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1 	 | 	 INTRODUCTION

Most	of	the	data	included	in	beef	cattle	genetic	evaluations	
in	the	US	are	recorded	within	the	nucleus	(seedstock)	seg-
ment;	 however,	 often	 economically	 relevant	 traits	 (ERT)	

are	only	observed	at	 the	commercial	 level.	Records	 (phe-
notypes)	 are	 routinely	 collected	 at	 the	 commercial	 level	
but	 the	 pedigree	 relationships	 needed	 to	 connect	 these	
records	to	seedstock	animals	are	often	missing	due	to	the	
lack	of	recording,	group	mating	or	the	information	does	not	
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Abstract
Pooling	 samples	 to	 derive	 group	 genotypes	 can	 enable	 the	 economically	 effi-
cient	use	of	commercial	animals	within	genetic	evaluations.	To	test	a	multivari-
ate	 framework	 for	 genetic	 evaluations	 using	 pooled	 data,	 simulation	 was	 used	
to	mimic	a	beef	cattle	population	including	two	moderately	heritable	traits	with	
varying	genetic	correlations,	genotypes	and	pedigree	data.	There	were	15	genera-
tions	(n = 32,000;	random	selection	and	mating),	and	the	last	generation	was	sub-
jected	to	genotyping	through	pooling.	Missing	records	were	induced	in	two	ways:	
(a)	sequential	culling	and	(b)	random	missing	records.	Gaps	in	genotyping	were	
also	explored	whereby	genotyping	occurred	through	generation	13	or	14.	Pools	of	
1,	20,	50	and	100	animals	were	constructed	randomly	or	by	minimizing	pheno-
typic	variation.	The	EBV	was	estimated	using	a	bivariate	single-	step	genomic	best	
linear	unbiased	prediction	model.	Pools	of	20	animals	constructed	by	minimiz-
ing	phenotypic	variation	generally	led	to	accuracies	that	were	not	different	than	
using	individual	progeny	data.	Gaps	in	genotyping	led	to	significantly	different	
EBV	accuracies	 (p	<	.05)	 for	sires	and	dams	born	 in	 the	generation	nearest	 the	
pools.	Pooling	of	any	size	generally	led	to	larger	accuracies	than	no	information	
from	generation	15	regardless	of	the	way	missing	records	arose,	the	percentage	of	
records	available	or	the	genetic	correlation.	Pooling	to	aid	in	the	use	of	commer-
cial	data	in	genetic	evaluations	can	be	utilized	in	multivariate	cases	with	varying	
relationships	between	the	traits	and	in	the	presence	of	systematic	and	randomly	
missing	phenotypes.
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follow	the	animals	as	they	move	through	the	industry	(Bell	
et	al., 2017).	These	relationships	could	be	estimated	using	
genomics	 but	 all	 commercial	 animals	 with	 a	 phenotype	
would	need	to	be	individually	genotyped.	This	level	of	ge-
notyping	would	not	be	economical.	Nevertheless,	the	inclu-
sion	of	commercial	data	has	enormous	potential	to	increase	
the	response	to	selection	for	traits	that	are	economically	im-
portant	to	the	beef	industry	including	feedlot	performance,	
reproductive	 longevity,	 disease	 resistance	 and	 carcass	
merit.	An	optimal	solution	would	be	to	collect	the	true	ERT	
from	commercial	herds	and	estimate	relationships	between	
commercial	animals	and	seedstock	animals	in	an	economi-
cal	manner	for	use	in	routine	genetic	evaluations.

Genome-	wide	 association	 studies	 (GWAS)	 in	 conjunc-
tion	with	pooling	have	been	shown	to	reduce	the	cost	of	ge-
notyping	(Sham	et	al., 2002)	by	grouping	together	animals	
with	 similar	 observations	 and	 then	 genotyping	 a	 pooled	
DNA	 sample	 from	 those	 groups	 (Darvasi	 &	 Soller,  1994).	
Many	studies	have	used	pooled	DNA	for	GWAS	to	identify	
quantitative	trait	loci	(QTL)	in	humans	(e.g.	general	cogni-
tive	ability	in	children	(Fisher	et	al., 1999)	and	colorectal	and	
prostate	cancer	in	a	Polish	population	(Gaj	et	al., 2012))	and	
livestock	(e.g.	 low	reproductive	cattle	with	the	presence	of	
SNP	mapped	to	the	Y	chromosome	(McDaneld	et	al., 2012),	
fertility	in	Holstein	cattle	(Huang	et	al., 2010)	and	somatic	cell	
score	in	Valdostana	Red	Pied	cattle	(Strillacci	et	al., 2014)).

Pooling	has	also	been	investigated	for	its	utility	in	ge-
netic	prediction.	Work	has	been	done	with	simulation—	e.g.	
Sonesson	et	al. (2010)	simulated	an	aquiculture	population	
whereas	Alexandre	et	al. (2019)	and	Baller	et	al. (2020)	sim-
ulated	cattle	populations.	Pooled	data	 in	prediction	have	
also	seen	use	in	real	data	sets—	e.g.	Henshall	et	al. (2012)	
and	 Reverter	 et	 al.  (2016)	 used	 Brahman	 Tropical	 com-
posite	 cattle,	 Bell	 et	 al.  (2017)	 used	 Merino	 sheep	 and	
Alexandre	et	al. (2020)	used	in	silico	Angus	data.	Most	re-
search	has	focused	on	the	usefulness	of	pooling	on	a	single	
trait.	Alexandre	et	al. (2019)	extended	this	concept	to	two	
traits,	where	pools	were	constructed	on	one	trait	or	a	com-
bination	of	two	traits	using	genomic	best	linear	unbiased	
prediction	(GBLUP)	and	genomic	EBV	(GEBV)	was	esti-
mated	with	univariate	models.

Choosing	 animals	 to	 pool	 together	 in	 practice	 might	
best	 be	 facilitated	 at	 random,	 perhaps	 in	 part	 to	 ensure	
similar	 environmental	 effects	 or	 simply	 for	 ease	 of	 im-
plementation.	 However,	 using	 real	 data	 and	 in	 silico,	
there	 are	 examples	 where	 pools	 have	 been	 constructed	
attempting	to	minimize	phenotypic	variation	(Alexandre	
et	al., 2020;	Bell	et	al., 2017;	Henshall	et	al., 2012;	Reverter	
et	al., 2016).	Differences	in	pool	construction	and	the	im-
pact	on	genomic	prediction	have	been	reported	in	simula-
tion	studies	involving	one	trait	(Baller	et	al., 2020)	and	two	
traits	 (Alexandre	 et	 al.,  2019),	 both	 of	 which	 concluded	
minimizing	phenotypic	variation	within	the	pools	 led	to	

the	 highest	 accuracies	 as	 compared	 to	 other	 pool	 con-
struction	strategies.

To	our	knowledge,	previous	studies	have	not	attempted	
to	quantify	how	pooling	separately	on	the	traits	affects	the	
EBV	 accuracy	 of	 each	 trait	 or	 combined	 all	 information	
from	the	two	traits	in	a	bivariate	model.	The	objectives	of	
this	study	were	to	evaluate	factors	that	could	impact	the	
usefulness	of	pooling	data	for	genetic	prediction	in	a	bi-
variate	context.	Consequently,	the	factors	of	pooling	size,	
pooling	strategy,	generational	gaps	of	genotyping,	genetic	
correlation	between	two	traits,	how	missing	values	arise,	
and	 the	 percentage	 of	 available	 records	 were	 evaluated	
within	 a	 single-	step	 GLBLUP	 framework	 to	 determine	
how	these	factors	impact	EBV	accuracy.

2 	 | 	 MATERIALS AND METHODS

Animal	 care	 and	 use	 committee	 approval	 were	 not	 re-
quired	for	this	research	as	all	data	were	simulated.

