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ABSTRACT 

MEDICAL IMAGE SEGMENTATION WITH DEEP CONVOLUTIONAL 
NEURAL NETWORKS 

by 

Chuanbo Wang 

The University of Wisconsin-Milwaukee, 2022 

Under the Supervision of Zeyun Yu 

 

Medical imaging is the technique and process of creating visual representations of 

the body of a patient for clinical analysis and medical intervention. Healthcare 

professionals rely heavily on medical images and image documentation for proper 

diagnosis and treatment. However, manual interpretation and analysis of medical 

images are time-consuming, and inaccurate when the interpreter is not well-trained. 

Fully automatic segmentation of the region of interest from medical images has been 

researched for years to enhance the efficiency and accuracy of understanding such 

images. With the advance of deep learning, various neural network models have 

gained great success in semantic segmentation and sparked research interests in 

medical image segmentation using deep learning. We propose two convolutional 

frameworks to segment tissues from different types of medical images. 

Comprehensive experiments and analyses are conducted on various segmentation 

neural networks to demonstrate the effectiveness of our methods. Furthermore, 

datasets built for training our networks and full implementations are published. 
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Chapter 1  

Introduction 

1.1 Semantic Segmentation 

Semantic segmentation is one of the most important tasks in computer vision. 

The goal of semantic segmentation is to find the boundary between the object of 

interest and the background. More specifically, semantic segmentation aims at 

classifying each image pixel with a class label. Since the achievements AlexNet [13] 

accomplished in the ImageNet large-scale visual recognition challenge [14] in 2012, 

the success of deep learning in the domain of computer vision sparked interest in 

semantic segmentation [15] using deep convolutional neural networks (CNN) [16]. 

1.1.1 Supervised Learning Methods 

As one of the early segmentation models based on CNN, Long et al. proposed 

fully convolutional networks (FCN) [17] for pixel-wise semantic segmentation. One of 

their main contributions is using up-sampling layers to generate the output activation 

maps. The output is fused with the output of shallower layers to preserve the 

contextual spatial information of an image. The next high-impact segmentation 

model is SegNet [68] which introduces the encoder-decoder architecture. As the 

name suggested, this architecture consists of two sub-networks: the encoder 

network and the decoder network. The encoder network consists of convolutional 
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layers and pooling layers like [17]. The decoder network is mapping the low-

resolution encoder feature to input resolution feature maps. The main contribution of 

this work is the way that the lower resolution feature maps being upsampled in the 

decoder. Pooling indices computed in the encoder’s max-pooling layer are used by 

the corresponding decoder to upsample feature maps into higher resolution. Next, 

the skip connection is introduced to the encoder-decoder architecture by U-Net [45] 

and V-Net [69]. Skip connections skip some of the layers in the neural network and 

feed the output of one layer as the input to the next layers. In U-Net, the output of a 

layer in the encoder is fed into the corresponding layer in the decoder to improve 

segmentation accuracy and solve the vanishing gradients problem. Additionally, V-

Net added skip connections to the 3D variant of U-Net and proposed a novel 

objective function based on the Dice coefficient, which is widely used and adopted in 

our proposed segmentation models. DenseNet [70] push the idea of skip connection 

further where each layer obtains additional inputs from all preceding layers and 

passes on its feature-maps to all subsequent layers. Following these works, several 

variants [72] [73] [74] [75] [76] [77] [78] of the encoder-decoder architecture have 

been applied to semantic segmentation with modifications like deeper or shallower 

models, and the addition of extra attention blocks. 

Another well-adopted improvement in the deep semantic segmentation models is 

the spatial pyramid pooling (SPP) module. Following this idea, DeepLabv3+ is 

proposed in 2018 by Chen, Liang-Chieh, et al. [79] and outperformed state-of-the-art 
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networks in the PASCAL VOC 2012 segmentation challenge [36] and the cityscapes 

segmentation challenge [80] [81]. The SPP module was initially introduced in [83] 

inserted before the output layer of CNN for object detection. When applied to 

semantic segmentation, the SPP module is used to obtain multi-scale context 

information by concatenating the feature maps in multiple scales or rates. 

DeepLabv3 [84] and its successor, DeepLabv3+, explore the multi-scale context 

information in a different way by using four parallel atrous convolutions with different 

atrous rates applied to handle segmenting the object at different scales. The benefits 

of SPP are twofold: 1. It removes the need for fixed-size image input. 2. It improves 

the robustness of object deformation. 

Another research area in deep segmentation networks is reducing the high 

computational resources. Over the years, semantic segmentation neural networks 

evolve into deeper, wider, and more complicated models at the cost of high 

computational complexity and training time. One of the first modern efforts in this 

area is network pruning proposed in [85] by Han, Song, et al., in 2015, following the 

idea [86] [87] [88] proposed earlier in the 1990s. Next, [89] proposed a context-

aware guiding module (CAGM) to improve existing pruning methods. CAGM allows 

the model to preserve the channels that always provide useful contextual clues 

under diverse inputs given that semantic segmentation emphasizes more on local-to-

global features aggregation than image classification where most existing pruning 

methods ignore such channels. Moreover, Zhou, Zongwei, et al. proposed U-Net++ 



4 

 

[90], a redesign of the skip connections of the U-Net architecture. U-Net++ focuses 

on model pruning during the inference time where the segmentation output is 

selected from only one of the segmentation branches formed from the new design of 

the skip connections. The DeepLabv3 model is also modified to reduce its 

computational complexity in [91]. The main contribution is the inverted residual with a 

linear bottleneck. This module takes as a low-dimensional compressed input that is 

first expanded to high-dimension representation and fed into a depth-wise 

convolution, which is more lightweight than normal convolution operations. Features 

are then subsequently projected back to a low-dimensional representation with a 

linear convolution. 

The attention mechanism is one of the most studied methods improving the 

performance of the encoder-decoder model for machine translation. The basic idea 

of the attention mechanism is to utilize the most relevant input sequence in the 

decoder by adding weights to the encoded input vectors, where the highest weights 

are applied to the most relevant vectors. Many recent works explore combining the 

attention mechanism with semantic segmentation networks. Chen, Liang-Chieh, et al. 

[92] propose to jointly learn an attention model that softly weights the features from 

different input scales when predicting the semantic label of a pixel. The final output of 

our model is produced by the weighted sum of score maps across all the scales. Li, 

Hanchao, et al. [93] propose to combine attention mechanism and spatial pyramid to 

extract precise dense features for pixel labeling instead of complicated dilated 
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convolution and artificially designed decoder networks. Fu, Jun, et al. [94] propose 

the dual attention network to adaptively integrate local features with their global 

dependencies. Two attention modules are introduced where the position attention 

module selectively aggregates the feature at each position by a weighted sum of the 

features at all positions, and the channel attention module selectively emphasizes 

interdependent channel maps by integrating associated features among all channel 

maps. 

1.1.2 Semi-supervised Learning Methods 

Deep learning models have been rapidly growing in capacity in the past decade, 

requiring a larger amount of data. However, it is very hard to annotate pixel-level 

ground truth labels for semantic segmentation at this scale. Semi-supervised 

learning (SSL) combines supervised learning and unsupervised learning to fully 

utilize the data including labeled and unlabeled data. More specifically, SSL models 

are trained with a small amount of labeled data and a large amount of unlabeled data, 

which is the case in many real-world applications. Over the recent years, many SSL 

methods have been proposed and can be roughly categorized into three groups: 

consistency-based methods, self-training methods, and generative (GAN) methods. 

Consistency-based methods utilize the unlabeled data to enforce the cluster 

assumption in the trained model where it is assumed that the decision boundary 

must lie in low-density regions. The basic idea of consistency-based methods is that 
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the prediction of an unlabeled sample should not be significantly different from the 

prediction of a realistic perturbation of this sample. Following the early works [95] [96] 

[97] [98] on consistency training, a cross-consistency unsupervised loss is proposed 

in [62]. The method is based on the observation that cluster assumption is violated at 

the input level but maintained where the class boundaries have high average 

distances in the output of the encoder for semantic segmentation networks. The 

main contribution is the introduction of a series of auxiliary decoders, each uses a 

perturbation function to generate synthesized data. Another line of research uses a 

data augmentation technique [101] that composites new images by mixing two 

original images. The new image contains pixels from one original image and other 

pixels from another original image. Following this idea, Olsson, Viktor, et al. propose 

Classmix [100] which uses the unlabeled data to synthesize new data and 

corresponding artificial labels, which are used to enforce the consistency 

regularization. 

Self-training methods [102] [103] [104] are SSL algorithms that generate proxy 

labels on unlabeled data using the segmentation model trained on the labeled data. 

The best proxy labels and the corresponding unlabeled data are then selected to 

train the segmentation model. Applying this idea to semantic segmentation, a self-

training method is proposed in [105]. Their main contribution is training the 

supervised model for multiple rounds. For each round, newly selected proxy labels 

and unlabeled data are added to the training dataset to train the model in the next 
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round. 

