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SUMMARY

Association mapping panels represent foundational resources for understanding the genetic basis of pheno-

typic diversity and serve to advance plant breeding by exploring genetic variation across diverse accessions.

We report the whole-genome sequencing (WGS) of 400 sorghum (Sorghum bicolor (L.) Moench) accessions

from the Sorghum Association Panel (SAP) at an average coverage of 38× (25–72×), enabling the develop-

ment of a high-density genomic marker set of 43 983 694 variants including single-nucleotide polymor-

phisms (approximately 38 million), insertions/deletions (indels) (approximately 5 million), and copy number

variants (CNVs) (approximately 170 000). We observe slightly more deletions among indels and a much

higher prevalence of deletions among CNVs compared to insertions. This new marker set enabled the iden-

tification of several novel putative genomic associations for plant height and tannin content, which were

not identified when using previous lower-density marker sets. WGS identified and scored variants in 5-kb

bins where available genotyping-by-sequencing (GBS) data captured no variants, with half of all bins in the

genome falling into this category. The predictive ability of genomic best unbiased linear predictor (GBLUP)

models was increased by an average of 30% by using WGS markers rather than GBS markers. We identified

18 selection peaks across subpopulations that formed due to evolutionary divergence during domestication,

and we found six Fst peaks resulting from comparisons between converted lines and breeding lines within

the SAP that were distinct from the peaks associated with historic selection. This population has served

and continues to serve as a significant public resource for sorghum research and demonstrates the value of

improving upon existing genomic resources.

Keywords: Sorghum bicolor, whole-genome sequencing, diversity panel, copy-number variants, genomic

prediction, genome-wide association studies, selection signatures, pleiotropy, genotyping-by-sequencing,

pan-genome.

INTRODUCTION

Sources of natural genetic variation are foundational to

crop improvement as they can be used in the genetic dis-

section of pivotal traits and the development of breeding

populations. Along with advances in modern statistics and

technology, maintenance and expansion of genetic diver-

sity within available germplasm is paramount to the

advancement of crop improvement. Since the early
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development of association mapping populations in maize

(Zea mays L.) (Thornsberry et al., 2001), these panels have

served to propel plant breeding by exploring genetic varia-

tion across diverse accessions with distinct history of evo-

lutionary divergence and local adaptation. Now, two

decades after that initial maize panel, all major cereal

grains have association panels, including barley (Hordeum

vulgare L.) (Stracke et al., 2009), maize (Romay et al., 2013;

Thornsberry et al., 2001; Yang et al., 2011), rice (Oryza

sativa L.) (Zhao et al., 2011), sorghum (Sorghum bicolor

(L.) Moench) (Brenton et al., 2016; Casa et al., 2008; Morris

et al., 2013), and wheat (Triticum aestivum L.) (Garcia

et al., 2019; Lopes et al., 2012). Association mapping pan-

els leverage the existing natural variation – both genetic

and phenotypic – of a population to resolve complex trait

variation to the genomic features influencing the pheno-

typic variance. As such, the diversity of germplasm in an

association panel is vital to increase our understanding of

causal biological mechanisms and translate to crop

improvement (Gupta et al., 2014).

The Sorghum Association Panel (SAP), the first sorghum

diversity panel, is composed of temperate-adapted breed-

ing lines, as well as converted (photoperiod-insensitive)

tropical accessions from the Sorghum Conversion Program

(SCP) (Klein et al., 2008; Stephens et al., 1967). The acces-

sions in the SAP were selected to maximize the genetic

and phenotypic diversity of the panel as well as capture

accessions that are important for understanding the demo-

graphic history and historical breeding importance based

on known resistances or tolerances to abiotic and biotic

stresses (Casa et al., 2008). Sorghum’s broad geographic

distribution (Casa et al., 2008; De Wet & Harlan, 1971) and

carbon-partitioning regimes (Boatwright et al., 2021) have

resulted in two classification systems that distinguish

accessions based on variation by race and carbon parti-

tioning, with race representing the predominant classifica-

tion system in the SAP. Sorghum is classified into five

botanical races: bicolor, caudatum, durra, guinea, and

kafir, which are thought to have resulted through multiple

domestication and adaptation events across different cli-

nes (Harlan & Stemler, 1976; Morris et al., 2013).

The SAP was originally genotyped using simple sequence

repeat markers (Casa et al., 2008) and later sequenced using

restriction site-based genotyping-by-sequencing (GBS) to

obtain low-coverage single-nucleotide polymorphism (SNP)

data (Boyles et al., 2016; Morris et al., 2013). However, as

sequencing costs have continued to decline, large association

panels such as the SAP can be sequenced using whole-

genome sequencing (WGS) at a lower cost to generate reli-

able genomic variants at high density for applications in

genetics and breeding (Causse et al., 2013). These high-

throughput sequencing data can enable computational analy-

ses for genomics-assisted breeding with the help of diverse

variant types including SNPs, insertions/deletions (indels),

and larger structural variants (SVs). These variant types are

also valuable for understanding genetic diversity when com-

bined into variant graphs, also known as pan-genomes

(Hickey et al., 2020; Jensen et al., 2020). Increased variant

density also permits the identification of causal variants as

opposed to variants that simply lie in linkage disequilibrium

(LD) with causal variants. The application of WGS to the SAP

will increase the power and utility of the SAP, just as GBS

improved upon SSR markers, and serve to expand upon the

identified genetic diversity that facilitates genome-wide asso-

ciation mapping (GWAS) and genomic selection in sorghum

(Ersoz & Yu, 2009).

A variant graph better represents the true diversity of

variant information across a population and ameliorates

issues associated with mapping bias inherent in traditional

reference-based genomics (Bayer et al., 2020; Jensen

et al., 2020). When a traditional reference genome is used,

variants missing from the reference, such as those arising

from recent duplications or deletions, cannot be identified

by quantitative trait locus (QTL) mapping or GWAS (Della

Coletta et al., 2021). Such limitations are particularly perva-

sive when studying diverse accessions, and while using a

different reference genome can circumvent this issue, vari-

ant graphs are particularly well suited to capture this infor-

mation and significantly reduce mapping biases (Della

Coletta et al., 2021). Additionally, tools such as the GATK

(McKenna et al., 2010; Poplin et al., 2017) permit joint call-

ing of variants across samples in a population to increase

the power to detect true variants, and when indels are pre-

sent, the joint calling methods can assess variants through

localized assembly from the read data to reduce the impact

of read mapping biases on variant discovery (Poplin

et al., 2017). Together, these tools permit robust variant

discovery along with development of a diverse pan-

genomic reference for future studies in sorghum.

In this study, we report the development and use of high-

density genomic variants including SNPs, indels, and copy

number variants (CNVs) for population and translational

genomic analysis using WGS. The application of high-

throughput genotyping and robust variant discovery for the

highly diverse SAP provides the genomic resources neces-

sary for acceleration of gene discovery, genomics-assisted

breeding, and genetic engineering toward improved cultivar

development and carbon-negative agriculture. We demon-

strate the value of the WGS genomic resource over GBS

markers through comparative advantages in the identifica-

tion of novel genomic associations and increased accuracy

in genomic prediction for various traits.

