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1   |   INTRODUCTION

Most of the data included in beef cattle genetic evaluations 
in the US are recorded within the nucleus (seedstock) seg-
ment; however, often economically relevant traits (ERT) 

are only observed at the commercial level. Records (phe-
notypes) are routinely collected at the commercial level 
but the pedigree relationships needed to connect these 
records to seedstock animals are often missing due to the 
lack of recording, group mating or the information does not 
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Abstract
Pooling samples to derive group genotypes can enable the economically effi-
cient use of commercial animals within genetic evaluations. To test a multivari-
ate framework for genetic evaluations using pooled data, simulation was used 
to mimic a beef cattle population including two moderately heritable traits with 
varying genetic correlations, genotypes and pedigree data. There were 15 genera-
tions (n = 32,000; random selection and mating), and the last generation was sub-
jected to genotyping through pooling. Missing records were induced in two ways: 
(a) sequential culling and (b) random missing records. Gaps in genotyping were 
also explored whereby genotyping occurred through generation 13 or 14. Pools of 
1, 20, 50 and 100 animals were constructed randomly or by minimizing pheno-
typic variation. The EBV was estimated using a bivariate single-step genomic best 
linear unbiased prediction model. Pools of 20 animals constructed by minimiz-
ing phenotypic variation generally led to accuracies that were not different than 
using individual progeny data. Gaps in genotyping led to significantly different 
EBV accuracies (p < .05) for sires and dams born in the generation nearest the 
pools. Pooling of any size generally led to larger accuracies than no information 
from generation 15 regardless of the way missing records arose, the percentage of 
records available or the genetic correlation. Pooling to aid in the use of commer-
cial data in genetic evaluations can be utilized in multivariate cases with varying 
relationships between the traits and in the presence of systematic and randomly 
missing phenotypes.
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follow the animals as they move through the industry (Bell 
et al., 2017). These relationships could be estimated using 
genomics but all commercial animals with a phenotype 
would need to be individually genotyped. This level of ge-
notyping would not be economical. Nevertheless, the inclu-
sion of commercial data has enormous potential to increase 
the response to selection for traits that are economically im-
portant to the beef industry including feedlot performance, 
reproductive longevity, disease resistance and carcass 
merit. An optimal solution would be to collect the true ERT 
from commercial herds and estimate relationships between 
commercial animals and seedstock animals in an economi-
cal manner for use in routine genetic evaluations.

Genome-wide association studies (GWAS) in conjunc-
tion with pooling have been shown to reduce the cost of ge-
notyping (Sham et al., 2002) by grouping together animals 
with similar observations and then genotyping a pooled 
DNA sample from those groups (Darvasi & Soller,  1994). 
Many studies have used pooled DNA for GWAS to identify 
quantitative trait loci (QTL) in humans (e.g. general cogni-
tive ability in children (Fisher et al., 1999) and colorectal and 
prostate cancer in a Polish population (Gaj et al., 2012)) and 
livestock (e.g. low reproductive cattle with the presence of 
SNP mapped to the Y chromosome (McDaneld et al., 2012), 
fertility in Holstein cattle (Huang et al., 2010) and somatic cell 
score in Valdostana Red Pied cattle (Strillacci et al., 2014)).

Pooling has also been investigated for its utility in ge-
netic prediction. Work has been done with simulation—e.g. 
Sonesson et al. (2010) simulated an aquiculture population 
whereas Alexandre et al. (2019) and Baller et al. (2020) sim-
ulated cattle populations. Pooled data in prediction have 
also seen use in real data sets—e.g. Henshall et al. (2012) 
and Reverter et al.  (2016) used Brahman Tropical com-
posite cattle, Bell et al.  (2017) used Merino sheep and 
Alexandre et al. (2020) used in silico Angus data. Most re-
search has focused on the usefulness of pooling on a single 
trait. Alexandre et al. (2019) extended this concept to two 
traits, where pools were constructed on one trait or a com-
bination of two traits using genomic best linear unbiased 
prediction (GBLUP) and genomic EBV (GEBV) was esti-
mated with univariate models.

Choosing animals to pool together in practice might 
best be facilitated at random, perhaps in part to ensure 
similar environmental effects or simply for ease of im-
plementation. However, using real data and in silico, 
there are examples where pools have been constructed 
attempting to minimize phenotypic variation (Alexandre 
et al., 2020; Bell et al., 2017; Henshall et al., 2012; Reverter 
et al., 2016). Differences in pool construction and the im-
pact on genomic prediction have been reported in simula-
tion studies involving one trait (Baller et al., 2020) and two 
traits (Alexandre et al.,  2019), both of which concluded 
minimizing phenotypic variation within the pools led to 

the highest accuracies as compared to other pool con-
struction strategies.

To our knowledge, previous studies have not attempted 
to quantify how pooling separately on the traits affects the 
EBV accuracy of each trait or combined all information 
from the two traits in a bivariate model. The objectives of 
this study were to evaluate factors that could impact the 
usefulness of pooling data for genetic prediction in a bi-
variate context. Consequently, the factors of pooling size, 
pooling strategy, generational gaps of genotyping, genetic 
correlation between two traits, how missing values arise, 
and the percentage of available records were evaluated 
within a single-step GLBLUP framework to determine 
how these factors impact EBV accuracy.

2   |   MATERIALS AND METHODS

Animal care and use committee approval were not re-
quired for this research as all data were simulated.

