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ABSTRACT

SIMULATING THE COMMON ENVELOPE PHASE USING MOVING-MESH
HYDRODYNAMICS

by

Logan James Prust

The University of Wisconsin-Milwaukee, 2022
Under the Supervision of Professor Philip Chang, PhD

Common envelope evolution (CEE) is a phase in the evolution of a binary system

where a giant star and a smaller companion share a gaseous envelope, and is responsible

for the formation of many systems of astrophysical interest. Despite its importance, CEE

is not well understood due to the diverse physics involved. Astronomers have roughly

modeled CEE using conserved quantities such as energy, but progress has been limited

by uncertainties in the contributions of various energy sources. Thus, 3-D numerical sim-

ulations must be brought to bear. Here two methodologies are commonly employed,

each of which comes with its own set of advantages: smoothed-particle hydrodynamics

and Eulerian grid codes. A hybrid of these methods known as the moving-mesh code

has been developed in an attempt to capture the best characteristics of each. We use the

moving-mesh solver MANGA, which has recently been improved with the inclusion of

physics modules relevant to CEE.

We begin this work with an introduction to CEE in Chapter 1. We go through a step-

by-step description of its four stages and summarize observations of transients that are

thought to result from binary interactions. We then present an overview of simulation

techniques in Chapter 2, showing how aspects of smoothed-particle hydrodynamics and

Eulerian methods are implemented into moving-mesh schemes. We begin our numerical

studies of CEE using MANGA in Chapter 3 and show that the ejection of the envelope is

ii



aided by the inclusion of hydrogen recombination and tidal forces.

CEE simulations to date have neglected hydrodynamic interactions at the surface of

the companion. As such, we discuss our development of moving boundary conditions in

Chapter 4 and show how they can be used to model the companion object. We show that

the orbital eccentricity is affected by the size of the companion through hydrodynamic

torques. Finally, we describe our implementation of magnetohydrodynamics in Chapter

5. We find rapid amplification of a toroidal magnetic field at the onset of CEE, which is

thought to assist in the formation of nebulae.

Publications Connected to this Dissertation

The work presented in Chapters 2, 3, and 4 has been published in the following

papers:

Prust, L. (2020). Moving and Reactive Boundary Conditions in Moving-

Mesh Hydrodynamics. Monthly Notices of the Royal Astronomical So-

ciety.

→ https://doi.org/10.1093/mnras/staa1031

→ https://arxiv.org/abs/2002.04287

Prust, L., & Chang, P. (2019). Common Envelope Evolution on a Moving

Mesh. Monthly Notices of the Royal Astronomical Society.

→ https://doi.org/10.1093/mnras/stz1219

→ https://arxiv.org/abs/1904.09256

At the time of finishing and submitting this dissertation, the work in Chapters 3,

4, and 5 was being prepared in multiple manuscripts to submit for publication.
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CHAPTER 1

Physics of Common Envelope Evolution

1.1 FORMATION CHANNELS

CEE is thought to be responsible for the formation of many binary systems containing at

least one compact object. These include double white dwarfs, X-ray binaries, millisecond

pulsars (MSPs), and the progenitors of type Ia supernovae (Ivanova et al., 2013; Belczyn-

ski et al., 2016). Several of the formation channels for these binaries are shown in Fig. 1.1.

Recent years have seen an increase in the study of CEE due to the recent detections of

merging black holes and neutron stars by Advanced LIGO. In particular, the high masses

of merging binaries such as GW170729 (80 M⊙), GW170823 (66 M⊙) (Abbott et al., 2019),

and GW150914 (63 M⊙) (Abbott et al., 2016) have triggered a flurry of activity focusing

on their origins. Though the formation of single black holes through stellar evolution is

well-understood, the mechanism by which these binaries tighten to the point where the

emission of gravitational radiation results in a merger is unknown. Indeed, two 10 M⊙

black holes in a circular orbit would need to be separated by only 20 R⊙ to merge within

the age of the universe (Mandel & Farmer, 2018). Several candidate theories have sur-

faced to explain the formation of these binaries, including CEE (Belczynski et al., 2016;

Kruckow et al., 2016), dynamical processes (Rodriguez et al., 2016; Antonini & Rasio,

2016; Chatterjee et al., 2017), and chemically homogeneous evolution (de Mink & Man-

del, 2016; Marchant et al., 2016), but so far it is unclear which of these make significant

contributions to the merger rate.

CEE is also believed to be involved in the progenitors of both types of gamma-ray

bursts (GRBs). Short-period GRBs are thought to result from binary neutron star mergers,

and CEE facilitates the tightening of these binaries prior to merger. On the other hand,

1



long-period GRBs are thought to result from core-collapse supernovae in massive stars

which are rapidly rotating and have been stripped of their outer envelopes. CEE provides

a mechanism by which both the rapid rotation and the stripping of the envelope can be

accomplished (Fryer et al., 1999, 2007; Podsiadlowski et al., 2010).

Type Ia supernovae could also involve CEE through the merger of carbon-oxygen

white dwarfs (Webbink, 1984; Iben & Tutukov, 1984). In order to generate a type Ia super-

nova, these WDs need to be fairly massive, indicating that they were formed inside stars

that had ample time for the core to evolve. This, in turn, indicates that the initial binary

must have had a large separation to accommodate the large radii of these stars. How-

ever, at some point the orbital separation must have decreased dramatically to allow for

a merger between the WDs to be mediated by gravitational waves. Again, CEE provides

a mechanism by which this can occur by quickly tightening the binary.

Because CEE is a very brief process in the lifetime of a star and is much dimmer than

other transients such as supernovae, it is very difficult for astronomers to directly observe.

Furthermore, theoretical studies of CEE are hampered by the diverse physics thought to

be involved as well as the dynamic range of time-scales (Webbink, 2008; Ivanova et al.,

2013). For example, considerations such as hydrodynamics, convection, turbulence, ac-

cretion, nuclear burning, radiation, self-gravity, hydrogen recombination, jets, and mag-

netism are all thought to play a role in CEE. As a result, our understanding of the forma-

tion of compact binaries stems mostly from binary population synthesis (BPS). Population

synthesis uses simple physical models to simulate the evolution of many systems (∼ 108

or more) at once. BPS is the application of population synthesis to binary systems, and

allows us to convert an initial population of stars with a given initial mass function (IMF)

and separation distribution into a population of compact binaries and other post-common

envelope systems. To avoid large computational costs, BPS uses simplified descriptions
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Figure 1.1: The role of CEE in several of the many formation channels for
compact binaries and other exotica, reprinted from (Ivanova et al., 2013).

of CEE and other aspects of stellar evolution. In particular, this often involves assuming

a single value for the CEE efficiency parameter αCE discussed below. Furthermore, BPS

codes often treat αCE as a free or tunable parameter rather than a function of the proper-

ties of the binary (for example, Giacobbo & Mapelli, 2018). This is a highly undesirable

state of affairs since the results of BPS studies are sensitive to their treatment of CEE.
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1.2 STAGES

Due in part to the large range of timescales involved in CEE, astronomers divide CEE into

distinct phases which can be studied individually.

1.2.1 Loss of Corotation

Prior to CEE, the binary has been in a stable orbit. The binary separation is small enough

that tidal forces from the companion have spun up the rotation of the giant until the giant

is tidally locked to the binary orbit (Soker, 1996). The rotation rate can be a significant

fraction of the giant’s break-up velocity. This corotation is lost when the giant overflows

its Roche lobe and begins a period of unstable mass transfer onto the companion. The

loss of corotation operates on a dynamical timescale; prior evolution leading up to this

phase occurs on many dynamical timescales (for the tidal locking) as well as the thermal

timescale (for the expansion of the primary as it ascends the red giant branch or asymp-

totic giant branch) (Podsiadlowski et al., 2002).

Loss of corotation could also be caused by other effects such as the Darwin instability

(Darwin, 1879), which occurs when the spin angular momentum of the binary exceeds

one-third of its orbital angular momentum. At this point, the tidal forces cause a runaway

transfer of angular momentum from the orbit to the spins of the binary components,

leading to a merger. Here we will focus on the case of unstable mass transfer, as this

mechanism is relevant to our systems of interest.

1.2.2 Radial Plunge

Immediately following the loss of corotation is the radial plunge, which is a rapid inspiral

that occurs on the dynamical timescale. Here the transfer of orbital energy to the envelope

results in the partial or complete ejection of the envelope from the binary. This phase
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is the primary focus of my work, as it occurs over a timescale which hydrodynamical

simulations are well-suited to model.

1.2.3 Self-Regulating Spiral-In

Once the envelope has expanded enough that the binary orbit is cleared, the inspiral

stalls and a self-regulating phase begins (assuming that the envelope has not been en-

tirely ejected during the radial plunge). In this phase, the envelope is held in limbo as

its gravitational attraction to itself and to the binary is balanced by heating from interac-

tions between the binary and the inner envelope. If the local density around the binary

orbit rises, frictional luminosity will generate additional heating, keeping the envelope in

a stable equilibrium (Meyer & Meyer-Hofmeister, 1979). Thus, the self-regulating phase

operates on the thermal timescale of the envelope. This phase is best studied by 1-D mod-

els which can follow the evolution over much longer timescales than 3-D hydrodynamical

simulations.

1.2.4 Termination of Self-Regulating Phase

If the envelope receives enough energy from frictional luminosity to be ejected, the self-

regulating phase is terminated (Ivanova, 2002; Han et al., 2002). Another possibility is

that one of the binary components again overflows its Roche lobe, which can result in a

merger (Ivanova, 2002) but can also provide a mechanism for liberating orbital energy to

eject the envelope (Ivanova et al., 2002; Podsiadlowski et al., 2010). Like the radial plunge,

this also operates on the dynamical timescale.
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1.3 ENERGY FORMALISM

The energy formalism, also known as the α-formalism, is a theoretical model to analyze

the energetics of a common envelope phase (van den Heuvel, 1976; Webbink, 1984; Livio

& Soker, 1988; Iben & Livio, 1993). Here the orbital energy lost by the binary is compared

against the binding energy of the envelope. The liberated orbital energy can be expressed

as

∆Eorb = −Gm1m2

2ai
+
Gm1,cm2

2af
, (1.1)

where m1 and m2 are the initial masses of the primary and secondary, m1,c is the mass of

the primary core, and ai and af are the initial and final binary separations. On the other

hand, the binding energy of the envelope can be expressed as

Ebind =
m1m1,env

λR1

, (1.2)

where m1,env is the mass of the envelope and R1 is the radius of the primary. The pa-

rameter λ accounts for the effect of stellar structure on the binding energy (de Kool, 1990;

Dewi & Tauris, 2000, 2001). The value of λ varies by star as well as on the definition of

the boundary between the core and envelope (Tauris & Dewi, 2001). Furthermore, the

definition of λ in literature is inconsistent.

The energy formalism then comes from equating ∆Eorb to Ebind. However, not all

of the orbital energy contributes to envelope ejection. Therefore, we must introduce an

efficiency parameter αCE:

m1m1,env

λR1

= αCE(−
Gm1m2

2ai
+
Gm1,cm2

2af
). (1.3)
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Note that the energy formalism assumes that material ejected from the envelope acquires

no more energy than that needed to escape at exactly the local escape velocity. This is

generally untrue; even if αCE∆Eorb exceeds the binding energy, the fraction of the enve-

lope which actually escapes from the systems depends on how this energy is distributed

throughout the envelope. The energy formalism also assumes that the envelope need

only escape from the primary, neglecting the companion as a source of binding energy.

One might expect αCE to take on values between 0 and 1. However, BPS studies often

choose values for the efficiency parameter which exceed unity. Though this at first glance

seems to violate energy conservation, this choice is used to account for alternate sources

of energy not included in the energy formalism. One such source is recombination energy,

which is a potentially large source of energy in the outer envelope. When ionized material

in the envelope cools, it can recombine into atoms and release energy, which we discuss

further in section 3.3. The formalism also ignores radiative losses and other energy sinks.

Tidal heating is not a source of energy, as it is a mechanism by which orbital energy is

transferred to the envelope. However, it may aid in the common envelope efficiency.

In short, the two parameters λ and αCE encode our ignorance of the important physics

and are poorly constrained by theory and observation. Fortunately, (1.3) allows us to

combine them into a single parameter αCEλ.

An alternative to the energy formalism is the angular momentum formalism, also

known as the γ-formalism (Nelemans et al., 2000; Nelemans & Tout, 2005). Instead of

orbital energy, this formalism considers the amount of angular momentum lost by the

binary:

∆Jbinary
Ji

= γ
m1,env

m1 +m2

. (1.4)

Here the initial angular momentum of the binary is Ji and γ is the efficiency parameter.
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The γ-formalism was introduced to explain a set of double white dwarf systems which

are thought to have been formed through two common envelope events. These events

all shared similar values of γ, making the formalism useful for these systems. However,

when applied to a wider range of systems, the γ formalism encounters problems similar

to those experienced by the energy formalism.

1.4 OBSERVATIONS

CEE events are difficult to observe due to their short periods relative to a stellar lifetime.

We are therefore mostly relegated to observing pre-common envelope (i.e. stellar bina-

ries) and post-common envelope systems such as compact binaries and planetary nebulae

(PNe). Furthermore, theory provides few predictions for the appearance of such an event

due to the fact that the phases operate on much different timescales; this means that CEE

cannot be modeled consistently from beginning to end. For example, 1-D calculations

must be used to study the self-regulating phase, but 3-D codes are used to study the ra-

dial plunge. To make matters worse, the best-studied phase – the radial plunge – is also

the shortest.

It is thought that roughly 20% of PNe are formed as a result of envelope ejection from

CEE (Han et al., 1995; Bond, 2000). Thus, astronomers have tried to work backward,

using the shapes and velocities of PNe to infer information about how the envelope was

ejected. Such PNe can take on a variety of shapes, but a bipolar shape is favored due

to the fact that much of the envelope is ejected in the equatorial plane (Sandquist et al.,

1998). Then a fast wind from the primary is collimated in the polar direction by the ejected

envelope. Magnetic fields are also thought to play a role in forming the bipolar shape, and

recent work using magnetohydrodynamical (MHD) simulations to study a CEE event

over several thousand days supports this hypothesis (Ondratschek et al., 2021). As we
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show in section 5.5.3, magnetic fields thought to be responsible for shaping the PNe are

found to form quickly at the onset of CEE (also see Ohlmann et al., 2016b).

Besides the possible existence of a PNe, the binary resulting from CEE can also be used

as a probe. The masses and periods of these post-common envelope binaries (PCEBs) can

be used to estimate values of αCE (for example, Zorotovic et al., 2010). But again, there is

no reason to believe that even systems which are alike will have αCE values that are equal

or even similar.

There is some hope for detecting CEE as a transient event, as they are expected to pro-

duce energy roughly equal to the binding energy of the envelope (∼ 1047 ergs) (Kulkarni

et al., 2007). Indeed, there are several transients which are thought to have been caused by

CEE or other violent binary interactions; these include the eruptions of V838 Mon (Bond

et al., 2003) and V1309 Sco. In particular, V1309 Sco is thought to be a stellar merger

due to its steadily decreasing period prior to its eruption and lack of a binary companion

afterward (Tylenda et al., 2011). The resemblance of V1309 Sco to V838 Mon (for exam-

ple, Retter & Marom, 2003) and other transients has spawned a class of red transients

thought to be connected to binary interactions. Members of this class, which include

M31 LRN2015 (MacLeod et al., 2017b), PTF 10fqs (Kasliwal et al., 2011), and M85 OT2007

(Kulkarni et al., 2007), are known as “intermediate-luminosity optical transients” (ILOTs)

or “red novae.” These events have absolute visual magnitudes MV in the range of −13

to −15, placing them between the luminosities of novae and supernovae (Ivanova et al.,

2013). Though ILOTs are not novae, they are thought to occur at as much as 20% of the

rate of core-collapse supernovae (Thompson et al., 2009). Furthermore, the timescales of

the light curves of ILOTs broadly agree with what we know about CE events, lasting for

roughly ten dynamical times (MacLeod et al., 2017b). This is much shorter than either the

thermal or nuclear timescales and indicates a dynamical phenomenon.
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CHAPTER 2

Moving-Mesh Hydrodynamics

We begin this chapter with a discussion of two numerical methods which have been in-

strumental in simulating astrophysical phenomena such as stars, accretion disks, and

galaxies. These are smoothed-particle hydrodynamics (SPH) and Eulerian grid codes,

each of which comes with its own set of strengths and challenges. We then describe the

arbitrary Lagrangian-Eulerian (ALE) method, a relatively recent development which is a

hybrid of the two aforementioned methods. Implementations of ALE methods involve

the motion and deformation of a mesh; for this reason, they are referred to as moving-

mesh (MM) codes.

2.1 SMOOTHED-PARTICLE HYDRODYNAMICS

2.1.1 Overview

SPH is based on the Lagrangian formulation of fluid dynamics in which the fluid is com-

posed of particles, each of which traces out an individual path in space and time. In

practice, this means that SPH codes model the fluid as a collection of fixed-mass particles

whose properties evolve according to the Euler equations. SPH is able to automatically

adjust its resolution as needed, since – for example – a clumping of matter corresponds

to a clumping of particles (Springel, 2010b). This affords it the ability to treat problems

involving large dynamic ranges. Lagrangian schemes are also naturally Galilean invari-

ant and immune to advection errors. Furthermore, they are easily adapted to self-gravity

algorithms (Hernquist & Katz, 1989) and are computationally inexpensive.

For a review of SPH, see Monaghan (1992); Dolag et al. (2008); Rosswog (2009); Springel

(2010b). Common SPH codes include GADGET (Springel et al., 2001), HYDRA (Pearce &

10



Couchman, 1997), MAGMA (Rosswog & Price, 2007), and VINE (Wetzstein et al., 2009).

Additionally, the SPH code ChaNGa (Jetley et al., 2008, 2010; Menon et al., 2015) – based

on the earlier code GASOLINE (Wadsley et al., 2004a) – forms the basis of MANGA,

which we discuss in detail in section 2.4.

2.1.2 Formalism

At the heart of SPH is the kernel function, which is used to smooth a field F (r) to form a

smoothed field Fs(r) using a convolution integral:

Fs(r) =

∫
F (r′)W (|r − r′|, h)dr′3. (2.1)

HereW (|r−r′|, h) is a kernel with characteristic width h, known as the smoothing length.

The smoothing length is sometimes allowed to vary depending on the clustering of par-

ticles; for example, in ChaNGa it varies such that 64 particles lie within hi of the particle

at ri. There are many possible choices of kernel, but all share the properties of being sym-

metric, normalized to unity, monotonically decreasing, and (at least) twice differentiable.

A typical choice for the kernel is a cubic spline which vanishes for |r − r′| > 2h. There

are many similar choices of kernel (Schoenberg, 1969; Hockney & Eastwood, 1981; Mon-

aghan, 1985), but nearly all of them vanish outside a radius of O(h). This is due in part to

computational considerations: a kernel with infinite extent would require a summation

over all particles to perform a single smoothing calculation. Thus the computational cost

of the entire smoothing computation would scale as the square of the number of particles

N2. This is the case for Gaussian kernels such as the one used by Gingold & Monaghan

(1977). In contrast, the computation time scales as N for a kernel with finite extent.

Equation (2.1) must be discretized, as we are not dealing with a continuous field F (r)

but a discrete distribution of particles Fi(ri). To do this, we first define a volume element
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Vi = mi/ρi. Then the integral in (2.1) can be replaced by

Fs,i(ri) =
∑

j

VjF (rj)W (|ri − rj|, hi). (2.2)

There is a caveat here: the particles must sufficiently sample the kernel volume, so hmust

be at least as large as the average particle spacing.