2.1	 |	 Simulation

Five	 replicates	 of	 a	 simulation	 mimicking	 a	 purebred	
beef	cattle	population	were	carried	out	using	Geno-	Diver	
(Howard	et	al., 2017).	Following	Baller	et	al. (2019,	2020),	
each	replicate	contained	a	different	founder	genome	com-
prised	 of	 29	 chromosomes	 each	 with	 a	 length	 of	 87	Mb,	
which	was	determined	as	the	average	length	of	chromo-
somes	using	the	NCBI	Bos taurus	2009	assembly.	Markers	
that	represented	a	50K	SNP	panel	were	randomly	distrib-
uted	across	the	genome;	the	location	of	1,724	markers	per	
chromosome	 and	 the	 quantitative	 trait	 loci	 (QTL)	 were	
drawn	randomly	from	a	uniform	distribution	with	the	pa-
rameters	of	0	and	the	 length	of	 the	chromosome.	It	was	
assumed	the	QTL	occurred	once	per	3 Mb,	resulting	in	29	
QTL	per	chromosome.	Expanding	on	 the	simulations	of	
Baller	et	al. (2019,	2020),	two	traits	were	simulated,	each	
with	a	heritability	of	0.4	resulting	from	phenotypic,	addi-
tive	and	dominance	variances	set	to	1,	0.4	and	0,	respec-
tively.	 Three	 different	 genetic	 correlations	 between	 the	
phenotypes	were	simulated	for	each	of	the	five	replicates	
representing	 low	 genetic	 correlation	 (0.1),	 moderate	 ge-
netic	correlation	(0.4)	and	high	genetic	correlation	(0.7).	
The	QTL	effects	were	generated	by	sampling	from	three	
independent	gamma	distributions,	then	the	samples	were	
combined	 to	 generate	 the	 additive	 effects	 of	 Trait	 1	 and	
2	(Howard	et	al., 2018).	The	founder	genomes	were	gen-
erated	by	 the	Markovian	Coalescence	Simulator	 (MaCS)	
program	(Chen	et	al., 2009).	Following	Baller	et	al. (2019,	
2020)	founder	genomes	were	generated	to	contain	a	large	
amount	 of	 short-	range	 LD,	 and	 the	 effective	 population	
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size	 of	 the	 founder	 generation	 was	 set	 to	 70.	 Founder	
animals	consisted	of	100	sires	and	2,000	dams	that	were	
randomly	mated	for	five	generations	and	were	randomly	
replaced,	which	were	used	 to	establish	 the	pedigree.	An	
additional	10	generations	were	simulated	where	animals	
were	mated	randomly	with	the	caveat	that	animals	with	a	
relationship	of	0.125	or	greater	were	not	mated	together.	
The	last	10	generations	were	randomly	selected,	with	re-
placement	rates	of	0.4	and	0.2	for	sires	and	dams,	respec-
tively.	Animals	were	also	culled	when	 they	had	been	 in	
the	population	as	a	parent	for	12	generations.	Each	mating	
resulted	 in	one	progeny;	 thus,	each	sire	had	20	progeny	
per	generation	while	each	dam	only	had	1.	The	final	popu-
lation	consisted	of	a	total	of	15	generations	(n = 32,000).

2.2	 |	 Missing records

In	 industry,	missing	 records	can	manifest	 in	many	ways,	
two	of	which	were	simulated	in	this	study—	sequential	cull-
ing	 and	 randomly	 missing	 records.	 Missing	 records	 were	
simulated	 across	 the	 whole	 population,	 not	 just	 the	 last	
generation	where	pooling	occurred.	Selection	occurs	at	var-
ious	points	in	an	animal’s	lifetime.	Some	animals	are	culled	
based	on	a	previously	recorded	trait(s)	and	do	not	have	the	
opportunity	to	express	traits	later	in	life.	To	simulate	this	
process,	 all	 individuals	 had	 an	 observable	 Trait	 1	 pheno-
type.	The	animals	with	the	highest	75%,	50%	or	25%	Trait	1	
phenotype	had	an	observable	Trait	2	phenotype	recorded.

Missing	records	can	also	occur	randomly	simply	due	to	
missed	observations	in	the	field.	To	simulate	this	scenario,	
three	different	percentages	were	considered—	100%,	90%	
or	 80%	 of	 records	 were	 available	 (0%,	 10%	 or	 20%	 of	 re-
cords	were	missing,	respectively).	The	randomly	missing	
records	were	determined	for	each	trait	independently,	but	
with	the	same	percentage	of	missing	records—	leading	to	
100%	of	Trait	1	and	100%	of	Trait	2	available,	90%	of	Trait	
1	and	90%	of	Trait	2	available,	or	80%	of	Trait	1	and	80%	
of	Trait	2	available.	Even	though	animals	were	randomly	
chosen,	 the	 same	 random	 animals	 were	 chosen	 within	
each	replicate	for	consistency	of	comparison;	for	example,	
the	same	80%	of	animals	were	chosen	to	have	records	re-
tained	within	each	replicate.	Independently,	the	same	90%	
of	 animals	 were	 chosen	 to	 have	 records	 retained	 within	
each	replicate.

2.3	 |	 Pooling

The	individuals	born	in	generation	15	(n = 2,000)	were	
assigned	to	pools.	Two	sets	of	pools	were	independently	
constructed:	the	first	set	was	constructed	based	on	Trait	
1	 records,	 and	 the	 second	 set	 was	 based	 on	 Trait	 2	 re-
cords.	 Baller	 et	 al.  (2020)	 recommended	 pool	 sizes	 of	

2,	10,	20	or	50	while	Kuehn	et	al. (2018)	recommended	
pool	sizes	of	20	as	a	minimum.	Consequently,	pool	sizes	
of	 20,	 50	 and	 100	 were	 simulated	 to	 illustrate	 a	 gradi-
ent	 from	 a	 recommended	 minimum	 to	 larger	 values.	
In	 the	case	where	 there	were	no	missing	records,	pool	
sizes	of	20,	50	and	100	individuals	resulted	in	200	pools	
(100	based	on	Trait	1	and	100	based	on	Trait	2),	80	pools	
or	40	pools,	 respectively.	 In	 the	case	where	 there	were	
missing	records	for	a	trait,	the	number	of	pools	based	on	
that	trait	would	be	proportionally	less.	Pool	assignments	
were	determined	in	two	different	ways:	(a)	randomly	or	
(b)	minimizing	the	phenotypic	variation	within	a	pool.	
Random	pools	were	formed	by	randomly	assigning	indi-
viduals	to	a	pool	based	on	Trait	1	and	to	a	pool	based	on	
Trait	2.	For	example,	for	a	pool	size	of	20	and	no	miss-
ing	records,	an	animal	would	be	randomly	assigned	 to	
two	pools,	one	pool	 from	 the	100	pools	based	on	Trait	
1	 and	 one	 pool	 from	 the	 100	 pools	 based	 on	 Trait	 2.	
To	 construct	 pools	 to	 minimize	 phenotypic	 variation	
within	pools,	 individuals	with	records	 for	Trait	1	were	
first	ranked	based	on	their	phenotypic	record	for	Trait	1	
and	then	grouped	together	depending	on	the	pool	size.	
This	 process	 was	 then	 repeated	 for	 individuals	 with	 a	
record	 for	 Trait	 2.	 For	 example,	 with	 a	 pool	 size	 of	 20	
and	no	missing	records,	the	animals	with	the	smallest	20	
phenotypes	for	Trait	1	were	included	in	Pool	1	and	the	
smallest	20	phenotypes	for	Trait	2	were	included	in	Pool	
101.	Pools	based	on	Trait	1	had	a	phenotypic	record	for	
Trait	1	and	a	missing	record	for	Trait	2	and	vice	versa.	
Individuals	could	only	be	included	in	one	pool	per	trait	
per	 scenario,	 where	 the	 scenario	 is	 defined	 as	 a	 com-
bination	 of	 missing	 record	 strategy,	 pooling	 strategy,	
percentage	of	missing	records	and	generation	in	which	
genotyping	 stopped	 but	 could	 be	 found	 in	 two	 pools	
if	 both	 traits	 were	 recorded.	 Pool	 size	 was	 consistent	
within	each	scenario.

