Supplementary Informations for

Near-atomic, non-icosahedrally averaged structure of giant virus Paramecium bursaria chlorella virus 1

Qianqian Shao, Irina V. Agarkova, Eric A. Noel, David D. Dunigan, Yunshu Liu, Aohan Wang, Mingcheng Guo, Linlin Xie, Xinyue Zhao, Michael G. Rossmann, James L. Van Etten, Thomas Klose, Qianglin Fang

This PDF file includes:

Supplementary Figs. 1 to 9
Supplementary Tables 1 to 6
Supplementary References

Other Supplementary Informations for this manuscript include the following:
Supplementary Movies 1 to 2

Supplementary Figures

a

b

C

—Block 1 -Block 2 -Block 3 -Block 4 -Block 5 —Block 11 - Block 12 - Block 13 - Block 14 - Block 15

Supplementary Figure $1 \mid$ Resolution estimation and cryo-EM densities of the previously unresolved proteins.
a, Representative cryo-EM micrograph of PBCV-1. Scale bar $=100 \mathrm{~nm} . \mathbf{b}$, Block distribution within one fivefold asymmetric unit of the five-fold averaged, cryo-EM map of PBCV-1. c, FSC curves of each block and the cryo-EM map before applying the "block-based" reconstruction method calculated based on the FSC 0.143 cut-off. d, Cryo-EM densities of representative regions of the variants of the MCP and the penton protein, superposed with their atomic models. e, Cryo-EM densities of the previously unresolved minor capsid proteins, superposed with their atomic models.

Supplementary Figure $2 \mid$ Local resolution estimation of the cryo-EM maps.

Local resolution maps of block 1 (a), block 2 (b), block 3 (c), block 4 (d), block 10 (e) and block 18 (f), P1v1 (g), vesicle-associated proteins (h), two copies of P19 (i), type II pseudo-hexameric capsomer (j), type V pseudo-hexameric capsomer (k), type I fiber and type VI pseudo-hexameric capsomer (l), type II fiber and type IV pseudo-hexameric capsomer (m), and type III fiber and type III pseudo-hexameric capsomer (n), as estimated using RESMAP ${ }^{1}$.

Supplementary Figure 3 | Symmetrons and uninterpreted densities of the five-fold averaged cryo-EM map of PBCV-1. a, Trisymmetrons and pentasymmetrons in the five-fold averaged cryo-EM map of PBCV1, looking down the spike in the unique vertex. \mathbf{b}, Uninterpreted densities of the five-fold averaged cryo-EM map of PBCV-1. Scale bar $=20 \mathrm{~nm}$.

Supplementary Figure $4 \mid$ Sequence alignment of MCP and its variants.

a, sequence alignment of MCP and its variants. The identity values for each residue in the MCP sequence were calculated by comparing that residue of the MCP with corresponding residues of the MCP variants (1 being conserved, and 0 being not conserved). \mathbf{b}, Ribbon diagrams of one MCP molecule showing different structural regions (up) and identity values as indicated in a (down).

DE
Id.

