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2.4.10.9 Some Aspects of Travel Time Modeling 
As cost is not flow-dependent, it is a given model input. On the other hand, 
time is modeled by the help of flow-dependent functions and therefore 
represent a less certain input of the assignment model. But the quality of the 
forecasted volumes in toll projects depends largely on path time and related 
cost. Therefore the modeling of the flow-dependent time on links and nodes 
requires more attention than in ordinary planning projects without toll. The 
modeler has to consider especially the following aspects: 

For trips which originate or terminate outside the scope of the model, 
only a part of their path is covered by the model. Therefore it is not 
possible to evaluate the total travel time and thus it is not recommended 
to apply the same value of time distribution as for internal trips. 
Link and node flows that exceed capacity should be avoided. In this case 
capacity restraint functions do not produce realistic travel times. 
Especially if peak hours are modeled, the capacities of highly charged 
links need to be defined very carefully. 

2.4.11 Dynamic User Equilibrium (DUE) 

2.4.11.1 Introduction and Application Areas  
The quantitative analysis of road network traffic performed through static 
assignment models yields the transport demand-supply equilibrium under 
the assumption of within-day stationarity. This implies that the relevant 
variables of the system (i.e. user flows, travel times, costs) are assumed to 
be constant over time within the reference period. Although static 
assignment models satisfactorily reproduce congestion effects on traffic flow 
and cost patterns, they do not allow to represent the variation over time of 
the demand flows (i.e. around the rush hour) and of the network 
performances (i.e. in presence of time varying tolls, lane usage, signal plans, 
link usage permission); most importantly, they cannot reproduce some 
important dynamic phenomena, such as the formation and dispersion of 
vehicle queues due to the temporary over-saturation of road sections, and 
the spillback, that is queues propagation towards upstream roads.  
The Within-Day Dynamic Traffic Assignment (WDDTA) models are 
conceived to overcome this limit. Among them, the Dynamic User 
Equilibrium (DUE) model embedded within VISUM presents several new and 
unique features, which will be outlined in the following sections, yielding an 
algorithm highly efficient both in terms of memory usage and computing 
time. Thus, this model can be applied to large networks (hundreds of zones 
and up to one hundred thousand links and nodes) with long periods of 
analysis (possibly the entire day), and is particularly suitable for the following 
application fields: 

Simulation of heavily congested urban and extra urban networks, where 
oversaturation conditions and the back propagations of congestion 
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among adjacent roads are present over a large part of the network for 
several hours each day; 
Simulation of networks with transient congestion effects, leading to route 
choice varying during the assignment period; 
Simulation of networks in presence of dynamic management and/or time 
varying access policies, such as time varying tolls, lane usage, signal 
plans, link usage permission; 
Simulation of incident effects and incident management; 
Simulation of evacuation plans, in particular when the maximum 
evacuation time is needed. 

The aim of this chapter is to give a complete overview of the model 
underlying the Dynamic User Equilibrium method implemented in VISUM. 
However, in order to improve readability, any bibliographic reference is 
omitted, along with many analytic proofs. For those, and for a deeper insight 
into the model and/or the theories underlying it, the reader may refer to the 
bibliographic section, which includes all the scientific papers on which this 
model is based.  

2.4.11.2 Overview of the Model 
This model is aimed at solving the Within-Day Dynamic Traffic Assignment 
(WDDTA) on road networks addressing explicitly the simulation of queue 
spillovers. It is based on a macroscopic and continuous-time formulation 
Dynamic User Equilibrium.
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Illustration 73: Dynamic User Equilibrium Problem 

Apart from the temporal dimension, the main difference between the static 
and the dynamic user equilibrium relates to the consistency constraints 
between arc and path model variables. While in the static case these 
constraints involve only the spatial dimension of the system, in the dynamic 
case they concern the temporal dimension also. More specifically, for given 
path flows, the determination of the arc flows, which in the static case 
requires only the arc-path incidence matrix, in the dynamic case involves 
also the travel times on the network; that is, the network flow propagation 
model depends also on the path performances (diagonal arrow in 
Illustration 73).
The present formulation of the WDDTA has two key novelties compared to 
existing WDDTA methods:  
1. Instead of a simulation approach, it adopts a temporal profile approach, 

where the value of a given variable of the problem (i.e., the variable 
temporal profile) is determined as a function of time for the entire period 
of analysis, based on the temporal profiles of the other variables of the 
problem, which are assumed to be fixed to their current value; this 
approach, conceptually depicted on the right hand side of Illustration 
74, has an iterative nature, since each variable has to be recalculated 
until a convergence is achieved. 
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Illustration 74: Temporal layer approach (left side) and temporal profile approach 
(right side) to the Continuous Dynamic Network Loading problem 

2. Spill-back can be modelled explicitly simply by switching between two 
alternative network performance models: without spillback, arc 
performance (the relationship between arc inflow and outflow profiles) 
depends only on the properties of that arc; with spillback, capacities 
upstream of bottlenecks are reduced so that arc storage capacities are 
not exceeded (Illustration 75).
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Illustration 75: Scheme of the fixed point formulation for the WDDTA with 
spillback congestion 

3. The path choice model can adopt either a deterministic view where only 
objectively least-cost paths are loaded, or a Probit view where 
impedances are perturbed stochastically to reflect subjective user 
perceptions.  