MATERIALS AND METHODS

Plant material and datasets

A total of 400 accessions in the United States SAP (Casa

et al., 2008) were obtained through the Agricultural
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Research Service Germplasm Resources Information Net-

work (ARS-GRIN) (http://www.ars-grin.gov) (File S1). Seed-

lings were grown by sowing three to five seeds from each

accession in a plastic pot in the Biosystems Research Com-

plex greenhouse at Clemson University, Clemson, SC. Tis-

sue was collected from 2-week-old seedlings and

lyophilized for three days in a LABCONCO FreeZone 4.5-L

−50°C benchtop freeze dryer prior to DNA extraction.

Phenotypic data for all the traits used in genome-wide

association and prediction analyses were derived from pre-

viously published datasets (Boyles et al., 2016; Boyles

et al., 2017; Sapkota, Boatwright, et al., 2020; Sapkota,

Boyles, et al., 2020). We accessed the publicly available

GBS data for the SAP to conduct comparative analyses

between our WGS data and GBS marker data (Boyles

et al., 2016; Morris et al., 2013).

Whole-genome sequencing data production and

processing

WGS data was generated by RAPiD Genomics, Gainesville,

FL using DNA extracted from lyophilized leaf tissue. WGS

libraries were paired-end sequenced at approximately 30×
coverage using an Illumina NovaSeq sequencer resulting in

2 × 150-bp reads. WGS reads were cleaned using fastp

(Chen et al., 2018) before aligning with BWA version 0.7.17

(Li & Durbin, 2010) to the BTx623 version 3.1 annotated

reference genome (McCormick et al., 2018) obtained from

Phytozome (https://phytozome-next.jgi.doe.gov/) (Goodstein

et al., 2012). Both SNP and indel variants were called using

the Genome Analysis Toolkit (GATK) pipeline version 4.1.7.0

(McKenna et al., 2010) following GATK best practices

(DePristo et al., 2011; Van der Auwera et al., 2013). Joint call-

ing in the GATK was used to increase sensitivity for low-

frequency variants, to better distinguish between homozy-

gous reference sites and sites with missing data, and to

maximize SNP fidelity by allowing accurate error modeling

(Poplin et al., 2017). Variants were subsequently quality fil-

tered using QD < 2.0, InbreedingCoeff < 0.0, QUAL < 30.0,

SOR > 3.0, FS > 60.0, MQ < 40.0, MQRankSum < −12.5, and
ReadPosRankSum < −8.0. Beagle version 5.1 was used to

impute missing genotype data for biallelic SNPs in the vari-

ant call format (VCF) file resulting from the GATK pipeline.

SNP density plots were generated using R-CMplot version

3.6.0 (https://github.com/YinLiLin/R-CMplot) in the R pro-

gramming language (Core, 2019).

The inbreeding coefficient and nucleotide diversity were

calculated using VCFtools version 0.1.16 (Danecek

et al., 2011). Nucleotide diversity was estimated using a

non-overlapping 1-Mb sliding window and plotted using

Circos (Krzywinski et al., 2009). The effects of SNPs and

indels were predicted using snpEff (Cingolani et al., 2012)

and general variant statistics were collected using BCFtools

(Danecek et al., 2021). The variant metrics and predictions

were collected and plotted using MultiQC (Ewels

et al., 2016). GBS and WGS variant effect counts were col-

lected from the snpEff results and plotted using Excel. To

compare GBS and WGS coverage, SNPs were counted

with bin sizes of 5, 10, 15, 20, and 40 kb using a custom

Python script and plotted using ggplot2 (Wickham, 2016).

The LD decay plot was generated using PopLDdecay v3.40

(Zhang et al., 2019) and custom R scripts (Core, 2019). Hap-

loBlocker v1.6.06 (Pook et al., 2019) was used to identify

subgroup-specific haplotype blocks where a haploblock is

defined as a sequence of genetic markers that occurs at

least five times within the population. Each accession is

then checked to determine if they contain a similar

sequence of markers, which serves to screen the popula-

tion in a group-wise, identity-by-descent manner (Pook

et al., 2019). The number of ancestral populations repre-

sented by the SAP was estimated using the R package ade-

genet v2.1.3 (Jombart, 2008) where a discriminant analysis

of principal components (DAPC) was performed for 1–12
clusters and the Bayesian information criterion (BIC) was

used to identify the optimal number of clusters to describe

the population. Subsequently, ADMIXTURE v1.3.0 was exe-

cuted using the number of clusters estimated from DAPC as

K to visualize the degree of admixture across the SAP

(Alexander et al., 2009; Alexander & Lange, 2011). Gene net-

work analysis and enrichment were performed using the

STRING database (https://string-db.org/) (Franceschini

et al., 2013). STRING represents a database of known and

predicted protein–protein interactions and provides network

models and enrichment statistics. Functional enrichment of

gene ontologies was filtered using a false discovery rate of

0.01, and the minimum required interaction score was set to

high confidence (0.7).

Numerous tools can detect CNVs from WGS data, but the

complexity of plant data can complicate accurate variant

calling, especially when many tools were designed with

default settings suited for human data (Wijfjes et al., 2019).

As such, we called CNVs using Hecaton v0.3.0 (Wijfjes

et al., 2019), which uses multiple CNV tools, including

DELLY v0.8.5 (Rausch et al., 2012), GRIDSS v2.0.1 (Cameron

et al., 2017), LUMPY v0.2.13 (Layer et al., 2014), and Manta

v1.4.0 (Chen et al., 2016), to detect CNVs before using a ran-

dom forest model to distinguish probable false positive

from true positive variant calls based on a pre-trained

model specific to plants. Hecaton has been shown to out-

perform current methods when applied to short-read WGS

data of Arabidopsis, maize, rice, and tomato (Solanum

lycopersicum L.) (Wijfjes et al., 2019).

Genome-wide analysis for selection signatures

Subpopulations identified using ADMIXTURE analysis

(K = 6) were used to estimate Fst according to the methods of

(Weir & Cockerham, 1984) using the vcftools function --weir-

fst-pop on the SNP variants after filtering for minor allele fre-

quency (MAF) > 5% for each subpopulation (Danecek
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et al., 2011). A window size of 1 Mb with a step size

of 100 kb was used for calculation. Fst estimates were calcu-

lated for each subpopulation against all other subpopula-

tions, and the mean Fst for a subpopulation at a genomic

window was computed as averaged Fst of a subpopulation

against all other subpopulations for that genomic window.

Additionally, we also computed Fst between accessions

derived from sorghum conversion program (N = 240) and

temperate breeding lines (N = 96) within the panel using the

same parameters mentioned above (File S1). Tajima’s D for

the whole panel was calculated for 1-Mb non-overlapping

windows using the vcftools function --TajD.