P1v1 EYLIDSSENTFAYALNQPTNINTWQQEIEGNIRIATITPGDYNLPQLIDEMNNVLQQTAN 120
DE
P1v1 TYGDSVILQVSPVTNPSEISNKIRITASGPFTLLGSTGTIGNTIGFGDPVNTSVASTTGY 180

```
Id. ------------------
Id. ------------------
\begin{tabular}{lll} 
& DE \\
Id. & & \\
P1 & & \\
P1v1 YSTVPGYSVNYPNGADYVFLSNQGNIGSEAVNEFVGPLPPGDNVSFTPIYTGQTPSQYFI 240
\end{tabular}
            DE
Id.

P1v1 APSAGVPTTVSAYFVDQATAPPGGFVVNYSIIKVSDSSTIATGSLISTNDDLVPSVSSPS 300
DE
Id.

P1v1 VVSANFIQGQQYYIQFTPGSSGSSAGNCTALWYSFPNLPPVSGAYAAINGTLVFPGQYFC 360



Id.
P1 RGGGSTITQNGRVLGGTR}17
P1 RGGGSTITQNGRVLGGTR}17
P1v1 NNAVDKTFDGPGKYPAAPGYSGDYIQLQQKRWGEEARATYPTHKSTYNRCRPRTT 530


\section*{Supplementary Figure \(5 \mid\) Sequence alignment of P1 and P1v1.}
a, Sequence alignment of the penton protein P1 and the penton protein variant P1v1. The identity values were calculated similarly as in Supplementary Fig. 4a. b, Ribbon diagrams of one P1 molecule showing the structural regions (up) and identity values as indicated in a (down).


Supplementary Figure 6 | Structural comparisons and sequence identity analyses between pseudohexameric and between pentameric capsomers.
a, Backbone superposition of all the six types of pseudo-hexameric capsomers. b, Surface identity between the MCP and all the MCP variants. The identity values were calculated in the same way as in Supplementary Fig. 4a. c, Backbone superposition of the type I and type II pentameric capsomers. d, Surface identity between the type I and type II pentameric capsomers. The identity values were calculated using the same way as in Supplementary Fig. 5a. e, Backbone superposition of the three types of fiber-attached capsomers. f, Surface identities between any two types of fiber-attached capsomers. The identity values were calculated similarly as in Supplementary Fig. 4a.


\section*{Supplementary Figure 7 |Association between the spike and type II pentameric capsomer.}

The structures of the spike (dark red) and the type II pentameric capsomer (cornflower blue) are shown as cryo-EM density map and ribbon models, respectively.


\footnotetext{
Supplementary Figure \(\mathbf{8} \mid\) Cryo-EM densities of the \(\mathbf{2 5}\) copies of the finger proteins displayed with two contour levels.
}

A dark red circle is used to indicate the position of the viral spike in the unique vertex.


Supplementary Figure 9 | Structure comparisons between the ab initio models and their in silico model candidates.
The \(a b\) initio models and the in silico models were manually built using the cryo-EM density maps and computed using AlphaFold \(2^{2}\) and/or RoseTTAFold \({ }^{3}\), respectively.

\section*{Supplementary Tables}