This approach presents several advantages: 
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- Consistency between path and link flows (network loading) is 
achieved in the same iteration as the equilibration between demand 
and supply, avoiding nested loops; 

- An implicit path approach generates rational path probabilities 
without the need to enumerate all paths; 

- As a major advantage of the temporal profile approach, the 
assignment period may be subdivided into long time intervals 
(typically 5-15 minutes), instead of a few seconds for the simulation 
approaches, saving computation time and memory. This allows 
overcoming the difficulty of solving WDDTA instances on large 
networks and long periods of analysis; 

- The complexity of the algorithm is roughly equal to that of a static 
assignment multiplied by the number of (long) time intervals 
introduced. 

For queue spillover modelling, the interaction among the flows on adjacent 
arcs is propagated in terms of time-varying arc exit capacities. The approach 
is then to reproduce the spillback phenomenon as a hypercritical flow state, 
either propagating backwards from the final section of an arc and reaching 
its initial section, or originating on the latter that reduces the capacities of the 
arcs belonging to its backward star and eventually influences their flow 
states.
The manual is organized as follows: In section 2.4.11.3, the main variables 
underlying the continuous model are introduced, along with some significant 
results of traffic flow theory underlying the presented models; the Network 
Performance Model and its submodels are addressed in section 2.4.11.4, 
while section 2.4.11.5 is devoted to the Network Loading Map; in section 
2.4.11.6 the Dynamic User Equilibrium model is presented, both for the 
deterministic and Probit case, and a numeric example is presented and 
analyzed in section 2.4.11.7. Finally, the last section contains all the 
bibliographic references related to the model. 

2.4.11.3 Mathematical Framework 
As the analysis is carried out within a dynamic context, the model variables 
are temporal profiles, here represented as piecewise continuous functions of 
the time variable ..
Users trips on the road network are modelled through a strongly connected 
oriented graph G = (N, A), where N is the set of the nodes and A  N  N is 
the set of the arcs. Each link, turn, and connector in the VISUM network 
corresponds to an arc. Each network node and zone corresponds to a graph 
node. 
Each arc a is identified by its initial node TL(a), referred to as tail, and by its 
final node HD(a), referred to as head; that is: a = (TL(a), HD(a)). Example: for 
an arc a representing a link, TL(a) would correspond to its FromNode and 
HD(a) to its ToNode. The forward and backward star of node x N are 
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denoted, respectively, FS(x) = {(x, y) A: x = TL(a)} and BS(o) = {(x, y) A: y = 
HD(a)}. The zones constitute a subset Z  N of nodes.
When travelling from an origin node o N to a destination node d Z users 
consider the set odK of all the paths connecting o to d on G. We are 
interested in the many-to-one shortest path problem from each node o N to 
a given destination d Z. Graph G is assumed to be strongly connected, so 
that xdK , with x N  d Z, is non-empty.  

Path topology is described through the following set notation: 
A(k)  concatenated sequence of arcs constituting the path k odK from
o N to d Z.
With reference to the network flow pattern the following notation is adopted: 

odD   demand flow of vehicles travelling from origin o N to destination 
d Z departing at time  ; 

af   flow of vehicles entering arc a A at time ,

aF  cumulative flow of vehicles entering arc a A at time ;

au   outflow from arc a A at time .

By definition, 
( ) ( ) da aF f

. (1) 
For the calculation of network performance, travel times are introduced 
through entrance-exit functions, and the following notation is adopted: 

ac  cost of travelling through arc a A for vehicles entering it at time  ; 

at  exit time from arc a A for vehicles entering it at time  ; 

1
at  entry time on arc a A for vehicles exiting it at time ;

kC  cost of path odKk  from o N to d Z for vehicles departing from 
node o at time  ;

kT  exit time from path odKk  from o N to d Z for vehicles departing 
from o at time  ;
Due to the presence of time-varying costs, it may be convenient to wait at 
nodes in order to enter a given arc later. In the following, it is assumed that 
vehicles are not allowed to wait at nodes, but paths with cycles may result. 
However, the shortest paths include at most a finite number of cycles. 
Since waiting at nodes is not allowed, the path exit time kT ( ) is the sum of 
the travel times of its arcs A(k), each of them referred to the instant when 
these vehicles enter the arc when travelling along the path. Moreover, 
assuming that path costs are additive with respect to arc costs, its cost kC
( ) is the sum of the costs of its arcs A(k), each of them referred to the time 
when they enter the arc when travelling along the path. The exit time and the 
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cost of path k can then be retrieved, respectively, through the following 
recursive expressions: 

athTkT , (2) 

athCackC , (3)

where a = (o, x) A is the first arc of k and h xdK  is the rest of path k
(Illustration 76).
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Illustration 76: Recursive expressions of path exit time, entrance time and cost 

The strict First In First Out (FIFO) rule holds when the following property is 
satisfied for each arc a A:

at'at , for any  > .  (4) 

The monotonicity expressed by (4) ensures that the temporal profiles of the 
arc exit times are invertible. Moreover, the FIFO rule applies also to the 
entrance times: 

1
xyt'1

xyt  , for any  > . (5) 