 GANs introduce a smart way of training a generative model as a supervised 

learning problem with two sub-models: the generator model that is trained to 

generate new samples, and the discriminator model that tries to tell if the sample is 

generated or real. The two models are trained together where generated samples 

mixed with real samples are provided to the discriminator model. The discriminator is 

trained to be better at telling generated samples from real ones. Meanwhile, the 

generator is trained based on how well the generated samples fooled the 

discriminator. In this competition, the goal is that the generator can generate fake 

samples that the discriminator cannot tell, in other words, the discriminator classifies 

the provided samples as 50% real and 50% generated. Like almost every new 

development in CNN architectures, GANs are first applied to image classification as 

the DCGAN [110]. GANs are recently applied to semantic segmentation. For 

example, Dong, Xue, et al. propose a GAN model [106] that segments multiple 

organs on thoracic CT images. A set of U-Nets are used as generators and FCNs 

are utilized as discriminators. Following the Pix2Pix model [107], Cirillo M D, et al. 

propose the  Vox2Vox model [108] that segments brain tumors from multi-modal MRI 

scans in the BraTS Challenge 2020 [109]. A CNN combining U-Net and ResNet is 

used as the generator, and a discriminator is adopted from Pix2Pix with 6 3D 

convolutional layers. 
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1.2 Semantic Segmentation for Medical Images 

Acute and chronic nonhealing wounds represent a heavy burden to healthcare 

systems, affecting millions of patients around the world [48]. In the United States, 

Medicare cost projections for all wounds are estimated to be between $28.1B and 

$96.8B [49]. Unlike acute wounds, chronic wounds fail to predictably progress 

through the phases of healing in an orderly and timely fashion, thus requiring 

hospitalization and additional treatment adding billions in cost for health services 

annually [50]. Intervertebral discs (IVDs) are spine components that provide 

cushioning between adjacent vertebrae and absorb pressure on the spine. IVD 

disease is a common condition that affects about 5% of the population in developed 

countries each year [51], causing pain in the lower back and frequently in the neck 

and limbs as well. For accurate diagnosis and proper treatment planning of chronic 

wounds and IVD diseases, healthcare professionals rely heavily on medical images, 

including computed tomography (CT) images, magnetic resonance imaging (MRI) 

scans, and natural images taken in clinical settings. Such images are further 

measured and analyzed to provide quantitative parameters for the diagnosis and 

treatment. Traditionally, this process is performed manually by specialists. However, 

this process is tedious and time-consuming given the large number of images 

involved for each patient. Furthermore, the shortage of medical resources and 

clinicians in primary and rural healthcare settings decreases the access and quality 

of care for millions of Americans. Consequently, research interests in automatic 
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segmentation and measurement from medical images were captured, especially in 

the fields of intervertebral disc segmentation from 3D MRI scans and wound 

segmentation from 2D images. Such studies can be roughly categorized into two 

groups: traditional methods and deep learning methods. 

1.2.1 Traditional Machine Learning Methods 

 Studies in the first group focus on combining computer vision techniques and 

traditional machine learning approaches. These studies apply manually designed 

feature extraction to build a dataset that is later used to support machine learning 

algorithms. [1] proposed an algorithm to segment the wound region from 2D images. 

49 features are extracted from a wound image using K-means clustering, edge 

detection, thresholding, and region growing in both grayscale and RGB. These 

features are filtered and prepared into a feature vector that is used to train a Multi-

Layer Perceptron (MLP) and a Radial Basis Function (RBF) neural network to 

identify the region of a chronic wound. [2] proposed an IVD segmentation method 

applied to chest MRI scans. The method solves an energy minimization problem by 

graph-cuts algorithms where the graph edges are divided into two types: terminal 

edges that connect the voxels and non-terminal edges that connect neighbor voxels. 

[3] proposed to generate a Red-Yellow-Black-White (RYKW) probability map of an 

input image with a modified hue-saturation-value (HSV) model. This map then 

guides the region of interest (ROI) segmentation process using either optimal 
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thresholding or region growing. [4] and [5] applied an atlas-based method that first 

proposes atlas candidates as initialization and then utilizes label fusion to combine 

IVD atlases to generate the segmentation mask. However, to generate the 

initialization, [4] registers IVD atlases to the localization obtained by integral channel 

features and a graphical parts model. Whereas [5] uses data-driven regression to 

create a probability map, which further defines an ROI as the initialization for 

segmentation. [6] demonstrated a wound segmentation method using an energy-

minimizing discrete dynamic contour algorithm applied to the saturation plane of the 

image in its HSV color model. The wound area is then calculated from a flood fill 

inside the enclosed contour. Another regression-based IVD segmentation method [7] 

was proposed to address the segmentation of multiple anatomic structures in 

multiple anatomical planes from multiple imaging modalities with a sparse kernel 

machines-based regression. A 2D segmentation method proposed in [8] applied an 

Independent Component Analysis (ICA) algorithm to the pre-processed RGB images 

to generate hemoglobin-based images, which are used as input of K-means 

clustering to segment the granulation tissue from the wound images. These 

segmented areas are utilized as an assessment of the early stages of ulcer healing 

by detecting the growth of granulation tissue on the ulcer bed. [9] proposed a similar 

system to segment the burn wounds from 2D images. Cr-Transformation and Luv-

Transformation are applied to the input images to remove the background and 

highlight the wound region. The transformed images are segmented with a pixel-wise 
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Fuzzy C-mean Clustering (FCM) algorithm. [10] proposes an automatic method 

using a conditional random field (CRF) based on super-voxels generated from a 

variant of simple linear iterative clustering (SLIC). A support vector machine (SVM) is 

then used to perform super-voxels classification, which is later integrated into the 

potential function of the CRF for final segmentation using graph cuts. [11] builds an 

automatic IVD segmentation framework that localizes the vertebral bodies using 

regression-forests-based landmark localization and optimizes the landmarks by a 

high-level Markov Random Field (MRF) model of global configurations. The IVD 

segmentation mask is then generated from an image processing pipeline that 

optimizes the convex geodesic active contour based on the geometrical similarity to 

IVDs. In [12], IVD segmentation is performed by iteratively deforming the 

corresponding average disc model towards the edge of each IVD, in which edge 

voxels are defined by a 26-dimension feature vector including intensity, gradient 

orientation and magnitude, self-similarity context (SSC) descriptor, and Canny edge 

descriptor, etc. This group of methods suffers from at least one of the following 

limitations: 1) As in many traditional computer vision systems, the computation 

complexity is high in the segmentation pipeline, 2) They depend on manually tuned 

parameters and empirically handcrafted features which does not guarantee an 

optimal result. Additionally, they are not immune to severe pathologies and rare 

cases, which are very impractical from a clinical perspective, and 3) The 

performance is evaluated on a small, biased dataset. 
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1.2.2 Deep Learning Methods 

1.2.2.1 Supervised Learning 

 Traditional computer vision and machine learning methods typically make 

decisions based on feature extraction. Thus, to find the segmentation mask, one 

must guess which wound features are important and then design sophisticated 

algorithms that capture these features. However, in CNN, feature extraction and 

decision-making are integrated. The features are extracted by convolutional kernels 

and their importance is determined by the network during the training process. A 

typical CNN architecture consists of convolutional layers and a fully connected layer 

as the output layer, which requires fixed-size inputs. One successful variant of CNN 

is fully convolutional neural networks (FCN) [17]. Networks of this type are 

composed of convolutional layers without any fully connected layer at the end of the 

network. This enables the network to take arbitrary input sizes and prevent the loss 

of spatial information caused by the fully connected layers in CNNs. Several FCN-

based methods have been proposed to solve the wound segmentation problem. [18] 

estimated the wound area by segmenting wounds with the vanilla FCN architecture 

[17]. With time-series data consisting of the estimated wound areas and 

corresponding images, wound healing progress is predicted using a Gaussian 

process regression function model. However, the mean Dice accuracy of the 

segmentation is only evaluated to be 64.2%. [19] proposed to employ the FCN-16 
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architecture on the wound images in a pixel-wise manner that each pixel of an image 

is predicted to which class it belongs. The segmentation result is simply derived from 

the pixels classified as a wound. By testing different FCN architectures, they can 

achieve a Dice coefficient of 79.4% on their dataset. However, the network’s 

segmentation accuracy is limited in distinguishing small wounds and wounds with 

irregular borders as the tendency is to draw smooth contours. [20] proposed a new 

FCN architecture that replaces the decoder of the vanilla FCN with a skip-layer 

concatenation up-sampled with bilinear interpolation. A pixel-wise SoftMax layer is 

appended to the end of the network to produce a probability map, which is post-

processed to be the final segmentation. A dice accuracy of 91.6% is achieved on 

their dataset with 950 images taken under an uncontrolled lighting environment with 

a complex background. However, images in their dataset are semi-automatically 

annotated using a watershed algorithm. This means that the deep learning model is 

learning how the watershed algorithm labels wounds as opposed to human 

specialists.  