The Euler equations for inviscid gas dynamics in Lagrangian (comoving) form are

given by

Dρ

Dt
+ ρ∇ · v = 0, (2.3)

Dv

Dt
+

∇P

ρ
= 0, (2.4)

and

Du

Dt
+
P

ρ
∇ · v = 0, (2.5)

where ρ, v, P , and u are the fluid density, velocity, pressure, and internal energy. Here

D/Dt = ∂/∂t + v ·∇ is the convective derivative. We will treat only inviscid fluids – in

which viscosity can be neglected – as these are most relevant in astrophysics due to the

high Reynolds numbers involved. Rather than discretizing these equations directly, as is

done in Eulerian hydrodynamics, it is perhaps more useful to use the Lagrangian. Shown

in both its integral and discretized forms, the Lagrangian for an inviscid gas is

L =

∫
ρ(v2/2− u)dV =

∑

i

(miv
2
i /2−miui). (2.6)

Then the Euler-Lagrange equation can be used to derive the SPH equations of motion
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(Springel, 2010b).

2.1.3 Artificial Viscosity

Due to its smoothing nature, SPH encounters issues when confronted with discontinu-

ities including shock waves and contact discontinuities. Whereas Eulerian methods can

sharply resolve the location of a discontinuity, in SPH they are smeared out across sev-

eral particles. These poor gradient estimates can lead to suppression of fluid instabilities

(Agertz et al., 2007). Furthermore, the SPH formalism assumes inviscid flow, which is

not valid for shock waves due to the increase in entropy experienced by particles which

cross a shock front. Thus, one must introduce a method by which kinetic energy can be

dissipated into heat when a discontinuity is encountered.

This is accomplished by introducing an artificial viscosity by applying a friction force

to damp the relative motion of particles. The viscosity sources the momentum and energy

equations as follows:

Dvi

Dt

∣∣∣∣
visc

= −
∑

j=1

mjΠij∇iW ij, (2.7)

Dui
Dt

∣∣∣∣
visc

=
1

2

∑

j=1

mjΠijvij ·∇iW ij. (2.8)

Here W ij is the symmetrized kernel

W ij = [W (|ri − rj|, hi) +W (|ri − rj|, hj)]/2 (2.9)

and Πij is the viscosity factor which is symmetric in i and j. Πij is a function of the relative

position rij = ri − rj and velocity vij = vi − vj , and is chosen to vanish if rij · vij >

0. Note that while Πij and W ij are symmetric under an exchange of indices, ∇iW ij is
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antisymmetric. This means that any momentum lost by one particle due to (2.7) will be

gained by another, preserving momentum conservation. Similarly, the thermal energy

source (2.8) compensates for the kinetic energy sapped by (2.7). Also note that vij ·∇iW ij

is symmetric, so that all particles gain thermal energy.

It is important to ensure that the artificial viscosity is only activated when there is a

shock present. Shear flows can be problematic in this regard because the relative particle

velocities are high, and Πij scales linearly with vij at low Mach numbers (Monaghan, 1997;

Monaghan & Gingold, 1983). A common fix to this issue is the Balsara switch (Balsara,

1995), which makes the replacement

Πij −→
fAV
i + fAV

j

2
Πij, (2.10)

where

fAV
i =

|∇ · v|i
|∇ · v|i + |∇× v|i

. (2.11)

With this switch, Πij vanishes for flows with large shear |∇ × v| and low compression

|∇ · v|.

2.2 EULERIAN GRID CODES

Contrary to the Lagrangian viewpoint, the Eulerian formulation of fluids watches the

flow of a fluid past a static point of reference in space. Eulerian codes discretize the

space into a mesh rather than discretizing the fluid into particles. Cartestian meshes are

the most common, though cylindrical, spherical, and other geometries are often used

for specific applications. The presence of a mesh allows the application of finite-volume

methods – which are superior at modeling shocks and other discontinuities – to solve
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the Euler equations. Common Eulerian grid-based codes are FLASH (Fryxell et al., 2000),

RAMSES (Teyssier, 2002), HARM (Gammie et al., 2003), Athena (Stone et al., 2008), and

Enzo (Bryan et al., 2014), to name just a few.

The Euler equations written in conservative form are

∂ρ

∂t
+∇ · (ρv) = 0, (2.12)

∂ρv

∂t
+∇ · (ρvvT ) +∇P = −ρ∇Φ, (2.13)

and

∂ρe

∂t
+∇ · (ρe+ P )v = −ρv ·∇Φ, (2.14)

where ρ is the density, v is the fluid velocity, Φ is the gravitational potential, e = ϵ +

v2/2 is the specific energy, ϵ is the specific internal energy, and P (ρ, ϵ) is the pressure.

Equations (2.12) to (2.14) can be written in a compact form by introducing a state vector

U = (ρ, ρv, ρe):

∂U
∂t

+∇ ·F = S, (2.15)

where F = (ρv, ρvvT + P I, (ρe+ P )v) is the flux function and S = (0,−ρ∇Φ,−ρv ·∇Φ)

is the source function. Here I is the identity matrix. For each cell, the integral over the

volume of the ith cell Vi defines the charge of the ith cell to be

Ui =

∫

Vi

UdV = U iVi. (2.16)

We then use Gauss’ theorem to convert the volume integral over the divergence of the
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flux in equation (2.15) to a surface integral

∫

Vi

∇ ·FdV =

∫

∂Vi

F · n̂dA, (2.17)

where ∂Vi is the boundary of the cell. We now take advantage of the fact that the volumes

are cells with a finite number of neighbors to define an integrated flux

∫

∂Vi

F · n̂dA =
∑

j∈neighbors

FijAij, (2.18)

where Fij and Aij are the average flux and area of the common face between cells i and j.

The discrete time evolution of the charges in the system from step n to step n+ 1 is given

by

Un+1
i = Un

i +∆t
∑

j

F̂ijAij +∆tSi, (2.19)

where F̂ij is an estimate of the half time-step flux between the initial Un
i and final states

Un+1
i and Si =

∫
Vi
SdV is the time-averaged integrated source function. The flux and

source function are determined at the half-time-step so that the algorithm achieves second-

order accuracy in time.

The face flux F̂ij is determined using the state U and flux function F on each side of

the cell interface by applying an approximate Riemann solver, described by Toro (2009),

at each cell interface. Several Riemann solvers are available, though the most common are

the Harten-Lax-van Leer (HLL) and Harten-Lax-van Leer-Contact (HLLC) solvers. The

HLL solver (Harten et al., 1983) models the interaction between the two fluid states on
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the left (UL) and right (UR) sides of the interface by introducing a third state

UHLL =
SRUR − SLUL +FL −FR

SR − SL

. (2.20)

This new state originates at the interface and propagates outward at speed SL (to the left)

and SR (to the right), which are the fastest signal speeds of each initial state. The HLL

solver is discussed in more detail in sections 4.2 and 4.3.5, where we describe modifi-

cations to the solver to implement reflective boundary conditions. The approximations

made by the HLL solver mean that several types of waves are not modeled correctly, in-

cluding contact discontinuities and shear waves. The HLLC solver was introduced to

restore these waves (Toro et al., 1994) and splits the interaction region into two partitions

U∗,L and U∗,R which are separated by a third wave S∗. MANGA uses the HLLC solver by

default.

Furthermore, many Eulerian codes offer adaptive resolution through adaptive mesh

refinement (AMR) schemes which increase the resolution of the grid where needed (see

Fig. 2.1). For each level of refinement, each cell is split into its eight octants (in 3-D) or

four quadrants (in 2-D), which inherit properties based on the cell-centered values and

gradients of its parent cell.

However, Eulerian methods are not without their own issues. Static grids suffer from

a lack of Galilean invariance, and structured grids introduce errors in angular momentum

conservation due to preferred directions. Furthermore, even with adaptive mesh refine-

ment, grid-based solvers encounter difficulty with highly-refined regions that move with

large velocities relative to the mesh. This is due to the challenges associated with adapting

the mesh to the anticipated motion of the system (Springel, 2010a).
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Figure 2.1: (Left) A Rayleigh-Taylor instability simulated using Athena in
Stone et al. (2008). (Right) A snapshot of the mesh, showcasing the adaptive
mesh refinement algorithm in Athena.
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2.3 ARBITRARY LAGRANGIAN-EULERIAN SCHEMES

2.3.1 Overview

In recent decades, a new approach has developed as a hybrid of the methods presented

above. This is the arbitrary Lagrangian-Eulerian (ALE) scheme, which uses a mesh that

flows and deforms along with the fluid (for a review see Donea et al., 2004). Due to the

presence of a mesh, finite-volume methods can be applied, allowing for the appropriate

handling of discontinuities. But because the mesh moves with the fluid, ALE schemes

benefit from the Galilean invariance, lack of preferred axes, and automatic resolution

adjustment of Lagrangian methods.

Early attempts at ALE schemes were moving-mesh (MM) codes such as FLAME (White-

hurst, 1995) and the algorithms used in Gnedin (1995) and Pen (1998). However, these

implementations were plagued by problems that involved large mesh distortions. In par-

ticular, mesh tangling can create oddly shaped elements such as “bow-tie” cells. A com-

mon approach to counteract mesh tangling is to periodically re-map the mesh onto a new,

regularized mesh. This sudden re-mapping is not an ideal solution as it inherently intro-

duces numerical diffusion. It is also difficult to create a general re-mapping algorithm

that generates a mesh appropriate to a variety of problems. Due to these difficulties, it

is preferable to have a mesh which can smoothly deform and re-map. Springel (2010a)

described one such scheme that has proven successful, which is implemented in the code

AREPO.

2.3.2 Voronoi Tessellations

To avoid the mesh tangling and re-mapping as discussed above, Springel (2010a) con-

structed the mesh using a Voronoi tessellation (Okabe et al., 1992) from an arbitrary dis-
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tribution of mesh-generating points pi (Fig. 2.2). For a given mesh-generating point pj , its

Voronoi cell is defined as the set of all points which are closer (defined by the 2-norm) to

pj than to any other pi ̸=j . The Euler equations (2.15) can then be solved on this mesh using

the same method as described in section 2.2 with a few tweaks. There are two advantages

to the use of Voronoi tessellations:

1. The tessellation is unique to the distribution of mesh-generating points.

2. The tessellation varies smoothly under perturbations of the positions of the mesh-

generating points. That is, the volumes and face areas of the cells change smoothly

as the mesh moves.

In addition to the Voronoi tessellation, the Delaunay triangulation is an alternative

method to create a unique unstructured mesh from an arbitrary distribution of points.

This results in tetrahedral cells with mesh-generating points at their vertices. Delaunay

triangulations are ideal for modeling the complex geometries encountered in solid me-

chanics and steady-state aerodynamics. For this reason, they are commonly used in pro-

prietary finite-element codes such as ANSYS and Star-CCM+. The Voronoi tessellation

and Delaunay triangulation are said to be topologically dual to one another: the Voronoi

tessellation can be determined using the Delaunay triangulation, and vice versa. This

means that there are two ways in which a Voronoi tessellation can be generated:

1. The Delaunay triangulation can be generated first, then used to determine the Voronoi

tesselation. Here the edge of each tetrahedron corresponds to a cell interface in the

Voronoi tessellation; the cell interface occurs at the midpoint of the edge and is

normal to it. This method is described in Springel (2010a) and used in AREPO,

TESS (Duffell & MacFadyen, 2011), FVMHD3D (Gaburov et al., 2012), and RICH

(Yalinewich et al., 2015).
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2. The Voronoi tessellation can be computed directly from the mesh-generating points,

in which each mesh-generating point is the center of the Voronoi cell. MANGA

uses this method, using the publicly-available VORO++ libraries (Rycroft, 2009) to

compute the tessellation.

The algorithm used by VORO++ to determine the Voronoi cell about a point proceeds as

follows (Fig. 2.2):

1. An arbitrarily large cell is drawn around the point, with size much larger than that

of the interparticle spacing.

2. The neighbors of this point are ordered by distance from the point.

3. The line connecting the point to its nearest neighbor is computed.

4. The plane bisecting this line – normal to the line at its midpoint – is computed.

5. This plane is used to split the cell into two partitions; the partition not containing

the mesh-generating point is discarded.

6. Steps 3-5 are repeated with the next-nearest neighbor. This continues until the dis-

tance between the mesh-generating point and the neighbor is more than twice be-

tween the point and any vertex on the surface of the cell, meaning that the cell is

complete and can no longer be partitioned.

2.4 MANGA ALGORITHM

2.4.1 Overview

As mentioned above, the SPH code ChaNGa (Charm N-body GrAvity solver) (Jetley et al.,

2008, 2010; Menon et al., 2015), which is based on GASOLINE, forms the basis for the
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Figure 2.2: A Voronoi tessellation (black lines) generated from an arbitrary
distribution of points (red). The Delaunay triangulation is also shown (blue
dashed lines). Note that each line in the Delaunay triangulation corre-
sponds to a cell face in the Voronoi tessellation (reprinted from Springel,
2010a).
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moving-mesh code MANGA. Similarly, the moving-mesh code AREPO is built on top of

Gadget, demonstrating that SPH codes can be adapted for ALE purposes. Rather than a

custom message-passing interface (MPI) design, ChaNGa uses Charm++ (Kale & Krish-

nan, 1996) for parallelization, meaning that it has superior scaling. Indeed, ChaNGa has

been shown to scale up to 1.2× 1010 particles on 5.12× 105 cores with 93% efficiency.

2.4.2 Numerical Approach

The ALE algorithm that is implemented in MANGA is summarized as follows. We

refer the reader to Chang et al. (2017) and Prust & Chang (2019) for detailed discus-

sions. MANGA is second-order accurate in time, meaning that the error in the solution is

O(∆t)2. To enforce this, at each time-step, the half-time-step values are first determined,

which are then used to evolve the charges to the full time-step. We first outline the algo-

rithm and elaborate on each step below:

1. The Voronoi tessellation is constructed using the VORO++ library.

2. Using the integral quantities Un
i , the local gradients and half time-step conserved

variables Un+1/2
i are calculated.

3. The cells drift by a half time-step and the Voronoi tessellation is rebuilt.

4. The state vectors at the cell interfaces are determined at the half time-step using the

gradient estimates.

5. The flux across the faces is calculated using a Riemann solver.

6. The new state Un+1
i is determined from the fluxes. New velocities for the mesh-

generating points are determined, and the mesh-generating points drift by a full

time-step.
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2.4.3 Gradient Estimation

MANGA is also second-order accurate in space, which demands an appropriate estimate

for the state vector at the face centers of each cell. The state vector on the face between

the ith cell and its jth neighbor is taken to be

Ũ ij = U i + (r̃ij − ci) ·∇U i, (2.21)

where r̃ and ci are the centroids of the face and ith cell, respectively. Equation (2.21)

requires an estimate of the gradient of the state vector in the ith cell. To calculate the

gradients, we follow the procedure of Steinberg et al. (2016), who improved upon the

prescription of Springel (2010a) in using the Gauss-Green theorem to estimate these gra-

dients. We refer the reader to Chang et al. (2017) for a more detailed discussion.

MANGA uses a slope limiter that reduces numerical oscillations near strong gradients

⟨∇U⟩S10i = αS10
i ⟨∇U⟩i, (2.22)

where αS10
i is defined in Springel (2010a). As noted by Springel (2010a), this limiter is not

total variation diminishing (TVD), so spurious oscillations can still occur. For this reason,

we follow the suggestion by Duffell & MacFadyen (2011) and apply an additional slope

limiter

⟨∇U⟩DM
i = αDM

i ⟨∇U⟩S10i , (2.23)

where

αDM
i = min(1, ψ′

ij). (2.24)
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Here,

ψ′
ij =





max[θ(U j − U i)/∆U ij, 1] |∆U ij| > 0

1 otherwise
(2.25)

and

∆U ij = ⟨∇U⟩i · (cj − ci). (2.26)

This limiter is TVD if θ < 0.5, and setting θ = 1 reduces it to the S10 limiter.

2.4.4 Flux Computation

The flux F̂ij across each face is estimated as follows:

1. We first estimate the half time-step velocity w̃ij of the face following Springel (2010a).

2. The state vector is boosted from the “lab” frame (the rest frame of the simulation

box) to the rest frame of the face to find the flux along the normal to the face.

3. We estimate the flux F̂ij across the face using an HLLC (by default) or HLL ap-

proximate Riemann solver implemented following Toro (2009), as discussed in sec-

tion 2.2. For magnetohydrodynamics, we use an HLLD solver as implemented in

Athena++ (see Chapter 5).

4. The solved flux is boosted back into the lab frame.

We can then use the estimated fluxes to time-evolve the charges Ui following equation

(2.19) using the full time-step ∆t and apply changes owing to the source terms.
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2.4.5 Flux Alterations Due to Mesh Motion

Because the mesh – and thus the cell interfaces – moves relative to the fluid, the flux

calculations must be modified to account for this motion. For a face moving with speed

w, the flux across a static face F s(v) must be supplemented by an additional term F corr

related to the flow of fluid across the face due to w. This gives us the flux across a moving

face

Fm = F s(v)−F corr =




ρv

ρvvT + P

(ρe+ P )v




−




ρw

ρvwT

ρew



. (2.27)

However, as discussed above in section 2.4.4, the fluxes are not computed in a static frame

but rather in the rest frame of the face. This is because the Voronoi cells move at or very

close to the fluid velocity (see section 2.4.7), so the mass flux across the faces is very small

in the lab frame. This can cause sign errors in the mass flux, which makes the scheme

unstable (Pakmor et al., 2011). Instead, we work in the rest frame of the face where F s(v)

is replaced by F s(v −w). Then the correction for the mesh motion is expressed as

F s(v −w)−Fm =




0

ρw2 − ρ(v ·w)

ρw2(v −w)/2− ρ(v ·w)(v −w)− Pw



. (2.28)

These corrections are applied after a Riemann solution is performed.

2.4.6 Gravity Solver

MANGA includes self-gravity by incorporating the gravitational potential as a source

term in the momentum and energy equations (2.13 and 2.14). User-specified potentials
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can also be used, though they are not relevant for this work. Self-gravity is handled via

a tree-based gravity algorithm. The construction of the tree is summarized as follows

(Wadsley et al., 2004b):

1. The simulation domain is split into its eight octants, known as tree nodes.

2. The mass multipole moments of each node are computed up to hexadecapole (fourth

order).

3. Any node containing more than 12 (by default) particles is further split into its eight

octants.

4. Steps 2 and 3 are repeated until the tree has been split into all of its “leaves” con-

taining 12 or less particles.

The tree traversal algorithm is based on PKDGrav (Stadel, 2001), which is similar to the

Barnes-Hut algorithm (Barnes & Hut, 1986).

The gravitational potential for each particle is not computed by summing the contri-

butions from all other particles in the simulation, as this would result in a scaling of N2

for the gravity solution. To optimize the calculation, only certain tree nodes are used. The

nodes used in the computation are determined by the inequality

s

d
< θ, (2.29)

where s is the width of the node, d is the distance from the node to the particle in question,

and θ is some specified threshold. If the inequality is satisfied, then the node is used in the

gravity computation, as the node is sufficiently far from the target particle that breaking

the node down into its component nodes and leaves in not necessary. If (2.29) is not

satisfied, then the node is broken down into its component nodes and the inequality is
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checked for each. This approach scales as approximately N logN , where the base of the

logarithm depends on the number of dimensions and the spatial distribution of particles.

