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ABSTRACT

NONRECIPROCAL SURFACE WAVES
ON GYROTROPIC INTERFACES

by

Alexander M. Holmes

The University of Wisconsin-Milwaukee, 2022
Under the Supervision of Professor George W. Hanson

In this dissertation, the properties of highly nonreciprocal (unidirectional) surface waves

guided along the interface between free-space and various 2D and 3D gyrotropic continua

are investigated using analytic, numerical, and experimental methods. From a classical elec-

tromagnetics perspective, nonreciprocity in the dispersion of surface wave modes supported

by the interface is achieved by breaking both time-reversal and space-inversion symmetries

in the collective response of the waveguide, which consists of the two interfaced materi-

als. More recently, however, a connection to momentum space topology via the bulk-edge

correspondence principle has been made for gyrotropic continua, providing additional in-

sights into the underlying physics that governs the unique propagation characteristics of

these unidirectional modes. Building on the previous work done in the areas of nonrecip-

rocal electromagnetics and topological photonics, we (1) develop a new analytic formalism

to model excitations of the surface wave modes using a near field current source, (2) in-

vestigate a nontraditional way of achieving a gyrotropic response in a 2D continuum, and

(3) demonstrate experimentally, for the first time, the unidirectional nature of a recently

theorized topologically protected, unidirectional surface wave mode.
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Chapter 1

Introduction

1.1 Motivation and background

At the interface between two media, it may be possible to couple electromagnetic radiation

from a near field source into the natural surface wave modes supported by the structure.

For this to occur, certain conditions on the material response of each medium must be met

in order for the mode to exist. For example, in the case where the source medium is an

electrical insulator (i.e., a dielectric such as air), the interfaced medium must sufficiently

screen the radiation (i.e., the skin depth of the interfaced medium must be sufficiently

small) produced by the source in order for the structure to support a well confined surface

wave mode, which is ideal in most cases. Electrical conductors such as solid state plasmas,

including metals and semi-conductors with high doping levels, typically screen electromag-

netic radiation sufficiently at infrared frequencies and below, where intra-band transitions

that occur continuously in the conduction band dominate the response at a microscopic

level. A screening of the radiation occurs as a result of the electric field produced by the

source canceling with the re-radiated electric field of the electron as it transitions from a

state of higher energy to one of lower energy in the conduction band. Surface waves that

are guided at a dielectric-plasma interface are referred to as surface plasmon polaritons

(SPPs) because such a surface wave involves both the oscillation of electronic charge in the

plasma (surface plasmon) and the electromagnetic field in the dielectric (polariton) [1, 2].
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Figure 1-1: A qualitative look at the normalized field profile in the y-z plane of (a) a reciprocal
(bidirectional) SPP excited by a localized impressed near-field electric current density Ji

e (r) =
ẑJ i

eδ (r− r0) and (b) a bidirectional SMP excited by a localized near-field magnetic current density
Ji
m (r) = ẑJ i

mδ (r− r0), where J i
e,m are amplitude coefficients and δ (r− r0) denotes the Dirac-delta

distribution function. In both cases, the source resides in the air region, as indicated by the solid
red circles, where the permittivity ε > 0 and permeability µ > 0 support the propagation of bulk
radiation emitted by the source. Near the interface, bulk radiation couples into the bidirectional
SPP and SMP modes supported by the structure that propagate outward, away from the source,
with wavevector kSPP and kSMP respectively. The normal component of the surface wave fields
(i.e., Ez and Hz in the case of SPPs and SMPs respectively) are evanescent with respect to z and
propagate parallel to the interface, in the x-y plane. In each case, the field generally attenuates
much faster into the interfaced medium (i.e., on this side of the interface, the surface wave is more
tightly confined to the interface).

Similarly, surface magnon polaritons (SMPs) are another form of surface wave that arise

from the coupling of EM radiation to the magnetic dipole polarization of antiferro- and

ferri-magnetic insulators [3]. SMPs are analogous to SPPs in the sense that they represent

an oscillation of the magnetic component of the materials re-radiated EM field rather than

its electric component. Both SPPs and SMPs offer the ability to concentrate electromag-

netic energy into small volumes, below that of a photon in free space [1, 3–7], effectively

breaking the diffraction limit, which makes them ideal to achieve low-loss confinement of

electromagnetic energy.

At a macroscopic level, the effective permittivity/permeability experienced by a well

confined SPP/SMP along the direction of propagation must be negative [8]. To achieve

this, the total associated electric/magnetic susceptibility (accounting for polarization and

conduction), contained within the permittivity/permeability of the interfaced medium must

be inductive/capacitive. As a result, confined SPPs/SMPs have a dominant transverse-

magnetic/electric component in nature, where transverse is defined with respect to the

propagation direction. That is, the magnetic/electric polarization of SPPs/SMPs is trans-

verse (i.e., perpendicular) to the propagation direction and interface normal, while the
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electric/magnetic polarization generally has a component normal to the interface and along

the propagation direction. For isotropic materials, well confined SPPs/SMPs are purely

transverse-magnetic/electric, however, for anisotropic materials, the SPPs/SMPs are hy-

brid, and commonly characterized as quasi-transverse-magnetic/electric, since they still

generally contain a dominant transverse-magnetic/electric polarization component. In ad-

dition, it should be noted that the majority of electromagnetic energy stored in a transverse-

magnetic/electric surface wave resides in the electric/magnetic field [3, 9–11].

Figure 1-1 gives a qualitative look at field pattern of (a) a reciprocal (bidirectional

in the y-z plane) SPP and (b) a bidirectional SMP field profile (normal, ẑ component),

confined to the interface between air and (a) a plasma characterized by an effective negative

permittivity and (b) a ferrite characterized by an effective negative permeability experienced

by the surface wave along the direction of propagation (i.e., ±ŷ). Being confined to the

interface, the electric/magnetic field attenuates away from the interface on each side. In

the case of SPPs, the wave is excited by a localized near field electric current density

modeled by Ji
e = ẑJ i

eδ (r− r0), while in the case of SMPs, an effective magnetic current

density modeled by Ji
m = ẑJ i

mδ (r− r0) may be considered; parameters J i
e and J i

m are

arbitrary source amplitudes having units of [A ·m] and [V ·m] respectively, r is a general

spatial coordinate, r0 is the source coordinate, and δ (r− r0) is the Dirac delta distribution

function having units of
[
m−3

]
. In both cases, the source is polarized along the interface

normal ẑ in order to match the dominant radiated electric/magnetic field polarization with

that of the (quasi-) transverse-magnetic/electric SPP/SMP mode into which the radiation

couples. Both SPPs and SMPs propagate bidirectionally away from the source (on both

sides) with wavevector kSPP and kSMP respectively.

When the interfaced medium is also anisotropic, the surface wave modes generally de-

pend on both the magnitude and direction of their momentum, in addition to the operating

frequency of the source. In the following, we consider the scenario in which an isotropic di-

electric (e.g., air) containing the source, is interfaced with a variety of 2D and 3D gyrotropic

media, a subclass of anisotropic media having broken time-reversal (TR) symmetry in their

3



Figure 1-2: A qualitative look at the normalized field profile in the y-z plane of (a) a highly
nonreciprocal (unidirectional) SPP excited by a localized impressed near-field electric current den-
sity Ji

e (r) = ẑJ i
eδ (r− r0) and (b) a unidirectional SMP excited by a localized near-field magnetic

current density Ji
m (r) = ẑJ i

mδ (r− r0), where J i
e,m are amplitude coefficients and δ (r− r0) denotes

the Dirac-delta distribution function. In both cases, the source resides in the air region, as indi-
cated by the solid red circles, where the permittivity ε > 0 and permeability µ > 0 support the
propagation of bulk radiation emitted by the source. Near the interface, bulk radiation couples
into the unidirectional bulk radiation couples into the bidirectional SPP and SMP modes supported
by the structure that propagate outward, away from the source, with wavevector kSPP and kSMP

respectively. The normal component of the surface wave fields (i.e., Ez and Hz in the case of SPPs
and SMPs respectively) are evanescent with respect to z and propagate parallel to the interface, in
the x-y plane. In each case, the field generally attenuates much faster into the interfaced medium
(i.e., on this side of the interface, the surface wave is more tightly confined to the interface).

material response. Interestingly, it has long been theorized and experimentally verified in

many cases that unidirectional surface wave modes may be realized when space-inversion

symmetry is also broken in the system by introducing the interface (or edge) in a plane

parallel to the axis along which TR symmetry is broken [12]. These unidirectional sur-

face wave modes propagate in the topologically nontrivial bulk bandgap of the interfaced

medium, and, as a result are immune to diffraction into the bulk. However, diffraction

into the dielectric region is still possible if it lacks a common bulk bandgap (e.g., air). In

addition, the unidirectional nature of the surface wave modes grants them immunity to

back-scattering since there exists no backward mode for the radiation to couple into. As

such, they are forced to propagate over discontinuities that arise in the material interface,

which makes them promising for nonreciprocal device applications [13–22].