FCNs are also adopted to solve the IVD segmentation problem. [21] extends the 

2D FCN into a 3D version with end-to-end learning and inference. [22] proposes a 

3D multi-scale FCN that expands the typical single-path FCN to three pathways 

where each pathway takes volumetric regions on a different scale. Features from 

three pathways are then concatenated to generate a probability map, from which the 

final 3D segmentation mask is generated by simple thresholding. More recently, a 
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modified FCN, U-Net [45], and its variants have outperformed the state-of-art in 

many biomedical image segmentation tasks. The pertinacious architecture and 

affluent data augmentation allow U-Net to quickly converge to the optimal model 

from a limited number of annotated samples. Compared to CNN and vanilla FCN, U-

Net uses skip connections between contraction and expansion and a concatenation 

operator instead of a sum, which could provide more local information to global 

information while expanding. Moreover, U-Net is symmetric such that feature maps 

in an expansive path facilitate to transfer more information. U-Net has been widely 

applied to the IVD segmentation problem. [23] applies a conventional 3D U-Net [24] 

on the IVD dataset provided by the 3rd MICCAI Challenge [25] of Intervertebral 

Discs Localization and Segmentation. [26] designs a new network architecture based 

on U-Net, boundary specific U-Net (BSU). The architecture consists of repeated 

application of BSU pooling layers and residual blocks, following the idea of residual 

neural networks (RNN). [27] extends the conventional U-Net by adding three 

identical pathways in the contracting path to process the multi-modality channels of 

the input. These pathways are interconnected with hyper-dense connections to 

better model relationships between different modalities in the multi-modal input 

images. [28] proposes an IVD segmentation pipeline that first segments the vertebral 

bodies using a conventional 2D U-Net to find the spine curve and IVD centers. 

Transverse 2D images and sagittal 3D patches are cropped around the centers to 

train an RNN fusing both 2D and 3D convolutions. However, the effectiveness of 
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data augmentation and multi-modality input images are not fully explored in these 

works. 

1.2.2.2 Semi-supervised Learning Methods 

Tissue growth is a key indicator of wound healing and there has been growing 

research interest in monitoring the growth of different types of tissue. Due to limited 

annotation, SSL is a popular option that combines a small amount of labeled data 

with a large amount of unlabeled data during training. SSL makes use of unlabeled 

data to improve deep learning models to an extent that the performance of SSL 

methods is close to supervised methods trained with significantly more labeled data. 

Recent efforts in SSL spark interest in medical image segmentation with SSL. 

Zhou, et al. proposed an SSL model [57] based on a generative adversarial network 

(GAN) with an attention mechanism to segment lesions from retina images and 

detect diabetic retinopathy. Bortsova, et al. proposed to segment abnormality from 

chest X-Ray images using a consistency-based SSL model [58] with U-Net as the 

backbone network. Peng, et al. proposed to use a clustering loss based on mutual 

information [59] that explicitly enforces prediction consistency between random 

perturbations of the unlabeled input. Chen, et al. proposed an attention-based SSL 

method [60] to segment brain tumors from MRI scans. In this method, an 

autoencoder is trained to reconstruct synthetic segmentation masks created by the 

attention mechanism. Sedai, et al. proposed an uncertainty guided SSL method [61] 
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based on student-teacher learning for retinal layer segmentation from optical 

coherence tomography scans. Motivated by abundant unlabeled data and limited 

annotations, we propose to tackle the segmentation of different types of tissues in 

wound images using an SSL model based on cross-consistency training (CCT) [62], 

which is barely applied to deal with wound images. 

To better explore the capacity of deep learning in the wound segmentation, 

tissue segmentation, and IVD segmentation problem, we propose three frameworks 

to automatically segment ROI from medical images. The first framework proposed is 

built upon a 3D network, 3D U-Net [24], to segment IVD from MRI scans. We 

adopted a two-stage pipeline: localizing the IVDs followed by segmenting IVDs 

based on the localization. To examine the effectiveness of different combinations of 

modalities, various modalities are analyzed with respect to image properties of the 

input data based on our analysis in the conducted experiments. The second 

framework is built above a 2D network, MobileNetsV2 [29], to tackle the wound 

segmentation problem. This network is lightweight and computationally efficient since 

significantly fewer parameters are used during the training process. We built a large 

dataset of wound images with segmentation annotations done by wound specialists. 

This is by far the largest dataset focused on wound segmentation to the best of our 

knowledge. The third model is proposed based on the cross consistency training 

model where we propose new auxiliary decoders with realistic perturbation functions 

in wound images.  
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Figure 1 An illustration of images in our dataset. The first row contains the raw images collected. The 

second row consists of segmentation mask annotations we create with the AZH wound and vascular 

center 
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Chapter 2 

Datasets 

 In this section, we introduce the datasets used in wound segmentation, tissue 

segmentation, and IVD segmentation. The wound dataset and the tissue dataset are 

created by our lab and contain wound images collected from our collaborating wound 

clinic. Thus, the construction methods and the annotation process are described in 

detail. 

2.1 The Wound Dataset 

2.1.1 Dataset Construction 

 There is currently no public dataset large enough for training deep-learning-

based models for wound segmentation. To explore the effectiveness of wound 

segmentation using deep learning models, we collaborated with the Advancing the 

Zenith of Healthcare (AZH) Wound and Vascular Center, Milwaukee, WI. Our chronic 

wound dataset was collected over 2 years at the center and includes 1,210 foot ulcer 

images taken from 889 patients during multiple clinical visits. The raw images were 

taken by digital single-lens reflex cameras and iPads under uncontrolled illumination 

conditions, with various backgrounds. Figure 1 shows some sample images in our 

dataset. 

The raw images collected are of various sizes and cannot be fed into our deep 
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learning model directly since our model requires fixed-size input images. To unify the 

size of images in our dataset, we first localize the wound by placing bounding boxes 

around the wound using an object localization model we trained de novo, YOLOv3 

[31]. Our localization dataset contains 1,010 images, which are also collected from 

the AZH Wound and Vascular Center. We augmented the images and built a training 

set containing 3645 images and a testing set containing 405 images. For training our 

model we have used LabelImg [32] to manually label all the data (both for training 

and testing). The YOLO format has been used for image labeling. The model has 

been trained with a batch size of 8 for 273 epochs. With an intersection over union 

(IoU) rate of 0.5 and non-maximum suppression of 1.00, we get the mean Average 

Precision (mAP) value of 0.939. In the next step, image patches are cropped based 

on the bounding boxes resulting from the localization model. We unify the image size 

(224 pixels by 224 pixels) by applying zero padding to these images, which are 

regarded in our dataset data points. 

2.1.2 Data Annotation 

 During training, a deep learning model is learning the annotations of the training 

dataset. Thus, the quality of annotations is essential. Automatic annotation 

generated with computer vision algorithms is not ideal when deep learning models 

are trained to learn how human experts recognize the wound region. In our dataset, 

the images were manually annotated with segmentation masks that were further  
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Figure 2 Images and annotations of the tissue dataset. 
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reviewed and verified by wound care specialists from the collaborating wound clinic. 

Initially, only foot ulcer images were annotated and included in the dataset as these 

wounds tend to be smaller than other types of chronic wounds, which makes it easier 

and less time-consuming to manually annotate the pixel-wise segmentation masks. 

In the future, we plan to create larger image libraries to include all types of chronic 

wounds, such as venous leg ulcers, pressure ulcers, and surgery wounds as well as 

non-wound reference images. The AZH Wound and Vascular Center, Milwaukee, WI, 

had consented to make our dataset publicly available.  

2.2 The Tissue Dataset 

 Under the same annotation protocol, we also start to label different types of 

tissue inside our wound images (Figure 2). It is more challenging to annotate wound 

tissue due to its complexity and unpredictable shape. Until now, there are 110 

labeled images and 1358 unlabeled images in our tissue dataset. Table 1 shows the 

appearance count of each type of tissue and we can see that three major types of 

tissue are granulation, callous, and fibrin tissue. This is the main reason that we 

focus our tissue segmentation model on these three types of tissue, which will be 

discussed in more detail in Chapter 5. 

Table 1 The appearance count for each type of tissue in 110 labeled images. 

Granulation Callous Fibrin Necrotic Eschar Neodermis Tendon Dressing 

93 86 74 24 11 11 2 2 
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2.3 The IVD Dataset 

 The IVD dataset [30], by courtesy of Prof. Guoyan Zheng from the University of 

Bern, consists of 8 sets of 3D multi-modality MRI spine images collected from 8 

patients in 2 different stages of prolonged bed tests. Each spine image contains at 

least 7 IVDs of the lower spine (T1-L5) and four modalities following Dixon protocol: 

in-phase (inn), opposed-phase (opp), fat, and water (wat) images as illustrated in 

Figure 3. In detail, water images are spin echo images acquired from water signals. 

fat images are spin echo images acquired from water signals. In-phase images are 

the sum of water images and fat images. Opposed-phase images are the difference 

between water images and fat images. In total, there are 32 3D single-modality 

volumes and 66 IVDs. For each IVD, the ground truth is composed of binary masks 

manually labeled by three trained raters under the guidance of clinicians.  