Additionally, gravitational forces are softened using a cubic spline, reflecting the fact

that the mass is not simply concentrated at a discrete distribution of points. All gas cells

in ChaNGa have equal softening lengths hgas, defined at the start of the simulation as the

mean separation between cell centers in the region of highest density

hgas = 2(mmax/ρmax)
1/3. (2.30)

Here ρmax is the maximum density and mmax is the cell mass at the location of ρmax.

Once the gravitational potential (and its gradient) have been computed, we can deter-

mine the time-average integrated source functions following Springel (2010a):

∫

Vi

ρi∇ΦidV =
1

2
(mn

i ∇Φn
I +mn+1

i ∇Φn+1
I ) (2.31)

and

∫

Vi

ρi∇Φi · vdV =
1

2
(mn

i v
n
i ∇Φn

I +mn+1
i vn+1

i ∇Φn+1
I ). (2.32)

2.4.7 Voronoi Cell Velocities

ALE schemes typically set the velocities w of the mesh-generating points to the cell-

centered fluid velocity v. While this offers the advantages of a Lagrangian scheme, other

choices are available. For example, w = 0 is equivalent to using a static-mesh Eulerian

scheme, while w = ηv where 0 < η < 1 is a hybrid between the two. Though we take

the Lagrangian approach, we also apply corrections to w in the interest of keeping the
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Voronoi cells round. Codes which experience mesh tangling provide a cautionary tale of

the numerical errors can occur with oddly-shaped or elongated cells. Thus, it is desirable

to ensure that all Voronoi cells are kept reasonably round (Springel, 2010a). That is, the

positions of the mesh-generating points ri should be near to the geometric centers of the

Voronoi cells ci. In MANGA and AREPO this problem is solved by modifying the veloc-

ities of the mesh-generating points such that it is difficult for such voids to appear, and

they are filled in if they do appear:

∆w = χcs,i
ci − ri
di





0 di < 0.9ζreff

di
0.2ζreff

− 4.5 0.9ζreff ≤ di ≤ 1.1ζreff

1 di > 1.1ζreff ,

(2.33)

where di = |ci − ri|, cs,i is the local sound speed, and reff = ( 3
4π
Vi)

1/3 is the cell effective

radius. We choose typical values for the constants χ = 1 and ζ = 0.25.

2.4.8 Multi-Stepping

Though there are several limits on the time-step for each particle, the limiting factor in

the vast majority of cases is the Courant time-step

∆tij = ηCFL
∆Rij

cs,i + cs,j −∆vij ·∆Rij/|∆Rij|
. (2.34)

Here ∆Rij is the difference in position between the mesh-generating point (i) and a neigh-

boring point (j), ∆vij is the difference in fluid velocities between i and j, and 0 < ηCFL < 1

is the Courant-Friedrichs-Levy (CFL) coefficient. The Courant time-step enforces causal-

ity: because each cell has access only to information about itself and its neighbors, infor-

mation cannot be allowed to cross an entire cell in one time-step. Hence, the time-step is
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related to the cell size and to the maximum speed at which a wave can travel through the

fluid. These are represented by the numerator and denominator of (2.34), respectively.

When MHD or radiative transfer are included, the Alfvén speed or reduced speed of

light (respectively) are added to the denominator of (2.34) similarly to the sound speed.

The Courant time-step for a particle i is the minimum of all ∆tij computed between the

particle and its neighbors

∆ti = min
j∈neighbors

∆tij. (2.35)

MANGA as described by Chang et al. (2017) imposes a universal time-step for all par-

ticles. This global time-step is set to be the minimum ∆t among all cells ∆tCFL = mini ∆ti.

Large speedups for problems with large dynamic range are possible with individual time-

steps. Hence, to greatly enhance the applicability of MANGA to the problem of CEE, we

have implemented an individual time-stepping scheme for MANGA. Once the ∆ti have

been individually computed for each particle, the particles can be assigned to time-step

levels which we call “rungs.” This proceeds as follows:

1. The largest allowable time-step, which is a parameter in our simulations, is assigned

to rung 0. We call this time-step ∆t.

2. The time-step of each successive rung is smaller than that of the previous rung by a

factor of 2. Thus the time-step associated with rung k is ∆t/2k.

3. Each particle is assigned to the rung with the maximum k satisfying ∆t/2k > ∆ti.

That is, the highest rung with time-step larger than the particle’s individual ∆ti.

The evolution of each particle then occurs according to the time-step associated with its

rung.
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The universal time-stepping algorithm for a second order accurate (in time) integrator

can be broken down into three stages, the initial time (a), the half time-step (b), and the

full time-step (c).

a. Initial time t = 0: determine Voronoi cells using current positions of mesh-generating

points. Estimate gradients and construct half time-step predictions.

b. Half time-step t = 0.5∆t: drift Voronoi cells to half time-step positions. Construct

Voronoi cells at half time-steps. Perform linear reconstruction to the half time-step

cell faces and compute fluxes. Perform a Riemann solution and incorporate source

terms with the full time-step. Place these changes into δU .

c. Full time-step t = ∆t: drift Voronoi cells to full time-step positions. Advance charges

to be Un+1 = Un + δU .

In comparison, Pakmor et al. (2016) achieve the same formal second order accuracy in

two steps, an initial and full time-step. Here, they make a full time-step prediction for the

primitive variables, perform a Riemann solution using the initial Voronoi cells and faces

for a half time-step and perform a closing Riemann solution (again a half time-step) using

the final Voronoi cells and faces at the full time-step and the full time-step prediction for

the primitives. The two methods differ in the comparative numbers of Voronoi tessella-

tions and Riemann solutions. In particular, we only need to solve the Riemann problem

once, whereas Pakmor et al. (2016) require two solutions of the Riemann problem (with

associated linear reconstructions). However, we require an extra Voronoi calculation at

the half time-step. Depending on the relative cost of Riemann solution and the Voronoi

calculation, the two schemes have their relative merits.

To adapt our scheme for multistepping, we note that the full time-step for any cell

involves actions at a full time-step (a, c) and the half time-step (b). Let us then consider
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Rung:0

Rung:1

Rung:2

step 0

2dt
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Rung:1
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2dt
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1
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Figure 2.3: Integration of time-stepping for individual time-steps. Starting
at the lowest rung (rung 0), the time-step is decreased by 2 for each higher
rung. Full and half time-steps at each rung are shown as solid and empty
circles, respectively. The time-stepper (blue rectangle) steps at the small-
est half time-step, which in this case is at 0.25∆t. All particles drift along
at this smallest time-step following the time-stepper. Half time-step pro-
cedures (full time-step Riemann solutions on half time-step Voronoi cells)
are executed only at half time-steps relevant to the particular rung. Full
time-step procedures (accumulating all δU ’s and full time-step gradients
and half time-step prediction) are executed at full time-steps. Note that only
one half time-step at one rung is relevant for each step of the time-stepper,
but multiple full time-steps at more than one rung can be executed at the
time-stepper’s current position.

32



the time advancement of three separate rungs at 0, 1, and 2. In Fig. 2.3, the full time-steps

are represented by filled circles, while the half time-steps are represented by empty circles.

At step 0, all three rungs are synchronized at their respective full time-steps: all the circles

are black and step (a) is executed on all three rungs. The particles are then drifted 0.25∆t

to step 1. The half time-step reconstruction and Riemann solution is performed for rung

2. Note that the Riemann solution is for the full time-step 0.5∆t at rung 2 so that when

the δU is summed at the next step, the Us for rung 2 are updated to the full time-step.

Now at step 2, the full time-steps (c) and initial time-steps (a) are performed at rung 2

and the half time-step (b) is performed for rung 1. In addition, cells at rung 0 that share

a face with a cell at rung 1 (denoted by red-dashed circles) also have a Riemann solution

at the common face at the rung 1 half time-step. We skip step 3 as it is the same as step 1

and now proceed to step 4. Here, we do the full time-steps for rungs 1 and 2 and the half

time-step for rung 0.

From this discussion, we can conclude that for the half time-step for rung k, full time-

steps are executed from all rungs m > k. Conversely, there can only be one half time-step

for only one rung per (drift) time-step. This is the half time-step of the highest rung.

In addition, cells only switch rungs during their full time-steps to ensure consistency of

the second-order time integration and they can only reduce their rung when their new

reduced rung is at its full time-step.

One additional feature that we have included in our implementations is the smoothing

of time-steps by large propagating velocity fluctuations, or shocks. This is a well known

issue in SPH, for which Saitoh & Makino (2009) show that large localized changes in

the time-step can lead to incorrect results. They also showed that smoothing out time-

stepping changes over a SPH kernel such that the time-step variation is limited to a factor

of 4 mitigates these issues. We have adopted a similar approach here in that we limit the
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cell’s time-step to be less than
√
2 of the minimum time-step of its neighbors. This results

in time-step changes no greater than a factor of two occurring over two cells away from a

minimum cell. We find that this smoothing allows for stable integrations in MANGA.

This multi-stepping algorithm was applied to a CEE simulation to test the speed-up

factor. At each step, we find speed-ups ranging from 3 to 9 times that of the universal

time-stepping algorithm, resulting in an average speed-up of 4 to 5 times.

2.4.9 Van Leer Time Integration

An alternative method of achieving second-order time integration is known as the van

Leer method. Rather than estimating the gradients of the conserved quantities and us-

ing them to determine the half-time-step quantities via equation (2.15), we instead solve

equation (2.19) with the replacement ∆t −→ ∆t/2 and solve for the fluxes as described

above. This method simplifies the code as we only need use the integral forms of the

hydrodynamic equations rather than both the integral and differential forms. Van Leer

integration is also easily adapted to our multistepping scheme. Finally, this method also

automatically includes the source terms at second order. This follows the time integration

used in Athena++ as described in White et al. (2016). Because of the necessity of comput-

ing the magnetic field flux using a Riemann solver, our MHD implementation always

uses van Leer integration (see section 5.1).

2.4.10 Other Modules

Recently, modules have been added to MANGA to include physics such as radiative

transfer (Chang et al., 2020), general relativistic hydrodynamics (GRHD) (Chang & Eti-

enne, 2020), magnetohydrodynamics (MHD) (Prust & Chang, in preparation) and nuclear

burning (Humphrey & Chang, in preparation). Though the GRHD and nuclear burning
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modules are not relevant to this work, we discuss future directions using the radiative

transfer module in section 3.6.2. The MHD module is described in detail in Chapter 5.
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CHAPTER 3

Simulating Common Envelope Evolution

3.1 GENERATION OF INITIAL CONDITIONS

We now discuss the development of appropriate initial conditions for MANGA. We adopt

initial conditions similar to those of Ohlmann et al. (2016a), who previously performed

a moving-mesh simulation of CEE. We first use the open-source stellar evolution code

MESA (Paxton et al., 2011, 2013, 2015, 2018, 2019) to evolve a 2 M⊙ star with metallicity

Z = 0.02 from the pre-main sequence to the red giant phase. We stop when the star

reaches 52 R⊙ with a helium core mass of 0.36 M⊙. Compared with that of Ohlmann et al.

(2016a), our red giant is slightly larger and its helium core mass is slightly smaller. This

could be due to the updates in the MESA code since their original result or discrepancies

in our MESA inlists. From the MESA output, we take the entropy and hydrogen fraction.

For the core, we take the total mass at a density that is 50 times greater than the mean

density of the red giant, giving a core mass Mc = 0.379 M⊙. This corresponds to a core

radius Rc = 1.99 R⊙, which we use as the core gravitational softening length. Because of

the great difference in density between the helium core and the hydrogen envelope, we

model the core as a dark matter particle with mass Mc and softening radius of Rc. The

practice of excising the core and replacing it with a point particle is a common practice to

reduce computation times: both the high resolution necessary to model the core as well as

the high temperatures would drive down the Courant time-step. After the core is excised,

the star is no longer in hydrostatic equilibrium due to the removal of its center. Thus, we

then construct a star of mass M − Mc with an entropy profile and radius which match

those of the original star and which contains a dark matter particle core. This yields a

radial profile of density, temperature, and hydrogen fraction that can be mapped to a
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particle (mesh-generating point) profile.

The profile produced by the mapping from a 1-D stellar evolution model to a fully

3-D hydrodynamical simulation is not in perfect hydrostatic balance due to discretization

errors. Previously, Chang et al. (2017) used this fact to compare (roughly) hydrostatic

stars experiencing oscillations using the moving-mesh and SPH solvers. Here we are

interested in the equilibrium solution in the moving-mesh solver. Thus, following the

mapping from 1-D to 3-D, we damp spurious velocities and energies and allow the star to

relax to a final configuration. We note that this same procedure has been used for merging

white dwarfs (Zhu et al., 2013) and was also used by Ohlmann et al. (2016a) for giant star

initial conditions.

We show the result of this relaxation in Fig. 3.1 as blue circles and compare this to the

radial profile from MESA (orange circles). Here we downsample the number of points

from MANGA by a factor of 100. The horizontal line denotes the cutoff density for the

core (50 times the mean density). The envelope follows the original MESA profile quite

faithfully in spite of the differences in the physical structure. The inner profile approaches

a fixed density asymptotically due to the softened gravitational forces from the dark mat-

ter core.

We represent the 1 M⊙ companion as a dark matter particle that is in an initially circu-

lar Keplerian orbit at the red giant radius a = 52 R⊙. This follows the initial conditions of

Ohlmann et al. (2016a) to facilitate a direct comparison. Although this neglects the evo-

lution of the binary prior to CEE, we compensate by altering the dynamics of the giant.

During the phase leading up to CEE, tidal forces from the companion on the envelope are

expected to spin up the rotation of the envelope (Soker, 1996) to a significant fraction of

its breakup velocity. We have implemented this corotation between the envelope rotation

and orbital motion into our simulations by following the scheme of MacLeod et al. (2018).
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Figure 3.1: Relaxed density ρ against radius r profile from MANGA (blue
circles) compared to the profile from MESA (orange circles). The horizontal
line denotes the cutoff density for the dark matter core (50 times the mean
density).
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Within the envelope, we assume rigid body rotation and initialize the velocity as

vϕ = fcrΩorbRcyl, (3.1)

but give the atmosphere a velocity

vϕ =
fcrΩorbR

2
∗ sin

2(θ)

Rcyl

. (3.2)

Here, fcr is an adjustable parameter, ϕ is the azimuthal angle, θ is the polar angle, Ωorb is

the orbital frequency of the red giant and companion, R∗ is the radius of the giant, and

Rcyl is the cylindrical radius from the rotation axis of the giant. We note that (3.1) and (3.2)

ensure that the velocity is continuous at the surface of the giant.

Here, we run two simulations in which the giant is in different states of corotation, 95%

corotation (fcr = 0.95) and 0% corotation (fcr = 0). We note that the 95% corotation case

follows the simulations of Ohlmann et al. (2016a) and Ricker & Taam (2012). The choice to

set fcr to less than unity is also motivated by MacLeod et al. (2018) who found that orbital

angular momentum lost by the companion prior to the onset of a common envelope phase

does not necessarily go into spinning up the envelope, leading to a desynchronization

between the orbital frequencies of the companion and envelope.

3.2 SIMULATION SETUP

We construct an appropriate particle mesh for the star from a pre-computed glass distri-

bution. This is an unstructured distribution of 4096 points embedded within a cube of

unit length, which we periodically replicate to produce a sufficient number of particles.

It is important to begin with an unstructured distribution because it avoids degenerate

faces and edges in the Voronoi tessellation and has no preferred directions. We assume
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that each particle is of equal mass and re-scale them to the appropriate radial position

based on the computed M(r) from MESA. These particles are also endowed with the

radially-interpolated temperature and hydrogen fraction. The total number of particles

representing the star is 3×105, which is smaller than the 2×106 particles used by Ohlmann

et al. (2016a). Outside of the star, we include a low density atmosphere of 10−13 g cm−3

with temperature 105 K that extends out to the total box size of 3.5 × 1014 cm (5000 R⊙),

with periodic boundaries at its edges. The presence of the “hot vacuum” outside of the

star is a necessity in grid codes to provide a pressure to the outer layers of the star, pre-

venting them from overflowing stellar material into the surrounding cells (Iaconi et al.,

2018). The total number of particles in the simulation is 8× 105.

To lower the computational cost, we use a mesh refinement algorithm to decrease the

number of gas particles in the atmosphere far from the star. We define a scale factor S(r) =

(r/R∗)
k where R∗ is the radius of the star, r is the spherical radius and k is an adjustable

parameter which we have set to k = 2/3 in this case. Starting with the same uniform glass

distribution as for the star, the linear spacing between particles is increased by S and their

mass is increased by S3, preserving the external density. Because the simulation box has

periodic boundary conditions at its edges, it would be problematic for the gravity solver

if CEE outflows were to reach an edge of the box. Due to the refinement discussed above,

the box can be extended arbitrary sizes without incurring significant computational cost.

However, it should be noted that grid codes are not ideal for following outflows over

long distances, as the mass and energy encountered by outflows due to the hot vacuum

discussed above can become significant (Iaconi et al., 2018). Fortunately, this is only an

issue for ejecta which has long since become unbound from the binary, and will not affect

the analysis performed in this work.
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3.3 INCLUSION OF RECOMBINATION ENERGY

The original implementation of MANGA described by Chang et al. (2017) used an ideal,

adiabatic equation of state (EOS). In Prust & Chang (2019), we extended MANGA to use

the equations of state implemented in MESA. The MESA equation of state relies on several

equations of state relevant over the different regimes of stellar structure. See Paxton et al.

(2011) – particularly their Fig. 1 – for a thorough description of the several EOSs used over

various regions of ρ-T space. Improvements to the MESA equation of state are described

by Paxton et al. (2013).

The interface between MANGA and MESA is accomplished via a wrapper written in

Fortran 90 to call the MESA subroutines which interpolate the EOS tables. For each cell,

the EOS is called once every step during the update of cell-centered variables. Gradient

estimation and linear reconstruction are used to find the values of these variables on each

cell interface. This avoids the need to call the EOS for every cell face, which would be

computationally expensive as the average Voronoi cell has approximately 20 faces.

Besides the advantages of providing a more accurate physical model than the ideal

gas EOS, the MESA EOS is particularly useful for the study of CEE since it allows us

to account for recombination energy. As the envelope expands during CEE, plasma in

the outer envelope cools and is expected to recombine into atoms, releasing its binding

energy. Known as recombination energy, this is a potentially large energy source that

may play significant role in ejecting the already tenuously-bound outer envelope (Lucy,

1967; Roxburgh, 1967; Paczyński & Ziółkowski, 1968). Care must be taken when consid-

ering the contribution of recombination to the energetics of CEE, as a stellar envelope

contains enough recombination energy to unbind the entire envelope without the need

for a companion. Obviously, single stars do not spontaneously eject their envelopes, so it

is clear that recombination is only a useful source of energy under certain circumstances.
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However, it is feasible that material which has already been thrown out from the stellar

interior by the companion object could receive the “final push” to become unbound via

recombination.

3.4 RESULTS

Starting with the above initial conditions, we simulate the binary for 240 days and show

several density projections at t = 1, 10, 30, 75, 120 and 240 days in Figs. 3.2 and 3.3. We

note that the simulation period is about 10 times the initial orbital period of 25 days.

In both simulations, the companion experiences an initial plunge into the envelope

of the giant that lasts about 15 days, throwing off a large tidal tail (Figs. 3.2 and 3.3

upper center) and greatly decreasing the separation between the companion and core.

The companions then continue to spiral in as their orbital energy is transferred to the gas;

the spiral shocks facilitating this transfer can be seen in the projections (Figs. 3.2 and 3.3

upper right). We see smaller tidal tails thrown off at t = 75 days (lower left) and t = 120

days (lower center), as well as several others. The simulation ends well before the outflow

reaches the edge of the simulation box.