Any arc a A consists of a homogeneous channel with two bottlenecks 
located at the beginning and at the end. The flow states along the arc are 
determined on the basis of the Simplified Theory of Kinematic Waves 
(STKW), assuming the concave parabolic-trapezoidal fundamental diagram 
depicted in Illustration 77, expressing the vehicle flow ,xaq  at a given 
section x of the arc and instant , as a function of the vehicle density ,xak
at the same section and instant. The arc is then characterized by: 

aL  length of arc a;
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aQ  capacity of the initial bottleneck and of the homogeneous channel 
associated to arc a, called in-capacity;  

aS  capacity of the final bottleneck associated to arc a, simulating the 
average effect of capacity reductions at road intersections (i.e. due to the 
presence of traffic lights), called out-capacity; aQaS ;

aV  maximum speed allowed on arc a, called free flow speed; 

aKJ  maximum density on arc a called jam density; 

aW  propagation speed of hypercritical flow states on arc a, called 
hypercritical kinematic wave speed. 
Within this framework, for links the in-capacity corresponds to the physical 
mid-block capacity, whereas out-capacity reflects the bottleneck capacity 
imposed by the signal control or priority rules at the downstream junction. 
Exit connectors (o, y) A: o Z, y N \ Z are arcs with infinite in-capacity, entry 
connectors (x, d) A: x N \ Z, d Z} are arcs with infinite out-capacity, while 
turns are represented by arcs having zero length and in-capacity equal to 
their out-capacity. 
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Illustration 77: The adopted parabolic-trapezoidal fundamental diagram, 
expressing the relation among vehicular flow, speed and density along a given arc 

With reference to Illustration 77, it is assumed that a1ka2k , implying the 

following relation among the above parameters: 

2 1
a a

a a

KJ Q
V W

Based on the fundamental diagram, it is possible to identify two families of 
flow states: 

hypocritical flow conditions, corresponding to uncongested or slightly 
congested traffic; under these conditions, if vehicular density increases, 
the vehicular flow increases also; 
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hypercritical flow conditions, corresponding to heavily congested traffic, 
where queues and “stop and go” phenomena occur; under these 
conditions, if vehicular density increases, the vehicular flow decreases. 

Then, qako  and qavo  express the density and the speed as functions of 
the flow in presence of hypercritical flow conditions, while qaku  and qavu
express the density and the speed as functions of the flow in presence of 
hypocritical flow conditions. 
When modelling arcs with low speed limits, i.e. representing urban roads, it 
may be assumed that the vehicle speed under hypocritical flow conditions is 
constant and equal to the speed limit, until capacity is reached; in this case, 
the simpler trapezoidal fundamental diagram depicted in Illustration 78 may 
be adopted, where, in order to guarantee a1ka2k , the following relation 

must hold: 
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Illustration 78: The trapezoidal fundamental diagram suggested for urban links 

In order to implement the proposed models, the period of analysis [0, ] is 
divided into n time intervals identified by the sequence of instants  = { 0, … , 

i, … , n}, with 0 = 0, i < j for any 0  i < j  n, and n  = . For 

computational convenience, we introduce also an additional instant 1n  = 
.

In the following we approximate the temporal profile g( ) of any variable 
through either a piecewise linear or a piecewise constant function, defined 

by the values ig  = ig  taken at each instant i .. This way, any 

temporal profile g( ) can be then represented numerically through the vector 

g = (g0, … , ig , … , ng ).
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2.4.11.4 Network Performance Model 
To represent the spillback phenomenon, we assume that each arc is 
characterized by two time-varying bottlenecks, one located at the beginning 
and the other one located at the end, called “entry capacity” and “exit 
capacity” respectively. 
The entry capacity, bounded from above by the in-capacity, is meant to 
reproduce the effect of queues propagating backwards on the arc itself, 
which can reach the initial section and can thus induce spillback conditions 
on the upstream arcs. In this case the entry capacity is set to limit the current 
inflow at the value which keeps the number of vehicles on the arc equal to 
the storage capacity currently available. The latter is a function of the exit 
flow temporal profile, since the queue density along the arc changes 
dynamically in time and space accordingly with the STKW. Specifically, the 
space freed by vehicles exiting the arc at the head of the queue takes some 
time to become actually available at the tail of the queue, so that the jam 
density times the length is only the upper bound of the storage capacity, 
which can be reached only if the queue is not moving. 
The exit capacity, bounded from above by the out-capacity, is meant to 
reproduce the effect of queue spillovers propagating backwards from the 
downstream arcs, which may generate hypercritical flow states on the arc 
itself. For given arc inflows, arc outflows and intersection priorities, which are 
here assumed proportional to the mid-block capacities, the exit capacities 
are obtained as a function of the entry capacities based on flow conservation 
at the node. 
The network performance model is specified here as a circular chain of three 
models, namely the “exit flow and travel time model for time-varying 
capacities”, the “entry capacity model”, and the “exit capacity model”, which 
are solved iteratively. The three models, described separately in the 
following sections, are shown in context in Illustration 79.
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Illustration 79: Scheme of the fixed point formulation for the NPM 
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Exit Flow and Travel Time Models for Time-varying Exit Capacity 
Assuming the FIFO rule, i.e. no overtaking among vehicles can occur, we 
introduce in this section a link-based performance model for an arc with 
time-varying exit capacity, aimed at determining the “exit flow” temporal 
profile as a propagation of the inflow temporal profile to the arc final section, 
and then the corresponding travel time temporal profile.  
Under the assumption that there is no capacity reduction at the end of arc 
a A, it is possible to express the hypocritical exit time ar , for a vehicle 
entering the arc at time , as a function of the previous portion of the inflow 
temporal profile that is the inflow af  at each instant :

:afarar . (6) 

Relation (6) will be specified in section Hypocritical exit time model for a 
trapezoidal fundamental diagram for the trapezoidal fundamental diagram 
(Illustration 78), and in section Hypocritical exit time model for a parabolic 
fundamental diagram for the parabolic fundamental diagram (Illustration 
77).
When, instead, at the end of the arc there is a bottleneck with time-varying 
exit capacity aSa  for each time , the problem of determining the 
overall exit time arat  for a vehicle that enters the arc at time   shall 
be addressed identifying firstly the cumulative exit flow temporal profile, 
whose value aE  at time  is given by: 

:aa
1

araFminaE  (7) 

where a  denotes the cumulative exit capacity at time :

( ) ( ) da a  ,  (8) 

i.e. between time points  and , aa  vehicles can exit the arc. 