Figure 1-2 gives a qualitative look at the normalized field pattern of (a) a highly non-

reciprocal (unidirectional) SPP and (b) a unidirectional SMP (normal, ẑ component), con-

fined to the interface between air and (a) a gyrotropic plasma characterized by an effective

negative permittivity and (b) a ferrite characterized by an effective negative permeability

experienced by the surface wave along the propagation direction (i.e., +ŷ). Both SPPs
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and SMPs behave similar to the bidirectional case in Fig. 1-1, however, only propagate in

one direction (i.e., unidirectionally) away from the source with wavevector kSPP and kSMP

respectively.

Acquiring a reliable model for the material response of the interfaced medium is cru-

cial to the study and prediction of surface wave properties including confinement, prop-

agation length, and wavelength. Here, we employ both well studied and new models for

the response, derived from classical, semi-classical and non-classical (microscopic/quantum)

physics. Once the material response is obtained, the wave equation, derived from Maxwell’s

equations, governing the propagation of electromagnetic radiation are solved in the absence

of sources on either side of the interface to obtain the dispersion and general field profile

of bulk modes that propagate freely in each medium. Applying the appropriate boundary

and radiation conditions on the bulk mode fields at the interface and infinity, the dispersion

relation for the surface wave modes is recovered which may be solved for the momentum and

frequency associated with each mode. In addition, application of the boundary conditions

at the interface lead to the recovery of the reflection and transmission tensor coefficients

used in the Green’s function to define the scattered field profile of the surface wave.

Our motivation for the research presented in this dissertation is two-fold. First, we con-

tinue to study the interesting topological and unidirectional properties of surface waves on

three-dimensional (3D) gyrotropic continua such as plasmas and microwave ferrites biased

with an external, static magnetic field. Application of the external magnetic field is what

breaks TR symmetry in these materials, and has been the traditional way of achieving

a gyrotropic response. However, a recent demand for achieving the same gyrotropic re-

sponse without an external field has motivated the second portion of the research presented

in this dissertation, which we organize as follows. In Chap. 2, the unique properties of

unidirectional SPPs supported by the interface between air and a gyrotropic plasma, are

investigated [23]. In Chap. 3, the properties of reciprocal bulk and nonreciprocal edge SPPs

on a variety of atomically thin gyrotropic plasmas embedded in air are investigated, and

a nontraditional way of breaking TR symmetry (i.e., without an external magnetic bias
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field) in the material response of new 2D heterostructure is proposed [24, 25]. In Chap. 4,

unidirectional SMP modes supported by the interface between air and a gyrotropic YIG

ferrite are studied theoretically, and the topological nature of the modes is reviewed and

demonstrated experimentally for the first time [26]. To set the stage for Chaps. 2-4, the re-

mainder of this chapter is dedicated to a review of the time-harmonic Maxwell’s equations,

the wave equation, and other fundamental topics in electromagnetics that are relevant to

our discussion.

1.2 Maxwell’s equations

In the linear response approximation (LRA) [27], a time harmonic impressed current source,

operating at frequency f , maintains time harmonic response currents and fields. Assuming

the time harmonic convention exp (+jωt), Maxwell’s equations governing the relationship

between the source current and response in the phasor domain (i.e., the partial time deriva-

tives ∂t simply become +jω where ω = 2πf is the radial frequency and j denotes the

imaginary unit) are given generally by

∇×H (r, ω) = jωε0E (r, ω) + Je (r, ω) , (1.1)

∇×E (r, ω) = −jωµ0H (r, ω)− Jm (r, ω) , (1.2)

where E and H are the electric and magnetic phasor fields, and

Jν =
∑

υ∈{i,p,c}

Jυ
ν : ν ∈ {e,m} (1.3)

is the total electric (ν ≡ e) and magnetic (ν ≡ m) current densities that contain the

impressed (υ ≡ i) and response current densities due to polarization (υ ≡ p) and conduction

(υ ≡ c); parameters ε0 and µ0 denote the permittivity and permeability of freespace. Each

current density Jυ
ν is related to the corresponding charge density �υν via the continuity

6



equation

∇ · Jυ
ν + jω�υν = 0 . (1.4)

The differential operators ∇· and ∇× denote the divergence and curl differential operators.

1.2.1 Material response tensors

In the linear response approximation, the response currents are proportional to the fields

Jp
e = jω (χ̄ee · ε0E+ χ̄em ·H) , (1.5)

Jp
m = jω (χ̄mm · µ0H+ χ̄me ·E) , (1.6)

Jc
e = σ̄ee ·E+ σ̄em ·H , (1.7)

Jc
m = σ̄mm ·H+ σ̄me ·E , (1.8)

where χ̄νν′ and σ̄νν′ for ν, ν
′ ∈ {e,m} are susceptibility and conductivity tensors that couple

the electric and magnetic fields to the response currents. Often, it is convenient to define

the auxiliary fields (i.e., the electric displacement D and the magnetic flux density B)

D = ε̄ · ε0E+ ξ̄ ·H , (1.9)

B = µ̄ · µ0H+ ζ̄ ·E , (1.10)

where

ε̄ = Ī+ χ̄ee − jω−1ε−1
0 σ̄ee , (1.11)

µ̄ = Ī+ χ̄mm − jω−1µ−1
0 σ̄mm , (1.12)

ξ̄ = χ̄em − jω−1σ̄em , (1.13)

ζ̄ = χ̄me − jω−1σ̄me , (1.14)

are the relative permittivity ε̄ and relative permeability µ̄, and magneto-electric coupling

tensors ξ̄ and ζ̄.
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1.2.2 Reciprocity

A medium is reciprocal if the material response tensors
{
ε̄, µ̄, ξ̄, ζ̄

}
satisfy

ε̄ = ε̄T , (1.15)

µ̄ = µ̄T , (1.16)

ξ̄ = −ζ̄T . (1.17)

where (·)T indicates transpose. Consequently, isotropic media and anisotropic media with

symmetric permittivity and permeability tensors are reciprocal. Examples of nonrecipro-

cal media include gyrotropic plasmas and ferrites since they possesses permittivity and

permeability tensors respectively that violate Eqs. (1.15)-(1.16).

1.2.3 Duality

In terms of the auxiliary fields D and B, Maxwell’s equations (1.1)-(1.2) become

∇×H = jωD+ Ji
e , (1.18)

∇×E = −jωB− Ji
m . (1.19)

where it should be stressed that Ji
m is a fictitious (non physical) impressed magnetic current

density due to the in-existence of magnetic monopoles in nature. The justification for

adding this term to Maxwell’s equations is two fold. First, a small current loop may be

characterized by its magnetic dipole moment, oriented perpendicular to the plane of the

loop. The associated fields of the current loop can be solved in exactly the same manner

as in the electric dipole case by replacing the electric current density of the loop Ji
e with

an equivalent magnetic dipole current Ji
m. Second, when Eqs. (1.18)-(1.19) are applied to

a finite region of space, the bounding surfaces of the region can be viewed as supporting

surface electric currents due to discontinuities in the tangential magnetic field in the same

way that they support surface magnetic currents due to discontinuities in the tangential

8



electric field.

By adding Ji
m to the right side of Eq. (1.19), Maxwell’s equations become duals of each

other. That is, if we make the replacements

{
E,H,D,B, ε̄, µ̄, ξ̄, ζ̄,�e, �m,Je,Jm

}

→
{
H,−E,B,−D, µ̄, ε̄,−ζ̄ ,−ξ̄,�m,−�e,Jm,−Je

}
. (1.20)

then Eq. (1.18) becomes Eq. (1.19) and vice versa. It should also be noted at these re-

placements are not unique. This is known as the Duality principle in electromagnetics.