Genome-wide association studies

The software GEMMA v0.98.1 (Zhou et al., 2013; Zhou &

Stephens, 2012) was used for GWAS. The imputed VCF file

containing biallelic SNPs was converted to PLINK format

using PLINK (Purcell et al., 2007), and GEMMAwas then used

to calculate a standardized relatedness matrix for linear

mixed modeling on the filtered data (−-miss = 0.3 --maf =
0.05). All models were run using a MAF filter of 0.05 and lin-

ear mixed models (LMMs) of the following the form:

y ¼ Xβ þ Zu þ ϵ;u ∼ N 0,Gð Þ; ϵ ∼ N 0, Rð Þ (1)

where y is a vector of phenotypic values for a single trait,

X is a numeric genotype matrix generated from the SNPs,

β represents an unknown vector of fixed effects and

includes the effect size for each SNPs, Z is the design

matrix for random effects, u is an unknown vector of ran-

dom effects, and ε is the unknown vector of residuals.

These models test the alternative hypothesis H1: β ≠ 0

against the null hypothesis H0: β = 0 for each SNP. Manhat-

tan and Q-Q plots were generated using R-CMplot version

3.6.0 and ggplot2 version 3.3.5. GEMMA was also used to

run Bayesian sparse LMMs (BSLMMs) to better identify

causative variants, with a probit model used for binary

phenotypic data. The BSLMM model assumes fixed effects

are distributed according to the sparse prior β ∼ πN(0,

σ2aτ−1) (Zhou et al., 2013). LD statistics were calculated for

significant loci using PLINK v1.9 (Purcell et al., 2007).

A multivariate adaptive shrinkage approach was used to

assess the degree of pleiotropic effects across the traits.

Using the estimated effect sizes and standard errors for

each marker from the GEMMA LMMs, a local false sign

rate (lfsr) was calculated on a condition-by-condition basis

using ashr in R (Stephens, 2016) to filter variants based on

lfsr < 0.1. The lfsr represents the probability of incorrectly

assigning the sign of an effect. The lfsr has been demon-

strated to serve as a superior measure of significance over

traditional multiple-testing corrections such as Bonferroni

or false discovery rate (Benjamini & Hochberg, 1995) due

to its general applicability and robust estimation process

(Stephens, 2016). A control set of 1 200 000 random mark-

ers was also generated from the full set of markers to

estimate the covariance between markers for each pheno-

type. From this control set, a correlation matrix was esti-

mated using MashR (Urbut et al., 2019) to control any

confounding effects arising from correlated variation

among the traits. Using both canonical and data-driven

covariance matrices, we tested for pleiotropy across traits.

Posterior probabilities were estimated for each marker

using a mash model with all marker tests. The CDBNge-

nomics R package (MacQueen et al., 2020) was then used

to extract Bayes factors and generate a Manhattan plot of

the mash results where Bayes factors > 3 were considered

significant for pleiotropic effects.

Genome-wide prediction

Previously published SAP phenotypic data (Boyles

et al., 2016; Boyles et al., 2017; Sapkota, Boatwright,

et al., 2020; Sapkota, Boyles, et al., 2020) were used to

compare genomic prediction results between WGS and

GBS marker data using the R package sommer

(Covarrubias-Pazaran, 2016). A genomic best linear unbi-

ased prediction (GBLUP) model of the following form was

fit:

yi ¼ μþ gj þ εij (2)

where yi is a vector of BLUPs for trait i, { is the overall

mean, gj is a vector of random effect of genotypes with g ∼
N(0, Aσ2g), where σ2g is additive genetic variance and A is

the realized additive relationship matrix calculated from an

n × m genotype matrix with n genotypes and m markers

using the A.mat function from the rrBLUP package (Endel-

man & Jannink, 2012), and ɛij is a vector of residuals that

are identical and independently distributed with ɛ ∼ N(0,

Iσ2e), where σ2e is the residual variance and I is an identity

matrix.

Model performance was assessed using a 10-fold cross-

validation where nine datasets were used for model train-

ing and the remaining dataset was used as the testing set.

Predictive ability was calculated as Pearson’s correlation

coefficient between predicted and observed values for the

testing set. A total of 100 iterations were run for each trait

using the set.seed function in R for sampling seeds from

123 to 222. The predictive ability was compared between

GBS and WGS using the pairwise t-test (pairwise.t.test

function in R), and P-values were adjusted using Ben-

jamini–Hochberg correction (Benjamini & Hochberg, 1995).

Variant graph construction

A variant graph was constructed using vg (Hickey

et al., 2020), which incorporated the Sorghum BTx623 ref-

erence genome together with SAP variants (SNPs, indels,

and CNVs) called using the GATK (McKenna et al., 2010)

and Hecaton (Wijfjes et al., 2019) pipelines. Individual chro-

mosomes were constructed using vg construct with the

options --handle-sv and --node-max of 32. After
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chromosome-level construction, each subgraph was given

unique node identifiers using vg ids before building a sin-

gle joint variant graph in XG format, which permitted

querying of the variant graph and alignment of read data.

Reads obtained from (Mace et al., 2013) were then aligned

using the joint variant graph and vg map with default

parameters. The resulting GAM file was quality filtered and

used to calculate read support with vg pack before calling

variants on individual samples with vg call.

RESULTS

SNPs, indels, and CNVs

We sequenced 400 accessions from the SAP at an average

coverage of 38×, ranging from 25× to 72× (Figures S1 and

S2), representing a total of approximately 82 billion reads

or approximately 11 trillion bases after quality control.

Reads exhibited highly consistent GC content across all

samples (Figure S3). The SAP genotypic data contained

43 983 694 variants, which includes SNPs (approximately

38 million) and indels (approximately 5 million) identified

using the GATK pipeline and CNVs (approximately

170 000) called using Hecaton (Table S1). A total of

19 708 560 SNPs passed quality filtering based on variant

likelihood metrics and 5 420 745 SNPs of these SNPs

exhibited MAF > 5%. Using the quality filtered SNPs,

snpEff estimated the overall transition/transversion ratio at

1.89 (Figure S4). Approximately 50% of the predicted vari-

ant effects fell into intergenic regions, with 20% occurring

in upstream regions, 19% in downstream regions, and

11% in the remaining genic regions. The variant effects

were distributed at a low frequency among low (451 663),

moderate (439 159), and high impacts (15 019). In total,

9978 genes overlapped with high-impact variants while

low- and moderate-impact variants accounted for nearly

all annotated genes at 44 219 and 44 752 genes, respec-

tively. To compare the coverage quality of our WGS data

to existing GBS marker data, we binned variants in 5-kb

windows across the genome. In our comparison, we

observed that the GBS data did not have any variants for half

of the bins across the sorghum genome, whereas WGS had

at least one variant in those bins (Figure 1a). Consistent with

the methylation-sensitive nature of the ApeKI enzyme used

to generate the GBS marker data, the GBS markers exhibited

a strong bias toward genic regions while the distribution of

variants in WGS data largely mirrored the overall proportion

of genic and intergenic sequences in the sorghum genome

with approximately 50% of total markers located in the inter-

genic regions, which were defined as variants between

annotated gene models or between a gene and the end of a

chromosome (Figure 1b). In general, the WGS data showed

higher variant density on chromosome arms and in telom-

eric regions than in pericentromeric and centromeric regions

(Figure 2a).

