how damaging the leakage of
currently proposed schemes is, so we turn to doing that next. In Figure 3.2,
we show all the different settings for C3 we discuss in the paper and compare
their security and performance. The security loss in Figure 3.2 is a comparison
against an attacker that only has access to the username corresponding to a C3

query (and not a bucket identifier).

3.3 Bucketization Schemes and Security Models

In this section we formalize the security models for a class of C3 schemes that
bucketize the breach dataset into smaller sets (buckets). Intuitively, a straight-
forward approach for checking whether or not a client’s credentials are present
in a large set of leaked credentials hosted by a server is to divide the leaked
data into various buckets. The client and server can then perform a private set
intersection between the user’s credentials and one of the buckets (potentially)
containing that credential. The bucketization makes private set membership
tractable, while only leaking to the server that the password may lie in the set

associated to a certain bucket.
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We give a general framework to understand the security loss and bandwidth
overhead of different bucketization schemes, and we will use this framework to

evaluate existing C3 services.

Notation. To easily describe our constructions, we fix some notation. Let W be
the set of all passwords, and p,, be the associated probability distribution; let ¢/
be the set of all user identifiers, and p be the joint distribution over &/ x W. We
will use S to denote the domain of credentials being checked, i.e., for password-
only C3 service, S = W, and for username-password C3 service, S = U x W.
Below we will use S to give a generic scheme, and specify the setting only if
necessary to distinguish. Similarly, s € S denotes a password or a username-
password pair, based on the setting. Let S be the set of leaked credentials, and

S| = N.

Let H be a cryptographic hash function from {0,1}* — {0,1}¢, where ¢ is
a parameter of the system. We use B to denote the set of buckets, and we
let 5: S — P (B)\ {@} be a bucketizing function which maps a credential
to a set of buckets. A credential can be mapped to multiple buckets, and ev-
ery credential is assigned to at least one bucket. An inverse function to f is
a: B — P (S), which maps a bucket to the set of all credentials it contains; so,
a(b) = {s € S|b € B(s)}. Note, a(b) can be very large given it considers all cre-
dentials in S. We let & be the function that denotes the credentials in the buckets

held by the C3 server, a(b) = a(b) N S.

The client sends b to the server, and then the client and the server engage in

a set intersection protocol between {s} and a(b).
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Symbol Description

u/U user identifier (e.g., email) / domain of users

w /W password / domain of passwords

S domain of credentials

S set of leaked credentials, |S| = N

D distribution of username-password pairs over i/ x W
Duw distribution of passwords over W

Ds estimate of p,, used by C3 server

q query budget of an attacker

q parameter to FSB, estimated query budget of an attack
B function that maps a credential to a set of buckets

o function that maps a bucket to the set of credentials it contains

Figure 3.3: The notation used in this chapter.

Guess™(q) BucketGuess3 (q)

(UJW)HPUXW (u,w) U X W; s + (u,w)

{wla"wwq}(_A(uuq) B(—B(S),b<—$B

return w € {wy,..., 0} {w1,..., 0} < A(u,b,q)
return w € {wy,..., Wy}

Figure 3.4: The guessing games used to evaluate security.

Bucketization schemes. Bucketization divides the credentials held by the
server into smaller buckets. The client can use the bucketizing function 3 to
tind the set of buckets for a credential, and then pick one randomly to query the

server. There are different ways to bucketize the credentials.

In the first method, which we call hash-prefix-based bucketization (HPB),
the credentials are partitioned based on the first [ bits of a cryptographic hash of
the credentials. GPC [111] and HIBP [8] APIs use HPB. The distribution of the
credentials is not considered in HPB, which causes it to incur higher security

loss, as we show in Section 3.4.

We introduce a new bucketizing method, which we call frequency-

smoothing bucketization (FSB), that takes into account the distribution of the
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credentials and replicates credentials into multiple buckets if necessary. The
replication “flattens” the conditional distribution of passwords given a bucket
identifier, and therefore vastly reduces the security loss. We discuss FSB in more

detail in Section 3.5.

In both HPB and FSB, the bucketization function depends on the user’s
password. We give another bucketization approach — the most secure one —
that bucketizes based only on the hash prefix of the user identifier. We call
this identifier-based bucketization (IDB). This approach is only applicable for

username-password C3 services. We discuss IDB in Section 3.4.

Security measure. The goal of an attacker is to learn the user’s password. We
will focus on online-guessing attacks, where an attacker tries to guess a user’s
password over the login interface provided by a web service. An account might
be locked after too many incorrect guesses (e.g., 10), in which case the attack
fails. Therefore, we will measure an attacker’s success given a certain guessing
budget g. We will always assume the attacker has access to the username of the

target user.

The security games are given in Figure 3.4. The game Guess models the
situation in which no information besides the username is revealed to the ad-
versary about the password. In the game BucketGuess, the adversary also gets
access to a bucket that is chosen according to the credentials s = (u,w) and the

bucketization function .

We define the advantage against a game as the maximum probability that the

game outputs 1. Therefore, we maximize the probability, over all adversaries,
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of the adversary winning the game in ¢ guesses.
Adv®(q) = max P (GuessA(q) = 1) ,
and
AdV5®(q) = max P (BucketGuessg"(q) = 1> :

The probabilities are taken over the choices of username-password pairs and
the selection of bucket via the bucketizing function . The security loss Ag(q) of

a bucketizing protocol 3 is defined as

Ap(q) = Adv;*(g) — Adv®®(q) .

Note,
P (Guess““(q) = 1) = ZP (we Alu,q) NU =u) .

To maximize this probability, the attacker must pick the ¢ most probable pass-

words for each user. Therefore,

Adv®(q) = Z max Z P(W=w,ANU=u). (3.1)
In BucketGuessg, the attacker has access to the bucket identifier, and therefore

the advantage is computed as

q

Advggs(q)zzz max ZP(W:wi/\U:u/\B:b)

W,y q

u b =1
q
P(W=w,ANU = u)
= max 3.2
zu:zb: (ulvwlé""}j()“(I’wfl) Z—ZI |/B((U, wl))| ( )

The second equation follows because for b € 3((u,w)), each bucket in (w) is

equally likely to be chosen, so
1

Pr(B=10 | W:w/\U:u]:m.
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The joint distribution of usernames and passwords is hard to model. To
simplify the equations, we divide the users targeted by the attacker into two
groups: compromised (users whose previously compromised accounts are avail-
able to the attacker) and uncompromised (users for which the attacker has no

information other than their usernames).

We assume there is no direct correlation between the username and pass-
word.? Therefore, an attacker cannot use the knowledge of only the username
to tailor guesses. This means that in the uncompromised setting, we assume
PriW=w | U=u] = P(W =w). Assuming independence of usernames and

passwords, we define in the uncompromised setting
q

Ay =AdV®(q) = max » P (W =uw). (3.3)
1,---,Wq i—1

We give analytical (using Equations 3.2 and 3.3) and empirical analysis of
security in this setting, and show that the security of uncompromised users is

impacted by existing C3 schemes much more than that of compromised users.

In the compromised setting, the attacker can use the username to find other
leaked passwords associated with that user, which then can be used to tailor
guesses [104,127]. Analytical bounds on the compromised setting (using Equa-
tions 3.1 and 3.2) are less informative, so we evaluate this setting empirically

in Section 3.6.

Bandwidth. The bandwidth required for a bucketization scheme is determined
by the size of the buckets. The maximum size of the buckets can be determined
using a balls-and-bins approach [35], assuming the client picks a bucket ran-

domly from the possible set of buckets 3(s) for a credential s, and 3(s) also

3Though prior work [90, 127] suggests knowledge of the username can improve efficacy of
guessing passwords, the improvement is minimal. See Appendix B.1 for more on this.
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maps s to a random set of buckets. In total m = ) __s|5(s)| credentials (balls)
are “thrown” into n = |B| buckets. If m > |B| - log|B|, then standard re-
sults [35] give that the maximum number of passwords in a bucket is less than
. (1 + \/@) < 2- 2, with very high probability 1 — o(1). We will use this
formula to compute an upper bound on the bandwidth requirement for specific

bucketization schemes.

For HPB schemes, each credential will be mapped to a random bucket if we
assume that the hash function acts as a random oracle. For FSB, since we only
randomly choose the first bucket and map a credential to a range of buckets
starting with the first one, it is not clear that the set of buckets a credential is
mapped to is random. We also show empirically that these bounds hold for the

C3 schemes.

3.4 Hash-prefix-based Bucketization

Hash-prefix-based bucketization (HPB) schemes are a simple way to divide the
credentials stored by the C3 server. In this type of C3 scheme, a prefix of the
hash of the credential is used as the criteria to group the credentials into buck-
ets — all credentials that share the same hash-prefix are assigned to the same
bucket. The total number of buckets depends on [, the length of the hash-prefix.
The number of credentials in the buckets depends on both [ and |S|. We will
use HY(-) to denote the function that outputs the [-bit prefix of the hash H().
The client shares the hash prefix of the credential they wish to check with the

server. While a smaller hash prefix reveals less information to the server about
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the user’s password, it also increases the size of each bucket held by the server,

which in turn increases the bandwidth overhead.

Hash-prefix-based bucketization is currently being used for credential
checking in industry : HIBP [8] and GPC [111]. We introduce a new HPB proto-
col called IDB that achieves zero security loss for any query budget. Below we

will discuss the design details of these three C3 protocols.

HIBP [8]. HIBP uses HPB bucketization to provide a password-only C3 ser-
vice. They do not provide compromised username-password checking. HIBP
maintains a database of leaked passwords, which contains more than 501 mil-
lion passwords [8]. They use the SHA1 hash function, with prefix length | = 20;
the leaked dataset is partitioned into 22° buckets. The prefix length is chosen
to ensure no bucket is too small or too big. With [ = 20, the smallest bucket
has 381 passwords, and the largest bucket has 584 passwords [34] . This effec-
tively makes the user’s password k-anonymous. However, k-anonymity pro-
vides limited protection, as shown by numerous prior works [92, 100, 135] and

by our security evaluation.

The passwords are hashed using SHA1 and indexed by their hash prefix for
tast retrieval. A client computes the SHA1 hash of their password w and queries
HIBP with the 20-bit prefix of the hash; the server responds with all the hashes
that share the same 20-bit prefix. The client then checks if the full SHA1 hash of
w is present among the set of hashes sent by the server. This is a weak form of
PSI that does not hide the leaked passwords from the client — the client learns
the SHA1 hash of the leaked passwords and can perform brute force cracking

to recover those passwords.
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HIBP justifies this design choice by observing that passwords in the server
side leaked dataset are publicly available for download on the Internet. There-
fore, HIBP lets anyone download the hashed passwords and usernames. This
can be useful for parties who want to host their own leak checking service with-
out relying on HIBP. However, keeping the leaked dataset up-to-date can be

challenging, making a third-party C3 service preferable.

HIBP trades server side privacy for protocol simplicity. The protocol also al-
lows utilization of caching on content delivery networks (CDN), such as Cloud-
flare.* Caching helps HIBP to be able to serve 8 million requests a day with 99%
cache hit rate (as of August 2018) [33]. The human-chosen password distribu-
tion is “heavy-headed”, that is a small number of passwords are chosen by a
large number of users. Therefore, a small number of passwords are queried a

large number of times, which in turn makes CDN caching much more effective.

GPC[111,121]. Google provides a username-password C3 service, called Pass-
word Checkup (GPC). The client — a browser extension — computes the hash
of the username and password together using the Argon2 hash function (con-
tigured to use a single thread, 256 MB of memory, and a time cost of three) with
the first [ = 16 bits to determine the bucket identifier. After determining the
bucket, the client engages in a private set intersection (PSI) protocol with the
server. The full algorithm is given in Figure 3.5. GPC uses a computationally
expensive hash function to make it more difficult for an adversary to make a

large number of queries to the server.

GPC uses an OPRF-based PSI protocol [121]. Let F,(z) be a function that first

calls the hash function H on z, then maps the hash output onto an elliptic curve

‘https://www.cloudflare.com/
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Precomputation by C3 Server
Let S = {(u1,w1),..., (un,wn)}
vjieo,...,2t —1]

z;  { Fe(uilw;) [HO (u]w) = j)}

z;  {Fi(uil|w;) [HO(w) = j)}

Client C3 server

Input: (u,w) Input: k,z
T <—s Zg

z <+ Fp.(u|w)

b+ HO (u||w)

b+ HO (u) —

T y%
Return 7 € z,

Figure 3.5: Algorithms for GPC, and the change in IDB given in the box. F{,(-)
is a PRE.

point, and finally, exponentiates the elliptic curve point (using elliptic curve

group operations) to the power a. Therefore it holds that (F,(x))" = F(x).

The server has a secret key x which it uses to compute the values y; =
F.(u;||w;) for each (u;,w;) pair in the breach dataset. The client shares with
the server the bucket identifier b and the PRF output x = F)(u||lw), for some
randomly sampled r. The server returns the bucket z, = {y; |H(u;|lw;) = b}
and y = 2". Finally, the client completes the OPRF computation by computing
1

T =yr = F,(ul]|w), and checking if & € z,.

The GPC protocol is significantly more complex than HIBP, and it does not
allow easy caching by CDNs. However, it provides secrecy of server-side leaked
data — the best case attack is to follow the protocol to brute-force check if a

password is present in the leak database.
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Bandwidth. HPB assigns each credential to only one bucket; therefore, m =
S wes|B(w)| = |S| = N. The total number of buckets is n = 2'. Following
the discussion from Section 3.3, the maximum bandwidth for a HPB C3 service

should be no more than 2 - 2 =2 - .

We experimentally verified bandwidth usage, and the sizes of the buckets

tor HIBP, GPC, and IDB are given in Section 3.7.

Security. HPB schemes like HIBP and GPC expose a prefix of the user’s pass-
word (or username-password pair) to the server. As discussed earlier, we as-
sume the attacker knows the username of the target user. In the uncompro-
mised setting — where the user identifier does not appear in the leaked data
available to the attacker, we show that giving the attacker the hash-prefix with
a guessing budget of ¢ queries is equivalent to giving as many as ¢ - |B| queries
(with no hash-prefix) to the attacker. As a reminder, |3| is the number of buck-
ets. For example, consider a C3 scheme that uses a 5-character hash prefix as a
bucket identifier (22° buckets). If an attacker has 10 guesses to figure out a pass-
word, then given a bucket identifier, they can eliminate any guesses on their list
that don’t belong in that bucket. If their original guesses are distributed equally
across all buckets, then knowing the 5-character hash prefix can help them get

through around ¢ - 2% of those guesses.

Theorem 1. Let Sypp : S — B be the bucketization scheme that, for a credential s € S,
chooses a bucket that is a function of HY (), where s contains the user’s password. The

advantage of an attacker in this setting against previously uncompromised users is

AdVE® (q) < Adv®(q - |B]) .
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Proof: First, note that |Supp(s)| = 1, for any input s, as every password is as-
signed to exactly one of the buckets. Following the discussion from Section 3.3,
assuming independence of usernames and passwords in the uncompromised

setting, we can compute the advantage against game BucketGuess as

q
AdVE® () = > max >~ P (W = wy) < Adv®(q- |B]).

Bris W,

beB eca(b) i=1
We relax the a(b) notation to denote set of passwords (instead of username-
password pairs) assigned to a bucket b. The inequality follows from the fact
that each password is present in only one bucket. If we sum up the probabilities
of the top ¢ passwords in each bucket, the result will be at most the sum of the
probabilities of the top ¢ - |B| passwords. Therefore, the maximum advantage

achievable is Adv®(q - |B]). |

Theorem 1 only provides an upper bound on the security loss. Moreover,
for the compromised setting, the analytical formula in Equation (3.2) is not very
informative. So, we use empiricism to find the effective security loss against
compromised and uncompromised users. We report all security simulation re-
sults in Section 3.6. Notably, with GPC using a hash prefix length [ = 16, an
attacker can guess passwords of 59.7% of (previously uncompromised) user ac-
counts in fewer than 1,000 guesses, over a 10x increase from the percent it can

compromise without access to the hash prefix. (See Section 3.6 for more results.)

Identifier-based bucketization (IDB). As our security analysis and simulation
show, the security degradation of HPB can be high. The main issue with those

protocols is that the bucket identifier is a deterministic function of the user pass-

80



word. We give a new C3 protocol that uses HPB style bucketing, but based only
on username. We call this identifier-based bucketization (IDB). IDB is defined

for username-password C3 schemes.

IDB is a slight modification of the protocol used by GPC— we use the hash-
prefix of the username, H®(u), instead of the hash-prefix of the username-
password combination, HY (u || w), as a bucket identifier. The scheme is de-
scribed in Figure 3.5, using the changes in the boxed code. The bucket identifier
is computed completely independently of the password (assuming the user-
name is independent of the password). Therefore, the attacker gets no addi-

tional advantage by knowing the bucket identifier.

Because IDB uses the hash-prefix of the username as the bucket identifier,
two hash computations are required on the client side for each query (as op-
posed to one for GPC). With most modern devices, this is not a significant
computing burden, but the protocol latency may be impacted, since we use a
slow hash (Argon2) for hashing both the username and the password. We show
experimentally how the extra hash computation affects the latency of IDB in

Section 3.7.

Since in IDB, the bucket identifier does not depend on the user’s password,
the conditional probability of the password given the bucket identifier remains
the same as the probability without knowing the bucket identifier. As a result,

exposing the bucket identifier does not lead to security loss.

Theorem 2. With the IDB protocol, for all ¢ > 0

AV () = AdvE(g).
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Proof: Because the IDB bucketization scheme does not depend on the pass-

word, PriB=b | W=wAU=u|=Pr[B=0b| U =ul.

We can upper bound the success rate of an adversary in the BucketGuessipg

game by
AdViE (a)
q
:ZZ max ZP(W:wi/\U:u)-Pr[B:b| U = u]
w bt
q
:Z<2Pr[B:b| Uzu]) max ZP(W:wi/\U:u)
u b b qu:l
Adv®(q)

The first step follows from independence of password and bucket choice, and

the third step is true because there is only one bucket for each username. 1|

We would like to note, though IDB reveals nothing about the password,
learning the username becomes easier (compared to GPC) — an attacker can
narrow down the potential users after seeing the bucket identifier. While this
can be concerning for user’s privacy, we believe the benefit of not revealing

anything about the user’s password outweighs the risk.

Unfortunately, IDB does not work for the password-only C3 setting because
it requires that the server store username-password pairs. In the next section

we introduce a more secure password-only C3 scheme.
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3.5 Frequency-Smoothing Bucketization

In the previous section we showed how to build a username-password C3 ser-
vice that does not degrade security. However, many services, such as HIBP, only
provide a password-only C3 service. HIBP does not store username-password
pairs so, should the HIBP server ever get compromised, an attacker cannot use
their leak database to mount credential stuffing attacks. Unfortunately, IDB can-

not be extended in any useful way to protect password-only C3 services.

Therefore, we introduce a new bucketization scheme to build secure
password-only C3 services. We call this scheme frequency-smoothing bucke-
tization (FSB). FSB assigns a password to multiple buckets based on its proba-
bility — frequent passwords are assigned to many buckets. Replicating a pass-
word into multiple buckets effectively reduces the conditional probabilities of
that password given a bucket identifier. We do so in a way that makes the
conditional probabilities of popular passwords similar to those of unpopular
passwords to make it harder for the attacker to guess the correct password.
FSB, however, is only effective for non-uniform credential distributions, such
as password distributions.” Therefore, FSB cannot be used to build a username-

password C3 service.

Implementing FSB requires knowledge of the distribution of human-chosen
passwords. Of course, obtaining precise knowledge of the password distribu-
tion can be difficult; therefore, we will use an estimated password distribution,
denoted by p,. Another parameter of FSB is g, which is an estimate of the at-

tacker’s query budget. We show that if the actual query budget ¢ < ¢, FSB has

SUsernames (e.g., emails) are unique for each users, so the distribution of usernames and
username-password pairs are close to uniform.
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M Orpsp (b) :
; |B|-ps (w) /*returns {w € S |b € B(w)} */
’y(—mm{\[ﬂ,[ ﬁs?’lﬂq) —‘} dew, { } Bw)}
s + f(w) S
Forw € §\ W; do
If s + v < |B| then b e BFSB('U?) then
T [s,s +v—1] A AU {w)

Else return A
r <+ [0,s+v—1 mod |B]]

r«rUls, B —1]
Return r

Figure 3.6: Bucketizing function frsp for assigning passwords to buckets in
FSB. Here p; is the distribution of passwords; W; is the set of top-g passwords

according to p,; B is the set of buckets; f is a hash function f: W — Zp; S is
the set of passwords hosted by the server.

zero security loss. Larger ¢ will provide better security; however, it also means
more replication of the passwords and larger bucket sizes. So, ¢ can be tuned
to balance between security and bandwidth. Below we will give the two main
algorithms of the FSB scheme: (s and dygp, followed by a bandwidth and se-

curity analysis.