Electromagnetic duality is relevant to our discussion because it explains the similarity be-

tween SPPs and SMPs. That is, once a model is established for the near-field excitation of

SPPs via an electric current density, the same model can be used for SMPs by making the

above replacements.

1.3 The wave equation

The wave equations for E and H are obtained from Eqs. (1.9)-(1.10) by introducing a new

dyadic differential operator ∇̄ = ∇× Ī, which when dotted with a vector field V gives the

curl (i.e., ∇̄ ·V = ∇× Ī ·V = ∇×V where Ī denotes the unit dyadic). With this notation,

Maxwell’s equations simplify to

(
∇̄ − jωξ̄

)
·H = jωε0ε̄ ·E+ Ji

e , (1.21)

(
∇̄+ jωζ̄

)
·E = −jωµ0µ̄ ·H− Ji

m . (1.22)

from which we obtain

jωε0E = ε̄−1 ·
(
∇̄ − jωξ̄

)
·H− ε̄−1 · Ji

e , (1.23)

jωµ0H = −µ̄−1 ·
(
∇̄+ jωζ̄

)
·E− µ̄−1 · Ji

m . (1.24)
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Substituting Eq. (1.24) into Eq. (1.21) and Eq. (1.23) into Eq. (1.22) respectively, the

wave equations for general bianisotropic media characterized by the set of material response

tensors
{
ε̄, µ̄, ξ̄, ζ̄

}
are recovered [cite RC]

[(
∇̄ − jωξ̄

)
· µ̄−1 ·

(
∇̄+ jωζ̄

)
− k20 ε̄

]
·E = −

(
∇̄ − jωξ̄

)
· µ̄−1 · Ji

m − jωµ0J
i
e , (1.25)

[(
∇̄+ jωζ̄

)
· ε̄−1 ·

(
∇̄ − jωξ̄

)
− k20µ̄

]
·H =

(
∇̄+ jωζ̄

)
· ε̄−1 · Ji

e − jωε0J
i
m . (1.26)

where k0 = ω
√
ε0µ0 is the freespace wavenumber. However, it should be noted that Eqs.

(1.25)-(1.26) remain valid only in the case where the determinant of ε̄ and µ̄ is nonzero.

1.3.1 The wave equation for homogenous anisotropic media

The constitutive relations for anisotropic media are given by Eqs. (1.9)-(1.10) when ξ̄ = 0̄

and ζ̄ = 0̄. Here, we consider the two cases of electrically and magnetically anisotropic

media, relevant to our discussion. Electrically anisotropic media are characterized by a

nontrivial relative permittivity tensor ε̄ and a scalar relative permeability µ, while magnet-

ically anisotropic media are characterized by an nontrivial relative permeability tensor µ̄

and a scalar relative permittivity ε. For electrically and magnetically anisotropic media, it

is mathematically convenient to solve the wave equations that govern the electric and mag-

netic fields respectively. That is, we solve Eq. (1.25) when studying electrically anisotropic

media and Eq. (1.26) when studying magnetically anisotropic media. In these two cases,

the wave equations simplify to

∇̄ · ∇̄ ·E− k20µε̄ ·E = −∇̄ · Ji
m − jωµ0µJ

i
e , (1.27)

∇̄ · ∇̄ ·H− k20µ̄ ·H = ∇̄ · Ji
e − jωε0εJ

i
m . (1.28)
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or, equivalently, using the vector identity ∇̄ · ∇̄ ·V = ∇×∇×V = ∇∇ ·V −∇2V,

(
k20 ε̄+∇2Ī−∇∇

)
·E = ∇̄ · Ji

m + jωµ0µJ
i
e , (1.29)

(
k20µ̄+∇2Ī−∇∇

)
·H = −∇̄ · Ji

e + jωε0εJ
i
m . (1.30)

1.3.2 The wave equation for homogenous isotropic media

The constitutive relations for homogeneous isotropic media in the absence of spatial disper-

sion are given by Eqs. (1.9)-(1.10) when ξ̄ = 0̄, ζ̄ = 0̄, ε̄ = Īε and µ̄ = Īµ. In this case, the

wave equations simplify to

∇̄ · ∇̄ ·E− k2E = −∇̄ · Ji
m − jωµ0µJ

i
e , (1.31)

∇̄ · ∇̄ ·H− k2H = ∇̄ · Ji
e − jωε0εJ

i
m . (1.32)

where k = k0
√
µε. Using the vector identity ∇̄ · ∇̄ ·V = ∇×∇×V = ∇∇ ·V−∇2V, the

above relations simplify to

∇2E+ k2E = ∇∇ ·E+ jωµ0µJ
i
e + ∇̄ · Ji

m , (1.33)

∇2H+ k2H = ∇∇ ·H+ jωε0εJ
i
m − ∇̄ · Ji

e . (1.34)

From Eqs. (1.23)-(1.24), we have

∇ ·E = jω−1ε−1
0 ε−1∇ · Ji

e , (1.35)

∇ ·H = jω−1µ−1
0 µ−1∇ · Ji

m . (1.36)

Then,

∇2E+ k2E = jω−1ε−1
0 ε−1

(̄
Ik2 +∇∇

)
· Ji

e + ∇̄ · Ji
m , (1.37)

∇2H+ k2H = jω−1µ−1
0 µ−1

(̄
Ik2 +∇∇

)
· Ji

m − ∇̄ · Ji
e , (1.38)
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which are straightforward to solve using Hertzian vector potentials and Green’s functions.

In later chapters, to obtain the dispersion of SPP and SMP modes supported by the interface

between freespace and electrically (magnetically) gyrotropic media, (1.37) and (1.29) are

solved for the electric fields in the regions above and below the interface ((1.38) and (??)

are solved for the magnetic fields in the regions above and below the interface).

1.3.3 Hertzian vector potentials

To solve Eqs. (1.37)-(1.38), it is convenient to use Hertzian potentials. In the LRA, su-

perposition applies, and therefore, we may consider the electric Eν and magnetic Hν fields

maintained by the impressed electric Ji
e and magnetic Ji

m current sources individually, and

add their contributions in the end. In the absence of magnetic sources (i.e., Ji
m ≡ 0), Eqs.

(1.18) and (1.19) reduce to

∇×He = jωε0εEe + Ji
e , (1.39)

∇×Ee = −jωµ0µHe . (1.40)

By virtue of the vector identity ∇ · (∇×V) = 0, we may then write He = jωε0ε (∇×Πe),

where Πe stands for the electric Hertzian vector potential. Integrating both sides of Eq.

(1.40), it follows that Ee = k2Πe +∇ϕe where ϕe is an arbitrary electric scalar potential.

From Eq. (1.39), the wave equation for Πe is obtained as

(
∇2 + k2

)
Πe = ∇ (∇ ·Πe − ϕe) + jω−1ε−1

0 ε−1Ji
e . (1.41)

The vector field Πe is uniquely defined if its curl and divergence are uniquely defined. In

the Lorenz gauge where ϕe ≡ ∇ ·Πe, Eq. (1.40) simplifies to

(
∇2 + k2

)
Πe = jω−1ε−1

0 ε−1Ji
e , (1.42)

thus making Πe co-linear with Ji
e.
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In the absence of electric sources (i.e., Ji
e ≡ 0), Eqs. (1.18) and (1.19) reduce to

∇×Hm = jωε0εEm , (1.43)

∇×Em = −jωµ0µHm − Ji
m , (1.44)

where we define Em = −jωµ0µ (∇×Πm) where Πm stands for the magnetic Hertzian

vector potential. From Eq. (1.43), it follows that Hm = k2Πm + ∇ϕm where ϕm is an

arbitrary magnetic scalar potential. In the Lorenz gauge where ϕm ≡ ∇ ·Πm, the wave

equation for Πm is obtained as

(
∇2 + k2

)
Πm = jω−1µ−1

0 µ−1Ji
m . (1.45)

Adding the field contributions maintained by electric and magnetic sources, we find

E = Ee +Em

=
(
k2Ī+∇∇

)
·Πe − jωµ0µ (∇×Πm) , (1.46)