The	phenotypic	record	for	a	pool	based	on	a	trait	was	
the	 average	 phenotype	 for	 that	 trait	 of	 the	 individuals	
contributing	to	that	pool.	Genotypes	of	the	pools	were	av-
erage	genotype	calls	across	all	SNP	of	the	individuals	that	
made	up	 the	pool,	and	ranged	 from	0	 to	2,	as	described	
by	Baller	et	al. (2020).	It	was	assumed	all	genotypes	were	
known	without	error	and	 there	was	also	no	error	 intro-
duced	by	pool	 formation	 leading	 to	no	additional	 resid-
ual	error	due	to	the	process	of	pooling	DNA	samples	or	
genotyping.

Pedigree	ties	between	the	commercial	and	seedstock	
animals	 are	 known	 to	 exist,	 but	 they	 are	 often	 not	 re-
corded.	Thus,	following	Baller	et	al. (2020),	the	pedigree	
of	the	animals	in	generation	15	was	assumed	unknown.	
The	 only	 ties	 between	 the	 pooled	 commercial	 animals	
and	 the	 seedstock	 population	 were	 estimated	 by	 ge-
nomic	 relationships.	 Missing	 records	 for	 animals	 in	
generation	15	 followed	 the	 same	scenarios	as	with	 the	
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earlier	 generations:	 sequential	 culling	 and	 randomly	
missing	records.

To	 provide	 a	 comparison	 of	 extreme	 cases,	 scenarios	
were	 considered	 where	 animals	 from	 generation	 15	 en-
tered	the	evaluation	individually	(pool	size	of	1)	and	when	
the	animals	from	generation	15	did	not	enter	the	evalua-
tion	at	all	(No	gen	15).	For	pool	size	of	1,	each	animal	in	
generation	 15	 had	 an	 opportunity	 to	 have	 an	 individual	
record	 for	 each	 trait	 dependent	 on	 whether	 or	 not	 their	
phenotypes	were	used	for	pooling	and	to	have	their	indi-
vidual	genotype	entered	into	the	evaluation.	For	the	case	
of	missing	records,	some	animals	were	not	pooled	at	all;	
for	 consistency	 of	 comparing	 across	 scenarios,	 only	 the	
individuals	that	did	appear	in	a	pool	were	considered	for	a	
pool	size	of	1.	In	this	case,	the	genotype	calls	of	these	indi-
viduals	were	entered	into	the	evaluation	as	the	traditional	
“0,”	“1”	or	“2.”

2.4	 |	 Missing generation of genotypes

All	parents	were	assumed	to	be	genotyped	even	if	they	
did	not	have	a	recorded	phenotype	because	of	randomly	
missing	records.	As	with	Baller	et	al. (2020),	generational	
gaps	in	genotyping	were	induced	between	the	seedstock	
and	commercial	animals	because	the	cost	of	genotyping	
in	 real	 populations	 can	 be	 prohibitive.	 Therefore,	 the	
genotypes	of	animals	above	the	pooled	individuals	were	
masked.	Two	scenarios	were	considered:	(a)	animals	up	
to	and	including	those	born	in	generation	13	were	geno-
typed	(Gen13)	and	(b)	animals	up	to	and	including	those	
born	 in	 generation	 14	 were	 genotyped	 (Gen14).	 Baller	
et	al.  (2020)	explored	additional	scenarios	where	more	
generations	had	genotypes	masked,	but	they	led	to	sim-
ilar	 results	 as	 Gen13.	 All	 animals	 in	 generations	 6–	14	
were	 included	 in	 the	 pedigree	 regardless	 of	 the	 geno-
typing	scenario.	Additionally,	 founder	animals	may	be	
missing	or	were	not	genotyped.	Therefore,	only	animals	
in	generations	0–	5	 that	appeared	 in	a	 three-	generation	
pedigree	 of	 the	 pooled	 animals	 were	 included	 in	 the	
pedigree	 and	 it	 was	 assumed	 these	 animals	 were	 not	
genotyped.	 All	 other	 animals	 in	 generations	 0–	5	 were	
excluded	from	the	analysis.

2.5	 |	 Analysis

A	 bivariate	 animal	 model	 utilizing	 single-	step	 GBLUP	
was	used	to	estimate	EBV.	Single-	step	GBLUP	combines	
genomic	and	pedigree	information	into	one	kinship	matrix	
called	H	(Aguilar	et	al., 2010;	Christensen	&	Lund, 2010).	

The	model	used	when	only	individual	observations	were	
available	(pool	sizes	of	1	and	when	generation	15	did	not	
enter	the	evaluation)	was:

where	 yi	 is	a	vector	of	 individual	phenotypic	observations	
for	the	ith	trait;	xi	was	a	known	incidence	matrix	relating	the	
observations	to	the	fixed	effects	for	the	ith	trait;	bi	was	a	vec-
tor	of	fixed	effects	for	the	ith	trait;	zi	was	a	known	incidence	
matrix	relating	observations	to	the	random	additive	genetic	
effects	for	the	ith	trait;	ui	was	a	vector	of	random	additive	ge-
netic	effects	for	the	ith	trait;	and	ei	was	a	vector	of	random	re-
siduals	for	the	ith	trait.	The	only	fixed	effect	included	in	the	
model	for	either	trait	was	the	intercept.	It	was	assumed	that

where	 G	 is	 a	 2	×	2	 matrix	 containing	 the	 variance	 com-
ponents	 for	 the	additive	effects	and	R	 is	a	diagonal	ma-
trix	containing	the	variances	for	the	residual	effects.	The	
details	 of	 the	 construction	 of	 the	 inverse	 of	 the	 kinship	
matrix	 H	 (H−1	)	 were	 described	 previously	 by	 Baller	 et	
al. (2020).

The	underlying	model	introduced	by	Baller	et	al. (2020)	
was	extended	to	a	bivariate	case.	However,	it	was	assumed	
the	 individual	 genotypes,	 pedigrees	 and	 phenotypes	 of	
animals	in	generation	15	were	unknown,	but	the	individ-
ual	phenotypes	of	Traits	1	and	2	contributed	to	the	pool	
means	 (i.e.	 individual	 data	 were	 unobserved,	 but	 pool	
means	 were	 observed).	Thus,	 the	 final	 prediction	 model	
used	was

where	 y∗
i
	 is	 a	 vector	 of	 individual	 and	 pooled	 phenotypic	

observations	 for	 the	 ith	 trait;	Xi∗	 was	 a	 known	 incidence	
matrix	 relating	 the	 individual	 and	 pooled	 observations	 to	
the	fixed	effects	for	the	ith	trait;	bi	was	the	same	vector	of	
fixed	effects	 for	 the	 ith	 trait	as	above	(containing	only	 the	
intercept);	Zi∗	 was	 a	 known	 incidence	 matrix	 relating	 in-
dividual	 and	 pooled	 observations	 to	 the	 random	 additive	
genetic	effects	 for	 the	 ith	 trait;	u∗

i
	was	a	vector	of	 random	

additive	 genetic	 effects	 for	 the	 ith	 trait	 for	 both	 individu-
als	and	pools;	and	ei	was	a	vector	of	random	residuals	 for	
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individuals	and	pools	based	on	the	ith	trait.	It	was	assumed	
that

where	 again	 G	 is	 a	 2	×	2	 matrix	 containing	 the	 variance	
components	for	the	additive	effects,	H∗	is	a	kinship	matrix	
relating	individual	animals	and	pools	of	animals,	and	R	is	
a	diagonal	matrix	containing	the	variances	for	the	residual	
effects.	Because	the	phenotypes	in	 yi	are	heterogeneous	in	
information	 content—	the	 phenotypes	 for	 animals	 in	 gen-

erations	0–	14	are	individual	phenotypes,	whereas	the	phe-
notypes	for	pools	are	averages	of	animals	from	generation	
15—	the	variance	of	the	residuals	is

where	�2
ei

	is	the	residual	variance	for	the	ith	trait	and	qij	is	
1	for	an	individual	record	and	the	pool	size	for	a	pooled	re-
cord.	For	simplicity,	the	variance	structure	for	the	residuals	
used	in	the	model	assumes	that	animals	are	randomly	as-
signed	to	pools.	When	pools	were	formed	to	minimize	the	
phenotypic	variance	the	assumption	of	random	assignment	
does	not	hold,	but	the	variance	structure	is	one	that	would	
be	used	in	practice.	The	inverse	of	H∗	was	constructed	the	
same	as	H	except	that	the	allelic	frequencies	were	estimated	
from	individuals	and	pools.	Pool	constructions	and	the	com-
putation	of	inverses	of	H	and	H∗	were	carried	out	in	R	(R	
Core	 Team,  2017).	 Breeding	 values	 were	 estimated	 in	 the	
ASReml	v4.1	software	(Gilmour	et	al., 2015)	using	the	pre-
conditioned	conjugate	gradients	(PCG)	method.