Figure 3 The comparison of contrast in different modalities of images (The modalities from left to right 

are respectively fat, opposed-phase, in-phase, water) 
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Chapter 3 

IVD Segmentation 

3.1 Methods 

3.1.1 Multi-modality Analysis 

The traditional multi-modality deep learning methods conventionally fed all 

modalities images into different channels as input to the neural network. Zhang et. al. 

use multi-modality images to segment infant brains [112]. Li et. al. trained the 3D 

FCN separately on every single modality (fat, in-phase, opposed-phase, and water) 

and then on a merged full-modality of the spine dataset to validate the superiority of 

training with multi-modality data. Both works show that training on the full-modality 

images could yield more accurate IVD segmentation results than the single-modality 

strategy [111]. Moreover, Li’s research indicates that the single-modality of opposed-

phase images and water images could enhance the performance than using the 

modality of fat images and in-phase images. Nonetheless, the full-modality-fused 

images cannot guarantee to achieve their full capacity efficiently in all experiments. 

The dependency between diverse modalities could lead to data co-adaption, which 

means the same features are detected repeatedly. In addition, the significant 

difference between modalities at the same locations could trigger the data corruption 

problem to misdirect the corresponding neurons.  
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To alleviate these problems, we made a further exploration of the intensity 

distribution of various modalities and analyzed the mean gradient on the boundary of 

the intervertebral discs. As shown in Figure 3, the images of the fat modality have 

obviously low contrast at the edges compared with the images of the other three 

modalities. In more detail, assume the target intervertebral discs are foreground and 

the other areas are background and Table I lists the average intensities and the 

standard deviations for the foreground and background samples using the provided 

label maps as a reference. Moreover, Table 2 also shows the absolute Weber 

contrast coefficients of in-phase, opposed-phase, fat and water images [3], which are 

computed by: 

𝐶 =  
𝐼 − 𝐼𝑏

𝐼𝑏
 

Where 𝐼  is the mean intensity value of the foreground voxels and 𝐼𝑏  is the mean 

intensity value of the voxels in the background. Compared to other modalities, fat 

and in-phase images have relatively low Weber contrast values. To take full 

advantage of multiple modalities of this dataset, we take a step further from [112] 

and train our network on different combinations of multi-modality images to examine 

the effectiveness of the fat and in-phase images. The comprehensive results will be 

presented later in the results section. 
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Table 2 Absolute Weber contrast 

Modality Mean ± SD 
Foreground Intensity 

Mean ±SD 
Background Intensity 

Absolute Weber 
Contrast 

fat 15.9 ± 12.7 35.2 ± 47.5 0.57 

in-phase 172.1 ± 39.9 97.9 ± 89.5 0.75 

opposed-phase 155.4 ±47.5 63.2 ± 65.1 1.46 

water 163.4 ± 41.1 67.9 ± 67.5 1.43 

3.1.2 Two-stage strategy 

In our proposed 3D method, a two-stage coarse-to-fine strategy is used to tackle 

the segmentation problem directly on 3D volumes. The general workflow is illustrated 

in Figure 4. In the first stage, each IVD is localized and a voxel is assigned as its 

Figure 4 Workflow of the proposed 3D method.  
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center. These centers are used to divide the volume into small 3D patches, each of 

which contains a single IVD. In the second stage, a multimodal deep learning model 

is trained on the patches for precise segmentation.  

Medical images are often complex and noisy where ROI is relatively small 

compared to the background. We first localize the IVDs in the image and then crop 

3D patches based on the localization. This not only gets rid of some background but 

simplifies the problem for the segmentation stage and reduces the computational 

cost as well. It has been shown that 3D U-Net achieves the best localization result 

but not the best segmentation result [25] We use this two-stage strategy to work 

around this problem. In the end, post-processing is performed to generate the final 

segmentation. 

3.1.3 Localization Network 

 For the localization of IVDs, we train a localization network, which is a 

conventional 3D U-net, on the IVD dataset to roughly locate the IVDs from the 

volume. From this segmentation, we have a good estimate of IVD centers by finding 

the center of each connected component after removing small regions. 

From our observation, IVDs are generally sparsely located in 3D space at a 

distance from each other and share a common disc-like morphological profile. Thus, 

we simply put a 35*35*25 bounding box around each estimated center to crop a 3D 

patch. Then we zero-pad the patches to 36*36*28 so they can be nicely fed into the 
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segmentation network in the next stage described below. 

3.1.4 3D Segmentation Network 

 For IVD segmentation from the 3D patches, we employ a modified 3D U-Net 

architecture that essentially looks at IVD segmentation as a regression problem. This 

network takes 3D patches as input and predicts 3D patches where the intensity 

value on each voxel stands for how confident the network is in the voxel belongs to 

an IVD. Figure 5 presents the network architecture of our 3D segmentation network. 

Each step in the contracting path consists of repeated application of two 3x3x3 

unpadded 3D convolutions followed by a Relu. A dropout operation is inserted 

between the two convolutions to reduce the dependence on the training dataset and 

increase the accuracy. A dropout rate of 0.2 is used following the analysis [38] on the 

Figure 5 The network architecture of our 3D segmentation network. 
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dropout effect in CNN. We also apply batch normalization to speed up and stabilize 

the training process and a 2x2x2 max pooling layer with stride 2 for down-sampling 

after every two convolutional layers. At each down-sampling step, we double the 

number of feature channels. Every step in the expansive path consists of an up-

sampling of the feature map followed by a 2x2x2 up convolution that halves the 

number of feature channels, a concatenation with the corresponding feature map 

from the contracting path, and two 3x3x3 convolutions, each followed by a Relu. The 

output layer is a 1x1x1 convolution layer with sigmoid activation used to generate the 

segmentation mask for each modality. In total the network has 12 convolutional 

layers and 1.4 million parameters. 

3.1.5 Data Augmentation 

When only a few training samples are available, data augmentation is essential 

to increase the size of the desired dataset and increase the network's robustness to 

data variances. With only 8 sets of spine data provided, our networks demand more 

data for training. Especially for the 2D U-net, augmenting the training samples could 

significantly enhance the performance. A variety of conventional 3D image 

processing techniques such as translations, rotations, flip, and scaling are adopted in 

our method. In addition to these affine transformations, as a particularly important 

augmentation technique in biomedical segmentation tasks, elastic deformation is 

also used in combination with other transform functions since the most common 
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variation in tissue is deformation [30]. We fabricate smoothly deformed surfaces by 

generating random displacement fields and the fields are convolved with a Gaussian 

of standard deviation δ (in pixels). And the displacement fields are then multiplied by 

a scaling factor α that controls the intensity of the deformation [30]. The per-pixel 

displacements are computed using bicubic interpolation. Based on the augmentation 

functions mentioned above, a random combination of operations is selected in an 

arbitrary order and applied to the original spine dataset. Consequently, the size of 

the training dataset is increased from 6 to 24 (2 of the 8 sets of original spine data 

are not used for augmentation but for validation of the prediction). To sufficiently take 

advantage of the information between adjacent layers, besides using the augmented 

spine data in the 3D framework, we also use the stack of images sliced along each 

axis of the 3D augmented data as the training set of the 2D network rather than 

directly applying 2D augmentation techniques on the sliced images from the original 

dataset. 

3.1.6 Training 

Both 2D and 3D networks in the presented work are implemented in python with 

Keras [41] and TensorFlow [42] backend. The batch size is set to 1 for the 3D 

network and 16 for the 2D network to obtain optimized training accuracy. The models 

are trained on a PC with an 8-core 3.4GHz CPU and a single NVIDIA GTX TITAN XP 

GPU. The training time of a single epoch takes about 3 s in the 3D model and 45 s in 
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the 2D model. Eventually, the validation loss will stop increasing at around 10000 

epochs for the 3D model and 500 epochs for the 2D model before overfitting. 

The convolutional kernels of our networks are initialized with the HE initialization 

[44] to speed up the training process. For updating the parameters in the networks, 

we employ the Adam optimization algorithm [43], which has been popularized in the 

field of stochastic optimization due to its fast convergence compared to other 

optimization functions. The learning rate is set to 1e-5 for accurate predictions and 

reasonable training time. The energy function is computed by the Dice-coefficient 

loss function defined as: 

Loss =  
2 × |𝐺𝑟𝑎𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ ∩  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛|

 |𝐺𝑟𝑎𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ| + |𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛| + 𝑆
 

Where 𝑆 is a smoothing factor with a value of 1. 