2.1  |  Simulation

Five replicates of a simulation mimicking a purebred 
beef cattle population were carried out using Geno-Diver 
(Howard et al., 2017). Following Baller et al. (2019, 2020), 
each replicate contained a different founder genome com-
prised of 29 chromosomes each with a length of 87 Mb, 
which was determined as the average length of chromo-
somes using the NCBI Bos taurus 2009 assembly. Markers 
that represented a 50K SNP panel were randomly distrib-
uted across the genome; the location of 1,724 markers per 
chromosome and the quantitative trait loci (QTL) were 
drawn randomly from a uniform distribution with the pa-
rameters of 0 and the length of the chromosome. It was 
assumed the QTL occurred once per 3 Mb, resulting in 29 
QTL per chromosome. Expanding on the simulations of 
Baller et al. (2019, 2020), two traits were simulated, each 
with a heritability of 0.4 resulting from phenotypic, addi-
tive and dominance variances set to 1, 0.4 and 0, respec-
tively. Three different genetic correlations between the 
phenotypes were simulated for each of the five replicates 
representing low genetic correlation (0.1), moderate ge-
netic correlation (0.4) and high genetic correlation (0.7). 
The QTL effects were generated by sampling from three 
independent gamma distributions, then the samples were 
combined to generate the additive effects of Trait 1 and 
2 (Howard et al., 2018). The founder genomes were gen-
erated by the Markovian Coalescence Simulator (MaCS) 
program (Chen et al., 2009). Following Baller et al. (2019, 
2020) founder genomes were generated to contain a large 
amount of short-range LD, and the effective population 
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size of the founder generation was set to 70. Founder 
animals consisted of 100 sires and 2,000 dams that were 
randomly mated for five generations and were randomly 
replaced, which were used to establish the pedigree. An 
additional 10 generations were simulated where animals 
were mated randomly with the caveat that animals with a 
relationship of 0.125 or greater were not mated together. 
The last 10 generations were randomly selected, with re-
placement rates of 0.4 and 0.2 for sires and dams, respec-
tively. Animals were also culled when they had been in 
the population as a parent for 12 generations. Each mating 
resulted in one progeny; thus, each sire had 20 progeny 
per generation while each dam only had 1. The final popu-
lation consisted of a total of 15 generations (n = 32,000).

2.2  |  Missing records

In industry, missing records can manifest in many ways, 
two of which were simulated in this study—sequential cull-
ing and randomly missing records. Missing records were 
simulated across the whole population, not just the last 
generation where pooling occurred. Selection occurs at var-
ious points in an animal’s lifetime. Some animals are culled 
based on a previously recorded trait(s) and do not have the 
opportunity to express traits later in life. To simulate this 
process, all individuals had an observable Trait 1 pheno-
type. The animals with the highest 75%, 50% or 25% Trait 1 
phenotype had an observable Trait 2 phenotype recorded.

Missing records can also occur randomly simply due to 
missed observations in the field. To simulate this scenario, 
three different percentages were considered—100%, 90% 
or 80% of records were available (0%, 10% or 20% of re-
cords were missing, respectively). The randomly missing 
records were determined for each trait independently, but 
with the same percentage of missing records—leading to 
100% of Trait 1 and 100% of Trait 2 available, 90% of Trait 
1 and 90% of Trait 2 available, or 80% of Trait 1 and 80% 
of Trait 2 available. Even though animals were randomly 
chosen, the same random animals were chosen within 
each replicate for consistency of comparison; for example, 
the same 80% of animals were chosen to have records re-
tained within each replicate. Independently, the same 90% 
of animals were chosen to have records retained within 
each replicate.

2.3  |  Pooling

The individuals born in generation 15 (n = 2,000) were 
assigned to pools. Two sets of pools were independently 
constructed: the first set was constructed based on Trait 
1 records, and the second set was based on Trait 2 re-
cords. Baller et al.  (2020) recommended pool sizes of 

2, 10, 20 or 50 while Kuehn et al. (2018) recommended 
pool sizes of 20 as a minimum. Consequently, pool sizes 
of 20, 50 and 100 were simulated to illustrate a gradi-
ent from a recommended minimum to larger values. 
In the case where there were no missing records, pool 
sizes of 20, 50 and 100 individuals resulted in 200 pools 
(100 based on Trait 1 and 100 based on Trait 2), 80 pools 
or 40 pools, respectively. In the case where there were 
missing records for a trait, the number of pools based on 
that trait would be proportionally less. Pool assignments 
were determined in two different ways: (a) randomly or 
(b) minimizing the phenotypic variation within a pool. 
Random pools were formed by randomly assigning indi-
viduals to a pool based on Trait 1 and to a pool based on 
Trait 2. For example, for a pool size of 20 and no miss-
ing records, an animal would be randomly assigned to 
two pools, one pool from the 100 pools based on Trait 
1 and one pool from the 100 pools based on Trait 2. 
To construct pools to minimize phenotypic variation 
within pools, individuals with records for Trait 1 were 
first ranked based on their phenotypic record for Trait 1 
and then grouped together depending on the pool size. 
This process was then repeated for individuals with a 
record for Trait 2. For example, with a pool size of 20 
and no missing records, the animals with the smallest 20 
phenotypes for Trait 1 were included in Pool 1 and the 
smallest 20 phenotypes for Trait 2 were included in Pool 
101. Pools based on Trait 1 had a phenotypic record for 
Trait 1 and a missing record for Trait 2 and vice versa. 
Individuals could only be included in one pool per trait 
per scenario, where the scenario is defined as a com-
bination of missing record strategy, pooling strategy, 
percentage of missing records and generation in which 
genotyping stopped but could be found in two pools 
if both traits were recorded. Pool size was consistent 
within each scenario.