The above expression (7) is based on the following specification of the FIFO 
rule, stating that the cumulative exit flow at the exit time at  of a vehicle 
that enters the arc at  is equal to the cumulative inflow at time  , that is: 

aFataE .

Then, expression (7) can be explained as follows. If there is no queue at a 
given time , the travel time is equal to the hypocritical running time, so that, 
based on the FIFO rule (9), the cumulative exit flow is equal to the 

cumulative inflow at time 1
ar  when a vehicle that is leaving the arc at 

enters it. If a queue arises at time  < , from that instant until the queue 
vanishes the exit flow equals the exit capacity instead, and then, based on 
the FIFO rule, the cumulative exit flow aE  results from adding to the 

cumulative inflow at time 1
ar  the integral of the exit capacity between 
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and , that is aa . Moreover, if there is no queue at time , the 
cumulative exit flow is the same as if the queue arises exactly at  =  . 
By definition, the exit flow ae  from arc a at time is:

d/radEae  (10) 

By construction, aae  at any time  and hypercritical exit flows occur 
whenever aae .

Knowing the cumulative inflow and exit flow temporal profiles, the FIFO rule 
(9) yields an implicit expression for the arc exit time temporal profile. Once 
the cumulative exit flow temporal profile is known, the exit time temporal 
profile is calculated conventionally as: 

aFaE:min,armaxat
. (11) 

Illustration 80 depicts a graphical interpretation of equation (7), where the 
cumulative exit flow temporal profile aE  is the lower envelope of the 
following curves: a) the cumulative inflow aF  shifted forward in time by 
the hypocritical running time ar , thus yielding the temporal profile 

1
araF ; this represents the rate at which vehicles entering the arc 

arrive at its end; b) for every time , the cumulative exit capacity temporal 

profile shifted vertically so that it goes through the point 1
araF, ,

this represents the rate at which vehicles can exit the arc following time .
No queue is present when curve a) prevails. Queueing starts, when the 
cumulative exit flow curve falls below the time-shifted cumulative entry flow 
curve, i.e. more vehicles arrive at the final section of the arc than can exit; in 
the diagram, therefore, the queue arises at time ' and vanishes at time ''.
In the same framework, the calculation of the exit time based on the 
cumulative inflow and exit flow temporal profiles is shown using thick arrows. 
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Illustration 80: Arc with time-varying capacity 

Hypocritical exit time model for a trapezoidal fundamental diagram 
If the trapezoidal fundamental diagram is adopted to represent flow states on 
the arc, the hypocritical speed on the link is constant, and thus relation (6) is 
simply specified as: 

aV/aLar . (12) 

In this case, using (12) equation (7) can be made explicit as follows: 
:aaV/aLaFminaE a . (13) 

Hypocritical exit time model for a parabolic fundamental diagram 
If the parabolic fundamental diagram is adopted, the situation becomes more 
complicated because vehicles may travel at different speeds even at 
hypocritical densities. In the case where the arc inflow temporal profile is 
piecewise constant, the running link exit time can be determined at least 
approximately from the STKW. The general idea is to trace out the trajectory 
of a vehicle entering arc a at time , observing the different speeds it will 
encounter along the arc, and determining its exit time at . Below we first 
explain the exact model. Since it can result in a large computational effort, 
we then replace it with a simpler model which averages traffic conditions and 
thus limits the number of different traffic situations encountered by any 
vehicle on the arc. Readers who would like to get a general feel of the model 
as a whole may just note the general idea and skip to the conclusion of this 
section.
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Illustration 81: Flow pattern given by the Simplified Theory of Kinematic Waves 

Based on the STKW, vehicles change their speeds instantaneously. As 
depicted in Illustration 81, when the inflow temporal profile is piecewise 
constant, vehicle trajectories are piecewise linear and the space-time plane 
comes out to be subdivided into flow regions characterized by homogeneous 

flow states and delimited by linear shock waves. The slope ij
aW  of the 

shockwave separating two hypocritical flow states i
af  and jaf  is 

( ) ( )
( ) ( )

j i
ij i ja a

a a a a a aj i
a a a a

f fW vu f vu f V
ku f ku f

 . (14) 

In theory, given a piece-wise constant inflow temporal profile, it is possible to 
determine the trajectory of a vehicle entering the arc at instant , and thus its 
hypocritical exit time ar . However, Illustration 81 shows that it may be 
extremely cumbersome to determine these trajectories, in fact:  

many shockwaves may be active on the arc at the same time;  
shockwaves may be generated either at the initial section by flow 

discontinuities at times i  0  i  n-1, or on any arc section at any time 
by shockwave intersections;  
a vehicle may cross many shockwaves while travelling on the arc, and 
all the crossing points have to be explicitly evaluated in order to 
determine its trajectory. 