3.1.7 Post Processing 

 The prediction from the segmentation stage contains 3D patches with continuous 

voxel intensity values that represent how confident is the network in the voxel 

belonging to an IVD. The final segmentation mask for each patch is obtained by 

binary thresholding with a threshold of 0.5, which means voxels that are predicted 

more likely to be IVD voxels than background voxels are included in the 

segmentation mask. Then the mask patches are assembled back to a 3D volume of 
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the lower spine, with the same size as the IVD dataset, using the IVD center 

locations from the localization stage and zero-padding. 

3.2 Results 

3.2.1 3D Evaluation Metrics 

 To evaluate the performance, two metrics are adopted from the 2015 MICCAI 

Challenge [25]. In addition to the Dice coefficient mentioned in section 4.1.1, we also 

calculated the Hausdorff distance (HD) that measures the distance between two 

surface meshes. We compute HD for surfaces reconstructed from the ground true 

segmentation mask and our segmentation result. Surfaces are generated using 

Iso2mesh [47] from binary segmentation masks. The closest distance from each 

vertex on the source surface mesh to the target surface mesh is found and HD is 

then computed. A smaller HD value indicates better segmentation performance. 

Figure 6 Training without in-phase images. Left: segmentation results of the baseline model trained 

with all modalities in the dataset.  In the middle: segmentation results trained without in-phase images.  

Right: the ground true label. 
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3.2.2 Effectiveness of the multi-modality data 

The segmentation results achieved by excluding the in-phase images from the 

training dataset are more accurate and less noisy near the lower IVDs than that in 

the original full-modality data as shown in Figure 6. Moreover, using the training 

dataset without in-phase images, our localization network can learn more details and 

make much more accurate predictions about the IVD centers. This makes the 

localization of centers more stable and allows us to simply remove small regions 

(marked by yellow boxes) and then crop a fix-size 3D patch for each IVD in the 

volume to train the segmentation network.  

 From the multi-modality analysis, we found that the fat and in-phase images 

have a significantly lower contrast among all the modalities. To analyze the 

effectiveness of the multi-modality input data, we train our 3D network on 4 different 

combinations of input modalities: 1) we train the network on full-modality images as 

the baseline, 2) we exclude the fat images from all 4 modalities to build the second 

training dataset, 3) the fat images are excluded from all 4 modalities, and 4) we only 

include oppose-phase and water images in the last training dataset. The mean Dice 

scores of the segmentation results predicted by the network trained on each dataset 

are presented in Table 2. Among all the different training settings, the network trained 

on full-modality images shows the worst segmentation performance. The reason is 

that the fat and in-phase images have a lower contrast, which means that the input 

values of the network are closer to each other and make it more difficult for the 
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convolutional kernels to distinguish between them. It is worth pointing out that input 

normalization does not help with this situation because it is performed over the 

values of all the modalities. In other words, if we treat these 4 types of images 

equally during the training process, the fat and in-phase images confuse the network 

with their low image contrast. 

 

 Table 3. Segmentation performance of our 3D method using different combinations of modalities as 

the training dataset 

 3.2.3 Comparison with state-of-the-art methods 

 To evaluate the performance of the proposed methods, we compare the 

segmentation results achieved by our methods with those by 3D U-Net[15], the 

CNN-based team UNICHK [23], and the winning team UNIJLU [12] in the test1 

dataset of the 2015 MICCAI Challenge [25]. Quantitative results evaluated with the 

different architectures are presented in Table 3. The mean Dice score obtained by 

our 3D method is 89.0% with a standard deviation (SD) of 1.4%. We bring a 1.5% 

boost compared to the conventional 3D U-Net by training our network on 3D image 

Training dataset Combination Mean Dice ± SD 

1) opp, wat, fat, and inn 87.9% ± 1.7% 

2) opp, wat, and fat 89.0% ± 1.4% 

3) opp, wat, and inn 88.0% ± 1.6% 

4) opp, and wat 88.5% ± 1.6% 
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patches extracted from opposed-phase, water, and fat images. This result is still 2.5% 

behind the state-of-the-art performance achieved by UNIJLU. The Mean HD of our 

3D method reached 0.8 mm with an SD of 0.3 mm, which indicates that our method 

is slightly better when the segmentation results are reconstructed to 3D models. The 

strength of deep learning methods is the computation time. The Theano-based 

implementation of 3D U-Net from UNICHK takes 3.1s to process one 40 × 512 × 512 

volume. Our network is implemented based on TensorFlow and it takes about 0.5s to 

segment all the IVDs in a 36 × 256 × 256 input volume. Overall, the computation 

time of our end-to-end segmentation is about 10s including localization, 

preprocessing, segmentation and postprocessing. Whereas it takes 5 min on 

average to segment all IVDs for a patient by UNIJLU. It is also worth mentioning that 

the training dataset used in our study only contains data from 6 patients while 

UNICHK and UNIJLU have access to a training dataset from 16 patients i.e., our 

network can learn the 3D geometric morphometrics of IVDs with much fewer data to 

learn from.  

Table 4. Evaluation of the conventional 3D U-Net, UNICHK, UNIJLU, and our method. 

Methods Mean Dice ± SD Mean HD ± SD 

3D U-Net 87.5% ± 0.9% 1.1 ± 0.2 

UNICHK 88.4% ± 3.7% 1.3 ± 0.2 

UNIJLU 91.5% ± 2.3% 1.1 ± 0.2 

Our method 89.0% ± 1.4% 0.8 ± 0.3 
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3.2.4 Effectiveness of Data Augmentation 

 To explore the effectiveness of data augmentation when applying 3D CNNs to 

IVD segmentation, we conducted experiments by training our 3D network with and 

without the proposed data augmentation method. The results do not suggest obvious 

differences in terms of Dice and HD. However, we found that data augmentation 

enables the network to learn more details in the boundary area. More specifically, 

segmentation results are improved in the regions between an IVD and the adjacent 

vertebral body. Examples are presented in Figure 7, the regions well segmented by 

our 3D network trained with augmented dataset are marked by red boxes. 

Segmentation of these regions with sharp boundaries is a difficult task for 

convolutional kernels since CNNs tend to predict smooth contour. The core of an IVD 

is composed of jelly-like material and the smooth elastic deformation technique in 

our data augmentation mimics the real-world deformation of IVDs and enriches the 

training dataset by adding more morphological variants. This makes CNNs more 

capable to deal with unseen IVD data and make better predictions.  
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Figure 7 Effectiveness of data augmentation. Each column represents a MRI slice. 

The segmentation mask predicted by 3D U-Net with data augmentation, 3D U-Net 

without data augmentation and the ground truth label of the slice are shown, 

respectively, in the transverse view. 
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Figure 9 (a). A depth-separable convolution block. The block contains a 3 × 3 depth-wise 

convolutional layer and a 1 × 1 point-wise convolution layer. Each convolutional layer is followed by 

batch normalization and Relu6 activation. (b) An example of a convolution layer with a 3 × 3 × 3 

kernel. (c) An example of a depth-wise separable convolution layer equivalent to (b). 

Figure 8 The proposed encoder-decoder architecture. 
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Chapter 4 

Wound Segmentation 

4.1 Methods 

In this section, we describe the methods we used with the architectures of the 

deep learning models for wound segmentation. The transfer learning used during the 

training of our model and the post-processing methods including hole filling and 

removal of small noises is also described. 

4.1.1 Pre-processing 

Besides cropping and zero-padding discussed in the dataset construction section, 

standard data augmentation techniques are applied to our dataset before being fed 

into the deep learning model. These image transformations include arbitrary 

rotations in the range of +25 to -25 degrees, random left-right and top-down flipping 

with a probability of 0.5, and random zooming within 80% of the original image area. 

Random zooming is performed as the only non-rigid transformation because we 

suspect that other non-rigid transformations like shearing do not represent common 

wound shape variations. Eventually, the training dataset is augmented to around 

5000 images. We keep the validation dataset unaugmented to generate convincing 

evaluation outcomes. 
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4.1.2 Model Architecture 

 A convolutional neural network (CNN), MobileNetV2 [29], is adopted to segment 

the wound from the images. Compared with conventional CNNs, this network 

substitutes the fundamental convolutional layers with depth-wise separable 

convolutional layers [33] where each layer can be separated into a depth-wise 

convolution layer and a point-wise convolution layer. A depth-wise convolution 

performs lightweight filtering by applying a convolutional filter per input channel. A 

point-wise convolution is a 1 × 1 convolution responsible for building new features 

through linear combinations of the input channels. This substitution reduces the 

computational cost compared to traditional convolution layers by almost a factor of 

k2 where k is the convolutional kernel size. Thus, depth-wise separable convolutions 

are much more computationally efficient than conventional convolutions suitable for 

mobile or embedded applications where computing resource is limited. For example, 

the mobility of MobileNetV2 could benefit medical professionals and patients by 

allowing instant wound segmentation and wound area measurement immediately 

after the photo is taken using mobile devices like smartphones and tablets. An 

example of a depth-wise separable convolution layer is shown in Figure 9 (c), 

compared to a traditional convolutional layer shown in Figure 9 (b). 