Bucketizing function (Sgsg). To map passwords to buckets, we use a hash
function f : W — Z. The algorithm for bucketization frsg(w) is given in
Figure 3.6. The parameter ¢ is used in the following way: 3 replicates the
most probable g passwords, W;, across all |B| buckets. Each of the remaining

passwords are replicated proportional to their probability. A password w with

1515 (w)

i : ~th
Be () —‘ times, where wy; is the ¢

probability p,(w) is replicated exactly v = {
most likely password. Exactly which buckets a password is assigned to are
determined using the hash function f. Each bucket is assigned an identifier be-
tween [0, |B] — 1]. A password w is assigned to the buckets whose identifiers
fall in the range [f(w), f(w) 4+ v — 1]. The range can wrap around. For example,

if f(w) +~ > |B|, then the password is assigned to the buckets in the range
[0, f(w) +~ =1 mod [B[] and [f(w), B[ —1].
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Bucket retrieving function (a). Retrieving passwords assigned to a bucket
is challenging in FSB. An inefficient — linear in N — implementation of & is
given in Figure 3.6. Storing the contents of each bucket separately is not feasible,
since the number of buckets in FSB can be very large, |B| ~ N. To solve the
problem, we utilize the structure of the bucketizing procedure where passwords
are assigned to buckets in continuous intervals. This allows us to use an interval
tree [10] data structure to store the intervals for all of the passwords. Interval
trees allow fast queries to retrieve the set of intervals that contain a queried

point (or interval) — exactly what is needed to instantiate a.

This efficiency comes with increased storage cost: storing NV entries in an in-
terval tree requires O(N log N) storage. The tree can be built in O(/N log V) time,
and each query takes O(log N + |&(b)|) time. The big-O notation only hides

small constants.

Estimating password distributions. To construct the bucketization algorithm
for FSB, the server needs an estimate of the password distribution p,,. This
estimate will be used by both the server and the client to assign passwords to
buckets. One possible estimate is the histogram of the passwords in the leaked
data S. Histogram estimates are typically accurate for popular passwords, but
such estimates are not complete — passwords that are not in the leaked dataset
will have zero probability according to this estimate. Moreover, sending the
histogram over to the client is expensive in terms of bandwidth, and it may leak
too much information about the dataset. We also considered password strength

meters, such as zxcvbn [131] as a proxy for a probability estimate. However, this
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estimate turned out to be too coarse for our purposes. For example, more than

10° passwords had a “probability” of greater than 1072.

We build a 3-gram password model p,, using the leaked passwords present
in S. Markov models or n-gram models are shown to be effective at estimat-
ing human-chosen password distributions [91], and they are very fast to train
and run (unlike neural network based password distribution estimators, such
as [97]). However, we found the n-gram model assigns very low probabilities to
popular passwords. The sum of the probabilities of the top 1,000 passwords as
estimated by the 3-gram model is only 0.032, whereas those top 1,000 passwords

are chosen by 6.5% of users.

We therefore use a combined approach that uses a histogram model for the
popular passwords and the 3-gram model for the rest of the distribution. Such
combined techniques are also used in practice for password strength estima-
tion [97,131]. Let p, be the estimated password distribution used by FSB. Let p,
be the distribution of passwords implied by the histogram of passwords present
in S. Let S, be the set of the t most probable passwords according to ;. We used
t = 10%. Then, the final estimate is

Pr(w) ifw e S~t )

Pslw) = 1-Taes, o)

Pn(w) - S SR ) otherwise.

Note that instead of using the 3-gram probabilities directly, we multiply them
by a normalization factor that allows ) p(w) = 1, assuming that the same is

true for the distributions p;, and p,,.

Bandwidth. We use the formulation provided in Section 3.3 to compute the

bandwidth requirement for FSB. In this case, m = |B| - ¢ + ﬁsl(qu) + N, and
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n = |B|. Therefore, the maximum size of a bucket is with high probability less

than 2 - <cj + m + %) . The details of this analysis are given in Appendix B.2.

In practice, we can choose the number of buckets to be such that |B| = N.
Then, the number of passwords in a bucket depends primarily on the parameter

g. Note, bucket size increases with .

Security analysis. We show that there is no security loss in the uncompromised
setting for FSB when the actual number of guesses ¢ is less than the parameter ¢
and the estimate p is accurate. We also give a bound for the security loss when

q exceeds §.

Theorem 3. Let FSB be a frequency based bucketization scheme that ensures Vw € W,
| Brsp(w)| = min {|B l, [%1 } Assuming that the distribution estimate p; = p,,

then for the uncompromised users,

(1) AdV%®(q) = Adv®(q) for ¢ < G, and

(2) forq>gq,

Recall that the probabilities )\, are defined in Equation (3.3). We include the
full proof for Theorem 3 in Appendix B.3. Intuitively, since the top ¢ passwords
are repeated across all buckets, having a bucket identifier does not allow an at-
tacker to more easily guess these ¢ passwords. Moreover, the conditional prob-
ability of these ¢ passwords given the bucket is greater than that of any other
password in the bucket. Therefore, the attacker’s best choice is to guess the top
q passwords, meaning that it does not get any additional advantage when g < g,

leading to part (1) of the theorem.
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The proof of part (2) follows from the upper and lower bounds on the num-
ber of buckets each password beyond the top ¢ is placed within. The bounds
we prove show that the additional advantage in guessing the password in ¢
queries is less than the number of additional queries times the probability of the
g™ password and at least half the difference in the guessing probabilities )\, and

;-

Note that this analysis of security loss is based on the assumption that the
FSB scheme has access to the precise password distribution, p;, = p,,. We em-
pirically analyze the security loss in Section 3.6 for p; # p,,, in both the compro-

mised and uncompromised settings.

3.6 Empirical Security Evaluation

In this section we empirically evaluate and compare the security loss for differ-
ent password-only C3 schemes we have discussed so far — hash-prefix-based

bucketization (HPB) and frequency-smoothing bucketization (FSB).

We focus on known-username attacks (KUA), since in many deployment set-
tings a curious (or compromised) C3 server can figure out the username of the
querying user. We separate our analysis into two settings: previously compro-
mised users, where the attacker has access to one or more existing passwords of
the target user, and previously uncompromised users, where no password corre-

sponding to the user is known to the attacker (or present in the breached data).

We also focus on what the honest-but-curious C3 server can learn from

knowing the bucket. In our experiment, we show the success rate of an ad-
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S| T TnS | Ty TpnS

# users 9014 | 129 59(46%) | 84 3.9 (46%)
# passwords 4359 | 89 b5.7(64%) | 6.7 3.9 (59%)
# user-pw pairs  1,316.6 | 13.1 3.2 (24%) | 8.5 2.0 (23%)

Figure 3.7: Number of entries (in millions) in the breach dataset S, test dataset 7',
and the site-policy test subset T5,. Also reported are the intersections (of users,
passwords, and user-password pairs, separately) between the test dataset en-
tries and the whole breach dataset that the attacker has access to. The percent-
age values refer to the fraction of the values in each test set that also appear in
the intersections.

versary that knows the exact leak dataset used by the server. We expect that
an adversary that doesn’t know the exact leak dataset will have slightly lower

success rates.

First we will look into the unrestricted setting where no password policy is
enforced, and the attacker and the C3 server have the same amount of informa-
tion about the password distribution. In the second experiment, we analyze the
effect on security of giving the attacker more information compared to the C3
server (defender) by having a password policy that the attacker is aware of but

the C3 server is not.

Password breach dataset. We used the same breach dataset used in [104]. The
dataset was derived from a previous breach compilation [42] dataset containing
about 1.4 billion username-password pairs. We chose to use this dataset rather
than, for example, the password breach dataset from HIBP, because it contains

username-password pairs.

We cleaned the data by removing non-ASCII characters and passwords
longer than 30 characters. We also combined username-password pairs with
the same case-insensitive username, and we removed users with over 1,000

passwords, as they didn’t seem to be associated to real accounts. The authors
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of [104] also joined accounts with similar usernames and passwords using a
method they called the mixed method. We joined the dataset using the same
mixed method, but we also kept the usernames with only one email and pass-

word.

The final dataset consists of about 1.32 billion username-password pairs.°®

We remove 1% of username-password pairs to use as test data, denoted as 7T'.
The remaining 99% of the data is used to simulate the database of leaked cre-
dentials S. For the experiments with an enforced password policy, we took the
username-password pairs in 7" that met the requirements of the password policy
to create T,. We use Ty, to simulate queries from a website which only allows
passwords that are at least 8 characters long and are not present in Twitter’s list
of banned passwords [13]. For all attack simulations, the target user-password

pairs are sampled from the test dataset T" (or 7).

In Figure 3.7, we report some statistics about 7', T;,, and S. Notably, 5.9
million (46%) of the users in T are also present in S. Among the username-
password pairs, 3.2 million (24%) of the pairs in 7" are also present in S. This
means an attacker will be able to compromise about half of the previously com-
promised accounts trivially with credential stuffing. In the site-policy enforced

test data T,

sp, @ similar proportion of the users (46%) and username-password

pairs (23%) are also present in S.

Experiment setup. We want to understand the impact of revealing a bucket
identifier on the security of uncompromised and compromised users separately.
As we can see from Figure 3.7, a large proportion of users in 1" are also present

in S. We therefore split T into two parts: one with only username-password

®Note, there are duplicate username-password pairs in this dataset.
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pairs from compromised users (users with at least one password present in S),
Teomp, and another with only pairs from uncompromised users (users with no
passwords present in 5’), Tuncomp- We generate two sets of random samples of
5,000 username-password pairs, one from Tgomp, and another from 7} ncomp. We
chose 5,000 because this number of samples led to a low standard deviation
(as reported in Figure 3.8). For each pair (u, w), we run the games Guess and
BucketGuess as specified in Figure 3.4. We record the results for guessing bud-
gets of ¢ € {1, 10, 102, 10*°}. We repeat each of the experiments 5 times and

report the averages in Figure 3.8.

For HPB, we compared implementations using hash prefixes of lengths [ €
{12,16,20}. We use the SHA256 hash function with a salt, though the choice of

hash function does not have a noticeable impact on the results.

For FSB, we used interval tree data structures to store the leaked passwords
in S for fast retrieval of &(b). We used |B| = 2% buckets, and the hash function
f is set to f(z) = HBY(x), the 30-bit prefix of the (salted) SHA256 hash of the

password.

Attack strategy. The attacker’s goal is to maximize its success in winning the
games Guess and BucketGuess. In Equation (3.1) and Equation (3.2) we out-
line the advantage of attackers against Guess and BucketGuess, and thereby
specify the best strategies for attacks. Guess denotes the baseline attack success
rate in a scenario where the attacker does not have access to bucket identifiers
corresponding to users’ passwords. Therefore the best strategy for the attacker
A is to output the ¢ most probable passwords according to its knowledge of the

password distribution.
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The optimal attack strategy for A’ in BucketGuess will be to find a list of

passwords according to the following equation,

q
Pr(W =w; | U=u
agmax ) s

beB((uw;)) =1
where the bucket identifier b and user identifier u are provided to the attacker.

This is equivalent to taking the top-¢ passwords in the set «(b) ordered by
PrW=w [ U=u]/|5((u, w))]

We compute the list of guesses outputted by the attacker for a user v and
bucket b in the following way. For the compromised users, i.e., if (u,-) € S,
the attacker first considers the passwords known to be associated to that user
and the list of 10? targeted guesses generated based on the credential tweaking

attack introduced in [104]. If any of these passwords belong to a(b) they are

guessed first. This step is skipped for uncompromised users.

For the remaining guesses, we first construct a list of candidates L consist-
ing of all 436 million passwords present in the breached database S sorted by
their frequencies, followed by 500 x 10° passwords generated from the 3-gram
password distribution model p,. Each password w in L is assigned a weight
Ds(w)/|B((u,w))| (See Section 3.5 for details on p, and p,,). The list L is pruned
to only contain unique guesses. Note L is constructed independent of the user-
name or bucket identifier, and it is reordered based on the weight values. There-
fore, it is constructed once for each bucketization strategy. Finally, based on the
bucket identifier b, the remaining guesses are chosen from {a(b)N(u,w) | w € L}

in descending order of weight.
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For the HPB implementation, each password is mapped to one bucket, so
|f(w)] = 1 for all w. For FSB, |3(-)| can be calculated using the equation

in Theorem 3.

Since we are estimating the values to be used in the equation, the attack is no
longer optimal. However, the attack we use still performs quite well against ex-
isting C3 protocols, which already shows that they leak too much information.

An optimal attack can only perform better.

Bucket size Uncompromised \
Protocol Params Avg max g=1 =10 7= 10? g =103
Baseline N/A N/A N/A| 07(£0.1) 1.5(£0.1) 29(+0.3) 5.8(+0.4)
= 20* 413 491 | 32.9 (£0.5) 49.5(+0.3) 62.5(+04) 71.1(+£0.5)
HPB 1 =161 6602 6891 | 17.9 (£0.5) 33.4 (£0.6) 47.3 (£0.3) 59.7 (+0.2)
=12 105642 106668 | 8.2 (+0.4) 17.5(+0.6) 30.7 (£0.6) 44.4(+0.4)
g=1 83 122 | 0.7 (£0.1) 4.7 (£0.4) 69.8(£0.5) 71.1(£0.5)
FSB g=10 852 965 | 0.7(£0.1) 15(£0.1) 5.3(£0.3) 70.8(£0.5)
q=10? 6299 6602 | 0.7 (+0.1) 15(£0.1) 29(£0.3) 8.0 (%0.4)
g=10%> 25191 25718 | 0.7 (£1.0) 15(+0.1) 29 (+0.3) 5.8(+0.4)
Bucket size Compromised
Protocol Params Avg max g=1 =10 7= 10? = 10°
Baseline N/A N/A N/A | 41.1 (£0.4) 51.1(+0.8) 53.3(+0.9) 55.7 (+1.0)
1 =20} 413 491 | 67.3 (£0.8) 74.5(£0.6) 794 (+0.6) 829 (+0.4)
HPB I =161 6602 6891 | 61.1 (£0.9) 67.4(£0.8) 73.6(+0.6) 782 (+0.7)
=12 105642 106668 | 56.3 (£1.0) 60.8 (£1.0) 66.5(£0.8) 72.3(+0.6)
g=1 83 122 | 53.7 (£0.9) 55.7 (£0.9) 82.6 (£0.4) 83.0(£0.4)
FSB g=10 852 965 | 52.8 (£0.9) 54.2 (+1.0) 56.0(+0.9) 83.0(+0.4)
q=10? 6299 6602 | 51.9 (£0.8) 53.8 (£0.9) 54.8(£1.0) 57.1(+1.0)
g=10% 25191 25718 | 51.4 (£0.9) 53.2(£0.9) 54.7 (+1.0) 55.9 (£0.9)

1 HIBP uses | = 20 for its password-only C3 service. T GPC uses ! = 16 for
username-password C3 service.

Figure 3.8: Comparison of attack success rate given ¢ queries on different
password-only C3 settings. All success rates are in percent (%) of the total num-
ber of samples (25,000). The standard deviations across the 5 independent ex-
periments of 5,000 samples each are given in the parentheses. Bucket size, the
number of passwords associated to a bucket, is measured on a random sample
of 10,000 buckets.
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Results. We report the success rates of the attack simulations in Figure 3.8.
The baseline success rate (first row) is the advantage Adv®®, computed using the
same attack strategy stated above except with no information about the bucket
identifier. The following rows record the success rate of the attack for HPB and
FSB with different parameter choices. The estimated security loss (A,) can be
calculated by subtracting the baseline success rate from the HPB and FSB attack

success rates.

The security loss from using HPB is large, especially for previously uncom-
promised users. Accessibility to the [ = 20-bit hash prefix, used by HIBP [8],
allows an attacker to compromise 32.9% of previously uncompromised users
in just one guess. In fewer than 10° guesses, that attacker can compromise
more than 70% of the accounts (12x more than the baseline success rate with
10 guesses). Google Password Checkup (GPC) uses | = 16 for its username-
password C3 service. Against GPC, an attacker only needs 10 guesses per ac-
count to compromise 33% of accounts. Reducing the prefix length [ can decrease
the attacker’s advantage. However, that would also increase the bucket size. As
we see for [ = 12, the average bucket size is 105,642, so the bandwidth required

to perform the credential check would be high.

FSB resists guessing attacks much better than HPB does. For ¢ < ¢ the at-
tacker gets no additional advantage, even with the estimated password distri-
bution ps. The security loss for FSB when ¢ > ¢ is much smaller than that of
HPB, even with smaller bucket sizes. For example, the additional advantage
over the baseline against FSB with ¢ = 100 and ¢ = 10 is only 2.4%, despite FSB

also having smaller bucket sizes than HPB with [ = 16. Similarly for ¢ = 100,
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Aygs = 2.2%. This is because the conditional distribution of passwords given
an FSB bucket identifier is nearly uniform, making it harder for an attacker to

guess the correct password in the bucket a(b) in ¢ guesses.

For previously compromised users — users present in S — even the base-
line success rate is very high: 41% of account passwords can be guessed in 1
guess and 56% can be guessed in fewer than 1,000 guesses. The advantage is
supplemented even further with access to the hash prefix. As per the guessing
strategy, the attacker first guesses the leaked passwords that are both associated
to the user and in a/(b). This turns out to be very effective. Due to the high base-
line success rate the relative increase is low; nevertheless, in total, an attacker
can guess the passwords of 83% of previously compromised users in fewer than
1,000 guesses. For FSB, the security loss for compromised users is compara-
ble to the loss against uncompromised users for ¢ < g. Particularly for ¢ = 10
and ¢ = 100, the attacker’s additional success for a previously compromised
user is only 2.7% higher than the baseline. Similarly, for ¢ = 100 an attacker
gets at most 1.4% additional advantage for a guessing budget of ¢=1,000. In-
terestingly, FSB performs significantly worse for compromised users compared
to uncompromised users for ¢ = 1. This is because the FSB bucketing strategy
does not take into account targeted password distributions, and the first guess

in the compromised setting is based on the credential tweaking attack.

In our simulation, previously compromised users made up around 46% of
the test set. We could proportionally combine the success rates against uncom-

promised and compromised users to obtain an overall attack success rate. How-
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ever, it is unclear what the actual proportion would be in the real world, so we

choose not to combine results from the two settings.

Password policy experiment. In the previous set of experiments, we assumed
that the C3 server and the attacker use the same estimate of the password dis-
tribution. To explore a situation in which the attacker has a better estimate of
the password distribution than the C3 server, we simulated a website which en-
forces a password policy. We assume that the policy is known to the attacker

but not to the C3 server.

For our sample password policy, we required that passwords have at least
8 characters and that they must not be on Twitter’s banned password list [13].
The test samples are drawn from T,, username-password pairs from 7" where
passwords follow this policy. The attacker is also given the ability to tailor their
guesses to this policy. The server still stores all passwords in S, without regard
to this policy. Notably, the FSB scheme relies on a good estimate of the password
distribution to be effective in distributing passwords evenly across buckets. Its
estimate, when compared to the distribution of passwords in Tsp, should be less
accurate than it was in the regular simulation, when compared to the password

distribution from 7.

We chose the parameters & = 16 for HPB and ¢ = 100 for FSB, because they
were the most representative of how the HPB and FSB bucketization schemes
compare to each other. These parameters also lead to similar bucket sizes, with
around 6,500 passwords per bucket. Overall, we see that the success rate of
an attacker decreases in these simulations compared to the general experiments
(without a password policy). This is because after removing popular passwords,

the remaining set of passwords that we can choose from has higher entropy, and
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Uncompromised Compromised
g=1 10 102 10% | g=1 10 10%2 10°

Baseline | 01 05 13 34| 422 490 498 51.1
HPB(I=16) | 126 259 363 489 | 546 599 659 703
FSB(g=10%) | 01 05 15 132| 492 500 504 549

Protocol

Figure 3.9: Attack success rate (in %) comparison for HPB with | = 16 (effec-
tively GPC) and FSB with ¢ = 10? for password policy simulation. The first row
records the baseline success rate Adv%(g). There were 5,000 samples each from
the uncompromised and compromised settings.

each password is harder to guess. FSB still defends much better against the at-
tack than HPB does, even though the password distribution estimate used by
the FSB implementation is quite inaccurate, especially at the head of the distri-

bution. The inaccuracy stems from FSB assigning larger probability estimates to

passwords that are banned according to the password policy.

We also see that due to the inaccurate estimate by the C3 server for FSB, we
start to see some security loss for an adversary with guessing budget ¢ = 100. In
the general simulation, the password estimate p; used by the server was closer

to p, so we didn’t have any noticeable security loss where ¢ < .

3.7 Performance Evaluation

We implement the different approaches to checking compromised credentials
and evaluate their computational overheads. For fair comparison, in addition
to the algorithms we propose, FSB and IDB, we also implement HIBP and GPC

with our breach dataset.