In order to overcome these difficulties, as depicted in Illustration 82, we 

assume that at each instant 1ni0,ir , a fictitious shockwave is 

generated on the initial arc section separating the actual flow state 1i
af

and the fictitious flow state corresponding to the average speed 
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ii
ar/Li  of the vehicle entered at instant i . Fictitious shockwaves 

are very easy to deal with, in fact:  
they never meet each other, and thus are all generated on the running 
link initial section only at time 1ni0,i ;
each vehicle meets at the most the last generated fictitious shockwave, 
so that its trajectory is very easy to be determined. 

Based on (14), the slope i
aW  of the fictitious shockwave is: 

1( )i i i
a a aW vu f V  . (15) 
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Illustration 82: Flow pattern given by the Averaged Kinematic Wave model. 

Note that the trajectory of a vehicle entering the running link at time 
i,1i  is directly influenced only by the average trajectory of the 

vehicle entered at time 1i , which synthesizes the previous history of flow 
states.
The approximation introduced has little effect on the model efficacy. 
Moreover, it satisfies the FIFO rule, which is still ensured between the arc 
initial and final sections, while local violations that may occur within 
intermediate sections are of no interest. 

Based on the above, the hypocritical running time 1ni0,i
a

i
a ,

can be specified as follows: 

a) if a vehicle entered at time i  does not meet the fictitious shockwave 
1i

aW  before the end of the arc, its hypocritical exit time is simply: 

( )i i i
a a a ar L vu f ,



2  Model Description 

2-190 VISUM 10.0 © PTV AG 2007 

where i
af  is the arc inflow during time interval i,1i ;

b) otherwise, its hypocritical exit time is determined on the basis of the 
two speeds it assumes before and after crossing the fictitious 
shockwave, that is: 

1( )i i i i i i
a a ar L vu f ,

where i  is the vehicle travel time before it reaches the fictitious 
shockwave (Illustration 83):

1 1 1( ) ( ( ) )i i i i i i
a a aW vu f W  . 

timei-1
W i-1 vu(f a

i)

i

space

L

i

ra
i

i-1
i-1

ra
i-1

timei-1
W i-1 vu(f a

i)

i

space

L

i

ra
i

i-1
i-1

ra
i-1

Illustration 83: Determination of the arc hypocritical exit time. 

Then, the hypocritical running time ar  specifying (6) is: 

1ni0,1i,i,i1i/iar
1iar

iiarar  (16). 

Entry capacity model 
In this section we propose a new approach to represent the effect on the 
entry capacity of queues that, generated on the arc final section by the exit 
capacity, reach the arc initial section, thus inducing spillback conditions. This 
part of the model is used only, if DUE is run with the spillback option 
activated. If the option is turned off, the storage capacity of an arc is 
assumed to be infinite, and the entry capacity of a link is never reduced 
below the in-capacity. 
To help understand let us assume, for the moment, that the queue is 
uncompressible, i.e. only one hypercritical density exists. Then, the 
kinematic wave speed is infinitive – from either Illustration 77 or Illustration 
78, it is clear that aw  when a2kaKJ  – so that any hypercritical flow 
state occurring at the final section would back-propagate instantaneously. 
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This circumstance does not imply that the queue reaches the initial section 
instantaneously. There indeed, the exiting hypercritical flow state does not 
affect the entering hypocritical flow state until the arc has filled up 
completely, i.e. the cumulative number of vehicles that have entered the arc 
is smaller than the number of vehicles that have exited the arc plus the 
storage capacity. The latter in this case is constant in time and given by the 
arc length multiplied by the jam density. As soon as the queue exceeds the 
arc length, the entry capacity becomes equal to the exit capacity, i.e. all 
vehicles on the arc move as one rigid object.   
Actually, hypercritical flow states may occur at different densities and their 
kinematic wave speed are not only quite lower than the vehicular free flow 
speed, implying that the delay affecting the backward translation in space 
from the final to the initial section of the flow states produced by the exit 
capacity is not negligible, but also somewhat different from each other, which 
generates a distortion in their forward translation in time. Notice that the 
fundamental diagrams adopted here, having both a linear hypercritical 
branch, are capable of representing the dominant delay effect but not the 
distortion effect, since all backward kinematic waves have the same slope. 
The spillback effect on the entry capacity is here investigated by exploiting 
the analytical solution of the STKW.  
The flow state occurring on an arc section is the result of the interaction 
among hypocritical flow states coming from upstream and hypercritical flow 
states coming from downstream. Specifically, on the initial section, the one 
flow state coming from upstream is the inflow, while the flow states coming 
from downstream are due to the exit capacity and can be determined by 
back-propagating the hypercritical portion of the cumulative exit flow 
temporal profile, thus yielding what we refer to as the “maximum cumulative 
inflow” temporal profile. 
According to the Newell-Luke minimum principle, the flow state consistent 
with the spillback phenomenon occurring at the initial section is the one 
implying the lowest cumulative flow. Therefore, when the cumulative inflow 
equals or overcomes the maximum cumulative inflow, so that spillback 
actually occurs, the derivative of the latter temporal profile may be 
interpreted as an upper bound to the inflow. This permits to determine the 
proper value of the entry capacity that maintains the queue length equal to 
the arc length. 
The instant a  when the backward kinematic wave generated at time  on 
the final section of arc a A by the hypercritical exit flow aae  would 
reach the initial section is given by: 

aeaw/aLa . (17) 