The	accuracy	of	EBV	for	sires	and	dams	was	estimated	
as	the	correlation	between	the	true	breeding	values	(TBV)	
and	the	EBV.	The	accuracies	were	estimated	separately	for	
sires	and	dams,	 the	generation	 in	which	they	were	born	
(11,	12,	13	or	14),	and	for	each	trait	(Trait	1	and	Trait	2).	
The	 accuracy	 of	 the	 pools	 was	 estimated	 as	 the	 correla-
tion	between	the	average	TBV	of	 the	animals	 that	made	
up	the	pool	and	the	EBV.	An	observation	(EBV	accuracy	
of	a	sire	or	dam	born	within	a	particular	generation,	repli-
cate,	missing	record	strategy,	pooling	strategy,	percentage	
of	 missing	 records	 and	 generation	 in	 which	 genotyping	
stopped—	considered	 a	 final	 simulated	 set)	 was	 deemed	
an	outlier	if	it	was	identified	in	both	an	interquartile	range	
(IQR)	test	within	a	replicate	and	an	IQR	test	within	a	pool	

size.	The	IQR	test	 identifies	an	observation	as	an	outlier	
if	the	observation	is	either	more	than	Q3 + (1.5 × IQR)	or	
less	 than	Q1 − (1.5 × IQR),	 where	Q1 and Q3	 are	 the	 first	
and	third	quantiles,	respectively.	All	data	from	a	final	sim-
ulated	set	with	at	least	one	outlier	were	excluded	from	the	
analysis.

In	 the	 presence	 of	 outliers,	 medians	 are	 more	 robust	
than	means;	thus,	final	plotted	accuracies	are	median	val-
ues	across	the	five	replicates.	However,	to	determine	the	
significance	 of	 effects	 on	 the	 EBV	 accuracy,	 Analysis	 of	
Variance	 tests	 were	 performed	 after	 excluding	 all	 obser-
vations	from	a	final	simulated	set	with	at	least	one	outlier	
with	the	following	model:

where	 y	was	the	EBV	accuracy	of	sires/dams	born	in	gen-
erations	11,	12,	13	or	14	or	pools	for	Trait	1	or	Trait	2	with	
outliers	removed;	�	was	the	overall	mean;	�	was	the	effect	of	
the	generational	gap;	�	was	the	effect	of	pooling	strategy;	�	
was	the	effect	of	pool	size;	�	was	the	effect	of	the	way	miss-
ing	values	arise;	�(�)	was	the	effect	of	percentage	of	avail-
able	records	nested	within	the	way	missing	values	arise;	b	
was	 the	random	effect	of	replicate;	and	e	was	 the	random	
residual.	The	model	was	restricted	to	only	two-	way	interac-
tions.	It	was	assumed	that	b	and	e	were	distributed	normally	
with	a	mean	of	zero	and	variance	of	�2

b
	and	�2e,	respectively.	

Significance	was	determined	at	� = .05.

2.6	 |	 Expectations of pooled genomic 
relationships

Baller	 et	 al.  (2020)	 assumed	 individuals	 were	 only	 in-
cluded	in	one	pool,	but	with	the	extensions	provided	in	
this	research,	 individuals	can	now	be	 included	in	more	
than	one	pool—	a	pool	based	on	its	Trait	1	phenotype	and	
a	separate	pool	based	on	its	Trait	2	phenotype.	Because	
of	 this	 modification,	 a	 slight	 generalization	 in	 the	 ex-
pectations	of	the	pooled	genomic	relationships	between	
the	 pools	 presented	 by	 Baller	 et	 al.  (2020)	 is	 needed	 to	
account	 for	 the	possibility	of	 shared	 individuals	among	
pools.	 Let	 the	 matrix	G0

22	 represents	 the	 relationships	
between	 individuals	 in	generation	15.	Similarly,	 let	Gp

22
	

represents	 the	relationships	between	the	pools.	The	ex-
pected	genomic	relationship	matrix	Gp

22
	 is	a	 function	of	

G0
22	and	follows:
{
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k	and	k'	with	elements	1	if	the	individual	is	in	the	pool	and	
0	if	the	individual	is	not	in	the	pool.
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Assuming	 all	 individuals	 in	 generation	 15	 are	 unre-
lated.	 From	 the	 expectations	 above	 it	 can	 be	 seen	 that	
for	pools	of	individuals,	the	diagonal	elements	of	Gp

22
	are	

equal	to	1
q
	and	the	off-	diagonals	of	Gp

22
	are	proportional	to	

m

q2
	where	m	is	the	number	of	individuals	in	common	be-

tween	two	pools.	Thus,	the	off-	diagonals	of	Gp
22

	between	
pools	that	were	based	off	of	the	same	trait	are	expected	to	
be	zero	as	they	share	no	common	individuals	but	are	ex-
pected	to	be	proportional	to	 1

q2
	if	one	animal	is	in	common	

between	pools	based	on	different	traits,	proportional	to	 2
q2

	
if	two	animals	are	in	common,	and	so	on.	If	the	individu-
als	in	generation	15	are	related,	as	is	the	case	in	this	sim-
ulation	and	likely	with	real	data,	the	diagonal	elements	of	
GP
22	are	expected	to	be	greater	than	1

q
	and	the	off-	diagonal	

elements	 of	GP
22	 between	 pools	 based	 on	 different	 traits	

will	be	greater	than	m
q

	as	the	individuals	in	the	pools	be-
come	more	related.

3 	 | 	 RESULTS AND DISCUSSION

3.1	 |	 Pooling

Figure 1	depicts	the	correlation	between	the	average	phe-
notype	 and	 average	 TBV	 of	 the	 pools.	 Regardless	 of	 ge-
netic	correlation,	the	way	in	which	missing	values	arise,	
the	percentage	of	available	records	or	the	trait	considered,	
pool	 sizes	of	20,	50	and	100	 led	 to	 larger	 correlations	of	
average	phenotype	and	TBV	compared	with	pool	sizes	of	
1;	 this	agrees	with	Baller	et	al. (2020).	Previously,	Baller	

et	al.  (2020)	observed	pools	constructed	randomly	led	to	
approximately	similar	correlations	between	average	phe-
notype	 and	 TBV	 regardless	 of	 pool	 size.	 In	 the	 current	
study,	 this	 was	 not	 observed.	 No	 identifiable	 pattern	 in	
regards	to	pool	sizes	was	observed	with	random	pooling.	
However,	the	range	of	correlations	between	average	phe-
notype	and	TBV	was	larger	for	sequential	culling	than	for	
random	missing	records.