H = Hm +He

=
(
k2Ī+∇∇

)
·Πm + jωε0ε (∇×Πe) , (1.47)

for which the general solution is often expressed as

Πe = −jω−1ε−1
0 ε−1

∫

V
g0

(
r, r′

)
Ji
e

(
r′
)
dV ′ (1.48)

Πm = −jω−1µ−1
0 µ−1

∫

V
g0

(
r, r′

)
Ji
m

(
r′
)
dV ′ (1.49)

where V is the source volume, and g0 (r, r
′) = e−jkR/4πR with R = |r− r′| is the scalar

greens function that satisfies

(
∇2 + k2

)
g0

(
r, r′

)
= −δ

(
r− r′

)
. (1.50)

13



1.4 Dyadic Green’s functions for isotropic media

Now, consider an impressed electric current source Ji
e (r) in an infinite universe filled with

an isotropic, homogenous medium characterized by relative permeability µ and relative

permittivity ε. The electric field maintained by such a source Ee (r) is defined in terms of

the scalar greens function g0 (r, r
′) according to Eq. (1.48), Ee ≡ E

(1)
e +E

(2)
e , where

jωε0εE
(1)
e = k2

∫

V
g0

(
r, r′

)
J
(
r′
)
dV ′ , (1.51)

jωε0εE
(2)
e = ∇∇ ·

∫

V
g0

(
r, r′

)
J
(
r′
)
dV ′ . (1.52)

Expanding the differential operator ∇ in a set of Cartesian basis vectors {x̂1, x̂2, x̂3}, we

have

∇∇ =
3∑

i=1

∂

∂xi
x̂i

3∑
j=1

∂

∂xj
x̂j =

∑
i,j

∂2

∂xi∂xj
x̂ix̂j , (1.53)

from which it follows that

jωε0εE
(2)
e =

∑
i,j

x̂ix̂j ·
∂2

∂xi∂xj

∫

V
g0

(
r, r′

)
Ji
e

(
r′
)
dV ′ . (1.54)

Employing the second derivative formula [28]

∂2

∂xi∂xj

∫

V
g0

(
r, r′

)
Ji
e

(
r′
)
dV ′ = −Ji

e (r)

∫

S

∂

∂xi
g0

(
r, r′

)
x̂j · n̂dS′

+ lim
δ→0

∫

V−Vδ

[
Ji
e

(
r′
)
− Ji

e (r)
] ∂2

∂x′j∂x
′
i

g0
(
r, r′

)
dV ′ , (1.55)

leads to

jωε0εE
(2)
e = −

∫

S
∇g0

(
r, r′

)
Ji
e (r) · n̂dS′

+ lim
δ→0

∫

V−Vδ

[
Ji
e

(
r′
)
− Ji

e (r)
]
· ∇′∇′g0

(
r, r′

)
dV ′ . (1.56)
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Noting that ∇′g0 (r, r
′) = −∇g0 (r, r

′), we obtain

jωε0εE
(2)
e = lim

δ→0

∫

V−Vδ

∇∇g0
(
r, r′

)
· Ji

e

(
r′
)
dV ′

− Ji
e (r) ·

[
lim
δ→0

∫

V−Vδ

∇′∇′g0
(
r, r′

)
dV ′ −

∫

S
n̂∇′g0

(
r, r′

)
dS′

]
. (1.57)

where

lim
δ→0

∫

V−Vδ

∇′∇′g0
(
r, r′

)
dV ′ = lim

δ→0

∫

S−Sδ

n̂∇′g
(
r, r′

)
dS′

= lim
δ→0

[∫

S
n̂∇′g

(
r, r′

)
dS′ −

∫

Sδ

n̂∇′g
(
r, r′

)
dS′

]
. (1.58)

Therefore,

jωε0εE
(2)
e = lim

δ→0

∫

V−Vδ

∇∇g0
(
r, r′

)
· Ji

e

(
r′
)
dV ′ −

∫

Sδ

∇g
(
r, r′

)
n̂dS′ · Ji

e (r)

≡ lim
δ→0

∫

V−Vδ

∇∇g0
(
r, r′

)
· Ji

e

(
r′
)
dV ′ − L̄ (r) · Ji

e (r) , (1.59)

where

L̄ (r) ≡
∫

Sδ

∇g
(
r, r′

)
n̂dS′ (1.60)

is the depolarizing dyadic which depends solely on the shape of the current source [29]. In

total, we write

jωε0εEe = lim
δ→0

∫

V−Vδ

Ḡee

(
r, r′

)
· Ji

e

(
r′
)
dV ′ , (1.61)

where

Ḡee

(
r, r′

)
= Ḡ0

(
r, r′

)
− L̄

(
r′
)
δ
(
r− r′

)
(1.62)

with

Ḡ0

(
r, r′

)
≡

(
k2Ī+∇∇

)
g0

(
r, r′

)
, (1.63)

L̄
(
r′
)
≡

∫

Sδ

∇′g
(
r′, r′′

)
n̂dS′′ . (1.64)
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Performing the gradient operations on g0 (r, r
′) = e−jkR/4πR, it can be shown that

∇∇g
(
r, r′

)
= R−2g

(
r, r′

){(
3 + 3jkR− k2R2

)
R̂R̂− (1 + jkR) Ī

}
(1.65)

leading to

Ḡ0

(
r, r′

)
= R−2g

(
r, r′

) [(
3 + 3jkR− k2R2

)
R̂R̂+

(
k2R2 − jkR− 1

)
Ī
]
. (1.66)

1.4.1 The spatial Fourier transform domain

For problems concerning laterally infinite layered media, it is convenient to work in the

Spatial Fourier transform domain with respect to ρ = Ī‖ · r (i.e., the vector component of r

that is tangential to the interface between two media) where Ī‖ = Ī − ẑẑ, with Ī denoting

the unit dyadic and ẑ taken to be the interface normal respectively. Defining the Fourier

transform pair f (ρ, z) ←→ F (q, z) where

f (ρ, z) =
1

4π2

∫
F (q, z) e−jq·ρdq , (1.67)

F (q, z) =
1

4π2

∫
f (ρ, z) e+jq·ρdρ , (1.68)

and noting that ∇ = ∇ρ + ẑ∂z ←→ −jq+ ẑ∂z, Eq. (1.61) transforms as

jωε0εEe (q, z) = lim
δ→0

∫

V−Vδ

Ḡee

(
q, z, r′

)
· Ji

e

(
r′
)
dV ′ , (1.69)

where

Ḡee

(
q, z, r′

)
=

[
Ḡ0

(
q, z, z′

)
− L̄

(
r′
)
δ
(
z − z′

)]
ejq·r

′
, (1.70)

with

Ḡ0

(
q, z, z′

)
=

(
k2Ī− qq− jqẑ∂z + ẑẑ∂2

z − jẑq∂z
)
g0

(
q, z, z′

)
(1.71)

and

g0
(
q, z, z′

)
=

e−jkz |z−z′|

2jkz
: kz =

√
k2 − q2 (1.72)
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Evaluating the derivatives, we have

∂zg0
(
q, z, z′

)
= −jkzsgn

{
z − z′

}
g0

(
q, z, z′

)
, (1.73)

∂2
zg0

(
q, z, z′

)
= −k2zg0

(
q, z, z′

)
, (1.74)

leading to

Ḡ0

(
q, z, z′

)
=

(̄
I‖ + j∂−1

z ẑq
)
· Ī‖ ·

(
k2Ī‖ − qq− jqẑ∂z

)
g0

(
q, z, z′

)

=
(̄
I‖ − k−1

z sgn
{
z − z′

}
ẑq

)
· Ī‖ ·

(
k2Ī‖ − qq− kzsgn

{
z − z′

}
qẑ

)
g0

(
q, z, z′

)

≡ C̄ (q) g0
(
q, z, z′

)
, (1.75)

where

C̄ (q) =
(̄
I‖ − k−1

z sgn
{
z − z′

}
ẑq

)
· Ī‖ ·

(
k2Ī‖ − qq− kzsgn

{
z − z′

}
qẑ

)
. (1.76)

In Chap. 2, the scattered fields in the spatial Fourier transform domain for a finite thickness

gyrotropic plasma slab are presented in a similar form by defining tensors C̄r (q) and C̄t (q)

for the reflected and transmitted fields respectively.