Setup. We build C3 services as serverless web applications that provide REST

APIs. We used AWS Lambda [3] for the server-side computation and Amazon
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DynamoDB [6] to store the data. The benefit of using AWS Lambda is it can be
easily deployed as Lambda@Edge and integrated with Amazon’s content de-
livery network (CDN), called CloudFront [5]. (HIBP uses Cloudflare as CDN
to serve more than 600,000 requests per day [9].) We used Javascript to imple-
ment the server and the client side functionalities. The server is implemented
as a Node-JS app. We provisioned the Lambda workers to have a maximum
of 3 GB of memory. For cryptographic operations, we used a Node-JS library
called Crypto [14].

For pre-processing and pre-computation of the data we used a desktop with
an Intel Core i9 processor and 128 GB RAM. Though some of the computation
(e.g., hash computations) can be expedited using GPUs, we did not use any for
our experiment. We used the same machine to act as the client. The round trip
network latency of the Lambda API from the client machine is about 130 mil-

liseconds.

The breach dataset we used is the one described in Figure 3.7. It contains 436

million unique passwords and 1,317 million unique username-password pairs.

To measure the performance of each scheme, we pick 20 random passwords
from the test set 7" and run the full C3 protocol with each one. We report the
average time taken for each run in Figure 3.10. In the figure, we also give the
breakdown of the time taken by the server and the client for different operations.

The network latency had very high standard deviation (25%), though all other
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measurements had low (< 1%) standard deviations compared to their mean

values.

HIBP. The implementation of HIBP is the simplest among the four schemes.
The set of passwords in S is hashed using SHA256 and split into 22° buckets
based on the first 20 bits of the hash value (we picked SHA256 because we also
used the same for FSB). Because the bucket sizes in HIBP are so small (< 500),
each bucket is stored as a single value in a DynamoDB cell, where the key is the
hash prefix. For larger leaked datasets, each bucket can be split into multiple
cells. The client sends the 20 bit prefix of the SHA256 hash of their password,

and the server responds with the corresponding bucket.

Among all the protocols HIBP is the fastest (but also weakest in terms of
security). It takes only 220 ms on average to complete a query over WAN. Most
of the time is spent in round-trip network latency and the query to DynamoDB.
The only cryptographic operation on the client side is a SHA256 hash of the

password, which takes less than 1 ms.

FSB. The implementation of FSB is more complicated than that of HIBP. Be-
cause we have more than 1 billion buckets for FSB and each password is repli-
cated in potentially many buckets, storing all the buckets explicitly would re-
quire too much storage overhead. We use interval trees [10] to quickly recover
the passwords in a bucket without explicitly storing each bucket. Each pass-
word w in the breach database is represented as an interval specified by SBpsp(w).
We stored each node of the tree as a separate cell in DynamoDB. We retrieved
the intervals (passwords) intersecting a particular value (bucket identifier) by

querying the nodes stored in DynamoDB. FSB also needs an estimate of the
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password distribution to get the interval range for a tree. We use p, as described
in Section 3.4. The description of p, takes 8.9 MB of space that needs to be in-
cluded as part of the client side code. This is only a one-time bandwidth cost
during client installation. The client would then need to store the description to

use.

The depth of the interval tree is log N, where N is the number of inter-
vals (passwords) in the tree. Since each node in the tree is stored as a sep-
arate key-value pair in the database, one client query requires log N queries
to DynamoDB. To reduce this cost, we split the interval tree into r trees
over different ranges of intervals, such that the i-th tree is over the interval
(i —1)-||B|/r], i-[|B|/r] —1]. The passwords whose bucket intervals span
across multiple ranges are present in all corresponding trees. We used r = 128,
as it ensures each tree has around 4 million passwords, and the total storage

overhead is less than 1% more than if we stored one large tree.

Each interval tree of 4 million passwords was generated in parallel and took
3 hours in our server. Each interval tree takes 400 MB of storage in DynamoDB,
and in total 51 GB of space. FSB is the slowest among all the protocols, mainly
due to multiple DynamoDB calls, which cumulatively take 273 ms (half of the
total time, including network latency). This can be sped up by using a better
implementation of interval trees on top of DynamoDB, such as storing a whole
subtree in a DynamoDB cell instead of storing each tree node separately. We can
also split the range of the range tree into more granular intervals to reduce each
tree size. Nevertheless, as the round trip time for FSB is small (527 ms), we leave
such optimization for future work. The maximum amount of memory used by

the server is less than 91 MB during an API call.
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Client Server Total | Bucket

Protocol Crypto Servercall Comp | DBcall Crypto | time size
HIBP 1 217 2 40 - 220 413
FSB 1 524 2 273 - 527 | 6,602
GPC 47 433 9 72 6| 489 | 16,121
IDB 72 435 10 74 6| 517 | 16,122

Figure 3.10: Time taken in milliseconds to make a C3 API call. The client and
server columns contain the time taken to perform client side and server side
operations respectively.

On the client side, the computational overhead is minimal. The client per-

forms one SHA256 hash computation. The network bandwidth consumed for

sending the bucket of hash values from the server takes on average 558 KB.

IDB and GPC. Implementations of IDB and GPC are very similar. We used the
same platforms — AWS Lambda and DynamoDB — to implement these two
schemes. All the hash computations used here are Argon2id with default pa-
rameters, since GPC in [111] uses Argon2. During precomputation, the server
computes the Argon2 hash of each username-password pair and raises it to the
power of the server’s key . These values can be further (fast) hashed to reduce
their representation size, which saves disk space and bandwidth. However,
hashing would make it difficult to rotate server key. We therefore store the ex-
ponentiated Argon2 hash values in the database, and hash them further during
the online phase of the protocol. The hash values are indexed and bucketized
based on either H® (u||w) (for GPC) or HY (u) (for IDB). We used [ = 16 for both
GPC and IDB, as proposed in [111].

We used the secp256k1 elliptic curve. The server (for both IDB and GPC)
only performs one elliptic curve exponentiation, which on average takes 6 ms.
The remaining time incurred is from network latency and calling Amazon Dy-

namoDB.

101



On the client side, one Argon2 hash has to be computed for GPC and two
for IDB. Computing the Argon2 hash of the username-password pairs takes
on an average 20 ms on the desktop machine. We also tried the same Argon?2
hash computation on a personal laptop (Macbook Pro), and it took 8 ms. In
total, hashing and exponentiation takes 47 ms for GPC, and 72 ms (an additional
25 ms) for IDB. The cost of checking the bucket is also higher (compared to HIBP

and FSB) due to larger bucket sizes.

IDB takes only 28 ms more time on average than GPC (due to one extra Ar-
gon2 hashing), while also leaking no additional information about the user’s
password. It is the most secure among all the protocols we discussed (should
username-password pairs be available in the leak dataset), and runs in a reason-

able time.

3.8 Deployment discussion

Here we discuss different ways C3 services can be used and associated threats
that need to be considered. A C3 service can be queried while creating a pass-
word — during registration or password change — to ensure that the new pass-
word is not present in a leak. In this setting C3 is queried from a web server,
and the client IP is potentially not revealed to the server. This, we believe, is a

safer setting to use than the one we will discuss below.

In another scenario, a user can directly query a C3 service. A user can look
for leaked passwords themselves by visiting a web site or using a browser plu-

gin, such as 1Password [7] or Password Checkup [111]. This is the most preva-
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lent use case of C3. For example, the client can regularly check with a C3 service

to proactively safeguard user accounts from potential credential stuffing attacks.

However, there are several security concerns with this setting. Primarily, the
client’s IP is revealed to the C3 server in this setting, making it easier for the at-
tacker to deanonymize the user. Moreover, multiple queries from the same user
can lead to a more devastating attack. Below we give two new threat models
that need to be considered for secure deployment of C3 services (where bucket

identifiers depend on the password).

Regular password checks. A user or web service might want to regularly check
their passwords with C3 services. Therefore, a compromised C3 server may
learn multiple queries from the same user. For FSB the bucket identifier is cho-
sen randomly, so knowing multiple bucket identifiers for the same password
will help an attacker narrow down the password search space by taking an in-

tersection of the buckets, which will significantly improve attack success.

We can mitigate this problem for FSB by derandomizing the client side
bucket selection using a client side state (e.g., browser cookie) so the client al-
ways selects the same bucket for the same password. We let ¢ be a random
number chosen by the client and stored in the browser. To check a password w
with the C3 server, the client always picks the ;" bucket from the range 3(w),
where j < f(wl||c) mod |5(w)].

This derandomization ensures queries from the same device are determinis-
tic (after the c is chosen and stored). However, if the attacker can link queries

of the same user from two different devices, the mitigation is ineffective. If the
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cookie is stolen from the client device, then the security of FSB is effectively

reduced to that of HPB with similar bucket sizes.

Similarly, if an attacker can track the interaction history between a user and a
C3 service, it can obtain better insight about the user’s passwords. For example,
if a user who regularly checks with a C3 service stops checking a particular
bucket identifier, that could mean the associated password is possibly in the
most up-to-date leaked dataset, and the attacker can use that information to

guess the user’s password(s).

Checking similar passwords. Another important issue is querying the C3 ser-
vice with multiple correlated passwords. Some web services, like 1Password,
use HIBP to check multiple passwords for a user. As shown by prior work, pass-
words chosen by the same user are often correlated [50,104,127]. An attacker
who can see bucket identifiers of multiple correlated passwords can mount a
stronger attack. Such an attack would require estimating the joint distribution

over passwords. We present an initial analysis of this scenario in Appendix B.4.

3.9 Related Work

Private set intersection. The protocol task facing C3 services is private set
membership, a special case of private set intersection (PSI) [64,96]. The latter
allows two parties to find the intersection between their private sets without
revealing any additional information. Even state-of-the-art PSI protocols do not
scale to the sizes needed for our application. For example, Kiss et al. [79] pro-

posed an efficient PSI protocol for unequal set sizes based on oblivious pseudo-
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random functions (OPRF). It performs well for sets with millions of elements,
but the bandwidth usage scales proportionally to the size of the leak dataset
and so performance is prohibitive in our setting. Other efficient solutions to

PSI [47,81,109,110] have similarly prohibitive bandwidth usage.

Private information retrieval (PIR) [48] is another cryptographic primitive
used to retrieve information from a server. Assuming the server’s dataset is
public, the client can use PIR to privately retrieve the entry corresponding to
their password from the server. But in our setting we also want to protect the
privacy of the dataset leak. Even if we relaxed that security requirement, the
most advanced PIR schemes [32,102] require exchanging large amounts of in-
formation over the network, so they are not useful for checking leaked pass-
words. PIR with two non-colluding servers can provide better security [57]
than the bucketization-based C3 schemes, with communication complexity sub-
polynomial in the size of the leaked dataset. It requires building a C3 service
with two servers guaranteed to not collude, which may be practical if we as-
sume that the breached credentials are public information. However, with a
dataset size of at least 1 billion credentials, the cost of one query is likely still

too large to be practical.

Compromised credential checking. To the best of our knowledge, HIBP was
the first publicly available C3 service. Junade Ali designed the current HIBP
protocol which uses bucketization via prefix hashing to limit leakage. Google’s
Password Checkup extends this idea to use PSI, which minimizes the informa-
tion about the leak revealed to clients. They also moved to checking username,

password pairs.
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Google’s Password Checkup (GPC) was described in a paper by Thomas et
al. [121], which became available to us after we began work on this paper. They
introduced the design and implementation of GPC and report on measurements
of its initial deployment. They recognized that their first generation protocol
leaks some bits of information about passwords, but did not analyze the po-
tential impact on password guessability. They also propose (what we call) the
ID-based protocol as a way to avoid this leakage. Our paper provides further

motivation for their planned transition to it.

Thomas et al. point out that password-only C3 services are likely to have
high false positive rates. Our new protocol FSB, being in the password-only
setting, inherits this limitation. That said, should one want to do password-
only C3 (e.g., because storing username, password pairs is considered too high a
liability given their utility for credential tweaking attacks [104]), FSB represents

the best known approach.

Other C3 services include, for example, Vericlouds [17] and GhostPro-
ject [15]. They allow users to register with an email address, and regularly keep
the user aware of any leaked (sensitive) information associated with that email.
Such services send information to the email address, and the user implicitly
authenticates (proves ownership of the email) by having access to the email ad-
dress. These services are not anonymous and must be used by the primary user.

Moreover, these services cannot be used for password-only C3.

Distribution-sensitive cryptography. Our FSB protocol uses an estimate of the
distribution of human chosen passwords, making it an example of distribution-
sensitive cryptography, in which constructions use contextual information

about distributions in order to improve security. Previous distribution-sensitive
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approaches include Woodage et al. [134], who introduced a new type of secure
sketch [56] for password typos, and Lacharite et al.’s [84] frequency-smoothing
encryption. While similar in that they use distributional knowledge, their con-

structions do not apply in our setting.

3.10 Conclusion

We explore different settings and threat models associated with checking com-
promised credentials (C3). The main concern is the secrecy of the user pass-
words that are being checked. We show, via simulations, that the existing indus-
try deployed C3 services (such as HIBP and GPC) do not provide a satisfying
level of security. An attacker who obtains the query to such a C3 service and the
username of the querying user can more easily guess the user’s password. We
give more secure C3 protocols for checking leaked passwords and username-
password pairs. We implemented and deployed different C3 protocols on AWS
Lambda and evaluated their computational and bandwidth overhead. We finish
with several nuanced threat models and deployment discussions that should be

considered when deploying C3 services.
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CHAPTER 4
MIGHT I GET PWNED: A SECOND GENERATION PASSWORD BREACH
ALERTING SERVICE

4.1 Introduction

Users often pick the same or similar passwords across multiple web services [50,
106, 136]. Attackers therefore compromise user accounts using passwords
leaked from other websites. This is known as a credential stuffing attack [61].
In response, practitioners have set up third-party services such as Have I Been
Pwned (HIBP) [88,122], Google Password Checkup (GPC) [111,121], and Mi-
crosoft Password Monitor [77] that provide APIs to check if a user’s password
has been exposed in known breaches. Such breach-alerting services, also called
compromised credential checking (C3) services [88], help prevent credential

stuffing attacks by alerting users to change their passwords.

Existing C3 services, however, can leave users vulnerable to credential
tweaking attacks [50,104, 127] in which attackers guess variants (tweaks) of a
user’s leaked password(s). Pal et al. [104] estimate that such a credential tweak-
ing attacker can compromise 16% of user accounts that appear in a breach in

less than a thousand guesses, despite the use of a C3 service.

We therefore initiate exploration of C3 services that help warn users about
passwords similar to the ones that have appeared in a breach. We design “Might
I Get Pwned” (MIGP, the name is a tribute to the first-ever C3 service, HIBP). In
MIGP, a server holds a breach dataset S containing a set of username, password

pairs (u;, ;). A client can query MIGP with a username, password pair (u, w),
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and learns if there exists (u,w) € S such that w = @ or w is similar to . To re-
alize such a service, we must (1) determine an effective way of measuring pass-
word similarity, that (2) works well with a privacy-preserving cryptographic

protocol, and that (3) resists malicious clients that try to extract entries from S.

Ideally, we want our similarity measure to help warn users if their password
w is vulnerable to online credential tweaking attacks. These attacks [50,104,127]
take as input a breached password @ and generate an ordered list of guesses.
Therefore, a good starting point for defining similarity is to call w similar to w
should w appear early in the guess list generated by a state-of-the-art creden-
tial tweaking attack. Such a generative approach also works well with simple
extensions to existing cryptographic private membership test (PMT)-based pro-
tocol [88,121]. A PMT allows a client to learn if (u, @) € S without revealing it to
the server. To extend, we can have the server insert n variants of each breached
password into S and we can allow clients to generate m variants and repeat
the PMT for each of them. The PMT can be designed to reveal, upon a match,

whether a password matches the original password or a variant.

To concretize this approach requires understanding how to efficiently gener-
ate effective variants. Existing credential tweaking attack algorithms are com-
putationally expensive to run [104,127], and it is unclear, apriori, what are good
values for m and n. We use empiricism to explore different techniques for enu-
merating variants and show via simulations how these techniques help protect
against credential tweaking attacks. We start with the deep learning [104] and
mangling rules techniques [50] pioneered in prior works on credential tweak-
ing. We also suggest a new, simple-to-implement generative approach that uses

an empirically-derived weighted edit distance to rank mangling rules. We show
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via simulation that our new approach with m = 10 and n = 10 reduces creden-
tial tweaking attack success rate by 94% compared to using only exact-checking,
where the attacker uses a thousand guesses and adapts to the breach alerting

service being used.

Another challenge for MIGP services is breach extraction attacks. C3 services
could contain breach data that is not publicly available. Most C3 services pro-
vide public APIs, which malicious clients can abuse to learn a user’s breached
passwords by querying the service with a sequence of likely passwords. MIGP
services may make such extraction attacks faster, because, intuitively, finding

one of many variants of the target password would also reduce the search space.

We formalize this new breach extraction attack setting and show that opti-
mal strategies for an attacker are NP-hard to compute. Nevertheless, attackers
can use heuristic approximations. We evaluate such heuristics empirically for
various values of n and m. Our simulation shows that an attacker can compro-
mise 2.8x more user accounts in 1,000 guesses for server-only variant genera-
tion (n = 100) than the best attack against a traditional exact-checking service.
Allowing a hybrid of client-side (m > 0) and server-side variant generation

leads to even more effective attacks.

We therefore propose a blocklisting strategy to reduce breach extraction suc-
cess rates: remove (blocklist) most popular passwords and their variants. Users
should be warned to avoid such easy-to-guess passwords whether or not they
appear in a breach. Blocklisting the most common 10* passwords can reduce the
success rate of the best-known breach extraction attack against a MIGP service

to below the success rate possible against currently deployed C3 services.
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We implement a prototype of MIGP with 1.14 billion breached username,
password pairs, and show that online computation work for the server is small,
client-side latency is comparable to existing C3 services (500 ms), and certain pa-
rameter regimes allow bandwidth required to be less than 1.43 MB. We further
empirically explore different trade-offs in performance and security for client-
side, server-side variant and hybrid generations for MIGP to help practition-
ers decide which approach to use. All this helped educate our deployment
of MIGP in collaboration with Cloudflare, a major CDN and security service
provider [24]. It is now in production use in their web application firewall prod-

uct to notify login servers about potential attacks.

Contributions. The main contributions of this paper are:

e We initiate exploration of similarity-aware C3 services and present the de-
sign of MIGP, which allows checking if a password is vulnerable to credential

tweaking attack without revealing it to the MIGP server.

e We empirically evaluate the effectiveness of different similarity measures to

mitigate credential tweaking attacks.

e We analytically and empirically analyze the threat of breach extraction at-
tacks, in which malicious clients attempt to extract credentials from a C3 ser-
vice. We discuss multiple approaches to mitigate this threat, including a new

popular-password blocklisting mechanism.

e We report on an initial prototype of MIGP and show its practicality by de-

ploying at Cloudflare.



4.2 Background and Prior Work

Credential stuffing attacks and defenses. Billions of passwords are available
online as a result of compromises [61,122]. As users often choose the same or
similar password for different web services [50, 106, 127], attackers use these
leaked data for credential stuffing attacks. As a prevention measure, C3 ser-
vices have been adopted in client browsers [111], in password managers [7],
and by login server backends to proactively check user credentials. Exist-
ing C3 services include Have I Been Pwned (HIBP) [122], Google Password
Checkup [111], Enzoic [19], and the recently introduced Microsoft Password
Monitor [77]. HIBP [122] has publicly documented APIs to check if a username
or password is in a breach. Several password managers such as 1Password and
LastPass and browsers such as Firefox are using HIBP to warn users about their
leaked passwords. This may result in false positives since common passwords

will always be flagged.!

Google Password Checkup (GPC) [121], released as a Chrome-extension in
2019 [111] and later integrated into Chrome, checks if a username, password
pair is present in the leak, leading to fewer false positives compared to HIBP.
The Chrome password manager uses GPC to check all of a user’s website cre-
dentials to determine if they are in a known breach, but does not flag passwords
that are similar to ones in breaches. Li et al. [88] formalized the security require-
ments of C3 systems in an honest-but-curious server setting and proposed a

protocol that we use to build MIGP in this paper.

'We found flagging based on only passwords will raise 29% false alarms, and based on only
usernames will raise 36% false alarms to users whose passwords might not be vulnerable to a
credential tweaking attack.
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The state-of-the-art C3 protocol proposed in [88,121] now deployed by GPC
handles a large scale of breach datasets using bucketization. To check a username,
password pair (u, w), the client sends a bucket identifier j which is the first 16
bits of the cryptographic hash of u (smaller hash prefix helps preserve the pri-
vacy of the username). In parallel, the client and server perform a private mem-
bership test (PMT) protocol to securely determine if (u, w) is in the bucket con-
taining the set of all (u;, w;) with the same username hash prefix. The PMT pro-
tocol is built using the efficient oblivious PRF (OPRF) protocol, 2HashDH [74],
though a recently proposed partially oblivious PRF 3HashSDHI may be used
to slightly improve security [123]. A more recent service, Microsoft Password
Monitor [77], uses homomorphic encryption (HE) to compute the PMT, but re-

veals the username completely to the server.