3.4.1 Envelope Ejection

The total energy of each gas particle is given by

Etot,i = mi[
1

2
(vi − vCM)

2 + ϕi + Ie,i], (3.3)

where mi, vi, vCM, ϕi and Ie,i are the mass, velocity, center of mass velocity of the bound

material, gravitational potential, and specific internal energy of each particle (Nandez

et al., 2015). Gas particles with a negative total energy are bound to the binary, while
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Figure 3.2: Density projections Σ in our CEE simulations with 95% corota-
tion. The + sign marks the red giant core and the × marks the companion.
We see gas ejected from the binary via tidal tails and spiral shocks as well
as a decrease in the orbital separation to a small fraction of its initial value.
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Figure 3.3: Same as Fig. 3.2 but neglecting initial rotation in the red giant.
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those with a positive total energy are unbound. Fig. 3.4 shows a density slice in the z = 0

plane at t = 15 days in the 95% corotation case. The black contour encloses the matter

bound to the binary.

The kinetic energy is computed relative to the velocity of the center of mass (CM) of

the bound matter; that is, the bound gas as well as both dark matter particles. However,

because the total energy is needed in order to determine which gas particles are bound,

we used an iterative scheme to find the velocity of the CM.

1. The CM velocity is assumed to be zero.

2. The velocities of the gas particles are calculated relative to the CM velocity.

3. These velocities are used to find the kinetic energies of the gas particles, which are

used to determine which particles are bound and which are not.

4. A new CM velocity vCM is found for everything except the unbound particles,

vCM =
mc,1v1 +mc,2v2 +mg,bvg,b

mc,1 +mc,2 +mg,b

, (3.4)

where mc,1 and mc,2 denote the dark matter core and companion, mg,b denotes the

bound gas, and mc,1v1, mc,2v2, mg,bvg,b and v1, v2, vg,b are the momenta and veloci-

ties of the dark matter core, companion, and bound gas.

5. Steps 2 to 4 are repeated until vCM reaches convergence.

This is similar to the method of Guillochon & Ramirez-Ruiz (2013). With the total energies

of all particles known, we can find the mass of the unbound gas as a fraction of the total

mass of the envelope menv,

funb =
mg,u

menv

, (3.5)
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which we refer to as the ejection efficiency. This is shown in Fig. 3.5. Qualitatively, the

simulations are very similar in this regard. They show a large ejection of gas during the

initial plunge as well as during the ejection of additional tidal tails. Unsurprisingly, the

system set into corotation consistently exhibits a higher ejection efficiency owing to the

inclusion of additional energy and angular momentum. We find that matter continues

to be ejected up until the end of the simulation period, ending with an efficiency of 66%

with corotation and 63% without.

We also show in Fig. 3.5 the ejection efficiency that would be obtained if the internal

energies were neglected. We find that only 8% of the envelope is unbound in both the

corotating and non-corotating cases, which is similar to the reported ejection efficiency in

Ohlmann et al. (2016a). This dramatic difference in ejection efficiency indicates that the

internal energy plays a major role in unbinding the envelope. Thus, should the envelope

expand enough to lose energy rapidly by radiation, further work on CEE may not be able

to ignore radiative cooling due to its possible large effects.

We can define a common envelope efficiency parameter using the energy formalism

as in de Kool (1990):

m1menv

λR1

= αCE(−
m1mc,2

2ai
+
mc,1mc,2

2af
), (3.6)

where m1 is the mass of the primary, R1 is the radius of the primary, λ is a numerical

factor of order unity that depends on the stellar structure, and ai and af are the initial

and final separations, respectively. Here αCE and λ are both uncertain, but Ivanova (2011)

specifically notes that for a red giant star of mass M ≈ 2 M⊙ the numerical factor λ is

well-approximated by λ = 1, which we adopt here. This allows us to obtain the values

αCE = 2.01 with corotation and αCE = 1.67 without.
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Figure 3.4: A density slice through the z = 0 plane at t = 15 days of the 95%
corotation simulation. The black boundary encloses the gas that is bound to
the binary, revealing an unbound tidal tail being ejected.
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Figure 3.5: The fraction of mass of the envelope that has acquired enough
energy to be unbound from the system. The large tidal tail thrown off in the
initial plunge can be seen from 0 to 15 days, with several subsequent tails.
A calculation of funb neglecting the internal energies is also shown (dashed
lines).
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Figure 3.6: (Left) Separation a between the stellar core and companion in
each case. (Right) The separations smoothed over time are shown on a loga-
rithmic scale for ease of reading. Here we can see that the simulation with-
out corotation results in a smaller separation by 0.4 R⊙.

3.4.2 Orbital Parameters

The separations between the stellar core and companion are shown in Fig. 3.6. For ease

of reading, we also show the separations on a logarithmic scale and smooth them over a

period of 15 days. That is, each separation ri is taken to be the average of all separations

within an interval of 15 days centered on ri.

After one orbit, both binaries have reduced their orbital separation to less than half the

initial separation, and they continue to spiral in at a slower rate. Although the simulation

with corotation initially falls to a smaller separation, it is eventually surpassed by its

counterpart. The final (smoothed) separations are 3.6 R⊙ with corotation and 3.2 R⊙ with

no corotation.

The eccentricity e can be found from the periapsis and apoapsis distances,

e =
rapo − rperi
rapo + rperi

, (3.7)
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Figure 3.7: The velocity of the center of mass of the system vCM over the
simulation period. The simulation including corotation feels a large kick
during the initial plunge but subsequent kicks quickly slow it to about 1 km
s−1 less than its non-corotating counterpart.

where rapo and rperi denote the distances of closest and furthest approach. Here rapo and

rperi are determined by interpolating the maxima and minima of the separation. The alert

reader will notice that this definition is meaningful in this situation because the poten-

tial is not Keplerian owing to the distribution and nonaxisymmetry of the unbound gas.

However, this method allows the determination of the eccentricity from only the orbital

separations. Both binaries circularize their orbits over time, seeing drops in eccentricity

from e ≈ 0.2 down to e = 0.1 by the end of the simulation period.

In addition, each binary receives a kick velocity owing to the ejection of gas from the

system, as shown in Fig. 3.7. Interestingly, although corotation results in a larger mass

ejection and a large initial spike in CM velocity during the plunge, it quickly drops below

the non-rotating case by about 1 km s−1.
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Table 3.1: Observed WD binaries with properties similar to our simulation
results.

Name Mprimary (M⊙) Mcompanion (M⊙) a (R⊙)
J0755+4800 0.409 0.89 3.07
J1151+5858 0.183 0.63 3.00
J1518+0658 0.224 0.60 2.84

3.4.3 Agreement with Observation

Our results can be linked to observations using surveys of binaries containing low-mass

white dwarfs. Gianninas et al. (2014) have found systems with primary masses in the

range of 0.18 to 0.41 M⊙, consistent with the mass of our core, with companion masses

≥0.6 M⊙ and separations of ∼3 R⊙ (Table 3.1). These systems are consistent with our

simulations, although the observed systems have ejected their envelopes, and it is not

clear from our simulations whether the envelopes will be completely ejected and what

the orbital parameters would be after ejection.

3.5 CONCLUSIONS

Our envelope ejection efficiencies are much larger than many of the results of previous

work. However, three-dimensional numerical computations of CEE have found a wide

variance in the ejection efficiency of the envelope. Early work (for example, de Kool,

1987; Livio & Soker, 1988; Terman et al., 1994; Sandquist et al., 1998, 2000; Terman et al.,

1995; Rasio & Livio, 1996) on 3-D numerical simulations of CEE found envelope ejection

efficiencies from about 10% to 80%. However, the resolutions of these early simulations

were poor. More recent work (Passy et al., 2012; Ricker & Taam, 2012; Nandez et al., 2015;

Ohlmann et al., 2016a) also find a large variance in the efficiencies (about 5% to 100%).

For instance, Passy et al. (2012) found that only 15% of the mass was unbound in their
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simulations. Ricker & Taam (2012) found that about 25% of the mass is unbound, but

the unbound mass is still rising at the end of their simulations (see their Fig. 9). Nandez

et al. (2015) found that between 50% and 100% of the envelope mass is ejected in their

simulations, depending on the inclusion of recombination energy. Ohlmann et al. (2016a)

found that about 8% of the envelope mass is ejected. Our results are on the higher side

and are similar to what Nandez et al. (2015) find. One difficulty in comparing these results

is that the initial conditions and simulation parameters are not similar in these different

groups. In this paper, we have adopted initial conditions and parameters similar to those

used by Ohlmann et al. (2016a) but our results are dramatically different. The difference

may be attributed to different simulation parameters such as the gravitational softening,

the parameterization of the dark matter particle that represents the core of the red giant

and the companion, or our inclusion of the recombination energy though the use of the

MESA EOS.

Indeed, it has been suggested that inclusion of recombination energy would result

in more efficient expulsion of the envelope (see the review by Ivanova, 2017). The first

SPH simulations that included a realistic equation of state, using tabulated MESA tables,

showed that the envelope is completely expelled during the radial plunge phase (Nan-

dez & Ivanova, 2016). We should note, however, that these same simulations without

recombination resulted in substantial expulsion of the envelope, making the problem sig-

nificantly less difficult. We also note that this point is controversial, as Soker and collab-

orators have claimed in a series of papers (Sabach et al., 2017; Soker, 2017; Soker et al.,

2018; Grichener et al., 2018) that the energy from recombination is easily transported

away either by radiation or convection. However, Ivanova (2018) reached the opposite

conclusion that the fraction of recombination energy transported away from the regions

in which recombination takes place is negligible. The importance of radiative cooling in
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this case highlights the need for a more careful accounting of radiation effects in future

calculations.

Our work here reinforces the results of Nandez et al. (2015), which suggests that the

entire envelope of the red giant might be ejected during the plunge phase of CEE, or at

least can be numerically simulated. Thus, the effects or relevance of the other phases of

CEE such as the self-regulated spiral-in phase is unclear. It may be the case that these

phases are important or relevant for different system parameters, though this requires

a more detailed exploration of parameter space. The simulations of Law-Smith et al.

(2020) find complete envelope ejection and the formation of a neutron star binary that

will merge within 1 Gyr, though they consider a massive red supergiant, which differs

markedly from the red giant we consider here.

Finally, we note here that other processes may also aid the expulsion of the envelope.

Much recent work has focused on energy and momentum injection from jets produced

by accretion onto the companion (Papish et al., 2015; Moreno Méndez et al., 2017; Soker,

2017; Shiber & Soker, 2018; Chamandy et al., 2018; López-Cámara et al., 2018). In addi-

tion, the transition from laminar flow to accretion flows around the companion star can be

complicated and also provide another mechanism by which orbital energy is dissipated

(MacLeod & Ramirez-Ruiz, 2015b,a; MacLeod et al., 2017a). Much of the work has fo-

cused on Bondi-Hoyle-Lyttleton type accretion around a point mass. However, a typical

accretor has a physical scale on the order of a solar radius, which gives it a nontrivial

cross-section in a red giant envelope. Typically, a 1 R⊙ accretor encounters 10% to 50% of

the envelope in one orbit. This hydrodynamic interaction may play a significant role in

the evolution of the common envelope and the binary orbit. We also mention the sugges-

tion that dust formation during CEE can drive winds to expel the envelope (Soker, 1994;

Glanz & Perets, 2018).
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3.6 FUTURE DIRECTIONS

3.6.1 Converting Simulation Results to Observables

The conversion from simulation results to observables is a relatively unexplored area,

leading to a disjoint between theorists and observers. As discussed in section 1.4, inter-

mediate luminosity optical transients (ILOTs) such as V838 Mon (Bond et al., 2003) and

M85 OT2007 (Kulkarni et al., 2007) are thought to be common envelope events, but it is

not clear whether their observed features align with numerical work on CEE. These tran-

sients are brighter than novae but dimmer than supernovae, and are very red. The light

curves of ILOTs typically last roughly ten times the orbital period of the initial binary

(MacLeod et al., 2017b), which is much shorter than the thermal or nuclear timescales

and is consistent with our current understanding of the timescale of CEE.

Vinaya Valsan is now performing data analysis on my simulation results with the goal

of obtaining light curves which could be compared with observations of ILOTs (Valsan

et al., in preparation). The simulation output can be used to compute the location and

temperature of the last scattering surface, assuming Thompson scattering. This 3-D map

of the surface can then be integrated to find the luminosity and light curve of a simulated

event, as shown in Fig. 3.8. The light curve exhibits an initial peak which lasts for the

first 40 days; this is consistent with observed CEE light curves which typically last for

several tens of days (Kulkarni et al., 2007; Kasliwal et al., 2011; Kasliwal, 2013). We also

find a subsequent rise in luminosity over several hundred days, which is not present in

optical observations of these events. However, we also see in Fig. 3.8 that the effective

temperature during this rise is ∼2000 K, meaning that the emission peaks in the infrared.

This is a potentially interesting prediction as there is a dearth of infrared data on these

events. Matsumoto & Metzger (2022) also predict a second plateau which is powered by
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Figure 3.8: (Left) Light curve from a simulated CEE event. A swift rise
and fall in luminosity occurs over the first 40 days, consistent with typical
ILOT timescales. After several hundred days, the luminosity rises to a value
rivaling that of the initial peak. (Right) Effective temperature of the last
scattering surface for a simulated event, assuming Thompson scattering.
At late times, the surface is at roughly 2000 K, indicating that the emission
peaks in the infrared.

hydrogen recombination, though we find that it emerges regardless of the inclusion of

recombination. We propose to expand on this work by predicting the light curves and

spectra of CEE from simulated events by implementing realistic opacities. Rather than

assuming Thompson scattering, MESA can be used to compute the opacities directly. It

is also important to obtain the spectra of ILOTs to differentiate from other transients such

as supernovae. This can be accomplished by use of the code TARDIS (Kerzendorf & Sim,

2014), which utilizes Monte Carlo methods to obtain synthetic spectra. Though TARDIS

was originally developed with supernovae ejecta in mind, it requires as input only infor-

mation which is already present in our simulation output. In addition to existing ILOT

observations, the Rubin Observatory will provide more data with which to compare our

results.
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3.6.2 Radiation Hydrodynamics

Numerical simulations by a number of previous groups (Passy et al., 2012, for exam-

ple) have found that only 5% to 25% of the envelope is ejected during CEE. This differs

from the large implied values of ejection efficiency from observational studies, which

suggests the existence of some additional energy not accounted for in the simulations.

This changed with the SPH simulation of Nandez et al. (2015), who found that includ-

ing hydrogen recombination energy leads to a complete ejection of the envelope and the

formation of a clean double white dwarf binary. Indeed, we found in Prust & Chang

(2019) that the inclusion of hydrogen recombination has a large effect on envelope ejec-

tion. However, as discussed above, it has been claimed that the energy from recombina-

tion is quickly lost to radiation (Sabach et al., 2017, for example). This suggests that the

incorporation of radiation physics may be an important next step in modeling CEE.

Recently, a module has been added to MANGA that solves the equations of time-

dependent radiative transfer using a reduced speed of light approximation (Chang et al.,

2020) following the algorithm of Jiang et al. (2014). Specific radiative intensities are

computed along discrete angles, and can be integrated to find energy and momentum

source terms. The radiation is coupled to the fluid by including these source terms in

the hydrodynamic equations. This differs from moment formalisms such as M1 and flux-

limited diffusion, which introduce closure relations to solve the radiative transfer equa-

tions (González et al., 2007).

This radiation module has been successfully applied to several test cases including

thermal equilibrium, a linear wave, the shadow test, and crossing beams of radiation

(Fig. 3.9). The shadow test and crossing beams are of particular importance since they

can produce qualitatively incorrect results based on the method of radiative transfer. For

example, the M1 method when applied to the crossing beams test merges two beams
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Figure 3.9: Radiation energy density in the crossing beam test of the
MANGA radiation module in Chang et al. (2020). The beams of radiation
pass through one another, in contrast to the merging beams seen in the M1
scheme. Periodic boundary conditions are used in the x and z directions,
with an absorbing boundary placed at y = 6.7 pc.
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of radiation at the point of intersection. In Fig. 3.9 we see the crossing beams test in

MANGA. Here two sources of radiation create beams which pass through one another

without interruption. Periodic boundary conditions are used in the x- and z-directions,

and absorbing boundaries in the y-direction.

I plan to resolve the issue of radiative transfer in CEE by implementing the MANGA

radiation module into my simulations. This will determine whether the energy from re-

combination is available to assist in the ejection of the envelope, or if it is quickly radiated

away. Because the radiation module has been completed and tested on a moving mesh,

its implementation into our CEE simulations should be straightforward; the only risk lies

in the computational cost. Because of the high opacity near the center of giant stars, the

inclusion of radiation limits the time-step to a small value.

Thus, I have implemented a radiation sub-cycling algorithm in which the radiation

is evolved for several time-steps for each single step of the fluid, as in the algorithm of

Kannan et al. (2019). Here the rungs (discussed in section 2.4.8) used for the fluid calcu-

lations are divorced from those used for radiation. For any rung higher than the maxi-

mum fluid rung, only the radiation is treated and the hydrodynamic and gravity solvers

can be skipped as well as (perhaps most importantly) the Voronoi mesh computations.

The reduction in computation time due to sub-cycling depends largely on the system in

question; for a static box of gas at thermal equilibrium with isotropic radiation we find a

reduction by a factor of ∼2.

The current radiation hydrodynamics module works well in optically thin to moder-

ately optically thick environments, but does not perform well in extremely optically thick

environments such as stellar centers. To that end, I also plan to develop an implicit ra-

diation solver following the method recently developed by Jiang (2021). This solver will

allow solutions in extremely optically thick environments with the standard (as opposed
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to a reduced) speed of light. It will also remove any time-step constraint related to the

speed of light, further reducing computation times. Development of such a module will

be useful for many radiation hydrodynamics problems including accretion disks, stellar

mergers, and tidal disruption events.
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CHAPTER 4

Moving Boundary Conditions

4.1 OVERVIEW

In fluid dynamics it is often desirable to set boundary conditions on a surface. For exam-

ple, in modeling the flow around an airfoil, the edges of the simulation box can be treated

as inflow or outflow boundaries and the airfoil itself as a reflective boundary, which al-

lows no matter to pass through it. Indeed, Wan & Zhong (2019) use a 2-D ALE scheme

with moving boundaries to model a pitching NACA 0012 airfoil. Immersed boundary

methods can also be useful, especially when the relative displacement of the boundaries

is large (Hedayat & Borazjani, 2019).

Such schemes are common in fields such as aerodynamics, but also have interesting

and useful applications in astrophysics. For example, Chen et al. (2020) use two separate

boundary conditions in their simulations of asymptotic-giant-branch (AGB) binaries us-

ing the adaptive mesh refinement code ASTROBEAR. On a cylindrical surface surround-

ing the binary, they set the fluid velocity to be supersonic in the radially outward direc-

tion, ensuring that no information propagates into the cylinder from the outside. They

also set an inner boundary condition beneath the photosphere of the AGB star requir-

ing that the radial fluid velocity oscillate in time, which approximates stellar pulsations

(Bowen, 1988). Additionally, outflow conditions can be useful in astrophysical problems

where accretion is present, such as in the growth of intermediate mass black holes in

the early universe (for example, Toyouchi et al., 2019). However, due to the difficulty of

implementing moving boundaries, such phenomena are typically modeled using static

boundary conditions even in cases where moving boundaries are a more natural fit to the

system in question.
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The implementation of boundary conditions in Eulerian grid-based solvers, which we

discuss in section 4.2, is straightforward. However, because Eulerian grid codes have a

static mesh, it is at best very difficult to have a boundary which moves with respect to the

mesh. This is compounded by difficulties in modeling a boundary of arbitrary shape. On

a structured mesh the surface area elements will always point along the preferred axes,

and this discretization can produce incorrect results for the surface area of a boundary

(Yarza et al., 2022). For example, on a Cartesian mesh the volume of a spherical boundary

will converge with increasing resolution to the correct value of 4πR3/3, but its surface

area will converge to a value greater than 4πR2. On the other hand, moving-mesh codes

are ideal for moving boundaries since the mesh-generating points can move with respect

to one another and there are no preferred directions. In ALE schemes, the velocities of

the mesh-generating points are typically taken to be equal or similar to the fluid velocity

to gain the advantages offered by a Lagrangian scheme. However, the mesh-generating

points can in principle move at any velocity relative to the fluid.

