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ABSTRACT

DATA-DRIVEN POPULATION INFERENCE FROM GRAVITATIONAL-WAVE
SOURCES & ELECTROMAGNETIC COUNTERPARTS

by

Siddharth Mohite

The University of Wisconsin-Milwaukee, 2022
Under the Supervision of Professor Jolien Creighton, PhD

Gravitational-wave (GW) astronomy has presented an unprecedented way to view the

universe and study populations of astrophysical objects such as merging compact bina-

ries containing black holes (BHs) and neutron stars (NSs). With the latest catalog of ob-

servations detected by the Advanced LIGO-Virgo detector network, recent analyses are

placing interesting constraints on the population of BHs and NSs in these binaries. In

particular, we are learning a great deal about how these binaries are distributed as a func-

tion of their masses. Another aspect of GW astronomy that has the potential to provide

insights into fundamental physics is the multi-messenger follow up of the potential "kilo-

nova" from binary mergers involving NSs. Observations or non-detections of kilonovae

can be used to learn more about the formation of heavy elements via r-process nucleosyn-

thesis as well as to shed light on the inner mechanisms of such mergers. This dissertation

presents two studies that focus on inferring population properties from compact binaries

using data-driven methods. The first is using the flexible approach of Gaussian processes

to model the mass distribution of compact binaries and the second is developing a hi-

erarchical Bayesian inference framework to infer kilonova population properties using

non-detections in electromagnetic surveys.
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CHAPTER 1

Introduction

Gravitational-waves (GWs), which are perturbations in the space-time metric are a di-

rect consequence of Einstein’s general theory of relativity (Einstein, 1916). The theory

predicted that these perturbations travel at the speed of light. However, it took several

decades of theoretical and observational advancements to be able to appreciate the grav-

itational radiation emitted by compact binaries which are the focus of this dissertation.

The binary pulsar system PSR 1913+16 observed in 1975 (Hulse & Taylor, 1975) provided

the first opportunity to test the predictions of GWs and general relativity in the strong-

field regime. Since then observations of this system have shown that the period of the

binary orbit is decreasing at a rate that is in excellent agreement with that predicted by

the loss of energy through GWs for the system (Weisberg & Taylor, 2005).

The development and construction of ground-based observatories to detect GWs be-

gan in the 1990s with the setup of the Initial Laser Interferometer Gravitational-wave

Observatory (LIGO) (Abramovici et al., 1992). In parallel, a global network of GW detec-

tors was also established with the construction of the Virgo observatory near Pisa, Italy

(Acernese et al., 2006) ; the TAMA300 interferometer near Tokyo, Japan (Takahashi &

TAMA Collaboration, 2004) and the GEO600 interferometer near Hannover, Germany

(Lück et al., 2006). With subsequent commissioning in the early 2000s, Initial LIGO

and Virgo conducted joint science observing runs (in particular from November 2005 to

September 2007) called S5 and VSR1 respectively, to search for potential sources of GWs

and set upper limits (The LIGO Scientific Collaboration & The Virgo Collaboration, 2009;

Abadie et al., 2010b; The LIGO Scientific Collaboration et al., 2010; Abadie et al., 2010a).

The sources of GWs that can be detected by such GW observatories include inspi-
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ralling compact binaries like PSR 1913 + 16 that contain either neutron stars (NSs) or black

holes (BHs) as its components, rotating non-axisymmetric neutron stars, primordial GW

radiation from the early universe and core-collapse supernovae (Cutler & Thorne, 2002).

In general, there are three types of compact binaries that are potential sources of GWs : a

binary neutron star (BNS), binary black hole (BBH) or a neutron star - black hole binary

(NSBH).

Figure 1.1: Setup of Gravitational-wave observatories from Miller & Yunes
(2019). Image Credit:Johan Jarnestad/The Royal Swedish Academy of Sci-
ences

At its heart, gravitational-wave observatories are essentially Michelson interferome-

ters. Figure 1.1 shows the general setup of these interferometers and how GW radiation

from compact binaries are detected. The interferometers have an L-shaped configuration
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of orthogonal arms with length (L) across which laser light is sent. Each arm has a sus-

pended mirror at the end and serves as a test mass. When gravitational waves emitted

by sources such as compact binaries arrive at the detectors, they produce a differential

change in the length of one arm relative to the other (∆L). Thus, a corresponding strain

(∆L
L

) can be measured. In practice, the resulting interference pattern is used to decipher

the amplitude of the gravitational-wave strain as well as its phase. LIGO consists of two

such interferometer setups across the United states with 4 kilometer long arms - one in

Hanford, Washington and the other in Livingston, Louisiana. The Virgo interferometer

has ∼ 3 kilometer arms while TAMA300 and GEO600 have 300 meter and 600 meter arms

respectively. Some of these interferometers are shown in Figure 1.2.

Figure 1.2: Views of the gravitational-wave observatories LIGO (left, center)
and Virgo (right)

1.1 THE ADVANCED DETECTOR ERA : DAWN OF GRAVITATIONAL-WAVE AS-

TRONOMY

The Initial LIGO and Virgo searches attained a GW strain sensitivity of ∼ 10−21 along with

a distance range of ∼ 30 Mpc (Initial LIGO) and ∼ 8 Mpc (Virgo) for an optimally oriented
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BNS system having component masses of 1.4M⊙ each. Significant upgrades in sensitivity

resulted in the replacement of Initial LIGO and Virgo to their advanced counterparts -

Advanced LIGO (aLIGO) in 2015 and Advanced Virgo (aVirgo) in 2017. For aLIGO, these

upgrades resulted in strain sensitivity improvements by a factor of ∼ 10 and made the

detectors capable of detecting a typical BNS system within ∼ 190 Mpc. Also, the sensitiv-

ity improvement resulted in the extension of the sensitive band at the low-frequency end

from 40 Hz to 10 Hz. The stage was thus set to detect GWs for the first time.

Gravitational-wave (GW) astronomy was established in a watershed moment in Septem-

ber 2015 with the first observation of a BBH merger by the aLIGO detector network (Ab-

bott et al., 2016c). This unprecedented event, detected almost a century after Einstein’s

theoretical work describing GWs, extended the frontier of observational astronomy and

vindicated decades of efforts by researchers working on GW science. Over the course

of the last 7 years, the total count of compact binary mergers detected in the Advanced

detector era stands at ∼ 90 (The LIGO Scientific Collaboration et al., 2021a). aLIGO be-

gan with its first observing run (O1) from September 2015 to January 2016 (Abbott et al.,

2016b) which yielded 3 BBH detections. The second observing run (O2) from November

2016 to August 2017 (Abbott et al., 2019a) witnessed the observation of 7 BBH mergers.

aVirgo joined the observation efforts in August 2017. In what was another milestone event

in GW astronomy, O2 saw the first detection of a BNS merger (GW170817) on 17 August

2017 (Abbott et al., 2017b). This event is particularly important as it marked the beginning

of multi-messenger astronomy in the context of GW events which is another focus of this

dissertation. The third observing run (O3) of aLIGO and aVirgo from April 2019 to March

2020 resulted in the detection of an additional ∼ 80 compact binary mergers. These in-

clude several interesting events such as another BNS (GW190425; Abbott et al. 2020a), the

first confirmed detections of an NSBH system (GW200105 and GW200115; Abbott et al.
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2021f) and the first unambiguously detected asymmetric mass merger (GW190412; Ab-

bott et al. 2020d). The discovery of such a large number of sources naturally leads to the

question — what can we infer about the population of these sources from their individual

observations? This dissertation focuses on one such aspect of the population of compact

binaries, namely the astrophysical distribution of these GW sources as a function of their

masses.

1.2 COMPACT-OBJECT BINARIES AS SOURCES OF GRAVITATIONAL WAVES

The coalescence of binary systems consisting of compact objects such as black holes or

neutron stars are the most promising sources of GWs that can be detected by ground-

based observatories. One aspect that makes these sources promising is the fact that the

strain waveform expected from such systems is known very well from theory and numer-

ical relativity.

Here we reproduce some of the derivation from Chapter 3 of Creighton & Anderson

(2011) to highlight the dependence of the waveform from a fiducial compact binary sys-

tem in terms of the binary parameters. The waveform can be divided into 3 phases —

inspiral, merger and ringdown. The inspiral phase is when the motion of the binary com-

ponents is not too relativistic. Such a phase can be modeled using Post-Newtonian (PN)

theory. As the binary transitions from the inspiral to the merger phase, the component

velocities become highly-relativistic and are comparable to the speed of light. PN meth-

ods ultimately fail to capture the evolution in this phase and we must rely on numerical

relativity to solve for the waveform. Furthermore for systems containing neutron stars

tidal interactions with the binary companion become important. Also, precession and

spin-orbit couplings can give rise to complex waveforms that need to be accounted for in

the analytic PN approximation of the waveforms. Finally, the merger of the two compo-
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nents in the binary results in the formation of a black hole which releases GW radiation

before settling to a stationary state. The GW radiation and waveform in this ringdown

phase can be obtained analytically using the quasi-normal modes of the final black hole.

Figure 1.3 shows these phases and the expected GW strain amplitude waveform for the

first ever BBH event to be detected - GW150914 (Abbott et al., 2016c).

Figure 1.3: Reproduced from Abbott et al. (2016c). Top: Estimated GW
strain amplitude for GW150914 and a representation of the three phases in
binary evolution. Bottom : Relative separation and velocity between the BH
components computed using numerical relativity.

In the far-field zone where the distance (r) between the source and observer is much
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larger than the GW wavelength as well as the source size/separation, the metric pertur-

bation under the linear approximation becomes,

hTT
ij (t) =

2G

c4r
ÏTT
ij (t− r/c) (1.1)

where G is the gravitational constant, c is the speed of light, r is the distance to the source

and Iij is the quadrupole moment tensor of the mass distribution ρ producing the GWs

given by,

I ij(t) =

∫
xixjρ(t− r/c, x)d3x. (1.2)

Eqn. 1.1 highlights the important fact that the metric perturbations for GWs depend

on the time varying quadrpole moment of the source. Moreover, the quadrapole is the

lowest multipole that contributes towards GW emission which is in contrast to electro-

magnetic (EM) emission where changing dipoles can exist. The superscript ’TT’ in the

equations above denote the Transverse-Traceless gauge. In this gauge the metric per-

turbation is transverse to the direction of propagation and is traceless. We assume that

quantities that follow are evaluated in this gauge. We also define the traceless reduced

quadrapole moment tensor -I ij as,

-I ij(t) =
∫ (

xixj − 1

3
r2δij

)
ρ(t− r/c, x)d3x. (1.3)

The gravitational-wave flux which is the gravitational energy dEGW passing through

an area dA in time dt is then given as,

dEGW

dAdt
= − c3

32πG
⟨ḣij

TT ḣ
TT
ij ⟩ (1.4)
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= − G

8πc5r2
⟨

...
-I ij

TT

...
-I TT

ij ⟩. (1.5)

This gives the gravitational-wave luminosity as,

LGW = −dEGW

dt
=

G

5c5
⟨

...
-I ij

...
-I ij⟩. (1.6)

Here ⟨...⟩ denotes an average over a spacetime region containing several GW oscillations

or wavelengths. Now, let us assume that a binary system consists of two point particles

with masses m1 and m2. Let a, ϕ,M, µ, i be the orbital separation, orbital phase, total mass

(M = m1 + m2), reduced mass (µ = m1m2

M
) and inclination with respect to the observer

of the binary, respectively. Then for a circular binary orbit and observer at distance r, the

metric perturbations in the two GW polarizations are given as,

h+ = −2Gµ
c2r

(1 + cos2i)
(

v
c

)2
cos(2ϕ), (1.7)

h× = −4Gµ
c2r

cos i
(

v
c

)2
sin(2ϕ) (1.8)

where v is the orbital velocity of the components. A point to note is that GW emission is

monochromatic with a frequency that is twice the orbital frequency since fGW = 2forb = ω
π

;

where ϕ = ωt. The luminosity LGW of the binary at any given time is given as,

LGW =
32

5

c5

G
η2
(v
c

)10
(1.9)

where η = µ
M

is the symmetric mass ratio of the binary. Using EGW = −1
2
µv2 and Eqn. 1.6

we get,

d(v/c)

dt
=

32

5

c3

GM
η
(v
c

)9
. (1.10)
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We can then evaluate the time to coalescence (tc) of the binary from a fiducial initial ve-

locity vo by integrating Eqn. 1.10 as,

∞∫
vo/c

d(v/c)

(v/c)9
=

32

5

c3

GM
η

tc∫
0

dt. (1.11)

Solving the above equation and noting that fGW = v3

πGM
gives us the time to coalescence

in terms of orbital velocity and frequency,

tc =
5

256η

GM

c3

(vo
c

)−8

(1.12)

=
5

256η

GM

c3

(πGMfo
c3

)−8/3

. (1.13)

Although the orbit of the binary decays, the frequency and amplitude of the GW emis-

sion will increase. This can be seen for the case of the waveform called the Newtonian

chirp which is the leading order expansion of the equations above. For the chirp wave-

form, the GW frequency evolution can be obtained by noting that fGW = v3

πGM
. This gives,

dfGW

dt
=

dfGW

dv

dv

dt
(1.14)

=

(
3v2

πGM

)(
32η

5

c4

GM

(v
c

)9)
(1.15)

=
96

5
π8/3η

(
GM

c3

)5/3

f
11/3
GW . (1.16)

The combination η3/5M represents a mass representation called the chirp mass Mc. We

thus get,
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dfGW

dt
=

96

5
π8/3

(
GMc

c3

)5/3

f
11/3
GW . (1.17)

At Newtonian order, the chirp mass is the only mass combination that defines the fre-

quency evolution and chirp waveform. Since the phase evolution is directly related to the

frequency, the chirp mass is the only parameter that can be measured from the amplitude

and phase at this order. For higher post-Newtonian orders, other mass combinations be-

come important as well. We conclude the derivation by giving the full form of the GW

polarizations at Newtonian order :

h+ = −GMc

c2r
1+cos2i

2

(
c3(tc−t)
5GMc

)−1/4

cos

[
2ϕc − 2

(
c3(tc−t)
5GMc

)5/8]
, (1.18)

h× = −GMc

c2r
cos i

(
c3(tc−t)
5GMc

)−1/4

sin

[
2ϕc − 2

(
c3(tc−t)
5GMc

)5/8]
. (1.19)

1.3 GW170817 AND AT2017GFO : BIRTH OF MULTI-MESSENGER ASTRONOMY

Compact binary systems containing neutron stars are of particular importance since they

not only have the potential to be detected in the GW spectrum but also have been theo-

rized to emit in the EM spectrum in the aftermath of the merger (Li & Paczyński, 1998;

Rosswog, 2005; Metzger et al., 2010; Tanaka & Hotokezaka, 2013). Such mergers have the

capability to inform important topics in nuclear theory such as the formation of heavy

elements in the periodic table via r-process nucleosynthesis (Côté et al., 2018; Hotokezaka

et al., 2018; Radice et al., 2018; Tanaka et al., 2018) and the nuclear equation of state (Fou-

cart et al., 2018; Coughlin et al., 2018b; Radice & Dai, 2019; Hinderer et al., 2019). Also,

since the luminosity distance of a GW source is a direct observable from the GW strain

amplitude, following up NS mergers in the EM spectrum can have implications for cos-
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mology. This is because EM observations can help provide a redshift for the merger event

and combined with an estimate of the luminosity distance can deliver an independed

measurement of the Hubble constant. In Section 1.1, we mentioned the detection of

the first BNS system — GW170817 (Abbott et al., 2017b). This event also signalled the

dawn of multi-messenger GW astronomy as it was the first event to be jointly detected in

both spectra with its EM counterparts being detected over a wide range of wavelengths

(Abbott et al., 2017c). This dissertation focuses on one such EM counterpart called the

kilonova (Metzger et al., 2010).