1.5 Boundary conditions at a material interface

Boundary conditions on the fields at an interface Σ between two media are

ẑ× (H1 −H2)|Σ = Jes , (1.77)

ẑ× (E1 −E2)|Σ = −Jms , (1.78)

ẑ · (D1 −D2)|Σ = ρes , (1.79)

ẑ · (B1 −B2)|Σ = ρms , (1.80)
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where Jes (Jms) and ρes (ρms) are electric (magnetic) surface currents and charges on the

boundary, {E1,H1,D1,B1} are the fields infinitely close to the boundary on the side into

which ẑ, the interface normal, is directed, and {E2,H2,D2,B2} are the fields infinitely close

to the boundary on the opposite side. The tangential boundary conditions (1.77)-(1.78) are

derived from the curl equations, whereas the normal boundary conditions (1.79)-(1.80) are

derived from the divergence equations (i.e., the divergence of the curl equations).

1.5.1 Electrostatic boundary conditions

For electrostatic problems, the field quantities {H,B,Jes,Jms} are zero (or approximately

zero in quasi-statics), and the only relevant boundary conditions are (1.78) and (1.79).

Writing E = −∇Φ, where Φ is the electrostatic potential, and assuming simple, isotropic

dielectrics characterized by scalar permittivities and permeabilities in the absence of spatial

dispersion, the boundary conditions in terms of the electrostatic potential are

ẑ× (∇Φ1 −∇Φ2)|Σ = 0 , (1.81)

ẑ · (ε1∇Φ1 − ε2∇Φ2)|Σ = ρes , (1.82)

which simplify to

(Φ1 − Φ2)|Σ = C , (1.83)

(ε1∂zΦ1 − ε2∂zΦ2)|Σ = ρes , (1.84)

where C is a constant. The potential should be continuous since E = −∇Φ, implying that if

Φ is discontinuous, the electric field is infinitely large at the boundary, which is non-physical.

Therefore C = 0.
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Chapter 2

Surface plasmon polaritons on a

plasma slab, biased with an

external magnetic field

2.1 Introduction

The properties of surface plasmon polaritons in different biased plasma configurations have

been widely studied [30–34]; see [35] for a comprehensive review. These basic configurations

include (1) the external magnetic bias is perpendicular to the interface, and, correspond-

ingly, the SPP propagation vector, (2) the magnetic bias is parallel to the interface, but

perpendicular to the propagation vector, called the Voigt configuration, and (3) the mag-

netic bias is parallel to the interface and also parallel to the propagation vector, known as the

Faraday configuration [33]. In [36], the well-known Voigt configuration is re-examined, and

it is shown that the SPPs have topological properties, making a connection with the current

work in photonic topological insulators, previously investigated for periodic media [37, 38].

Nonreciprocal topological surface waves have several important features; namely, they

are unidirectional, and they operate in the bulk bandgap of a topologically nontrivial ma-

terial [37–39]. Being strongly nonreciprocal, upon encountering a discontinuity, they are
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immune to back-scattering, and because they operate in the bulk bandgap, they do not

radiate into the bulk. As such, they are forced to pass over the discontinuity, and the lack

of scattering or diffraction makes them interesting from a wave-propagation aspect, and

promising for device applications [13–15]. Topological SPPs may be characterized by an in-

teger invariant (e.g., the Chern number), which cannot change except when the underlying

momentum-space topology of the bulk bands is changed [40–44]. Thus, another view of the

reflection- and diffraction-free aspect of topological SPPs is that they are governed by bulk

material properties, so that they are not sensitive to surface features, and can only change

qualitatively when the bulk topology changes. A change in topology arises when a bandgap

is closed or opened, which occurs for the biased plasma when the bias field is reversed in

direction.

The continuum plasma case of Voigt topological SPPs identified in [36] is studied

in [40, 43, 45, 46]. SPPs in the Voigt configuration cross the bulk bandgap, and exist above

the plasma frequency. In [47,48], it is observed that SPPs exist below the bandgap, propa-

gating at various angles with respect to the bias direction. Those works are focused on the

quantum force on a decaying atom, and in [49] the excitation of these modes is considered

using circular-polarized dipole sources. In this chapter, we summarize the findings of [23],

which investigates these below-the-gap SPPs in more detail. These SPPs are similar to

topological SPPs in the sense that they are unidirectional, operate in a bulk bandgap (and

so are diffraction-free), and only change their properties qualitatively when the topology

of momentum space is changed. Moreover, and unlike the previously-studied topological

SPPs, they form narrow beam-like patterns, similar to the case of hyperbolic media [50,51].

However, it seems difficult or perhaps impossible to assign a topological integer-invariant to

describe these SPPs as they propagate in different directions at different frequencies within

the gap, and so, strictly-speaking, these SPPs are not topological. Nevertheless, it is shown

that they still exhibit unidirectional propagation and inherent robustness to discontinuities.

The chapter is organized as follows. In Sec. 2.2, the material response for a plasma

biased with an external magnetic field is summarized. In Sec. 2.3, a bulk bandgap common
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Figure 2-1: (a) A plasma slab of finite thickness h, biased with an external magnetic bias field B0 =
B0ŷ. A time-harmonic electric dipole current source linearly polarized perpendicular to the interface
(i.e., along ẑ is suspended a distance d above the slab and operates at frequency ω. With such a
source, operating in the hyperbolic regime, it is possible to excite the (normalized) nonreciprocal SPP
field pattern shown. The wave vector kb associated with bulk modes that propagate freely within
the slab makes an angle αb with respect to the bias. (b)-(e) Dispersion of bulk modes for several
angles of propagation in the range of 0 to 90◦, where kp = ωp/c. The shaded regions highlight the
spectral location of bandgaps in the dispersion. The dashed red trace is associated with the ordinary
(bias-independent) mode, while the solid black traces are associated with the extraordinary (bias-
dependent) mode. Points labeled a and b on the dispersion diagrams are stationary with respect to
the propagation angle.

to all propagation directions of the plasma bulk modes, within which the SPPs propagate,

is identified and discussed. In Sec. 2.4, the nonreciprocal dispersion of the SPPs in different

frequency regimes and the concept of group velocity is described. In Sec. 2.5, the scattered

field excited by a point dipole positioned a distance above the upper interface is obtained

for a finite-thickness biased plasma slab and the Poynting vector for the SPPs associated

with power flow is recovered. In addition, the back-scattering immune properties of the

surface wave propagating at the magnetized plasma-air interface in the presence of a defect

in the lower bandgap (hyperbolic) frequency regime is investigated.

2.2 Material response of a biased plasma

The geometry of interest, depicted in Fig. 2-1(a), is a finite-thickness plasma slab of thick-

ness h, immersed in air characterized by relative permittivity εr,0 = εr,2 = 1 and relative
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permeability µr,0 = µr,2 = 1. The plasma is biased with an external static magnetic bias

field B0 = ŷB0. Assuming time harmonic variation e−iωt, where ω denotes the operating

frequency, the biased plasma is characterized by the anisotropic, dispersive relative permit-

tivity tensor,

ε̄r,1 ≡ ε̄ = εt
(̄
I− ŷŷ

)
+ iεg

(
ŷ × Ī

)
+ εaŷŷ , (2.1)

where the permittivity elements {εt, εa, εg} are [52]

εt = 1 +
ω2
p (ω + iΓ)

ω
[
ω2
c − (ω + iΓ)2

] , (2.2)

εa = 1−
ω2
p

ω (ω + iΓ)
, (2.3)

εg =
ωcω

2
p

ω
[
ω2
c − (ω + iΓ)2

] , (2.4)

where ωp =
√

Nq2e/m
∗ε0, ωc = −qeB0/m

∗, and Γ = 1/τ are, respectively, the plasma,

cyclotron, and collision frequencies defined in terms of the free electron density N , electron

charge qe = −e, effective electron mass m∗, and relaxation time between collisions τ . This

permitivity model may correspond to a solid state plasma such as InSb [52]. It should also

be noted that the model is local, and therefore does not account for spatial dispersion; as

studied in [53, 54], a nonlocal model may lead to the presence of a backward propagating

SPP modes. However, the effect of non-locality is evident only for very large wavenumbers,

and the backward waves vanish when considering realistic levels of loss [49], and so non-

locality is ignored here. Unless otherwise noted, we use ωp/2π = 20 THz, Γ = 0.015ωp and

ωc/ωp = 0.4 to evaluate the permittivity elements in Eq. (2.2). The cyclotron frequency ωc

corresponds to B0 = 6.3 T and m∗ = 0.022me where me is the electron mass [52].