Supplementary Table 1 | Information on identified proteins.
\begin{tabular}{|c|c|c|c|}
\hline Protein name & Gene name & Icosahedral asymmetric units where this protein is present & Copy number within one virion \\
\hline MCP & a430l & All & 4,905 \\
\hline MCPv1 \({ }^{\text {a }}\) & a622l & 1 & 40 \\
\hline MCPv2 \({ }^{\text {a }}\) & a383r & 1 & 5 \\
\hline MCPv3 \({ }^{\text {a }}\) & a011l & 1, 5, 7, 10, 11 & 55 \\
\hline \(\mathrm{MCPv} 4^{\text {a }}\) & a010r & 1, 5, 7, 11 & 20 \\
\hline MCPv5 \({ }^{\text {a }}\) & a558l & 4 & 15 \\
\hline P1 & a310l & 2-12 & 55 \\
\hline P1v1 \({ }^{\text {a }}\) & a533r & 1 & 5 \\
\hline P2 & a342l & All & 60 \\
\hline P3 & a523r & All & 180 \\
\hline P4 & \(a 572 r\) & All & 240 \\
\hline P5 & \(a 526 r\) & All & 60 \\
\hline P6 & a203r & All & 60 \\
\hline P7 & a262/263l & 2-12 & 55 \\
\hline P8 & a644r & All & 60 \\
\hline P9 & a407l & All & 60 \\
\hline P10 & a454l & 2-12 & 110 \\
\hline P11 & a352l & All & 720 \\
\hline P12 & al39l & All & 60 \\
\hline P13 & a421r & All & 60 \\
\hline P14 & a500l & 2-12 & 55 \\
\hline P15 \({ }^{\text {a }}\) & a484l & 1 & 5 \\
\hline P16 \({ }^{\text {a }}\) & a480l & 1 & 5 \\
\hline P17 \({ }^{\text {a }}\) & a314r & 1 & 20 \\
\hline P18 \({ }^{\text {a }}\) & a213l & 1 & 10 \\
\hline P19 \({ }^{\text {a }}\) & a286r & 1-3 & 125 \\
\hline P20 \({ }^{\text {a }}\) & a018l & 1, 5, 7, 11 & 40 \\
\hline P21 \({ }^{\text {a }}\) & a014r & 1, 5, 7, 11 & 20 \\
\hline P22 \({ }^{\text {a }}\) & a122/123r & 4 & 15 \\
\hline P23 \({ }^{\text {a }}\) & a025/027/029l & 10 & 15 \\
\hline
\end{tabular}
\({ }^{\text {a }}\) Previously unresolved proteins.

Supplementary Table 2 | Model validation statistics on previously unresolved proteins.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Protein name & Protein sequence length & Chain ID \({ }^{\text {a }}\) & Ordered part & CC \({ }^{\text {b }}\) & \begin{tabular}{l}
Resolution \\
\((\mathrm{FSC}=0.5)^{\mathrm{c}}\)
\end{tabular} & Resolution
\[
(\mathrm{FSC}=0.25)^{\mathrm{c}}
\] \\
\hline \multirow[t]{8}{*}{MCPv1} & \multirow[t]{8}{*}{520} & bu & 2-518 & 0.83 & 4.1 & 3.8 \\
\hline & & bv & 2-518 & 0.80 & 4.1 & 3.8 \\
\hline & & bw & 2-518 & 0.81 & 4.1 & 3.7 \\
\hline & & bx & 5-518 & 0.84 & 4.1 & 3.7 \\
\hline & & by & 2-518 & 0.83 & 4.1 & 3.7 \\
\hline & & bz & 11-518 & 0.80 & 4.2 & 3.8 \\
\hline & & bA & 2-517 & 0.82 & 4.2 & 3.7 \\
\hline & & bB & 2-518 & 0.81 & 4.2 & 3.9 \\
\hline MCPv2 & 486 & bC & 2-486 & 0.73 & 4.2 & 3.8 \\
\hline \multirow[t]{11}{*}{MCPv3} & \multirow[t]{11}{*}{403} & dd & 3-403 & 0.82 & 4.1 & 3.8 \\
\hline & & dp & 3-403 & 0.82 & 4.1 & 3.8 \\
\hline & & dr & 3-403 & 0.81 & 4.1 & 3.8 \\