1.4 DISSERTATION OUTLINE

With current gravitational-wave observatories already generating catalogs of sources, we

are in an era where we can leverage these rich datasets of events to place important astro-

physical constraints. On the other hand, the search for mergers containing neutron stars

in both the GW and EM spectra holds the promise of advancing the frontiers of multi-

messenger astronomy. Developing frameworks of inference to be "data-driven" instead

of being "model-driven" has the advantage of learning new features about the popula-

tion of these events without having to tune our models. This dissertation presents novel

methods to analyze two different populations that arise from GW and EM counterpart

observations.

The disseration is organized as follows : Chapter 2 presents a method to model the

two-dimensional (2-D) mass distribution of compact binaries observed by aLIGO and

aVirgo using Gaussian Processes (GPs). It contains a description of the GP basics, appli-

cation of GPs to GW catalogs of events and selection biases in GW population inference.

The method was applied to the latest catalog of GW observations (The LIGO Scientific

Collaboration et al., 2021a) and corresponding results which appeared in a collaboration

11



manuscript (Abbott et al., 2021a) are presented. Chapter 3 presents a novel framework

based on hierarchical Bayesian inference that places constraints on kilonova population

properties. It describes how EM non-detections of binary mergers containing NSs can be

leveraged. Chapter 4 concludes by outlining the limitations of the current implementa-

tion of these methods that can be improved keeping future catalogs in mind.
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CHAPTER 2

Gaussian Processes : A Tool to Infer Binary Compact-object

Mass Distributions

The results presented in Section 2.4 in this chapter have been reproduced using the public

data release (LIGO Scientific Collaboration et al., 2021) for the collaboration manuscript

Abbott et al. (2021a).

2.1 INTRODUCTION

Recent analyses of GW observations (Abbott et al., 2019d, 2021e) have already started

placing interesting constraints on the population of compact binaries detectable by Ad-

vanced LIGO-Virgo and their associated merger rates. These studies have relied on two

key features (i) employing parametric models for the binary black hole (BBH) distribution

that rely on specific parameters to determine the shape of the distribution (Kovetz et al.,

2017; Fishbach & Holz, 2017; Talbot & Thrane, 2018), and (ii) analyzing populations of the

three types of compact binary systems; BBHs, BNSs and NSBHs, independently (Abbott

et al., 2019a, 2021e).

However, parametric models have the caveat that they cannot incorporate deviations

from a specific functional form in the case where a new event added in the analysis dras-

tically changes the nature of the distribution. Furthermore, with the increasing number of

GW events being detected, the possibility of correlations between sub-populations such

as NSBHs and BBHs highlights the need to model all compact binaries within the same

formalism in order to infer the presence of features such as mass gaps in the spectrum

(Özel & Freire, 2016; Freire et al., 2008; Margalit & Metzger, 2017; Heger & Woosley, 2002;
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Heger et al., 2003; Fishbach & Holz, 2017; Talbot & Thrane, 2018; Wysocki et al., 2019).

Previous studies in the literature (Mandel et al., 2016; Wysocki et al., 2019; Tiwari, 2021)

have outlined methods to model the spectrum of compact binaries using flexible methods

such as Gaussian mixture models and Gaussian processes (Rasmussen & Williams, 2005)

that do not rely on a definite shape of the function being modeled. Such methods, as we

will see in this chapter, allow us to simultaneously fit for the merger rates as well as the

population distribution. Building on these previous efforts, the work presented in this

chapter will focus on describing such a flexible framework based on Gaussian processes

to model the mass distribution of these binaries across all multiple populations.

This chapter is organized as follows : In Section 2.2 we give an introduction to the

concept of Gaussian Processes (GPs) and how they can be used to model unknown func-

tions. Section 2.3 describes the BINNED GAUSSIAN PROCESS model and its underlying

parameters. The specific prior choices used in the inference are also described here. We

also use this section to derive the form of the posterior distribution for the associated

hyper-parameters of the BGP model. The important aspect of selection effects in GW

population inference and how they are incorporated in our analysis is also outlined. Sec-

tion 2.4 shows the results obtained by using the BGP model to infer the population of

compact binaries using data from Advanced LIGO-Virgo’s latest gravitational wave cat-

alog (The LIGO Scientific Collaboration et al., 2021a). In particular, we present results for

merger rate densities across various mass ranges and sub-populations as well as the mass

distribution of compact binaries. We conclude in Section 2.5 with a discussion and note

on how the BGP model can be improved keeping future GW catalogs in mind.
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2.2 GAUSSIAN PROCESS BASICS

For a mathematical definition, suppose we consider obtaining data(y⃗) at a set of observa-

tion points X . In general, the points in X could be multi-dimensional (as we will see in

Section 2.3.1). Then a Gaussian process (GP) model for this data assumes that the data(y⃗)

are distributed as a multi-variate Gaussian distribution with a mean value µ(X) at each

observation point and a covariance matrix Σ. As is standard of Gaussian distributions,

µ(X) sets the mean amplitude at points in parameter space while the covariance matrix

Σ determines the two-point correlation between pairs of points in X. Thus, it is useful to

denote the covariance matrix as Σ(X,X). The covariance matrix influences the level of

smoothness and thereby the space of functions spanned by the GP.

The covariance matrix requires a kernel function k(x, x′) that can generate values for

the covariance value between any two points x and x′ in the set X. Writing this explicitly

gives,

Σ =


k(x0, x0) k(x0, x1) . . .

... . . .

k(xN−1, x0) . . . k(xN−1, xN−1)

 . (2.1)

One of the most commonly used kernel functions is the Radial Basis Function (RBF),

Squared Exponential or Quadratic Exponential Kernel which is of the form:

k(x, x′) = σ2 exp

(
−(x− x′)2

2l2

)
. (2.2)

We can see that there are 2 parameters that define the kernel function in this case — σ

which controls the overall amplitude of covariance and l which controls the width. It

is this parameter l that has a direct influence on the shape of functions drawn from the
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GP whose covariance is determined by such a kernel function (see Figure 2.2). Eqn. 2.3

shows the definition of a GP where the data y⃗ are distributed as a multi-variate Gaussian

distribution. Here N is used to denote the Gaussian distribution,

y⃗ ∼ N (µ(X),Σ(X,X)). (2.3)

Extending the notion of the set X to contain an infinite number of points in the relevant

parameter space, we can see that Eqns. 2.1, 2.2 and 2.3 enable the multi-variate Gaussian

distribution to be evaluated across the entire parameter space of interest. Defined in this

way, every random draw from such a GP is a unique function as shown in Figure 2.1.

GPs thus return a distribution over functions with the measured values of y⃗ informing

inferences on the two quantities that define the GP — µ and Σ.

Figure 2.1: Three random draws from a Gaussian Process resulting in 3
unique functions. The mean function µ is fixed to be 0 at all points while
a RBF kernel (Eqn. 2.2) is used for the covariance with σ = 2 and l = 0.2.
Reproduced using code from https://www.pymc.io/.

As shown in Figure 2.2, smaller values of l tend to favor functions that vary more

over a given region of parameter space while larger values of l favor functions that do

not evolve as fast. Thus, GPs offer a flexible way to model functions with unknown

amplitudes and shapes.
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Figure 2.2: The effect of varying the length scale on the relative smoothness
of functions. Draws from a GP as in Figure 2.1 with σ = 2 for 3 different
lengthscales: l = 0.02 (left), l = 0.2 (center), l = 1 (right). Reproduced using
code from https://www.pymc.io/.

2.3 USING GAUSSIAN PROCESSES TO INFER BINARY COMPACT-OBJECT MASS

DISTRIBUTIONS

2.3.1 The BINNED GAUSSIAN PROCESS prior model

We use this section to define our BINNED GAUSSIAN PROCESS prior model for the dis-

tribution of compact binaries as a function of their component masses. In our specific

study, we divide the two-dimensional (2-D) parameter space of binary component masses

(m1,m2) into a number of bins (Nbins) that are uniformly spaced in the log of the masses

(logm1 − logm2). This method has been proposed in past literature in the context of exo-

planet population inference as well as modeling the mass distribution of CBCs observed

with LIGO-Virgo (Foreman-Mackey et al., 2014; Mandel et al., 2016). From an astrophys-

ical perspective, since the masses span over a wide range (1 − 100M⊙ in this study) and

over multiple binary sub-populations, working with the log of the masses is beneficial to

modeling the distribution. We model the merger rate density across the 2-D mass bins

i.e. dNab

d logm1 d logm2 dVC dtr
, as a Gaussian process such that we have a constant rate density in

a specific mass bin and one that is uniform in source co-moving volume (VC) and source
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time (tr). We denote this by nab and mathematically this can be stated as,

dNab

d logm1 d logm2 dVC dtr
=


nab ; Ma ≤ m1 ≤ Ma+1

and Mb ≤ m2 ≤ Mb+1

(2.4)

where 1 ≤ a,b ≤ Nbins, M1 = Mmin , MNbins+1 = Mmax. Mmin and Mmax are 1M⊙ and

100M⊙, respectively in this study. Note that since there is a degeneracy with respect to

combinations of masses, we restrict our analyses below for binaries having m2 ≤ m1 and

then finally mirror our results about the m1 = m2 axis. Using just a single index (γ) to

label the bins where m2 ≤ m1, the rate densities can then be recast as,

dNγ

d logm1 d logm2 dVC dtr
= nγ. (2.5)

Using such a definition for the binned merger rate density, the total merger rate den-

sity (Rtotal) of binaries across bins can be evaluated as,

Rtotal =
∑
γ

nγ ∆log mγ
1 ∆log mγ

2 . (2.6)

One can also evaluate merger rate densities for specific sub-populations or set of bins

by restricting the sum over γ in Eqn. 2.6 to the corresponding bins. The probability density

distribution of the compact-binaries as a function of their masses and redshift can then be

related to rate densities as,

dNγ

dm1dm2dVCd tr

dVC

dz

dtr
dt

dt =
nγ

m1m2

dVC

dz

1

1 + z
dt = Ntotp

γ(m1,m2, z) (2.7)

where we have used the relation between source-time (tr), observer-time (t) and redshift

(z) as dtr
dt

= 1
1+z

and Ntot is the total number of merging compact binaries in the universe

across masses and redshift.
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The bin edges in the analyses presented in this chapter are located at [1, 2, 2.5, 3, 4, 5, 6.5, 8, 10,

15, 20, 30, 40, 50, 60, 70, 80, 100]M⊙ with the assumption that m2 ≤ m1. The probabilistic

model for the logarithm of the rate density in each bin is defined as

log nγ ∼ N (µ,Σ), (2.8)

where µ is the mean log merger rate density in each bin and Σ is the covariance matrix

that correlates the bins. Each element of the covariance matrix Σ is generated using a

squared-exponential kernel k(x, x‘) which is defined previously as,

k(x, x′) = σ2 exp

(
−(x− x′)2

2l2

)
. (2.9)

For the specific analysis here we take x, x′ to be the bin centers in logm. The parameter

σ models the amplitude of the covariances while l is a parameter that defines the length

scales over which bins are correlated. The prior distribution chosen here for the length

scale is a log-normal distribution with a mean that is the average between the minimum

bin spacing

∆min ≡ min
m1,m2

∆ logm, (2.10)

and the maximum bin spacing

∆max ≡ max
m1,m2

∆ logm (2.11)

with a standard deviation of (∆max−∆min)
4

. This constrains (at “2-σ” in the prior) the corre-

lation length for the GP to lie between “one bin” and “all the bins.” {µ, σ, l ≡ Λ⃗} are thus

hyper-parameters that control the prior population distribution of coalescing compact bi-

naries. For analyses presented in this chapter, Eqns. 2.10, 2.11 and the bin edges defined
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Parameter Description Prior
µ Mean log (Rate) in each bin. N (0, 10)
σ Amplitude of the covariance kernel. N (0, 10)

log(l) log (Length scale) of the covariance kernel. N (−0.085, 0.93)

Table 2.1: Summary of BINNED GAUSSIAN PROCESS model parameters.

above give a mean and standard deviation of −0.085 and 0.93 respectively for such a

log-normal distribution. The BINNED GAUSSIAN PROCESS model assumes a redshift dis-

tribution such that the overall merger rate of compact binaries is uniform-in-comoving

volume. The spin distributions for each component are isotropic in direction and uni-

form in the spin magnitude with a maximum spin of 0.998 for black holes (BHs) and 0.4

for neutron stars (NSs); the prior distribution for the relevant parameters in Eqns. 2.8

and 2.9 is summarized in Table 2.1.

2.3.2 Posterior Derivation

In the previous sub-section, we have seen how the BINNED GAUSSIAN PROCESS model

is used to construct a prior model for the merger rate density of compact-binaries as a

function of their component masses. Here, we present a derivation of the posterior dis-

tribution of the bin-wise merger rate densities (nγ) and hyper-parameters (Λ⃗) that define

the mass distribution of compact-binaries. Before deriving the posterior , we state our

notation here as follows:

1. i : Generic label for each event.

2. γ : Generic label for each two-dimensional component mass (m1,m2) bin.

3. {d⃗i} : The set containing the observed data associated with each event. In our case

here, these are the posterior estimate samples of the event-level parameters of the

compact-binary such as its component masses (m1,m2) and redshift z.
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4. Nobs : The total number of observed astrophysical events.

5. Nexp : The expected number of astrophysical events over the duration of the obser-

vation period, for a given set of population parameters ≡ {nγ, Λ⃗} and sensitivity of

the GW detectors.

6. wi
γ : Bin-weight associated with bin labeled γ corresponding to the (m1,m2) poste-

rior samples for the ith event.

7. ⟨V ⟩γT : Monte-Carlo averaged bin-wise volume-time sensitivity of compact bina-

ries.