The phenotypic record for a pool based on a trait was 
the average phenotype for that trait of the individuals 
contributing to that pool. Genotypes of the pools were av-
erage genotype calls across all SNP of the individuals that 
made up the pool, and ranged from 0 to 2, as described 
by Baller et al. (2020). It was assumed all genotypes were 
known without error and there was also no error intro-
duced by pool formation leading to no additional resid-
ual error due to the process of pooling DNA samples or 
genotyping.

Pedigree ties between the commercial and seedstock 
animals are known to exist, but they are often not re-
corded. Thus, following Baller et al. (2020), the pedigree 
of the animals in generation 15 was assumed unknown. 
The only ties between the pooled commercial animals 
and the seedstock population were estimated by ge-
nomic relationships. Missing records for animals in 
generation 15 followed the same scenarios as with the 
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earlier generations: sequential culling and randomly 
missing records.

To provide a comparison of extreme cases, scenarios 
were considered where animals from generation 15 en-
tered the evaluation individually (pool size of 1) and when 
the animals from generation 15 did not enter the evalua-
tion at all (No gen 15). For pool size of 1, each animal in 
generation 15 had an opportunity to have an individual 
record for each trait dependent on whether or not their 
phenotypes were used for pooling and to have their indi-
vidual genotype entered into the evaluation. For the case 
of missing records, some animals were not pooled at all; 
for consistency of comparing across scenarios, only the 
individuals that did appear in a pool were considered for a 
pool size of 1. In this case, the genotype calls of these indi-
viduals were entered into the evaluation as the traditional 
“0,” “1” or “2.”

2.4  |  Missing generation of genotypes

All parents were assumed to be genotyped even if they 
did not have a recorded phenotype because of randomly 
missing records. As with Baller et al. (2020), generational 
gaps in genotyping were induced between the seedstock 
and commercial animals because the cost of genotyping 
in real populations can be prohibitive. Therefore, the 
genotypes of animals above the pooled individuals were 
masked. Two scenarios were considered: (a) animals up 
to and including those born in generation 13 were geno-
typed (Gen13) and (b) animals up to and including those 
born in generation 14 were genotyped (Gen14). Baller 
et al.  (2020) explored additional scenarios where more 
generations had genotypes masked, but they led to sim-
ilar results as Gen13. All animals in generations 6–14 
were included in the pedigree regardless of the geno-
typing scenario. Additionally, founder animals may be 
missing or were not genotyped. Therefore, only animals 
in generations 0–5 that appeared in a three-generation 
pedigree of the pooled animals were included in the 
pedigree and it was assumed these animals were not 
genotyped. All other animals in generations 0–5 were 
excluded from the analysis.

2.5  |  Analysis

A bivariate animal model utilizing single-step GBLUP 
was used to estimate EBV. Single-step GBLUP combines 
genomic and pedigree information into one kinship matrix 
called H (Aguilar et al., 2010; Christensen & Lund, 2010). 

The model used when only individual observations were 
available (pool sizes of 1 and when generation 15 did not 
enter the evaluation) was:

where yi is a vector of individual phenotypic observations 
for the ith trait; xi was a known incidence matrix relating the 
observations to the fixed effects for the ith trait; bi was a vec-
tor of fixed effects for the ith trait; zi was a known incidence 
matrix relating observations to the random additive genetic 
effects for the ith trait; ui was a vector of random additive ge-
netic effects for the ith trait; and ei was a vector of random re-
siduals for the ith trait. The only fixed effect included in the 
model for either trait was the intercept. It was assumed that

where G is a 2 × 2 matrix containing the variance com-
ponents for the additive effects and R is a diagonal ma-
trix containing the variances for the residual effects. The 
details of the construction of the inverse of the kinship 
matrix H (H−1 ) were described previously by Baller et 
al. (2020).

The underlying model introduced by Baller et al. (2020) 
was extended to a bivariate case. However, it was assumed 
the individual genotypes, pedigrees and phenotypes of 
animals in generation 15 were unknown, but the individ-
ual phenotypes of Traits 1 and 2 contributed to the pool 
means (i.e. individual data were unobserved, but pool 
means were observed). Thus, the final prediction model 
used was

where y∗
i
 is a vector of individual and pooled phenotypic 

observations for the ith trait; Xi∗ was a known incidence 
matrix relating the individual and pooled observations to 
the fixed effects for the ith trait; bi was the same vector of 
fixed effects for the ith trait as above (containing only the 
intercept); Zi∗ was a known incidence matrix relating in-
dividual and pooled observations to the random additive 
genetic effects for the ith trait; u∗

i
 was a vector of random 

additive genetic effects for the ith trait for both individu-
als and pools; and ei was a vector of random residuals for 

[
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individuals and pools based on the ith trait. It was assumed 
that

where again G is a 2 × 2 matrix containing the variance 
components for the additive effects, H∗ is a kinship matrix 
relating individual animals and pools of animals, and R is 
a diagonal matrix containing the variances for the residual 
effects. Because the phenotypes in yi are heterogeneous in 
information content—the phenotypes for animals in gen-

erations 0–14 are individual phenotypes, whereas the phe-
notypes for pools are averages of animals from generation 
15—the variance of the residuals is

where �2
ei

 is the residual variance for the ith trait and qij is 
1 for an individual record and the pool size for a pooled re-
cord. For simplicity, the variance structure for the residuals 
used in the model assumes that animals are randomly as-
signed to pools. When pools were formed to minimize the 
phenotypic variance the assumption of random assignment 
does not hold, but the variance structure is one that would 
be used in practice. The inverse of H∗ was constructed the 
same as H except that the allelic frequencies were estimated 
from individuals and pools. Pool constructions and the com-
putation of inverses of H and H∗ were carried out in R (R 
Core Team,  2017). Breeding values were estimated in the 
ASReml v4.1 software (Gilmour et al., 2015) using the pre-
conditioned conjugate gradients (PCG) method.