The model has an encoder-decoder architecture as shown in Figure 8. The 

encoder is built by repeatedly applying the depth-separable convolution block 

(marked with diagonal lines). Each block, illustrated in Figure 9 (a), consists of six 
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layers: a 3 × 3 depth-wise convolutional layer followed by batch normalization and 

rectified linear unit (Relu) activation [34], and a 1 × 1 point-wise convolution layer 

followed again by batch normalization and Relu activation. To be more specific, 

Relu6 [35] was used as the activation function. In the decoder, shown in Figure 8, 

the encoded features are captured in multiscale with a spatial pyramid pooling block, 

and then concatenated with higher-level features generated from a pooling layer and 

a bilinear up-sampling layer. After the concatenation, we apply a few 3 × 3 

convolutions to refine the features followed by another simple bilinear up-sampling 

by a factor of 4 to generate the final output. A batch normalization layer is inserted 

into each bottleneck block and a dropout layer is inserted right before the output 

layer. In MobileNetV2, a width multiplier α is introduced to deal with various 

dimensions of input images. we let α = 1 thus the input image size is set to 224 

pixels × 224 pixels in our model. 

4.1.3 Transfer Learning 

 To make the training more efficient, we used transfer learning for our deep 

learning model. Instead of randomly initializing the weights in our model, the 

MobileNetV2 model, pre-trained on the Pascal VOC segmentation dataset [36] is 

loaded before the model is trained on our dataset. Transfer learning with the pre-

trained model is beneficial to the training process in the sense that the weights 

converge faster and better. 
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Figure 10 An illustration of the segmentation result and the post processing method. The first row 

illustrates images in the testing dataset. The second row shows the segmentation results predicted by 

our model without any post processing. The holes are marked with red boxes and the noises are 

marked with yellow boxes. The third row shows the final segmentation masks generated by the post 

processing method. 
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4.1.4 Post Processing 

 Post Processing, including hole filling and removal of small regions, is performed 

to improve the segmentation results as shown in Figure 10. We notice that abnormal 

tissue like fibrinous tissue within chronic wounds could be identified as non-wound 

and cause holes in the segmented wound regions. Such holes are detected by 

finding small connected components in the segmentation results and filled to 

improve the true positive rate using connected component labeling (CCL) [37]. The 

small noises are removed in the same way. The images in the dataset are cropped 

from the raw image for each wound. So, we simply remove noises in the results by 

removing the connected component small enough based on adaptive thresholds. To 

be more specific, a connected region is removed when the number of pixels within 

the region is less than a threshold, which is adaptively calculated based on the total 

number of pixels segmented as wound pixels in the image. 

4.2 Results 

 In this section, we describe the evaluation metrics and compare the 

segmentation performance of our method with several popular and state-of-the-art 

methods. Our deep learning model is trained with data augmentation and 

preprocessing. Extensive experiments were conducted to investigate the 

effectiveness of our network. FCN-VGG-16 is trained as the baseline model [19] [39]. 

For fairness of comparison, we used the same training strategies and data 
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augmentation strategies throughout the experiments. 

4.2.1 2D Evaluation Metrics 

 To evaluate the segmentation performance, Precision, Recall, and the Dice 

coefficient are adopted as the evaluation metrics [40]: 

Precision: Precision shows the accuracy of segmentation. More specifically, 

Precision measures the percentage of correctly segmented pixels in the 

segmentation and is computed by: 

Precision =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

Recall: Recall also shows the accuracy of segmentation. More specifically, it 

measures the percentage of correctly segmented pixels in the ground truth and is 

computed by: 

Recall =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑡𝑖𝑣𝑒𝑠
 

Dice coefficient (Dice): Dice shows the similarity between the segmentation and the 

ground truth. Dice is also called the F1 score as a measurement balancing Precision 

and Recall. More specifically, Dice is computed by the harmonic mean of Precision 

and Recall: 
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Dice =
2 ×  𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

2 ×  𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

4.2.2 Training 

 The deep learning model in the presented work was implemented in python with 

Keras [41] and TensorFlow [42] backend. To speed up the training, the models were 

trained on a 64-bit Ubuntu PC with an 8-core 3.4GHz CPU and a single NVIDIA RTX 

3090 GPU. For updating the parameters in the network, we employed the Adam 

optimization algorithm [43], which has been popularized in the field of stochastic 

optimization due to its fast convergence compared to other optimization functions. 

Binary cross entropy was used as the loss function and we also monitored Precision, 

Recall, and the Dice score as the evaluation matrices. The initial learning rate was 

set to 0.0001 and each minibatch contained only 2 images for balancing the training 

accuracy and efficiency. The convolutional kernels of our network were initialized 

with HE initialization [44] to speed up the training process and the training time of a 

single epoch took about 77 seconds. We used early stopping to terminate the 

training so that the best result was saved when there was no improvement for more 

than 100 epochs in terms of the Dice score. Figure 11 shows the training history of 

our model. Eventually, our deep learning model was trained for around 1200 epochs. 
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4.2.3 Comparing our method to the others 

 To evaluate the performance of the proposed method, we compared the 

segmentation results achieved by our methods with those by FCN-VGG-16 [19] [39], 

SegNet [68], and Mask-RCNN [55][56]. We also added 2D U-Net [45] to the 

comparison due to its outstanding segmentation performance on biomedical images 

with a relatively small training dataset. The segmentation results predicted by our 

model are demonstrated in Figure 10 along with the illustration of our post-

processing method. Quantitative results evaluated with the different networks are 

Figure 11 Training history of our model. 



46 

 

presented in Table 4 where bold numbers indicate the best results among all four 

models. To better demonstrate the accuracy of the models, the numbers shown in 

the table are the highest possible number reached among various training. 

Table 5. Evaluation on our dataset. 

Model VGG16 SegNet U-Net Mask-RCNN MobileNetV2 MobileNetV2+CCL 

Precision 83.91% 83.66% 89.04% 94.30% 90.86% 91.01% 

Recall 78.35% 86.49% 91.29% 86.40% 89.76% 89.97% 

Dice 81.03% 85.05% 90.15% 90.20% 90.30% 90.47% 

 

In the performance measures, the Recall of our model was evaluated to be the 

second-highest among all models, at 89.97%. This was 1.32% behind the highest 

Recall, 91.29%, which was achieved by U-Net. Our model also achieved the second-

highest Precision of 91.01%. Overall, the results show that our model achieves the 

highest accuracy with a mean Dice score of 90.47%. the VGG16 was shown to have 

the worst performance among all the other CNN architectures. Mask-RCNN 

achieved the highest Precision of 94.30%, which indicates that the segmentation 

predicted by Mask-RCNN contains the highest percentage of true positive pixels. 

However, the Recall is only evaluated to be 86.40%, meaning that more false-

negative pixels are undetected compared to U-Net and MobileNetV2. Our accuracy 

was slightly higher than U-Net and Mask-RCNN, and significantly higher than 

SegNet and VGG16. 
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 Comparing our model to VGG16, the Dice score is boosted from 81.03% to 

90.47% tested on our dataset. Based on the appearance of chronic wounds, we 

know that wound segmentation is complicated by various shapes, colors, and the 

presence of different types of tissue. The patient images captured in clinic settings 

also suffer from various lighting conditions and perspectives. In MobileNetV2, the 

deeper architecture has more convolutional layers than VGG16, which makes 

MobileNetV2 more capable to understand and solve these variables. MobileNetV2 

utilizes residual blocks with skip connections instead of the conventional convolution 

layers in VGG16 to build a deeper network. These skip connections bridging the 

beginning and the end of a convolutional block allow the network to access earlier 

activations that weren’t modified in the convolutional block and enhance the capacity 

of the network. 

Another comparison between U-Net and SegNet indicates that the former model 

is significantly better in terms of mean Dice score. Similar to the previous 

comparison, U-Net also introduces skip connections between convolutional layers to 

replace the pooling indices operation in the architecture of SegNet. These skip 

connections concatenate the output of the transposed convolution layers with the 

feature maps from the encoder at the same level. Thus, the expansion section which 

consists of a large number of feature channels allows the network to propagate 

localization combined with contextual information from the contraction section to 

higher resolution layers. Intuitively, in the expansion section or “decoder” of the U-
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Net architecture, the segmentation results are reconstructed with the structural 

features that are learned in the contraction section or the “decoder”. This allows the 

U-Net to make predictions at more precise locations. 

Besides the performance, our method is also efficient and lightweight. As shown 

in Table 5, the total number of trainable parameters in the adopted MobileNetV2 was 

only a fraction of the numbers in U-Net, VGG16, and Mask-RCNN. Thus, the 

network took less time during training and could be applied to mobile devices with 

less memory and limited computational power. Alternatively, higher-resolution input 

images could be fed into MobileNetV2 with less memory size and computational 

power compared to the other models. 

Table 6. Comparison of total numbers of trainable parameters. 