The	 average	 relationships	 within	 a	 pool	 and	 across	
pools	 were	 approximately	 equal	 regardless	 of	 pool	 size.	
The	comparison	across	pools	was	only	considered	within	
the	 trait	 the	 pools	 were	 designed	 for.	 Regardless	 of	 how	
missing	 values	 arise,	 the	 average	 relationships	 within	 a	
pool	and	between	pools	were	approximately	the	same	for	
Traits	1	and	2	when	pools	were	formed	to	minimize	phe-
notypic	variation.	However,	when	pools	were	formed	ran-
domly,	the	average	relationships	of	Trait	2	were	typically	
higher	than	those	of	Trait	1,	both	within	and	across	pools.	
The	difference	between	the	average	relationships	of	pools	
based	on	Trait	1	and	2	becomes	larger	as	the	percentage	of	
available	 records	becomes	smaller.	The	average	 relation-
ships	 within	 pools	 and	 across	 pools	 within	 the	 trait	 the	
pools	were	designed	for	were	 lower	than	those	observed	
by	 Baller	 et	 al.  (2020).	 This	 result	 could	 be	 an	 artefact	
of	 selection—	Baller	et	al.  (2020)	 simulated	a	population	
whereby	 selective	 replacement	 based	 on	 EBV	 was	 prac-
ticed	 whereas	 the	 current	 simulation	 employed	 random	
selection.

When	 considering	 the	 average	 relationships	 of	 indi-
viduals	pooled	across	traits,	 it	 is	important	to	note	again	

F I G U R E  1  Correlation	of	average	phenotype	and	average	true	breeding	value	(TBV)	in	pools.	Pools	resulting	from	different	genetic	
correlations,	how	missing	records	occur	(random	missing = missing	records	occur	randomly;	sequential	culling = missing	records	occur	
because	of	sequential	culling),	pooling	strategies	(random = randomly	allocated	to	pools;	Minimize = minimize	phenotypic	variation	
within	pools),	percentage	of	available	records	(80% = 80%	of	Trait	1	and	Trait	2	records	are	available,	100% = 100%	of	Trait	1	and	Trait	2	
records	are	available;	25% = 100%	of	Trait	1	records	and	25%	of	Trait	2	records	are	available)	and	pool	sizes	[Colour	figure	can	be	viewed	at	
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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that	the	same	individuals	were	used	for	pooling	across	all	
pool	sizes	and	pooling	strategies.	Additionally,	within	the	
way	missing	records	arise	and	the	percentage	of	individ-
uals	 available,	 the	 individuals	 were	 always	 the	 same	 for	
consistency.	Regardless	of	genetic	correlation,	the	average	
relationship	of	individuals	between	pools	based	on	Traits	
1	and	2	 increased	as	 the	percentage	of	 records	available	
increased	when	missing	records	arose	randomly.	This	in-
crease	was	due	to	more	animals	being	included	for	both	
traits	with	more	records	as	it	was	very	unlikely	the	same	
animals	 would	 randomly	 have	 missing	 records	 for	 both	
traits.	 The	 average	 relationship	 of	 individuals	 between	
pools	 based	 on	Traits	 1	 and	 2	 also	 increased	 as	 the	 per-
centage	 of	 records	 available	 increased	 with	 sequential	
culling	and	a	genetic	correlation	of	0.7.	This	 increase	 in	
relationship	is	expected	as	it	is	more	likely	related	animals	
were	retained	during	sequential	culling	when	the	genetic	
correlation	is	high.	With	a	genetic	correlation	of	0.4	and	
sequential	culling,	the	relationships	between	pools	based	
on	different	traits	were	approximately	the	same	regardless	
of	 the	 percentage	 of	 records	 available,	 except	 for	 when	
25%	of	Trait	2	records	were	available,	which	led	to	lower	
average	relationships.	With	a	genetic	correlation	of	0.1,	se-
quential	culling	and	across	all	percentages	of	available	re-
cords,	the	relationships	between	pools	based	on	different	
traits	were	approximately	equal.

3.2	 |	 EBV accuracies of sires and dams

Figures 2	and	3	depict	the	median	EBV	accuracies	of	sires	
born	in	generation	14	for	sequential	culling	and	randomly	
missing	 records,	 respectively,	 depending	 on	 genetic	 cor-
relation,	 pooling	 strategy,	 percentage	 of	 missing	 records	
and	 when	 genotyping	 stopped	 at	 generation	 14.	 Results	
of	dams	are	not	shown	as	they	follow	the	same	patterns	
as	the	sires.	Although	the	same	patterns	are	present	with	
the	sires	and	dams,	two	key	differences	do	exist.	First,	the	
median	EBV	accuracies	of	dams	were	numerically	lower	
than	 those	 of	 the	 sires.	 Additionally,	 the	 difference	 be-
tween	EBV	accuracy	when	pool	sizes	of	1	were	used	and	
when	generation	15	did	not	enter	the	evaluation	at	all	was	
smaller	for	dams	than	sires.	Both	of	these	were	due	to	the	
fact	that	dams	only	had	one	progeny	per	generation	while	
sires	had	20.

3.3	 |	 Generational gap of genotyping

For	sires	and	dams	born	in	generation	14,	the	EBV	accu-
racies	of	both	traits	were	lower	when	genotyping	stopped	
at	generation	13	than	when	genotyping	occurred	through	
generation	 14	 by	 0.140	 and	 0.136	 for	 sires	 and	 dams,	

respectively.	 Large	 decreases	 in	 EBV	 accuracy	 were	 not	
found	in	sires	or	dams	born	in	generations	13	or	earlier	de-
pendent	on	when	genotyping	stopped	because	the	animals	
born	in	these	generations	were	always	genotyped	(results	
not	 shown).	 Baller	 et	 al.  (2020)	 also	 noted	 that	 EBV	 ac-
curacies	of	sires	and	dams	by	the	generation	of	birth	were	
highest	 when	 the	 genotyping	 occurred	 through	 or	 past	
the	generation	considered.	Therefore,	larger	EBV	accura-
cies	 are	 a	 result	 of	 connectedness	 arising	 from	 genomic	
relationships	 rather	 than	 pedigree	 relationships	 (Baller	
et	al., 2020).	Using	single-	step	GBLUP	in	a	simulated	data	
set,	 the	accuracy	of	GEBV	 increased	as	more	genotyped	
individuals	were	used	(Lourenco	et	al., 2015).

3.4	 |	 Pooling strategy and size

When	pools	were	constructed	randomly,	the	EBV	accuracy	
resulting	from	any	pool	size	or	when	generation	15	did	not	
enter	the	evaluation	was	significantly	lower	than	that	from	
a	pool	size	of	1.	When	pools	were	constructed	to	minimize	
phenotypic	variation,	more	interesting	comparisons	were	
apparent.	Ideally,	for	pooling	to	be	an	acceptable	approach	
to	include	commercial	data	into	evaluations,	EBV	accura-
cies	 of	 pools	 would	 be	 significantly	 different	 than	 those	
from	when	generation	15	did	not	enter	the	evaluation	and	
not	different	from	a	pool	size	of	1.	This	result	occurred	for	
sires	born	in	generation	14	for	Trait	1	across	all	pool	sizes	
and	 was	 also	 true	 for	 dams	 born	 in	 generation	 14	 only	
when	 pool	 sizes	 were	 of	 size	 20	 for	 Trait	 1.	 For	 Trait	 2,	
this	 result	 occurred	 for	 sires	 born	 in	 generations	 13	 and	
14.	Significant	differences	in	pool	size	were	likely	different	
for	Trait	1	compared	with	Trait	2	because	missing	records,	
especially	for	sequential	culling,	were	induced	for	Trait	2.	
Differences	between	sires	and	dams	regarding	significant	
differences	in	pool	sizes	were	likely	due	to	the	amount	of	
information	available	due	to	the	number	of	progeny	each	
sex	had.	A	less	optimal	situation	would	be	where	the	EBV	
accuracies	 as	 a	 result	 of	 pooling	 were	 still	 significantly	
higher	than	when	generation	15	did	not	enter	the	evalua-
tion	but	also	significantly	lower	than	pool	sizes	of	1.	This	
occurred	with	pool	sizes	of	20,	50	and	100	for	sires	born	in	
generation	13	for	Trait	1	and	pool	sizes	of	50	and	100	for	
sires	born	in	generation	14	for	Trait	2.	These	comparisons	
may	be	statistically	significant;	however,	numerically,	the	
largest	pairwise	difference	was	0.03	as	they	were	averaged	
over	generation	in	which	genotyping	stopped,	genetic	cor-
relation,	the	way	in	which	missing	records	arose,	and	the	
percentage	of	missing	records	nested	within	how	the	miss-
ing	records	arose	(data	not	shown).	Thus,	with	that	small	
numeric	difference,	the	decreased	cost	of	pooling	may	still	
be	much	more	economical	 in	 its	effect	on	accuracy	than	
individual	genotyping.
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Reverter	 et	 al.  (2016)	 used	 pooling	 within	 Brahman	
cattle	 for	 pregnancy	 and	 lactation	 status	 using	 GBLUP.	
Cattle	 were	 pooled	 based	 on	 results	 from	 a	 pregnancy	
test	 in	 pools	 of	 15–	28	 individuals.	 Estimations	 of	 GEBV	
for	fertility	were	obtained	for	bulls	that	were	not	sires	of	
the	cattle	that	were	pooled.	Bell	et	al. (2017)	used	pooling	
within	Merino	sheep	using	dag	scores	also	using	GBLUP	
to	attain	estimates	of	GEBV.	The	sheep	were	pooled	by	sex	
and	dag	score	category	with	pool	sizes	of	33	to	40	individ-
uals.	The	accuracies	of	GEBV	resulting	from	pooled	data	
from	Bell	et	al.  (2017)	or	Reverter	et	al.  (2016)	were	not	
compared	with	a	baseline	of	GEBV	resulting	from	individ-
ual	data,	and	so,	it	is	not	known	if	the	loss	of	accuracy	in	
prediction	due	to	pooling	was	significant	or	not,	warrant-
ing	validation	of	pooling	with	simulation.