We start generically from Bayes’ formula for the posterior probability. Our target pos-

terior distribution we want to find is that of the bin-wise merger rate densities and the

hyper-parameters described in sub-section 2.3.1 - {µ, σ, l ≡ Λ⃗},

p(nγ, Λ⃗| {d⃗i}) =
p({d⃗i} |nγ, Λ⃗) p(nγ, Λ⃗)

p({d⃗i})
. (2.12)

As shown in sub-section 2.3.1, the prior distribution on nγ is completely determined

by the hyper-parameters. Also, the data {d⃗i} do not directly depend on these hyper-

parameters. The posterior can then be written as,

p(nγ, Λ⃗ | {d⃗i}) = p({d⃗i}|nγ) p(nγ|Λ⃗) p(Λ⃗)
p({d⃗i})

(2.13)

where we have made use of the fact that p(A,B) = p(A|B) p(B). The prior distributions

are dictated by the distributions we assume for each parameter as given in Table 2.1 and

the evidence p({d⃗i}) is a factor that does not qualitatively affect the posterior. It is a

normalization that we can neglect. So, it is the population likelihood p({d⃗i}|nγ, Nexp) that
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has a direct influence on our inference of the rate parameters. We thus focus on deriving

an expression for the likelihood in what follows.

Our dataset {d⃗i} is a combined set of data for all the observed events (Nobs) we con-

sider in our analysis. Since the events are separated from each other by relatively large

amounts of time 1 so as to not affect the data of another event in the set, we can assume

the events to be independent and write the likelihood as a product over events. The pop-

ulation likelihood in gravitational-wave inference represents that for an in-homogeneous

Poisson process and one can refer to a number of sources in the literature (Loredo, 2004;

Farr et al., 2015a; Mandel et al., 2019a; Thrane & Talbot, 2019; Vitale et al., 2021) for a more

in-depth derivation. Here we note that the merger-rate densities nγ and hyper-parameters

Λ⃗ are our population-level parameters of interest and Nexp is the expected number of as-

trophysical events for a given population model. As stated earlier, Nexp depends on the

underlying population model and hence on nγ . We will see in Section 2.3.3 how Nexp and

nγ are exactly related for the BGP model. For now we note this in the following equa-

tions by expressing this as Nexp(n
γ). The likelihood for such an in-homogeneous Poisson

process is then given as,

p({d⃗i}|nγ) = e−Nexp(nγ)

Nobs∏
i=1

p(d⃗i|nγ). (2.14)

With the availability of data for every observed event in our set, it is possible to per-

form Bayesian parameter estimation using a fiducial prior distribution π(θ⃗) to determine

the posterior distribution of the parameters p(θ⃗|d⃗i) for each event (Veitch et al., 2015a;

Abbott et al., 2019a; The LIGO Scientific Collaboration et al., 2021a). Here θ⃗ are the event-

level parameters of the compact-binary such as its component masses (m1,m2) and red-

1Note : The typical duration of stellar-mass CBC signals in the sensitive frequency band of GW detectors
is of O(seconds) to O(minutes).(Creighton & Anderson, 2011)
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shift z. We can then write the likelihood as,

p({d⃗i}|nγ) ∝ e−Nexp(nγ)

Nobs∏
i=1

∫
p(d⃗i|θ⃗) p(θ⃗|nγ) dθ⃗. (2.15)

In principle, determining the posterior distribution implies obtaining random sam-

ples or parameter estimates {mi
1,m

i
2, z

i} for each event using a fiducial prior distribution

π(mi
1,m

i
2, z

i). We can then use Monte-Carlo importance sampling over the posterior sam-

ples to approximate the integral in Eqn. 2.15 as

p({d⃗i}|nγ) ∝ e−Nexp(nγ)

Nobs∏
i=1

〈p(mi
1,m

i
2, z

i|nγ)

π(mi
1,m

i
2, z

i)

〉
i

(2.16)

where the
〈
...
〉
i

denotes taking weighted averages over the posterior samples for the

ith event. From Eqn. 2.7 we note that p(mi
1,m

i
2, z

i|nγ) ∝ nγ . Combining all the other

factors in that equation such as the product of masses, differential co-moving volume and

the weighted prior π(mi
1,m

i
2, z

i) from parameter estimation, we can assign normalized

posterior weights (wγ
i ) to each bin (γ) for each event (i),

wγ
i =

∑
j

( δαjγ

mi,j
1 mi,j

2

dVC

dz

∣∣∣∣
zi,j

1

1 + zi,j
1

π(mi,j
1 ,mi,j

2 , zi,j)

)
. (2.17)

Here j is the index for each posterior sample for a given event (i) and δ is the Kronecker

Delta Function. αj denotes the 2-D bin in m1 − m2 to which the jth posterior sample

belongs. The weighted average in Eqn. 2.16 can then be written as a dot product between

the weights (wγ
i ) and merger rate densities (nγ),

p({d⃗i}|nγ) ∝ e−Nexp(nγ)

Nobs∏
i=1

(∑
γ

wγ
i n

γ
)
. (2.18)

Combining Eqns. 2.13 and 2.18 we get our target posterior as:
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p(nγ, Λ⃗ | {d⃗i}) ∝ e−Nexp(nγ)

Nobs∏
i=1

(∑
γ

wγ
i n

γ
)
p(nγ|Λ⃗) p(Λ⃗). (2.19)

2.3.3 Selection Effects or the Malmquist Bias in GW Population Inference

The other important variable in Eqn. 2.19 is the expected number of astrophysical signals

in the data i.e. Nexp. Nexp reflects the fact that there are selection effects that are present in

gravitational-wave population inference (Abbott et al., 2016a; Fishbach et al., 2018; Man-

del et al., 2019a). That is, there are biases in the detection of compact-binaries by GW

detectors based on their parameters such as masses, spins and redshifts. For example,

binaries with higher component masses have a higher amplitude for their GW signal and

can be detected out to higher redshifts compared to binaries with low mass. Such a bias

in astronomy is termed as a Malmquist bias (Malmquist, 1922, 1925). Intrinsically, Nexp

depends on the merger rate densities nγ and thereby on the population model hyper-

parameters. It is defined as follows - say we have population-level hyper-parameters Λ⃗,

event-level parameters θ⃗ and observed data d⃗. We further assume that it is possible to

assign every signal in the data with a detection statistic ρ (such as for example the false

alarm rate or signal to noise ratio). The detection statistic is a function of the data (f(d⃗))

that helps construct the catalog of observed signals by determining which signals are de-

tectable based on a defined threshold detection statistic ρthr. For the results presented in

this chapter, our chosen detection statistic threshold is a false alarm rate of 1 per 4 years.

In our population inference we are interested in the cases where the detection statistic

is above threshold and we want to know that for a given set of event-level parameters θ⃗

what is the probability that the signal from such a system is detectable? In the absence

of noise, the answer to this question is straight-forward but in reality it depends on the

data since every realization of the data corresponds to a different noise realization. We
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can write:

p(ρ ≥ ρthr|θ⃗) =
∫

dd⃗ p(ρ ≥ ρthr|d⃗, θ⃗) p(d⃗|θ⃗). (2.20)

We can see that when f(d⃗) ≥ ρthr (f(d⃗) < ρthr), p(ρ ≥ ρthr|d⃗, θ⃗) = 1 (0). Thus,

p(ρ ≥ ρthr|θ⃗) =
∫

f(d⃗)>ρthr

dd⃗ p(d⃗|θ⃗). (2.21)

Then the expected number of signals in the data for a given population defined by

hyper-parameters Λ⃗ is,

Nexp =

∫
dθ⃗

dN

dθ⃗
(Λ⃗) p(ρ ≥ ρthr|θ⃗). (2.22)

Making the connection with Eqn. 2.7 we see that for our case here — dN

dθ⃗
(Λ⃗) ≡ dN

dm1dm2d z
(nγ)

which can be related to the merger rate densities nγ to give

Nexp =

∫
dm1 dm2 dz dt

nγ

m1m2

dVC

dz

1

1 + z
p(ρ ≥ ρthr|m1,m2, z). (2.23)

In GW population inference, equations such as Eqn. 2.23 are estimated by Monte-Carlo

importance sampling (Tiwari, 2018) since finding the detection probability p(ρ ≥ ρthr|m1,m2, z)

analytically is not tractable. In this method, a large suite of simulated signals (also called

injections) are introduced into the observed GW data. The simulated signals are drawn

from a population distribution pinj(θ⃗) that provides compact binaries over a relatively

broad section of the expected parameter space of the event-level parameters θ⃗. The simu-

lated GW data stream is then analyzed by detection pipelines to see how many injections

are above the same detection threshold ρthr chosen to construct the actual catalog of astro-

physical signals. The full description of the simulated distributions used to construct the
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results presented in this chapter are available at The LIGO Scientific Collaboration et al.

(2021b). Assuming that we have Nfound injections that are detected above the threshold

out of a total number of Ninj injections, Eqn. 2.22 can be estimated as:

Nexp =
1

Ninj

Nfound∑
i=0

dN

dθ⃗i
(Λ⃗)

1

pinj(θ⃗i)
. (2.24)

Using this in Eqn. 2.23, we can see that each found injection will contribute to a unique

bin and we can write the expected number of signals as:

Nexp =
1

Ninj

Nfound∑
i=0

∑
γ

δαiγnγ

mi
1m

i
2

dVC

dz

∣∣∣∣
zi

T

1 + zi
1

pinj(mi
1, m

i
2, z

i)
. (2.25)

where δ is the Kronecker Delta Function and αi denotes the 2-D bin in m1 −m2 to which

the ith injection belongs. T is the total time in the observer or detector frame during which

the signals have the potential to be detected. We can simplify this equation and re-write

it as,

Nexp =
∑
γ

nγ ⟨V ⟩γT ∆log mγ
1 ∆log mγ

2 (2.26)

by making the connection,

⟨V ⟩γ =
1

∆log mγ
1 ∆log mγ

2

Nfound∑
i=0

δαiγ

mi
1m

i
2

dVC

dz

∣∣∣∣
zi

1

1 + zi
1

pinj(mi
1, m

i
2, z

i)
. (2.27)

⟨V ⟩γ is the comoving-volume within which the injections in bin γ are detectable assum-

ing they come from a population defined by the merger rate densities nγ and hyper-

parameters {µ, σ, l ≡ Λ⃗}. In other words, this excludes periods of time when the detectors

are not operational or when there exists glitches in the data.

Using Eqns. 2.8, 2.19 and 2.26 we sample our posterior using Markov Chain Monte
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Carlo (MCMC) methods and routines in the Gaussian process modules described in PyMC3

(Salvatier et al., 2016) and infer the posterior distributions which form the basis of our

results in the following section. As is standard with MCMC methods, we sample the

logarithm of the posterior distribution which can be written in its expanded form as,

log(p(nγ, µ, σ, l| {d⃗i})) ∝
Nobs∑
i=0

log(
∑
γ

wγ
i n

γ)− (log nγ − µ)Σ−1(log nγ − µ)T − log nγ − log |Σ|
2

−1

2

µ2

102
− 1

2

σ2

102
− 1

2

(log l + 0.085)2

0.932
−Nexp(n

γ) (2.28)

where Σ−1 and |Σ| are the inverse and determinants respectively, of the covariance matrix

Σ defined in Section 2.3.1 for the the BGP model.

2.4 RESULTS

In this section, we present our results of using the BGP model described in Section 2.3 to

infer the mass distribution of merging compact binaries. These results are based on data

from gravitational-waves detected through the third observing run of Advanced LIGO-

Virgo and which form the cumulative Gravitational Wave Transient Catalog 3 (GWTC-3)

(The LIGO Scientific Collaboration et al., 2021a). As stated previously, we consider events

which satisfy having a false alarm rate of less than 1 per 4 years. At this threshold, the

catalog contains 67 events which are listed in Table I of Abbott et al. (2021a).

2.4.1 Binary Merger Population Across All Masses

The feature of the BGP model is that it is independent of any parameters that depend

on the masses of the binary (for example, mass-dependent power laws with specific lim-

its for the minimum and maximum component masses). This allows us to analyze the
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population of compact-binaries over the entire range of binaries spanning NSs and BHs.

Figure 2.3 shows the inferred median merger rate density, in each of the 2-D bins

defined in Section 2.3.1, using data from GWTC-3. There is a clear distinction in the sub-

populations between binary neutron stars (BNSs), neutron star–black holes (NSBHs) and

binary black holes (BBHs). One of the important features to note is the appearance of

structure in the BBH population with pronounced peaks where primary masses (mass

of the heavier component in the binary) are around 10M⊙ and 35M⊙. We will further

describe this structure in more detail in Section 2.4.2 with an emphasis on the primary

component mass of the binary. Resolving structure in the BNS and NSBH populations

is both challenging and statistically insignificant at this stage of the catalog. This is ow-

ing to the relatively smaller number of events contributing to the relevant bins and also

due to the fact that the bin scale at these masses limits the ability to capture the variabil-

ity in these sub-populations. As is expected, our inferred NSBH populations seem to be

representative of the observed events (GW200105 and GW200115; refer Table I of Abbott

et al. (2021a)) driving the inference in the corresponding bins. The inferred BNS popula-

tion is primarily driven by parameter estimates from the two significant BNS events —

GW170817 and GW190425 (refer Table I of Abbott et al. (2021a)).

Following Eqn. 2.6, we can compute inferred merger rate densities for various sub-

populations in the 2-D parameter space of component masses using the BGP model. Table

2.2 shows the inferred merger rate densities in the various mass bins defined in Section

2.3.1 for different population models used in Abbott et al. (2021a) that analyse the binary

population across the entire mass spectrum — POWER LAW + DIP + BREAK (PDB),

MULTI SOURCE (MS) and BGP. These results update the binary merger rate densities

from previous studies (Abbott et al., 2021e) using previous catalogs (Abbott et al., 2021b).

In particular, NSBH rate densities obtained by modeling the mass distribution in this
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Figure 2.3: Binned median merger rate density inferred using the BGP
model with a false alarm rate threshold of < 0.25yr−1. The bins span com-
ponent masses from 1 to 100M⊙

relevant parameter space are quoted for the first time with the BGP model inferring rate

densities RNSBH = 32.0+62.0
−24.0Gpc−3yr−1.

Another feature that can be derived from the sub-structure observed, is the impact

of asymmetric binaries on the primary mass distribution. Figure 2.4 illustrates how off-

diagonal bins dominate the merger rate across most the primary mass axis. This indicates

that the contribution of asymmetric mergers like NSBHs to the marginal distribution over

primary mass is important.