4.2.4 Comparison within the Medetec Dataset 

Apart from our dataset, we also conducted experiments on the Medetec Wound 

Dataset [46] and compared the segmentation performance of these methods. The 

results are shown in Table 6. We annotated the dataset in the same way that our 

dataset was annotated and trained the networks with the same experimental setup. 

The highest Dice score is evaluated to be 94.05% using MobileNetV2+CCL. The 

performance evaluation agrees with the conclusion drawn from our dataset where 

Model Name FCN-VGG16 SegNet U-Net Mask-RCNN MobileNetV2 

Number of 
parameters 

134,264,641 902,561 4,834,839 63,621,918 2,141,505 
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our method outperforms the others regardless of which chronic wound segmentation 

dataset is used, thereby demonstrating that our model is robust and unbiased. 

Table 7 Evaluation on the Medetec dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model VGG16 SegNet U-Net Mask-RCNN MobileNetV2 

Dice 79.24% 72.94% 84.01% 93.20% 93.88% 
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Chapter 5 

Tissue Segmentation  

5.1 Problem 

Accurate measurement of different types of tissues within the wound is also 

critical to the assessment and management of chronic wounds to monitor the wound 

healing trajectory and to determine future interventions. We characterize wound 

tissues into three types as wound healing indicators: granulation, slough, and 

necrotic tissues. Granulations are light red or dark pink tissues featuring bumpy 

surfaces, which is a sign of healing and development of new tissues. Slough or fibrin 

tissues have yellowish color ranging from white to yellow or yellow green to brown 

depending on the bacterial colonization and hemoglobin content. Necrotic tissues 

contain dead cells that often appeal in black. In our dataset, wound care 

professionals did not remove dry necrotic tissues that protect the wound underneath. 

However, wet necrotic tissues, indicating the presence of bacteria, were salvaged 

from the wound. Like whole wound segmentation, public datasets with pixel-level 

annotations of wound tissues are not sufficient for training supervised deep learning 

models. Annotation of wound tissues is more complicated and requires a higher level 

of expertise because tissue boundaries are less clear than wound boundaries. 

Moreover, tissues like granulation develop randomly in shape during the healing 

process. With a large number of images and a limited number of annotations, we 
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propose an SSL model based on cross-consistency training (CCT) that takes 

advantage of both the labeled and unlabeled data. 

As an SSL method, our CCT model is trained with a small number of labeled 

images and a large number of unlabeled images. To formulate the problem, let 𝐷𝑙 =

{ (𝑥𝑖
𝑙 , 𝑦𝑖) }𝑖=1

𝑁𝑙  represent the labeled data and 𝐷𝑢 = { 𝑥𝑖
𝑢 }𝑖=1

𝑁𝑢  represent the unlabeled 

data. Here 𝑥𝑖
𝑙 represents the i-th labeled input image and 𝑦𝑖 represents its annotation. 

𝑥𝑖
𝑢  represents the i-th unlabeled input image. The total number of labeled and 

unlabeled input images are 𝑁𝑙 and 𝑁𝑢, respectively. 

5.2 Methods 

5.2.1 The Cluster Assumption 

The basic idea of CCT methods is that the prediction of an unlabeled sample 

should not be significantly different from the prediction of a realistic perturbation of 

this sample. This allows the model to make consistent predictions over similar inputs 

with a limitation that the model works better only when decision boundaries locate in 

low density regions of the input, i.e., the cluster assumption. For semantic 

segmentation problems, the assumption holds in the output of the last layer in the 

encoder [65][66][67] instead of the input. This is one of the fundamental hypotheses 

of encoder-decoder-like semi-supervised segmentation architectures. To investigate 

this in our dataset, we extracted the feature map from the last layer of the encoder 

and calculate the average distance between each pixel and its neighbors. These 
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feature maps are further processed with Gaussian blur for visualization in Figure 12. 

We can see that the high intensity regions are aligned with the boundary of the 

wounds. From here we can conclude that the cluster assumption is preserved in the 

segmentation of our wound images, which means that unsupervised perturbations 

applied to these feature maps can be used to enforce consistency through the 

unsupervised consistency loss function. 

Figure 13 The proposed semi-supervised CCT model. 

Figure 12 The average distance between each pixel and its neighbors in the feature map outputted 

from the last layer of the encoder. 
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5.2.2 Semi-supervised Cross-Consistency Training 

Our proposed network (illustrated in Figure 13) employs a widely used encoder-

decoder architecture. The encoder ℎ is shared by the labeled and unlabeled inputs. 

We have tested different variations of the ResNet and ResNet50 is selected as the 

backbone for the encoder due to its slightly better performance. Figure 14 shows the 

architecture of the encoder. Our architecture consists of a series of decoders, the 

main decoder 𝑔  and a set of 𝐾  auxiliary decoders, {𝑔𝑎
𝑘}𝑘=1

𝐾 . The loss function is 

composed of two parts: supervised loss 𝐿𝑆, and unsupervised loss 𝐿𝑈: 

𝐿𝑜𝑠𝑠 =  𝐿𝑆 + 𝜔 𝐿𝑈 

, where the weight 𝜔 is a Gaussian function that increases from 0 to a constant 𝜆 

during training. The supervised loss is computed as the Cross-Entropy loss (CE) 

between the ground truth annotation 𝑦 and the segmentation mask 𝑦̂ =  𝑓(𝑥𝑖
𝑙) that is 

predicted from the outpur of the main decoder through the network 𝑓 = ℎ◦𝑔: 

𝐿𝑆 =  
1

𝑁𝑙
 ∑ 𝐻( 𝑦𝑖, 𝑓(𝑥𝑖

𝑙))

𝑁𝑙

𝑖=1

 

For unlabeled images, the output of the encoder 𝑧 is slightly modified by K different 

perturbation functions 𝑃𝑟 and perturbed into K modified versions, 𝑧(1) to 𝑧(𝐾). Each of 



54 

 

 

Figure 14 The encoder network of our CCT model. 
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these modified versions are fed into the corresponding auxiliary decoder, yielding K 

predictions, 𝑦̂𝑎
(1)

 to 𝑦̂𝑎
(𝐾)

. The unsupervised loss 𝐿𝑈 is then computed from the mean 

square error (MSE) between the output of the main decoder 𝑔  and the auxiliary  

decoders 𝑔𝑎
k:  

𝐿𝑈 =  
1

𝑁𝑢

1

𝐾
 ∑ ∑ 𝑀𝑆𝐸(𝑔(𝑧𝑖),  𝑔𝑎

𝑘(𝑧𝑖))

𝐾

𝑘=1

𝑁𝑢

𝑖=1

 

The unsupervised loss is big when the distance between the outputs of the main 

decoder and the auxiliary decoders. In other words,  the unsupervised loss 

measures the consistency of the model predicting the wound tissues given similar 

wounds. The training goal is to maximize the supervised loss the minimize the 

unsupervised loss. The total loss is then back-propagated to train the network 

including the auxiliary networks.  

5.2.3 Perturbation Functions 

In our CCT model, a key component is the perturbation functions applied to the 

feature maps outputted from the main encoder. Following the principle that the 

perturbation functions should be meaningful and realistic for the wound images, we 

propose 5 perturbation functions including random rotation, random zoom, random 

blurring, random normalization, and random elastic transformation. In addition to the 

above mentioned functions, we also adopted 7 perturbation functions suggested in 
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[62] including adversarial perturbations (VAT), guided cutout, random cutout, context 

masking, object masking, feature-based masking, and feature-based noise. The 

perturbation functions are categorized into four types: transformation-based, 

prediction-based, feature-based, and random-based perturbations. 

Transformation-based perturbations 

These perturbation functions map the feature map 𝑧 to another feature map by 

performing geometric operations. To compute the unsupervised loss, we 

geometrically restore the output of auxiliary decoders by applying a corresponding 

inverse transformation to  𝑦̂𝑎
(𝑘)

 before calculating the MSE between 𝑔(𝑧𝑖) and  𝑔𝑎
𝑘(𝑧𝑖). 

⚫ Random rotation and zoom. We rotate the feature map 𝑧 with a random degree 

between -90° and 90° and scale it with a random factor between 0.8 and 1.2. In 

clinical settings, the wound images are taken from various angles and positions. 

Since CNNs are not rotation and scaling invariant, we add these two perturbation 

functions to train our model to be consistent when predicting from a wider range 

of wound images. Note that we did not use projection transformation because 

most wound images are taken right in front of the wounds. 

⚫ Stochastic elastic deformation. Given the fact that skins are deformable, we 

apply elastic deformation [64] to the feature map 𝑧 to reduce the reliance on 

certain shapes of common wounds and improve the robustness and consistency. 

We use a standard deviation of (32, 32) to limit the pixel displacement within a 

reasonable range. Bilinear interpolation is used to regenerate the deformed 
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pixels with a 64 by 64 Gaussian kernel and a scaling factor of (1.0, 1.0). 