The accuracy of EBV for sires and dams was estimated 
as the correlation between the true breeding values (TBV) 
and the EBV. The accuracies were estimated separately for 
sires and dams, the generation in which they were born 
(11, 12, 13 or 14), and for each trait (Trait 1 and Trait 2). 
The accuracy of the pools was estimated as the correla-
tion between the average TBV of the animals that made 
up the pool and the EBV. An observation (EBV accuracy 
of a sire or dam born within a particular generation, repli-
cate, missing record strategy, pooling strategy, percentage 
of missing records and generation in which genotyping 
stopped—considered a final simulated set) was deemed 
an outlier if it was identified in both an interquartile range 
(IQR) test within a replicate and an IQR test within a pool 

size. The IQR test identifies an observation as an outlier 
if the observation is either more than Q3 + (1.5 × IQR) or 
less than Q1 − (1.5 × IQR), where Q1 and Q3 are the first 
and third quantiles, respectively. All data from a final sim-
ulated set with at least one outlier were excluded from the 
analysis.

In the presence of outliers, medians are more robust 
than means; thus, final plotted accuracies are median val-
ues across the five replicates. However, to determine the 
significance of effects on the EBV accuracy, Analysis of 
Variance tests were performed after excluding all obser-
vations from a final simulated set with at least one outlier 
with the following model:

where y was the EBV accuracy of sires/dams born in gen-
erations 11, 12, 13 or 14 or pools for Trait 1 or Trait 2 with 
outliers removed; � was the overall mean; � was the effect of 
the generational gap; � was the effect of pooling strategy; � 
was the effect of pool size; � was the effect of the way miss-
ing values arise; �(�) was the effect of percentage of avail-
able records nested within the way missing values arise; b 
was the random effect of replicate; and e was the random 
residual. The model was restricted to only two-way interac-
tions. It was assumed that b and e were distributed normally 
with a mean of zero and variance of �2

b
 and �2e, respectively. 

Significance was determined at � = .05.

2.6  |  Expectations of pooled genomic 
relationships

Baller et al.  (2020) assumed individuals were only in-
cluded in one pool, but with the extensions provided in 
this research, individuals can now be included in more 
than one pool—a pool based on its Trait 1 phenotype and 
a separate pool based on its Trait 2 phenotype. Because 
of this modification, a slight generalization in the ex-
pectations of the pooled genomic relationships between 
the pools presented by Baller et al.  (2020) is needed to 
account for the possibility of shared individuals among 
pools. Let the matrix G0

22 represents the relationships 
between individuals in generation 15. Similarly, let Gp

22
 

represents the relationships between the pools. The ex-
pected genomic relationship matrix Gp

22
 is a function of 

G0
22 and follows:
{

G
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}
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is the kk' submatrix of G0
22 corresponding to individuals in 

pools k and k', and I ′
k
 and Ik′ are indicator vectors for pools 

k and k' with elements 1 if the individual is in the pool and 
0 if the individual is not in the pool.
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Assuming all individuals in generation 15 are unre-
lated. From the expectations above it can be seen that 
for pools of individuals, the diagonal elements of Gp

22
 are 

equal to 1
q
 and the off-diagonals of Gp

22
 are proportional to 

m

q2
 where m is the number of individuals in common be-

tween two pools. Thus, the off-diagonals of Gp
22

 between 
pools that were based off of the same trait are expected to 
be zero as they share no common individuals but are ex-
pected to be proportional to 1

q2
 if one animal is in common 

between pools based on different traits, proportional to 2
q2

 
if two animals are in common, and so on. If the individu-
als in generation 15 are related, as is the case in this sim-
ulation and likely with real data, the diagonal elements of 
GP
22 are expected to be greater than 1

q
 and the off-diagonal 

elements of GP
22 between pools based on different traits 

will be greater than m
q

 as the individuals in the pools be-
come more related.

3   |   RESULTS AND DISCUSSION

3.1  |  Pooling

Figure 1 depicts the correlation between the average phe-
notype and average TBV of the pools. Regardless of ge-
netic correlation, the way in which missing values arise, 
the percentage of available records or the trait considered, 
pool sizes of 20, 50 and 100 led to larger correlations of 
average phenotype and TBV compared with pool sizes of 
1; this agrees with Baller et al. (2020). Previously, Baller 

et al.  (2020) observed pools constructed randomly led to 
approximately similar correlations between average phe-
notype and TBV regardless of pool size. In the current 
study, this was not observed. No identifiable pattern in 
regards to pool sizes was observed with random pooling. 
However, the range of correlations between average phe-
notype and TBV was larger for sequential culling than for 
random missing records.

The average relationships within a pool and across 
pools were approximately equal regardless of pool size. 
The comparison across pools was only considered within 
the trait the pools were designed for. Regardless of how 
missing values arise, the average relationships within a 
pool and between pools were approximately the same for 
Traits 1 and 2 when pools were formed to minimize phe-
notypic variation. However, when pools were formed ran-
domly, the average relationships of Trait 2 were typically 
higher than those of Trait 1, both within and across pools. 
The difference between the average relationships of pools 
based on Trait 1 and 2 becomes larger as the percentage of 
available records becomes smaller. The average relation-
ships within pools and across pools within the trait the 
pools were designed for were lower than those observed 
by Baller et al.  (2020). This result could be an artefact 
of selection—Baller et al.  (2020) simulated a population 
whereby selective replacement based on EBV was prac-
ticed whereas the current simulation employed random 
selection.