\hline & & df & 3-403 & 0.82 & 4.2 & 3.8 \\
\hline & & dj & 3-403 & 0.80 & 4.2 & 3.8 \\
\hline & & bD & 3-403 & 0.82 & 4.2 & 3.8 \\
\hline & & dl & 3-403 & 0.77 & 4.2 & 3.9 \\
\hline & & cZ & 3-403 & 0.80 & 4.2 & 3.8 \\
\hline & & dk & 3-403 & 0.80 & 4.2 & 3.9 \\
\hline & & bF & 3-403 & 0.81 & 4.3 & 3.9 \\
\hline & & cX & 3-403 & 0.79 & 4.3 & 3.9 \\
\hline \multirow[t]{4}{*}{MCPv4} & \multirow[t]{4}{*}{401} & dq & 3-399 & 0.83 & 4.2 & 3.8 \\
\hline & & de & 3-399 & 0.83 & 4.2 & 3.9 \\
\hline & & bE & 3-399 & 0.82 & 4.2 & 3.9 \\
\hline & & cY & 3-399 & 0.79 & 4.3 & 3.9 \\
\hline \multirow[t]{3}{*}{MCPv5} & \multirow[t]{3}{*}{400} & cR & 2-400 & 0.81 & 4.2 & 3.8 \\
\hline & & cT & 2-400 & 0.82 & 4.2 & 3.9 \\
\hline & & cS & 2-400 & 0.81 & 4.3 & 3.9 \\
\hline P1v1 & 530 & bG & \[
\begin{aligned}
& 2-203,210-367,370- \\
& 479,491-524
\end{aligned}
\] & 0.67 & 4.3 & 3.8 \\
\hline P15 & 155 & ch & 2-153 & 0.74 & 4.1 & 3.8 \\
\hline P16 & 93 & ci & 8-87 & 0.72 & 4.5 & 3.5 \\
\hline \multirow[t]{4}{*}{P17} & \multirow[t]{4}{*}{80} & ck & 2-58 & 0.75 & 4.3 & 3.6 \\
\hline & & cm & 5-67 & 0.74 & 4.4 & 3.7 \\
\hline & & cj & 5-63 & 0.74 & 4.4 & 3.6 \\
\hline & & cl & 4-58 & 0.74 & 4.5 & 3.8 \\
\hline \multirow[t]{2}{*}{P18} & \multirow[t]{2}{*}{148} & cn & 49-146 & 0.76 & 4.1 & 3.6 \\
\hline & & co & 50-144 & 075 & 4.2 & 3.6 \\
\hline \multirow[t]{8}{*}{P19} & \multirow[t]{8}{*}{\[
378
\]} & cv & 48-339 & 0.74 & 4.4 & 4.0 \\
\hline & & cx & 48-339 & 0.74 & 4.4 & 4.1 \\
\hline & & cL & 48-339 & 0.74 & 4.5 & 4.1 \\
\hline & & ct & 48-339 & 0.76 & 4.6 & 4.2 \\
\hline & & cJ & 48-339 & 0.76 & 4.6 & 4.2 \\
\hline & & cW & 60-339 & 0.73 & 4.6 & 4.2 \\
\hline & & cH & 48-339 & 0.75 & 4.6 & 4.2 \\
\hline & & cF & 48-339 & 0.75 & 4.7 & 4.2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & cr & 48-339 & 0.75 & 4.7 & 4.3 \\
\hline & & cp & 48-339 & 0.73 & 4.7 & 4.2 \\
\hline & & cB & 48-339 & 0.74 & 4.7 & 4.2 \\
\hline & & cy & 60-339 & 0.76 & 6.8 & 4.3 \\
\hline & & cD & 48-339 & 0.73 & 7.0 & 4.3 \\
\hline & & cE & 60-339 & 0.75 & 7.1 & 4.4 \\
\hline & & cN & 48-339 & 0.7 & 7.5 & 4.3 \\
\hline & & cI & 61-339 & 0.75 & 7.7 & 4.4 \\
\hline & & cu & 60-339 & 0.73 & 7.9 & 4.5 \\
\hline & & cC & 61-339 & 0.72 & 7.9 & 4.3 \\
\hline & & cG & 58-339 & 0.74 & 7.9 & 4.5 \\
\hline & & cK & 61-339 & 0.72 & 7.9 & 4.6 \\
\hline & & cq & 58-339 & 0.69 & 8.1 & 4.6 \\
\hline & & cz & 48-339 & 0.69 & 8.1 & 4.4 \\
\hline & & cs & 65-339 & 0.75 & 8.4 & 4.5 \\
\hline & & cA & 61-339 & 0.62 & 8.6 & 6.9 \\
\hline & & cM & 63-339 & 0.66 & 8.6 & 5.7 \\
\hline P20 & 1335 & da & 6-37 & 0.81 & 4.1 & 3.4 \\
\hline & & dc & 7-34 & 0.83 & 4.2 & 3.4 \\