Springel (2010a) carried out a simple 2-D simulation using moving boundaries in

AREPO in which a curved boundary (thought of as a “spoon”) stirs a fluid. They gen-

erate their boundary using two sets of points on either side of and equidistant from the

desired boundary surface (see their Fig. 38), on which they set reflective boundary condi-

tions. They also require that both sets of points move together as a rigid body, and move

their spoon at a constant speed along a pre-determined circular path. We adopt a similar

strategy for our implementation of moving boundaries into MANGA, requiring the mo-

tion of the cells adjacent to the boundary to be identical to the motion of the boundary

itself. However, we also set the velocity of the boundary such that its motion is reactive

to external forces.

All CEE simulations to date have modeled the companion object as a dark matter par-
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ticle, which interacts only gravitationally with the gas. While this may be appropriate in

the case of a black hole companion, it is unclear how well it approximates a fluid body

with a well-defined boundary such as a neutron star, white dwarf, or small star. In par-

ticular, stars have hydrodynamically relevant surfaces. As material accretes onto a star or

just passes by it, it can create a shock, and this shock can backreact on the material. It is

impractical numerically to model the companion star as a hydrostatically supported ob-

ject. However, because of the great density contrast between the companion star and the

extended envelope of the primary, the surface of the companion can instead be treated as

a hard boundary. It is therefore desirable to model the companion as a moving, reflective

boundary which interacts both gravitationally and hydrodynamically with the primary.

To this end, we have implemented moving boundary conditions into MANGA in Prust

(2020).

Moving-mesh codes, in contrast to Eulerian grid codes, naturally lend themselves to

moving boundaries since the mesh-generating points can move with respect to one an-

other. Moreover, the external forces acting on the boundary can be found by integration

of the gas pressure and gravitational force over the surface and volume within the bound-

ary, respectively. The motion of the boundary can then be made to react to these forces.

We emphasize that studies of CEE to date have not accounted for hydrodynamic drag.

Previous studies of the drag experienced by a point particle companion have used a

“common envelope wind tunnel” approach, which examines only the gas in the imme-

diate vicinity of the companion (MacLeod & Ramirez-Ruiz, 2015a; MacLeod et al., 2017a;

De et al., 2020). These simulations are able to capture the local properties of the flow

near the companion with high resolution, and are ideal for exploring the parameter space

of quantities such as mass ratio, adiabatic index, upstream Mach number and accretion

coefficient, among others. In addition, these simulations are able to analyze both the dy-
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namical friction and the drag from the accretion of linear momentum via a sink region (De

et al., 2020). However, they are forced to make assumptions about the global evolution of

the envelope.

On the other hand, Chamandy et al. (2019) investigate the drag force on a point particle

companion in global CEE simulations by integrating the gravitational force of the entire

envelope on the companion. In particular, they find that the torque on the companion

is always positive in the non-inertial rest frame of the primary. That is, the binary never

gains angular momentum from the gas. They also conclude that an additional source of

drag is necessary in simulations of CEE in order for the results to match observations of

post-common envelope systems.

4.2 HYDRODYNAMICS OF A MOVING BOUNDARY

Let us consider a face on which we would like to set a boundary condition and boost our

state vectors and flux functions into the rest frame of the face. If we rotate the face such

that its normal lies along the x-direction, as is done in MANGA, then we can write the

flux normal to the face as

Fx = (ρvx, ρv
2
x + P, ρvxvy, ρvxvz, (ρe+ P )vx). (4.1)

Here we have expanded the momentum flux tensor ρvvT into its three components. The

flux of mass, momentum and energy that pass through the face are determined by the

values of the state vector UL, UR and the flux function Fx,L, Fx,R on either side of the

face. We see that under the transformation vx → −vx all terms in Fx change sign with

the exception of the x-momentum flux ρv2x + P . Conversely, when this transformation is

applied to the state vector U = (ρ, ρvx, ρvy, ρvz, ρe), the only term that changes sign is the
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x-momentum ρvx. Consider now the HLL approximate Riemann solver (Einfeldt, 1988),

which computes the flux across the face as

F̂HLL =
α+Fx,L + α−Fx,R − α+α−(UR − UL)

α+ + α−
, (4.2)

where α± = max[0,±λ±(UL),±λ±(UR)], the maximum and minimum eigenvalues of the

Jacobians of each state are λ± = vx ± cs, and cs is the sound speed. We now impose

the condition that the state vector and flux on either side are equal except for the fluid

velocities normal to the face, which are opposite: vx = vx,L = −vx,R. That is,

Fx,R(vx) = Fx,L(−vx) and UR(vx) = UL(−vx). (4.3)

This implies α+ = α− = cs + |vx| and simplifies the HLL flux to the form

F̂HLL =
Fx,L(vx) +Fx,L(−vx)− α+[UL(−vx)− UL(vx)]

2
. (4.4)

If we now plug in F and U in component form as in (4.1), we obtain

F̂HLL = (0, ρv2x + P + ρvx(cs + |vx|), 0, 0, 0). (4.5)

We see that all terms in F̂HLL vanish except for the term corresponding to the flux of

x-momentum – that is, the component of momentum normal to the face. Thus, the reflec-

tive boundary condition (4.3) prevents the transport of any quantity besides momentum

normal to the face for the HLL Riemann solver; mass, energy and entropy cannot be trans-

ported. This momentum flux corresponds to the contact pressure exerted on the face. The

derivation for the HLLC solver (Toro et al., 1994) proceeds in a similar fashion. The imple-

mentation of reflective boundary conditions requires modifications to the Riemann solver
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Figure 4.1: Illustration of a moving boundary on a Voronoi mesh. The
boundary cells (blue) are defined at the start of the simulation, and any cell
sharing a face with a boundary cell is designated as an edge cell (green).
Reflective boundary conditions are implemented at the faces between blue
and green cells. All other gas cells (white) function normally.

and – for schemes that are accurate to second order or higher in space – the gradient esti-

mation, both of which are discussed below. The alternate condition Fx,L(vx) = Fx,R(vx)

and Ux,L(vx) = Ux,R(vx) corresponds to an outflow boundary condition. However, we fo-

cus on reflective conditions in this paper for the reason that inflow or outflow conditions

in a moving-mesh code would necessitate the creation or destruction of mesh-generating

points, which are not yet implemented in MANGA. A separate publication (Chang et al.,

2020) details the development of inflow and outflow conditions for radiation, which is

applicable to fluids on a static mesh.

64



4.3 IMPLEMENTATION INTO MANGA

4.3.1 Initialization

In the initialization step at the beginning of the simulation, we declare some user-specified

region as the initial boundary. Cells with centers within this region are defined to be a part

of the boundary. We will refer to these cells as “boundary cells” and to all other cells as

“gas cells” (see Fig. 4.1). The boundary cells will comprise the boundary for the entirety

of the simulation, as boundary cells are never added or removed. We define the boundary

particles to have equal mass so that the density of the boundary is constant, provided that

the density of mesh-generating points is constant within the boundary. The total mass of

the boundary is an input parameter in our simulations.

To accurately produce the desired boundary shape, it is necessary to have a sufficiently

high density of mesh-generating points near the edges of the boundary. To this end, it is

sometimes beneficial to initialize the simulation with a larger resolution in the region

containing the boundary than in the rest of the simulation box. We demonstrate this

in section 4.5. In principle, a boundary of arbitrary shape can be constructed given a

sufficiently high density of mesh-generating points.

4.3.2 Edge Cells

We define all gas cells which share a face with a boundary cell as “edge cells.” These

cells function as normal gas cells for the most part; however, the motion of their mesh-

generating points always matches that of the boundary. The result of this is a layer of

gas cells which do not move with respect to the boundary, as in Springel (2010a). This is

important because the surface of the boundary is comprised of the shared faces between

the edge cells and boundary cells, which we refer to as “boundary faces.” The boundary
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faces are redrawn with every Voronoi computation, which happens several times during

each time-step. Therefore, if the mesh-generating points were allowed to flow past the

boundary, the surface of the boundary would deform, which is undesirable. Although

the edge cells are the only gas cells which have direct contact with the boundary, they

communicate its effects to the rest of the gas through their properties and motion.

4.3.3 Gradient Estimation and Linear Reconstruction

As discussed in section 2.4.3, the state vector on the face between the ith cell and its jth

neighbor is

Ũ ij = U i + (r̃ij − ci) ·∇U i. (4.6)

These gradients are calculated following the procedure of Steinberg et al. (2016).

We modify the gradient estimation algorithm for edge cells by modifying the proper-

ties of their neighboring boundary cells. Consider an edge cell with state vector U i, fluid

velocity vi and neighbors with states U j , where the normal vectors of the faces shared

with its neighbors are n̂ij . For each boundary cell neighbor, we first copy the state vector

of the edge cell into the boundary cell (U j = U i). We then modify U j such that the com-

ponent of its fluid velocity vj normal to the shared face is equal and opposite to vi. That

is,

vj = vi − 2(n̂ij · vi)n̂ij, (4.7)

which enforces the condition (4.3) for reflective boundary conditions. We also modify the

66



slope limiter in the presence of a boundary. MANGA uses a slope limiter

⟨∇U⟩DM
i = αDM

i ⟨∇U⟩S10i , (4.8)

where

αDM
i = min(1, ψ′

ij). (4.9)

Here,

ψ′
ij =





max[θ(U j − U i)/∆U ij, 1] |∆U ij| > 0,

1 otherwise.
(4.10)

For all simulations presented in this chapter, we use θ = 0.49. However, when perform-

ing a reconstruction on a face between an edge cell and a boundary cell we set θ = 0,

effectively turning off this additional slope limiter. We find that this marginally improves

the conservation properties of our simulations and the stability of the code.

4.3.4 Time-Stepping

In Chapter 2, we discuss the implementation of individual time-steps into MANGA.

When a moving boundary is present, we place the boundary and edge cells on the highest

rung (smallest time-step) of all cells present. Besides improving the stability of the code,

this mitigates the risk of gas cells penetrating into the boundary or other pathological be-

haviors. Because the number of edge cells is typically small relative to the total number

of cells, we find that this does not substantially slow down the simulation code.
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4.3.5 Riemann Solver

MANGA uses either an HLLC or HLL approximate Riemann solver to estimate the the

flux through each face of a cell at the half time-step. We have made several modifications

to the Riemann solver in the presence of a boundary.

1. A Riemann solution is not performed for boundary cells. Because the state vector

U of a boundary cell is determined by those of its neighbors, as described in sec-

tion 4.3.3, there is no need to compute the time rate of change of the boundary cell

charges.

2. For boundary faces, we modify the state vector U as well as the flux function F

inside of the boundary cell according to (4.3). The reconstruction gives the states on

either side of the boundary face in the edge cell and boundary cell U e, Ub as well as

the flux functions F e, Fb. We rotate these such that the normal direction to the face

lies along the x-direction. To enforce reflective boundary conditions, we ignore the

Ub and Fb given by the reconstruction and instead set them using condition (4.3).

Denoting the (rotated) x-velocity in the edge cell as vx,e, we require

Ub = U e(−vx,e) and Fb = F e(−vx,e). (4.11)

The new Ub and Fb along with U e and F e are then used by the Riemann solver to

estimate the flux F̂ across the face, and the result is used in equation (2.19) to evolve

the charges in time.

3. The contact pressure Pcon at each boundary face, computed by the Riemann solver
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as in (4.5), is given by

Pcon = P̄ − 1

2
n̂ · (vb − ve)ρ̄c̄s +





0 n̂ · ve ≤ 0

2ρ̄(n̂ · ve)
2 n̂ · ve > 0,

(4.12)

with the condition that the contact pressure must be non-negative. Here P , n̂, ρ,

cs, are the pressure, normal to the face in the direction of the boundary cell, density

and sound speed. The bar denotes an average of the values on each side of the face

which are obtained from the state vectors U e and Ub. For a face with area A, this

results in a hydrodynamic force

Fhy = n̂APcon (4.13)

at the face. We sum all such forces at boundary faces to find the total hydrodynamic

force on the boundary.

4.3.6 Gravity Solver

As discussed in section 2.4.6, MANGA uses a tree-based gravity solver originally imple-

mented in GASOLINE which uses multipole moments up to fourth order (hexadecapole)

to represent the mass distribution within cells at each level of the tree (Wadsley et al.,

2004b). After a gravity solution is performed, we intercept the gravitational accelerations

ai on all boundary particles and average them to find the gravitational acceleration of the

boundary agr. All gas cells have equal softening length, defined at the start of the simu-

lation. We require boundary cells to have this same softening length, which guarantees

that the self-gravity of the boundary does not impact its motion.
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4.3.7 Motion of Boundary

The motion of our boundaries is reactive to both hydrodynamic and gravitational forces.

The hydrodynamic force is calculated during the half time-step Riemann solution, and

is the sum of all forces on the boundary faces (4.13). For a boundary with mass mb, this

results in an acceleration

ahy =
1

mb

∑

j

n̂jAjPcon,j. (4.14)

We combine this with agr to get the total acceleration of the boundary

ab = agr + ahy. (4.15)

At the drift step, the boundary velocity kick

∆vb = ab∆t (4.16)

is used to update the velocities of all boundary and edge cells. Unlike normal gas cells,

the boundary and edge cells do not receive kicks in the direction of the fluid velocity nor

the velocity corrections described in Chang et al. (2017).

4.4 TEST CASES

4.4.1 Supersonic Wind

We begin by simulating a sphere moving through air at supersonic speed. The air is

initialized with atmospheric conditions ρ = 0.001225 g cm−3, T = 288 K, γ = 1.4 and

mean molecular weight µ = 29 g/mol. Our simulation box has dimensions (10, 6, 6) cm
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Figure 4.2: The supersonic wind test case at t = 15.5 µs (left) and t = 38.7 µs
(right). (Top) Density projections along the z-axis, showing the bow shock as
it strengthens and detaches from the sphere. (Bottom) Density slices through
the z = 0 plane with streamlines. Here, the stagnation point and vortices
are visible.

71



and our spherical boundary has a radius of 1 cm. We use an HLLC Riemann solver for

this test and do not include gravity. For all simulations presented in this chapter, we use

an adiabatic ideal gas equation of state.

We initialize the positions of our mesh-generating points using a pre-computed glass

distribution. Low spatial resolution is problematic for this test case as large mesh cells

cause the surface of the boundary to be rough and jagged, which can eventually lead to

unphysical values for the state vector U . In fact, we find in all test cases that the stability of

the code depends largely on the smoothness of the boundary surface. When the boundary

surface is well-resolved, we find that our code is robust against unphysical results, even

in extreme situations. For this test case, our simulation contains 1.5×106 gas and 1.7×104

boundary cells.

Our boundary moves through the air with Mach number M = 2, shown in Fig. 4.2.

The top left panel shows a density projection at t = 15.5 µs, where we can see the forma-

tion of a bow shock as it detaches from the sphere. The bottom left panel shows a density

slice through the z = 0 plane overplotted with streamlines, where we see turning of the

streamlines across the shock as well as a stagnation point behind the boundary. In the

panels on the right, we show the same plots at t = 38.7 µs. Here the shock has strength-

ened and we see a void in the path cleared by the sphere. In addition, the turbulence

behind the boundary has now evolved into vortices. Qualitatively, these are the results

that one would expect from this test case. This is encouraging, as the problem of an object

moving through a dense gas appears in many astrophysical settings.

Our implementation goes one step beyond Prust (2020) by altering the mesh motion

of cells in the vicinity of the boundary. Because the edge cells move with a velocity equal

to that of the boundary, vb, they often move with high velocity relative to the neighboring

gas cells. This can be problematic for two reasons:
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Figure 4.3: Velocities of the mesh-generating points in the supersonic wind
tunnel test using the original implementation (blue dots) as well as the new
gradient of velocities (orange dots). The black lines mark the locations of the
boundary radius at Rb = 1 cm and the outer radius of the shell at Rs = 1.5
cm. The cell velocity varies between the boundary velocity vb on the left
and the freestream velocity on the right. The distribution is smoother for
the new implementation, minimizing relative velocities between cells.
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1. The advantages offered by a Lagrangian scheme are forfeited.

2. Inconsistencies between the changes in cell volume assumed by the hydrodynamic

calculations and the actual volume changes can lead to errors in the flux computa-

tions, as described by Steinberg et al. (2016).

To combat this, mesh-generating points near the boundary move with a velocity that

grows from the boundary velocity vb for cells near the boundary to the fluid velocity

vi for cells far away. This effectively slows the mesh motion near the boundary, reducing

volume inconsistency errors. For a spherical boundary with radiusRb, this takes the form

v(r) =
r −Rb

Rs −Rb

vi +
Rs − r

Rs −Rb

vb (4.17)

within a spherical shell with outer radius Rs, where r is the distance between the centers

of the fluid cell and boundary. Note that this satisfies v(Rb) = vb and v(Rs) = vi. For

r > Rs, the velocity is determined as usual by the fluid velocity as well as the corrections

described in Chang et al. (2017).

We have repeated the supersonic wind tunnel test with the new gradient of velocities

and Rs = 1.5 cm. The velocities of the mesh-generating points along a radial slice at

t = 15.5 µs are shown in Fig. 4.3 (blue dots) along with the previous results (orange dots).

The boundary radius at Rb = 1 cm and the outer radius of the shell at Rs = 1.5 cm are

shown as solid black lines. In both cases, the cell velocity grows from vb to the freestream

velocity. We see that the new method results in a smoother distribution of cell velocities,

and thus a reduction in relative velocities between the cells.
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Figure 4.4: Gas density in our Sod shock tube test at t = 19.4, 42.6 and 85.2
µs. (Top) We initially see a shock front propagating to the right, followed by
a contact discontinuity, as well as an expanding rarefaction wave. (Middle)
The shock front then collides with the piston (shaded in red) and reflects
back to the left. (Bottom) The piston is pushed to the right, creating a trans-
mitted shock; the reflected shock passes the contact discontinuity.
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Figure 4.5: Wave diagram showing the paths of the wall and shock waves.
The regions 1 and 2, which denote the states on the right and left sides of
the wall before disruption by the transmitted or reflected shocks, are shown
as well as the pressures relevant to (4.18).