2.3 Dispersion of bulk modes in a biased plasma

The propagation characteristics of bulk modes in anisotropic media generally depend on the

direction of propagation. Therefore, in a anisotropic medium exhibiting bulk band-gaps,
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the gaps may also be sensitive to propagation direction. In this section, the dispersion

of bulk modes propagating through a biased plasma is studied in order to identify a bulk

bandgap that is common to all propagation directions. We begin assuming a plane wave

with wavevector kb, which makes an angle αb with respect to the bias direction (i.e., ŷ) as

shown in Fig. 2-1(a). In the absence of impressed sources, a plane wave solution to the

wave equation (1.29) of the form E = E0e
ikb·r is recovered for which non-trivial solutions

for the amplitude E0 are obtained when [55]

∣∣k20 ε̄− k2b Ī+ kbkb

∣∣ = 0 . (2.5)

Writing kb = kt + ŷky such that |kt| = kb sinαb and ky = kb cosαb, evaluation of the

determinant leads to the dispersion relation for the bulk modes,

0 =
[(
ε2t − ε2g + εaεt

)
sin2 αb + 2εaεt cos

2 αb

]
k20k

2
b

−
(
εt sin

2 αb + εa cos
2 αb

)
k4b − εa

(
ε2t − ε2g

)
k40 . (2.6)

The dispersion of the bulk modes for different propagation angles are shown in Figs.

2-1(b)-(e). Figures 2-1(b) and 2-1(c) show the dispersion of bulk modes that propagate

parallel (αb = 0◦) and perpendicular (αb = 90◦) to the magnetic bias, respectively. When

propagation is perpendicular to the bias, the plane wave decouples into transverse-electric

(TE) and -magnetic (TM) modes, where transverse is defined with respect to the propaga-

tion direction. On the other hand, when propagation is parallel to the bias, the plane wave

decouples into left- and right-handed circularly polarized (RHCP/LHCP) waves [55]. For

all other propagation directions, the waves are hybrid. Figures 2-1(d) and 2-1(e) show the

dispersion for two propagation angles in the range, 0◦ < αb < 90◦.

The points of modal degeneracy that occur for αb = 0 correspond to Weyl points that

arise from crossings between longitudinal plasma modes and transverse helical modes [56].

Although the flat dashed red section in Fig. 2-1(b) may appear to naturally belong to the

flat solid black dispersion line, the situation admits two viewpoints. For αb = 0, in the
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lossless case, one could view the horizontal black line as continuing through the red dashed

section, since this represents one polarization, whereas the parabolic sections represent a

different polarization. That is, there is an eigenvalue degeneracy, but not an eigenfunction

degeneracy. However, analytic continuation for small non-zero angles indicates that the

parabolic red dashed section continues to the nearly-flat red dashed section, which is evident

in Fig. 2-1(d). As a result, the eigenfunctions and in this case, the eigenvalues cannot be

globally defined as smooth analytical functions in k-space.

Two bandgaps form between the other three branches (solid black) as indicated by the

shaded regions of Fig. 2-1(b)-(e). The size of the bandgaps depend on the propagation

direction as well as the magnetic bias field strength. The upper bandgap is smallest when

αb = 90◦. Conversely, the lower band-gap is smallest when αb = 0◦. As such, we take the

smallest upper (lower) band-gap to represent the upper (lower) bandgap common for all

propagation angles, 0◦ < αb < 90◦. Points labeled a and b on the dispersion diagrams are

independent of the propagation angle. The common bandgap and its impact on surface

waves is considered further in the following section.

2.4 Dispersion of SPP modes

A surface wave that propagates along the interface at an angle φ with respect to x̂, has

wavevector q = x̂kx + ŷky where kx = q cosφ, ky = q sinφ and q = |q| =
√
k2x + k2y. From

the bulk dispersion relation defined in Eq. (2.6), we obtain the solutions k̂±
b,j = q± ẑiγj for

j ∈ {1, 2}, where

γ1 =

√
k2x +

1

2

(
κ−

√
κ2 − υ

)
, (2.7)

γ2 =

√
k2x +

1

2

(
κ+

√
κ2 − υ

)
, (2.8)
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with

κ =
{
(εt + εa) k

2
y −

[
εt (εt + εa)− ε2g

]
k20
}
/εt , (2.9)

υ =
{
4εa

[
(εt + εg) k

2
0 − k2y

] [
(εt − εg) k

2
0 − k2y

]}
/εt . (2.10)

In the surrounding dielectric regions, the solutions are k̂± = q± ẑiγ0 where γ0 =
√
q2 − k20.

The dispersion relation for the SPP is obtained by enforcing continuity in the tangential

electric and magnetic fields associated with bulk modes in each region at the interface [47],

leading to the 4× 4 system of homogeneous equations,




β−
1 β−

2 ky iγ0kx

kyθ1 kyθ2 −kx iγ0ky

kyφ
−
1 kyφ

−
2 iγ0kx −k20ky

−δ1k
2
t,1 −δ2k

2
t,2 iγ0ky k20kx







A1

A2

B1

B2




= 0 , (2.11)

where β±
j , φ

±
j , δj , and θj for j ∈ {1, 2} are defined in Eq. (A.75) of the appendix. Non-

trivial solutions for the coefficients {A1, A2, B1, B2} are obtained when the determinant

of the prefactor matrix on the left hand side of Eq. (2.11) vanishes. Evaluation of the

determinant and dividing through by a factor of −iq2ky/�1�2ξ1ξ2 �= 0, where �j and ξj

are also defined in Eq. (A.75) of the appendix, leads to the SPP dispersion relation

0 =
(
k2y − γ20

)
QA − kxQ

−
B + kxk

2
yQ

−
C

−
(
k2x − γ20

)
Q−

D + γ0
(
Q−

E − χ−) , (2.12)

where the quantities QA, Q
−
B, Q

−
C , Q

−
D, Q

−
E and χ− are defined in Eqs. (A.67)-(A.71) and

(A.74) of the appendix. For the well-studied case of propagation perpendicular to the bias

(ky = 0) the SPP dispersion relation is found to be [35,36]

√
k2x − k20 +

√
k2x − k20εeff

εeff
=

εgkx
εtεeff

, (2.13)
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Figure 2-2: (a) Dispersion surface of SPPs that are guided along the plasma-air interface, obtained
by solving Eq. (2.12) via numerical root search. The solid black lines denote contours of constant
frequency (i.e., equi-frequency contours) in each of the four regions, denoted I, II, III, and IV, of
the dispersion surface. Frequencies ω± satisfy the SPP resonance condition (i.e., q → ∞) for φ = 0
(i.e., SPP propagation is perpendicular to the bias) defined in Eq. (2.18). (b) Dispersion contours
in the ω-q plane for a variety of propagation angles φ. For q ≷ 0, φ is made with respect to the ±x̂
directions. In addition, the dispersion of bulk modes propagating parallel to the bias (i.e., αb = 0)
is shown, where the corresponding bandgap is common to all propagation angles αb. For contrast,
the bulk dispersion light in the interfaced medium (i.e., vacuum) is indicated by the solid orange
lines. (c) Solutions to the quasi-static SPP dispersion relation, Eq. (2.16), for a finite thickness
slab of thickness h = 0.25λp and wavenumber q = 10kp � 1/h. For a given operation frequency, a
maximum of four beams is possible in the SPP beam pattern, two of which are associated with the
upper interface while the other two are associated with the lower interface. The cyclotron frequency,
being proportional to the magnetic bias, ranges from 0 to 0.4ωp.

where εeff =
(
ε2t − ε2g

)
/εt is the effective Voigt permittivity. However, for ky �= 0, the

general dispersion equation, Eq. (2.12), must be used.

An SPP guided along the interface generally possesses two wavevector components,

kx and ky. Therefore, a three-dimensional surface is needed to fully describe the SPP

dispersion. Fig. 2-2(a) shows a 3D perspective view of the dispersion surface, while Fig.