Prediction-based perturbations 

These perturbation functions mask, zero out, or add noise to the feature map 𝑧 

based on the predictions from the main decoder or auxiliary decoders, i.e., 𝑦̂ or 𝑦̂𝑎
(𝑘)

. 

⚫ Virtual adversarial perturbation (VAP). Based on the prior work [62], the 

adversarial perturbation effectively alters the prediction of a given auxiliary 

decoder. To investigate the effectiveness of VAT in smoothing the output 

distribution, we adopt VAP [63] to generate a perturbed version of the feature 

map 𝑧. 

⚫ Guided cutout. We also adopt the guided cutout method as a perturbation 

function to limit the model’s reliance on a particular feature of the wounds. In 

detail, a bounding box localizing the wound is predicted from 𝑦̂. Then a random 

mask is zeroed out within the bounding box of the wound in the feature map 𝑧.  

⚫ Guided masking. CNN relies heavily on learning spatial relations to make 

predictions. To limit the model’s reliance on spatial relations, we adopt two 

guided-masking perturbation functions, object masking and context masking. An 

object mask is predicted from 𝑦̂ first and then the context mask masking the 

background area is extracted by excluding the object mask from 𝑦̂. These two 

masks are applied to the feature map 𝑧 to create two perturbed versions. 

Feature-based perturbations 

These perturbation functions add noise to or drop out some of the activations 
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from the feature map 𝑧. 

⚫ Feature-based masking. The objective of this perturbation function is to drop a 

small portion of the most active regions in the feature map 𝑧. A threshold γ with a 

minimum of 0.6 and a maximum of 0.9 is uniformly sampled first. After summing 

over the channel dimension, 𝑧  is normalized and a feature-based mask is 

defined as 𝑀 = {𝑧 <  γ}. The perturbed version is then generated by taking the 

product of 𝑧 and 𝑀. 

⚫ Feature-based noise. To generate a feature-based noise, we multiply the 

feature map 𝑧  by a uniformly sampled noise tensor of the same size with a 

minimum of -0.3 and ma a maximum of 0.3. Next, a perturbed version of 𝑧 is 

generated by adding the noise to 𝑧 itself.  

Random-based perturbations 

⚫ Gaussian blur. We uniformly sample the variance with a minimum of 0.2 and a 

maximum of 1.0 for the Gaussian smoothing applied to the feature map 𝑧 to 

create a perturbed version. 

⚫ Random normalization. An adjustment factor is uniformly sampled with a 

minimum of 0.8 and a maximum of 1.2. A perturbed version of 𝑧 is generated by 

taking the product of 𝑧 and the factor. 

⚫ Random cutout. A random perturbation of 𝑧 is generated by spatial dropout of a 

random mask in 𝑧. 
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5.3 Results 

 To evaluate the CCT model and investigate its effectiveness in tissue 

segmentation, we conduct extensive experiments in various settings. In detail, we 

carry out the experiments on our CCT model in three parts, the evaluation of 

encoders, decoders, and the overall performance. The mean Dice coefficient 

described in section 4.2.1 is adopted as the evaluation matrix and all comparisons 

are conducted as controlled experiments where we use the same software, 

hardware, and training parameters. 

 The first question we try to answer is the choice of encoders. A prior work [62] 

suggests using an encoder based on ResNet-50 for the PASCAL VOC 2012 dataset. 

To investigate this on tissue segmentation, we tested ResNet-50, ResNet-101, and 

ResNet-152 on the tissue dataset. The results show that ResNet-50 outperforms 

other architectures by a small margin. Given that ResNet-50 is more lightweight, we 

use an encoder based on ResNet-50 in our CCT model. 

One of the key components of our CCT model is the auxiliary decoders 

associated with 12 different perturbation functions categorized into four groups, i.e., 

transformation-based, prediction-based, feature-based, and random-based functions. 

Since the random-based, prediction-based, and feature-based functions are either 

widely proven or extensively studied in [62], We focus our investigation on the 

proposed transformation-based functions. Figure 15 shows the evaluation of the 

CCT model’s performance on granulation, fibrin, and eschar tissue trained with 
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different auxiliary decoder settings. We use 2 VAP decoders, 6 random cutout 

decoders, 6 feature-based noise decoders, 6 feature-based masking decoders, 4 

guided masking decoders including 2 object masking, 2 context masking decoders, 2 

Gaussian blur decoders, and 2 random normalization decoders for all the settings. 

The difference between different settings is in the transformation-based decoders: 

setting 1 has 6 random rotation decoders, 6 random zoom decoders, and 6 

stochastic elastic deformation decoders; setting 2 has 6 random rotation decoders, 6 

random zoom decoders, and 2 stochastic elastic deformation decoders; setting 3 has 

no transformation-based decoders. We can see that stochastic elastic deformation 

improves the performance of our CCT model by comparing setting 1 and 2. For 

example, the segmentation accuracy of fibrin tissue is improved from 81.2% to 88.2% 

by adding 4 additional stochastic elastic deformation decoders. Moreover, the 

effectiveness of random zoom and random rotation is verified by comparing setting 2 

and 3. The segmentation accuracy of fibrin and eschar tissue is improved by 3.9% 

and 2.8% through the addition of 12 random zoom and rotation decoders. 

Overall, the performance of the semi-supervised CCT model is better than a 

supervised ResNet-50 segmentation network. As shown in Figure 16, our CCT 

model is evaluated to yield a larger mean Dice coefficient under each tissue type. 

Some of the best predictions from our CCT model are illustrated in figure 17 along 

with the corresponding input images and ground truth annotations.  
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Figure 15 Comparison between the semi-supervised CCT model and the supervised model 

in terms of Dice coefficient for each type of wound tissue. 

Figure 16 The Dice coefficient of our CCT model on granulation, fibrin, and eschar tissue trained with 

different auxiliary decoder settings 
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Figure 17 Illustration of the predictions from our CCT model. On the top are the original input images. 

In the middle are the ground truth annotations. On the bottom are the predictions from our model. 
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5.4 Discussions 

 In Figure 17, the results show that the segmentation of the granulation tissue and 

the eschar tissue are more robust than the fibrin tissue. This can also be confirmed 

in Figure 18 where the curves represent the training history of validation Dice 

accuracy for the granulation tissue (red curve), fibrin tissue (orange curve), and the 

eschar tissue (brown curve). Our interpretation is that this is caused by the class 

imbalance of these types of tissues, i.e., the average number of pixels for the fibrin 

tissue is significantly less than the other two types of tissues in our dataset. This 

means we need more samples of the fibrin tissue in our dataset to train a robust 

CCT model. Again, the images in our dataset are randomly collected without any 

filtering or interference. The class imbalance problem is from the nature of foot ulcers. 

Figure 18 The training history of our CCT model. The curves mark the validation dice accuracy of the 

granulation tissue, the fibrin tissue, and the eschar tissue. 
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Chapter 6 

Conclusions 

We hope our wound dataset reaches a wider audience and serves academia as 

a benchmark to compare the performances of wound segmentation algorithms. 

Based on the dataset, we organized the Foot Ulcer Segmentation (FUSeg) challenge 

in conjunction with the 2021 International Conference on Medical Image Computing 

and Computer Assisted Intervention (MICCAI). Teams around the world submitted 

automated methods to predict wound segmentations on our dataset. Each 

participant was asked to submit a docker container that contains their algorithm and 

the prediction code. We have re-produced the results to be evaluated and ranked on 

our GPU server. Thus, one of our future directions is to further evaluate and analyze 

the top-3 submitted algorithms, namely the ensemble network with U-Net and 

LinkNet [52], the HardNet-MSEG [53], and the double encoder-decoder network [54]. 

The major problem of tissue segmentation is that limited labeled data is available 

since labeling tissues is more time-consuming and requires a higher level of 

expertise. To solve the problem, we investigated the CCT model with various 

numbers of auxiliary decoders. Besides labeling more images, a future direction is to 

explore the effectiveness of more perturbation functions for the auxiliary decoders. 

Another future work is to conduct more experiments on more auxiliary decoder 

settings to investigate the effectiveness of each decoder. 
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We attempted to solve three problems using deep learning: 1) the automated 

segmentation of chronic foot ulcers in a dataset we built on our own. 2) the 

automated segmentation of wound tissues 3) The automated segmentation of IVDs 

from 3D MRI scans. For evaluating the performance, we conducted comprehensive 

experiments and analyses on SegNet, VGG16, 2D U-Net, Mask-RCNN, 3D U-Net, 

our model based on modified 3D U-Net, a model based on MobileNetV2 and CCL, 

and a model based on cross-consistency training. In the comparison of various 

neural networks, our methods have demonstrated their effectiveness in the field of 

medical image segmentation due to their fully convolutional architectures. We also 

demonstrated the robustness of our models by testing them on publicly available 

datasets where our model still achieves the highest Dice score. In the future, we plan 

to improve our work by extracting the shape features separately from the pixel-wise 

convolution in the deep learning model. Also, we will include more data in the dataset 

to improve the robustness and prediction accuracy of our method. 
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