By definition the points in time and space constituting the straight line 
trajectory produced by a kinematic wave are characterized by a same flow 
state. Moreover, Illustration 84 shows that the number of vehicles 
encountered by the hypercritical wave relative to the exit flow q for any 
infinitesimal space ds travelled in the opposite direction is equal to the time 



2  Model Description 

2-192 VISUM 10.0 © PTV AG 2007 

interval ds qaw/1qav/1  multiplied by that flow. Therefore, integrating 
along the arc from the final to the initial section, we obtain the cumulative 
flow aH  that would be observed at time a  in the initial section as: 

aH  = aeaw/1aeav/1aLaeaE . (18) 

space
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ds
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Illustration 84: Trajectories of a hypercritical kinematic wave and of the 
intersecting vehicles 

In the fundamental diagrams adopted here, the hypercritical branch is linear 
and therefore a  is invertible. Indeed, since awqaw , based on (17) 
the time when a  is aw/aL . Moreover, since 

aw/qaKJqav/q , based on (18) we have: aKJaLaEaH

Therefore, the maximum cumulative inflow aG  that could have entered 
the arc at time   consistently with the exit flow pattern is given by: 

( / ) , if ( / ) ( / );
( )

, otherwise.
a a a a a a a a a a a

a

E L w L KJ e L w L w
G

 (19) 
If at time the cumulative inflow aF  is equal or higher than the maximum 
cumulative inflow aG , so that spillback occurs at that instant, then the 
entry capacity a  is given by the derivative d/adG  of the latter; 
otherwise, it is equal to the in-capacity aQ . Differentiating aG  yields: 

d/adG  = aw/aLae ; then, since aw/aLae  = aw/aLa ,
we get:  

( / ), if ( ) ( );
( )

, otherwise.
a a a a a

a
a

L w G F
Q

 (20) 

Illustration 85 shows how, based on equation (19), the maximum 
cumulative inflow temporal profile can be obtained graphically through a rigid 
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translation (thick arrows) of the cumulative exit flow temporal profile for 
aw/aL  in time and for aKJaL  in value. Moreover, it points out that, when 

aG  is greater than aF , the queue is shorter than aL  and aQa ,
otherwise spillback occurs and aw/aLaa .
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Illustration 85: Graphical determination of the entry capacity temporal profile in 
the case of triangular fundamental diagram, piecewise constant inflow, and constant 
exit capacity 

Exit Capacity Model 
In this section we present a model to determine, for a given node, the exit 
capacities of the upstream arcs, on the basis of the entry capacities of the 
downstream arcs and of the local maneuver flows. In this model, only two 
typologies of nodes are allowed: “mergings” and “diversions”; in this case, in 
fact, this model can be expressed in terms of arc outflows and inflows. This 
is not a limitation: for VISUM networks a graph node will either connect one 
incoming link arc to several outgoing turn / connector arcs (in which case it is 
a diversion) or it will connect several incoming turn / connector arcs to one 
outgoing link arc (in which case it is a merging). 
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When considering a merging x N, that is an intersection with a singleton 
forward star, the problem is to split the entry capacity b  of the arc b = 
FS(x) available at time  among the arcs belonging to its backward star, 
whose outflows compete to get through the intersection. In principle, we 
assume that the available capacity is partitioned proportionally to the out-
capacity aS  of each arc a BS(x). But this way it may happen that on some 
arc a the outflow a  is lower than the share of entry capacity assigned to 
it, so that only a lesser portion of the latter is actually exploited. The rest of 
the entry capacity shall then be partitioned among the other arcs. Moreover, 
when no spillback phenomenon is active, the exit capacity a  shall be set 
equal to the out-capacity aS .

When considering a diversion x N, that is an intersection with a singleton 
backward star, the problem is to determine at time the most severe 
reduction to the outflow from the arc a = BS(x) among those produced by the 
entry capacities of the arcs belonging to its forward star. Again, when no arc 
is spilling back, the exit capacity shall be set equal to the out-capacity. When 
only one arc b FS(x) is spilling back, that is bbf , in order to ensure 
capacity conservation at the node while satisfying the FIFO rule applied to 
the vehicles exiting from arc a, the exit capacity a  scaled by the share of 
vehicles turning on arc b is set equal to b’s entry capacity: 

bau/bfa . When more than one arc b FS(x) is spilling 
back, the exit capacity is the most penalizing among the above values. On 
this basis, we have: 

bbf,xFSb:bf/aub;aSmina .  (21) 

Note that, in contrast with the models presented in the previous two sections, 
this model is spatially non-separable, because the exit capacities of all the 
arcs belonging to the backward star of a same node are determined jointly, 
and temporally separable, because all relations refer to a same instant. 
It is assumed that vehicles do not occupy the intersection if they cannot 
cross it due to the presence of a queue on their successive arc, but wait until 
the necessary space becomes available. Indeed, this model is not capable of 
addressing the deterioration of performances due to a misusage of the 
intersection capacity. 

Arc Cost Model 
The cost for vehicles entering arc a at time   is given by: 

amatac  (22) 

where am is the monetary cost, while is the value of time. 
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2.4.11.5 Network Loading 
In this section we develop a formulation for the dynamic Network Loading 
Map with implicit path enumeration in the case of deterministic route choice 
model. To this end, we will firstly define and address the continuous dynamic 
shortest path problem, which lies at the heart of the route choice model. 