2-2(b) shows traces of the SPP dispersion in the q-ω plane for several angles of propagation

φ. In Fig. 2-2(b), SPPs propagating with different propagation angles φ are shown to cross

the common bulk bandgap associated with αb = 0◦. For a select propagation angle φ, the

SPP resonant frequency ωSPP is recovered in the limit q → ∞, and may be derived using

quasi-static (large q) approximation. The maximum and minimum resonance frequencies

ω+ and ω−, associated with φ = 0 and φ = 180◦ respectively, are labeled in Figs. 2-2(a)

and 2-2(b). In addition, the spectral region 0 < ω < ωp is subdivided into four frequency

regions, each corresponding to different propagation behavior. In regions I and IV, there

is no common bulk bandgap, whereas in Regions II and III, there exists a common bulk
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Figure 2-3: Density maps of the SPP dispersion relation defined in Eq. (2.12) in the kx-ky plane,
and equi-frequency contours (red solid lines) extracted numerically from the dispersion surface shown
in Fig. 2-2(a) for operating frequencies in each of the four regions I, II, III, and IV. Each of the
selected operating frequencies are normalized with respect to the plasma frequency ωp. Red arrows
that point perpendicular to each contour indicate the direction of group velocity, representing the
directional flow of electromagnetic energy in the lossless case.

bandgap. In region III propagation is nonreciprocal, but far from unidirectional. In region

IV, propagation is weakly nonreciprocal to reciprocal. In regions II and III, propagation is

unidirectional (i.e., there exists no backward mode) for select propagation angles. Because

SPP propagation is unidirectional and exists within the common bulk bandgap in region

II, region II is of particular interest. Further analysis of the equi-frequency contours in

region II also suggests that the dispersion is hyperbolic, with the resultant field pattern

consisting of two narrow beams, symmetric with respect to x̂ [23, 47–49], along which the

energy propagates.

Figure 2-3 shows several equi-frequency contours in the x-y plane of the dispersion

surface at several different frequencies as indicated by the solid red lines. Beneath each

contour, a density map of the dispersion relation at each of the selected operating frequencies
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is also shown. The phase and group velocities of the SPP are given by vp = q̂ω/q and

vg = ∇qω (q) = x̂
∂ω

∂kx
+ ŷ

∂ω

∂ky
, (2.14)

respectively, meaning that the group velocity, representing the directional flow of electro-

magnetic energy in the lossless case, is orthogonal to the equi-frequency contours. The

group velocity vectors are shown in Fig. 2-3 by red arrows. According to Fig. 2-3(f), the

contours at operating frequencies in region IV are circular, such that energy flows isotrop-

ically. The resulting field pattern is therefore omni-directional. As frequency increases,

the semi-major axis (i.e., the one oriented along x̂) of the contour becomes elongated as

seen in Fig. 2-3(e) such that the energy propagation is anisotropic and nonreciprocal. For

ω = 0.53ωp, the contour enters the hyperbolic regime (i.e., spectral regions I and II) with

the arms of each contour widening as frequency increases, as shown in Fig. 2-3(a)-(d). For

frequencies that increase beyond 0.76ωp in region I, the contour arms change direction from

the left halfplane to the right. The hyperbolic contours result in narrow SPP beams that

form in the field pattern with the group velocity vectors pointing along the beam directions.

Near the SPP resonance (i.e., q → ∞) the group velocity is a small fraction of the speed of

light in vacuum, less than 0.05c, where c is the speed of light in vacuum.

2.4.1 The quasi-static limit

Further insight into the properties of SPPs excited on the surface of a biased plasma slab

is gained via the quasi-static approximation which is valid when the SPPs have short

wavelengths relative to freespace, or equivalently, have a large momentum relative to the

freespace wavenumber (i.e., q � k0). In the quasi-static approximation, the electric field is

defined in terms of the scalar electro-static potential Φ, such that E ≈ −∇Φ, assuming the

associated magnetic field H is negligible. Solving Gauss’ law in the regions above and below

the slab, and enforcing boundary conditions on the tangential components of the electric

field at each interface, the electric potential for a slab like the one shown in Fig. 2-1 is
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obtained as φq = CF (z) eiq·r where C is an arbitrary coefficient and

F =




e−qz z > 0

cosh q̃z + iA sinh q̃z −h < z < 0,

(cosh q̃h− iA sinh q̃h) eq(z+h) z < −h

, (2.15)

where q̃ =
√
k2x + εak2y/εt and A is a complicated function of the material response (omitted

since it is not needed in the following). Enforcing continuity of the normal components of

electric displacement vector D at the two interfaces leads to the quasi-static SPP dispersion

relation

ε2gk
2
x − ε2t q̃

2 − q2 = 2εtqq̃ coth q̃h . (2.16)

In the thick slab limit (i.e., h → ∞), the dispersion relation reduces to that derived for a

single interface [47],

q + kxεg + q̃εt = 0 . (2.17)

Substituting the permittivity model defined in Eqs. (2.1)-(2.2) into Eq. (2.17), the solutions

ωSPP are obtained as [47]

ωSPP =
1

2

[
ωc cosφ+

√
2ω2

p + ω2
c

(
1 + sin2 φ

)]
. (2.18)

Figure 2-2(c) shows numerical solutions to the quasi-static SPP dispersion relation, Eq.

(2.16), for a magnetized plasma slab with a thickness of h = 0.25λp, and for several values of

cyclotron frequency, corresponding to the SPP resonant frequency ωSPP in the quasi-static

limit. For a given ω value, there are four values of φ, two of which correspond to forward

beams at the upper interface while the other two correspond to backward beams at the

lower interface. This suggests that four beams may be present in the scattered field profile

for operating frequencies that fall within the SPP resonant range ω− < ωSPP < ω+. For

example, consider an operating frequency of ω = 0.65ωp and cyclotron frequency ωc = 0.4ωp.

From the quasi static dispersion, we find that the in-plane wavevector, and hence, phase
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velocity, of the SPP makes an angle φ ∈ {58◦, 122◦, 238◦, 302◦} with respect to x̂. The group

velocity (i.e. the direction of energy propagation as indicated by the direction of the beams

in the lossless limit) of the SPP is perpendicular to the phase velocity and therefore, makes

an angle φ±90◦ ∈ {148◦, 32◦, 328◦, 212◦} with respect to x̂. Furthermore, in the presence of

a magnetic bias, the SPP resonance depends on the direction of the SPP modes, however, it

is independent of the slab thickness for large values of q. As the magnetic bias tends toward

zero (i.e., ωc → 0), the SPP resonance becomes a constant flat curve, indicating that the

SPP resonance is direction independent, with ωSPP → ωp/
√
2 � 0.7ωp.

2.5 SPP field profile

In this section, we extend the analysis provided in [47] for a single interface to a finite-

thickness slab. We present a closed-form solution for the scattered fields due to an electric

point source with arbitrary polarization as a 2D inverse Fourier transform (Sommerfeld)

integral in the dielectric regions above and below the slab, which we take to be air. In

addition, we provide the Sommerfeld integrand in quotient form for each case, which leads

to the identification of the SPP dispersion relation when setting the denominator to zero.