Figure 2.5 shows the consistency of the BGP model in analyzing binaries with NS-scale

masses, with other parametric models — MULTI SOURCE (MS) and POWER LAW + DIP +

BREAK (PDB) - of the compact binary population across masses. Details of these models

30



BNS NSBH BBH NS-Gap BBH-gap Full
m1 ∈ [1, 2.5]M⊙ m1 ∈ [2.5, 50]M⊙ m1 ∈ [2.5, 100]M⊙ m1 ∈ [2.5, 5]M⊙ m1 ∈ [2.5, 100]M⊙ m1 ∈ [1, 100]M⊙
m2 ∈ [1, 2.5]M⊙ m2 ∈ [1, 2.5]M⊙ m2 ∈ [2.5, 100]M⊙ m2 ∈ [1, 2.5]M⊙ m2 ∈ [2.5, 5]M⊙ m2 ∈ [1, 100]M⊙

PDB (pair) 170+270
−120 27+31

−17 25+10
−7.0 19+28

−13 9.3+15.7
−7.2 240+270

−140

PDB (ind) 44+96
−34 73+67

−37 22+8.0
−6.0 12+18

−9.0 9.7+11.3
−7.0 150+170

−71

MS 660+1040
−530 49+91

−38 37+24
−13 3.7+35.3

−3.4 0.12+24.88
−0.12 770+1030

−530

BGP 98.0+260.0
−85.0 32.0+62.0

−24.0 33.0+16.0
−10.0 1.7+30.0

−1.7 5.2+12.0
−4.1 180.0+270.0

−110.0

Table 2.2: Reproduced using the public data release (LIGO Scientific Col-
laboration et al., 2021) for Abbott et al. (2021a). Merger rate densities in
Gpc−3yr−1 for different component mass ranges (defined by the ranges in
m1 and m2) across different population models, quoted at the 90% credible
interval. For details regrading models other than BGP refer to Abbott et al.
(2021a).

Figure 2.4: Reproduced using the public data release (LIGO Scientific Col-
laboration et al., 2021) for Abbott et al. (2021a). Differential merger rate
computed using the BGP model as a function of primary mass across all
mass bins and contrasted with that when considering only the diagonal
q ≃ 1 bins in Fig. 2.3. Solid curves represent the median rate densities
and shaded areas denote 90% credible regions.

are given in Abbott et al. (2021a). Different models with different assumptions for the

population shape appear to statistically agree on the differential merger rate. Nonethe-

less, these results also highlight the importance of modeling systematics when analyzing

objects with NS-scale masses.
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Figure 2.5: Reproduced using the public data release (LIGO Scientific Col-
laboration et al., 2021) for Abbott et al. (2021a). Differential merger rate as
a function of component mass for the BGP model and compared with the
PDB and MS models defined in Abbott et al. (2021a). Shaded areas denote
90% credible regions; vertical black lines denote the median (solid) and 90%
credible intervals (dashed) of the lower boundary of the mass gap, M low

gap , in
the PDB model.

2.4.2 Binary Black Hole Population

We now turn our focus to the BBH population and, in particular, look at the primary mass

distribution of binaries inferred using the BGP model. The one-dimensional distribution

in m1 here is derived by marginalizing the posterior support over the appropriate bins in

the m2 dimension. As seen in Figure 2.6, several models including the BINNED GAUS-

SIAN PROCESS construct the inferred primary mass distribution. For details regarding

other models shown in the figure, refer to Abbott et al. (2021a). There are several interest-

ing features in the BBH mass spectrum. Notably, across all models the mass function is

inferred to peak globally at ∼ 10M⊙. Such a peak and its relative height can inform for-

mation channels for BBHs as noted in Section 2.5. Additionally, the secondary local peak

at ∼ 35M⊙ is another feature that models seem to agree on. Evidence for such a peak has
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m1 ∈ [5, 20]M⊙ m1 ∈ [20, 50]M⊙ m1 ∈ [50, 100]M⊙ All BBH
m2 ∈ [5, 20]M⊙ m2 ∈ [5, 50]M⊙ m2 ∈ [5, 100]M⊙

PP 23.6+13.7
−9.0 4.5+1.7

−1.3 0.2+0.1
−0.1 28.3+13.9

−9.1

BGP 20.0+11.0
−8.0 6.3+3.0

−2.2 0.75+1.1
−0.46 33.0+16.0

−10.0

FM 21.1+11.6
−7.8 4.3+2.0

−1.4 0.2+0.2
−0.1 26.5+11.7

−8.6

PS 27+12
−8.8 3.5+1.5

−1.1 0.19+0.16
−0.09 31+13

−9.2

Table 2.3: Reproduced using the public data release (LIGO Scientific Col-
laboration et al., 2021) for Abbott et al. (2021a). Merger rates by different
models from Abbott et al. (2021a) in Gpc−3yr−1 for the mass ranges encom-
passing BBH binaries; quoted at the 90% credible interval. There is broad
agreement among models depsite major differences in modeling assump-
tions.

also been presented previously (Abbott et al., 2021e) however its statistical significance

is higher with the latest GW catalog. Another feature is the absence of a steep decline in

the mass distribution beyond ∼ 45M⊙. This result challenges massive stellar evolution

models and, as noted later, might suggest a different formation channel for these massive

black holes.

Figure 2.6: Reproduced using the public data release (LIGO Scientific Col-
laboration et al., 2021) for Abbott et al. (2021a). The differential merger rate
density for the primary mass predicted using three semi-parametric models
and the parametric POWER LAW + PEAK model for events passing a false
alarm rate threshold of < 0.25yr−1. . Solid curves are the medians and the
colored bands are the 90% credible intervals. All models infer a local maxi-
mum in the merger rate at around 10M⊙ and 35M⊙.

33



2.5 DISCUSSION

In this chapter, we presented a model based on previous work in Foreman-Mackey et al.

(2014); Mandel et al. (2016), that can be used to infer the mass distribution of compact

binaries using data from gravitational-wave catalogs such as GWTC-3 (The LIGO Scien-

tific Collaboration et al., 2021a). The key feature of this model is that it is independent of

any physical parameters that define the binary system and makes no apriori assumptions

about the shape of the target distribution. Instead, as described in Section 2.3.1 the model

makes use of a Gaussian process defined across a grid of bins in the 2-D parameter space

of the component masses of the binary.

Based on data from GWTC-3, we presented the results of our hierarchical Bayesian

inference to derive the posterior distributions on the hyper-parameters defining the BGP

model and thereby construct the population of compact binaries. The results from the

BGP model highlight the ability to analyze all binary sub-populations (including BNS,

NSBH and BBH) within the same formalism. The inference results presented in Sec-

tion 2.4.1 indicate statistically significant structure in the BBH population which cannot

be modeled using a simple function such as single power-law. This has interesting im-

plications for astrophysics as it can shed light on the processes and channels of binary

formation and evolution (Stevenson et al., 2015; Fishbach et al., 2017; Barrett et al., 2018;

Wysocki et al., 2018; Yang et al., 2019; Doctor et al., 2020; McKernan et al., 2020; Zevin

et al., 2021; Wong et al., 2021; Romero-Shaw et al., 2021). In particular, the inferred peak

at ∼ 10M⊙ in Figure 2.6 can help inform which of the formation channels such as isolated

binaries (Belczynski et al., 2016a; Giacobbo & Mapelli, 2018; Wiktorowicz et al., 2019; Bel-

czynski et al., 2020), globular clusters (Kulkarni et al., 1993; Rodriguez et al., 2015, 2016;

Askar et al., 2018; Hong et al., 2018; Banerjee, 2022) or galactic nuclei (Antonini & Rasio,

2016; Hoang et al., 2018; Fragione et al., 2019; Ford & McKernan, 2021) is the dominant
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contributor to the mergers observed by LIGO-Virgo (Abbott et al., 2021a).

Furthermore, another feature observed from Figure 2.6 is the non-zero probability for

the existence of BHs with primary masses greater than ∼ 40M⊙. Current stellar evo-

lution models predict a lack of BHs in the mass range ∼ 40 − 120M⊙ owing to pair-

instability supernova processes in massive stellar cores (Belczynski et al., 2016b; Woosley,

2017; Marchant et al., 2019; Stevenson et al., 2019; Woosley & Heger, 2021). Thus, the

inferred results here indicate either the need to update our models for evolution with re-

spect to massive stars or the need to incorporate dynamical processes such as hierarchical

mergers (Doctor et al., 2020) or accretion (Inayoshi et al., 2016; Safarzadeh & Haiman,

2020; van Son et al., 2020) to explain the existence of these higher mass BHs. Additionally,

the peak observed at ∼ 35M⊙ might indicate an excess of BHs formed from the collapse of

massive stellar cores owing to pulsational pair-instability supernovae (Talbot & Thrane,

2018; Stevenson et al., 2019) or a different sub-population of binary BHs with formation

channels that are different from those that produce other binaries.

In demonstrating our results across Sections 2.4.1 and 2.4.2, we compared the results of

the BGP model to those from other models (parametric and semi-parametric) introduced

in Abbott et al. (2021a). Our results, including the shape of the mass distribution as well

as merger rate densities shown in Tables 2.2 and 2.3, are statistically consistent with other

models.

The BGP model however, has limitations that can be improved for future analyses. A

more practical model would be one that allows the population to vary with all the phys-

ical parameters of the binary including redshift and spin as opposed to only the masses.

This would enable GW detections to inform us about important correlations that exist be-

tween these parameters in the population. The redshift model we assumed for the merger

rate density was one that does not evolve or is uniform as a function of the co-moving vol-
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ume. Current analyses have already begun placing interesting constraints on the redshift

evolution of the merger rate and, in fact, find the merger rate density to be increasing as

function of redshift (Abbott et al., 2021e,a). Also, studies are finding correlations between

the mass and spin parameters of BBHs (Abbott et al., 2021a; Callister et al., 2021). Further,

the analysis presented in this chapter used a number of discrete bins in each dimension of

m1 and m2 for the BINNED GAUSSIAN PROCESS. In order to resolve structures with future

catalogs of GW events, especially in the BNS and NSBH sub-populations, the number of

bins would need to be increased. Although this might increase the computational com-

plexity of the method, the trade-off in discerning interesting features in the population

cannot be ignored.

With the increasing sensitivity of GW detectors in the future, we are entering an era

where a significantly larger number of GW events will inform the population of compact

binaries and constrain fundamental astrophysical processes (Punturo et al., 2010; Abbott

et al., 2017a, 2020c; Kalogera et al., 2019). Such large catalogs of GW events will need

flexible modeling methods such as those demonstrated here in order to infer features in

the population that cannot be modeled by simple functions.
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CHAPTER 3

Inferring kilonova population properties with a

hierarchical Bayesian framework I : Non-detection

methodology and single-event analyses

This chapter is reproduced in part from Mohite et al. (2022), published under the title

Inferring kilonova population properties with a hierarchical Bayesian framework I : Non-detection

methodology and single-event analyses in The Astrophysical Journal © 2022 The Author(s).

Published by the American Astronomical Society and licensed under the Creative Com-

mons License CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). The Version

of Record is available online at https://doi.org/10.3847/1538-4357/ac3981

3.1 INTRODUCTION

Mergers of neutron stars and neutron star-black hole binaries (BNS and NSBH) present

unique opportunities to probe multi-messenger astrophysics (e.g., Metzger, 2019). While

they are among the best sources of gravitational-wave (GW) emission detectable by GW

observatories (Abbott et al., 2019b, 2020b) such as Advanced LIGO and Advanced Virgo

(Aasi et al., 2015; Acernese et al., 2015), their potential detection in the electromagnetic

(EM) spectrum by surveys around the world represents one of the most challenging

searches for astrophysical transients. During the merger, significant amounts of neutron-

star (NS) matter are ejected at sub-relativistic speeds due to either tidal or hydrody-

namical forces; the radioactive decay of r-process elements synthesized in the neutron-

rich merger ejecta powers a thermal ultraviolet, optical and near infrared transient, of-

ten referred to as a kilonova (KN) (Li & Paczyński, 1998; Rosswog, 2005; Metzger et al.,
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2010; Tanaka & Hotokezaka, 2013). Despite their color- and luminosity-evolution being

viewing-angle dependent (Kasen et al., 2015; Bulla, 2019; Kawaguchi et al., 2020; Korobkin

et al., 2020; Zhu et al., 2021), their (largely) isotropic emission makes KNe one of the

promising targets for EM counterpart follow-up observations (Roberts et al., 2011). How-

ever, they can be short-lived, faint, and peak in the infrared, making detection difficult

(Kasen et al., 2015; Tanaka, 2016; Barnes et al., 2016; Metzger, 2019; Nakar, 2019).

From an observational standpoint, the GW detection of the BNS merger GW170817

(Abbott et al., 2017b) provided the first, and only, multi-messenger follow-up of a GW

event to yield an associated KN (AT2017gfo) to date (Abbott et al., 2017c). Observa-

tions were recorded in the ultraviolet, optical and near-infrared (Andreoni et al., 2017;

Chornock et al., 2017; Coulter et al., 2017; Cowperthwaite et al., 2017; Drout et al., 2017;

Evans et al., 2017; Kasliwal et al., 2017, 2019a; Kilpatrick et al., 2017; Lipunov et al., 2017;

McCully et al., 2017; Nicholl et al., 2017; Shappee et al., 2017; Soares-Santos et al., 2017;

Pian et al., 2017; Smartt et al., 2017; Tanvir et al., 2017; Utsumi et al., 2017). These obser-

vations have highlighted the ability to test models of KNe and provide constraints on the

ejecta mass and velocity (Abbott et al., 2017d; Cowperthwaite et al., 2017; Perego et al.,

2017; Pian et al., 2017; Smartt et al., 2017; Tanaka et al., 2017; Waxman et al., 2018; Cough-

lin et al., 2019b; Kawaguchi et al., 2020; Heinzel et al., 2021; Raaijmakers et al., 2021),

r-process elemental abundances (Côté et al., 2018; Hotokezaka et al., 2018; Radice et al.,

2018; Tanaka et al., 2018; Hotokezaka & Nakar, 2020; Siegel, 2019), the NS equation of

state (Foucart et al., 2018; Coughlin et al., 2018b; Radice & Dai, 2019; Hinderer et al., 2019;

Breschi et al., 2021; Nicholl et al., 2021) and Hubble Constant (Hotokezaka et al., 2019;

Dietrich et al., 2020; Dhawan et al., 2020).

There are a plethora of studies in the literature that model the luminosity evolution of

KNe (Kasen et al. 2017; Coughlin et al. 2018b; Wollaeger et al. 2018; Bulla 2019; Kawaguchi
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et al. 2020; also see references in Metzger 2019). Despite the detection of the KN from

GW170817, there are significant uncertainties in the model parameter space (Barnes et al.,

2016; Rosswog et al., 2017; Zhu et al., 2018; Kasliwal et al., 2019a; Wu et al., 2019; Heinzel

et al., 2021). These uncertainties primarily stem from the range of ejecta masses expected

from such mergers and the content of nuclear matter assumed in the models (Barnes et al.,

2020; Foucart et al., 2021; Kullmann et al., 2021; Just et al., 2021). While uncertainties in

the mass ejected from BNS systems have been shown to be driven mostly by the total

mass and mass ratio of the system (Bauswein et al., 2013; Hotokezaka et al., 2013; Köppel

et al., 2019; Kiuchi et al., 2019), those in models for NSBH systems are influenced by the

mass ratio, BH spin and NS radius (Etienne et al., 2009; Kyutoku et al., 2015; Kawaguchi

et al., 2016; Foucart et al., 2018; Zhu et al., 2020).