To prevent users from reusing their password across web services, Wang and
Reiter [128,129] proposed protocols to check if a user is using the same password
in multiple participating web services. The efficacy of this protocol relies on
the coordination of the web services, making it harder to deploy. Moreover, as
we show in Section 4.6, the PMT protocols used in their work would not scale
to billions of username, password pairs without sacrificing the privacy of the
username. Wang and Reiter also mention that their protocol can be extended
to check for similar passwords across multiple web services [129], but did not

provide details on how to do so.

Credential tweaking attacks and defenses. Currently deployed C3 services
cannot warn users about a password unless the exact password is present in
the breach. For example, a minor variation, such as adding “7” to the end of

the compromised password “yhTgi456”, won’t be detected by the C3 service.
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Users often pick similar passwords while resetting their passwords on a web
service [136] or when picking passwords for different web services [50]. These
passwords are vulnerable to credential tweaking attacks [50,104,127], where the

attacker tries different variations of the leaked password.

Wang et al. [127] and Das et al. [50] used human-curated rules to gener-
ate guesses for a credential tweaking attack. Subsequently, Pal et al. [104] took
a data-driven, machine-learning approach to build similarity models for pass-
words from the same user. They trained a sequence-to-sequence [119] style neu-
ral network model (pass2path) that outputs similar passwords given an input
password. This is now the best-known attack, with simulation showing that a
pass2path-based attack can compromise 16% of accounts of users that appeared
in a breach using at most 1,000 guesses, despite the use of a C3 service as a
credential stuffing countermeasure. Pal et al. also showed in a case study that
over a thousand accounts at Cornell University were at the time vulnerable to

credential tweaking attacks, showcasing their practical risk.

Pal et al. proposed a potential defense: a personalized password strength
meter (PPSM) which considers the strength of a selected password based on
its similarity to the user’s other passwords. But they do not offer a way to
utilize PPSMs in the context of a privacy-preserving C3 service, and left building

similarity-checking C3 services as an open question.

4.3 Overview of MIGP

In this paper, we build a similarity-aware C3 service, called Might I Get Pwned

(MIGP). MIGP generalizes existing C3 services to add new features that can



warn users about passwords that may be vulnerable to credential tweaking at-

tacks.

Service architecture and functionality. The MIGP server will have
a breach dataset S, containing a set of N username, password pairs
{(uy,wy),..., (un,wy)} where each u; € U is a username and each w; € W is
a password. The sets I/ and W consist of all possible user-chosen usernames
and passwords. A MIGP client can query the MIGP server with a username,
password pair (u,w) to learn if there exists a (u, %) € S such that w = @ or w
is similar to w. The MIGP server, therefore, returns “match” if w = w, returns

“similar” if w is similar to w, and returns “none” otherwise.

A MIGP client can be, for example, a user’s browser, their password man-
ager, an authentication service, or, as in our Cloudflare deployment, a web ap-
plication firewall that wants to use breach alerting to help secure user accounts.
We will use as a running example the user’s browser as client, and discuss other

deployment settings in Section 4.7.

Like existing C3 services, MIGP should scale to millions of requests a day
with billions of username, password pairs in its database. We propose various
techniques to make MIGP fast and practical, like offline processing the breach
data to speed up online queries and rate-limiting clients using verifiable delay

functions rather than slow hashing (Appendix C.6).

Threat model. In our threat model, we consider two distinct threats: (1) an
honest-but-curious server trying to learn about a user’s queried password, and
(2) amalicious client querying the MIGP server to retrieve other users’ breached

passwords.

115



We assume the MIGP server is honest-but-curious: it doesn’t deviate from
the protocol but observes the protocol in an attempt to glean information from
the user queries. Technically, we note that our MIGP protocol is in fact one-
sided simulatable [68], a model which allows the server to behave maliciously.
But for practical purposes, a malicious server can misguide a user by returning
a wrong bucket of passwords and falsely reporting the user’s vulnerable pass-
word as safe (i.e., an input-switching attack). Regular audits and other monitor-
ing techniques may be useful mitigations. We are not aware of any other active

attacks and will focus on the honest-but-curious server setting hereafter.

Ideally, we would like the MIGP server (or any C3 server) to learn noth-
ing about the queried usernames or passwords. However, building a practical
solution that achieves this requirement is hard given the huge scale of S with
billions of credentials. The state-of-the-art protocols in existing C3 services re-
veal some bits of information about the username to allow partitioning S into
smaller buckets on which a private membership test (PMT) protocol can be effi-
ciently executed. Looking ahead, MIGP will extend this approach to perform a

private similarity test (PST) over the bucket.

Clients of MIGP can be malicious. In particular, they might mount a guess-
ing attack in an attempt to extract username, password pairs from S. We call
this a breach extraction attack. These are a concern when the breach database S
contains data from leaks that are not yet publicly available. In turn, learning a
user’s (leaked) password can help the attacker compromise that user’s accounts
on other web services through credential stuffing and tweaking attacks. Prior
work did not empirically analyze this threat for exact-check C3 services, but

they did include anti-abuse countermeasures such as requiring computation-
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ally intensive slow hashing to complete a query [121]. This threat is particularly

concerning for MIGP as clever attacks may exploit similarity.

Unsatisfactory approaches. The core of MIGP is a password similarity metric.
While there are a number of ways to compute password similarity, few can pre-
serve the privacy of the queried password. For example, Pal et al. [104] design
password embedding models that map passwords to a vector space; distance
in the space captures similarity. Using password embeddings directly (e.g., the
client sending a password embedding to the server) is unsafe as it might reveal

the underlying passwords.

One can instead build a MIGP service by combining a password embedding
with a secure two-party computation (2PC) protocol that privately computes
the dot product and threshold comparison. However, even state-of-the-art 2PC
protocols for computing dot products [80] are not yet efficient enough to be
used in our setting (which will require computing thousands of such dot prod-
ucts per query). We estimate, based on a prototype implementation using a
2PC library named Crypten [80], that a single client query would take 16 sec-
onds (without network latency) to complete private dot product and compar-
ison (Appendix C.1). Other approaches that rely on existing secure two-party
computation protocols, such as computing a weighted edit distance between

passwords, will similarly fall short of our performance requirements.

Generative models for password similarity. We instead use a generative
approach to measure similarity, which will enable more efficient privacy-
preserving protocols. We consider generative approaches that either start with a

breached password or with a client’s password. For the former, let 7,,: W — W"
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be a function that generates n passwords that are likely to be chosen by a user,
given one of their other breached passwords. Thus, a client password w and
breached password @ are similar if w € 7,(w). Here, we assumed w ¢ 7,(w)
for all w € W. For the second approach, an inverse generative model, say 7,,,
generates m variants given a client’s password; we declare a password similar
to a variant if W € 7,,(w). Because similarity is not necessarily symmetric, it
can be that 7,, # 7,,. Looking ahead, we can use the model 7,, to generate likely
variants at the server given a breach dataset, while we can use 7, to generate
variants at the client. We will also explore a hybrid approach that combines the
two, in which case we consider a client’s password w similar to a variant w, if
({w} U Tm(w)) N ({0} UT,(@)) # 0 and @ # w. A big question we will tackle is

how to best instantiate 7,, and 7,,.

4.3.1 MIGP protocol

MIGP builds off first-generation C3 designs, specifically, the identity-based
bucketization (IDB) protocols due to Li et al. [88] and Thomas et al. [121]. At
a high level, the IDB protocol splits the leaked credential database into several
buckets based on truncated hashes of usernames. The client reveals the bucket
identifier to the service, and then performs an OPRF-based private membership

test (PMT) protocol over that bucket to check for equality.

In Figure 4.1, we provide an overview on how to extend IDB to allow the
client to check for similar passwords. We augment the server’s breach data with
variants of each breached password using 7,,. The client queries the server using

the IDB protocol with the user password and checks if it succeeds. The client



Pre-processing at MIGP Server
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Figure 4.1: MIGP Protocol for checking if a queried password w is similar to
a password present in breach data. Cryptographic details of the protocol are
given in Figure 4.2.

can also generate variants, via 7,,. There are nuanced security and computation
trade-offs for this approach, which we will discuss at the end of this section. For
now, we assume the client and the server both generate m and n variants using
T and 7, functions. Setting m = 0 and n = 0, reduces MIGP functionality to

existing exact-checking C3 services, such as IDB. The cryptographic details of

MIGP protocol, which fits our security requirements, is given in Figure 4.2.

Pre-processing. The underlying IDB protocol uses a specialized oblivious PRF
construction. Briefly, the PRF takes as input a username u, a password w, and
a secret key « and is defined as F (u||w) = Ha(u||w, Hy(u]jw)”). This is the same
as the 2HashDH construction due to Jarecki et al. [74]. Here H; maps onto an
elliptic curve group G (with group operation written multiplicatively) where the

decisional Diffie-Hellman (DDH) problem is hard; and H, : {0,1}* x G — {0, 1}*
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maps a binary string and a group element to an (-bit string. At least one of the
two hash functions used should be computationally expensive (for the client) to
ensure rate limiting and abuse prevention on the client side. We explore trade-

offs on how to choose the hash functions in Section 4.7 and Appendix C.6.

The server chooses x and applies F), to all the username, password pairs
in the breach. These are stored separate “buckets”, identified by the [-bit pre-
fix of a cryptographic hash of the username, denoted H" (u). As we want the
client to find out if the queried password is similar to one stored by the server,
we use two PRF functions: The server stores F) (ulw) (shown in thick blue
border boxes in Figure 4.1) corresponding to the leaked credential (u,w), and
Fl(ul|w") = Fy(u||w") @1 for w' € 7,(w) corresponding to the password variants,
which is represented by the dashed blue boxes in Figure 4.1. The last bit of the
PRF of similar passwords is flipped to differentiate it from the original leaked

password.

Online computation. MIGP client, on input a user id v and password
w, calculates the ID of the bucket to query based on the username, j; =
H®(u). Then the user generates m variants of their password w based on 7,.
The client “blinds” the passwords and their variants, sending to the server
Hy (u|lw)™, Hy (ul|wy)™, ..., Hi(u||w!,)™ for random values ry, ..., r, € Z. Blind-
ing ensures that the MIGP server does not learn anything about the query (be-

yond j).

The server raises each of the blinded values to the secret key , and sends
these back to the client, along with the bucket z;. The client can deblind the
values to finish computing the PRF on all m+1 values. Then it checks if F},(u||w)

is present in the bucket, and if so, it learns that (u,w) is in the leaked data,
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Pre-processing at server:
Server’s secret key: x; S = {(u1,@1),. .., (un,y)}
for (u,w) € S do:
j <+ HO(w); 2 z; U{F,(ul|®)}
zj < z; U {F.(u||w) ®1|w' € (@)}
Online phase:
Client MIGP server
Input: (u,w) Input: k,z
j — HO(w)
ro <3 Z; Xo < Hj(ul|w)™
(wh,...,w,) + Tm(w)
fori € [1,m]do: _
ri s Z; x; < Hy(ullw!)" X forie[1,m]do:
) 1 y.z; i <X}
Z = Ha(ullw, y,") A
21 {50 D 1}
fori e [1,m] do:
h = Ha(ullwj, y;*)
5 5 U{hh® 1}
if Zp € z; return match
elseif Z; Nz; # (0 return similar
else return none

Figure 4.2: Protocol for checking if a password similar to the user’s password
(w) is present in the leaked data (S).

outputting match. If not, the client checks if any other computed PRF values
F..(ul|w}), or those values with last bit flipped F}(u||w]) & 1, or F,(ul|w) & 1 is
in the bucket. If any are found, then the client learns that (u,w) is similar to a
(u,w) found in the password breach, outputting similar. Otherwise, it outputs

none.

4.3.2 Server- vs. client-side variant generation

Based on the values of the parameters n and m, MIGP protocol can allow gen-
erating variants only on the client-side (n = 0), only on the server-side (m = 0),
or a mix of both. By allowing variants only on the server side, the existing IDB

protocol can be easily adopted, making it simpler to implement. However, the



server database expands by n times, requiring more disk space and more band-

width due to larger buckets.

In the case of client-side generation of variants, no change on the server is
required. The variants can be batched together in a single API query to the
server, saving network round trips and bandwidth. (Note, the client only needs
to download the matching bucket from the server once per username.) More-
over, in this approach, the client will have more control over the variations. It
can use inputs from the user, such as their other passwords, to generate person-
alized variants that are likely to be used as passwords by that particular user.
Such personalization was shown to be useful for correcting password typos [46]

and could be also useful for MIGP.

Although the client-side generation of password variants has some bene-
tits, it also suffers from some key limitations. First, existing C3 services have
rate-limiting measures, like slow hashing, to prevent malicious clients from ex-
tracting the breach data by repeatedly calling the APIs with different password
guesses [111]. This would make checking multiple variations of a password too
expensive to be practical. To make things faster, the server could allow batching
all queries into one request and reduce the client-side computation. But there
is a key security issue with this approach: as the OPRF protocol blinds queried
values, the server cannot differentiate if a query contains a set of variants of a
password or completely different passwords. This can be exploited by a ma-
licious client to obtain a factor of n improvement in breach extraction attack
efficacy (Section 4.5.1). Zero-knowledge proofs [65] could be used, in theory,

to prevent a malicious client from checking arbitrary passwords, but it remains
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an open question whether they can be made practical in this setting. We leave

tfinding an efficient solution to this problem for future work.

In the hybrid approach, the client generates m personalized variations, pos-
sibly based on their other passwords or personal information, and the server
also stores n variations of each breached password. Such a protocol with appro-
priate client and server-side generation functions can increase the protection
against credential tweaking attacks to the equivalent of generating n x m vari-
ants on the server or the client side (as we show in Section 4.4). The hybrid
approach can also reduce the storage cost on the MIGP server, reduce band-
width cost due to smaller buckets, and lower the advantage gained in breach

extraction attack by allowing a smaller number of guesses per malicious query.

In subsequent sections, we explore the performance, security, and efficacy
implications of different choices of m, n, along with how to build practical gen-

erative models 7,,,, 7,.

4.4 Efficacy of Different Similarity Measures

We explore different measures of password similarity using generative mod-
els that enumerate the most likely variants of a given password. Though the
client-side and server-side models can be different, we cannot learn two differ-
ent models due to the limitation of our dataset (as we explain below). Thus we
will focus on building a single generative model 7 that will be used both on the
client and server side; we will show even this simple approach already performs

well.



In particular, we compare different similarity measures 7 based on efficacy
at protecting from credential tweaking attacks, computational performance, and
security against breach extraction attacks. We focus on the first two in this sec-

tion, and discuss the third in Section 4.5.

4.4.1 Similarity measures

As we focus on generative similarity metrics, any credential tweaking attack
can be repurposed to be a similarity metric. We, therefore, start with the attack
algorithms proposed in Das et al. [50] and Pal et al. [104]. We denote these by
Das and P2P, respectively. We also created more efficient and effective variants
of these methods, named Das-R and wEdit, as we discussed below. Each method

takes as input a password w and outputs an ordered list of similar passwords.

We also compare the generative methods to the embedding-based similar-
ity measure, PPSM, proposed in [104]. Although existing PST protocols suit-
able for use with PPSM are not fast enough for use in practice (as discussed
in Section 4.2), we still discuss them here should PST protocols become more

suitable for deployment in the future.

Das. Das et al. [50] were the first to show that users select similar passwords
across multiple websites, and that it is easy to guess a user’s password given one
of their other passwords. They, given a password w, use a set of hand-crafted
tweaks to generate similar passwords. We refer to this approach of generating

similar passwords as Das.
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Das-R. We observed that ordering of the tweaks used in Das is not effective
for smaller n. So we reorder the set of tweaks based on the frequency with
which these tweaks are used by users in our dataset (Section 4.4.2). We show
the reordering significantly improves the efficacy of the rules when considering
smaller numbers of variants (< 10). We call this similarity measure Das-R. The
reordered rules are given in Appendix C.2. Not all tweaks apply to all pass-
words, in which case we continue applying further tweaks until we obtain n

variants.

P2P. While Das et al. used hand-crafted tweaks for generating variations, Pal
et al. [104] used a neural network model, called pass2path (P2P), to learn the
tweaks a user is likely to make to their passwords. This resulted in the most
damaging credential tweaking attack to date, outperforming prior works, such
as [50] and [127]. We refer to this approach as P2P. While P2P is quite effective
at capturing password similarity, it is slow and expensive (even with GPUs) to

compute.

WEdit. Finally, we explore automatically deriving a ranked list of tweaks that
can be applied to a password to obtain variants. Although tweaks have long
been used in password cracking systems (e.g., [28]), here the goal is different —
finding variants likely to be chosen by a user and that are vulnerable to creden-

tial tweaking attacks.

Following the definitions in [104], we define a unit transformation as a specific
edit to be applied to the input password w. A unit transformation is defined by a
tuple (e, ¢, ) where e specifies the edit type as one of insert, delete, or substitute; c
denotes the character to be inserted or substituted (¢ = L for deletion); and

[ is the location for the edit. The location is length-invariant, representing the



distance from the first character by positive numbers and from the last character
by negative numbers; we use the smaller of the two distances and break ties
using the distance from the start of a password. For example, (insert, 0", —1)
specifies adding the character ‘0" to the end of a password, and (substitute, ‘a’, 2)

specifies replacing the second character with a lowercase letter ‘a’.

Given a pair of passwords (w, w’), we can calculate the shortest sequence of
unit transformations to generate w’ from w. We refer to this as the transformation
path. The computation can be done using standard edit distance algorithms. We
use the keypress representation of the passwords w, w’ as defined in [45], which

includes special characters such as shift and caps lock.

Given a breach dataset containing multiple passwords associated with the
same user accounts, we compute transformation paths for every pair of pass-
words belonging to the same user. Then we create a ranked list of transfor-
mation paths based on how many pairs of passwords it explains. To generate
variants of a password w, apply the transformation paths one at a time, in de-
creasing frequency order, skipping if it is not applicable. We stop if we have
generated n variants. Note that WEdit contains a much more exhaustive list of
tweaks (transformation paths) compared to Das-R. However, wEdit is not sen-
sitive to the input unlike the handcrafted rules in Das-R, which include rules
like insert ‘3’ if the last character of the word is ‘2. (The rules for wEdit and
Das-R are given in Appendix C.2.) Nevertheless, we will see below that they

have similar efficacy in our context.
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# S S T S1 S

Users 908 760 230 380 380
Passwords 438 373 119 210 210
Unique user-pw pairs 1,147 918 229 459 459
Total user-pw pairs 1,317 1,069 248 535 535

Figure 4.3: Number of unique users, passwords, and username, password pairs

(in millions) in the entire dataset S, breach dataset S, and test dataset T. S; and
S, are two equal partition of S. Total number of username, password pairs with
duplicates shown in the last row.

4.4.2 Breach dataset

To drive empirical evaluation of the five similarity approaches, we use a dataset
containing a compilation of publicly available breaches on the Internet [42].
This dataset was also used in prior academic research work and industry re-
ports, e.g., [61,88,104], and has been confirmed to contain real user accounts.
The breach compilation dataset contains nearly 1.4 billion unique email, pass-
word pairs. We clean the dataset based on the procedure described in [104],
such as removing passwords containing non-ASCII characters or longer than
30 characters (which affects only 0.3% of users). We merged usernames based
on the mixed-method from [104] and removed users having more than 1,000
passwords. The resulting dataset S consists of 1.3 billion unique username-
password pairs from 908 million unique users (Figure 4.3). More details about

the dataset can be found in [104].

For our simulations, we partitioned S into two: a larger split (80%) simulates
the leaked dataset S, which we further divide into two equal sets S; and S, with
no common users between them; and the remaining dataset (20%) is used as the
testing dataset T. In Figure 4.3, we report some statistics on the dataset splits.
S and T consist of 760 and 230 million unique usernames, respectively. About

82 million usernames are present in the intersection of T and S, implying that
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these users in the test dataset have at least one password in the simulated breach
dataset. The number of users, passwords, and user-password pairs are similar

for S; and S, as expected.

For the attack simulations in Section 4.4.3, we conservatively assume the at-
tacker has access to more data than what is known to the MIGP service. That is,
we provide the attacker with the entire leaked dataset S but train the similarity
mechanism for MIGP only on S; (training is needed for Das-R, P2P, and wEdit).
The test dataset can, therefore, be considered a list of users’ current passwords
on some target websites for which the attacker wants to gain illicit account ac-
cess. The test dataset is neither accessible to the attacker nor to the similarity

mechanisms that we train.

4.4.3 Empirical efficacy evaluation

We examine the effectiveness of a similarity measure based on protection from
credential tweaking attacks and impact on usability due to false warnings,
which can cause user fatigue. To quantify this, we classify each pair of pass-
words belonging to the same user as vulnerable or safe based on whether or not

they are vulnerable to credential tweaking attacks.

We pick password pairs (wy, ws) belonging to the same user, such that w; is
selected from S; and w, from T. Hence, both the attacker and service know
the breached password w; corresponding to the target user and want to at-
tack/protect the user’s unknown (test) password w,. We flag a pair vulnerable
if wy can be guessed by pass2path [104] given w, in a thousand guesses. Other-

wise, we flag the pair as safe. From all vulnerable pairs, we randomly sampled



10, 000 pairs to measure the true positive rate (TPR) of a similarity measure 7 as
the fraction of vulnerable pairs that are flagged by it. Similarly, we randomly
sampled 10, 000 safe pairs and measured the false positive rate (FPR) of 7 as the
fraction of these pairs that are flagged by 7, which burdens users with spurious

warnings.