The genome-wide average nucleotide diversity was 2.4

× 10−3 for the entire population with variation in SNP den-

sity across the genome showing telomeric regions accu-

mulate more mutations than centromeric regions because

of higher recombination rates (Figure 2a). A total of

2 652 314 indels were identified after quality filtering with

a strong telomeric bias in distribution (Figure 2a). The

majority (82.56%) of indels were less than 15 bp in length

(Figure 2b; Figure S5), but the largest indel was 387 bp.

Larger CNVs identified using Hecaton, ranging from 49 bp

to 1 Mb, were retained for analyses, whereas all CNVs over

1 Mb in length were deemed false positives due to the lim-

itations of short-read data (Wijfjes et al., 2019). We identi-

fied nearly seven times more CNVs compared to a

previous study in sorghum (Songsomboon et al., 2021)

likely due to the variant callers used as Songsomboon

et al. (Songsomboon et al., 2021) only used LUMPY, but

we used LUMPY and three other variant callers within

Hecaton. The identification of indels is relative to the refer-

ence genome used. So, while it is possible that the BTx623

reference may have abnormally high copy numbers, the

likely explanation for such high prevalence of deletions

over insertions is that the variant callers can more easily

identify deletions due to the loss of coverage associated

with deletions. Not only did the distribution of CNV types

show a preponderance of deletions over insertions (Fig-

ure 2c), these variant types were also more densely dis-

tributed around telomeric regions (Figure 2a), which is

consistent with previous observations in sorghum (Song-

somboon et al., 2021).

Population structure, haplotype blocks, and variant graph

construction

We estimated the LD decay distance for individual chromo-

somes as well as for the whole genome because LD influ-

ences the genetic mapping resolution and is essential in

haplotype construction. The genome-wide average dis-

tance at which LD decayed to r2 < 0.2 was approximately

around 20 kb and the LD decay leveled out around 150 kb

(Figure S6). Chr6 exhibited consistently higher LD com-

pared to the other chromosomes, which is consistent with

previous reports of limited recombination in Chr6 (Hu

et al., 2019; Wang et al., 2013), and as a result, the average

physical size of estimated haplotype blocks was larger for

Chr6.

DAPC estimated the optimal number of clusters to be

eight, but there was no significant difference in BIC for

cluster counts between 6 and 11 (Figure S7, Figure S8). For

simplicity, we opted to use the lowest number of popula-

tion clusters (K = 6) with lower BIC for subsequent ADMIX-

TURE analysis. The subpopulation grouping in the

population structure analysis led to four clusters that

correspond to the four botanical races of sorghum (cauda-

tum, kafir, guinea, and durra) (Figure S9). The fifth
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subpopulation cluster consisted of several durra-bicolor

accessions that were historically categorized as milo and

therefore we referred to that subpopulation/racial type as

milo (Figure S9). The sixth subpopulation consisted of

some durra accessions but were mostly composed of

mixed-race accessions and the accessions classified as

bicolor, which is thought to be the early sorghum domesti-

cate and therefore does not form a separate subpopulation

cluster (Harlan & Stemler, 1976; Sapkota, Boyles,

et al., 2020). The first 10 components in principal compo-

nent (PC) analysis accounted for about 36% of the genomic

variation, with the first three PCs explaining 9.36%, 7.86%,

and 3.78% of the variation, respectively. The first PC sepa-

rated kafir accessions from caudatum, PC2 separated kafir,

caudatum, and durra from milo, and PC3 distinguished

guinea accessions from all other accessions (Figure 3a,b).

Ancestral population admixture was consistent with

observed historical patterns among the sorghum races

with greater admixture among approximately one fourth of

the accessions (Figure 3c). We also estimated haplotype

blocks to understand the patterns of linkage across the sor-

ghum genome and the potential effects linkage may have

on selection. A total of 35 029 haplotype blocks with an

average length of 40 kb were identified using Haploblocker

(Pook et al., 2019), which examines linkage across popula-

tion subgroups to estimate haplotype blocks. Over 4000

blocks were identified in chromosomes 2, 4, and 5, but

fewer than 3000 blocks were identified in chromosomes 6,

7, and 9 (Table S2). The remaining chromosomes con-

tained between 3000 and 4000 haplotype blocks based on

the SAP accessions. These results indicate that selection

has likely been stronger on chromosomes 6, 7, and 9 and

resulted in fewer and larger haplotype blocks, which is

consistent with the selection of the major dwarfing loci on

these chromosomes as part of the sorghum conversion

program.

We used the variant graph software vg to successfully

generate a pan-genome, examine the locus haplotype

structure in the SAP, map WGS reads from Mace et al.

(Mace et al., 2013), and call SNPs, indels, and CNVs from

the sample alignments using the external read data. The

mapping of external data serves to demonstrate the direct

applicability of these SAP data to support pan-genomics

and variant calling from a pan-genome. We obtained

approximately 3 million variants per sample that subse-

quently reduced to approximately 1 million per sample fol-

lowing quality filtering. As the sequencing data from Mace

et al. represent similar coverage, differences in variant cov-

erage likely arise from differences in methods used in vari-

ant calling. Compared to joint calling via the GATK

pipeline and CNV calling using Hecaton, vg was able to call

all variant types in a single run with a significantly shorter

runtime than the alternative approaches employed above.

However, the total number of variants obtained was an

order of magnitude lower. This is likely due to several fac-

tors including increased power to detect variants when

sharing haplotype and coverage information in joint calling

(Poplin et al., 2017), the use of multiple CNV callers by

Hecaton (Wijfjes et al., 2019), and the state of development

for the variant calling methodology in vg (Hickey

et al., 2020).

Genomic signatures of selection

The development of sorghum racial types is thought to be

an outcome of multiple domestication events and subse-

quent local adaptations leading to the distinct population

structure observed (Harlan & Stemler, 1976; Kimber

et al., 2013; Morris et al., 2013). The resulting population

structure is congruent with these racial types, as evidenced

by the population (SAP) we have sequenced in this study.

We attempted to identify and contrast signatures of his-

toric selections during domestication to those that have

Figure 1. Comparison of genotype-by-sequencing (GBS) and whole-genome sequencing (WGS) single-nucleotide polymorphism (SNP) distributions. Total bin

count and counts for bins where GBS data lacked a SNP but WGS had SNPs across different bin sizes are shown in panel (a), and panel (b) includes the percent-

age of variants across the major genic and intergenic regions for both GBS and WGS data.
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occurred recently due to the photoperiod conversion of

tropical accessions and/or selections made by breeding

programs. We computed genome-wide Fst between racial

subgroups arising from evolutionary diversification to

identify signatures of historic selection, whereas genome-

wide Fst peaks between the latter groups (converted and

Figure 2. Genome-wide variant coverage and diversity. (a) Circos plot containing tracks for the sorghum karyotype (a), SNP density heatmap (b), indel his-

togram (c), copy number variant (CNV) histogram (d), nucleotide diversity (e), and genes (f). (b) Line plot demonstrating the total number of indels across vary-

ing indel lengths. (c) Histogram and kernel density estimate for CNV counts across varying log2 CNV lengths.
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bred) were used to identify signatures of artificial selection

due to temperate conversion and/or breeding.