The third observing run of Advanced LIGO and Virgo (O31), which lasted 11 months,

yielded a total of 15 publicly announced NSBH and BNS candidates. Several teams, in-

cluding Global Relay of Observatories Watching Transients Happen (GROWTH; Kasli-

wal et al. 2020), Electromagnetic counterparts of gravitational wave sources at the Very

Large Telescope (ENGRAVE; Levan 2020), Global Rapid Advanced Network Devoted to

the Multi-messenger Addicts (GRANDMA; Antier, S. and Agayeva, S. and AlMualla,

M. and others 2020), Gravitational-wave Optical Transient Observer (GOTO; Gompertz

et al. 2020), All Sky Automated Survey for SuperNovae (ASAS-SN; de Jaeger et al. 2021),

Asteroid Terrestrial Last Alert System (ATLAS; Tonry et al. 2018), Panoramic Survey Tele-

scope and Rapid Response System (Pan-STARRS; Chambers et al. 2016), MASTER-Net

(Lipunov et al., 2017), Dark Energy Survey Gravitational Wave Collaboration (DES-GW;

Soares-Santos et al. 2017) and Japanese collaboration for Gravitational wave ElectroMag-

netic follow-up (J-GEM; Sasada et al. 2021) conducted wide-field searches within the

1https://gracedb.ligo.org/superevents/public/O3/
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skymaps of BNS and NSBH candidates and pursued follow-up of interesting transient

candidates found therein, but no plausible EM counterparts were found (e.g., Coughlin

et al. 2019c).

Nevertheless, the apparent dearth of counterparts during all of O3 can illuminate our

understanding of the intrinsic properties of KNe. On an individual GW event basis, ob-

servational upper limits can be used to constrain the KN emission from a potentially

associated counterpart and infer properties of the binary (Hosseinzadeh et al., 2019; An-

dreoni et al., 2020; Anand et al., 2020; Morgan et al., 2020). Other works, e.g., Coughlin

et al. (2019c); Lundquist et al. (2019a); Gompertz et al. (2020); Antier, S. and Agayeva, S.

and AlMualla, M. and others (2020); Kasliwal et al. (2020), have demonstrated ways to

synthesize survey observations for a suite of GW events to constrain the KN population

as a whole. In particular, Kasliwal et al. (2020) formulated a method for constraining the

luminosity function of the KN population. Assuming a non-uniform distribution of KN

initial luminosities between −10 and −20 absolute magnitude, their findings suggest that

no more than 57% (89%) of KNe could be brighter than −16.6 mag assuming flat (fading

at 1 mag day−1) evolution (Kasliwal et al., 2020).

In this paper, we present nimbus(Mohite, 2021): a hierarchical Bayesian framework

to infer the intrinsic luminosity parameters of the population of KNe associated with

GW events, based purely on non-detections. Key features of this framework include the

simultaneous use of probabilistic source distance information from GW observations and

corresponding upper limits from EM surveys, accounting for the fraction of the skymap

searched by a given survey for each event, self-consistent inclusion of the probability

of a GW event being of astrophysical origin (pastro) and the ability to model multi-band

luminosity evolution. The framework is agnostic to the specific luminosity model used

and thus can be used to constrain a wide variety of models in the literature.
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As a first example and proof of concept, we demonstrate realistic constraints possi-

ble on the KN emission from the past follow-up of the event GW190425 (Abbott et al.,

2020a) conducted with the Zwicky Transient Facility (ZTF) (Coughlin et al., 2019d). ZTF

is an optical time-domain survey, consisting of a CCD camera with a 47 deg2 field-of-view

installed on the 48-inch Samuel Oschin Schmidt Telescope at the Palomar Observatory.

Scanning the sky at an areal survey speed of ∼ 3750 square degrees per hour in three cus-

tom filters, ZTF-g, ZTF-r, ZTF-i; it reaches a median depth of 20.4 mag in 30 s exposures

in its nominal nightly survey but can also conduct deeper target-of-opportunity followup

of external events (Coughlin et al., 2019a); for a comprehensive review of the ZTF instru-

ment, software, and survey see Bellm et al. (2019); Masci et al. (2019); Graham et al. (2019);

Dekany et al. (2020).

Among the 13 events searched by ZTF in Advanced LIGO’s third observing run (Kasli-

wal et al., 2020) that could have a probable EM counterpart, based on the probability of

the system containing a NS i.e. p(BNS) or p(NSBH), GW190425 is so far the only signif-

icant binary merger event confirmed by LIGO and Virgo (Abbott et al., 2020a) to likely

be a BNS based on the posterior inference of its masses; therefore, our analysis herein fo-

cuses on this event alone. GW190425 was located at a distance of 159+69
−71 Mpc and its final

90% credible localization spanned 8284 deg2 (Abbott et al., 2020a). For GW190425, ZTF

observed ∼8000 deg2, corresponding to 45% probability of the initial BAYESTAR skymap

(Singer & Price, 2016) which reduced to 21% integrated probability within the 90% credi-

ble region of the LALInference skymap (Veitch et al., 2015b) and attained a median depth

of mAB ≈21 mag in g- and r-bands (Coughlin et al., 2019a). For the purpose of this anal-

ysis, we consider ZTF areal coverage within the entire LALInference skymap, which cor-

responds to 32% probability. No KN was identified in the observed region of this event

by ZTF or other optical telescopes (Lipunov et al., 2019; Lundquist et al., 2019b; De et al.,
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2019; Xu et al., 2019; Kasliwal et al., 2019b; McBrien et al., 2019; Smith et al., 2019; Steeghs

et al., 2019; Blazek et al., 2019; Li et al., 2019), or for any other GW event followed-up with

ZTF (Kasliwal et al., 2020).

This paper is organized as follows. In Sec. 3.2, we provide a detailed description of

the Bayesian framework including a derivation of the model posterior and important as-

pects that impact the inference. We then present our main inference results on GW190425

using two different prior assumptions in Sec. 3.3. We also use this Section to compare

our results with those obtained from simsurvey (Feindt et al., 2019), a simulation tool

for astronomical surveys previously used in the literature to constrain KN luminosity dis-

tributions (Kasliwal et al., 2020). We then conclude with a discussion of our results and

future outlook in Sec. 3.4.

3.2 BAYESIAN FRAMEWORK

In order to derive constraints on KN parameters, we make use of a hierarchical Bayesian

statistical framework. Our goal is to find the posterior probability distribution of the pa-

rameters of interest θ⃗, given the data {di}. The derivation here follows analogous deriva-

tions of hierarchical population inference in GW literature (Farr et al., 2015b; Gaebel et al.,

2019; Mandel et al., 2019b).

3.2.1 Model definitions

For this paper, we model the luminosity evolution of KNe using a two-parameter, linear

family of light curves (as adopted in Kasliwal et al. 2020). However, we will discuss

extensions of our framework to other models as well. The absolute magnitude (M ) in a
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given filter λ is given as a linear function of time (t),

Mλ(t) = M0 + α (t− t0) (3.1)

where t0 is the initial time of the KN transient. We can see that the two parameters

(M0, α), which represent an initial absolute magnitude and evolution rate respectively,

completely define the evolution at all times. Therefore, for this simplistic parameteriza-

tion, θ⃗ = {M0, α}. We emphasize that our motivation to implement such a simple model

is to demonstrate the framework and due to the fact that we rely on follow-up observa-

tions of KNe up to 3 days following the merger time, where such models are a relatively

good fit to the data (see Sec. 3.3.3 and Sec. 3.4).

Before we begin with our derivation, we will state our notation as follows:

• NE : Total number of events that were followed up, indexed by i.

• NF : Total number of fields-of-view for which EM observations have been recorded,

indexed by f . For purposes of improved reference model subtraction, many opti-

cal/infrared surveys use discrete fields for observations rather than allowing com-

plete freedom (Ghosh et al. 2017, Coughlin et al. 2018a and references therein). How-

ever, this can be generalized to any discretization of the sky such as HEALPIX (Hi-

erarchical Equal Area isoLatitude Pixelization2; Górski et al. (2005)) if needed.

• Nf : Total number of observations for field f .

• tfj : Time of observation, indexed by j for each field f over the duration of follow-up

of the event. j would run over the total number of observations for each field (Nf ).

2https://healpix.sourceforge.io/
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• t0 : Initial time of the KN transient, which corresponds to the initial absolute mag-

nitude M0

• f̄ : Index for fields not including the field f .

• F̄ : Hypothesis that the KN is not in any of the observed fields.

• A : Hypothesis that the event is of astrophysical origin.

• T : Hypothesis that the event is of terrestrial origin (implying that the event is spu-

rious).

• P i(A) : The probability of the ith event being of astrophysical (A) origin. This is an

estimate provided by the LIGO-Virgo-KAGRA collaboration for the associated GW

event. It can either be a low-latency estimate or an update provided after a refined

analysis.

• {di} : The set of EM data associated with all events, indexed by i. We will further

index this data by the field index f and time of observation index j, in our deriva-

tion below. For this study, we take our data to be the set of limiting (apparent)

magnitudes {mi,f,j
l } in each field at the given time of observation.

3.2.2 Derivation of the model posterior

We begin our derivation of the model posterior with the basic equation of Bayes’ law:

p(M0, α|{di}) =
p({di}|M0, α)p(M0, α)

p({di})
(3.2)

where p({di}|M0, α) is the likelihood, p(M0, α) is the prior distribution of the parameters

M0 and α, and p({di}) is the evidence. We carry out analyses based on different prior

44



assumptions and show the effect it has on the posterior distribution of the KN parameters

in Sec. 3.3. The likelihood represents the probability density of observing the data di given

a model, for a set of events indexed by i, while the evidence is the probability of observing

the data, marginalised over all parameters and serves as a normalization factor in the

inference. Further, each event and its associated data are assumed to be independent.

The likelihood p({di}|M0, α) can then be written as a product over events.

p({di}|M0, α) =

NE∏
i=1

[
p(di|M0, α)

]
(3.3)

There are two possibilities for any given event – either the event is astrophysical (A) or it

is non-astrophysical/terrestrial (T ). We note that the probability of the latter hypothesis

is (1 − P i(A)). We thus split the likelihood into two terms using the relative probabilities

of each hypothesis,

p({di}|M0, α) =

NE∏
i=1

[
p(di|M0, α, A)P

i(A)

+p(di|T )(1 − P i(A))

]
. (3.4)

The assumption in the last term in the parentheses is that the contribution to the like-

lihood cannot depend on the parameters of the KN model if the event is of terrestrial

origin. This is straightforward to check because in the case of a purely terrestrial event

(P i(A) = 0), we must recover the prior when performing inference.

We now use the fact that, for any event (indexed by i), EM observations are distributed

over NF fields (indexed by f ) at times of observation (indexed by j) such that every ob-

servation has associated limiting magnitudes (mi,f,j
l ). As stated above, we take our data

di for each event to be the set of these observed limiting (apparent) magnitudes {mi,f,j
l },

45



i.e., di ≡ {mi,f,j
l }. The likelihood thus becomes,

p({di}|M0, α) =

NE∏
i=1

[
p({mi,f,j

l }|M0, α, A)P
i(A)

+p({mi,f,j
l }|T )(1 − P i(A))

]
. (3.5)

Furthermore, under the astrophysical hypothesis (A), the likelihood can be split into

two more terms given that there are two possibilities for the KN event:

• The KN is located within an observed field f and consequently, not in any of the

other fields (f̄ ). In this case we need to find the probability that the KN is within

a field f i.e., P (f) and sum the contributions to the likelihood from each field. The

overall likelihood contribution from this hypothesis is

NF∑
f=1

(
p({mi,f

l }|M0, α, A, f)P (f)

NF∏
f̄=1,
f̄ ̸=f

p({mi,f̄
l }|A, f)

)

• The KN event is not located in any observed field (hypothesis F̄ ). This case has

a probability equal to (1 −
NF∑
f=1

P (f)). The overall likelihood contribution from this

hypothesis is

(
1−

NF∑
f=1

P (f)
) NF∏

f=1

p({mi,f
l }|A, F̄ )

When information about a GW candidate event is released, it contains the 3D sky

probability distribution of the location of the event, which includes the luminosity dis-

tance (dL) to the source (Singer et al., 2016b,a). Using this, it is straightforward to compute
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the probability for a KN to be present in a given field. Referring to Eq. 3 in Singer et al.

(2016b), the sum of probabilities over the sky is

P (f) =

Nf
pix∑

k=0

ρk, (3.6)

where the sum is over the N f
pix pixels that are contained within field f and ρk is the prob-

ability of the event being in pixel k. The likelihood, written in terms of hypothesis contri-

butions stated above, then becomes

p({di}|M0, α) =

NE∏
i=1

[(
NF∑
f=1

(
p({mi,f

l }|M0, α, A, f)P (f)

NF∏
f̄=1,
f̄ ̸=f

p({mi,f̄
l }|A, f)

)

+

(
1−

NF∑
f=1

P (f)

) NF∏
f=1

p({mi,f
l }|A, F̄ )

)
P i(A)

+(1 − P i(A))

NF∏
f=1

p({mi,f
l }|T )

]
, (3.7)

where the second and third terms in the brackets correspond to the hypotheses that the

KN position is outside all the observed fields and that the event is terrestrial in nature,

respectively.