The efficacy of a generative similarity measure can be different based on
whether it is applied to the breached password (on the MIGP server, 7,,) or to the
queried password (on the client, 7,,,). For a pair of passwords w, v’ in the breach
data, if we knew w was used before v/, then we could train 7, to generate edits
that modify w to w’ while 7,, consider variants of v’ leading to w. However, our
training data does not contain such temporal ordering information. Therefore,
as mentioned above, we use 7, = 7,, i.e., the variants are generated in the same

way on the client and the server.

An orthogonal point is that for the hybrid case, in which both m > 0 and
n > 0, better utility may come from considering simultaneously which rules
should be used on the client and which ones should be used on the server. But
the space of all possible m x n combined client-server rule sets is large, and we
do not know how to search for optimal solutions efficiently. We used a greedy
approach to understand the efficacy, but leave to future work developing better

search techniques, and evaluating their potential for improving efficacy.

Result. Figure 4.4 shows the performance of the similarity measures. As ex-
pected, increasing the number n or m of similar passwords improves the cov-
erage against vulnerable pairs across all methods. However, that also increases

the false positive rate, flagging safe passwords.
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Similarity % True % False

Parameters measures positive positive
n=10 Das 33.2 0.6
or Das-R 52.6 0.0
m = 10 P2P 46.4 0.0
wEdit 49.6 0.0

. Das 46.9 2.2
n =10 Das-R 63.5 0.2
m — 100 P2P 69.0 0.1
wEdit 69.3 0.1

n—m=10 Das-R 89.9 2.9
- wEdit 75.2 22
n=m=10 Das-R 93.5 45
(Greedy) wEdit 84.4 3.0
8 =0.83 67.9 2.0
8 =0.75 PPSM 87.6 4.7
0=0.5 99.1 14.0

Figure 4.4: True positive (ones vulnerable to 1,000-guess pass2path attack) and
false positive (others) rates for different similarity measures, computed over

10,000 randomly sampled password pairs. The best performing measures are
boldfaced.

For MIGP where variants are only generated on the server (or on the client
side), Das-R gives the maximum 52.6% coverage for norm = 10 tweaks
among all the generative approaches. P2P and wEdit perform the best with
n or m = 100 with 69% coverage. PPSM gives high coverage against the attacks
but also has a higher false-positive rate compared to the generative approaches.
As the TPR of PPSM with reasonable FPR ~ 2% is lower than that of generative
approaches (such as WEdit, n or m = 100) and anyway does not lead to efficient
protocol, we do not consider it further. Between wEdit and P2P, wEdit is dras-
tically simpler to deploy and faster to run, requiring 4.5x less pre-computation

time (see Appendix C.1).

The hybrid approach, where n = 10 variants are generated by the server and
m = 10 are generated by the client both using Das-R rules, gives the best cov-
erage to credential tweaking attacks, flagging 90% of vulnerable passwords at

considerably low false flagging of safe passwords (2.9%). We also tried a greedy
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Figure 4.5: Percentage of vulnerable password pairs flagged by different similar-
ity measures for varying n. The slopes of the graphs for all similarity measures
decrease rapidly for n > 10.

approach where we iteratively pick the tweaks on the client and the server that
maximizes coverage of the tweaks until each side has m and n tweaks. This
approach performs better at identifying vulnerable passwords, flagging 94% of

them, but also has a high false positive rate (4.5%).

Efficacy with increasing variants. Figure 4.5 examines how the efficacy of the
four generative models varies by the increasing number of tweaks n in server
side variant checking. The results are the same for m in the client-side MIGP.
Das-R outperforms other techniques for n < 30. wEdit outperforms the other
measures after that for 30 < n < 100. It was surprising to us that the rule-based
approaches (Das-R, wEdit) end up matching or exceeding the performance of
the much more complex deep learning approach underlying P2P. This is be-
cause rule-based approaches can easily capture frequently seen variants, for low
values of n. The deep learning approach works better for large n by finding and
ordering less frequently seen similarity relationships. For example, for n = 103,

P2P outperforms wEdit by 4%.

Although increasing n increases attack coverage, the slope of the curves

decrease rapidly (Figure 4.5). Therefore, the benefit of considering a higher n
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value diminishes while increasing storage (only for server-side variant check-

ing), computation, and bandwidth cost, as we see in Section 4.6.

Therefore in the rest of the paper, we use Das-R for n or m = 10 or hybrid

n = m = 10 and wWEdit for n or m = 100.

4.4.4 Adaptive credential tweaking attackers

We now measure the reduction in a credential tweaking attacker’s success in
breaking into a user account, should a MIGP service be deployed with one of the
similarity measures discussed in Section 4.4.3. We compare against the baseline
where an exact-checking C3 service such as [88,121] is used. For the simulation,
we adapt the best-known credential tweaking attack — pass2path [104] — to be

aware of the MIGP service.

We conservatively assume that the attacker has access to the entire breach
dataset S, while the MIGP service has access to the subset S;. We sample 10,000
users from the test dataset T, who are also present in S; and have a password
marked safe (not flagged as match or similar) by the service under consideration;
this constitutes the target users for the attacker. With this user list, we can sim-
ulate the scenario where the service (the exact checking C3 service or the MIGP
service) warned the user about their unsafe passwords on a target website and
the user subsequently changed their password. Though not all users will abide
by warnings, this setup allows us to compare the maximum security benefits of

a service using similarity measures.



Breach alerting method g=10 ¢=100 ¢ = 1000

Exact checking [88,121] 10.1 13.4 16.3
MIGP [Das-R,n = 10 or m = 10] 2.8 5.0 7.9
MIGP [wEdit, n = 100 or m = 100] 1.9 3.0 5.2
MIGP [Das-R,n = 10 and m = 10] 0.6 1.0 1.4

Figure 4.6: Success rate of credential tweaking attacker in ¢ € {10, 100, 1000}
guesses, assuming that the attacker is aware of the breach alerting mechanism.

We consider an online attack setting, where too many incorrect password
submissions should trigger an account lockout, resulting in attack failure. Thus
the attacker has a query budget ¢ < 10°. We measure the fraction of user
passwords the attacker can guess in ¢ attempts, assuming one of their other
passwords is present in S. The attacker enumerates guesses by first generating
candidates using pass2path, and skipping any that would be flagged by the ser-
vice. The attacker can infer this themselves because we assume that the service’s

breach data and the similarity measure are known to the attacker.

As shown in Figure 4.6, when only credential stuffing countermeasures are
in place, such as using [88] or [121], the credential tweaking attacker can guess
passwords of 10.1% of accounts using 10 guesses, which matches the perfor-
mance reported in [104]. The hybrid MIGP reports the highest reduction in
attack efficacy, 94% for ¢ = 10. For the server or client-side MIGP service, the
efficiency decreases to 1.9% when n or m = 100 variations based on wEdit are
used; a reduction of 81%. The attack accuracy decreases by nearly 78% and 68%
for ¢ = 100 and ¢ = 1,000, respectively. Across the board, larger n or m gives
better protection against the credential tweaking attacker, reducing the attack’s

efficacy.
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4.5 Security Evaluation

A MIGP service allows clients to check whether a password similar to the
queried one is present in the breach. Current C3 services, such as GPC [121], do
not reveal any information about breach data unless a client queries the exact
username, password pair. A natural question is: Will moving towards similar-
aware C3 services degrade the confidentiality of the username, password pairs

in the leaked database?

We formalize the abstract setting of a malicious client that has access to a
similarity oracle, assuming it is cryptographically secure (we refer to this as the

ideal functionality following parlance from the 2PC literature).

4.5.1 Breach extraction attacks

A MIGP service could be abused by malicious clients that seek to learn about
user credentials. This is particularly concerning should a MIGP service have ac-
cess to relatively new breaches that are not widely available to attackers, mak-
ing the service a potential target for what we call a breach extraction attack. We
model such attacks via the security game given in Figure 4.7. In it, the adversary
is given access to an oracle that implements the ideal functionality of a MIGP
service. Note that the oracle is parameterized by a target password w* chosen
by the game, the query budget ¢, and a similarity measure 7. In each query, the
adversary can send up to m passwords, and each is checked against the target

w* and its variants 7(w*). Here we use 7 for the server-side variants, but allow



MIGP(w), ... ,wl,) MIGPGuess(A’, q):

m
g—q—1 w* —p W
if ¢ < 0 then return none o« AMIGP
for. 1 :/ 1 tomdo . if W = w* return true
if w; = w* then return (i, match) else return false

if w, € 7(w*) then return (7, similar)
return none

Figure 4.7: An abstract breach extraction attack security game for a MIGP ser-
vice parameterized by a number of MIGP protocol invocations ¢, a distribution
of passwords p, a similarity model 7, and a number of client-side variants al-
lowed m.

a malicious client to choose any m passwords for the client-side variants. The

goal of the attacker is to guess w* within the given query budget g.

Finding an optimal guessing strategy for breach extraction is NP-hard.
(See Appendix C.3 for details.) However, it is possible to create efficient greedy
approximate algorithms (Appendix C.4). We note that Chatterjee et al. [44] ex-
plored NP-hardness results and greedy heuristics for typo-tolerant password
authentication, where the server returns true or false should the submitted pass-
word be a typo of the registered password. But, in our setting, MIGP oracle
returns one of three possible answers. Therefore, their setting and results don’t

directly carry over to our setting.

In Appendix C.4.1, we present an efficient greedy algorithm for the m = 0
case, called GreedyMIGP. We now turn to measuring the efficacy of the greedy
algorithm to understand the real-world threat of a malicious client attempting
to extract data from the MIGP service. We assume the attacker has a guessing
budget of ¢ < 10°. This setup assumes that the MIGP server will deploy some

form of rate-limiting on queries from a client (as discussed in Section 4.7).

Experiment setup. For simulation, we assume the MIGP oracle is instantiated

with S; data (see Section 4.4.2), and the attacker has access to only S,. This sim-
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ulates the situation where the attacker does not know the leaked data present in
MIGP, and is trying to learn those breached passwords for a user. We sample
25,000 username, password pairs from S;. For each pair, the attacker is given
the username and required to find the target password. We compute the effi-
cacy of an attack as the fraction of username, password pairs that the attacker
can successfully guess. (As per our data division, none of the target usernames
are present in S,, and therefore the attacker cannot attempt a targeted creden-
tial tweaking-type attack.) We evaluate the security loss for 10 variants based
on Das-R rules, and 100 variants based on wWEdit rules. We first experiment with
only server-side variant generation (m = 0); later in the section, we report the
efficacy of breach extraction attacks when allowing client-side variant genera-

tion.

The S, dataset has 210 million passwords. If the attacker sets WV to all the
passwords in S,, it will make GreedyMIGP very slow to run (Figure C.4). We
instead heuristically picked the top one million passwords as WV for the attack.

These passwords are used by 24% of users in S,.

For comparison, we also simulate a C3 service that does not provide check-
ing for similar passwords, which we refer to as MIGP service with n = 0. For
this case, the attack is simpler: query the MIGP service with the top ¢ passwords,

and if any query returns match, output the queried password.

Results. The success probability of the attacker in guessing the target password
using ¢ € {10,100, 1000} queries is shown in Figure 4.8. We explain the /5 values
below; here we focus on the rows with 8 = 0. An attacker can learn 6.57% of
passwords in less than a thousand guesses against an exact-checking C3 service

(n = 0,8 = 0). The attacker’s success probability increases to 13.58% for n = 10
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B n q=10 q = 100 q = 1000
0 1.64 (£ 0.22) 3.36 (£ 0.35) 6.57 (£ 0.61)
0 10 214 (+£0.26) 5.22(+0.56) 13.58 (+0.61)
102 1.69 (£ 0.17) 3.54 (£ 0.30) 17.18 (+0.73)
0 0.03 (£ 0.00) 0.36 (+£0.08) 2.80 (£ 0.27)
10 10 1.19 (£ 0.15) 3.90 (£ 0.40) 12.12 (+ 0.45)
102 0.93 (+0.11) 243 (4+0.25) 15.67 (+0.61)
0 0.03 (£0.03) 0.37(+£0.08) 2.50 (£ 0.30)
102 10 093 (+0.13) 2.71(+0.27) 9.91 (+ 0.42)
102 0.79 (£ 0.13) 1.52(£0.26) 10.91 (£ 0.41)
0 < 0.01 (£0.00) 0.18(+0.06) 1.46(+0.14)
103 10 0.76 (= 0.11) 1.42(+0.10) 5.94 (+0.16)
102 0.72 (£ 0.09) 0.97 (£0.11)  9.21 (+ 0.24)
0 < 0.01 (£0.02) 0.03(£0.02) 0.27 (£ 0.03)
104 10 0.71 (£ 0.10) 1.02(+0.07) 3.34 (+0.23)
102 0.70 (£ 0.10) 092 (+0.11) 4.87 (+0.12)

Figure 4.8: Attack success rate given different query budgets (¢) for different
attack scenarios. Here n = 0 (first row in each block) emulates existing exact
checking C3 services. MIGP oracle uses Das-R and wEdit similarity rules for n =
10 and n = 100, respectively. The service blocks most frequent  passwords. All
success rates are in percent (%) of 25,000 target users sampled from S;. Standard
deviations (shown in parenthesis) are measured across the 5 random folds of
these pairs. Lower values imply better security.

and 17.18% for n = 100. In the latter case, moving to a MIGP service may lead

to a 2.8 x increase in an attacker’s ability to perform breach extraction attacks.

We observed a counter-intuitive pattern for ¢ = 10 and 100: the attack suc-
cess rate decreases with the increase of n from 10 to 100. This is because large n
produces larger balls, making it easier to get in the ball, but harder to identity
the correct password given a small query budget ¢ = 10. Therefore, for small ¢,
guessing the most weighted password ball may not be the optimal strategy. We
plot the attack success for different values ¢ for n = 10 and n = 100 in Figure 4.9.
For query budget ¢ < 230, increasing the number of password variants n from

10 to 100 actually decreases this attack’s success rate.

Blocklisting. The abuse prevention mechanisms (e.g., slow hashing and API

rate limits) used in current C3 systems can only slow down breach extraction

137



attacks, but do not prevent them. We, therefore, propose a simple yet effective
mechanism to reduce the attack success: blocklist the top /3 passwords so that an
attacker learns nothing from the MIGP service should a user’s password be one
of them. The MIGP service can do so by removing all the blocklisted passwords
and their variants from its breach database. (This will also reduce storage and
bandwidth overhead as we show in Section 4.6.) These popular passwords are
anyway unsafe to be used by any user irrespective of whether they are leaked or
not. Therefore, a client application can warn the user who is using a password

equal to or similar to one of the blocklisted passwords.

For our simulations, we assume the MIGP service blocks the 3 most frequent
passwords according to S; and their variants (according to the setup). If an
attacker queries the MIGP service with any of the blocklisted passwords the
service always responds as none. Of course, the attacker is aware of the set of

blocklisted passwords and their variants.

We experiment with different values of 5 as shown in Figure 4.8; 5 = 0 de-
notes no blocklisting. Blocklisting reduces the attacker’s success across all val-
ues of n. For ¢ < 3, the success probability of an attacker for n = 10 and n = 100
remains below that of existing C3 services (with n = 0 and 5 = 0), except for
B = ¢ = 10% in n = 100. We believe this is due to the higher ball size in case of
n = 100. In this case, we need to blocklist 5 = 10* passwords to reduce the at-
tack success rate below existing C3 services. We highlight those numbers in the
tigure. As the top /5 passwords are blocklisted, the attacker can’t learn if the user
has a breached password that is one of the top 3 passwords. The attacker’s best

bet is to guess passwords that are outside the top 3 passwords. The password
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Figure 4.9: Comparison of attack success of breach extraction attack for Das-R
(n = 10) and wWEdit (n = 100). for different values of ¢q. For query budgets
q < 230 (black dashed line), success rates are slightly lower for the higher value
of n.

distribution follows Zipt’s law [126], therefore leading to a significant decrease

in breach extraction accuracy.

We also compute the breach extraction success rate against users who do
not use weak passwords. The results are shown in Figure C.5 (Appendix C.5).
For these users, we found that the relative increase in attack success due to
MIGP service is higher, but the absolute success rates are small. For example, for
B = 10* and ¢ = 10?, the attack success is 0.27% when n = 0, 2.98% when n = 10,
and 2.56% when n = 100. Similar to Figure 4.8, the attack efficacy for n = 100
is worse than that of n = 10 in most cases. We suspect that this is because our

attack is not optimal, especially for a smaller number of guesses (¢ < 10°).

Security of client-side variant generation. A client can generate m variants of a
password w and check them all in parallel with the server. Due to the limitation
of our MIGP protocol there is no way for the server to verify if the client has
generated variants truthfully. Thus a malicious client can use this to expand its
query budget by a factor of m: The client simply submits the next m passwords

computed using GreedyMIGP, to obtain in total m - ¢ queries.



n m qg=10 q = 100 g = 1000

102 0 070 (£0.10) 1.10(£0.05) 4.87 (£ 0.12)
10 10 1.02(£0.07) 3.34(£0.23)  8.49 (+ 0.09)
0 10 1.45(£0.08) 3.06 (£ 0.22) 10.60 (& 0.68)

Figure 4.10: Comparing breach extraction attack success rate between generat-
ing m variants on the client-side and n variants on the server-side. Here we
assume 3 = 10*. The first row is the same as the last row in Figure 4.8.

We show the success rate of this breach extraction attack for different m and
n values with 8 = 10* in Figure 4.10. Allowing m = 10? variants on the client
side increases the attack success by more than twice for any ¢ < 10° compared
to allowing only the server side n = 10? variants. Using the hybrid approach
to variant generation with m = 10 and n = 10 reduces the attack success rate,
but still remains significantly higher than m = 0,n = 100 setting. Therefore,
we suggest that if the breach data is sensitive it is safer to disallow client-side

variant generation and apply strict rate limiting.

4.5.2 Security of the MIGP Protocol

Our MIGP protocol (given in Figure 4.2) requires minimal changes to previously
proposed [88] and currently deployed [121] protocols. This made deployment
simpler, and also the cryptographic security is derived directly from the un-
derlying protocol. Here we briefly summarize the security achieved by MIGP,
considering in turn curious servers and malicious client threat models. MIGP
communications must be protected with TLS, preventing any manipulations of

the buckets or client queries by a network adversary.

As in the prior protocols, the MIGP server learns only the client’s queried
bucket ID. This reveals some bits of information about the username, but noth-

ing about the queried password, assuming the password and username are in-



dependent. (Some users may choose passwords similar to their username, but
it’s unclear how a malicious server can usefully exploit this practice.) An ac-
tively malicious server can modify the result obtained by a client, e.g., by erro-
neously claiming passwords are not in the breach when, in fact, they are (or vice
versa). This attack is possible also for deployed exact equality checking proto-
cols [88,121]. In theory, one could try to use techniques to prevent this, e.g.,
by having the server publish a commitment to the dataset and then perform-
ing zero-knowledge proofs of (non-)membership [98]. We do not believe this is
necessary for breach alerting as such attacks would seem to have low value to

attackers.

An encrypted bucket reveals to a client the number of entries in the bucket,
and the updated entries and the time of updates to buckets will be revealed
over time. This could conceivably have security implications in some contexts.
As shown in Section 4.5.1, MIGP services are susceptible to breach extraction
attacks, and therefore must employ different forms of rate limiting. Note that
a malicious client can submit a query for a bucket for username u but submit
an OPRF request for username u' # w. This is true as well for existing C3 ser-
vices. Thus rate-limiting should not be based (only) on bucket identifier, and
instead on a client identifier (cookie or IP address) or a token mechanism such

as PrivacyPass [51].

4.6 Performance Analysis

We implement a prototype of MIGP and conduct experiments to estimate its

performance. We also compare it with existing C3 services, such as GPC [121]



or IDB [88] (equivalent to MIGP with n = 0 and m = 0). We experiment with no
blocklisting (8 = 0) and blocklisting the 3 = 10* most frequent passwords (and
their variants). We want to measure and compare: (1) storage overhead on the
server side, (2) latency of running the protocol, and (3) total bandwidth usage.
Here we use as breach dataset S the entire 1.14 billion username, password pairs

from the dataset described in Section 4.4.2.

Prototype implementation details. We implement the MIGP client and server
in Python 3.8, with petlib library for elliptic curve operations. We chose the el-
liptic curve group secp256k1 for G and set ¢/ = 128. For H;, we use petlib’s
hash-to-point function to map the username, password pair to G; internally it
uses rejection sampling [72] with SHA256. We also use SHA256 for H,. Should
either of H; or H, be a slow hash, there will be additional overhead in precom-
putation. We select the most frequent 5 passwords for blocklisting based on the
dataset S. The server is built using the Flask [22] library and the client uses the
requests [21] library to make queries. This prototype implementation is pub-

licly available.?