Several regions across the genome showed selective

sweeps (Fst peaks) for subpopulations identified using pop-

ulation structure analysis (Figure S10). There were 18

genomic regions with strong selection peaks, of which four

regions across three chromosomes (Chr2, Chr3, and Chr8)

had common Fst peaks in at least three subpopulations

(Table 1, Figure S10). The selected region around 45–
54 Mb of Chr2 that had strong peaks for all subpopulations

but the kafir subpopulation has around 279 genes and

seven QTL previously mapped to this region (Table 1).

Among the seven QTL in this region were three mapped

for tannin by Rhodes et al. (Rhodes et al., 2014) and one

each for amylose (Chen et al., 2019), panicle length (Morris

et al., 2013), seedling survival (Bekele et al., 2014), and

anthracnose resistance (Cuevas & Prom, 2020). Among the

genes within this region, 24 genes had coiled-coil domains

and showed significant enrichment based on the gene net-

work analysis site STRING (https://string-db.org/). Another

commonly selected region around 21–29 Mb of Chr3 had

68 genes that included several genes involved in biological

regulation and molecular function including photosynthe-

sis, but no QTL was previously mapped in the region

(Table 1).

In general, the milo subpopulation had the highest num-

ber (eight) of significant sweeps, followed by durra

(seven), while kafir had the lowest (1) (Table 1). One poten-

tial explanation for this could be the evolutionary and

demographic history of these racial types. The kafir race is

the youngest among the botanical sorghum races while

the durra race, which includes the milo type, is believed to

have independently formed away from the African content

(Kimber et al., 2013). The only strong selection sweep iden-

tified in kafir was unique to the subpopulation and ranged

from 24 to 55 Mb of Chr5 (Table 1). The caudatum subpop-

ulation had a selection peak at 64–66 Mb of Chr4 near the

Tan1b locus (Sobic.004G280800), which is associated with

tannin/polyphenolic content (Wu et al., 2012). Milo showed

strong selection between 70 and 71 Mb of Chr1, which is

near the Y locus (Sobic.001G397900) that encodes for yel-

low pericarp (seed color) in sorghum (Ibraheem

et al., 2010) and was captured using testa pigmentation

(Figure S10). Durra, the subpopulation that is closely

Figure 3. Population structure within the sorghum

association panel using principal component analy-

sis and an admixture model (K = 6). Subpopula-

tions were labeled with corresponding botanical

races or sorghum types that predominated for a

given subpopulation. Subplots represent the (a)

projection of panel accessions by the first principal

component (PC1) and PC2, (b) projection by PC2

and PC3, and (c) the degree of admixture across the

subpopulations using consistent subpopulation col-

ors across all subplots.

Table 1 Regions with strong (mean + 3 × standard deviation)
selection sweeps based on Fst estimates for racial subpopulations
identified from admixture analysis. Start and end positions are
measured in Mb

Race/subpopulation Chra Start End Genesb QTLc

Durra 1 20.0 22.2 195 16
Mixed 1 40.8 41.8 0 0
Milo 1 70.3 71.3 193 43
Caudatum, durra, guinea,

milo, mixed
2 45.2 53.6 279 7

Guinea 2 70.9 72.7 335 50
Milo 2 76.9 78.7 159 0
Caudatum, durra, milo,

mixed
3 21.2 29.4 68 0

Durra 3 14.1 15.2 74 26
Guinea 3 17.1 19.6 93 0
Milo, guinea, caudatum 3 40.2 45.7 88 0
Durra 3 48.5 50.5 69 35
Caudatum 4 64.4 66.0 255 71
Milo 5 19.0 20.6 58 0
Kafir 5 24.2 55.0 272 16
Caudatum, durra, milo 8 7.8 11.4 121 14
Durra 8 18.0 23.0 38 0
Guinea 10 39.7 40.8 4 0
Milo 10 61.1 62.2 19 2

aChromosome abbreviated as Chr.
bNumber of genes based on sorghum BTx623 V3.1.1 annotation
(phytozome.org).
cQTL, quantitative trait loci; number of QTL within the genomic
region based on the Sorghum QTL atlas (https://aussorgm.org.au/
sorghum-qtl-atlas/).
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related to most of the accessions within the milo subpopu-

lation, also had a minor peak around this region (Fig-

ure S10). The only unique selection peak for the mixed

subpopulation occurred around the non-genic region rang-

ing from 41 to 42 Mb of Chr1. In general, most of these

genomic regions with strong selection signatures had

many characterized genes and several previously mapped

QTL in and around these regions (Table 1).

Based on the Fst estimates, a total of six genomic

regions showed strong selection sweeps between the

accessions in the converted and bred groups (Figure 4a).

The strongest peak was observed around 41–47 Mb of

Chr6. This region contains major-effect maturity (Ma1:

Sobic.006G057866) and height (Dw2: Sobic.006G067700)

genes that were introgressed for early maturity and short

stature, respectively, during sorghum conversion (Fig-

ure 4a). Another region that showed a strong selection

sweep was the region around the Tan1 gene, which is

associated with tannin content (Figure 4a). Additional

peaks were observed in the beginning of Chr1, Chr2, Chr4,

and Chr8. The genomic region around the waxy locus

(Sobic.010G022600) also showed a minor peak that was

one standard deviation above the mean but did not reach

two standard deviations (Figure 4a). We calculated

expected heterozygosity (2pq) for the converted and bred

groups on a per-site basis using allele frequencies (p and

q) of SNPs at a given site. Figure 4b shows expected

heterozygosity across each site for accessions in the con-

verted group relative to the accessions in the bred cate-

gory. The variation in relative heterozygosity for the two

groups was consistent with the distribution of Fst peaks

between the two groups (Figure 4a,b).

The genomic region around the dwarfing and maturity

genes showed stronger bottlenecks for nucleotide diversity

and Tajima’s D for the SAP (Figures 1a and 4c), and the

whole-genome average value for Tajima’s D was 3.45, indi-

cating that there are fewer rare alleles across the genome

because of extensive inbreeding across the population.

Most of the genomic regions showed Tajima’s D above the

mean value indicating balancing selection while some

regions particularly at Chr1, Chr3, and Chr6 showed strong

bottlenecks indicative of purifying selection (Figure 4c).

The regions in the middle of Chr6 and Chr7 showed a

strong bottleneck in Tajima’s D and expected heterozygos-

ity for converted lines compared to the breeding lines (Fig-

ure 4b, Figure S11).