When considering the average relationships of indi-
viduals pooled across traits, it is important to note again 

F I G U R E  1   Correlation of average phenotype and average true breeding value (TBV) in pools. Pools resulting from different genetic 
correlations, how missing records occur (random missing = missing records occur randomly; sequential culling = missing records occur 
because of sequential culling), pooling strategies (random = randomly allocated to pools; Minimize = minimize phenotypic variation 
within pools), percentage of available records (80% = 80% of Trait 1 and Trait 2 records are available, 100% = 100% of Trait 1 and Trait 2 
records are available; 25% = 100% of Trait 1 records and 25% of Trait 2 records are available) and pool sizes [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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that the same individuals were used for pooling across all 
pool sizes and pooling strategies. Additionally, within the 
way missing records arise and the percentage of individ-
uals available, the individuals were always the same for 
consistency. Regardless of genetic correlation, the average 
relationship of individuals between pools based on Traits 
1 and 2 increased as the percentage of records available 
increased when missing records arose randomly. This in-
crease was due to more animals being included for both 
traits with more records as it was very unlikely the same 
animals would randomly have missing records for both 
traits. The average relationship of individuals between 
pools based on Traits 1 and 2 also increased as the per-
centage of records available increased with sequential 
culling and a genetic correlation of 0.7. This increase in 
relationship is expected as it is more likely related animals 
were retained during sequential culling when the genetic 
correlation is high. With a genetic correlation of 0.4 and 
sequential culling, the relationships between pools based 
on different traits were approximately the same regardless 
of the percentage of records available, except for when 
25% of Trait 2 records were available, which led to lower 
average relationships. With a genetic correlation of 0.1, se-
quential culling and across all percentages of available re-
cords, the relationships between pools based on different 
traits were approximately equal.

3.2  |  EBV accuracies of sires and dams

Figures 2 and 3 depict the median EBV accuracies of sires 
born in generation 14 for sequential culling and randomly 
missing records, respectively, depending on genetic cor-
relation, pooling strategy, percentage of missing records 
and when genotyping stopped at generation 14. Results 
of dams are not shown as they follow the same patterns 
as the sires. Although the same patterns are present with 
the sires and dams, two key differences do exist. First, the 
median EBV accuracies of dams were numerically lower 
than those of the sires. Additionally, the difference be-
tween EBV accuracy when pool sizes of 1 were used and 
when generation 15 did not enter the evaluation at all was 
smaller for dams than sires. Both of these were due to the 
fact that dams only had one progeny per generation while 
sires had 20.

3.3  |  Generational gap of genotyping

For sires and dams born in generation 14, the EBV accu-
racies of both traits were lower when genotyping stopped 
at generation 13 than when genotyping occurred through 
generation 14 by 0.140 and 0.136 for sires and dams, 

respectively. Large decreases in EBV accuracy were not 
found in sires or dams born in generations 13 or earlier de-
pendent on when genotyping stopped because the animals 
born in these generations were always genotyped (results 
not shown). Baller et al.  (2020) also noted that EBV ac-
curacies of sires and dams by the generation of birth were 
highest when the genotyping occurred through or past 
the generation considered. Therefore, larger EBV accura-
cies are a result of connectedness arising from genomic 
relationships rather than pedigree relationships (Baller 
et al., 2020). Using single-step GBLUP in a simulated data 
set, the accuracy of GEBV increased as more genotyped 
individuals were used (Lourenco et al., 2015).

3.4  |  Pooling strategy and size

When pools were constructed randomly, the EBV accuracy 
resulting from any pool size or when generation 15 did not 
enter the evaluation was significantly lower than that from 
a pool size of 1. When pools were constructed to minimize 
phenotypic variation, more interesting comparisons were 
apparent. Ideally, for pooling to be an acceptable approach 
to include commercial data into evaluations, EBV accura-
cies of pools would be significantly different than those 
from when generation 15 did not enter the evaluation and 
not different from a pool size of 1. This result occurred for 
sires born in generation 14 for Trait 1 across all pool sizes 
and was also true for dams born in generation 14 only 
when pool sizes were of size 20 for Trait 1. For Trait 2, 
this result occurred for sires born in generations 13 and 
14. Significant differences in pool size were likely different 
for Trait 1 compared with Trait 2 because missing records, 
especially for sequential culling, were induced for Trait 2. 
Differences between sires and dams regarding significant 
differences in pool sizes were likely due to the amount of 
information available due to the number of progeny each 
sex had. A less optimal situation would be where the EBV 
accuracies as a result of pooling were still significantly 
higher than when generation 15 did not enter the evalua-
tion but also significantly lower than pool sizes of 1. This 
occurred with pool sizes of 20, 50 and 100 for sires born in 
generation 13 for Trait 1 and pool sizes of 50 and 100 for 
sires born in generation 14 for Trait 2. These comparisons 
may be statistically significant; however, numerically, the 
largest pairwise difference was 0.03 as they were averaged 
over generation in which genotyping stopped, genetic cor-
relation, the way in which missing records arose, and the 
percentage of missing records nested within how the miss-
ing records arose (data not shown). Thus, with that small 
numeric difference, the decreased cost of pooling may still 
be much more economical in its effect on accuracy than 
individual genotyping.
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Reverter et al.  (2016) used pooling within Brahman 
cattle for pregnancy and lactation status using GBLUP. 
Cattle were pooled based on results from a pregnancy 
test in pools of 15–28 individuals. Estimations of GEBV 
for fertility were obtained for bulls that were not sires of 
the cattle that were pooled. Bell et al. (2017) used pooling 
within Merino sheep using dag scores also using GBLUP 
to attain estimates of GEBV. The sheep were pooled by sex 
and dag score category with pool sizes of 33 to 40 individ-
uals. The accuracies of GEBV resulting from pooled data 
from Bell et al.  (2017) or Reverter et al.  (2016) were not 
compared with a baseline of GEBV resulting from individ-
ual data, and so, it is not known if the loss of accuracy in 
prediction due to pooling was significant or not, warrant-
ing validation of pooling with simulation.