\hline & & cO & 7-36 & 0.81 & 4.3 & 3.5 \\
\hline & & ds & 6-37 & 0.80 & 4.3 & 3.8 \\
\hline & & du & 7-36 & 0.75 & 4.3 & 3.5 \\
\hline & & cQ & 7-37 & 0.81 & 4.3 & 3.4 \\
\hline & & dg & 6-37 & 0.79 & 4.4 & 3.6 \\
\hline & & di & 7-35 & 0.76 & 4.4 & 3.6 \\
\hline P21 & 1369 & cP & 6-40 & 0.80 & 4.2 & 3.5 \\
\hline & & dh & 6-40 & 0.79 & 4.3 & 3.7 \\
\hline & & dt & 6-40 & 0.79 & 4.4 & 3.6 \\
\hline & & db & 7-36 & 0.79 & 4.5 & 3.6 \\
\hline P22 & 1343 & cU & 6-48 & 0.79 & 4.3 & 3.9 \\
\hline & & cV & 6-48 & 0.78 & 4.3 & 3.9 \\
\hline & & cW & 6-48 & 0.78 & 4.4 & 3.6 \\
\hline \multirow[t]{3}{*}{P23} & \multirow[t]{3}{*}{1359} & dm & 10-34 & 0.65 & 4.5 & 3.7 \\
\hline & & dn & 10-34 & 0.68 & 4.5 & 3.3 \\
\hline & & do & 10-34 & 0.59 & 4.9 & 3.6 \\
\hline
\end{tabular}
\({ }^{\text {a }}\) Chain ID in the coordinate file (PDB ID: 8H2I).
\({ }^{\mathrm{b}}\) Real-space correlation coefficient between the atomic models and their density maps.
\({ }^{\mathrm{c}}\) Model-to-map FSCs between the atomic models and their density maps.

Supplementary Table \(3 \mid\) Protein sequence identities between MCP, P1 and their variants.
\begin{tabular}{lc} 
Variants & Protein sequence identity between this variant with MCP \\
\hline\(M C P v 1\) & \(42.8 \%\) \\
\(M C P v 2\) & \(28.1 \%\) \\
\(M C P v 3\) & \(38.0 \%\) \\
\(M C P v 4\) & \(35.5 \%\) \\
MCPv5 & \(36.8 \%\) \\
\hline
\end{tabular}

Protein sequence identity between this variant with P1
P1v1
\(10.6 \%\)

The protein sequence identity is calculated according to the ratio of the number of matched residues to the sequence length of MCP or P1.

\section*{Supplementary Table 4 | Information on identified glycosylation sites.}
\begin{tabular}{|c|c|}
\hline Protein & Glycosylation sites \\
\hline \multirow[t]{4}{*}{MCP} & \(\mathrm{AN}_{280} \mathrm{IP}\) \\
\hline & \(\mathrm{GN}_{302} \mathrm{TG}\) \\
\hline & GN399TE \\
\hline & AN406TA \\
\hline \multirow[t]{7}{*}{MCPv1} & SN95IA \\
\hline & \(\mathrm{SN}_{124} \mathrm{LI}\) \\
\hline & SN131VD \\
\hline & AN 139 AV \\
\hline & \(\mathrm{SN}_{152} \mathrm{VV}\) \\
\hline & GN164TG \\
\hline & \(\mathrm{AN}_{177} \mathrm{LR}\) \\
\hline MCPv4 & \(\mathrm{AN}_{357} \mathrm{VY}\) \\
\hline \multirow[t]{4}{*}{P1} & \(\mathrm{AN}_{21} \mathrm{TT}\) \\
\hline & GN93VF \\
\hline & \(\mathrm{GN}_{129} \mathrm{VL}\) \\
\hline & GN 137 EH \\
\hline P1v1 & GN91 \({ }^{\text {IR }}\) \\
\hline \multirow[t]{2}{*}{P20} & \(\mathrm{GN}_{22} \mathrm{LS}\) \\
\hline & \(\mathrm{GN}_{31} \mathrm{GA}\) \\
\hline \multirow[t]{2}{*}{P21} & \(\mathrm{GN}_{21} \mathrm{LV}\) \\
\hline & \(\mathrm{GN}_{32} \mathrm{GG}\) \\