Genome-wide association for plant height and tannin

content

In sorghum, plant height (PH) and tannin content have

been thoroughly examined due to their significant impacts

on both historic selection (Wu et al., 2019) and modern

agriculture (Dillon et al., 2007). PH in sorghum is geneti-

cally controlled by multiple genes including three

predominant loci (Dw1: Sobic.009G229800, Dw2:

Sobic.006G067700, and Dw3: Sobic.007G163800) explain-

ing a large majority of the phenotypic variation in our pop-

ulation. All three major dwarfing loci showed significant

association for PH using all three variant types indepen-

dently (Figure 5a). For both SNP and indel variants, we

also identified significant association for the previously

reported Dw4 locus, which occurs at approximately 6.6 Mb

on Chr6 (Miao et al., 2020; Morris et al., 2013). Addition-

ally, we identified a significantly associated indel at

approximately 6.5 Mb on Chr4 that overlaps with a previ-

ously identified QTL for total PH, flag leaf height, and flag

leaf to apex interval (Figure 5a, Table 2) (Li et al., 2015).

This locus contains eight genes, two of which are function-

ally annotated (Table 2). Among them, one gene is associ-

ated with the plant viral response, and the other gene

encodes an F-box protein, which is known to regulate plant

vegetative and reproductive growth. A novel locus that is

approximately 2 Mb downstream of maturity gene Ma3

(Sobic.001G394400) also showed a significant association

with PH for SNP as well as indel variants (Figure 5a,

Table 2). This locus is a hotspot for heat shock protein 70

(HSP70) with five HSP70 proteins within 20 kb and more

than 10 HSP70 proteins within 100 kb of the associated

SNP peak.

Tannin content is another important domestication trait.

While higher tannin content lowers nutrient uptake (Xiong

et al., 2019), the presence of such phenolic compounds

can conversely be important in reducing pest damage (Wu

et al., 2019) and provide antimicrobial (Shields et al., 2021)

and antioxidant activities that improve gut health (Xiong

et al., 2019). One of the established primary regulators of

tannin content is Tan1, which was identified in our GWAS

for tannin content using all variant types (Figure 5b).

Another important locus, Tan2 (TT8: Sobic.002G076600),

was not identified in GWAS using tannin content likely due

to duplicate recessive epistatic interactions between the

Tan1 and Tan2 loci (Wu et al., 2019). However, when we

conducted GWAS using phenotypic data indicating pres-

ence or absence of a testa layer in our SAP accessions

using a probit BSLMM, the Tan2 locus showed a signifi-

cant association using the SNP markers (Figure S12). Two

novel associations with strong peaks were identified for

tannin content with SNPs, indels, and CNVs between 60

and 61 Mb of Chr3 (Figure 5b; Figure S13). Previously, a

significant association had been identified with 3-

deoxyanthocyanidins around 59.7 Mb of Chr3 (Rhodes

et al., 2014). The novel loci at 60–61 Mb of Chr3 consist of

several potential candidate genes that are involved in

membrane transport, aromatic amino acid synthesis, and

terpenoid pathways (Table 2). The top SNP at approxi-

mately 60.7 Mb was located within Sobic.003G270500, a

gene encoding a farnesyl diphosphate transferase, which

functions in the biosynthesis of terpenes and terpenoids
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(Davis & Croteau, 2000). Similarly, peaks on Chr7 at

approximately 61.1 Mb and Chr9 at approximately 53.8 Mb

were previously associated with proanthocyanidins

(Rhodes et al., 2014), and the peak on Chr8 at approxi-

mately 61.1 Mb has been associated with both polyphenol

content and grain color (Rhodes et al., 2014).

Pleiotropy analysis for grain yield and quality traits

Using the 25 traits collected by Boyles et al. (Boyles

et al., 2016) and Sapkota et al. (Sapkota, Boyles,

et al., 2020), we first performed GWAS for all traits using

LMMs in GEMMA (Zhou & Stephens, 2012). From those

initial LMM results, 19 were subsequently analyzed for

pleiotropic effects using MashR (Urbut et al., 2019). MashR

uses empirical Bayes methods to estimate patterns of simi-

larity among conditions, and the resulting patterns are

then used to improve the accuracy of effect estimates.

Over 10 000 markers exhibited significant pleiotropic

effects – nearly 16× more than was identified for over 100

traits using GBS data – across the sorghum genome with

many well-known loci such as Dw1, Dw2, Dw3, Ma1, and

Ma3 (Figure S14) exhibiting strong pleiotropic effects

across multiple traits (Mural et al., 2021). Many markers

demonstrated an effect across 10 or more traits, and only

Chr10 did not exhibit significant pleiotropic effects across

more than five traits. Association results for various traits

Figure 4. Genome-wide signatures of selection. (a)

The mean Fst across the sorghum genome between

tropical converted and temperate breeding aces-

sions. (b) Expected heterozygosity in the converted

group relative to the bred group. (c) Genome-wide

Tajima’s D estimates. The horizontal lines show

mean and standard deviations of the estimates;

solid black lines show the genome-wide average

Tajima’s D; dotted lines show the mean plus 1 stan-

dard deviation; and long dashed lines show the

mean plus 2 standard deviations of the estimates.

Vertical dotted lines show genes and loci related to

height, maturity, and other domestication related

traits.

Figure 5. Genome-wide associations for plant

height (a) and tannin content (b) using linear mixed

models in GEMMA. Horizontal lines with solid, dot-

ted, and dashed patterns represent the Bonferroni-

adjusted threshold of 0.05 for SNPs, indels, and

CNVs, respectively. Vertical dotted lines indicate the

positions of known genes and loci for height (Dw),

maturity (Ma), and tannin (Tan).
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showed strong correlation between each other in pleiotro-

pic analyses of grain yield and quality traits (Figure S15,

Figure S16).

Genome-wide prediction using WGS and GBS markers

The value of WGS marker data was further explored by

estimating improvements to genomic prediction accuracy

compared to GBS markers. Prediction results using WGS

marker data showed significantly higher predictive ability

(P < 2e−16) for all traits compared to GBLUP models using

GBS marker data (Figure 6). Predictive ability was, on aver-

age, 29% higher for WGS, with increases ranging from 13

to 47% across the traits studied. Mean predictive abilities

ranged from 34 to 57% for GBS and from 44 to 71% for

WGS, with 1000-grain weight and protein having the high-

est and lowest predictive abilities across both marker

types, respectively. Among the traits, starch showed the

largest (47%) increase in mean predictive ability from GBS

to WGS, while days to anthesis showed the smallest (13%)

increase.