Previously, Baller et al.  (2020) constructed pools to 
uniformly maximize phenotypic variation within pools, 
but it was determined this strategy resulted in compara-
ble results to random allocation to pools and did not see 
improvement in EBV accuracy above those from minimiz-
ing phenotypic variation within pools. Baller et al. (2020) 
concluded that when pools were constructed by mini-
mizing phenotypic variation, pool sizes of 2, 10, 20 or 
50 did not lead to EBV accuracies different from when 

individual progeny data were used. In a simulation of two 
traits, Alexandre et al.  (2019) investigated pooling strat-
egies based on Trait 1, Trait 2, a combination of both or 
randomly to estimate GEBV. In contrast to the current 
study, pools were not reformed for individual traits, nor 
was a bivariate model used. Accuracies of GEBV of sires, 
estimated as the correlation of GEBV and TBV within a 
trait, were greatest when pools were constructed on the 
trait itself and lowest when pools were constructed ran-
domly. Alexandre et al.  (2020) investigated the use of 
pooling using Angus data in silico using three traits. The 
genomic EBV was again calculated using univariate mod-
els. Accuracy of GEBV was calculated as the correlation 
between the sire’s GEBV with pooled progeny data and the 
sire’s GEBV using individual progeny data. Pooling strat-
egies employed by Alexandre et al.  (2020) were (a) ran-
dom pooling and (b) by phenotype—which is equivalent 
to minimizing phenotypic variation within pools in the 
current study. All three traits were not recorded across all 
animals, which hindered the calculation of GEBV accu-
racy for one trait when the pools were constructed based 
on another trait. Regardless, they also found pooling by 
trait led to larger GEBV accuracies than pooling randomly.

Alexandre et al.  (2019) suggested pool sizes of 10 in 
order to compromise the loss in GEBV accuracy and cost 

F I G U R E  2   Use of sequential culling leading to estimated 
breeding value (EBV) accuracies of sires (estimated as the 
correlation between true breeding value [TBV] and EBV). 
Presented sires born in generation 14 with accuracies 
resulting from different genetic correlations, pooling strategies 
(random = randomly allocated to pools; minimize = minimize 
phenotypic variation within pools), percent of available records 
(25% = 100% of Trait 1 records and 25% of Trait 2 records are 
available; 50% = 100% of Trait 1 records and 50% of Trait 2 records 
are available; 75% = 100% of Trait 1 records and 75% of Trait 2 
records are available; 100% = 100% of Trait 1 and Trait 2 records 
are available) and pool sizes with ranges in accuracy along the x-
axis [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  3   Use of randomly missing records leading to 
estimated breeding value (EBV) accuracies of sires (estimated 
as the correlation between true breeding value [TBV] and 
EBV). Presented sires born in generation 14 with accuracies 
resulting from different genetic correlations, pooling strategies 
(random = randomly allocated to pools; minimize = minimize 
phenotypic variation within pools), percent of available records 
(80% = 80% of Trait 1 and Trait 2 records are available; 90% = 90% 
of Trait 1 and Trait 2 records are available; 100% = 100% of Trait 
1 and Trait 2 records are available) and pool sizes with ranges 
in accuracy along the x-axis [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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saving of pooling; Alexandre et al.  (2020) suggested this 
could be extended to pool sizes greater than 10. Pool sizes 
of 1, 2, 5, 10, 15, 20 and 25 were investigated; even pool 
sizes of 25 did not lead to unreasonable losses of GEBV 
accuracies compared with individual data. In a study in-
vestigating the efficiency of estimated genomic relation-
ships of pools to the animals that make up the pools and to 
other potentially related individuals, Kuehn et al. (2018) 
suggested pools of at least 20 to lessen pool construction 
error.

3.5  |  Missing records

Table  1 contains the least-squares EBV accuracy means 
by the percentage of records available nested within how 
the missing records arose. As expected, the accuracy of 
Trait 1 EBV for sires and dams was not impacted by se-
quential culling given all animals had a Trait 1 phenotype 
recorded. However, sequential selection impacted Trait 2 
EBV accuracy as all pairwise comparisons of percentage 
of missing records within how the missing records arose 
were significant. When records were randomly missing, 
pairwise comparisons of percentage of missing records 
within how the missing records arose were significant, 
meaning that as the percentage of available records in-
creased, so did the EBV accuracies. Even though these 
comparisons were statistically significant, the numerical 

increase in EBV accuracy was small, typically only by 0.1 
from 80% to 90% available records or 90% to 100% availa-
ble records. It is important to note that these least-squares 
means were averaged over pool sizes, pooling strategy, ge-
netic correlation and the generation in which genotyping 
stopped. Overall, as more records were available, the EBV 
accuracies of the traits increased.