4.4.2 Sod Shock Tube with Piston

We now perform a Sod shock tube test using a simulation box of dimension (16, 1, 1) cm

centered at (0, 0, 0). On the left side of the box (x < 0), the gas has density ρ = 1 g cm−3

and temperature T = 2.5 K, while the right side (x ≥ 0) has ρ = 0.25 g cm−3 and T = 1.8

K. The gas is initially stationary (v = 0) with γ = 1.4. We use a periodic simulation box, so

the shock propagates through the tube in both directions. These conditions are similar to

those used by Chang et al. (2017) to validate MANGA. We choose our moving boundary

to be a piston of mass m = 0.1 g (1% of the mass of the gas in the tube) that extends

from x = 1 cm to x = 2 cm and spans the tube in the y- and z-directions. The piston is

free to move but is initially at rest. We use a rectangular mesh – an appropriate choice

because of our rectangular piston – with 160 cells in the x-direction and 10 cells in the y-

and z-directions, for a total of 16,000 cells.
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In Fig. 4.4, we show the density as a function of position at t = 19.4, 42.6 and 85.2

µs. We initially see the formation of the shock front, contact discontinuity, and rarefaction

wave. At t = 34.8 µs, the shock front impacts the piston (shaded in red) and reflects back

to the left. This impact also pushes the piston to the right, inducing a transmitted shock.

We validate the motion of the piston using an analytical result for the impact of a shock

wave on a movable wall. Following Meyer (1957), the motion of the wall is described by

duw
dt

=
pT − pL
pT0 − p1

(
duw
dt

)

t=ti

. (4.18)

Here uw is the wall velocity, p is the gas pressure and ti is the time of shock impact. The

subscripts L and T correspond to the leading and trailing edges of the wall (Fig. 4.5). The

regions 1 and 2 are the states on the right and left sides of the wall before disruption by the

transmitted or reflected shocks. Furthermore, pT0 is the pressure on the trailing edge just

after shock reflection. We use the isentropic relations as well as the Riemann invariants

P =
2

γ − 1
cs + v and Q =

2

γ − 1
cs − v (4.19)

to obtain the relations

pL = p1

(
Q1 + uw
Q1

)2γ/(γ−1)

(4.20)

and

pT = pT0

(
P2 − uw
P2

)2γ/(γ−1)

. (4.21)
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Figure 4.6: An analytical solution for the response of a movable wall to a
shock wave (blue) following Meyer (1957) compared with the results from
our Sod shock tube test case in MANGA (red). On the horizontal axis is the
time after shock impact ti.

We can express the initial wall acceleration pressure as

(
duw
dt

)

t=ti

= (pT0 − p1)
A

m
, (4.22)

where A is the cross-sectional area of the wall. Putting this all into (4.18), we arrive at

duw
dt

=
A

m

[
pT0

(
P2 − uw
P2

)2γ/(γ−1)

− p1

(
Q1 + uw
Q1

)2γ/(γ−1)
]
, (4.23)

which can be numerically integrated twice with the boundary conditions uw = 0 and

x = 1 cm at t = ti to find the path of the wall. We obtain the relevant pressures and

Riemann invariants for (4.23) from our simulation output. The results are shown in Fig.

4.6 alongside those obtained in MANGA, showing that the two are consistent.
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4.4.3 1-D Sedov-Taylor Blast Wave

In this test problem, we use a similar setup as in the Sod shock tube test. However, we

now initialize the gas with density ρ = 1 g cm−3 and temperature T = 1 K except for

the region |x| < 0.1 cm, where we set T = 1000 K. This results in a point explosion that

is described by the Sedov-Taylor solution. It is known that the Sedov-Taylor solution

is self-similar in 3-D, and we briefly show that this also holds in 1-D. Following Taylor

(1950), the appropriate similarity assumptions for an expanding blast wave of constant

total energy in 1-D are

p/p0 = R−1f1, ρ/ρ0 = ψ, and u = R−1/2ϕ1. (4.24)

Here R is the radius of the blast wave, u is the fluid velocity, p0 and ρ0 are the ambient

pressure and density and f1, ψ, and ϕ1 are functions only of similarity variable η = x/R.

In the absence of gravity, we can now cast the Euler equations (2.12), (2.13) and (2.14) into

the one-dimensional forms

∂u

∂t
+ u

∂u

∂x
= −p0

ρ

∂(R−1f1)

∂x
, (4.25)

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0, (4.26)

and

(
∂

∂t
+ u

∂

∂x
)(pρ−γ) = 0. (4.27)
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These equations are satisfied if dR
dt

= AR−1/2, where A is a constant. If we additionally

define a2 = γp0/ρ0, f = f1a
2/A2 and ϕ = ϕ1/A, then (4.25), (4.26) and (4.27) become

1

2
ϕ− ηϕ′ + ϕϕ′ =

1

γψ
(f − f ′), (4.28)

−ηψ′ + ϕψ′ + ϕ′ψ = 0, (4.29)

and

−γηfψ′ + fψ−γ + ηf ′ψ−γ + γfϕψ′ − f ′ϕψ−γ = 0, (4.30)

respectively. Here a prime denotes a derivative with respect to η. We see that (4.28), (4.29)

and (4.30) are independent ofR; they depend only on the similarity variable η and the gas

properties p0, ρ0, and γ. Therefore, this is a self-similar solution. Furthermore, because

(4.28), (4.29), and (4.30) are all first-order, only one boundary condition is needed for each

of f , ϕ, and ψ to find a solution. These are given by the Rankine-Hugoniot shock jump

conditions, which for a sufficiently strong shock take on the asymptotic forms

ψ =
γ + 1

γ − 1
, f =

2γ

γ + 1
, and ϕ =

2

γ + 1
(4.31)

at the shock front (η = 1).

We again choose a piston as our moving boundary, extending from x = 1 to x = 1.5 cm

with mass m = 0.5 g. We plot the density as a function of position in Fig. 4.7 at t = 6 µs,

showing only particles with |y| < 0.1 and |z| < 0.1 cm in order to reduce the particle noise.

The blast wave quickly forms and propagates outward until it impacts the piston, which

is shaded in red, pushing it to the right and creating a transmitted shock. A gap is visible
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Table 4.1: Piston initial position, piston mass m, number of cells resolving
the blast wave Nc and momentum error ϵp in our Sedov-Taylor blast wave
resolution test. We calculate ϵp when the left edge of the piston has moved
from its initial position by 10%.

x Position (cm) m (g) Nc ϵp
1 – 1.5 0.5 10 4.68× 10−10

2 – 3 1 20 1.27× 10−10

3 – 4.5 1.5 30 7.44× 10−11

between the left side of the piston and the mesh-generating points comprising the shock

front, due to the edge cell centers maintaining their original distance from the boundary.

To analyze the conservation properties of our simulation, we consider the fractional er-

ror in the conservation of momentum of the system ϵp, including the contributions from

both the gas and the piston. Here, we find ϵp = 4.68 × 10−10. However, we also see from

the spacing of the mesh-generating points that the spatial resolution of the blast wave is

poor, and thus conduct a resolution test to determine its effect on ϵp. Rather than chang-

ing the cell size, we exploit the self-similarity of the Sedov-Taylor solution. We perform

two additional runs in which the piston is initially placed further to the right so that the

number of cells Nc resolving the blast wave is greater. The mass and width of the piston

are taken to be proportional to R to preserve the self-similarity of the system. Specifically,

we use pistons of mass m = 1 and m = 1.5 g, extending from x = 2 to x = 3 and from

x = 3 to x = 4.5 cm, respectively. These are shown in Table 4.1 along with ϵp, which we

calculate when the left edge of the piston has moved from its initial position by 10%. We

find that higher resolution improves momentum conservation as ϵp ∝ N−1.7
c , which is the

same scaling as that for sound waves in Chang et al. (2020) and is close to the expected

second-order convergence.
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Figure 4.7: Gas density in the Sedov-Taylor blast wave test at t = 6 µs,
restricted to particles with |y| < 0.1 and |z| < 0.1 cm to reduce the particle
noise. The blast wave is colliding with a piston (shaded in red) and pushing
it to the right. The gap between the left side of the piston and the mesh-
generating points comprising the shock front is due to the edge cell centers
maintaining their original distance from the boundary.
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4.5 APPLICATION TO COMMON ENVELOPE EVOLUTION

We now discuss the development of appropriate initial conditions for CEE simulations in

MANGA. Aside from the treatment of the companion, our setup is largely the same as

that of Chapter 3, so we will summarize the generation of initial conditions. We first use

MESA to evolve a M = 2 M⊙ star with metallicity Z = 0.02 from the pre-main sequence

to the red giant phase, stopping when the star reaches 52 R⊙. This results in a helium core

of mass Mcore = 0.36 M⊙, which we model as a dark matter particle. We include a hot

atmosphere as in Chapter 3.

We again construct an appropriate particle mesh for the star from a pre-computed

glass distribution. We assume that the particles are of equal volume and rescale them to

the appropriate mass based on the computed M(r) from MESA. This differs from Chap-

ter 3, where we used equal-mass particles rescaled to the appropriate radial position to

produce the same M(r); a method better suited to SPH than to a moving mesh. Initially,

the number of particles in the atmosphere is 9.4×105. The star contains 1.8×105 particles,

yielding a total of 1.1× 106 particles within the simulation box.

We employ an ideal gas EOS with γ = 5/3 rather than the MESA EOS. Though the

MESA EOS allows us to account for recombination energy, we are concerned with the

dynamics of the early inspiral. As this occurs before the ejection of the envelope, we use

the computationally inexpensive ideal gas EOS.

We model the 0.99 M⊙ companion (half the mass of the red giant at this phase) as a

spherical moving boundary. The number of particles Nb comprising the boundary is a

parameter in our simulations, which we have set to Nb = 500 here. This results in mesh

cells with linear sizes in the range 0.2− 0.6 R⊙, depending on the radius of the boundary

Rb. To accurately capture the flow in the vicinity of the companion, and keeping in mind

the new velocity kicks described in section 4.4.1, we refine the mesh near the initial posi-
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Figure 4.8: Distribution of particles near the companion in an example case
with Rb = 1 R⊙, normalized by 1/r2 to correct for the volume of each radial
bin. The highest density of particles occurs next to the boundary, falling off
nearly monotonically with distance.

tion of the boundary. This refinement occurs within a shell of radius 2Rb centered on the

boundary, as follows:

1. The same glass distribution of particles used for the star and atmosphere is inserted

into this region.

2. The number density of mesh-generating points immediately outside of the bound-

ary at r = Rb is set equal to that inside the boundary nb.

3. At radius r = 2Rb, the number density of particles is equal to that of the atmosphere

natm.

4. Within the shell Rb < r < 2Rb, the number density is interpolated between nb

and natm, yielding n(r). This is similar to the mesh refinement performed on the

atmosphere, as in section 3.2, but with k = 1.
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5. The radial positions of the mesh-generating points are rescaled to produce the com-

puted n(r).

This results in approximately 2200 particles in the vicinity of the companion. Fig. 4.8

shows an example distribution of the number of particles near the companion with Rb =

1 R⊙, sorted into radial bins. We weight each bin by 1/r2 to correct for the volume of

each radial bin, so this histogram effectively shows the number density as a function of

radius. We see that the highest number density occurs next to the boundary, and falls off

almost monotonically with distance. Note that refinement need only be done during the

initialization; because the boundary cells and edge cells move identically, a boundary that

is highly resolved initially will remain so indefinitely. Additionally, we choose Rs = 2Rb

in (4.17) so that the volume in which the mesh refinement is performed coincides with

that of the modified velocity kicks.

The companion is placed in an initially circular Keplerian orbit at a radius of 60 R⊙. In

Prust & Chang (2019) the companion was placed at the surface of the red giant; here it is

placed farther out to facilitate the mesh refinement near the companion discussed above.

Prior to the onset of CEE, tidal forces induced by the binary interaction are expected to

spin up the rotation of the giant (Soker, 1996). We neglect to simulate this interaction,

instead opting to initialize the rotation of the giant so that it corotates with the binary

orbit following the scheme of MacLeod et al. (2018).

4.6 RESULTS

Here we perform a suite of simulations in which the size of the companion is varied across

the range of 1 to 3 R⊙. Specifically, we perform five simulations with Rb = 1, 1.5, 2, 2.5

and 3 R⊙ for 60 days. We show density projections in Fig. 4.9 for the case Rb = 2 R⊙,

though all runs are qualitatively similar. The companion quickly plunges into the enve-
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Figure 4.9: Projected density Σ along the z-axis in our simulation with Rb =
2 R⊙. The black + sign marks the red giant core and the green × marks the
center of the companion.
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Figure 4.10: Hydrodynamic drag force versus time for all 5 runs. The peaks
correspond to periastron passages. Unsurprisingly, larger boundaries expe-
rience larger hydrodynamic drag.

lope, followed by a slower inspiral. The initial tidal tail from the companion is visible,

as are the spiral shocks responsible for the transfer of energy and angular momentum to

the gas. After only 30 days, the orbital separation has decreased to a small fraction of its

initial value.

4.6.1 Drag Force

The principal difference between simulations of CEE involving a companion of finite size

and those which use a point particle companion is the presence of a hydrodynamic drag

force. In Fig. 4.10, we show the hydrodynamic drag experienced by the companion as

a function of time. The peaks correspond to periastron passages. Unsurprisingly, larger

companions experience higher drag; the hydrodynamic drag averaged over the simula-

tion period of 60 days for each run is shown in Fig. 4.11. Also shown is the drag as pre-

dicted using an estimate of the ram pressure on the companion, calculated as follows. As
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Figure 4.11: Hydrodynamic drag in each run averaged over the simulation
period of 60 days, as a function of boundary radius Rb. Good agreement is
shown with the theoretical prediction of (4.34).
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Figure 4.12: Gravitational drag (orange) and orbital separation (blue) for
the case Rb = 2 R⊙, in the primed coordinate system. Periods of thrust and
drag are seen to correspond to apastron and periastron, respectively.
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momentum into the binary, spinning it up.
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Figure 4.14: (Left) Density projection at t = 16.6 days, just before the first
periastron, zoomed in and centered on the companion for Rb = 2 R⊙. The
larger pressures on the trailing edge of the companion are evident, corre-
sponding to the negative hydrodynamic torques seen in Fig. 4.13. The green
arrow shows the direction of motion of the companion. (Right) The same
system at t = 18.6 days, just after periastron. Here, we see higher pressures
on the leading edge.
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the companion passes through the envelope with velocity vc, it collides with gas within a

cross-section with radius b. Due to the gravitational attraction of the companion, b can be

much larger than Rb. Thus, the accretion onto the companion can be modeled as Bondi-

Hoyle-Lyttleton accretion, which was originally formulated to describe accretion onto a

compact object moving through the interstellar medium (Hoyle & Lyttleton, 1939). Here

the cross-section b and velocity vc are related through the conservation of angular mo-

mentum: a particle of gas which is initially at an impact parameter b from the companion

will barely reach the surface Rb moving at the escape speed vesc. Then

bvc = Rbvesc =
√

2GMbRb, (4.32)

and the accretion rate is the mass flow rate through the cross-section

Ṁ = πb2ρvc. (4.33)

This leads to a hydrodynamic drag

Fhy = Ṁvc ≈ 2πGMbRb⟨ρ⟩, (4.34)

where ⟨ρ⟩ is the average density of the star. We find good agreement between this result

and our simulation results, as shown in Fig. 4.11.

The other source of drag comes from gravity. The envelope exerts a gravitational force

on the companion that is mostly directed inward toward the core. However, it also has

an azimuthal component which can exert either a thrust or a drag on the companion.

We consider a force with a negative azimuthal component to be a positive drag, and a

positive azimuthal component to be a thrust (note that the direction of the orbit is coun-
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terclockwise). As do Chamandy et al. (2019), we transform to a non-inertial, non-rotating

coordinate system in which the core is stationary. In this “primed” coordinate system,

the position and velocity of the companion relative to the core are r′ and v′, respectively.

Then the gravitational force on the companion transforms as

F ′
g = Fg −

Mb

Mcore

Fg,core. (4.35)

The gravitational drag is then computed as

Fg,drag = −ϕ̂ · F ′
g, (4.36)

where

ϕ̂ = ϕ̂′ =
r̂′ × v̂′

|r̂′ × v̂′|
× r̂′ (4.37)

is the azimuthal unit vector in the orbital plane. The gravitational drag for the case where

Rb = 2 R⊙ is shown in Fig. 4.12 along with the orbital separation. We see that the gravita-

tional drag changes sign in phase with the orbital period. After the ejection of large tidal

tails of gas from the primary, the gas is nonaxisymmetrical. Thus, the variations in the the

gravitational drag are largely due to the changing definition of θ̂. Chamandy et al. (2019)

find that the gravitational drag is always positive in the primed coordinates, likely due to

the fact that their orbits are less eccentric than ours. This is the result of differing initial

conditions: to facilitate mesh refinement near the companion, we initialize the companion

∼8 R⊙ from the surface of the primary, while in most work it is placed in a circular orbit at

the surface. We now argue that eccentric orbits can naturally result in gravitational thrust
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in this coordinate system. The angular momentum of the companion is L =Mbr
2ϕ̇, so

ϕ̈ = −2
L

Mb

ṙ

r3
+

L̇

Mbr2
. (4.38)

Then the tangential acceleration is

aϕ = rϕ̈ = −2
L

Mb

ṙ

r2
+

L̇

Mbr
. (4.39)

A thrust corresponds to aϕ > 0, and applying this condition to (4.39) yields

2L̇/L > ṙ/r. (4.40)

This can be satisfied by eccentric orbits, in which ṙ is large and negative during the ap-

proach to periastron. This is particularly true at late times, when much of the envelope

has been cleared from the orbit and L̇ ≈ 0.

4.6.2 Torque

We now consider the torques exerted on the binary consisting of the core and compan-

ion by the forces discussed above. Because fictitious forces cancel out when computing

torques, there is no need to boost into a non-inertial frame as in (4.35). Instead, we com-

pute the torque about the center of mass of the binary, and take a projection normal to

the orbital plane. Fig. 4.13 shows the torques for Rb = 2 R⊙. The gravitational torque is

similar to the drag shown in Fig. 4.12, multiplied by the orbital separation. Here a nega-

tive torque corresponds to an addition of angular momentum to the binary, showing that

gravity can indeed spin up the binary.

The hydrodynamic torque is much smaller, but makes notable contributions to the to-
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tal torque during the time intervals immediately following periastron passage. Further-

more, it is negative during the initial plunge. This seemingly odd result can be explained

by observing the gas in the vicinity of the companion. Fig. 4.14 shows density projections

before and after the first periastron passage. At early times – before periastron – there is a

tidal tail attached to the trailing edge of the companion, providing a small hydrodynamic

thrust. This buildup of material behind the companion is consistent with the negative

gravitational torques over much of this interval. Once periastron is reached, the compan-

ion collides with dense material surrounding the core, resulting in a large hydrodynamic

drag. After the first few orbits, much of the gas has been cleared from the orbit, and the

hydrodynamic torque decreases dramatically.

4.6.3 Orbital Parameters

In Fig. 4.15 we show the binary separation in all runs. We also show the separation

smoothed over time, which can be taken as a proxy for the semi-major axis a. This

smoothing is accomplished by taking rsmoothed(t) to be the average of all r(t) within an

interval of 15 days centered on t. Though Fig. 4.15 shows some differences in orbital

phase, the semi-major axes are roughly uniform across the five runs. The semi-major axis

is directly linked to the orbital energy through

E = −GMcMb

2a
, (4.41)

which means that the presence of a moving boundary does not significantly alter the

energy transfer between the binary and the gas.

However, marked differences exist between the orbital eccentricities, which are shown

in Fig. 4.16. Because the potential is not Keplerian, the eccentricity cannot be directly de-

termined from the state of the binary. Instead, the periastron and apastron distances rperi
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and rapo can be determined by interpolating the maxima and minima of the binary sep-

aration. The eccentricity e can then be found using only the the periastron and apastron

distances,

e =
rapo − rperi
rapo + rperi

. (4.42)

Though all binaries circularize their orbits over time, larger companions tend to have

smaller eccentricities by almost 0.1 in some cases. This is likely due to the higher drag

on these companions, which more effectively circularizes the orbits. Furthermore, the

eccentricity is related to both the semi-major axis and the angular momentum through

L =
McMb√
Mc +Mb

√
Ga(1− e2). (4.43)

Therefore, differences in eccentricity indicate that the transfer of angular momentum is

altered by the size of the companion. This is substantiated by the variation in hydrody-

namic drag seen in section 4.6.1.