Continuous Dynamic Shortest Path Problem 
Contrary to the static case, in the dynamic context the shortest path problem 
involves explicitly the time dimension, since the costs of the arcs constituting 
a path are to be evaluated at different instants, consistently with the travel 
times experienced along the path, as induced by the recursive equation (3); 

then we will address the problem of finding the minimum cost d
ow  from 

each node o N to a given destination d Z for users departing at time :
d

ow =min odKk:kC  (23) 

It can be proved that the following dynamic version of the Bellman relation 
for each node o N (Illustration 86) is equivalent to problem (23): 

d
ow =min oFSx:oxtd

xwoxC . (24) 

cox( ) + wx
d(tox( ))

d Z

o N

(o, x) FS(o)
x N

tox( )
cox( ) + wx

d(tox( ))

d Z

o N

(o, x) FS(o)
x N

tox( )

Illustration 86: Dynamic version of the Bellman relation. 

The set of Bellman relations (24) can be solved using a dynamic 
programming approach described below. 

Path Choice and Network Flow Propagation Models 
Under the assumption that users are perfectly informed rational decision-
makers, the resulting behaviour is such that only shortest paths are utilized. 
The deterministic route choice model for users that travel between the origin 
o N and the destination d Z departing at time , can then be formulated 
through the following extension of the dynamic case of Wardrop’s first 
principle:  



2  Model Description 

2-196 VISUM 10.0 © PTV AG 2007 

if path odKk  is used, i.e., its choice probability kP  is positive, then 

its cost kC  is equal to the minimum cost d
ow  to travel between o

and d departing at time ;
vice versa, if path k is unused, i.e., its choice probability is zero, then its 
cost may not be smaller than the minimum cost. 

This can be formally expressed as follows: 

.0d
owkCkP  (25) 

Moreover, the choice probabilities must be non-negative and amount to 1. 
We now develop a formulation based on implicit path enumeration for the 
route choice model and for the corresponding network flow propagation 
model adopting the temporal-layer approach, where the temporal 
perspective is the exit time from the current node. 
If the shortest paths from o N to d Z for users departing at time   involve 
more than one arc exiting from an intermediate node x, then the conditional 
probabilities of these arcs at time   for users directed to d could depend, in 
general, on the sub-path utilized from each o to x. Because of the additive 
nature of arc costs, we assume instead that the arc conditional probabilities 
at each node are equal for all users directed to the same destination 
regardless of the sub-path so far utilized. 
Under this assumption, the choice probability kP  of a path odKk  from
o N to d Z for users departing at time is equal to the product of the 
conditional probabilities of its arcs A(k), each of them referring to the time 
when these users enter the arc when travelling along the path. The choice 
probability of k can be then retrieved through the following recursive 
expression: 

oxthPd
oxpkP ,  (26) 

where (o, x) is the first arc of k and xdKh  is the rest of path k.

On this basis it can be proved that the deterministic specification of the path 
choice probabilities defined by the dynamic Wardrop condition is equivalent 
to the specification of the arc conditional probabilities defined by the 
following system: 

0d
owoxtd

xwoxCd
oxp ,  (27) 

1doxpoFSx,o ,  (28) 

0d
oxp . (29) 

Equation (27) states that users exiting at time   from node o N and directed 
to the destination d Z may choose among the forward star FS(o) only an arc 

(o, x) for which the cost oxC  plus the minimum cost oxtd
xw  to reach 
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the destination once entered x at time oxt  is equal to the minimum cost 
d

ow .

The flow d
oxf  of vehicles directed to destination d Z that enter the arc (o, 

x) A at time is given by the arc conditional probability d
oxp  multiplied 

by the flow exiting from node o at time . The latter is given, in turn, by the 

sum of the outflow dyou  from each arc (y, o) BS(o) entering o, and of the 

demand flow odD  from o to d. Then, we have: 

d
youoBSo,yodDd

oxpd
oxf .  (30) 

Applying the FIFO and vehicle conservation rules, the outflow from y at time 

 can be expressed in terms of the inflow at o at time 1yot :

d/yodt/1
yotd

yofd
you ,  (31) 

where the weight d/yodt  stems from the fact that travel times vary over 

time, so that users exit from y at a certain rate and, in general, enter in o at a 
different rate, which is higher than the previous one, if the arc travel time is 
decreasing, and lower, otherwise. 
The total inflow and outflow of arc (o, x) A at time   are then: 

d
oxZdox

d
oxZd uu;foxf  (32) 

2.4.11.6 Dynamic User Equilibrium Model 
All the components of DTA have been introduced. Here we formulate the 
user equilibrium, where no user can reduce his perceived travel cost by 
unilaterally changing path, as a fixed point problem in the temporal profiles of 
the arc inflows and outflows. 