Guo et al.  (2014) studied the difference in the reli-
abilities of GEBV, measured as the squared correlation 
between GEBV and TBV, of two traits using all available 
data or assuming 90% of the EBV for the first trait was not 
used for genomic selection or 90% of the EBV for the sec-
ond trait was not used for genomic selection. The GEBV 
was estimated using GBLUP where the response variables 
were traditional EBV. The first trait had a heritability of 
0.3 while the second trait had a heritability of 0.05 and 
the genetic correlation was 0.5. When there were missing 
records for the first trait, the reliability of GEBV decreased 
by 0.258 as compared to when both traits were recorded 
on all animals. When there were missing records for the 
second trait, the reliability of GEBV decreased by 0.171 
as compared to when both traits were recorded on all 
animals.

The interactions of pool size and pooling strategy with 
the percentage of missing records nested within how the 
missing records arose were not significant. This result 
signifies that the impact of pool size and pooling strategy 
is not dependent on the percentage of missing records 

T A B L E  1   Least-squares mean estimates of EBV accuracies due to the percent of missing records nested within how the missing records 
arose

Missing records†
Percent 
available‡

Trait 1§ Trait 2¶

Sire Dam Sire Dam

14†† 13‡‡ 14 13 14 13 14 13

Random missing 80% 0.84a 0.93a 0.82a 0.90a 0.84a 0.93a 0.82a 0.90a

90% 0.85b 0.93a 0.83b 0.90b 0.84a 0.94ab 0.83b 0.91b

100% 0.86b 0.94b 0.84c 0.91c 0.85b 0.94b 0.84c 0.91c

Sequential culling 25% 0.85a 0.94a 0.84a 0.91a 0.75a 0.84a 0.73a 0.81a

50% 0.85a 0.94a 0.84ab 0.91a 0.80b 0.90b 0.79b 0.87b

75% 0.85a 0.94a 0.84ab 0.91a 0.83c 0.93c 0.82c 0.90c

100% 0.86a 0.94a 0.84b 0.91a 0.85d 0.94d 0.84d 0.91d

Std. error 0.007 0.004 0.005 0.001 0.005 0.016 0.006 0.005

Note: a,b,c,dWithin a column and missing record scenario, least-square means with the same letter are not significantly different � = .05.
†Random missing = missing records occur randomly; sequential culling = missing records occur because of sequential culling.
‡80% = 80% of Trait 1 and Trait 2 records are available; 90% = 90% of Trait 1 and Trait 2 records are available; 100% = 100% of Trait 1 and Trait 2 records 
are available; 25% = 100% of Trait 1 records and 25% of Trait 2 records are available; 50% = 100% of Trait 1 records and 50% of Trait 2 records are available; 
%75 = 100% of Trait 1 records and 75% of Trait 2 records are available.
§EBV accuracy of Trait 1.
¶EBV accuracy of Trait 2.
††Sires or dams born in generation 14.
‡‡Sires or dams born in generation 13.
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nested within how the missing records arose, rather they 
are consistent across those investigated herein. The inter-
action of the generation in which genotyping stopped and 
the percentage of missing records nested within how the 
missing records arose was significant for EBV accuracies 
of Trait 2 for sires born in generation 14 and also for the 
EBV accuracies of both traits for dams born in generation 
14 (data not shown). The largest numerical differences 
resulted from comparisons made between whether geno-
typing stopped at generation 13 or 14, which is not sur-
prising given the significant effect of missing records on 
EBV accuracy. Furthermore, the only sources of progeny 
information for parental animals born in generation 14 
were pooled data whereas earlier generations (i.e. genera-
tion 13) benefited from offspring with individual records 
in addition to descendants contained within the pools.

Regardless of how the missing values arose or the per-
centage of available records, when pools were constructed 
in order to minimize phenotypic variation, pools of any 
size generally led to larger accuracies than when data 
from generation 15 did not enter the evaluation. These are 
encouraging results suggesting that missing values do not 
affect the usefulness of pooling.

3.6  |  Genetic correlation

The interactions of pool size and pooling strategy with 
genetic correlation were not significant. This result again 
signifies that the impact of pool size and pooling strat-
egy are not dependent on genetic correlation, rather they 
are consistent across the genetic correlations investi-
gated herein. The interaction of the generation in which 
genotyping stopped and the genetic correlation between 
the two traits was significant for sires and dams born in 
generation 14 for both traits. Again, the largest numeri-
cal differences arose from comparisons of when geno-
typing stopped at generations 13 and 14. The interaction 
between the genetic correlation and the way in which the 
missing records arose was significant for some trait, sire/
dam and generation of birth combinations. Although this 
interaction was statistically significant, numerically the 
differences were not large, usually ranging from 0.01 to 
0.03 (data not shown). The largest difference (0.05) was 
observed for the EBV accuracy of Trait 2 for sires born in 
generation 13 when sequential culling was initiated and 
comparing across genetic correlations of 0.4 and 0.7. Jia 
and Jannink (2012) investigated the effect genetic corre-
lation had on the prediction accuracy of two traits with 
multi-trait genomic selection within the simulation. One 
trait had a heritability of 0.1 while the other had a her-
itability of 0.8. As the genetic correlation increased, the 
prediction accuracy of the lowly heritable trait increased; 

however, the highly heritable trait saw no increase in pre-
diction accuracy even as the genetic correlation increased 
between 0.1 and 0.9. In the current study, the effect of ge-
netic correlation on EBV accuracy did not lead to large 
numerical differences given the moderate heritability of 
the traits.