4.7 CONCLUSIONS

We find that the hydrodynamic force on the companion peaks near periastron, and that it

is linear with respect to the companion radius. The hydrodynamic drag is also in agree-

ment with theoretical estimates of the ram pressure on the companion. Our results show

that the gravitational drag – or the azimuthal component of the gravitational force on

the companion – can provide either a thrust or a drag, depending on the orbital phase.

This result differs from that of Chamandy et al. (2019), who did not find any gravitational

thrust. We attribute this discrepancy to differences in orbital eccentricity and argue that

eccentric orbits necessarily lead to a thrust.
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Figure 4.15: (Left) Separation between the stellar core and companion in
each case. (Right) The separations smoothed over time, representing the
semi-major axis. Only modest differences are seen, indicating that the semi-
major axis – and thus the transfer of energy to the envelope – is independent
of companion size.
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Figure 4.16: Orbital eccentricity in each case, computed using (4.42). Before
t ≈ 20 days the eccentricity cannot be calculated as the companion is still
on its initial plunge. Larger companion sizes are shown to decrease the ec-
centricity, likely due to circularization of the orbit by larger hydrodynamic
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We also consider the torques exerted on the binary orbit, which are dominated by

gravitational torques. However, hydrodynamic torques can make a significant contribu-

tion, particularly following periastron passage. We also find the surprising result that the

hydrodynamic torques are negative prior to the first periastron passage. This result is

attributed to the buildup of material on the trailing edge of the companion – which likely

contributes to the negative gravitational torques observed over much of this interval.

Finally, we investigate the effects of companion size on CEE by observing the orbital

parameters. It is found that the semi-major axis of the orbit is largely unaffected, while

the eccentricity is lower for systems with a larger companion. The semi-major axis is

directly tied to the orbital energy, while the eccentricity is dependent on both the orbital

energy and angular momentum. This implies that the transfer of angular momentum

is dependent on the size of the boundary, corresponding to the hydrodynamic torques.

Furthermore, the differences in eccentricity indicate that the hydrodynamic forces arising

from the finite size of the companion have tangible effects on the dynamics of the spiral-

in phase for stellar-sized companions. We note that the eccentricity evolution in CEE

depends on the stellar density profile as well as the polytropic index (Szölgyén et al.,

2022).

Chamandy et al. (2019) note that an additional source of drag is needed in simulations

of CEE for the results to match observations. They also find that a quasi-spherical “bulge”

of gas forms around the companion of size rb ≈ 2.4 R⊙. This bulge experiences a ram

pressure, which effectively introduces a hydrodynamic drag on the companion, and could

account for this additional drag. We find hydrodynamic drag that is of the correct order

of magnitude to account for this drag (1033 dynes), though it is unclear how the drag will

evolve as the system proceeds through the self-regulating phase.

We close by stating that our methodology is suitable only for treating companions
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with sizes of order ∼0.1 R⊙ or greater. Resolving a smaller companion would require a

finer mesh, resulting in a range of time-scales that is larger than numerically practical.

Therefore, we do not consider white dwarf or neutron star companions. We also have not

accounted for stripping of the outer layers of the companion.

4.8 FUTURE DIRECTIONS: WHITE DWARF-NEUTRON STAR MERGERS

Another astrophysical problems to which moving boundaries are applicable is the merger

of white dwarfs and neutron stars. Physically, white dwarf-neutron star (WDNS) mergers

are qualitatively similar to CEE as the neutron star is much smaller in size than the white

dwarf. However, the stellar structure and EOS are quite different than those of a red giant.

Mergers of compact binaries emit large amounts of energy in gravitational waves

(GWs) which are detectable by interferometers such as LIGO (Abbott et al., 2008) and

VIRGO (Acernese et al., 2006). So far, only mergers involving black holes (BH) and neu-

tron stars (NS) have been detected (Duez, 2010; Hinder, 2010), but we also expect mergers

between white dwarfs and neutron stars to occur. In fact, population synthesis studies

predict that 2.2 × 106 WDNS binaries exist in our galaxy, and that the space-based Laser

Interferometer Space Antenna (LISA) (Heinzel et al., 2006) will be able to detect up to 40

pre-merger binaries within a year of integration (Nelemans et al., 2001; Cooray, 2004).

A catalog of known WDNS binaries and their properties is compiled in (Paschalidis

et al., 2009). Nine of the twenty binaries catalogued have a total mass greater than 1.97 M⊙

which is a lower bound on the Tolman-Oppenheimer-Volkoff (TOV) limit on the maxi-

mum mass for a cold, degenerate gas (Demorest et al., 2010). Thus, the ultimate fate of a

WDNS merger remnant is unclear.

Previous work (Paschalidis et al., 2009) has investigated the products of interactions

in WDNS binaries in which the WD fills its Roche lobe. The results fall into one of two
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categories: stable mass transfer (SMT) onto the NS or unstable mass transfer (UMT) lead-

ing to tidal disruption of the WD. In the case of UMT, further interactions such as inspiral

and merger occur on the dynamical timescale, unaffected by GW emission, making them

a target for 3-D hydrodynamical simulations. UMT may result in the collapse of the NS

to form a BH, or the WDNS may experience a merger which forms a Thorne-Zytkow-like

object (TZlO) (Thorne & Zytkow, 1977) comprised of the NS at the center of the WD.

The ultimate fate of the binary cannot be determined without full GRHD simulations

since in Newtonian gravity we cannot ascertain whether the neutron star will promptly

collapse to a black hole, undergo a delayed collapse, or reach an equilibrium state sup-

ported against collapse by rotation and degeneracy pressure. Fully general relativistic

simulations have been performed on such systems, though they are computationally pro-

hibitive due to the range in time and length scales. For this reason, the WD has been

modelled as a “pseudo-white dwarf” (pWD) which uses a six-parameter piecewise poly-

tropic EOS which mimics realistic NS EOSs while, at the same time, scales down the size

of the WD (Paschalidis et al., 2011).

An alternative approach is to model the merger using Newtonian gravity and to pe-

riodically investigate the immediate vicinity of the NS using GRHD. This allows for the

use of an accurate model of the WD structure as well as the investigation of the fate of the

NS. Such is the goal of this project: we plan to use 3-D hydrodynamic simulations per-

formed in MANGA to model the global evolution of the merger. At certain time-steps,

information about the immiediate vicinity of the NS from the MANGA output will be

fed into the Illinois AMR GRHD code described in Etienne et al. (2009) and Etienne et al.

(2010) to determine whether the NS undergoes a prompt collapse. This project also offers

an opportunity to utilize the moving boundaries module, as the NS can be modeled as a

moving boundary using precisely the same implementation as in our CEE simulations as
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described in section 4.5.
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CHAPTER 5

Magnetohydrodynamics

5.1 IDEAL MHD

Magnetic fields are an important factor in many astrophysical processes. A prime exam-

ple is the magnetorotational instability in accretion disks, which mediates the transport

of angular momentum (Balbus & Hawley, 1998). They are also responsible for regulat-

ing star formation and launching relativistic outflows, and may have a major influence in

core-collapse supernovae (Pakmor et al., 2011).

It is in principle simple to include the magnetic field in the hydrodynamic equations,

as it obeys its own conservation law. However, there are several subtleties which must be

addressed. Consider first the equation for the time evolution of the magnetic field

∂B

∂t
= ∇× (v ×B) + η∇2B. (5.1)

Here η = (4πµσ)−1 is known as the magnetic diffusivity, where µ and σ are the magnetic

permeability and electrical conductivity of the fluid (Cowling & Lindsay, 1957). As it

stands, this cannot be written in the compact form ∂U
∂t

+∇ ·F = S as in (2.15). However,

let us expand the triple product on the right-hand side to obtain

∂B

∂t
= (B ·∇)v − (v ·∇)B + v(∇ ·B)−B(∇ · v) +∇ · (η∇B). (5.2)

Recognizing that ∇ · B = 0, we see that the first three terms on the right-hand side can
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be expressed as

(B ·∇)v − (v ·∇)B −B(∇ · v) = ∇ · (vBT −BvT ). (5.3)

Finally, (5.1) can be expressed as

∂B

∂t
= ∇ · (vBT −BvT ) +∇ · (η∇B), (5.4)

or

∂B

∂t
+∇ · (BvT − vBT + η∇B) = 0. (5.5)

This is now in the form of (2.15), with the caveat that there is a gradient within the flux

function. Fortunately, this issue can be avoided by taking a more conceptual view of (5.1).

The two terms on the right-hand side represent two different physical processes. The

first term, ∇ × (v × B), represents the transport of the field along the flow. In fact, the

equation ∂ξ/∂t = ∇× (v×ξ), which has the same form as (5.1) in the case of vanishing η,

represents the transport of vorticity along the flow in inviscid fluid dynamics (Chorin &

Marsden, 1993). Just as vortex lines are transported by the flow in inviscid fluids, so too

are the magnetic field lines transported by the flow when magnetic diffusivity η vanishes.

On the other hand, the term η∇2B represents the diffusion of field lines through the fluid.

Indeed, ∂B/∂t = η∇2B has the form of a diffusion equation.

The relative strength of these two terms can be quantified by the magnetic Reynolds

number. The standard Reynolds number is the ratio of the importance of inertial forces

to viscous forces. Similarly, the magnetic Reynolds number is the ratio of inertial forces
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to diffusive ones:

ReM =
LV

η
. (5.6)

Here L and V are the characteristic length and velocity of the system; for the Sun, L ≈ 108

cm and V ≈ 105 cm/s. The diffusivity η varies from 102 cm2/s in the core of the Sun to

108 cm2/s in the photosphere (Cowling & Lindsay, 1957), though turbulence may raise

the effective value of η in the photosphere to 1012 cm2/s (Leighton, 1964). Thus, ReM

ranges from 101 to 1011; these values are typical of astrophysical objects. Because ReM far

exceeds unity, one can safely ignore diffusion of the field and set η = 0 just as one ignores

viscosity for Re≫ 1. This is known as the “frozen-in approximation” and forms the basis

of ideal MHD. The field is said to be “frozen into” the fluid because electrical resistance is

negligible, and thus any relative motion of the fluid normal to the field lines will induce

a force sufficient to negate the motion.

The magnetic field can be included in the Euler equations by adding (5.5) as a fourth

equation and by modifying the momentum and energy equations to account for the mag-

netic field:

U = (ρ, ρv, ρe,B), (5.7)

F = (ρv, ρvvT + P I+BBT , ρev + Pv −B(v ·B),BvT − vBT ). (5.8)

The source term S = (0,−ρ∇Φ,−ρv · ∇Φ, 0) is unmodified. As in section 2.4.5, we de-

compose the flux into a static term and a term due to the mesh motion. For the magnetic

field evolution, this decomposition looks like

Fm = (BvT − vBT )−BwT = [B(v −w)T − (v −w)BT ]−wBT . (5.9)
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The term in brackets is the “static” term which is fed into the HLLD Riemann solver. The

term on the far right −wBT requires some extra care. Rather than than adding it onto the

face flux computed from the Riemann solver, it is instead computed via an upwind solver

−wBT =





−vface(BR · n̂) vface · n̂ > 0,

−vface(BL · n̂) vface · n̂ < 0,

(5.10)

where n̂ is the outward face normal unit vector. This preserves the upwind quality of

the scheme by ensuring that the face flux of the magnetic field due to the mesh motion

is determined only by the upwind magnetic field. That is, the field within the cell into

which the face is moving. Because of this upwind solver, the half-time-step values of the

magnetic field must be computed by the use of a Riemann solver rather than predicted

from the gradients. Thus, our MHD implementation is restricted to the van Leer time

integration described in section 2.4.9.

Computationally, implementations of the MHD equations are plagued by a ubiqui-

tous problem: the divergence of the magnetic field. Though the equations formally sat-

isfy Gauss’s law for magnetism ∇ · B = 0, the divergence can become nonzero due to

numerical errors. Once they appear, these magnetic monopoles tend to grow quickly and

can become significant. There are several standard approaches to tackle this issue:

1. The issue is simply ignored. This approach is valid for only a small sub-set of ideal-

ized problems.

2. Errors in ∇ ·B are advected at the fastest possible speed to the domain boundaries.

This is the approach taken by the Dedner divergence cleaning and Powell eight-

wave methods, both of which are discussed below.

3. A damping source term is introduced to exponentially damp magnetic monopoles.
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This is also used by the Dedner scheme.

4. The magnetic field is determined from the electric field E using Faraday’s induction

equation

∂B/∂t = −∇×E = ∇× (v ×B). (5.11)

Here E is determined at the corners of cells, and its circulation is computed about

a cell interface to compute the magnetic flux through the face (Mocz et al., 2014).

Known as the constrained transport (CT) method, this guarantees ∇ · B = 0 to

within machine precision and is commonly used in Eulerian grid codes (Evans &

Hawley, 1988). However, CT is notoriously difficult to implement on unstructured,

moving grids due to the challenges associated with performing an accurate map-

ping from E to B. Mocz et al. (2016) achieved this via a clever exploitation of the

Delaunay triangulation, which in AREPO is computed prior to the generation of the

Voronoi mesh. However, at the time of writing the method is not compatible with

individual time-stepping.

5.2 DIVERGENCE CLEANING

We implement the generalized Lagrange multiplier (GLM) method proposed by Dedner

et al. (2002) to ensure that ∇ · B ≈ 0, in which a variable Ψ related to the divergence

of the magnetic field is introduced. The cleaning is then accomplished via a 2-pronged

approach: we include a source term in (2.15) to damp this variable exponentially, and add

a diffusion term for Ψ to the flux function (5.8), further preventing a non-zero divergence

from accumulating in any one location.

Both prongs depend on the physical constant ch, which was introduced by Dedner
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et al. (2002) and acts as the advection speed of magnetic divergence. There are no phys-

ical constraints on the value chosen for ch, but it must be chosen globally and must be

large enough to prevent an unphysical build-up of divergence. These requirements can

be broadly satisfied by choosing ch to be the largest signal speed present within the sim-

ulation at a given time (Pakmor et al., 2011). With the inclusion of MHD, the signal speed

is defined as vsig = cs + vA − dv · dR/dR, where dv and dR are the differences in fluid

velocity and position of two neighboring cells. At each time-step in our simulations, we

determine the maximum signal speed among all cells and assign this to ch = max(vsig,i).

Because ch is an advection speed, its introduction necessitates an additional constraint

on ∆t. Similar to the Courant time-step, we require that the time-step of cell i satisfy

∆ti < ηCFLreff/ch where reff = ( 3
4π
V )1/3 is the cell effective radius. This results in a MHD

algorithm which is stable but somewhat slow, as a single cell with high signal speed lim-

its the time-step for all cells. Effectively, this means that our multistepping scheme (see

section 2.4.8) is partially disabled.

5.2.1 Damping Term

To damp out nonzero values of Ψ, we include a source term which depends on both Ψ

and its derivative:

∆Ψn+1 = −(1− exp f)(Ψn+1/2 +
1

2
∆Ψn+1/2), (5.12)

where n+ 1/2 denotes values at the half-timestep. Here f is defined as

f = −∆tσch/reff , (5.13)
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as in Tricco & Price (2012), where σ = 0.1 is the damping parameter. We find that this

choice of prefactor allows for stable integrations. This differs from Dedner et al. (2002)

who used a prefactor proportional to ∆tc2h/c
2
p where a typical choice for cp is

√
0.18ch.

5.2.2 Diffusion Term

At each cell interface, we define

ch,face =
1

2
(ch,L + ch,R), (5.14)

B∗
⊥ =

1

2
(B⊥,R +B⊥,L)−

1

2ch,face
(ΨR −ΨL), (5.15)

Ψ∗ =
1

2
(ΨR +ΨL)−

1

2
ch,face(B⊥,R +B⊥,L). (5.16)

Here B⊥ is the component of the field normal to the face. We use the HLLD Riemann

solver implemented in Athena. However, for the B⊥ and Ψ fluxes we instead use

F̂ (B⊥) = Ψ∗, (5.17)

F̂ (Ψ) = B∗
⊥c

2
h,face. (5.18)

5.3 POWELL EIGHT-WAVE SCHEME

We have also implemented a Powell eight-wave scheme based on Powell et al. (1999)

and adapted for a moving mesh in Pakmor & Springel (2013). This scheme differs from

divergence cleaning in that only a diffusion term is used. This diffusion is implemented
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Table 5.1: Error in each of our Alfvén wave simulations, computed by tak-
ing the L1 norm of the differences between our results and the analytical
solution. The solutions converge as a power law with exponent k. The error
increases with the grid noise, though k ≈ 1 in every case.

Nx ϵlow (×1010) ϵmed (×1010) ϵhigh (×1010)
8 6.88 7.32 7.84

16 3.44 3.74 4.29
22 2.73 2.96 3.46
32 1.58 1.82 2.15
80 0.603 0.712 0.898

160 0.333 0.366 0.450
k 1.03 1.01 0.965

by including source terms in (2.15) proportional to the divergence of the field:

SP = −(∇ ·B)




0

B

(v ·B)

v



. (5.19)

Though this scheme is simpler and less accurate, it offers a substantial increase in

performance. This is due to the fact that the Powell eight-wave scheme has no need for

the maximum signal speed ch and does not limit the time-step globally. Rather, though

the time-step is still limited by the Alfvén speed, it is determined locally.

5.4 TEST CASES

5.4.1 Circularly-Polarized Alfvén Wave

The MHD equations admit several types of waves: longitudinal sound waves which

travel parallel to the field lines, longitudinal magnetosonic waves which travel normal
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Figure 5.1: The transverse velocity vz in the Alfvén wave test with grid noise
f = fmed after one Alfvén crossing time. The global magnetic field and di-
rection of propagation point to the right. The wave is damped proportional
to the resolution Nx as a result of the divergence cleaning scheme.

to the field lines, and transverse Alfvén waves which travel parallel to the field lines. The

Alfvén wave is an essential test for the interaction between magnetic fields and matter in

MHD codes. These waves can be understood by examining the evolution equation (5.1)

with vanishing η:

∂B

∂t
= ∇× (v ×B). (5.20)

We begin with a fluid at rest in a uniform field B0 perturbed by an Alfvén wave with

velocity v1 and field B1. Then we can expand the above equation in small quantities:

∂B0

∂t
+
∂B1

∂t
= ∇× (v1 ×B0) +∇× (v1 ×B1). (5.21)
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Because the global field is constant, ∂B0/∂t = 0. We can also set v1 ×B1 = 0 since both

are small, leaving us with

∂B1

∂t
= ∇× (v1 ×B0). (5.22)

For Alfvén waves, the wave vector k is parallel to B0 and normal to v1. For a transverse

plane wave v1(r, t) ∝ exp(ik ·r−iωt) we can simplify the triple product on the right-hand

side to (B0 ·∇)v1. Then

B1 =

∫
(B0 ·∇)v1dt, (5.23)

and we carry out the integration to yield

B1 = − 1

ω
(B0 · k)v1(r, t) = −k

ω
B0v1(r, t). (5.24)

Furthermore, just as sound waves travel at speed cs =
√
P/ρ, we expect MHD waves to

travel at a characteristic speed determined by the magnetic pressure Pmag = B2
0/4π. This

is known as the Alfvén speed

vA =
B0√
4πρ

. (5.25)

Then ω/k = vA and

B1 = −B0

vA
v1(r, t) (5.26)

is the magnetic field of an Alfvén wave for a given velocity perturbation v1(r, t).