Previously,	 Baller	 et	 al.  (2020)	 constructed	 pools	 to	
uniformly	 maximize	 phenotypic	 variation	 within	 pools,	
but	 it	was	determined	this	strategy	resulted	 in	compara-
ble	results	to	random	allocation	to	pools	and	did	not	see	
improvement	in	EBV	accuracy	above	those	from	minimiz-
ing	phenotypic	variation	within	pools.	Baller	et	al. (2020)	
concluded	 that	 when	 pools	 were	 constructed	 by	 mini-
mizing	 phenotypic	 variation,	 pool	 sizes	 of	 2,	 10,	 20	 or	
50	 did	 not	 lead	 to	 EBV	 accuracies	 different	 from	 when	

individual	progeny	data	were	used.	In	a	simulation	of	two	
traits,	 Alexandre	 et	 al.  (2019)	 investigated	 pooling	 strat-
egies	based	on	Trait	1,	Trait	2,	a	combination	of	both	or	
randomly	 to	 estimate	 GEBV.	 In	 contrast	 to	 the	 current	
study,	 pools	 were	 not	 reformed	 for	 individual	 traits,	 nor	
was	a	bivariate	model	used.	Accuracies	of	GEBV	of	sires,	
estimated	as	 the	correlation	of	GEBV	and	TBV	within	a	
trait,	 were	 greatest	 when	 pools	 were	 constructed	 on	 the	
trait	 itself	and	 lowest	when	pools	were	constructed	 ran-
domly.	 Alexandre	 et	 al.  (2020)	 investigated	 the	 use	 of	
pooling	using	Angus	data	in	silico	using	three	traits.	The	
genomic	EBV	was	again	calculated	using	univariate	mod-
els.	Accuracy	of	GEBV	was	calculated	as	 the	correlation	
between	the	sire’s	GEBV	with	pooled	progeny	data	and	the	
sire’s	GEBV	using	individual	progeny	data.	Pooling	strat-
egies	 employed	 by	 Alexandre	 et	 al.  (2020)	 were	 (a)	 ran-
dom	pooling	and	(b)	by	phenotype—	which	is	equivalent	
to	 minimizing	 phenotypic	 variation	 within	 pools	 in	 the	
current	study.	All	three	traits	were	not	recorded	across	all	
animals,	 which	 hindered	 the	 calculation	of	 GEBV	 accu-
racy	for	one	trait	when	the	pools	were	constructed	based	
on	 another	 trait.	 Regardless,	 they	 also	 found	 pooling	 by	
trait	led	to	larger	GEBV	accuracies	than	pooling	randomly.

Alexandre	 et	 al.  (2019)	 suggested	 pool	 sizes	 of	 10	 in	
order	to	compromise	the	loss	in	GEBV	accuracy	and	cost	

F I G U R E  2  Use	of	sequential	culling	leading	to	estimated	
breeding	value	(EBV)	accuracies	of	sires	(estimated	as	the	
correlation	between	true	breeding	value	[TBV]	and	EBV).	
Presented	sires	born	in	generation	14	with	accuracies	
resulting	from	different	genetic	correlations,	pooling	strategies	
(random = randomly	allocated	to	pools;	minimize = minimize	
phenotypic	variation	within	pools),	percent	of	available	records	
(25% = 100%	of	Trait	1	records	and	25%	of	Trait	2	records	are	
available;	50% = 100%	of	Trait	1	records	and	50%	of	Trait	2	records	
are	available;	75% = 100%	of	Trait	1	records	and	75%	of	Trait	2	
records	are	available;	100% = 100%	of	Trait	1	and	Trait	2	records	
are	available)	and	pool	sizes	with	ranges	in	accuracy	along	the	x-	
axis	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

F I G U R E  3  Use	of	randomly	missing	records	leading	to	
estimated	breeding	value	(EBV)	accuracies	of	sires	(estimated	
as	the	correlation	between	true	breeding	value	[TBV]	and	
EBV).	Presented	sires	born	in	generation	14	with	accuracies	
resulting	from	different	genetic	correlations,	pooling	strategies	
(random = randomly	allocated	to	pools;	minimize = minimize	
phenotypic	variation	within	pools),	percent	of	available	records	
(80% = 80%	of	Trait	1	and	Trait	2	records	are	available;	90% = 90%	
of	Trait	1	and	Trait	2	records	are	available;	100% = 100%	of	Trait	
1	and	Trait	2	records	are	available)	and	pool	sizes	with	ranges	
in	accuracy	along	the	x-	axis	[Colour	figure	can	be	viewed	at	
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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saving	of	pooling;	Alexandre	et	al.  (2020)	 suggested	 this	
could	be	extended	to	pool	sizes	greater	than	10.	Pool	sizes	
of	1,	2,	5,	10,	15,	20	and	25	were	investigated;	even	pool	
sizes	of	25	did	not	 lead	 to	unreasonable	 losses	of	GEBV	
accuracies	compared	with	individual	data.	In	a	study	in-
vestigating	 the	efficiency	of	estimated	genomic	 relation-
ships	of	pools	to	the	animals	that	make	up	the	pools	and	to	
other	potentially	related	individuals,	Kuehn	et	al. (2018)	
suggested	pools	of	at	least	20	to	lessen	pool	construction	
error.

3.5	 |	 Missing records

Table  1	 contains	 the	 least-	squares	 EBV	 accuracy	 means	
by	the	percentage	of	records	available	nested	within	how	
the	 missing	 records	 arose.	 As	 expected,	 the	 accuracy	 of	
Trait	1	EBV	for	sires	and	dams	was	not	 impacted	by	se-
quential	culling	given	all	animals	had	a	Trait	1	phenotype	
recorded.	However,	sequential	selection	impacted	Trait	2	
EBV	accuracy	as	all	pairwise	comparisons	of	percentage	
of	missing	records	within	how	the	missing	records	arose	
were	 significant.	 When	 records	 were	 randomly	 missing,	
pairwise	 comparisons	 of	 percentage	 of	 missing	 records	
within	 how	 the	 missing	 records	 arose	 were	 significant,	
meaning	 that	 as	 the	 percentage	 of	 available	 records	 in-
creased,	 so	 did	 the	 EBV	 accuracies.	 Even	 though	 these	
comparisons	were	statistically	 significant,	 the	numerical	

increase	in	EBV	accuracy	was	small,	typically	only	by	0.1	
from	80%	to	90%	available	records	or	90%	to	100%	availa-
ble	records.	It	is	important	to	note	that	these	least-	squares	
means	were	averaged	over	pool	sizes,	pooling	strategy,	ge-
netic	correlation	and	the	generation	in	which	genotyping	
stopped.	Overall,	as	more	records	were	available,	the	EBV	
accuracies	of	the	traits	increased.