For all the pre-processing of the data, we used a desktop with an Intel Core i9
processor and 128 GB RAM. We did not use any GPU to optimize hash compu-
tation in our experiments. For latency and bandwidth comparisons, we run the
server (t2.medium) and client (t2.micro) on two different AWS EC2 instances
running the Ubuntu 20.04 LTS image and located in two different regions —
US-East and US-West.

Precomputation overhead. We precompute the buckets of PRF values for the

entire breach dataset. MIGDP, in comparison to exact-check C3 protocols, requires

https://github.com/islamazhar/migp_python
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processing an additional n variants for each leaked password and storing the
resulting PRF values. The precomputation on the server involves computing
F.(z) = Ha(x,Hy(x)"), where © = (u||w) for the breached password and F(x) &
1, where z = (u||w) for @ € 7,(w). We use H; to reduce the representation size

of the hash to 16 bytes, which saves disk space and bandwidth.

Generating n = 10 variants for a password using Das-R similarity rules takes
less than 0.02 ms, whereas generating n = 100 variants using WEdit similarity
rules takes 0.8 ms, on average. If we had used Argon2 as H,, it would take
95 ms on average for computing the hash of one username, password pair, an
estimated 361.5 CPU-years for pre-processing all username, password pairs and
their variants on our reference implementation. Should breach data not be par-
ticularly sensitive, a deployment can skip slow hashing or use time-lock puzzles

instead (see Appendix C.6).

The PRF values are then separated into buckets based on H?(u). Dupli-
cate values could arise when pairs (u,w;) and (u,w:) satisfy the condition
To(w1) N 7,(w2) # (), which can be common for users with credentials from
multiple sites in the known breach. Duplicates should be either omitted (as
we do in our prototype) or replaced with other variants. The former is better for
performance, but note that the length of buckets now depends on relationships
between different passwords — we are unsure whether this can be exploited by

an attacker given the large number of users in each bucket.

The total storage cost for 1.14 billion unique username, password pairs and
their variants would be 1.67 TB (considering every entry has n = 100 unique

variants). Blocklisting reduces storage (and bandwidth) requirements, and we
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w /o blocklisting w/ blocklisting
[ avg. std. avg. std.

16 1,751,666 36,832 1,431,876 30,107
20 109,479 9,192 89,492 7,513
24 6,842 2,297 5592 1,877

Figure 4.11: Average bucket size of MIGP with n = 100 variants for each pass-
word on the leak dataset, which contains 1.14 billion unique username, pass-
word pairs.

Client side latency (ms)

Server B/w Query Query  API Fina- Total® Total®

C3 service storage  (MB) Prep® Prep® call  lize

IDB-16' 15 GB 0.23 <1 96 321 <1 322 417
IDB-20% 15 GB 0.01 <1 96 125 <1 126 221
WR19-Bloom?* 1.0TB 17720 6,990 7,065 39,045 <1 46,035 46,110
WR20-Cuckoof 0.8 TB 0.81 59 155 38,560 <1l 38,619 38,715
MIGP-Server} 1.5TB 1.43 <1 95 498 3 501 596
MIGP-Client 15 GB 0.23 46 10,713 450 38 534 11,202
MIGP-Client 15 GB 0.02 48 10,007 390 38 476 10,435
MIG P-Hybridi 02TB 1.43 7 953 421 12 440 1,386

Tl=16 *1=20 © withoutrate-limiting @ with rate-limiting.

Figure 4.12: Average latency (in milliseconds) for checking one password via
different private membership or similarity test protocols used in different C3
services. with different parameters. IDB-16 and IDB-20 do not use any vari-
ants. MIGP-Server and MIGP-Client generate 10? variants on the server and the
client side, respectively. WR19-Bloom uses Bloom filter to reduce the b/w re-
quirement. For rate limiting we use Argon2 as H,, which takes around 95ms to
compute. All latency measurements are averaged over 25 complete API calls
with standard deviations < 10%.

found that blocklisting the 10* most popular passwords and their variants re-

duces the database size by 18% to 1.36 TB.

Bucket size selection. To make the private membership test protocols practical,
C3 services use bucketing to partition the leaked dataset based on the prefix of
the hash of the username. MIGP follows the same approach. However, as MIGP
contains n variants of each password, the buckets would be quite large for MIGP

for the same number of buckets. Large bucket size will increase communication
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costs in terms of bandwidth and latency as the client has to download a larger
amount of data. We can reduce the bucket size by increasing the number of
buckets — by increasing the length of the hash prefix . The average bucket
sizes for different hash prefix lengths for MIGP are shown in Figure 4.11. The
bucket size, as expected, decreases exponentially with the prefix length (I). The
average bucket size with blocking the most frequent 10* passwords for I = 16
(which is used by GPC [121]) is 1.43 million, or 22.85 MB. Increasing the length

of the bucket identifier [ to 20 reduces the bucket size to 1.37 MB.

Latency & bandwidth comparison. = We measure and compare the la-
tency and bandwidth requirements for running different compromised cre-
dential checking services: IDB-16 (also called GPC) [121], IDB-20 [88], WR19-
Bloom [128], WR20-Cuckoo [129], and our protocols MIGP-Server, MIGP-Client,
and MIGP-Hybrid. Although WR19-Bloom and WR20-Cuckoo were designed
to check user’s passwords in multiple web services, these protocols can be
used for checking a user’s leaked passwords. MIGP-Server, MIGP-Client, and
MIGP-Hybrid are the different versions of our protocol with variants generated
on the server side (n = 10?), client side (m = 10?), and both (n = 10, m = 10).
IDB-16 and IDB-20 are implemented following the same construction as MIGP,
but with different lengths of prefixes for bucketing and setting m = n = 0. For
WR19-Bloom and WR20-Cuckoo, we use the corresponding authors” implemen-

tation® in Go but customize it for the client-server setting.

We pick 25 random passwords from the test data set T and run each C3
service protocol separately for different n, m and prefix length [. We simulate

the server data with dummy buckets containing b entries, where value b is ran-

Shttps://github.com/k3coby/pmt-go
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domly sampled from the normal distribution with the mean and standard devi-
ation set to the values we computed in Figure 4.11, with 8 = 10*. The server and
the client are executed in two different EC2 virtual machines located in two dif-
ferent availability zones in two coasts of the United States. They are connected

via a 252 Mbits/sec network link.

We report the average latency with the breakdown for preparing the query,
calling the API and waiting for the response, and finalizing the result for each
protocol evaluation in Figure 4.12. The overall time to prepare for a query takes
less than 7ms, for GPC, IDB, MIGP-Server and MIGP-Hybrid. The total compu-
tational cost for the server is very small compared to the client, however, the
client spends time downloading the data from the server (leading to higher la-
tency in MIGP compared to GPC and IDB). After the query, the client finalizes
the result by computing H, of the username, password pair to compare with
the bucket entries. Using slow hash function for rate limiting would add about
95 ms to the query preparation to all protocols. MIGP-Client takes 100x more
time in query preparation due to generating the variants and checking them.
MIGP-Client can be particularly expensive with rate limiting using slow hashes,
such as Argon2. It can take more than 10 seconds for a complete run of the
protocol run. MIGP-Hybrid strikes a balance between server storage and query
preparation time. It reduces the storage cost and query time by a factor of 10

compared to MIGP-Server and MIGP-Client, respectively.

The slowest among all, is WR19-Bloom and WR20-Cuckoo protocols, taking
more than 38 sec for one complete protocol execution. The primary contribu-
tors to the latency are: (a) before a query, the client has to encrypt each entry

of the Bloom filter homomorphically (using Paillier encryption [103]), (b) the
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client has to send all the encrypted Bloom filter entries to the server, which is
quite large (216.8 MB), and (c) the server has to compute large group multipli-
cations over all entries in the Bloom filter. WR20-Cuckoo protocol uses Cuckoo
hashing [63] which improves overall latency and bandwidth, however, still falls

short of being practical due to high computational overhead on the server.

MIGP-Server (with n = 10% and | = 20), MIGP-Client (with m = 10? and | =
16) and MIGP-Hybrid (with n = 10, m = 10 and [ = 20) takes less than 534 ms to
compute a query if we don’t use rate limiting, which is comparable to currently-
in-use IDB-16 (with [ = 16) protocol. The overhead for MIGP-Server stems
from the high bandwidth usage due to large bucket sizes. The buckets can be
cached on the client-side or served directly from CDNs (such as Cloudflare) as
practiced by HIBP [33] to improve performance. Client-side caching of buckets
saves fetching the same bucket again for checking different passwords for the
same username. As most users have only a few email addresses, this can save

significant network bandwidth and time over multiple queries.

4.7 Deployment Discussion

We worked with Cloudflare, a major CDN and security company [27], to de-
ploy the MIGP protocol (1) as a public-facing API similar to HIBP, and (2) as a
new breach alerting feature within Cloudflare’s web application firewall (WAF)
product [24]. MIGP is deployed as an opt-in feature in WAF, which detects
login requests to Cloudflare customer websites, extracts username and pass-
word fields, and queries a MIGP service deployed on Cloudflare Workers [25].
The result of the MIGP query is added to an HTTP header that is forwarded to



the customer login service, informing them should the login request be utiliz-
ing a breached credential or ones similar to them. The libraries underlying the
MIGP implementation have been open-sourced and are publicly available [23].
In this section, we present some deployment considerations and the lessons we

learned.

Deployment details. During pre-processing, the breach database is trans-
formed into MIGP buckets. We post-process the OPRF outputs using HKDF [83]
to generate a 21-byte hash value; the last byte is XORed with a one-byte flag de-
noting whether a bucket entry is an exact match or a variant. Slow hashing
is supported by the implementation, but applying slow hashing at the scale is

expensive and our initial deployment omits it. We discuss this more below.

The buckets of credentials produced in the pre-processing step are stored
in Workers KV [26], a high-performance, distributed key-value store. Our de-
ployment uses 20-bit bucket prefixes with n = 8 variants per entry generated
using the Das-R rules and without blocklisting popular passwords (3 = 0). The
deployment caps each individual bucket size to 25 MB, which under this config-
uration should support breach data up to 64 billion entries. The MIGP service is
able to serve over 50% of client requests in under 135ms, and 95% of requests in
under 573ms. Most performance overhead is due to the cost of fetching buckets
form Workers KV store, as only frequently accessed buckets are cached at 250
datacenters that are running Workers. Other buckets must be fetched from a

centralized data store which adds latency.

Our current implementation does not support client-side variants. As shown

earlier (Figure 4.12), enabling client-side variant generation in the future may
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provide attractive performance benefits. This must be balanced against the risk

of breach extraction attacks (see Figure 4.10).

Breach extraction attacks. A key concern as we designed and discussed MIGP
deployment at scale was gauging the risk of breach extraction attacks. Any
client can attempt to mount such an attack against the public API. The WAF
deployment does not necessarily provide malicious web clients with a MIGP
oracle: the result of MIGP queries are only shared with the login service and not
the client. Login services should not reveal MIGP outputs to unauthenticated

clients.

For both deployments we have thus far only utilized datasets that are widely
available on underground forums, obviating the concern about breach extrac-
tion attacks in the short term. To use more sensitive breaches in the future,
further mitigations will need to be enabled, including popular password block-
listing and rate limiting. Our deployment already benefits from rate-limiting
of individual IP addresses and other anti-automation techniques [36]. We note
that a common rate-limiting approach is to require clients to obtain an API key
through some slow (or paid) registration process, but this approach won’t work

for WAF deployment scenario.

Another rate-limiting approach would be to use slow hashing. Recall that
the MIGP protocol uses two hash functions within the OPRF, computing out-
puts as Ho(ul|w, Hy (u||w)”). Either of the hashes can be made computationally
expensive to both slow down online breach extraction attacks and to make of-
fline hash cracking attacks harder should the MIGP server be compromised.
There are nuanced security-computation trade-offs between the choice of which

to make slow. If H, is expensive the client cannot do offline processing of the
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slow hash without communicating with the server, which is not true if only H,
is slow. However, one benefit of having just H; slow is that the server can store
the intermediate H;(u|lw)"® values for faster key updates (see below). Google

Password Checkup (GPC) [121] uses a slow hash for H; and a fast hash for H,.

An alternative approach to slow hashing is to use asymmetric hashing, also
called proof-of-work [58,73] or time-locked puzzles [114]. We discuss these ap-

proaches in more detail in Appendix C.6.

Bucket updates. MIGP services (like other C3 services) may periodically up-
date their leaked data, such as when new breaches are exposed online. This will
require adding new credentials to the buckets. Updating the buckets with OPRF
outputs under the same key could, in principle, allow an attacker to identify the
newly added username, password pairs. Although it is unclear how this leak-
age can be exploited, it would be better to avoid the leakage entirely. One way
is to rotate the OPRF key « every time there is a new leak. However, recomput-
ing the OPRF output from the stored breach data will be computationally very
expensive given the slow hash function. Assuming H, is slow, an optimiza-
tion would be to have the server record the output of the group multiplication
H; (u||w)" in some offline, safe storage. Then the new OPRF outputs can be com-
puted for the new key «’ by raising H; (u||w)” values to «'/x, and applying the
fast hash Hy(-) to them. This approach is similar to the key rotation mechanism

used by Pythia [62].

MIGP warnings: effectiveness and usability. To estimate the effectiveness of
the MIGP service, we instrumented the WAF deployment to measure the ratio

of the number of login attempts that MIGP flagged as similar to the number that
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MIGP flagged as an exact match. The average ratio over the period of a week
is 0.2 (with 0.01 standard error of the mean), implying that MIGP flags 20%
more login attempts compared to an exact-checking C3 system. This represents
a significant improvement by MIGP over exact-checking in terms of alerting on
credentials that are vulnerable to attacks such as those based on pass2path [104].
Our instrumentation does not record how many WAF-monitored attempts cor-
respond to vulnerable accounts (e.g., attempts will include some number of in-
correct submissions and attacks), but customer services can distinguish between

these cases and act appropriately.

Prior work has shown that users may not be responsive to breach alerts [111].
We expect that MIGP deployments will face a similar challenge. Server-side
breach alerting, like our WAF deployment, allow high-security services to force
users to change MIGP-flagged passwords. One open question prompted by our
work is how best to communicate to users that their password is similar to a

breached password and how to guide them towards safer choices.

4.8 Conclusion

In this work, we tackled the problem of building MIGP, an updated version
of C3 systems that can securely warn users from selecting passwords similar
to (and same as) a breached password which can be vulnerable to credential
tweaking attacks. Via comparing different similarity metrics we show that com-
puting variants of the password using weighted edit distance rules provide the
best combination of performance and efficacy. Underlying MIGP is a secure

private similarity test (PST) protocol. Despite secure PST, MIGP protocols can



still be vulnerable to breach extraction attacks, where an attacker can extract
leaked (but not yet public) credentials from a MIGP service. We show that the at-
tacker’s success probability can be reduced significantly using blocklisting pop-
ular passwords. We implement and show that MIGP achieves computational
overhead comparable to C3 services. Finally, we deploy MIGP with Cloudflare

and provide nuanced discussions about deploying MIGP in practice.

152



CHAPTER 5
CONCLUSION

We design a privacy-preserving compromised credential checking system,
MIGP, that allows users to query whether their login credentials are at risk due

to exposure in a breach. Our main conclusions are as follows.

Choosing similar passwords across websites can be very damaging - We
train models, using state-of-the-art deep learning models, that learn how users
choose similar password variants. Using these trained models, we build the
most effective credential tweaking attack that can effectively compromise ac-
counts with similar passwords in case of a breach in any one of them. In my
ongoing work, we investigate how to effectively communicate the threat to the
users and guide them towards safer choices. Also, password managers should

actively check for similar passwords using PPSM and report them.

More work is needed to put proper after-breach remediation steps in place
- We discussed various deployment scenarios for MIGP and collaborated with
Cloudflare to integrate MIGP with their web application firewall application.
It is deployed in practice and warns the login servers about at-risk credentials.
However, more actions are needed to be taken in this direction to diminish the
after-effects of a breach, such as — 1) Implementation of a fast, safe, and effec-
tive breach reporting system, 2) Building a prompt alerting mechanism to notify
users about vulnerable accounts on the compromised and other websites, and
3) Installing a proper messaging system to educate users about selecting a new,
random and uncorrelated password at those websites. We need more collabora-
tion between the academic community and industry to address these issues at

the core and build a safer online experience after a breach.
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APPENDIX A
APPENDIX - CREDENTIAL TWEAKING ATTACK AND DEFENSE

A.0.1 Pass2pass model.

A straw proposal for learning password similarity would be to apply the
seq2seq approach directly on passwords as character sequences. We call this
model password-to-password or pass2pass. The encode function maps the input
password @ onto a real valued vector vy € R% The decoder function takes a
vector v € R? and a character ¢ € X U {’st’,”)’} and outputs a probability dis-
tribution over the characters in ¥ U {*st’, ")’} and another vector v’ € R?, which
is fed to next iteration of the decoder. Every password is enclosed by a spe-
cial beginning-of-sequence symbol ¢, = ‘st’ and an end-of-sequence symbol ).
Therefore, in this model, we can rewrite Equation (2.1) as follows, where v; is

the output of the decoder on input v;_; and ¢;_;.

l
P(’U}’UN}):P(Cl,...,CZ‘Uo):HP(CZ“Uz;l,Cz;l)
=1

We used the default neural network architecture and the hyperparameters
used in seq2seq [120] to train several variants of pass2pass. We evaluated them
by testing the trained models’ efficacies as targeted guessing attacks on a valida-
tion set, distinct from the eventual test set we report on later. (See Section 2.5 for
details on how to use a seq2seq based model for generating targeted guesses.)
Initially we tried training pass2pass with password pairs from Df,. This per-
formed horribly. We then restricted attention to password pairs from the same
user that were within edit distance two of each other. This sped up training and
seemed to help the model focus on easier-to-learn similarities. We also tried

edit distance three, but this performed worse than edit distance two. In the end,
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Figure A.1: (a) Diagram of encoder-decoder architecture for pass2path learn-
ing. (b) A 2-layer LSTM cells with residual connection. Here ¢;’s are characters

of input passwords, 7;’s are transitions, and z!’s are internal states in neural net-
works.

the efficacy of our best-performing pass2pass model remained underwhelming.
The targeted attack based on the best performing pass2pass model was only
able to guess 11% of users’ passwords in 1,000 guesses, while the state-of-the-

art approach from [127] can guess 13.1%. (See Figure 2.3)

Our intuition for this poor performance is that passwords have a much larger
support (we have around 200 million distinct passwords) and does not follow
any predefined rules (save those set by password policies) unlike natural lan-
guages. Restrictions by edit distance helped learning, but miss many important
similarities that ideally an attack would capture. We needed a different ap-

proach.

A.0.2 Model architecture of pass2path

Pass2path uses two recurrent neural networks (RNN) — one for the encoder
function and another for the decoder — which are trained together, similar to

what is used for seq2seq learning [120]. RNNs were designed to recognize pat-
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terns in sequential data, with varied sequence-lengths. However, vanilla RNN
suffer from vanishing and exploding gradient problems. A variant of RNN,
called long short-term memory (LSTM) [71] was shown to be effective in avoid-
ing vanishing and exploding gradient problems [118]. We used LSTM blocks
wrapped in residual cells. Residual cells, first used for image recognition using
deep neural networks [69], “short-circuit” the input of a layer to the output, by-
passing internal calculations. (See Figure A.1(b).) We found pass2path achieves
slightly better accuracy at noticeably lower training time with residual cells than
without it. We implemented pass2path in TensorFlow [30] using the building
blocks provided by the library. Each LSTM cell in the model has three hidden

layers, each layer with 128 hidden units.

A diagram of the neural network architecture of pass2path is given
in Figure A.1(a). The encoder processes each character in a password sequen-
tially. A character is first represented as a one-hot-vector of dimension |X|, and
embedded onto a real-valued vector of dimension 200. The embedded charac-
ter is then fed to a LSTM cell with three hidden layers, each of dimension 128.A
LSTM outputs two vectors, the first one is ignored for the encoder, and the sec-
ond one, called state, is fed to the next LSTM cell, along with the next character
of the password. Let the output of the encoder be v, obtained after applying it

on the whole input character sequence.

The vector vy is then fed to the decoder with a special beginning-of-sequence
symbol 7y. The architecture of the decoder is identical to the encoder except that
we consider the first output of the LSTM layer, which is projected to a vector
of size |7|. The softmax function is applied to the projected vector to convert

it into a probability distribution over 7. The most probable transformation is
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considered the output and used as the input to the next iteration of the decoder,
except if the output is a special “end-of-sequence” symbol. The sequence of
transformation outputs can then be applied to the input password to obtain

another password.

A.0.3 Training pass2path model

We trained pass2path using an encoder-decoder based neural network architec-
ture. Here we give the details of our training approach, in particular, how we

initialize the network prior to training, and the hyperparameters.