Since the observations in each field will have observation times associated with them,

each field observation would constrain the model independently. Thus, the likelihood

term for each field can be written as a product over the number of observations corre-

sponding to that field.
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p({di}|M0, α) =

NE∏
i=1

[(
NF∑
f=1

P (f)
( Nf∏

j=1

p(mi,f,j
l |M0, α, A, f)

NF∏
f̄=1,
f̄ ̸=f

Nf̄∏
j′=1

p(mi,f̄ ,j
′

l |A, f)
)

+

(
1−

NF∑
f=1

P (f)

) NF∏
f=1

Nf∏
j=1

p(mi,f,j
l |A, F̄ )

)
P i(A)

+(1 − P i(A))

NF∏
f=1

Nf∏
j=1

p(mi,f,j
l |T )

]
(3.8)

We now focus on the first term in the likelihood for each field p(mi,f,j
l |M0, α, A, f). In

order to simplify this term and derive an expression for the same, we note that, in reality,

a telescope measures an apparent magnitude (mj) instead of an absolute magnitude. One

can rewrite this likelihood term, using conditional probability, as an integral over the

apparent magnitude of the KN event.

p(mi,f,j
l |M0, α, A, f) =

∞∫
−∞

p(mi,f,j
l |mj)p(mj|M0, α, A, f)dmj (3.9)

The relationship between the apparent magnitude (m), absolute magnitude (M ) and

luminosity distance (dL) of an astrophysical source is given as

m = M + 5 log10

(
dL
10pc

)
(3.10)

or equivalently,
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dL = 10

(
m−M

5

)( 1

105

)
Mpc. (3.11)

The above formulae do not include the effects of extinction. We account for Milky

Way extinction in our framework by appropriately modifying the limiting magnitudes

for each field and filter. We make use of the dustmaps package (Green, 2018) and its

implementation of the SFD dustmap (Schlafly & Finkbeiner, 2011) to derive extinction

values. Also, from Eq. 3.11, we can derive a limiting distance di,f,jlim for a corresponding

limiting magnitude mi,f,j
l . The intrinsic parameters of the KN (M0, α) along with the ob-

servation time (tj) uniquely determine the absolute magnitude (Mj(M0, α)) of the KN, at

any given time. Eq. 3.11 shows that for such a given absolute magnitude M , the apparent

magnitude and distance are dependent variables that uniquely define each other. It is

possible to relate the apparent magnitude distribution (p(mj|M0, α, A, f)) in the integral

above to the marginal distance distribution (pf (dL)) for each field f , which can be derived

from the GW skymap, as

p(mj|M0, α, A, f) = pf (dL)
d dL
dmj

(M0, α). (3.12)

We can thus rewrite the integral in Equation 3.9 as

p(mi,f,j
l |M0, α, A, f) =

∞∫
0

p(mi,f,j
l |mj(dL,M0, α))pf (dL)d dL. (3.13)

Since this is a non-detection study, the only viable limiting magnitudes for non-detection

are those that are strictly shallower (brighter) than the apparent magnitude from the KN

model. We implement this by using a uniform distribution function for the conditional

density p(mi,f,j
l |mj(d,M0, α)) as,
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p(mi,f,j
l |mj(dL,M0, α)) = k


1

(mj−mi,f,j
l )

; mj ≤ mhigh
l

1

(mhigh
l −mlow

l )
; mj > mhigh

l

(3.14)

where mlow
l , mhigh

l are the lower and upper limits of the range of limiting magnitudes

from the survey or distance information, respectively and k is a normalization constant

that will be discussed shortly. See Sec. 3.2.3 for a more detailed discussion on the choice of

these limits. Further, it is important to account for the probabilistic nature of each limiting

magnitude when considering the likelihood of any given model. We incorporate this

requirement into our likelihood with a logistic function Φ(dL−di,f,jlim ). The logistic function

ensures a smooth turnover in the likelihood between distances (apparent magnitudes)

that pass the limiting distance (limiting magnitude) constraints and those that do not.

From Equation 3.11, we can write the logistic function in terms of the distance as,

Φ(dL − di,f,jlim ) =
1

1 + e−a(dL−di,f,jlim +b)
. (3.15)

We choose the constants a and b in Equation 3.15 based on errors in the limiting mag-

nitude such that a 3-σ error in mi,f,j
l corresponds to the distance at which the logistic

function in Equation 3.15 is set to the cumulative probability weight of a Gaussian dis-

tribution beyond the lower 2-sigma limit (∼ 2.3%). Combining Eqs. 3.14 and 3.15, the

likelihood term in Eq. 3.13 can be evaluated up to a normalization constant k.

Since the total likelihood in Eq. 3.8 is a sum of probability densities, care must be taken

to normalize each term, corresponding to each hypothesis, separately. The constant k can

be derived by normalizing the likelihood term in Equation 3.13 between the appropriate

limiting magnitude limits, or more directly between appropriate limiting distance limits:
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k =
1∫ mhigh

l

mlow
l

p(mi,f,j
l |M0, α, A, f)dm

i,f,j
l

. (3.16)

These limits can be chosen based on the extent of the marginal distance distribution for

each field. We provide specific details of our assumptions for these limits in Sec. 3.3.

This normalization also ensures that we account for selection effects based on the lim-

iting magnitude limits of the survey. We defer the discussion of the impact this has on the

inference to Sec. 3.2.3. The remaining terms in the field (f ), non-field (f̄ ) and terrestrial (T )

hypotheses from Equation 3.8 must be normalized. We assume that each of these terms

follows a uniform distribution between the survey limits mlow
l – mhigh

l . This assumption

largely simplifies the form of the likelihood. While it is not necessary to assume such a

form for each of these terms, and one can construct more complex distributions based on

realistic data, this choice does not impact the inference because these distributions must

necessarily be independent of the model parameters. This gives us a normalized density

of

p(mi,f̄ ,j
′

l |A, f) = p(mi,f,j
l |A, F̄ ) = p(mi,f,j

l |T )

=
1(

mhigh
l −mlow

l

) (3.17)

This simplifies the likelihood in Equation 3.8 to give us a posterior

p(M0, α|{di}) ∝
NE∏
i=1

[(
NF∑
f=1

(∏
j p(m

i,f,j
l |M0, α, A, f)∏

j p(m
i,f,j
l |A, f̄)

)
P (f)
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+

(
1−

NF∑
f=1

P (f)

))
P i(A)

+ (1 − P i(A))

]
p(M0, α). (3.18)

3.2.3 Impact of using survey limits and distance limits on inference

We derived our model posterior for the framework in Sec. 3.2.2. As seen in Equation 3.16,

an important quantity to compute for the posterior is the normalization factor k which

depends on the choice of upper limits mlow
l , mhigh

l and model parameters (M0, α). Such

a factor is akin to accounting for selection effects (see Mandel et al. 2019b) where one

has to normalize the likelihood of observing a given model (M0, α) by the range of data

supported by the model. From Eq. 3.11, it is possible to express upper limits for a model

equivalently in terms of the apparent magnitude or the distance. Thus, a range in one of

the quantities directly specifies a range in the other. The choice of which quantity to use

to calculate, mlow
l and mhigh

l , significantly affects the result of the inference. There are two

ways to select specific values for these normalizing parameters:

• Survey Limits: A straight-forward method is to choose mlow
l and mhigh

l directly from

survey data when the telescope is observing. From Equation 3.11, this directly im-

pacts the range of distances permitted for a given model (M0, α) and gives a differ-

ent normalization value for each model. Such a method ensures that the normaliza-

tion realistically accounts for model biases in the case of non-detection.

• Distance Limits: Alternatively, we can choose to use the distance posterior from the

GW skymap data as our source of ground truth such that we calculate mlow
l and

mhigh
l based on the full range of possible distances3. This will change the values of

3Computationally, we bound the distance between a realistic lower limit and the upper 5-σ value from
the distance posterior.
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mlow
l and mhigh

l for each model. However, as the range in distance is the same for

each model this ensures that the normalization factor is the same.

We note that our preferred results in this paper are those that use realistic survey upper

limits. Unless stated otherwise, our reference to results in general will be with this choice.

We present the differences that result from these two choices in Sec. 3.3.1.

3.3 KILONOVA INFERENCE USING GW190425

GW190425 was a highly significant (pastro ∼ 0.999; Abbott et al. 2020a) GW event that

was followed up by ZTF (Coughlin et al., 2019d) with an overall sky coverage of ∼ 32%

of the total skymap. Inferences on the component masses of the detected binary show

it to be consistent with a BNS, although the possibility of either or both components be-

ing BHs cannot be ruled out from GW data alone. Here, we present results using the

Bayesian framework nimbus described here with upper limits from the ZTF follow-up

of GW190425 to derive posterior constraints on KN parameters of the model light curve

for BNS mergers. We note that unlike the band-specific linear evolution shown in Eq. 3.1

we adopt a single “average-band” linear model with parameters (M0, α) for our analyses

presented here. This ”average-band” model effectively assumes the same color evolution

in all bands, allowing us to use ZTF observations in all filters for our analysis. This simpli-

fied model is conducive for testing the nimbus framework as it significantly reduces the

model parameter-space (since kilonova models predict a wide diversity in expected color

evolution). For example, using this linear model fit, GW170817 has M0 = −16.6mag

and α = 1mag day−1 (Kasliwal et al., 2020). Our analyses rely on two different prior

distribution choices for (M0, α) – (i) uniform or agnostic priors (explained in Sec. 3.3.1)

and (ii) astrophysical priors motivated from theory and numerical modeling (explained

in Sec. 3.3.3). We limit our analyses to use follow-up data up to 3 days from the trig-
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ger time since realistic models predict that most kilonovae will fade beyond the median

ZTF limiting magnitude of 21 mAB (for this event) within 72 hours after trigger time (see

Sec. 3.4).

In order to limit the effects of Milky Way extinction in the fields surveyed, we place

a conservative threshold by excluding fields which have E(B − V ) > 2mag. For the

remainder of the paper, we make a simplifying assumption that the KN associated with

GW190425 is located within the searched region.4 We ran simulations taking the full

GW190425 skymap into account and found the results to be largely unconstraining; hence

we adopt the above assumption in order to demonstrate the constraints possible with

nimbus in an ideal sky coverage scenario. Our constraints on KN model parameters,

obtained using both prior choices stated above, are displayed in Table 3.1. In order to

derive our constraints and plot our posterior probabilities in this paper, we make use

of an interpolating or smoothing function such as the Gaussian Process module from

scikit-learn (Pedregosa et al., 2011) to interpolate between our original samples from

priors. We have checked that uncertainties from these interpolations (see Fig. 3.2) are

within the statistical variations of the observed limiting magnitudes across the ZTF quad-

rants for each field of observation, where these variations are ≥ 0.1mag for a majority

of fields. Sec. 3.3.1 with uniform priors demonstrates the functionality of the framework.

In particular, our results in this Section show the posterior constraints that are possible

using the framework. In addition, we show how a general inference is sensitive to vari-

ations in sky coverage and pastro. We also use this Section to illustrate the differences in

results based on the two different normalization choices as explained in Sec. 3.2.3: choos-

ing the faint and bright apparent magnitude limits based on the observed range from ZTF

(Survey Limits) or based on the minimum and maximum distances from the GW distance

4nimbus has the capability to accommodate for the excluded part of the skymap (see Fig. 3.2).
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posterior (Distance Limits). Sec. 3.3.3 demonstrates the ability to test astrophysical priors

within the nimbus framework.

3.3.1 Uniform priors

We first implement the framework assuming uniform priors for our model parameters

M0 ∼ U(−20,−10)mag, α ∼ U(−1, 2)mag day−1. According to our convention (see Eq.3.1)

a negative evolution rate would imply a rising light-curve for the kilonova while a pos-

itive one would be decaying. While α < 0 appears implausible based on our BNS KN

model fits (see Sec. 3.3.3), KNe from NSBH systems can exhibit a slow rise (Anand et al.,

2020) that could take ≳2 days to peak. Within our time window of observations of 3 days,

a NSBH KN model may be better approximated by a rising linear model than a fading

one. Thus, we adopt a broad range for our evolution rate prior to accommodate rising

to rapidly decaying KN models. Our prior on the initial magnitude is similarly broad,

spanning a large fraction of the known transient phase-space (Kasliwal, 2011). Such a

prior is uninformative with respect to the realistic emission models of KNe that have im-

plications for how (M0, α) could be distributed. The posterior densities we obtain via the

framework are shown in the left panel of Fig. 3.1. Broadly, we see that, as expected for

a non-detection, there is more posterior support for dimmer models (larger values of M0

and α) than brighter ones (smaller values of M0 and α). Another expected trend is the

increase of support for brighter M0 values with respect to the evolution rate as we vary

α from ∼ −1 to 1mag day−1. A significant part of the parameter space that belongs to

bright and rising models (M0 ≲ −18 and α ≲ 0) is disfavored over the rest of the models

by factors of ∼ 10 − 100. For most of the parameter space, where M0 ≳ −15, our results

cannot place any constraints.

The right panel of Fig. 3.1 also compares the posterior constraints we obtain with
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Figure 3.1: (left) 2-D posterior probability plot of KN model parameters
(initial absolute magnitude M0, evolution rate α) with uniform priors,
M0 ∼ U(−20,−10)mag, α ∼ U(−1, 2)mag day−1, and normalization over re-
alistic Survey Limits. Representative points are shown for the characteristic
peak magnitude and rise rate (derived from the characteristic timescale) for
some categories of transients (Kasliwal (2011), Fremling et al. in prep) – SN
Ia (red), Core Collapse SNe-CCSNe (gold), Faint, fast SNIIb (dark-cyan), IL-
RT/LRNe (dark-orchid) and GW170817 (grey).(right) Corner plot showing
the 2-D and corresponding 1-D marginalized posterior distributions of the
KN model parameters for the two different normalization schemes detailed
in Sec. 3.2.3 — using realistic Survey Limits from ZTF data for GW190425
which are between 15–23 mag (green;mlim-survey) and Distance Limits
obtained for each model draw using 5σ distance limits obtained from the
skymap distance posterior for each field (orange;mlim-distance). Con-
tours indicate 68% and 95% confidence regions. Non-monotonic features in
both panels (eg: 68% green contour in the right panel) indicate the effects of
model normalization. Details in Secs. 3.2.3,3.3.1.
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two different normalization choices as explained in Sec. 3.2.3. The inference derived us-

ing realistic survey limits (mlim-survey; green contours) rely on the range of limiting

magnitudes obtained from ZTF during the follow-up of GW190425. For this event this

corresponds to range limits of (mlow ≈ 15,mhigh ≈ 23). On the other hand posteri-

ors obtained using distance limits (mlim-distance; orange contours) rely on the entire

range of posterior distances from the 3-D skymap for the event. While constraints from

the two choices are quite similar with respect to the evolution rate, the mlim-survey

method provides more support to models on the brighter end of the M0 distribution

compared to the mlim-distance method. This is understandable since having a re-

stricted range of limiting magnitudes from the survey reduces the range of viable dis-

tances for brighter models thereby providing a smaller parameter space that satisfies the

likelihood. Accounting for this fact in the likelihood as a selection effect leads to an up-

weighting of these brighter models with respect to the mlim-distance method. This

is also the reason we see non-monotonic features in the 2-D posterior distributions with

the mlim-survey method in both panels of Fig. 3.1. The effects of normalization arise

the most for models that are at the marginal boundary with respect to the upper lim-

its. As mentioned previously, our preferred results in this paper are those that use the

mlim-survey method.

As seen from Table 3.1, the 90% upper limit with a uniform prior is about M90%
0 =

−16.63 mag. We compare the result derived here to the probability of zero detections as a

function of absolute magnitude shown in Fig. 9 of Kasliwal et al. (2020), which indicates

a ∼ 7% probability for models with a similar initial absolute magnitude. Although the

two separate constraints are consistent, there are significant differences between the two

formalisms overall. The first is that our analysis assumes that an associated KN fell within

the observed region. If we relax this assumption and use the ∼32% sky coverage in total
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for this event by ZTF, our inference over the entire skymap region does not yield any

meaningful constraints, as expected.

The second difference is that in this work, we infer the properties of a KN associated

with GW190425, while the main result of Kasliwal et al. (2020) places constraints on the

luminosity function of the KN population as a whole. While strong constraints on the

KN emission from a single GW event are possible with a combination of complete sky

coverage and deep upper limits, analyzing KN population properties importantly relies

on several events observed with decent sky coverage and depth. We note, however, that

GW190425 likely contributes significantly to the constraints in Kasliwal et al. (2020) given

its nearby distance and ZTF median depth (m ≈ 21mag).