Guo	 et	 al.  (2014)	 studied	 the	 difference	 in	 the	 reli-
abilities	 of	 GEBV,	 measured	 as	 the	 squared	 correlation	
between	GEBV	and	TBV,	of	two	traits	using	all	available	
data	or	assuming	90%	of	the	EBV	for	the	first	trait	was	not	
used	for	genomic	selection	or	90%	of	the	EBV	for	the	sec-
ond	trait	was	not	used	for	genomic	selection.	The	GEBV	
was	estimated	using	GBLUP	where	the	response	variables	
were	 traditional	EBV.	The	 first	 trait	had	a	heritability	of	
0.3	 while	 the	 second	 trait	 had	 a	 heritability	 of	 0.05	 and	
the	genetic	correlation	was	0.5.	When	there	were	missing	
records	for	the	first	trait,	the	reliability	of	GEBV	decreased	
by	0.258	as	compared	to	when	both	traits	were	recorded	
on	all	animals.	When	there	were	missing	records	for	the	
second	 trait,	 the	 reliability	 of	 GEBV	 decreased	 by	 0.171	
as	 compared	 to	 when	 both	 traits	 were	 recorded	 on	 all	
animals.

The	interactions	of	pool	size	and	pooling	strategy	with	
the	percentage	of	missing	records	nested	within	how	the	
missing	 records	 arose	 were	 not	 significant.	 This	 result	
signifies	that	the	impact	of	pool	size	and	pooling	strategy	
is	 not	 dependent	 on	 the	 percentage	 of	 missing	 records	

T A B L E  1 	 Least-	squares	mean	estimates	of	EBV	accuracies	due	to	the	percent	of	missing	records	nested	within	how	the	missing	records	
arose

Missing records†
Percent 
available‡

Trait 1§ Trait 2¶

Sire Dam Sire Dam

14†† 13‡‡ 14 13 14 13 14 13

Random	missing 80% 0.84a 0.93a 0.82a 0.90a 0.84a 0.93a 0.82a 0.90a

90% 0.85b 0.93a 0.83b 0.90b 0.84a 0.94ab 0.83b 0.91b

100% 0.86b 0.94b 0.84c 0.91c 0.85b 0.94b 0.84c 0.91c

Sequential	culling 25% 0.85a 0.94a 0.84a 0.91a 0.75a 0.84a 0.73a 0.81a

50% 0.85a 0.94a 0.84ab 0.91a 0.80b 0.90b 0.79b 0.87b

75% 0.85a 0.94a 0.84ab 0.91a 0.83c 0.93c 0.82c 0.90c

100% 0.86a 0.94a 0.84b 0.91a 0.85d 0.94d 0.84d 0.91d

Std.	error 0.007 0.004 0.005 0.001 0.005 0.016 0.006 0.005

Note:	a,b,c,dWithin	a	column	and	missing	record	scenario,	least-	square	means	with	the	same	letter	are	not	significantly	different	� = .05.
†Random	missing = missing	records	occur	randomly;	sequential	culling = missing	records	occur	because	of	sequential	culling.
‡80% = 80%	of	Trait	1	and	Trait	2	records	are	available;	90% = 90%	of	Trait	1	and	Trait	2	records	are	available;	100% = 100%	of	Trait	1	and	Trait	2	records	
are	available;	25% = 100%	of	Trait	1	records	and	25%	of	Trait	2	records	are	available;	50% = 100%	of	Trait	1	records	and	50%	of	Trait	2	records	are	available;	
%75 = 100%	of	Trait	1	records	and	75%	of	Trait	2	records	are	available.
§EBV	accuracy	of	Trait	1.
¶EBV	accuracy	of	Trait	2.
††Sires	or	dams	born	in	generation	14.
‡‡Sires	or	dams	born	in	generation	13.
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nested	within	how	the	missing	records	arose,	rather	they	
are	consistent	across	those	investigated	herein.	The	inter-
action	of	the	generation	in	which	genotyping	stopped	and	
the	percentage	of	missing	records	nested	within	how	the	
missing	records	arose	was	significant	for	EBV	accuracies	
of	Trait	2	for	sires	born	in	generation	14	and	also	for	the	
EBV	accuracies	of	both	traits	for	dams	born	in	generation	
14	 (data	 not	 shown).	 The	 largest	 numerical	 differences	
resulted	from	comparisons	made	between	whether	geno-
typing	 stopped	at	generation	13	or	14,	which	 is	not	 sur-
prising	given	the	significant	effect	of	missing	records	on	
EBV	accuracy.	Furthermore,	the	only	sources	of	progeny	
information	 for	 parental	 animals	 born	 in	 generation	 14	
were	pooled	data	whereas	earlier	generations	(i.e.	genera-
tion	13)	benefited	from	offspring	with	individual	records	
in	addition	to	descendants	contained	within	the	pools.

Regardless	of	how	the	missing	values	arose	or	the	per-
centage	of	available	records,	when	pools	were	constructed	
in	 order	 to	 minimize	 phenotypic	 variation,	 pools	 of	 any	
size	 generally	 led	 to	 larger	 accuracies	 than	 when	 data	
from	generation	15	did	not	enter	the	evaluation.	These	are	
encouraging	results	suggesting	that	missing	values	do	not	
affect	the	usefulness	of	pooling.

3.6	 |	 Genetic correlation

The	 interactions	 of	 pool	 size	 and	 pooling	 strategy	 with	
genetic	correlation	were	not	significant.	This	result	again	
signifies	 that	 the	 impact	 of	 pool	 size	 and	 pooling	 strat-
egy	are	not	dependent	on	genetic	correlation,	rather	they	
are	 consistent	 across	 the	 genetic	 correlations	 investi-
gated	herein.	The	interaction	of	the	generation	in	which	
genotyping	stopped	and	 the	genetic	correlation	between	
the	two	traits	was	significant	for	sires	and	dams	born	in	
generation	14	 for	both	 traits.	Again,	 the	 largest	numeri-
cal	 differences	 arose	 from	 comparisons	 of	 when	 geno-
typing	stopped	at	generations	13	and	14.	The	interaction	
between	the	genetic	correlation	and	the	way	in	which	the	
missing	records	arose	was	significant	for	some	trait,	sire/
dam	and	generation	of	birth	combinations.	Although	this	
interaction	 was	 statistically	 significant,	 numerically	 the	
differences	 were	 not	 large,	 usually	 ranging	 from	 0.01	 to	
0.03	 (data	 not	 shown).	 The	 largest	 difference	 (0.05)	 was	
observed	for	the	EBV	accuracy	of	Trait	2	for	sires	born	in	
generation	13	when	sequential	culling	was	 initiated	and	
comparing	across	genetic	correlations	of	0.4	and	0.7.	 Jia	
and	Jannink (2012)	 investigated	the	effect	genetic	corre-
lation	 had	 on	 the	 prediction	 accuracy	 of	 two	 traits	 with	
multi-	trait	genomic	selection	within	the	simulation.	One	
trait	 had	 a	 heritability	 of	 0.1	 while	 the	 other	 had	 a	 her-
itability	 of	 0.8.	 As	 the	 genetic	 correlation	 increased,	 the	
prediction	accuracy	of	the	lowly	heritable	trait	increased;	

however,	the	highly	heritable	trait	saw	no	increase	in	pre-
diction	accuracy	even	as	the	genetic	correlation	increased	
between	0.1	and	0.9.	In	the	current	study,	the	effect	of	ge-
netic	 correlation	 on	 EBV	 accuracy	 did	 not	 lead	 to	 large	
numerical	 differences	 given	 the	 moderate	 heritability	 of	
the	traits.