Across all genetic correlations, the generations in 
which the sires and dams were born in, and Traits 1 and 
2, the EBV accuracy consistently decreased by 0.01 when 
the percentage of records available decreased randomly 
from 100% to 90% and then again from 90% to 80%. Thus, 
randomly missing records did not have a large impact 
on EBV accuracy across the studied genetic correlations. 
Additionally, the accuracy of Trait 1 EBV for sires and 
dams was negligibly impacted by sequential culling, the 
differences in EBV accuracy were generally in the range 
of 0.01 regardless of the percentage of animals culled and 
the genetic correlation. The differences in EBV accura-
cies for Trait 2 considering no culling to 25% of Trait 2 re-
corded was the smallest (0.06) for sires born in generation 
14 and genetic correlation of 0.7. All other differences in 
EBV accuracy for sires and dams across the genetic cor-
relations were approximately 0.12. In general, the EBV 
accuracies of Trait 2 when considering sequential cull-
ing increased as the percentage of culled data increased, 
regardless of genetic correlation. Consequently, as more 
records were available due to less sequential culling, the 
EBV accuracies of Trait 2 approached the EBV accuracies 
of Trait 1.

3.7  |  EBV accuracy of pools

Even though pools were constructed by trait, all pools re-
ceived EBV for both traits. Figure  4 depicts the median 
EBV accuracies of the pools that were determined by Trait 
1 and Figure 5 depicts the median EBV accuracies of the 
pools that were determined by Trait 2. Significant interac-
tions were quite varied depending on if observing the trait 
in which the pools were made or the correlated trait. For 
example, when considering pools for Trait 1 and the EBV 
accuracy of Trait 1, significant interactions only included 
pool size by pooling strategy and genetic correlation by 
the percentage of available records nested within how the 
missing records arose. However, when considering pools 
for Trait 1 and the EBV accuracy of Trait 2, nearly all possi-
ble interactions were significant. When considering pools 
for Trait 2 and the EBV accuracy of either trait, nearly all 
interactions involving pool size and pooling strategy were 
significant.

A few conclusions can be drawn about the EBV accura-
cies of the pools. As long as the pools were constructed to 
minimize phenotypic variation, the EBV accuracy of the 
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pools was generally highest for pool sizes of 100 and low-
est for pool sizes of 1 for the trait in which the pools were 
made for. This is consistent with Baller et al. (2020). When 
the genetic correlation between the traits was high (0.7), 
the same pattern was true for the correlated trait. In fact, 
the EBV accuracy was almost as high for the correlated 
trait as the EBV accuracies the pools made for. As the ge-
netic correlation decreased to 0.4, the EBV accuracy of the 
correlated trait began to decrease, especially compared 
with the EBV accuracy of the trait the pools were made for 
(data not shown). The EBV accuracy of any pool size was 
generally larger than the pool size of 1. When considering 
the genetic correlation of 0.1, the EBV accuracies of pools 
for the alternate trait resulting from any pool size were ap-
proximately the same. When considering sequential cull-
ing and a genetic correlation of 0.1, the EBV accuracies of 
the correlated trait resulting from pools of 100, 50 and 20 
were less than the accuracy from a pool size of 1. When 
considering pools formed randomly, the EBV accuracies 
of pools generally increased as pool size decreased, which 
is also consistent with Baller et al. (2020). This is expected 
given that when pools are formed randomly and pool size 

increases the variation among pools decreases. This pat-
tern was observed for both traits regardless of which trait 
the pools were made for.

4   |   CONCLUSIONS

The results presented herein demonstrate the usefulness 
of pooled data in genetic evaluations that employ a bi-
variate model using single-step GBLUP across a range of 
genetic correlations and scenarios in which missing val-
ues can arise. Similar to the univariate case, when pools 
were constructed to minimize phenotypic variation, pool 
sizes of at least 20 could be used to attain EBV accura-
cies not significantly different than those attained from 
individual data. Larger pool sizes (50 and 100) also led to 
improvement of EBV accuracies for sires born the genera-
tion directly before pooling was initiated. There were no 
significant interactions of pool size or pooling strategy 
with either percentage of missing records nested within 
how the missing records arose or genetic correlation, sug-
gesting the robustness of pooling recommendations in the 

F I G U R E  4   Trait 1 pools' estimated breeding value (EBV) accuracies (estimated as the correlation between the average true breeding 
value [TBV] of the individuals within the pool and EBV of the pool). Pools resulting from different genetic correlations, how missing records 
occur (random missing = missing records occur randomly; sequential culling = missing records occur because of sequential culling), 
pooling strategies (random = randomly allocated to pools; minimize = minimize phenotypic variation within pools), percent of available 
records (80% = 80% of Trait 1 and Trait 2 records are available; 90% = 90% of Trait 1 and Trait 2 records are available; 100% = 100% of Trait 
1 and Trait 2 records are available), individuals up to and including those born in generation 14 were genotyped (Gen14) and pool sizes with 
ranges in accuracy along the x-axis [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com


500  |      BALLER et al.

bivariate case or when missing values are present. When 
considering pooling by minimizing phenotypic variation 
and a genetic correlation of 0.7, the EBV accuracy of pools 
was almost as high for the correlated trait as the EBV ac-
curacies the pools were made for. As the genetic correla-
tion decreased, the EBV accuracy of the correlated trait 
decreased, especially compared with the EBV accuracy 
of the trait the pools were made for. The results herein 
provide encouraging conclusions that as long as pools are 
made to minimize phenotypic variation, pooling can be 
used across a variety of genetic correlations and ways in 
which missing values arise to garner the use of commer-
cial ERT within genetic evaluations.
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