We used the initialization techniques proposed in [120]: the embedding
layers are initialized with uniform random values from [—\/5, \/3}, while the
rest of the network is initialized with uniform values in [—r,r] where r =

6/(n; + njy1) and n; is the dimension of the input to the j layer of the neu-
ral network. For training, we used stochastic gradient descent (SGD) using the
Adam’s optimizer [78] to minimize the cross-entropy loss [112] between the pre-
dicted output of the network and the expected output. Minimizing the cross-
entropy loss (with softmax) ensures learning the conditional probability of the

output given the input.

During initial phase of training, we used teacher-forcing to train the model
faster, by feeding the expected output transformation as the decoder’s input, in-
stead of the predicted character. As the training progresses we start feeding the
actual predicted character as input. We did not use attention mechanism [125] (a
common technique used in seq2seq language translation models) as passwords

are relatively small in size compared to sentences in language translation.
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We need to pick a number of hyper parameters for our architecture. Exclud-
ing those below, we used those suggested in [120]. Below are the ones we set to

different values for better performance.

(1) Learning rate. The learning rate parameter controls the effect of loss gradient
on the change of the model parameters. We used a fixed learning rate of
0.0003 for the training.

(2) Dropout rate. The dropout rate controls removal of neural network units
(neurons) randomly during training, which is useful to prevent overfit-

ting [116]. We tried dropout rates of 0.3 and 0.4, the latter worked best.

(3) Layers. Each RNN cell consists of multiple hidden layers. For language
model a typical number of hidden layers is n € {3,4} [118]. We found
pass2path with three hidden layers performs better than four layers. Each
layer consists of 128 hidden units.

(4) Epochs. The number of epochs determines how many times the training
procedure iterates over the training dataset. We found three epochs were

enough. More significantly increased training time with negligible benefit.

A.0.4 Generating paths from password pairs

For every training input pair, we first compute the minimum edit distance using
a dynamic programming (DP) approach, and then backtrack the DP solution to

find the actual transitions that result in the calculated edit distance. We calculate
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GenPath(w, w) :

n+ |wl+1; m<« |[0]+1; D+ o™ ™; T« r=m
DO,O ~—0
fori =1tondo D;g < i; Tjp <+ (i —1,0)
fOI‘j =1tomdo D()?j — 7; T(),j — (O,j— 1)
fori=1tondo
forj=1tom
e < [0,0,0]
g Di1;+1; eg < D 1+1
if w;_q 75 lbj_l,' then eg < Di—l,j—l +1
else €9 < Di—l,j—l
k < argmine
Di,j — €L
ifk=0thenT;; «+ (1 —1,))
elseif k = 1then T} ; < (i,j — 1)
elseT;j < (i—1,7—1)
/* Back-trace the dynamic programming solution computed above. */
in;jm;eeTig P+ 0
while ¢ # ()
parse c as (ic, jc)
ifi.=4—1and j. = j — 1 then
if w;, # w;, then P.append(sub,w;,,i.)
i+ i—1;j+ j—1then
ifi. =i and j. = j — 1 then
P.append(ins, w;,, i.)

J—g—1
else
P.append(del, L, i.)
1+ 1—1
¢ Tij.
return P

/*0:del,1:ins,

2 :sub*/

/*del */
/*ins */

/* sub, copy */

Figure A.2: GenPath algorithm for generating sequence of transformations from

a pair of passwords.

the distance matrix according to the formula.

D(i,7) = min

(

D(i-1j-1)  ifw(i)=d(j) [copy]
D(i—1,j—1)+1 ifw(i)# w(j) [substitute]
DG—1,5)+1 [insert]
| DGij—1)+1 [delete]

The pseudocode for generating a path is given in Figure A.2.
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A.0.5 Re-training Wang et al. for our dataset

The Wang et al. algorithm specified in [127] needs to be trained before it is
used to generate guesses. The code shared by Wang et al. requires four files for

training. All the required files were generated using our training data Df;.

1. PCFG data. This data file contains three main sections: passwords con-
taining only digits (D), only letters (L), and only special characters(S5).
Each section had 9 subsections of passwords of length one to nine, namely
Dy,...,Dg, Ly,...,Ly,and Sy, ..., Sy. Each subsection contains the 10 most
popular passwords matching that structure and their probability of oc-
currence in that subsection. For example, P (1234") = C(“1234")/C(D.),
where C(w) denotes the probability of w, or the sum of probabilities of

passwords in a section, if w denotes a section.

2. Markov data. This file contains 4-grams that contain only letters, only
digits, and only special characters, along with their probability. For exam-

ple, P (‘4

123) = C("1234)/C("123')

3. Reverse Markov data. This file is similar to the previous Markov data

tile, except the n-grams are computed after reversing the passwords.

4. Top password data. The file contains the top 10* passwords and their

probabilities from the training data.
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A.0.6 Targeted password cracking experiment in practice

Cornell University has a large-scale authentication system including nearly half
a million accounts. Students, faculty, and staff all receive accounts, and alumni
accounts are by policy not deactivated after students graduate. The accounts
are enrolled in a single-sign on (SSO) system giving access to email and other

systems, and as such are frequently targeted by attackers.

ITSO currently has a number of mechanisms in place to make remote guess-
ing attacks difficult. (1) They require passwords to consist of at least eight char-
acters, and they must cover at least three character classes, namely upper-case
letters, lower-case letters, digits, or symbols. Additionally the system will re-
ject passwords containing one or more words from a non-public dictionary of
user identifiers, first and last names, common passwords, and common English
words. For example, “passw0ORd” is an allowed password, but “password” is
not. (2) ITSO subscribes to a service that notifies them of accounts that have
appeared in breaches. Such accounts have their password hashes scrambled
should the account’s email-password pair match that in the breach, and users
have to choose a new password to regain access. (3) Users are not allowed to
select their old password when choosing a new one. Thus, ITSO uses many
state-of-the-art protections, including credential stuffing countermeasures. Of
course, the authentication system has been evolving over time, and some ac-
counts had passwords chosen under different policies than the current ones.

We will account for this nuance below.

Experimental setup. We worked with ITSO to safely perform an experimental

measurement of the vulnerability of Cornell accounts to our targeted attacks.
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In particular, ITSO uses Kerberos to store authentication information including
password hashes. We arranged to receive access, intermediated and overseen
by ITSO staff, to a test server that had a mirror of the Kerberos authentication
database. This ensured we did not interfere with production authentication
pipelines. The research team never received direct access to this server, rather all
access was run by ITSO staff who ensured no sensitive information is revealed.
We treated password hashes as particularly sensitive, and discuss how we safely

handled them more below.

We started by determining which accounts appear in the breach dataset de-
scribed in Section 2.3. There were 19, 868 accounts found in the breach dataset,
meaning that we had at least one previously breached password for them. The
age of the last password reset of these potentially vulnerable accounts skew
older, with the median age being 5 years, but there were accounts with pass-

words reset as late as in 2018.

ITSO maintains a log of password change events since 2009 that records
whether the password was changed by the user or the password was scrambled.
Among the 19,868 accounts that appeared in the breach, 3,106 accounts have
their last password changed prior to 2009, and therefore, we are unsure what
fraction of those accounts contain scrambled passwords. From the remaining
16, 762 accounts with recent password changes (after Jan 1, 2009), 986 accounts
definitely have their password scrambled at the time of the study; 15,776 ac-

counts had passwords chosen by the user. We will call these as active accounts.

To perform the experiment more quickly than simulating online attacks di-
rectly, we carefully exported salted hashes of 19, 868 account passwords to a se-

cured research machine and run an offline hash cracking with a limited number
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guesses per account. The machine is only accessible from the Cornell network,
has no listening services beyond SSH, requires second factor authentication to
login, and disk volumes are encrypted. We also further protect the Kerberos
hashes, by rehashing them using 4, 096 iterations of SHA-256 with a 128-bit per
hash salt and a strong pepper (acting as a secret key). Once disclosure proceed-
ings are finished with ITSO, we will delete both the pepper (cryptographically

erasing these hashes) and the entire hash database.

Cracking was performed on this secure server, a Core i5 machine with 8GB
of RAM. It required five days to test all the 45 million passwords against all

15,776 accounts.

We compared three guessing procedures — the baseline untargeted empiri-
cal attack, the Wang et al., and a variant of pass2path. The untargeted-empirical
attack first guesses the leaked passwords, followed by the most probable pass-
words in our breach dataset that meet Cornell password policy. For each of the
15, 776 accounts, we generated 1,000 guesses based on Wang et al. attack algo-
rithm. Unfortunately, we could not tailor them to the Cornell password policy

because the obvious approach — rejection sampling — was prohibitively slow.

We used transfer learning to build a variant of the pass2path model cus-
tomized to the Cornell character class requirements for passwords. We did not
attempt to customize based on the common-words dictionary check, as this dic-
tionary is not publicly available. We took the trained pass2path model and re-
trained three more epochs on a smaller dataset containing only those leaked
password pairs where the target password satistied Cornell’s character class re-

quirements.
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For the Wang et al. and customized pass2path, we generated 1, 000 guesses,
with the leaked password being the first guess, for each of the target accounts.
For accounts that had more than one leaked password, we used the round-robin
method as described in Section 2.5. On average, over the targeted accounts, 77%
of the Wang et al. and 15% of the customized pass2path guesses do not meet

Cornell’s requirements.

Results. Overall, the three targeted attacks cumulatively could compromise
1,688 accounts (including 314 inactive accounts that had their most recent pass-
word change prior to 2009). We notified ITSO about these vulnerable accounts.
ITSO is working on a multi-pronged approach to safeguard Cornell users, in-
cluding scrambling the user passwords, using extra monitoring for those ac-

counts, and using vec-ppsm on the server side.

Among the 1,688 vulnerable accounts, 93% of accounts belong to alumni
of Cornell. Our experiment also found many accounts, belonging to current
faculty, staff, and students, are vulnerable to targeted attacks and helped ITSO

safeguard those accounts better.

In Figure A.3 we show the distribution of accounts found in the leak and
the accounts that are vulnerable to pass2path. We also note the odds of being
vulnerable to targeted online guessing attacks for each type of accounts as the
fraction of accounts in each category that are vulnerable to any of the simulated
targeted online attacks. As we can see alumni accounts have higher odds of

being vulnerable to such attacks compared to other accounts.

Interestingly, we also found that the passwords that are reset most recently

are less likely to be vulnerable. In Figure A.4, we show the relation between
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Figure A.3: Distribution of different types of accounts that are found in the
breach dataset, and their odds to be vulnerable to one of the three online guess-
ing attacks. The “other” category includes current students, contract workers,
and affiliates.

307 |0 Leaked accounts

—=— Vulnerability odds
25 |- i

20 |- B

15 |-

10 [m— ~ |  la B
R -

5L i

2009-10  2011-12  2013-14  2015-16 ~ 2017-18

% accounts

Figure A.4: Distribution of active accounts in the leaked dataset based on the
year of their last password reset. The red line shows their odds of being vulner-
able to targeted online guessing attacks.

the last password reset year and the odds of those account being vulnerable to
online guessing attacks. We only consider the 15, 776 active accounts (that have
changed their password at least once since 2009) for this graph. The passwords

created before 2013 is 60% more likely to be vulnerable to targeted online guess-

ing attacks compared to the passwords created after 2013.
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APPENDIX B
APPENDIX - COMPROMISED CREDENTIAL CHECKING SERVICES

B.1 Correlation between username and passwords

In Section 3.3, we choose to model the username and password choices of pre-

viously uncompromised users independently.

To check whether this assumption would be valid or not, we randomly sam-
pled 10° username-password pairs from the dataset used in Section 3.6 and cal-
culated the Levenshtein edit distance between each username and password in

a pair. We have recorded the result of this experiment in Figure B.1.

We found that the mean edit distance between a username and password
was 9.4, while the mean password length was 8.4 characters and the mean user-
name length was 10.0 characters. This supports that while there are some pairs
where the password is almost identical to the username, a large majority are not

related to the username at all.

The statistics on edit distance between username and password in our

dataset are similar to the statistics in the dataset used by Wang et al. [127], who

Distance | %

0] 12
<1|17
<223
<3 |31
<4 |46

Figure B.1: Statistics on samples with low edit distance between username and
password, as a percentage of a random sample of 10° username-password pairs.
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determined that approximately 1-2% of the English-website users used their

email prefix as their password.

This data does not prove that usernames and passwords are independent.
However, even if an attacker gains additional advantage in the few cases where
a user chooses their username as their password, the overwhelming majority of

users have passwords that are not closely related to their usernames.

B.2 Bandwidth of FSB

To calculate the maximum bandwidth used by FSB, we use the balls-and-bins
formula as described in Section 3.3. Each password w is stored in |3(w)| buckets,

so the total number of balls, or passwords being stored, can be calculated as

m=>[B(w)

weS
B |B| - ps(w)
weWGNS wES\Wq
Bl - ps(w
< Wpnsl- B+ Y (‘ ‘( ()) )
q

weS\Wy

1
<|B|-q+|B|- + N
Ps (wq)

The first equality is obtained by replacing the definition of 5(w); the second

inequality holds because [x] < x + 1; the third inequality holds because S C V.

The number of bins n = |B|, and m > nlogn, if ¢ > logn. Therefore, the

maximum bucket size for FSB would with high probability be no more than

N
2 (Q+p<wq +|B\>
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B.3 Proof of Theorem 3

First we calculate the general form of the BucketGuessg,, advantage. Then, we
show that for ¢ < g, Adv;i:(q) = Adv®(g), and we bound the difference in the

advantages for the games when ¢ > ¢.

_ LP(W=w AU =u)
AdVb gs — max :
(@)= Z ..... % 2 Brss (w?)]

The second step follows from the independence of usernames and passwords

in the uncompromised setting.

We will use Wj; to refer to the top ¢ passwords according to password distri-

bution p, = p,, and w; to refer to the gth most popular password according to

~

Ds-
For w € W; we can calculate the fraction in the summation exactly as
ﬁs(w) — ﬁs(w)
|Brs (w)] 1Bl -

For any other w € W \ W;, we can bound the fraction using the bound on

the number of buckets a password is placed in.

Ps(wg)

Ps(wg)

< |Brsp(w)| <
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We can use the lower bound on |fGpsp(w)| to find that

ﬁs(w) ps(wQ)
Brss(@)] = 18]

Using the upper bound on |fgsp(w)],

ps(w) _ ps(w) Ps(w) - ps(wg) —_ Ps(wg)
| Brsp(w)] |l;| 1(7;()) w1 (Bl ps(w) +ps(wg) Bl + L @:Uq))
Since the values of ; 5110; S&“@Z” are always larger for w € W;, the values of wy, ..., w,

chosen for each bucket will be the top ¢ passwords overall, along with the top

q — q of the remaining passwords in the bucket, ordered by ; 5Fsé())‘ :

To find an upper bound on Adv5%(g),

For ¢ < q, we have Advg P(q) < Mg

169



To find a lower bound on Adv;ﬁ:(q), let w},,, ..., w} be the ¢ — ¢ passwords

in a(b) \ W; with the highest probability of occurring, according to p,(-).

-----

ps ﬁs(wq)
> Z Z Z |B| + Pe Wgq )

wEWq i=q+1 ps(w})
B s S q
>, +z(‘ s W s
1=q+1 ps<wq> |B|+A—q)
IB| - ps(wy)
> N\ + Z w Ag + Z
i=q+1 |B|+§(wq) i= Q+11+psp(w)‘8|
Ag T Ag
> N\ s(wi)/2 > N; 2=——
+Z§1p 5/ + (A = Ag)/ 5

Note, for every password to be assigned to a bucket, |B| > p,(w;)/ps(w), or

forallw e W, ps quBI < 1.

B.4 Attacks on Correlated Password Queries

An adversary might gain additional advantage in guessing passwords underly-
ing C3 queries when queries are correlated. For example, when creating a new
password, a client might have to generate multiple passwords until the cho-
sen password is not known to be in a leak. These human-generated passwords
are often related to each other. Users also pick similar passwords across differ-
ent websites [50,104,106,127]. If such passwords are checked with a C3 server

(maybe by a password manager [7]), and the attacker could identify multiple
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Corr-Guessj (q)

(u,wl) U X VY

w2 %T(u,wl) w \ Sw

by < B(w1); ba + B(wz)
{lz}l, c. ,ﬁ}q} < .A(U, bl, bg)
return wy € {11, ..., W,

Figure B.2: A game to describe a simple correlated password query scenario.
Here, we let S,, be the set of all passwords in the breach dataset.

queries from the same user (for example, by joining based on the IP address of
the client), then the attacker could mount an attack on the correlated queries.
As we described, the adversary does need a lot of information to mount such an
attack, but the idea is worth exploring, since attacks on correlated queries have

not been analyzed before.

Let {7y } be a family of distributions, such that for a givenu € U, w € W,
T(u,w) Models a probability distribution across all passwords related to w for the
user u. For example, the probability of user u choosing a password w, given

that they already have password w; is 7(y,u,)(w2).

The attack game for correlated password queries is given in Figure B.2. A
client first picks a password w; for some web service and learns that the pass-
word is present in a leaked data. The client then picks another password ws,,
potentially correlated to w;, that is not known to be in a leak and is accepted
by the web service. (For simplicity, we only consider two attempts to create a
password. However, our analysis can easily be extended to more than two at-
tempts.) In the game, the password w, is chosen from the set of passwords not
stored by the server, according to the distribution of passwords from the trans-
formation of w;. The adversary, given the buckets b; and b,, tries to guess the

tinal password, ws.
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To find the most likely password given the buckets accessed (the maximum

a posteriori estimation), an adversary would want to calculate the following:

argmax Prlws = w | by, b

P (wy = w)
P(bl,bg)

= argmax Pr[b, by | wy = w]-

= argmax Pr[by, by | we =w|- P (wy =w) .
Note that we view by, b, as fixed values for the two buckets, not random
variables, but we use the notation above to save space. We can separate

Pr by, by | wy = w] into two parts.

Pr[by,by | we =w]=Prby | wy=w|-Prlby | we = w,bs

=Prlby | we=w]-Prlby | wy =w]

The second step follows from the independence of b; and b, given ws,.

We know that the first term Pr [0y | wy = w] will be 0 if the password w does
not appear in bucket b,. For FSB, the buckets that do contain w have an equally
probable chance of being the chosen bucket. For HPB, only one bucket will have

a nonzero probability for each password.

Pr [bg | W9 = ’LU] = 1BC)] .

0 otherwise
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Then, to find Pr[b; | ws = w], we need to sum over all passwords that are in

b;. We define S, as the set of all possible passwords.

Pr(b, | wy=w|= Z Prby Awy | we = w]

w1 ESw

= Z Pr [w1 | Wo = w]
wlea(bl)

_ Z PI‘[UJQZU} | wl]P(wl)
S P (’LUQ = 'IU)

Combining the arg max expression with the equations above, the adversary

therefore needs to calculate the following to find the most likely w:

1
arg max :
wea(bs) |ﬁ(w)| - P (U)2 = U))

1
= arg max :
wea(bs) |6(U))| P <w2 - U))

Z Prwy =w | wy]- P (w)

w1 Ea(bl)

Z T(uun) (W) - P (wr). (B.1)

wi€a(br)

In practice, it would be infeasible to compute the above values exactly. For
one, the set of all possible passwords is very large, so it would be difficult to iter-
ate over all of the passwords that could be in a bucket. We also don’t know what
the real distribution 7, ., is for any given u and w. For our simulations, we es-
timate the set of all possible passwords in a bucket using the list constructed by
the attack from Section 3.6. To estimate Pr [wy = w | w,], we use the password
similarity measure described in [104], transforming passwords into vectors and

calculating the dot product of the vectors.

To simulate the correlated-query setting, we used the same dataset as

in Section 3.6. We first trim the test dataset 7 down to users with passwords

173



Protocol | Attack lg=1 10 10% 10°

Baseline | single-query | 02 1.0 29 64
_ single-query | 18.8 319 459 584

HPB (I = 16) ‘ correlated 88 103 130 260
_ .9 | single-query 02 10 29 84

FSB (@ =10% | correlated 27 33 46 115

Figure B.3: Comparison of attack success rate given ¢ queries on our correlated
password test set. All success rates are in percent (%) of the total number of
samples (5,000) guessed correctly.

both present in the leaked dataset and absent from the leak dataset. We then
sample 5,000 of these users and randomly choose the first password from those
present in the leaked dataset and the second password from the ones not in the
leaked dataset. This sampling most closely simulates the situation where users
query a C3 server until they find a password that is not present in the leaked
data. We assume, as before, the adversary knows the username of the querying

user.

For the experiment, we give the attacker access to the leak dataset and the
buckets associated with the passwords w; and w,. Its goal is to guess the second
password, ws. The attacker first narrows down the list constructed in the attack
from Section 3.6 to only passwords in bucket b,. As a reminder, we refer to this
list of passwords as &(b2). The attacker then computes the similarity between
every pair of passwords in &(by) x &(by), which is &(b;) times the complexity of
running a single-query attack (as described in Section 3.6). It reorders the list of

passwords &(bs) using an estimate of the value in Equation (B.1).