DISCUSSION

Since its development, the United States Sorghum Associ-

ation Panel has served as a pivotal resource for genetic

dissection and as a source of genetic diversity for breeding

(Boyles et al., 2019; Casa et al., 2008; Xin et al., 2021). The

SAP differentiates itself from other sorghum panels (Boat-

wright et al., 2021; Brenton et al., 2016; Morris et al., 2013)

through its composition, which was designed to capture

broad phenotypic and genetic diversity across important

U.S. breeding lines and converted tropical lines. This is in

contrast to panels such as the Bioenergy Association

Panel, which was restricted to tall, photoperiod-sensitive,

late-maturing accessions (Brenton et al., 2016), or any of

the multi-parent populations (Boatwright et al., 2021; Bou-

chet et al., 2017). To expand the breadth and depth of

genomic data available for this crucial diversity panel, we

sequenced the accessions in the SAP at a higher depth and

provide reliable, high-density genome-wide markers for

elucidating the genetic architecture of traits and propelling

genomics-assisted breeding. Previously, this panel was

only genetically characterized with GBS (Boyles

et al., 2016; Morris et al., 2013), which can be biased

toward genic sequences and therefore may misrepresent

diversity across the population or an individual within the

population (Pootakham et al., 2016). Available GBS data

captured 268 896 biallelic variants after quality filtering,

which is an order of magnitude fewer than what was cap-

tured using WGS in this study. Similarly, GBS methods do

not capture insertions or deletions with the same fidelity

as WGS methods. Here, with corroborating evidence, we

demonstrate the inherent value of WGS data in reduced

type-I and type-II errors, improved mapping resolution by

capturing more recombination events, increased depth of

variants called, and added benefits of different identifiable

variants leading to improvement in genetic dissection and

genome-wide prediction. Further, these broadly diverse

data will improve pan-genomic efforts that use either a sin-

gle reference genome, as demonstrated here, or multiple,

diverse reference genomes by capturing variation at a

higher scale than can be easily managed through multi-

reference pan-genome approaches.

High-density variants for genomic research and breeding

Apart from SNP markers, we identified a substantial num-

ber of indels and CNVs that contribute to our understand-

ing of the complexity of the sorghum genome and the

evolutionary processes that result in or develop from that

complexity (Bolger et al., 2014). To date, there are only a

few large-scale studies that have evaluated the utility of

high-throughput indel data for GWAS and genomic predic-

tion in human cohorts while no such study was found in

plants (Dai et al., 2020; Say, 2017). Detection of SNPs is

significantly easier than indel and CNV identification due

to sequencing and reference biases, library preparation

requirements, and algorithmic artifacts (Dai et al., 2020;

Fang et al., 2014). Indels represent the second-most com-

mon type of genetic variant. Yet, their value for identifying

genome-wide associations has been overlooked due to

limitations in both production cost and scalability

(Say, 2017). Few studies in sorghum have examined indels

and CNVs at scale (Ruperao et al., 2021; Songsomboon

et al., 2021; Tao et al., 2021; Zhang et al., 2014; Zheng

et al., 2011), and none of these demonstrated the compara-

tive value of all three variant types for GWAS. In fact, com-

parisons across all three variant types are limited to

human studies where funds and scalability are less limit-

ing, but even human studies lack a comprehensive review

of the topic (Dai et al., 2020; Say, 2017). Identification of

indels and CNVs requires unbiased high-throughput

Table 2 Novel putative associated loci identified using whole-
genome sequencing (WGS) data. Peak coordinates are repre-
sented in bases

Trait
Variant
type Chra Peak SNPb

−log10

(P-value)
Gene
countc

PH SNP 1 69 987 248 9.93 4
PH Indel 4 7 622 167 8.60 8
PH CNVd 7 9 225 709 7.04 1
Tannin SNP 3 60 368 179 8.27 15
Tannin SNP 3 60 722 769 9.80 6
Tannin SNP 8 45 442 123 11.87 2
Tannin SNP 8 61 186 817 9.92 9

aChromosome abbreviated as Chr.
bSingle-nucleotide polymorphism abbreviated as SNP.
cTotal genes within 20 kb of the peak SNP for the associated
locus.
dCopy number variant abbreviated as CNV.
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sequencing or long-read sequencing to confidently call

variants (Abel & Duncavage, 2013), and as the SAP was

sequenced at a coverage of approximately 38×, this dataset

is uniquely suited to obtain high-quality variants of all

three types. The number of SNPs generated in our study is

consistent with the sequencing depth and population scale

differences as previously reported for WGS in sorghum

(Mace et al., 2013). However, the variants captured here

cover more accessions than any other sorghum panel

sequenced at similar depths.

Population structure, haplotypes, and variant graphs

Population structure analyses conducted using SSR mark-

ers were confirmed by the development of restriction site-

associated DNA sequencing, such as GBS (Brown

et al., 2011; Casa et al., 2008; Mir et al., 2013; Morris

et al., 2013). However, the true value of GBS was realized

in downstream applications that showed increased map-

ping resolution for genome-wide association studies due

to increases in genome coverage and ease of genotyping

compared to SSR markers (Mir et al., 2013). Similarly,

results for population structure and genetic diversity analy-

sis based on WGS data are similar to results based on

GBS-based markers despite increased marker density,

which is not surprising considering SSR markers accu-

rately capture population structure despite having much

lower coverage than GBS markers (Friel et al., 2021). Con-

sistent with previous characterizations for the SAP, our

population structure analysis subdivided the population

into approximately six groups, which is consistent with the

four botanical racial types, a milo subpopulation that

includes the durra-bicolor of historic importance in breed-

ing and one admixed group that includes some durra race

accessions, mixed-race accessions, and bicolor accessions

that are thought to be the early domesticate and do not

form a separate cluster (Brown et al., 2011; Harlan & Stem-

ler, 1976; Sapkota, Boyles, et al., 2020; Wang et al., 2013).

The average LD decay distance was approximately 20 kb

(r2 < 0.2) for the whole genome but varied across chromo-

somes (Hamblin et al., 2004). Notably, Chr6 failed to reach

background levels (r2 < 0.2), which is consistent with previ-

ous results that found limited recombination on Chr6 (Hu

et al., 2019; Wang et al., 2013).

To date, there have been three sorghum pan-genomes

published (Jensen et al., 2020; Ruperao et al., 2021; Tao

et al., 2021). These pan-genome construction efforts in sor-

ghum either utilized a smaller population size (N = 176)

and lower coverage (approximately 10×) (Jensen

et al., 2020; Ruperao et al., 2021) or called variants using

sequence differences across multiple references (Tao

et al., 2021). Here, we identified more variants using higher

coverage across more individuals, which will act as a piv-

otal resource for future pan-genomics in sorghum. Pan-

genomes have the potential to provide significantly more

information concerning potential haplotype structure

across diverse panels than traditional reference genomes

and can reduce the effects of reference sequence bias on

read mapping and subsequent variant calling (Bayer

et al., 2020).

While some pan-genomic tools utilize pairwise align-

ment of multiple reference genomes to generate a pan-

genome (Li et al., 2020), the iterative alignment of refer-

ence genomes can result in a biased pan-genome (Hickey

et al., 2020). The broad-scale high-throughput sequencing

of diverse accessions can be foundational for development

and visualization of variant graphs (Figure S17), particu-

larly when the degree of large structural variants in a pop-

ulation is low. While variant graphs and pan-genomics are

the future of reference-based genomics, we identified more

quality variants using the GATK and Hecaton than utilizing

a variant graph approach with vg. Thus, while construction

of a variant graph has the potential to reduce reference

bias, the gains in bias reduction should be measured

against the potential variant coverage that established vari-

ant callers can provide. To fully exploit the benefits of vari-

ant graphs, variants should be called using pan-genomes

constructed from multiple references so that contrasting

haplotypes within a population or species can be captured.