To simulate an Alfvén wave in MANGA we initialize a tube of gas with length Lx =
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2R⊙, density ρ = 10−7 g/cm3, sound speed cs = 3.87 × 109 cm/s, and global magnetic

field of strength B0 =
√
4π × 105 G in the x-direction. Perpendicular to this, we also set

up transverse velocities and their corresponding magnetic fields according to (5.26)

v1 = (0, acs sin[kxx], acs cos[kxx]), (5.27)

B = B0 −
B0

vA
v1 = (B0,−B0v1,y/vA,−B0v1,z/vA), (5.28)

where a = 0.01 is an amplitude typically chosen to be much smaller than unity. This wave

is circularly polarized, as the transverse components are out of phase. We use an ideal gas

equation of state, though the density is uniform.

We use a pseudo-Cartesian mesh, but include some noise in the initial particle posi-

tions so that the cells are not exactly cubical. A cubical mesh is undesirable when using a

Voronoi tessellation because it leads to degenerate faces and edges. Along the transverse

directions we useNy = Nz = 8 cells, while the number of cells along the direction of prop-

agation Nx is an adjustable parameter. The transverse dimensions of the tube are set such

that the cells have the same shape regardless of the value of Nx. That is, the condition

Lx/Nx = Ly/Ny = Lz/Nz is preserved. We also vary the noise used in our initial condi-

tions. When computing the initial positions of the mesh-generating points, we include a

factor proportional to f(r⃗rand − 0.5) where r⃗rand is a random vector of real values between

0 and 1. For the factor f we have chosen three values to compare:

flow = 0.001, fmed = 0.025, fhigh = 0.1. (5.29)

The transverse fluid velocities after one Alfvén crossing time are shown in Fig. 5.1.

We find that the divergence cleaning scheme leads to damping in the Alfvén wave, as

in Mocz et al. (2016). However, it is clear from Fig. 5.1 that this damping is resolution-
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dependent. The velocity field of an Alfvén wave has a simple analytical solution obtained

by propagating our initial field along B0 at speed vA. For vz the solution is

vz,an = acs cos[kx(x− vAt)]. (5.30)

We compute the numerical error using the L1 norm of the deviation of the fluid velocity

in our simulation output from the analytical solution:

ϵ =
1

N

N∑

i=1

(vz,i − vz,an). (5.31)

The errors are shown in Table 5.1, in which we see that the data converges to the analytical

solution and that the error increases with the grid noise. We also fit the error to a power

law of the form ϵ ∝ Nk
x and find that k ≈ 1 regardless of noise.

5.4.2 Sedov-Taylor Blast Wave

In contrast to the relatively well-behaved Alfvén wave, which deals only with small per-

turbations, it is important to use test cases involving shocks and strong gradients. These

are present in many astrophysical systems, including the common envelope phase we in-

vestigate in section 5.5. To this end, we now simulate a Sedov-Taylor blast wave, which

is one of the cases used to initially validate MANGA in Chang et al. (2017).

We start with a uniform medium at rest with ρ = 8×10−5 g/cm3 and cs,low = 106 cm/s

and initialize a small central region with cs,high = 105cs,low within radius Rc = 9× 1010 cm.

We also set up a global magnetic field with strength 4.64 × 105 G along the y-z direction.

Then the magnetic pressure exceeds the gas pressure by a factor Pmag/Pgas = 10. The

simulation box is cubic with side length L = 2 × 1012 cm. Unlike the Alfvén wave, we

use a pre-computed glass distribution for the initial positions of the N = 2.6× 105 mesh-
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Figure 5.2: The magnetic field strength in a slice through the x = 0 plane at
t = 5.38 hr in the Sedov-Taylor blast wave test. The global field is diagonal
along the y-z direction with magnitude 4.64 × 105 G. We see that the blast
wave is elongated along the plane normal to the global field as a result of
the increase in magnetic pressure.
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Figure 5.3: A snapshot of the magnetic field magnitude in the Orszag-Tang
vortex test. The pattern of interacting shocks shows broad agreement with
similar tests performed in AREPO.

generating points.

Fig. 5.2 shows the magnetic field strength on the x = 0 plane at t = 5.38 hr. We see an

asymmetry in the shock: the expansion is markedly larger along the plane perpendicular

to the global magnetic field. This expansion is driven by the large magnetic pressure

within the bulge. These results show that our module is able to handle strong gradients,

and agrees with similar tests performed in several previous studies (for example, Stone

et al., 2008; Pakmor et al., 2011).

5.4.3 Orszag-Tang Vortex

As with the Alfvén wave, the Orszag-Tang vortex (Orszag & Tang, 1979) is an important

test for the interaction between the magnetic field and matter as it initiates supersonic

turbulence which decays over time. It is also an excellent stability test due to the shock
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interactions as well as the strong gradients present. We initialize B and v as

B = (−B0 sin[kxy], B0 sin[kxx], 0), (5.32)

v = (−cs sin[kxy], cs sin[kxx], 0), (5.33)

with uniform density ρ = 10−7 g/cm3 and cs = 3.87 × 109 cm/s. We use B0 =
√
ρc2s as a

characteristic magnetic field for the problem. Because this is an inherently 2-D problem,

we use a thin simulation box of dimensions (2, 2, 0.02) R⊙, with all fluid properties uni-

form along the z-direction. We use the same glass distribution as for the blast wave with

N = 74000 particles. The results are shown in Fig. 5.3 and demonstrate agreement with

similar results from AREPO (for example, Pakmor et al., 2011; Mocz et al., 2016).

5.5 APPLICATION TO COMMON ENVELOPE EVOLUTION

5.5.1 Simulation Setup

We generate the initial conditions in the same manner as in section 4.5, with several no-

table exceptions. The star contains 2.7 × 105 particles, while the atmosphere contains

1.5 × 106. Though this simulation does not use a moving boundary, we use the same

refinement algorithm as in section 4.5 with Rb = 2 R⊙, as the immediate vicinity of the

companion is thought to be important for the generation of magnetic fields. We set the

number of particles within a distance of 2 R⊙ of the companion to be 5× 103, resulting in

2.2× 104 particles within 2 – 4 R⊙ of the companion.

We also place the companion at the surface of the red giant, meaning that the refine-

ment involves cells which contain stellar material as well as those which only contain

vacuum. After the refinement, the new cells are filled with stellar material appropriately

by interpolating the stellar profile (after core excision, as described in section 3.1).

115



We initialize the magnetic field within the giant using the field proposed by Lyutikov

(2010), excluding their equatorial toroidal field. This is similar to a dipole field but avoids

the problematic large (or infinite) fields at the center of the star. Outside of the star, the

field is equivalent to a dipole field, but inside it is given by

B =
B0

2R2
∗
[3ϖzêϖ + (5R2

∗ − 6ϖ2 − 3z2)êz]. (5.34)

Note this ensures that at the stellar surface r = R∗ the field is both continuous and

divergence-free. Here B0 is the field strength at the stellar surface and ϖ is the cylin-

drical radius. We use B0 =
√
4π × 10−6 G, which is similar to the field strength in two of

the runs performed by Ohlmann et al. (2016b).

We also alter the mesh motion in the vicinity of the companion similar to the alter-

ations near a moving boundary described in section 4.4.1. The mesh-generating points

near the companion move with a velocity that grows from the companion velocity vcomp

for cells near the companion to the fluid velocity vi for cells far away. This ensures that

the immediate vicinity of the companion is fairly well-resolved. Within a spherical shell

with radius Rsh, this takes the form

v(r) =
|r − rcomp|

Rsh

vi +
Rsh − |r − rcomp|

Rsh

vcomp. (5.35)

Note that this satisfies v(rcomp) = vcomp. For |r − rcomp| > Rs, the velocity is determined

as usual by the fluid velocity as well as the corrections described in Chang et al. (2017).

5.5.2 Static Star Relaxation

We first relax a single red giant star without the presence of a companion. We perform

this relaxation for both the Lyutikov field described above and a dipole field for the pur-
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Figure 5.4: Energy in the total magnetic field and in each of its components
in a static red giant relaxation using divergence cleaning. The initial field
configurations are a dipole field (left) and the field proposed by Lyutikov
(2010) (right). For the dipole field, a rapid and immediate decrease is seen
in the energy due to the divergent field at the stellar center. For the Lyu-
tikov field, the energy shows only small variations with the exception of
the toroidal component.

Figure 5.5: Energy in the total magnetic field and in each of its components
in a static red giant relaxation using the Powell eight-wave scheme. The
initial field configuration is that proposed by Lyutikov (2010). We see a
gradual yet concerning rise in the field energy over time.
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pose of comparison. For both fields, we set B0 =
√
4π × 10−6 G. Both stars experience

oscillations due to the spurious velocities introduced as a result of discretization errors

in the mapping from a 1-D stellar evolution model to a 3-D hydrodynamics simulation.

We showed in Chapter 3 that after these oscillations are damped out, the relaxed density

profile closely matches the original MESA profile.

We also look at the energy stored in the magnetic field in both cases in Fig. 5.4. For

the dipole field, the energy suffers an immediate and dramatic drop as the large field at

the stellar center disperses. When the Lyutikov field is used, the magnetic energy stays

relatively constant, with variations that can be explained by the stellar oscillations. Signif-

icant changes are seen only in the toroidal component of the field, though it remains the

weakest component. We show the same relaxation using the Powell eight-wave scheme

in Fig. 5.5 for the Lyutikov field. Here we see a consistent rise in the field energy over

time, demonstrating that the divergence cleaning produces more accurate results in this

case.

5.5.3 Results

We simulate the binary for 33 days and show several density projections in Fig. 5.6 at

t = 1, 10, 20, 30, 40 and 50 days. As in previous chapters, we see a radial plunge into the

envelope, with gas ejected via tidal tails and spiral shocks as orbital energy is transferred

to the envelope.

We show the magnetic field energy in the early stages of our simulation in Fig. 5.7.

The field is constant for the first two days before a rapid amplification by a factor of ∼ 1018

over a period of less than two days. Afterward, the field energy gradually increases but

stays fairly constant. This amplification closely resembles that found by Ohlmann et al.

(2016b). We also show the energy in each component of B, revealing that the amplifica-
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Figure 5.6: Density projections along the z-axis in our CEE simulation with
MHD. The + sign marks the red giant core and the × marks the companion.
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Figure 5.7: The energy in the magnetic field and its spherical components
in our CEE simulation. Rapid amplification is seen at the onset of CEE, after
which the energies are fairly stable. The majority of the amplification is in
the toroidal component of the field.

Figure 5.8: The energy in the magnetic field and its components along
Cartesian axes in our CEE simulation. The x- and y- components dominate
the z-component, indicating that the field is primarily in the orbital plane.
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tion is largest by far in the toroidal component of the field. This is consistent with the

findings of Ondratschek et al. (2021) who showed that toroidal fields within the envelope

are instrumental in the formation of planetary nebulae.

We again show the magnetic field energy and its Cartesian components in Fig. 5.8.

Here we see that the x- and y- components of B, initially lesser than the z-component

due to the initial conditions, dominate after amplification. Their relative strengths change

over the course of the simulation due to the non-axisymmetry of the ejecta.

5.6 CONCLUSIONS

We have laid out the principles of ideal MHD and their inclusion into MANGA through

modification of the Euler equations and face fluxes. We enfore the divergence constraint

∇ · B = 0 through the divergence cleaning scheme of Dedner et al. (2002), which both

damps and diffuses magnetic monopoles to ensure that divergence errors remain small.

This scheme is found to be stable and to produce accurate results for standard MHD

tests including a circularly-polarized Alfvén wave, a magnetic Sedov-Taylor blast wave,

and an Orszag-Tang vortex. In particular, the Alfvén wave is shown to converge to the

analytic solution. However, the divergence cleaning scheme introduces a global limit

on the time-step, which limits performance. We also implement the Powell eight-wave

scheme (Powell et al., 1999) for the purposes of comparison.

Before diving into CEE, we first investigate the magnetic field of a static star and find

that the Lyutikov field combined with the divergence cleaning scheme yield a stable field.

In contrast, the Powell scheme leads to steady growth of the field due to the lack of a

damping term, while the dipole field is problematic due to its excessively large values

near the origin. We thus initialize a CEE simulation using the Lyutikov field and diver-

gence cleaning scheme. We find a rapid amplification of the field at the onset of CEE,
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with fairly stable fields before and after. This is consistent with the results of Ohlmann

et al. (2016b), who used an initial dipole field as well as the Powell eight-wave scheme.

The amplification is dominated by the toroidal field, which is thought to be responsible

for the formation of planetary nebulae due to the magnetic pressure it provides within

the envelope.

5.7 FUTURE DIRECTIONS: TIDAL DISRUPTION EVENTS

When a star enters the tidal radius of a supermassive black hole (SMBH), the self-gravity

of the star is overwhelmed by tidal forces and the star is ripped apart in what is known

as a tidal disruption event (TDE). A portion of the stellar material is bound to the SMBH

and forms and accretion disk, while the remainder is unbound and escapes to infinity. The

accretion rate onto the SMBH peaks at super-Eddington values, resulting in a luminous

event which peaks in the UV and X-rays. Theoretical models of such events correspond

to X-ray transients observed in recent decades (Komossa, 2015), which can be used to

probe several areas of astrophysics such as accretion physics (van Velzen, 2018) and stellar

dynamics in galactic cores (Stone et al., 2020).

Spaulding & Chang (2020) used MANGA to investigate TDEs and the effect of the

impact parameter β on energy distribution, fallback rate onto the SMBH, and the time

of peak luminosity. Here a 1 M⊙ zero-age main sequence (ZAMS) star is disrupted by

a 106 M⊙ SMBH with varying β. They found that the spread of energy and the peak

luminosity time are both directly related to the impact parameter. In particular, they

found that the spread in energy scales as β1/2 for 2 < β < 10 and levels off for β > 10.

MANGA has also been used to study the radio emission from TDEs due to shocking of

the ISM by unbound tidal debris (Spaulding & Chang, in preparation). Simulated events

were found to have peak radio fluxes and frequencies consistent with observations of
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TDEs with non-relativistic outflows (as opposed to TDEs whose emission is powered by

relativistic jets).

Currently, the MHD implementation discussed in this chapter is being used to conduct

a follow-up study in which the effects of magnetic fields on energy spread and fallback

rate. Besides being an interesting study in its own right, the results of these simulations

will be used by a group at the University of Virginia to study the magnetic fields in the

accretion disk formed as a result of the TDE. This study will use the AMR code Athena++,

which can take advantage of the constrained transport formulation of MHD to evolve the

magnetic field with zero divergence (White et al., 2016).
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Figure 5.9: Tidal disruption of a 1 M⊙ ZAMS star by a 106 M⊙ SMBH with
β = 4 in Spaulding & Chang (2020). Each frame is separated by 1.8 hours.

124



LIST OF JOURNALS

ApJ . . The Astrophysical Journal

ApJS . The Astrophysical Journal Supplement

ARAA Annual Review of Astronomy and Astrophysics

A&A . Astronomy & Astrophysics

A&ARv The Astronomy and Astrophysics Review

MNRAS Monthly Notices of the Royal Astronomical Society

125



BIBLIOGRAPHY

Abbott, B., Abbott, R., Adhikari, R., Agresti, J., Ajith, P., Allen, B., Amin, R., Anderson,
S. B., Anderson, W. G., Arain, M., Araya, M., Armandula, H., Ashley, M., Aston, S.,
Aufmuth, P., Aulbert, C., Babak, S., Ballmer, S., Bantilan, H., Barish, B. C., Barker, C.,
Barker, D., Barr, B., Barriga, P., Barton, M. A., Bayer, K., Belczynski, K., Betzwieser, J.,
Beyersdorf, P. T., Bhawal, B., Bilenko, I. A., Billingsley, G., Biswas, R., Black, E., Black-
burn, K., Blackburn, L., Blair, D., Bland, B., Bogenstahl, J., Bogue, L., Bork, R., Boschi,
V., Bose, S., Brady, P. R., Braginsky, V. B., Brau, J. E., Brinkmann, M., Brooks, A., Brown,
D. A., Bullington, A., Bunkowski, A., Buonanno, A., Burmeister, O., Busby, D., But-
ler, W. E., Byer, R. L., Cadonati, L., Cagnoli, G., Camp, J. B., Cannizzo, J., Cannon, K.,
Cantley, C. A., Cao, J., Cardenas, L., Carter, K., Casey, M. M., Castaldi, G., Cepeda, C.,
Chalkey, E., Charlton, P., Chatterji, S., Chelkowski, S., Chen, Y., Chiadini, F., Chin, D.,
Chin, E., Chow, J., Christensen, N., Clark, J., Cochrane, P., Cokelaer, T., Colacino, C. N.,
Coldwell, R., Conte, R., Cook, D., Corbitt, T., Coward, D., Coyne, D., Creighton, J. D. E.,
Creighton, T. D., Croce, R. P., Crooks, D. R. M., Cruise, A. M., Cumming, A., Dalrym-
ple, J., D’Ambrosio, E., Danzmann, K., Davies, G., Debra, D., Degallaix, J., Degree, M.,
Demma, T., Dergachev, V., Desai, S., Desalvo, R., Dhurandhar, S., Díaz, M., Dickson,
J., di Credico, A., Diederichs, G., Dietz, A., Doomes, E. E., Drever, R. W. P., Dumas,
J. C., Dupuis, R. J., Dwyer, J. G., Ehrens, P., Espinoza, E., Etzel, T., Evans, M., Evans,
T., Fairhurst, S., Fan, Y., Fazi, D., Fejer, M. M., Finn, L. S., Fiumara, V., Fotopoulos, N.,
Franzen, A., Franzen, K. Y., Freise, A., Frey, R., Fricke, T., Fritschel, P., Frolov, V. V.,
Fyffe, M., Galdi, V., Ganezer, K. S., Garofoli, J., Gholami, I., Giaime, J. A., Giampanis,
S., Giardina, K. D., Goda, K., Goetz, E., Goggin, L., González, G., Gossler, S., Grant, A.,
Gras, S., Gray, C., Gray, M., Greenhalgh, J., Gretarsson, A. M., Grosso, R., Grote, H.,
Grunewald, S., Guenther, M., Gustafson, R., Hage, B., Hammer, D., Hanna, C., Hanson,
J., Harms, J., Harry, G., Harstad, E., Hayler, T., Heefner, J., Heng, I. S., Heptonstall, A.,
Heurs, M., Hewitson, M., Hild, S., Hirose, E., Hoak, D., Hosken, D., Hough, J., Howell,
E., Hoyland, D., Huttner, S. H., Ingram, D., Innerhofer, E., Ito, M., Itoh, Y., Ivanov, A.,
Jackrel, D., Johnson, B., Johnson, W. W., Jones, D. I., Jones, G., Jones, R., Ju, L., Kalmus,
P., Kalogera, V., Kasprzyk, D., Katsavounidis, E., Kawabe, K., Kawamura, S., Kawazoe,
F., Kells, W., Keppel, D. G., Khalili, F. Y., Kim, C., King, P., Kissel, J. S., Klimenko, S.,
Kokeyama, K., Kondrashov, V., Kopparapu, R. K., Kozak, D., Krishnan, B., Kwee, P.,
Lam, P. K., Landry, M., Lantz, B., Lazzarini, A., Lee, B., Lei, M., Leiner, J., Leonhardt,
V., Leonor, I., Libbrecht, K., Lindquist, P., Lockerbie, N. A., Longo, M., Lormand, M.,
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