The results of this simulation are in Figure B.3. We also measured the success
rate of the baseline and regular single-query attacks on recovering the same

passwords ws.
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It turns out that this correlated attack performs significantly worse than the
single-query attack when the passwords are bucketized using HPB. For FSB, the
correlated attack performs better, but not by a large amount. Although there is
an improvement in the correlated attack success for FSB, the overall success rate

of the attack is still worse than both attacks against HPB.

The overall low success rate of the correlated attacks is likely due to the
error in estimating the password similarity, 7(..,,)(w). Though the similarity
metric proposed by [104] is good enough for generating ordered guesses for a
targeted attack, it doesn’t quite match the type of correlation among passwords
used in the test set. Even though we picked two passwords from the same user
for each test point, the passwords were generally not that similar to each other.
About 7% of these password pairs had an edit distance of 1, and only 14% had
edit distances of less than 5. The similarity metric we used to estimate 7. ,,,)(w)

heavily favors passwords that are very similar to each other.

The single-query attack against HPB does quite well already, so the corre-
lated attack likely has a lower success rate because it rearranges the passwords
in &(by) according to their similarity to the passwords in &(b,). In reality, only
a small portion of the passwords in the test set are closely related. On the other
hand, the construction of FSB results in approximately equal probabilities that
each password in the bucket was chosen, given knowledge of the bucket. We
expect that the success rate for the correlated attack against FSB is higher than
that of the single-query attack because the reordering helps the attacker guess

correctly in the test cases where the two sampled passwords are similar.

We believe the error in estimation is amplified in the attack algorithm, which

leads to a degradation in performance. If the attacker knew 7 perfectly and
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could calculate the exact values in Equation (B.1), the correlated-query attack
would perform better than the single-query attack. However, in reality, even if
we know that two queries came from the same user, it is difficult to characterize
the exact correlation between the two queries. If the estimate is wrong, then
the success of the correlated-query attack will not necessarily be better than that
of the single-query attack. Given that our attack did not show a substantial
advantage for attackers, it is still an open question to analyze how damaging

attacks on correlated queries can be.
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APPENDIX C
APPENDIX - MIGHT I GET PWNED

C.1 Assessing performance feasibility

We compare the performance of the top four similarity measures — P2P, Das-
R, wkdit and PPSM — to understand the feasibility of their deployment as a
C3 service. The three generative algorithms perform a PMT with the breached
passwords and their variants generated on the server. PPSM computes similar-
ity by mapping the passwords to 100-dimensional vectors and comparing their
dot product to a threshold. The resultant list of boolean is summed and sent
to the client. Therefore, the implementation of PPSM-based MIGP doesn’t re-
quire the generation and storage of similar passwords, but involves computing

private dot products, comparisons, and summation.

To estimate the cost of performing similarity matching, we use a bucket of
10,000 username, password pairs (without any variants). We use n = 100 for
P2P, Das-R, and wEdit, and § = 0.83 for PPSM. The OPRF based PMT protocol
is implemented in Python and uses secp256k1 elliptic curve implemented in
petlib [20]. We implement the PPSM based protocol using Crypten [80]. Timing

experiments were performed on a machine with an Intel Core i9 processor and

Similarity Storage

measure Latency B/w  Compat. per bucket Precomp.
wEdit (n = 100) <lsec 14MB Yes 14 MB 41 sec
P2P (n = 100) <lsec 14MB Yes 14 MB 180 sec
Das-R (n = 100) <lsec 14MB Yes 14 MB 0.5 sec
PPSM (6 = 0.83) 1l6sec 1.6 KB No 8 MB 1 sec

Figure C.1: Performance (latency, bandwidth, storage, etc.) summary of differ-
ent similarity measures. All the numbers are based on a bucket of size 10*. The
trade-offs are also ranked left to right based on the importance to deployment.
Here latency does not include n/w or i/o cost.



128 GB RAM, and here we run the entire protocol within the same machine
(without network overhead). P2P uses an Nvidia GTX 1080 GPU along with

the processor to run the pass2path neural network for pre-processing.

We summarize the results in Figure C.1. PPSM-based approach to MIGP
takes 16 seconds to complete a query, while all other approaches take < 1 sec-
ond. Note that these measurements, which do not include network latency,
should be considered lower bounds on performance. Crypten uses secret-
sharing to execute the MPC protocols, therefore requires more than one round
trip. The columns of Figure C.1 are ordered from left to right in decreasing order
of our perception of how critical this aspect of the protocols is to deployment.
As PPSM is slower than other approaches for executing a query, we focus on
the generative methods. We leave as an open question whether one can make

another 2PC-based protocol fast enough for reasonably sized buckets.

C.2 Rules-based similar passwords generation

We used three rule-based approaches for generating similar passwords:
Das [50], a reordered variant of Das which we call Das-R, and wEdit. The top-
performing edit rules based on our dataset S; are shown in Figure C.2. We
also report the percentage of vulnerable password pairs in T explained by each
rule. Deleting characters towards the end, and adding SHIFT or CAPS LOCK
at the beginning are the most common rules that users use to modify their pass-
words. While the top rules capture the common transformations, it fails for

subtle edits that are otherwise guessed by pass2path. Some example of such
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Das-R wEdit Rule (%) of matches

1 1 Del last char 27.7
2 3 Switch 1 char case 20.6
3 2 Del last 2 char 15.2
6 4 Ins “1” atend 13.4
- 6 Ins ‘Caps’ at beg 7.6
4 5 Del last 3 char 6.6
9 7 Del 1 char 4.7
5 - Ins ‘0" at beg 1.5
- 8 Subs ‘1’ atend 1.0
10 - Ins ‘0" atend 0.7
- 10 Ins ‘123" at end 0.5
7 9 Ins ‘a’ at beg 0.4
8 - Ins ‘q” at beg 0.1

Figure C.2: Rules for generating password variants and the % of password pairs
matched by the rule among 9,141 vulnerable pairs found in a randomly sampled
10° password pairs. We also show their ranks according to Das-R and wEdit.

pairs are: (200419817, 200481 ), (‘thingsome’, ‘thing.some’), (‘nikaprudova’,
‘nika_prudova’), (MADREQ00’, ‘padre000’), (‘jessiemax1’, ‘jessiel’).

C.3 MIGP security games

Let W be a set of all possible strings up to some length (say, 30), and W C W
be the set containing all possible password strings for users U. We also assign a
probability distribution p to all the passwords W representing the probability of
a user u € U selecting the password w € W. Recall we defined 7 : W — 2" such
that 7(w) is the set of passwords defined to be similar to w. (In Section 4.4 we
show how to instantiate the function 7.) Therefore, if @ € 7(w), for some leaked
password w for a user u, then the MIGP service will respond with “similar” when

queried with (u, @w). We will assume w ¢ 7(w), and n = max,, |7(w)|.

The MIGPGuess adversary tries to guess the exact target password w given
access to the MIGP(-) oracle. We modify the game in Figure 4.7 to fit the reduc-

tion we will use next. The advantage of an attacker is measured as the expected
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MIGP (w’) MIGPGuess(.A'):

_(J<—/C]+1 wpW; ¢+ 0
if w' = w then re- W« AMIGP
turn match

! if W = w then rer
if w € 7(w) then turn g

return similar

else return |W|
else return none

Figure C.3: Slightly modified games from Figure 4.7, instead of outputting true
or false, MIGPGuess outputs the guess rank.

number of queries to the respective oracles (See Figure C.3) to guess a password,
without any limit on the query budget. This is also known as a-guesswork (G,,)
with o = 1 [39]. G, measures the expected number of guesses to ensure the
probability of guessing a randomly chosen password is at least «. An alternate
approach to compute attack success is using g-success rate ()\,), which measures
the probability of guessing a password given ¢ guesses. As shown in [39], these
two notions are equivalent in the sense that the guessing strategy that minimizes

G, will also maximize )\, (if « > A,).

The MIGPGuess adversary tries to guess the exact target password w given
access to the MIGP(-) oracle. The advantage of the MIGPGuess adversary A’ is

defined as the expected guess rank:

GMISP (A') = E[MIGPGuess(A')] .

An MIGPGuess-adversary A" is optimal if for all A’ it holds that
GMISP (A™") < GMIP (A'). The optimal adversary A’ builds a ternary decision
tree to query MIGP such that the expected guess rank is minimized. We show
that building such a decision tree that minimizes the guesswork is NP-hard, and

therefore the optimal attack against MIGP is also NP-hard.
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Definition 1 (OMIGP). Given (W, p, 1), we define optimal MIGP guess (OMIGP)
problem as building the query tree for A" that minimizes the guesswork for distribution

p over W with MIGP similarity measure being 7.

Theorem 4. OMIGP problem is NP-hard.

Proof: To prove this result, one might be tempted to reuse a result from Chatter-
jee et al. [44,46], who investigated a similar setting in the context of typo-tolerant
password checking. They formalized guessing attacks against a server that al-
lows the user to login with a small set of typos. Although their setting is similar
to ours, there is one crucial difference: MIGP reveals whether the query is a
match or is similar to a password, but the password typo correction oracle does
not and reveal whether the password was an exact or near match. This seem-
ingly minor distinction means we can’t use their techniques, and we had to find

another proof strategy.

We show that we can reduce the optimal binary decision tree (OBDT) prob-
lem to OMIGP in polynomial time. Because OBDT does not have a polynomial

time solution [85] then OMIGP also cannot have a polynomial time solution.

Binary decision tree (BDT). The instance of binary decision tree (BDT) is de-
fined as a three tuple (X, p,, @), where X be the set of n items z1,x3,...,2,, p,
is a probability distribution defined over the elements of X, and @ is a set of
m questions (functions) such that ¢); : X +— {0,1}. The goal is to find a deci-
sion tree that completely characterizes X using the questions in () as decision
nodes. The questions ¢ € () are specified in all the internal nodes while the

items z; fill the root nodes of the tree. The expected depth of the tree is defined

181



as Y .cx Py (7) - d(x), where d(z) is the depth — distance from the root — of the

element z in the binary tree.

Definition 2 (Optimal BDT problem). Given (X,p,.,Q), the problem is to build a

binary decision tree that has the least expected depth, ) . p, (v) - d(z).

Theorem 5 ([85]). OBDT problem is NP-hard.

Proof: This follows from the proof provided by the classic results of Laurent and

Rivest [85].

Theorem 6. OMIGP problem is NP-hard.

Proof: We show that OMIGP is NP-hard by giving a polynomial time reduction
of an arbitrary instance of OBDT problem to OMIGP. That means if there exists
a polynomial time solution to OMIGP, then we can solve OBDT in polynomial

time as well, which is known to be NP-hard [85].

An instance of OMIGP problem is defined as (W, p, 7), where W are the set
of strings, p is a probability distribution over W, and 7 is a similarity measure.
Given an instance of BDT problem (X,p,, @), we can construct an instance of
OMIGP problem as follows. For this we set W = X U @ (assuming there is a
unique way to represent elements in () distinct from X); p(w) = p, (w) if w € X,

and 0 otherwise; and 7(w) = {y | Qu(y) = 1} if w € Q, and @ otherwise. Given
an optimal ternary decision tree 7' for a OMIGP problem instance (W, p, B),

we can build a optimal BDT for the problem instance (X, p,, Q) in polynomial

time. As 7T is the ternary decision tree for OMIGP problem, each node has
three children for each type of MIGP output. The leaf nodes of the tree are the

passwords in V. The distance of a password w from the root is the number

of queries it take to guess w, which we denote as d(w) here. As T is optimal,
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the guesswork ) .., p(w) - d(w) is minimum. Also note that, because p(w) =
0if w € Q (as per the reduction above), ) . p(w) - d(w) is minimum. This is
the same as the property of OBDT. Therefore, we can build the required binary
decision tree 7" by removing the edges for the exact match of the questions

(where w € Q).

Thus we show, we can reduce an instance of OBDT problem into an instance
of OMIGP problem, and the solution of OMIGP will provide a solution to OBDT.
This contradicts the fact that OBDT is NP-hard, therefore, OMIGP cannot have

a polynomial time solution. This concludes the proof. I

The BDT problem will have a unique solution only if m > log,n and no
two objects have the same output for all the questions. Since BDT reduces to

OMIGP, the same conditions apply for OMIGP as well.

C4 Greedy approximation of OMIGP

As shown that finding an optimal guessing strategy that minimizes the expected
guess rank is NP-hard. However, attackers could still find approximate solu-
tions that minimize the expected guess rank. We give one such greedy algo-
rithm for OMIGP, which we call GreedyOMIGP, in Figure C.4 based on the
greedy algorithm GreedyOBDT for OBDT (shown in Figure C.4 provided by
Chakaravarthy et al. [43]). Chakaravarthy et al. also has shown that the approx-
imation factor for the greedy algorithm GreedyOBDT is O(() log | X ).

We can reduce a problem instance of finding optimal decision tree for

OMIGP to OBDT. This is quite straightforward. We already show the reduc-

183



GreedyOBDT(X,py, Q): GreedyMIGP(W, p, , q):
fori e {0,1}and j € {1,...,]|Q|} do W wLEJWT(w) U {w}
TX]’-;{xEX:Qj(x):z} fori < 1togqdo

— W; — arg maxX ey p(B(w
if | X| =1 then return X P MI(?P(@) ew (BW))
J* eargmaxij(X?)-pX(X}) if r = none then
T.root + j* W < W\B(w;)
T left < GreedyOBDT(XY,p, , Q) for w € B(w;) do

: 1 p(w) « 0

T.right«GreedyOBDT(X}.,p,, Q) else if 1 — similar then
return T for w € W\ B(w;) do
GreedyOMIGP(W, p, 7): p(w) « 0
if [IW| = 1 then return W W= ngT(w> U {w}
J* < argmax; p(B(w;))(1 — p(B(w;))) else if = match then
T.root < j*; T.middle < j* return w;
W'« W\ B(w;+) W — W\ {w;}
T left < GreedyOMIGP(B(wj«), p, T) return arg max,,ew p(w)
T.right < GreedyOMIGP (W, p, T)
return T

Figure C.4: (Left) Greedy algorithm for optimal binary decision tree and op-
timal MIGP. Here B : W + 2", is a function such that B(w) = {w €
Ww € 7(w)}. (Right) Greedy algorithm for finding ¢ guesses to a MIGP or-
acle (Figure C.3). Here B(w') = {w € W|w' € 7(w)} for any w’ € W'

tion for problem instance of the OBDT to OMIGP in the paper. Therefore, these
two problems reduce in an approximation-preserving manner [49], i.e. Any «
approximation algorithm for optimal decision tree yields an o approximation
algorithm for GreedyOMIGP. Hence, the greedy algorithm GreedyOMIGP also

yields the same approximation bound as GreedyOBDT problem.

C.4.1 Greedy heuristic for breach extraction

We present another greedy algorithm GreedyMIGP Figure C.4 which is equiva-
lent to GreedyOMIGP. We define the ball B(-) of a variant @w € )V as the set of

passwords that share a common variant. That is, B(w) = {w € W | € 7(w)}.
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The probability of a ball p(B(w)), also called the weight of a ball, is the sum of

the probabilities of the passwords in the ball.

The attacker begins with a set of potential passwords W of the target user. In
iteration ¢, the attacker picks the guess w; that has the highest ball weight, and
based on the response from the MIGP oracle, it updates the set of potential pass-
words. In particular, if the response is none, then it removes all the passwords in
B(w;) from W. If the response is similar, then it knows that the target password
is one of the passwords in B(w;), and so it sets the probability of all other pass-
words to zero and limits the search to the passwords in B(w;) and their variants.
Itis important to leave the variants in because they may have ball weight higher
than all balls centered on passwords from B(w;). If the response is match, then
it stops and outputs the guess w; (and wins the game). The greedy algorithm is
not optimal but provides a good approximation of the success of the optimal at-
tacker. Whether an efficient algorithm with tighter approximation bounds exists

remains an open question.

We show that the expected guesswork due to the greedy algorithm
GreedyMIGP is at most O(() log |W|) factor of the minimum expected guesswork
GMISP (A™). This approximation factor is quite large, especially when |W| is
very large. Nevertheless, this shows that it is possible to compute approximate
solutions that might help an attacker guess a user’s leaked password stored in

MIGP server more effectively (than existing C3 services).

The complexity of the algorithm is O(()¢q|VV|), assuming there is a constant
time algorithm to find the ball of a string. Note the attacker can decide on W
that they believe will likely contain the target password. This could be popular

passwords from prior public password breaches.
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C.5 Breach extraction attack (contd.)

In Figure 4.8, we show the breach extraction attack success from a random sam-
ple of 25,000 username, password pairs from T. This includes passwords that
are weak, such as the one blocked by MIGP. We therefore investigate the at-
tack success against users who uses passwords not present in the blocklisted
set. We sample target passwords ensuring that they do not belong to the set of

passwords blocklisted by MIGP. The results are shown in Figure C.5.

15} n qg=10 q = 100 q = 1000
0 1.71 (£ 0.22) 3.36(£0.34)  6.57 (= 0.61)
0 10 220 (£ 0.24) 4.97(4+0.31) 13.38 (4 0.54)
102 1.79 (£ 0.13) 4.87 (£ 0.18) 17.18 (+ 0.38)
0 1.21 (£ 0.17) 248 (£0.25) 5.64 (= 0.51)
10 10 0.14 (+ 0.06) 1.85(£0.15)  9.50 (& 0.31)
102 0.03 ( 0.02) 0.44 (£ 0.08) 10.65 (+ 0.16)
0 0.78 (£ 0.10) 1.40(+0.17)  2.49 (+ 0.30)
102 10 0.12 (£ 0.02) 1.78 (+0.28)  8.57 (4 0.47)
102 0.03 (£ 0.03) 0.67 (+0.13)  6.46 (4 0.27)
0 0.72 (£ 0.07) 0.89 (£ 0.08)  1.46 (+ 0.14)
10° 10 0.23 (+0.02) 0.78 (+£0.12)  5.61 (+ 0.54)
102 0.04 (£ 0.01) 0.09 (+0.03) 2.07 (& 0.27)
0 <0.01(£<0.01) 0.03(+0.03) 0.27(40.03)
104 10 < 0.01(+<0.01) 041(+0.07) 298 (+0.25)
102 0.00 (£ 0.00) 0.26 (+0.21)  2.56 (= 0.20)

Figure C.5: Breach extraction attack success when the target password is not one
of the blocked passwords or their variants.

C.6 Rate-Limiting Client Queries
As shown in Section 4.5.1, to reduce the effect of the breach extraction attacks,

MIGP must limit access to the service. Cryptographic rate-limiting ensures the

client performs significantly more work than the server to make a query.
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MIGP can use a slow, computationally expensive hash function such as Ar-
gon2 [4] or Scrypt [108] for Hy (or Hy, see the trade offs in Section 4.7) in the
PRF F. For example, computing a slow Argon2 hash with default parame-
ters [18] on a desktop with Intel Core i9 processor and 128 GB RAM takes about
97 ms. However, this also requires the server to compute the slow hash during
pre-processing. We estimate that computing F,, for 1.14 billion unique user-
name, password pairs and their n = 100 variants will require approximately

361.5 CPU-years of computational power.

An alternative approach would be to use a time-lock puzzle [93, 114] to
slow down client queries to MIGP. Time-lock puzzles, first introduced by Rivest
et al. [114], are a type of verifiable delay function (VDF) [38], where knowl-
edge of trapdoor information makes computing a hash function significantly
faster. Following the construction in [114], we can set Hy to be computed as
follows. The MIGP server computes a large RSA modulus N = pq, where p
and ¢ are two large randomly chosen secret primes. Let v be the cost factor and
Ho(x) = SHA256(x)*" mod N, for any binary string x € {0,1}*. The server
can compute H, efficiently as Hy(z) = SHA256(z)?" m°d¢V) mod N, where
#(N) = (p—1)- (¢ —1). The time complexity of such an operation would be
bounded by the size of N in bits. While for the client, which will not know the
factors of N, computation of H, will need to perform v squaring modulo N se-
quentially (each time squaring the prior result). By setting the value of v accord-
ingly the server can increase the computational cost. The advantage of using
time lock puzzles is that repeated squaring is an intrinsically sequential process
and can’t be parallelized. We estimate that the server would need 0.53 ms to
set up a time-lock puzzle that would take 100 ms to solve for the client. This

corresponds to approximately 1.8 CPU-years of computational power to finish
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computing H, of 1.14 billion unique username-password pairs and their n = 100

variations.

A third alternative approach to throttle client queries is to add a small secret
value to the hash function Hy, Hy(z) = SHA256(x||r), where r is randomly cho-
sen from {0, 1} for each username, password pair. The server does not store
(or share it with the client). Therefore, the client has to brute-force the value of .
For example, assuming a (malicious) client can do 10 million SHA256 hashes per
second, the server can set the value of v to be 21 bits, which will in expectation
ensure 100 ms client-side computing cost. The server will require approximately
3.1 CPU-hour for precomputation. One drawback of this approach is that the
client can parallelize the computation of hashes, and it does not guarantee 2”

sequential operations, unlike time-lock puzzles.
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