The 90% limit stated above is also significant in that it represents the extrapolated

peak magnitude of GW170817 with a average decay rate of 1mag d−1 (Kasliwal et al.,

2020). From the left panel in Fig. 3.1, we can see that the data for the non-detection of a

kilonova associated with GW190425 are still consistent with these parameters.

Fig. 3.2 demonstrates how variations in sky coverage and pastro can impact inferences

in such a study in general. Our assumptions and derived constraints in this work cor-

respond to (pastro ∼ 0.999, sky coverage = 100%). However, as the sky coverage or as-

trophysical probability drops, the contribution of the survey upper limits to the posterior

weakens and the constraints become more broad. In particular, below a certain value

for these parameters, the median apparent magnitudes inferred for the KN are brighter

than the median ZTF upper limits, pointing to the fact that at these values the alterna-

tive hypotheses - of either the KN being in a part of the sky where we do not have any

observations or the KN event being a Terrestrial event - have more probability support.

This result also demonstrates the functionality of the framework to account for arbitrary

values of these probabilistic factors that impact inference.
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Figure 3.2: Variation in the median of the initial apparent magnitude distri-
bution (assuming the source is at the mean luminosity distance from the 3-D
skymap) as a function of sky-coverage (left) and probability of astrophys-
ical origin Pastro(right). As the sky-coverage/Pastro decreases (increases),
constraints on the population parameter become weaker (stronger). Col-
ored bands in both plots indicate 2 − σ error regions from the interpola-
tion of posterior probabilities as mentioned in Sec.3.3. Horizontal lines at
m = 21.4mag in both plots indicate the median limiting magnitude across
the 3 day ZTF observations for GW190425. Red vertical line in left plot in-
dicates the actual sky coverage by ZTF.

3.3.2 Comparison with simsurvey

In order to benchmark our results against those from complementary methods in the lit-

erature, we compare the limits we obtain via nimbus with those from the open-source

simulator software simsurvey5 (Feindt et al., 2019). simsurvey simulates KN detec-

tions (or injections) based on survey limits for any given event (Sagués Carracedo et al.,

2021). We estimate the efficiency (or probability) of detecting a KN of a given initial abso-

lute magnitude and linear evolution rate by comparing detections with the total injections

within the observed fields. The software takes as input the ZTF pointings and informa-

tion (i.e., the observation time, limiting magnitude, filters, right ascension and declination

5https://github.com/ZwickyTransientFacility/simsurvey
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for each field and CCD) for the first three days after the merger, and the 3D GW skymap

for any given GW event. We simulate 100,000 KNe for a given absolute magnitude and

evolution rate throughout the 3D GW probability region (see Fig. 3.3). We assume a lin-

ear, colorless lightcurve model as stated in Sec. 3.2.1. Our detection criteria requires the

KN to be detected at least once by ZTF: given actual detection experiments this is a nec-

essary but likely insufficient criterion for identification, since both color information and

evolution rate are needed to separate KNe from false positives (Andreoni et al., 2020).

For example, the gamma-ray burst afterglows that have been discovered in the past with

the ZTF Realtime Search and Triggering (ZTFReST; Andreoni et al. 2021a) pipeline have

exhibited rapid evolution and reddening, requiring detections in both g- and r-bands,

with ≥2 detections in either band for solid identification. Using simsurvey we account

for Milky Way extinction and exclude any KNe with E(B − V ) > 2mag. This process is

repeated for a range of magnitudes (100 bins between −10 and −20 mag) and evolution

rates (31 bins from −1 and 2 mags per day) resulting in a grid of efficiencies. This grid of

efficiencies are then converted into non-detection probabilities (see Fig. 3.3).

As this is a non-detection study, nimbus generates posterior probabilities for models

that are consistent with non-detection using observational upper limits; we compare the

posterior support for models from nimbus with the detection efficiency estimates for

the same models from simsurvey. We normalize the non-detection probabilities in the

simsurvey model grid to sum to 1 in order to compare against nimbus . In Fig. 3.4,

we show the 2-D and 1-D marginalized posterior distributions for the two light curve

parameters from these formalisms.

We note that for simsurvey, the non-detection probability is calculated as 1.0 − ϵi,

where ϵi is the recovery efficiency for a KN with a given absolute magnitude and evolu-

tion rate. Therefore, it naturally follows that as the initial absolute magnitude gets dim-
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Figure 3.3: Non-detection probability 1-ϵi, where ϵi is the recovery effi-
ciency (number recovered / number injected) at a given absolute magni-
tude and evolution rate, for the grid of KNe simulated and recovered using
simsurvey. We simulate 100,000 KNe in each bin, with magnitudes rang-
ing from -10.0 to -20.0 mag and evolution rates ranging from -1.0 to 2.0 mag
day−1.

mer, our constraints get progressively worse. Likewise, going from rising to fast-fading

KN models, the constraints become weaker.

In general, these comparisons illustrate consistency between the constraints inferred

by the two methods on the brighter edge of the initial magnitude distribution, as evi-

denced by the 2-D posterior in Fig. 3.4. We observe a large overlap in the 1-D marginal-

ized posteriors for evolution rate for both formalisms. In both our hierarchical Bayesian

formalism and the frequentist simulation-based approach, we observe that as the model

evolution rate changes from −1.0mag day−1 to ∼ 1.0mag day−1, constraints on KN mod-

els get progressively weaker. A rising KN is disfavored for values of M0 on the brighter
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Figure 3.4: Comparison between nimbus and simsurvey with uniform
priors. The corner plots compare the 2-D and corresponding 1-D marginal-
ized posterior distributions for nimbus (blue) against the normalized non-
detection probabilities from simsurvey (red). The 68% and 95% contours
indicated on the plot demonstrate consistency between the two formalisms.
We assume the same uniform priors in magnitude and evolution rate as for
Fig. 3.1.

end of the initial magnitude range, as the transient would be brighter than these survey

magnitudes. However, for evolution rates >1 mag day−1, the effects of normalization

in nimbus (see Sec. 3.2.3) take into account that the survey limiting magnitudes lend

more support to faster-decaying models, while the nightly limits themselves place nearly
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no constraints in this region of parameter space, leading to conservative estimates in the

posterior curve relative to simsurvey. The 1-D magnitude posteriors reveal that nimbus

has broader support for KN models of varying absolute magnitudes (plateauing around

M≳ −15) and more conservative constraints compared to simsurvey for the brightest

initial magnitudes.

Fundamentally, these two approaches are different but complementary. The simsurvey

analysis yields the probability of not detecting a KN with (M0, α) given the observations.

nimbus gives the posterior probability for a KN with (M0, α) that survives the upper

limits. Thus comparisons between these two approaches discussed here are analogous,

but not exact. Note that while the results from simsurvey here might seem similar to

those obtained in Fig. 3.1 using the mlim-distance method of normalization, we em-

phasize that our preferred results using the mlim-survey method are more realistic in

that they use the actual observed range of ZTF limiting magnitudes from the follow-up of

GW190425. As stated before, the mlim-distance method uses the entire range of viable

distances from the 3D GW skymap. One reason the simsurvey results could be similar

to this method is that the simsurvey method also performs simulations in the entire re-

gion of the skymap based on the GW distance posterior. In order to better understand our

results from the two formalisms, we also compared model probabilities using data from

a single field of observation. Our results in this case show greater agreement indicating

that the differences in the main results arise from the fundamentally different treatment

of combining multiple fields with varying upper limits, luminosity distance distributions

and different methods of model normalization.
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3.3.3 Astrophysical Priors

Variations in the masses, velocities, composition of the ejecta and inclination angle of the

binary system result in different observed KN morphologies. BNS mass ejection mecha-

nisms are categorized into two broad classes: dynamical ejecta and post-merger or wind

ejecta (Nakar, 2019). The tidal mass ejection occurring within ∼10 ms of the final inspiral

stage is referred to as the dynamical ejecta. Bound NS material, which forms an accretion

disk around the merger remnant, releases an outflow termed as the wind ejecta due to

magnetically-driven, disk and neutrino winds.

Using priors inspired from realistic astrophysical models of KNe based on simula-

tions, we present our Bayesian constraints with GW190425 in Fig. 3.5. These priors are de-

rived from surrogate models (Coughlin et al., 2018b) trained on the outputs of the Monte

Carlo Radiative-transfer code POSSIS (Bulla, 2019). Previous studies have underscored

the importance of using astrophysical lightcurve priors in interpreting the emission from

GW190425 (Barbieri et al., 2021; Foley et al., 2020; Kyutoku et al., 2020; Dudi et al., 2021;

Nicholl et al., 2021; Raaijmakers et al., 2021). Broadly speaking, the surrogate models,

otherwise referred to as phenomenological models, use a machine learning technique

to interpolate between data points. In this paper, we use a suite of 2D KN models as-

suming a three-component ejecta geometry, with dynamical ejecta split between equato-

rial lanthanide-rich and a polar lanthanide-poor components, and a spherical disk-wind

ejecta component at lower velocities and with compositions intermediate to lanthanide-

rich and lanthanide-poor (Dietrich et al., 2020). The simulations cover four parameters:

the inclination or the observer viewing angle (θobs), dynamical ejecta mass (Mdyn), post-

merger or wind ejecta mass (Mwind), and half-opening angle for the lanthanide-rich dy-

namical ejecta component (ϕ).

We assume a ϕ = 30◦ half opening angle and vary the other three parameters. Using
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Figure 3.5: (left) Bolometric priors, informed by radiative-transport based
KNe models (Bulla, 2019; Dietrich et al., 2020), showing regions of parame-
ter space where particular luminosities and evolution rates are most prob-
able or improbable for BNS KNe. To guide the eye, the best fit model for
GW170817 is highlighted. The non-detection percentiles (solid lines) are
calculated using simsurvey, as discussed in Sec. 3.3.3. (right) Corner plot
showing the 2-D and corresponding 1-D marginalized posterior distribu-
tions (green) using model based priors (blue).Contours indicate 68% and
95% confidence regions.

the surrogate models, we predict BNS KN light curves for 10 viewing angles from a polar

(θobs = 0◦) to an equatorial (θobs = 90◦) orientation, equally spaced in cos(θ), and for the

following ejecta masses: Mdyn ∈ [0.001, 0.005, 0.01, 0.02] and Mwind ∈ [0.01, 0.11] in steps of

0.02 M⊙. In total, there are 240 BNS KN models. We then map from KN source properties

(e.g., ejecta mass and inclination angle) to observables (peak magnitude and evolution

rate) by performing lightcurve fits.

A typical simulated BNS KN rapidly rises to a maximum within a day or two and

gradually decays. Since the decaying period dominates, we fit a linear model from the

entire grid’s median phase of the peak magnitude up to three days since the merger for
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g-, r- and i-band KN lightcurves. We omitted 20 models that had a mean squared error

greater than 0.1 from this process. These omitted models specifically had low Mdyn but

high Mwind. For each combination of source parameters, we then combine g-, r- and i-

band peak magnitudes and evolution rates based on the number of simulated KNe in

simsurvey that fall in the ZTF observed region of any specific filter. For GW190425,

we have about 2614, 2930, and 168 out of 100,000 simulated KNe that fall in the region

observed with g-, r- and i-band ZTF filters respectively. Gathering the grid-based values

for peak absolute magnitudes and decay rates of KNe, we use kernel density estimation

to construct a smooth probability density function and approximate the true distribution

for the models considered. The left panel of Fig. 3.5 shows this grid-based prior model

overlaid with simsurvey non-detection probabilities.

Effectively, the astrophysical prior reduces a large portion of the parameter space pre-

viously considered by the uniform prior choice. The 2%, 10%, and 50% non-detection

percentiles estimated using simsurvey are plotted over the astrophysical priors. Though

the probable prior region is mostly encompassed by the 50% curve, it lies entirely to the

left of the 2% and 10% curves, indicating that our GW190425 ZTF observations are not

deep enough to place stringent constraints over the astrophysical priors. This is reflected

in the inference results from nimbus (right panel of Fig. 3.5) based on the astrophysi-

cal prior assumptions. Specifically, the posterior and prior contour lines overlap consid-

erably, showing that almost all of the KN models supported by the astrophysical prior

survive the upper limits. In general, this implementation demonstrates the ability to use

theory and simulation-based astrophysical models within the nimbus framework and

constrain them.
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Prior Choice M90%
0

Uniform-mlim -16.63
Uniform-distance -15.01

Astrophysical -17.08

Table 3.1: 90% upper limit of the kilonova initial absolute magnitude (M0)
for the different prior choices in Sec.3.3

3.4 DISCUSSION AND FUTURE OUTLOOK

In this paper, we have presented a hierarchical Bayesian framework nimbus that lever-

ages data from non-detections of probable KNe. This Python package utilizes GW and

EM follow-up information from each candidate event to provide posterior distributions

for KN model parameters. The framework also accounts for the probability of an event

being astrophysical. Although the analysis presented here focuses on a single BNS event,

GW190425, the framework has the capability to include multiple events. It is also straight-

forward to extend the framework to model the inference based on sub-populations of KN

candidates such as BNS and NSBH mergers. We hope the multi-messenger astrophysics

community finds use for and benefits from this package.

A current limitation of this study is that the framework does not account for events

that have been detected in EM follow-up. In order to place stringent constraints on KN

parameters, it would be ideal to include potential candidates for which there exists data

from detected light curves. However, including information from detected events into

the framework would involve non-trivial changes to the model likelihood and would ne-

cessitate an accurate understanding of survey selection effects. So far, GW170817 (Abbott

et al., 2017b) is the only GW event to have been associated with a KN counterpart (Abbott

et al., 2017c). Numerous studies in the literature (e.g., Cowperthwaite et al., 2017; Drout

et al., 2017; Arcavi, 2018; Andreoni et al., 2020) have extrapolated follow-up data to arrive

at an estimate of its initial absolute magnitude and decay rate. In particular, Kasliwal
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et al. 2020 compared their results to an extrapolated initial magnitude of −16.6 mag with

a decay rate of 1 mag per day. Our results do indicate non-negligible posterior support

for such a model. Nevertheless, this represents a single point in model parameter space

and we would instead require a number of detected events to inform the population of

KNe. Further, restricting the study to non-detections is motivated by the fact that O3 did

not yield any obvious EM counterparts. We defer the development of including detected

events to a future study.