Across	 all	 genetic	 correlations,	 the	 generations	 in	
which	the	sires	and	dams	were	born	in,	and	Traits	1	and	
2,	the	EBV	accuracy	consistently	decreased	by	0.01	when	
the	 percentage	 of	 records	 available	 decreased	 randomly	
from	100%	to	90%	and	then	again	from	90%	to	80%.	Thus,	
randomly	 missing	 records	 did	 not	 have	 a	 large	 impact	
on	EBV	accuracy	across	the	studied	genetic	correlations.	
Additionally,	 the	 accuracy	 of	 Trait	 1	 EBV	 for	 sires	 and	
dams	was	negligibly	 impacted	by	 sequential	 culling,	 the	
differences	 in	EBV	accuracy	were	generally	 in	 the	range	
of	0.01	regardless	of	the	percentage	of	animals	culled	and	
the	 genetic	 correlation.	 The	 differences	 in	 EBV	 accura-
cies	for	Trait	2	considering	no	culling	to	25%	of	Trait	2	re-
corded	was	the	smallest	(0.06)	for	sires	born	in	generation	
14	and	genetic	correlation	of	0.7.	All	other	differences	in	
EBV	accuracy	 for	 sires	and	dams	across	 the	genetic	cor-
relations	 were	 approximately	 0.12.	 In	 general,	 the	 EBV	
accuracies	 of	 Trait	 2	 when	 considering	 sequential	 cull-
ing	increased	as	the	percentage	of	culled	data	increased,	
regardless	 of	 genetic	 correlation.	 Consequently,	 as	 more	
records	were	available	due	to	less	sequential	culling,	the	
EBV	accuracies	of	Trait	2	approached	the	EBV	accuracies	
of	Trait	1.

3.7	 |	 EBV accuracy of pools

Even	though	pools	were	constructed	by	trait,	all	pools	re-
ceived	 EBV	 for	 both	 traits.	 Figure  4	 depicts	 the	 median	
EBV	accuracies	of	the	pools	that	were	determined	by	Trait	
1	and	Figure 5	depicts	the	median	EBV	accuracies	of	the	
pools	that	were	determined	by	Trait	2.	Significant	interac-
tions	were	quite	varied	depending	on	if	observing	the	trait	
in	which	the	pools	were	made	or	the	correlated	trait.	For	
example,	when	considering	pools	for	Trait	1	and	the	EBV	
accuracy	of	Trait	1,	significant	interactions	only	included	
pool	 size	 by	 pooling	 strategy	 and	 genetic	 correlation	 by	
the	percentage	of	available	records	nested	within	how	the	
missing	records	arose.	However,	when	considering	pools	
for	Trait	1	and	the	EBV	accuracy	of	Trait	2,	nearly	all	possi-
ble	interactions	were	significant.	When	considering	pools	
for	Trait	2	and	the	EBV	accuracy	of	either	trait,	nearly	all	
interactions	involving	pool	size	and	pooling	strategy	were	
significant.

A	few	conclusions	can	be	drawn	about	the	EBV	accura-
cies	of	the	pools.	As	long	as	the	pools	were	constructed	to	
minimize	phenotypic	variation,	the	EBV	accuracy	of	the	
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pools	was	generally	highest	for	pool	sizes	of	100	and	low-
est	for	pool	sizes	of	1	for	the	trait	in	which	the	pools	were	
made	for.	This	is	consistent	with	Baller	et	al. (2020).	When	
the	genetic	correlation	between	the	traits	was	high	(0.7),	
the	same	pattern	was	true	for	the	correlated	trait.	In	fact,	
the	 EBV	 accuracy	 was	 almost	 as	 high	 for	 the	 correlated	
trait	as	the	EBV	accuracies	the	pools	made	for.	As	the	ge-
netic	correlation	decreased	to	0.4,	the	EBV	accuracy	of	the	
correlated	 trait	 began	 to	 decrease,	 especially	 compared	
with	the	EBV	accuracy	of	the	trait	the	pools	were	made	for	
(data	not	shown).	The	EBV	accuracy	of	any	pool	size	was	
generally	larger	than	the	pool	size	of	1.	When	considering	
the	genetic	correlation	of	0.1,	the	EBV	accuracies	of	pools	
for	the	alternate	trait	resulting	from	any	pool	size	were	ap-
proximately	the	same.	When	considering	sequential	cull-
ing	and	a	genetic	correlation	of	0.1,	the	EBV	accuracies	of	
the	correlated	trait	resulting	from	pools	of	100,	50	and	20	
were	less	than	the	accuracy	from	a	pool	size	of	1.	When	
considering	 pools	 formed	 randomly,	 the	 EBV	 accuracies	
of	pools	generally	increased	as	pool	size	decreased,	which	
is	also	consistent	with	Baller	et	al. (2020).	This	is	expected	
given	that	when	pools	are	formed	randomly	and	pool	size	

increases	 the	variation	among	pools	decreases.	This	pat-
tern	was	observed	for	both	traits	regardless	of	which	trait	
the	pools	were	made	for.

4 	 | 	 CONCLUSIONS

The	results	presented	herein	demonstrate	the	usefulness	
of	 pooled	 data	 in	 genetic	 evaluations	 that	 employ	 a	 bi-
variate	model	using	single-	step	GBLUP	across	a	range	of	
genetic	correlations	and	scenarios	 in	which	missing	val-
ues	can	arise.	Similar	to	the	univariate	case,	when	pools	
were	constructed	to	minimize	phenotypic	variation,	pool	
sizes	 of	 at	 least	 20	 could	 be	 used	 to	 attain	 EBV	 accura-
cies	 not	 significantly	 different	 than	 those	 attained	 from	
individual	data.	Larger	pool	sizes	(50	and	100)	also	led	to	
improvement	of	EBV	accuracies	for	sires	born	the	genera-
tion	directly	before	pooling	was	initiated.	There	were	no	
significant	 interactions	 of	 pool	 size	 or	 pooling	 strategy	
with	 either	 percentage	 of	 missing	 records	 nested	 within	
how	the	missing	records	arose	or	genetic	correlation,	sug-
gesting	the	robustness	of	pooling	recommendations	in	the	

F I G U R E  4  Trait	1	pools'	estimated	breeding	value	(EBV)	accuracies	(estimated	as	the	correlation	between	the	average	true	breeding	
value	[TBV]	of	the	individuals	within	the	pool	and	EBV	of	the	pool).	Pools	resulting	from	different	genetic	correlations,	how	missing	records	
occur	(random	missing = missing	records	occur	randomly;	sequential	culling = missing	records	occur	because	of	sequential	culling),	
pooling	strategies	(random = randomly	allocated	to	pools;	minimize = minimize	phenotypic	variation	within	pools),	percent	of	available	
records	(80% = 80%	of	Trait	1	and	Trait	2	records	are	available;	90% = 90%	of	Trait	1	and	Trait	2	records	are	available;	100% = 100%	of	Trait	
1	and	Trait	2	records	are	available),	individuals	up	to	and	including	those	born	in	generation	14	were	genotyped	(Gen14)	and	pool	sizes	with	
ranges	in	accuracy	along	the	x-	axis	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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bivariate	case	or	when	missing	values	are	present.	When	
considering	pooling	by	minimizing	phenotypic	variation	
and	a	genetic	correlation	of	0.7,	the	EBV	accuracy	of	pools	
was	almost	as	high	for	the	correlated	trait	as	the	EBV	ac-
curacies	the	pools	were	made	for.	As	the	genetic	correla-
tion	 decreased,	 the	 EBV	 accuracy	 of	 the	 correlated	 trait	
decreased,	 especially	 compared	 with	 the	 EBV	 accuracy	
of	 the	 trait	 the	 pools	 were	 made	 for.	 The	 results	 herein	
provide	encouraging	conclusions	that	as	long	as	pools	are	
made	 to	 minimize	 phenotypic	 variation,	 pooling	 can	 be	
used	across	a	variety	of	genetic	correlations	and	ways	in	
which	missing	values	arise	to	garner	the	use	of	commer-
cial	ERT	within	genetic	evaluations.
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