Such future projects can also generate advanced pan-

genomes with variant data from diversity panels such as

those described here to capture a broader range of the

genetic variation represented in sorghum.

Distinct signatures for historic selection versus recent

selection

Since the accessions in the SAP include various botanical

races arising from evolutionary divergence and local adap-

tation, the genetic differentiation between racial types is

indicative of differences arising from historic selection dur-

ing domestication. Additionally, the accessions can also be

Figure 6. Predictive ability for genomic prediction

of traits using whole-genome sequencing (WGS)

and genotyping-by-sequencing (GBS) markers.

Cal.g, calories per gram; DTA, days to anthesis;

GNP, grain number per primary panicle; PH, plant

height; TGW, 1000-grain weight; YPP, yield per pri-

mary panicle.
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divided differently into two groups: one group of individu-

als in the SAP are the converted lines from the SCP that

were introgressed with maturity and height loci for pho-

toperiod conversion and short stature (Klein et al., 2008;

Stephens et al., 1967), whereas the other group of individ-

uals include the cultivars that were not only temperate-

adapted but were bred and selected through multiple

generations and as a result new recombination events

have resulted in potentially different allelic combinations

across the genome (Klein et al., 2008; Sapkota, Boyles,

et al., 2020).

The genome-wide signatures of selection were distinct

for historic selection during domestication and local adap-

tation compared to selection signatures resulting from

recent selection activities during photoperiod conversion

and/or breeding (Figure 4). Since the converted lines were

distributed across all botanical races, there were no distinct

Fst peaks around the three genomic regions in Chr6, Chr7,

and Chr9 that harbor the introgression for dwarfing and

maturity genes into exotic tropical lines by the SCP. Thur-

ber et al. (Thurber et al., 2013) had previously shown that

introgression during the conversion process did not have

any bearing on population structure analysis of converted

lines. Based on the Fst peaks observed between the con-

verted accessions and temperate-adapted breeding lines,

the haplotypes for the introgressed region in Chr6 could

be distinct from those in converted lines, whereas the

other two introgressed regions in Chr7 and Chr9 show little

differentiation from the breeding lines. This might be due

to abundance of recessive alleles for Dw1 and Dw3 while

the dwarfing allele for Dw2 locus is rare among the breed-

ing lines.

The genomic region in Chr2 (45–54 Mb) that showed

common Fst peaks across all races exhibits a combination

of positive selection at the beginning of the region with

some bottleneck toward the end. The region at 53–54 Mb

shows a strong bottleneck below two standard deviations

of the mean Tajima’s D estimate, and an associated peak

for anthracnose resistance was previously identified within

this region, around 53.79 Mb of Chr2. This locus contains a

large (32 kb) sorghum gene, Sobic.002G169633, which is

located approximately 130 kb upstream of the associated

GWAS peak and encodes a protein kinase with NB-ARC

and LRR domains (Cuevas & Prom, 2020). The presence of

24 candidate genes with coiled-coil domains suggests that

this region might have several mutations that have been

independently, positively selected for across sorghum

races during local adaptation. This region of the genome

needs to be studied further because it shows strong selec-

tion and is important for genetic dissection and breeding

for biotic resistance.

Another region that showed signs of a selective sweep

between converted and bred lines as well as within the

caudatum subpopulation was the region around the Tan1

locus. The tannin loci have historically been subjected to

bidirectional selection because of varied local herbivore

threats and human taste sensitivity, resulting in natural

variation around these loci across sorghum germplasm

(Wu et al., 2019). Caudatum accessions make up 45% of

the SAP accessions that were reported to have a pig-

mented testa layer, whereas 32% of the remaining acces-

sions with pigmented testa were from the mixed

subpopulation which also has several accessions closely

related to caudatum (File S1). Also, 73% of accessions with

pigmented testa were from the converted group, whereas

only 12% of accessions in the bred group were pigmented.

This difference could result in large allele frequency differ-

ences between the two groups around this region (File S1).

WGS markers improved genome-wide association and

prediction over GBS markers

In addition to the common height loci (Dw1–Dw3) and

tannin content loci (Tan1) identified previously using

GBS markers, we identified novel associations across

two loci for PH and four loci for tannin content that were

not identified with GBS markers. Previous studies have

demonstrated that WGS improves both the mapping res-

olution and the ability to identify novel associations over

marker data derived from GBS (Höglund et al., 2019).

Apart from the three well-characterized height loci (Dw1,

Dw2, and Dw3), we also detected a significant associa-

tion for the putative Dw4 locus at approximately 6.6 Mb

of Chr6 as previously reported (Miao et al., 2020; Morris

et al., 2013). A novel height association detected in Chr1

was located within 1 Mb of a previously reported PH

QTL (Marla et al., 2019). While associations at major loci

for height overlapped for different variant types, the sig-

nificant associations for PH on Chr4 and Chr7 that were

unique to indel data show that indel variants can over-

come limitations of SNP data in detecting potential false

negative associations. The tannin locus (Tan1) we have

identified is consistent with previous association results

in the SAP (Rhodes et al., 2014). While the Tan2 locus

was undetected in our tannin content association, as in

previous association analyses, we show that probit

GWAS using a BSLMM for presence or absence of a

testa layer can detect both Tan1 and Tan2 loci. As both

PH and tannin content represent important phenotypes

in sorghum breeding, the consistency in association

results compared to previous studies provides validity of

this newly developed genomic resource while novel

associations show incremental advantage in genetic dis-

section.

We performed genomic prediction (GBLUP) using a

genomic relatedness matrix derived from GBS or WGS

markers to compare their predictive ability for agronomic,

yield, and quality traits. On average, a 29% increase in pre-

dictive ability was observed across nine traits, which is a
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substantial increase for most of these traits as they are

quantitative and complex traits. This improvement in pre-

dictive ability is due to the ability of WGS markers to cap-

ture additive genomic relationships better because of

increased density and coverage of genetic markers, subse-

quently resulting in improvement in the total genetic vari-

ance explained by the model (Heffner et al., 2009). And

since genetic gain is directly proportional to selection accu-

racy, such improvements in accuracy of prediction will

have a cumulatively positive effect on the long-term

genetic gain across sorghum breeding programs (Faville

et al., 2018). Thus, these WGS variants will provide both

immediate improvements, via improved associations and

predictive ability, and long-term improvements, via the

compounding effects of genetic gain.

CONCLUSION

Approximately 44 million variants of diverse types were

called using the WGS data for the SAP, and these data

represent a major increase in the density and variant

types available for future sorghum studies. These data

further open opportunities for detailed variant graphs,

improved genomic prediction, and detection of novel

loci facilitating sorghum improvement as we have

demonstrated here. As pan-genomic methods continue

to develop, sources of broad genotypic diversity will be

pivotal to capturing diverse haplotypes vital to crop

improvement, but these data also provide immediate

improvement to genomic selection and the identifica-

tion of genotype-to-phenotype associations. Variant

data are provided as a community resource for the

continued development of this multi-purpose, climate-

resilient crop.
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