We presented results of our inference on GW190425 using two different prior choices

for our model parameters (see Figs. 3.1 and 3.5). Our first choice, which is uniform in

the parameters, is representative of an inference that is carried out with uninformative

assumptions. Our second prior choice is based on surrogate models from Monte-Carlo

radiative transfer simulations of KNe (Coughlin et al., 2018b; Bulla, 2019) and takes into

account the effect of variations in ejecta masses and inclination angle on the resulting

KN morphology. The inference using such a prior represents the possibility of testing

realistic, physical models of KNe against upper limits obtained from surveys. While our

implementation with uniform priors constrained the prior parameter space to a consid-

erable extent and shows consistency with previous efforts (Kasliwal et al., 2020), the pos-

terior results based on surrogate KNe models are largely uninformative with respect to

the prior. Overall, these results show how priors on model parameters can influence the

constraints obtained and the need to examine results in light of the prior distribution.

One of the assumptions we have made in presenting our results above is that the

KN counterpart to GW190425 is localized within the surveyed region of the skymap.

GW190425, as mentioned previously in Sec. 3.3, had an overall sky coverage by ZTF of

∼ 32%. Given that a significant fraction of the skymap is not surveyed and therefore

would result in uninformative constraints, we made this assumption to demonstrate the
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utility of the Bayesian framework. In LIGO-Virgo-KAGRA’s fourth observing run, we ex-

pect that for ∼8-10% of BNS and NSBH systems discovered, ZTF will be able to observe

>90% of the localization (Petrov et al., 2021), and hence our above assumption would

hold reasonably true in those particular cases.

Furthermore, throughout this study we have assumed a kilonova luminosity evolu-

tion model that is linear in time. A linear model only needs two parameters to define it

and our goal in this paper has been to demonstrate framework functionality at the cost

of model accuracy. Such a simplistic choice might not be representative of realistic evolu-

tion models (see Metzger 2019) that depend on more complex parameters related to the

binary system. In principle, it should be feasible to include arbitrary models for luminos-

ity evolution since the framework only expects a function that returns predictions for the

absolute magnitude of the KN as a function of time. For all priors applied, we consider

only the first three days of evolution of the KN (and therefore the first three days of ob-

servations after the merger time of GW190425). This choice is motivated by the fact that

ZTF is unlikely to detect a KN at the distance of GW190425 in the g- and r-bands after

three days post-merger. More specifically, at four days, all KN models in our set have an

apparent magnitude in the g- and r-bands fainter than the median depth of ZTF in this

study (∼ 21 mag).

In this work we also neglected color evolution in our studies of kilonova non-detections.

In addition to differentiating observations in different filters, in the future we intend to

account for the K-correction effect on kilonova color evolution which is especially rele-

vant for cosmological sources. We will implement this feature in nimbus following the

existing implementation in simsurvey.

We highlight here that due to the adaptability of nimbus to various lightcurve models

and a hierarchical framework, it could even be used to jointly constrain the properties of
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a potential kilonova and short GRB optical afterglow associated with the GW event (as in

Dietrich et al. 2020, Pang et al. in prep) based on the rapid optical follow-up performed

by various facilities.

In order to establish consistency with existing results in the literature, we compared

our results to those from the simulator software simsurvey. As shown in Fig. 3.4, the

two formalisms are largely consistent although some qualitative differences exist. In the

future, with observations and upper limits from more events, it will be possible to test for

further consistency between frameworks investigating KN populations.

In our specific implementation with astrophysical priors in Sec. 3.3.1, we used a prior

on the KN luminosity parameters, i.e. the initial absolute magnitude and evolution rate

that depends on intrinsic parameters such as the dynamical or wind ejecta masses. Our

Bayesian approach makes it straightforward to convert our posteriors on the luminosity

parameters into constraints on these intrinsic parameters. Alternatively, since the frame-

work is agnostic to the KN model used, it should be possible to directly use priors on the

physical parameters that govern the light-curve morphology. In such a case, the inference

would directly constrain parameters such as the ejecta mass from the binary merger, al-

though the computational feasibility of such an implementation needs to be investigated.

The use of these astrophysical priors is based on including variations in the observer

viewing (inclination) angle and its effect on each KN model. Non-trivial couplings be-

tween the observer angle and the signal-to-noise ratio of the GW signal can lead to some

selection bias. To mitigate this effect in the future, we will select skymaps from a realistic

distribution of GW signals detected by Advanced LIGO - Virgo (Petrov et al., 2021) which

will inform the distribution of observer angles for our kilonova models.

Looking forward to O4 and beyond, we expect that nimbus will be an important

framework for analyzing joint EM-GW observations. Petrov et al. 2021 predict a median
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of ∼35 BNS yr−1 with O4 sensitivity and roughly double the number during O5. Thus,

with several tens of EM follow-ups of BNS events from O4 and O5, we will use nimbus to

place stringent population-level luminosity function constraints based on non-detections.

For the well-localized (≲ 100deg2) and nearby (≲ 200Mpc) events (predicted to range

from 0-13 BNS mergers; Petrov et al. 2021) detected by Advanced LIGO - Virgo in O4 for

which we have excellent optical sky coverage, nimbus is ideally placed to constrain the

intrinsic kilonova properties which can translate to constraints on binary system param-

eters such as mass ratio and NS radius in the face of non-detection. A similar analysis

of NSBH mergers is also feasible, though ejecta mass yield sensitively depends on the

mass ratio of the system (e.g. Krüger & Foucart 2020). As a follow-up study, we hope

to explore the scientific merit of conducting EM-GW follow-ups with the Vera C. Rubin

Observatory, assuming the cadence and filter strategy for KN identification outlined in

(Andreoni et al., 2021b), using the nimbus framework.

Constraining the ejecta masses of the KN population could potentially provide us bet-

ter insights into the amount of r-process material contributed to the formation of KNe

(Hotokezaka et al., 2018). It will also help in understanding the relationship and breaking

the degeneracy that exists between binary parameters (equation of state, spin and mass

ratio) (Foucart et al., 2018; Hinderer et al., 2019; Radice & Dai, 2019; Zhu et al., 2020), ejecta

mass and KN light curve morphology. (Coughlin et al., 2019b; Hotokezaka & Nakar, 2020;

Breschi et al., 2021; Raaijmakers et al., 2021). The future GW and EM multi-messenger

landscape will provide the opportunity to explore this further.
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CHAPTER 4

Conclusions and Future Directions

Gravitational-wave (GW) astronomy has provided us with new avenues for observing

and studying the transient astrophysical universe. These include establishing a popula-

tion of black holes and neutron stars in binaries which were previously undetected in the

electromagnetic (EM) spectrum (Abbott et al., 2019a, 2021b; The LIGO Scientific Collabo-

ration et al., 2021a), providing laboratories that test the nature of gravity in the strongest

regimes (Abbott et al., 2019c, 2021c; The LIGO Scientific Collaboration et al., 2021c), shed-

ding light on stellar and binary evolution models (de Mink & Mandel, 2016; Belczynski

et al., 2020) and measuring the cosmic expansion history of the universe by estimating

the Hubble constant (and B. P. Abbott et al., 2017; Abbott et al., 2021d). In addition, GW

astronomy has opened a new era of multi-messenger astronomy with the direct detec-

tion of mergers involving neutron stars in both GW and EM spectra. Particularly, the

detection of the "kilonova" from GW170817 Abbott et al. (2017c) by several EM telescopes

around the globe, has already resulted in implications for nuclear theory viz. r-process

nucleosynthesis and nuclear equation of state. Every new observing survey carried out

by current as well as future GW detectors will enrich and update our understanding of

the avenues mentioned above and, thereby, the universe. This dissertation has focused

on two such areas of exploration — inferring the mass distribution of compact binaries

using data solely from GW observations and inferring kilonova population properties us-

ing data from GW and EM observations. Both these studies have employed data-driven

modeling techniques such as Gaussian processes and hierarchical Bayesian inference.
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4.1 THE BINNED GAUSSIAN PROCESS MODEL

4.1.1 Summary

Chapter 2 describes modeling the mass distribution of compact binaries observed by the

Advanced LIGO and Virgo detectors using the BINNED GAUSSIAN PROCESS (BGP) model

presented in Section 2.3.1 and presents results using the latest catalog of GW observations

(The LIGO Scientific Collaboration et al., 2021a). In contrast to studies that employ para-

metric models with a dependence on physical mass parameters to analyze the shape of the

mass distribution, the BGP method uses a Gaussian process to model the rate densities in

the 2-D parameter space of the component masses of the binary. Gaussian processes pro-

vide a flexible, mass-independent way to analyze these compact binaries. The BGP model

also provides the ability to model the mass distribution across sub-populations including

BNS, NSBH and BBH. The results shown in Section 2.4 highlight the importance of using

flexible methods to model compact object populations in order to extract the presence of

sub-structure which cannot be modeled using simple analytical functions. In particular,

the local excess of black holes at ∼ 35M⊙ (seen in Figure 2.6) and capturing the transition

of the mass distribution from NS to BH regimes (seen in Figure 2.5) are features that have

the potential to inform binary formation channels and stellar evolution models (see refer-

ences in Section 2.5). Results from the BGP model also show statistical agreement with

other population models used to model the mass distribution for the latest GW catalog

Abbott et al. (2021a). This includes the shape of mass distribution as well as the merger

rate densities shown in Tables 2.2 and 2.3. Such statistical consistencies across models

are essential to establish model robustness and will be an important feature of analysing

GW catalogs in the future.
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4.1.2 Limitations and Future Improvements

Section 2.5 also outlined the limitations of the BGP model used to obtain results in Chap-

ter 2, that can be improved for future analyses. This included having the ability to model

joint mass, redshift and spin distributions to test for the presence of correlations within the

population defined by these physical source parameters. Specifically, with recent studies

inferring correlations between the mass and spin parameters of binary black holes (Abbott

et al., 2021a; Callister et al., 2021), such a functionality becomes even more relevant. Fur-

ther the redshift dependence of the merger rate density in this study was fixed to one that

is uniform as a function of the co-moving volume. However, as stated previously, current

analyses are already finding the merger rate density to be increasing as function of red-

shift (Abbott et al., 2021e,a). Another scope for improvement is the relative increase in the

resolution of the 2-D bins defining the BINNED GAUSSIAN PROCESS. In our specific study

here, we have considered a 17-by-17 grid in the space of component masses as defined

in Section 2.3.1. Such a grid enabled the inference of substructure within the population

(especially for BBHs). Future population studies analysing GW catalogs would benefit

from having more bins to resolve structure within the BNS and NSBH sub-populations

as well. Although, the computational demands to accommodate denser grids might need

to be investigated since the covariance calculations will scale in a quadratic fashion with

the number of bins. The current BGP model presented here, is implemented using a sin-

gle machine with multiple (∼ 2 − 3) Central Processing Unit (CPU) cores. In order to

facilitate likelihood computations with denser grids, where parallelization might be criti-

cal, future analyses would need to implement the framework using Graphical Processing

Units (GPUs).
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4.2 THE NIMBUS FRAMEWORK

4.2.1 Summary

Chapter 3 focuses on a subset of GW merger events containing neutron stars. It describes

a hierarchical Bayesian framework - nimbus - to infer the properties of the kilonova (Li &

Paczyński, 1998; Rosswog, 2005; Metzger et al., 2010; Tanaka & Hotokezaka, 2013) emis-

sion from such mergers using the observed data from non-detections in electromagnetic

surveys. Studying such merger events and the associated kilonova are especially of in-

terest to the astronomy community since they are potential sites for the radioactive decay

of r-process elements synthesized when neutron-rich ejecta from the merger powers the

kilonova. Thus, kilonovae have the ability to inform fundamental nuclear physics such

as r-process nucleosynthesis and nuclear equation of state. In addition, constraining kilo-

nova population properties will provide insights into the multi-scale, multi-messenger

physics of how neutron stars merge.

In chapter 3 we used the binary neutron star merger event GW190425, observed in

Advanced LIGO-Virgo’s third observing run O3, and follow-up observations from the

Zwicky Transient Facility (ZTF) to test the nimbus framework using a single event. As-

suming a linear evolution model for the associated kilonova, constraints on the initial

absolute magnitude and decay rate were derived for two different prior choices for this

parameter space. For uniform priors described in Section 3.3.1, the posterior probabil-

ity distribution (see Figure 3.1) disfavors models of kilonovae that are initially brighter

than ∼ −18 mag and rise in their subsequent evolution. These results also show consis-

tency with previous studies (Kasliwal et al., 2020). For the priors that are motivated from

Monte-Carlo radiative transfer simulations of kilonovae (Coughlin et al., 2018b; Bulla,

2019), the posterior probability distribution (see Figure 3.5) is not informative with re-
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spect to the corresponding prior distribution. These results demonstrate the potential of

the framework to constrain kilonova population properties. We also compared the infer-

ences derived from the framework with those from a simulator software - simsurvey

(Feindt et al., 2019). As shown in Figure 3.4 besides qualitative differences that exist ow-

ing to differences in ideology and implementation, the comparisons are consistent with

each other. Nonetheless, despite having the ability to incorporate the probability of as-

trophysical origin, finite sky-coverage and data from multiple electromagnetic passbands

there are limitations that can be improved for future studies.

4.2.2 Limitations and Future Outlook

In the study presented in Chapter 3, we only made use of follow-up data from a single bi-

nary neutron star event — GW190425 — to demonstrate the functionality of the nimbus

framework. On the other hand, Advanced LIGO-Virgo’s third observing run had several

other events for which follow-up observations were carried out by the Zwicky Transient

Facility (ZTF) (Kasliwal et al., 2020). Future efforts should focus on extending the analy-

sis presented here to include multiple events thereby obtaining kilonova population con-

straints using a population of events. Further, the kilonova evolution model assumed in

the study is a single “average-band” linear model with respect to time and restricted to

3 days from the time of the merger event. Even though these model assumptions might

enable a simpler analysis, it would be more suitable to consider realistic evolution mod-

els derived from simulations of kilonovae that account for color evolution and are more

complex than simple linear functions. Finally, the entire formalism presented in Chap-

ter 3 is based on using data from non-detections of kilonovae. Stronger constraints on

the kilonova population might be derived if data from detected kilonova observations

are included in the inference framework. As stated previously, this might necessitate
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non-trivial changes to the formalism and require model selection effects conditioned on

detection to be appropriately modeled.

4.3 USING COMPACT BINARY POPULATIONS TO INFORM KILONOVAE MOD-

ELS

We are entering an era where gravitational-wave source detections are becoming com-

monplace. Current gravitational-wave detectors at their design sensitivities (Buikema

et al., 2020) and the future network of detectors (Punturo et al., 2010; Reitze et al., 2019;

Sathyaprakash et al., 2019; Kalogera et al., 2019) hold the promise of delivering catalogs of

compact binary observations which are orders of magnitude larger (Sathyaprakash et al.,

2019) than our current set of detections. Such datasets will lead to stronger constraints on

the mass distribution of compact binaries as outlined by previous studies including the

results presented in Chapter 2. In particular, informative distributions for the component

masses in systems with neutron stars can lead to data-driven simulations of the mergers

of such systems. Such simulations will help inform the prior distribution of model param-

eters that define the evolution of kilonovae. Using inference frameworks as presented in

Chapter 3 then will help place constraints on kilonovae population properties that are

motivated by the observed sources.
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