\hline \multirow[t]{5}{*}{P22} & \(\mathrm{GN}_{23} \mathrm{IA}\) \\
\hline & \(\mathrm{AN}_{26} \mathrm{VI}\) \\
\hline & DN \({ }_{31} \mathrm{GN}\) \\
\hline & \(\mathrm{GN}_{33} \mathrm{VI}\) \\
\hline & GN46GA \\
\hline \multirow[t]{2}{*}{P23} & \(\mathrm{GN}_{24} \mathrm{VF}\) \\
\hline & GN33AS \\
\hline
\end{tabular}

Supplementary Table 5 | Primers used in this work.
\begin{tabular}{ll}
\hline PBCV-1 Gene Primer & Sequence \\
\hline PBCV-1 \(a 533 r\) F Primer & 5'-GCGCAAACTTTATTCAAGGAC-3' \(^{\prime}\) \\
PBCV-1 \(a 533 r\) R Primer & 5'-TAATCCCCAGAGTATCCAGGG-3' \(^{\prime}\) \\
\hline PBCV-1 \(a 383 r\) F Primer & 5'-CTCGGAGAAATCTTCTCGC-3' \(^{\prime}\), \\
PBCV-1 \(a 383 r\) F Primer (2) & 5'-CGGATGTTTACGTTGACATG-3' \(^{\prime}\) \\
PBCV-1 \(a 383 r\) R Primer & 5'-CTAAACCCGCACCTAAACC-3' \\
\hline
\end{tabular}

Supplementary Table 6 | Cryo-EM data collection, refinement and validation statistics.
\begin{tabular}{|c|c|}
\hline Map & \begin{tabular}{l}
PBCV-1 C5 \\
(EMD-34438, PDB: 8H2I)
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Data collection and processing} \\
\hline Microscope & FEI Titan Krios \\
\hline Magnification & 18,000 \\
\hline Voltage (kV) & 300 \\
\hline Detector & Gatan K2 Summit detector \\
\hline Recording mode & Super-resolution or counting mode \\
\hline Dose rate ( \(\mathrm{e}^{-/(\mathrm{pixel} \cdot \mathrm{s} \text { ) })}\) & \(\sim 8\) \\
\hline Frame exposure time (ms) & 200 \\
\hline Movie micrograph exposure time (s) & \(\sim 8\) \\
\hline Total dose ( \(\mathrm{e}^{-} / \AA^{2}\) ) & \(\sim 24\) \\
\hline Defocus range ( \(\mu \mathrm{m}\) ) & 1.0-4.0 \\
\hline Pixel size ( \(\AA\) ) & 1.62 (physical pixel size) \\
\hline Symmetry imposed & C5 \\
\hline Map resolution ( \(\AA\) ) & 3.8-3.9 \\
\hline FSC threshold & 0.143 \\
\hline Map sharpening \(B\)-factor ( \(\AA^{2}\) ) & -120 \\
\hline \multicolumn{2}{|l|}{Refinement} \\
\hline Initial model used (PDB code) & 6NCL \\
\hline \multicolumn{2}{|l|}{R.m.s. deviations} \\
\hline Bond lengths ( \(\AA\) ) & 0.010 \\
\hline Bond angles ( \({ }^{\circ}\) ) & 1.43 \\
\hline \multicolumn{2}{|l|}{Validation} \\
\hline MolProbity score & 1.37 \\
\hline Clashscore & 2.49 \\
\hline Poor rotamers (\%) & 0.14 \\
\hline \multicolumn{2}{|l|}{Ramachandran plot} \\
\hline Favored (\%) & 95.22 \\
\hline Allowed (\%) & 4.40 \\
\hline Disallowed (\%) & 0.38 \\
\hline
\end{tabular}

\section*{Supplementary References}

1 Kucukelbir, A., Sigworth, F. J. \& Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63-65 (2014).

2 Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589 (2021).
3 Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871-876 (2021).```