The Deterministic Case 
The formulation of DTA with implicit path enumeration yields the model 
depicted in Illustration 87.
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Illustration 87: Variables and models of the fixed point formulations for the NPM 
(left hand side) and for the DTA with spillback (right hand side) 

In analogy with the static case, the Network Loading Map (NLM) is a 
functional relation yielding, for given demand flows D, an arc flow pattern f 
consistent with the arc performances t, and c, through the deterministic route 
choice model p(w(c, t), t, c), and the network flow propagation model (p, t;
D). The NLM has been formulated with implicit path enumeration by 
introducing the node minimum cost w, and the arc conditional probabilities p.
Note that the dashed arrows indicate any solution of the corresponding 
choice map. In turn, the arc performance model yields the arc exit time 
pattern t, and the arc cost pattern c, consistent with the arc inflows f and arc 
outflows u.
The deterministic user equilibrium is formally given by the system of the NLM 
and of the arc performance model. 
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The Probit Case 
In the Probit route choice model, which is based on the random utility theory, 
the arc costs perceived by users are not known with certainty and are thus 
regarded as independent random variables. We extend the Probit model to 
the dynamic case assuming that the arc cost a  of arc a A perceived by 
users at time  is equal to the sum of the arc cost ac  yielded by the arc 
performance model and of a time-varying random error, whose value at time 

 is distributed as a normal variable. Its variance is assumed proportional, 
through a constant coefficient  > 0, to a time-varying cost term a  > 0 
independent of congestion.  
The arc flow pattern resulting from the evaluation of the Probit NLM for given 
arc performances is obtained through the well-known Montecarlo method as 
follows: 

a) Get a sample of  perceived arc cost patterns: 
5.0

a
h

aach
aĉ , in compact form: ;cĉhĉ , (33) 

where each h
a  is extracted from a standard normal variable N[0,1] 

and h = 1, … , .. 
b) For each perceived arc cost pattern of the sample, determine through 
the deterministic NLM a consistent arc inflow pattern.  
c) Calculate the average of the resulting deterministic arc inflow patterns, 
thus obtaining an undistorted estimation of the Probit arc inflow pattern. 

Note that, based on (33), the same outcome h
a  of the standard normal 

variable is used to perturb the whole temporal profile hĉ a . This is 
consistent with the behaviour of users, who perceive the arc cost temporal 
profile as a whole. On the contrary, the travel times that underlie the network 
flow propagation, are considered as constant throughout the simulation. 

2.4.11.7 Example 
In order to investigate the behavior of the proposed model and to show the 
effect of spillback on path choice, we analyze a simple example which 
presents intuitive solutions. It is located in folder EXAMPLES\DUE of your 
VISUM installation as BRAESS_WITHOUT_SPILLBACK.VER and 
BRAESS_WITH_SPILLBACK.VER.  
We consider the Braess network depicted in Illustration 88; links have the 
characteristics reported in the corresponding table, and are all modelled with 
a parabolic-trapezoidal fundamental diagram. All link out-capacities are set 
equal to the corresponding in-capacities. The turn capacities are: 

EDQAEQACQ = 2000 veh/h; DFQCFQBDQ  = 1000 veh/h.  
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Link aL [km] aQ  [veh/h] aV  [km/h] aW  [km/h] 1 / aK [m] 

A 0.4 2000 50 15 7.0 

B 0.6 2000 50 15 7.0 

C 0.6 2000 50 15 7.0 

D 0.4 2000 50 15 7.0 

E 0.4 2000 50 15 7.0 

F 0.1 4000 50 15 3.5 

The period of analysis is constituted by 100 intervals of 1 minute. We 
assume a constant demand for the first 33 minutes of simulation from node 1 
to node 5 equal to 15D  = 2300 veh/h. 
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Illustration 88: The example network 

The outputs of two assignment runs, one without and the other with spillback 
congestion, are presented in Illustration 89. Without spillback, the 
congestion is evenly located only on turns CF and DF (which can be 
gathered observing turn travel times), so that on all the paths between node 
1 and node 5 the queue is about equal, and path A-E-D-F has fewer users 
since it is clearly not convenient. With spillback, however, the queue 
propagates from turn CF to arc C and up to arc A, and from turn DF to arc D 
and up to arcs B and E. Moreover, the spillback effect is greater on arc B 
than on arc E because of the different capacities of turn ED and turn BD. 
Then, after an initial growth, the travel time on arc D remains constant, since 
congestion is propagated upward, while the travel time on arc B grows faster 
than the travel time on arc E, so that path A-E-D now becomes competitive, 
as it implies a longer route but a lower travel time, and flow on arc E 
increases from around 150 veh/h to 670 veh/h approximately.  
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Illustration 89: Results of WDDTA without and with spillback 
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2.4.12 Dynamic Stochastic Assignment 
The dynamic stochastic assignment differs from all other PrT assignment 
procedures as a result of the explicit modelling of the time required to 
complete trips in the network. For dynamic stochastic assignment, capacity 
has to be set as an hourly value, not regarding the length of the time interval 
the demand is available for.  
In contrast, all trips are completed in the case of static assignment 
procedures with no indication of the time required, capacities have to be 
specified according to the length of the time interval demand data is 
available for, and the volumes of all trips and the resultant impedances are 
superimposed upon each other at the individual network objects. Road-users 
subsequently have only to choose from a number of different routes for each 
journey. The departure time is irrelevant. 
In the case of the dynamic assignment on the other hand, an assignment 
period T (e.g. 24 hours) is specified and divided up into time slices Ti of 
equal length (e.g. 15 minutes). Only the search for (alternative) routes for 
each journey is made with no reference to a specific time. As in the case of 
the static stochastic assignment, several shortest path searches are 
completed with network impedances that vary at random. All other 
operations explicitly include a time dimension. 
From the entire demand and its temporal distribution curve, the portion with 
the desired departure time is determined for each time slice within this time 
interval. On the supply side, there are pairs to choose consisting of route and 
departure time slice, which, using PuT assignment terminology, are also 
called connections. The impedance of a connection is composed of its 
network impedance and the difference between the actual and desired 