The procedure to derive the scattered fields follows from [47, 57]. The incident field

excited by an impressed electric dipole current source Ji
e = J0δ (r− r0) suspended a distance

d above the upper interface, is given by

E (r) =
(
∇∇+ Īk20

)
· π (r) , (2.19)

where

π (r) = g (r, r0)
J0

−iωε0
, (2.20)

denotes the associated principal Hertzian vector potential, defined in terms of the scalar

Green’s function

g (r, r0) = eik0|r−r0|/4π |r− r0| , (2.21)
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Figure 2-4: (a)-(c) COMSOL generated ẑ-component of the normalized reflected electric field
near the upper interface of a sufficiently thick slab, excited by an electric dipole current source
linearly polarized along ẑ. The dashed circles of radius ρ = 0.7λ indicate the spatial contour for
which the ẑ-component of the normalized reflected electric field defined by the 2D inverse Fourier
transform integral in Eq. (2.24) is evaluated. (d)-(f) Polar patterns of |Er

z |, evaluated for (ρ, z, ϕ) =
(0.7λ, 0.016λp, 0 < ϕ < 2π), and Γ = 0.015ωp, at operating frequencies that correspond to panels
(a)-(c) respectively. In addition to the operating frequency considered in panel (c), panel (f) shows
results for several other operating frequencies in the hyperbolic regime. λ = 2πc/ω denotes the free
space wavelength and λp = 2πc/ωp.

where r0 denotes the source point. The scattered (i.e., reflected, and transmitted) electric

fields for a biased-plasma slab of finite thickness are then written generally as 2D inverse

Fourier transform (Sommerfeld) integrals

Er (r) =
1

4π2

∫
dqeiq·(r−r0)

e−γ0(d+z)

2γ0
C̄r (q) · J0

−iωε0
, (2.22)

Et (r) =
1

4π2

∫
dqeiq·(r−r0)

e−γ0(d−z)

2γ0
C̄t (q) · J0

−iωε0
, (2.23)

where C̄r (q) and C̄t (q) are tensors, similar to the one defined for the principal (incident)

field in Eq. (1.76), defined in terms of the reflection and transmission tensor coefficients for

the biased-plasma slab, derived in Sec. A.1 of the appendix. From the associated scattered
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Figure 2-5: (a) magnitude of the time-averaged SPP Poynting vector (i.e., the Poynting vector
component parallel to the interface) for observation points of constant radial displacement from the
source and height above the interface, (ρ, z, ϕ) = (ρ′, 0.016λp,−π < ϕ < π), where each value of ρ′

is provided in the legend. (b) In-plane angular coordinate of the Poynting vector maximum verses
radial displacement from source where n̂ = ẑ denotes the interface normal. The horizontal dashed
lines highlight the angular coordinate of the group velocity. As expected the Poynting vector is
aligned with the group velocity in the far field (i.e., for ρ/λ > 1). The operating and loss rate
frequencies are ω = 0.65ωp and Γ = 0.015ωp, respectively.

magnetic Fourier components ωµ0H(q, z) = k0 × E(q, z) where k0 = q + ẑiγ0, the time

averaged Poynting vector is obtained as 〈S〉 = Re(E×H∗)/2. In the numerical examples to

follow, we consider the ẑ-component of the scattered electric field due to a linear polarized

current source with J0 = ẑJ0, placed at a height d above a symmetric slab of thickness h

for which r0 = (0, 0, d). In this case, the ẑ-component of the scattered field simplifies to

Er
z (r) =

1

4π2

∫
dqeiq·r

e−γ0(d+z)

2γ0
Cr
zz (q)

J0
−iωε0

, (2.24)

Et
z (r) =

1

4π2

∫
dqeiq·r

e−γ0(d−z)

2γ0
Ct
zz (q)

J0
−iωε0

. (2.25)

For a linearly polarized dipole current source with amplitude J0 = 1A ·m located at the

upper interface (i.e., d = 0), Fig. 2-4(a),(b),(c) shows the scattered field profile generated

using finite element method simulations in COMSOL, for observation points near the in-

terface such that z = 0.016λp, while Figs. 2-4(d),(e),(f) show the normalized magnitude of

|Er
z (r)| calculated via Eq. (2.24) at observation points ρ = 0.7λ, z = 0.016λp, 0 < ϕ < 2π,

and h � λp for several operating frequencies that lie in the four regions of the dispersion

surface shown in Fig. 2-2(a),(b). As shown in Fig. 2-4(a),(d), the expected behavior of
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surface wave propagation for operating frequencies that lie in region IV of the dispersion is

reciprocal and omnidirectional. Figures 2-4(b),(e) confirm that SPP propagation in region

III of the spectrum is nonreciprocal, with the SPP intensity concentrated to the left half

plane. As frequency increases from region IV to regions II and I of Fig. 2-2(b), the SPP

becomes unidirectional and hyperbolic, forming narrow beams directed into the right half-

plane. Interestingly, for frequencies that satisfy the SPP resonant condition, ω− < ω < ω+

(regions I and II), Figs. 2-4(c),(f), show that narrow-beamed directional propagation is

obtained, consistent with the previous discussion on equi-frequency contours. In the polar

pattern of Fig. 2-4(f), at ω = ω− = 0.53ωp, the field pattern forms two narrow beams

that approach each other as the operating frequency increases. Eventually, the two beams

join to form a single beam at ω = 0.76ωp, corresponding to the saturation frequency of the

φ = 90◦ branch in Fig. 2-2(b), and then splits to form two beams for 0.76ωp < ω < ω+.

Therefore, the angle of the beams with respect to the x̂ is tunable with respect to frequency

and magnetic bias. In the following, we restrict our focus to SPP properties in the resonance

frequency range, ω− < ω < ω+ where two narrow beams form in the SPP field pattern. In

particular, we assume the operating frequency ω = 0.65ωp, for which we find two beams

having angles ϕbeam1,2 = ±32◦ with respect to the x̂-axis. In these simulations and ones to

follow, an extremely fine adaptive physics based tetrahedral mesh, defined in the COMSOL

software, was used. At the edges of the computational domain, a perfectly matched layer

(PML) was applied to mimic an open and nonreflecting infinite domain.

In the general lossy case, the group velocity is ill-defined as an energy transport velocity,

and therefore, one should rigorously examine the Poynting vector. The magnitude of the

Poynting vector associated with SPPs at ω = 0.65ωp for observation points of constant

radial displacement from the source and height above the interface is shown in Fig. 2-5(a).

For each radial displacement there are two peak values which occur at the angular position

ϕbeam1,2 of the narrow beams. To find the angular direction of maximum radiation power

flow, the angle of the Poynting vector for points located along the beams is extracted and

plotted with respect to radial displacement from the source in Fig. 2-5(b). As shown, the
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Figure 2-6: COMSOL generated normalized reflected field distribution near the interface of (a)
a half-space biased plasma in the presence of a step discontinuity, and (b) a slab of thickness
h = 0.12λp. The unidirectional nature of the SPP makes it immune to reflection when encountering
the discontinuity.

Poynting vector angle converges to the beam angles in the far-field of the source. That is,

the Poynting vector and predicted group velocity point in the same direction, confirming

that loss does not significantly impact the direction of energy transport.

SPPs that fall within the resonant range are robust to the presence of discontinuities.

To have an indication of the inherent robustness of these SPPs, a discontinuity in the form

of a hole/block is constructed in an attempt to impede the SPP. A unidirectional SPP that

crosses a band gap in reciprocal space is also immune to the effects of diffraction into the

plasma. To illustrate this, Fig. 2-6(a) shows the electric field due to an electric point source

near the vacuum-plasma interface. The SPP passes through the discontinuity without

reflection or diffraction into the plasma. Similar to the single-interface configuration, SPPs

propagating on the plasma slab are also robust to discontinuities. As shown in Fig. 2-6(b),

upon encountering the plasma edge, SPPs pass onto the lower interface without reflection

or diffraction into the plasma.

For a finite thickness slab, we consider the excitation of SPPs at the upper (z = 0) and

lower (z = −h) interfaces due to a linearly polarized (along ẑ) dipole point source positioned

at the upper interface (d = 0). Figure 2-7(e)-(g) shows how the beams at the upper interface

evolve with slab thickness for a set observation point (ρ, z, ϕ) = (0.5λ, 0.03λ, 0 < ϕ < 2π)
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Figure 2-7: (a),(b) COMSOL generated normalized SPP field profile (ẑ-component) excited at the
(a) lower and (b) upper interfaces of a thin slab of thickness h = 0.04λp by a vertical dipole source
located at the upper interface. (c),(d) Magnitude of the scattered electric field (ẑ-component) at
the (c) lower and (d) upper interfaces obtained via the evaluation of the Sommerfeld integral in
Eqs. (2.24) and (2.25) respectively, where the in-plane displacement from the source is ρ = 0.5λ.
(e),(f) SPP field profile excited at the upper interface shown for two values of thickness, h = 0.1λp

and h = 0.045λp. (g) Maximum of |Er
z | plotted verses slab thickness. For a sufficiently thick slab

h > 0.3λp, max (|Er
z |) is maximized. The results shown in (e)-(g) are normalized with respect to

5× 1014V/m, obtained for a thick slab in the limit h → ∞, assuming the amplitude of the electric
current source is J0 = 1 A ·m.

and thickness values that fall within the range 0 < h < 0.3λp. The frequency of operation is

set within the common bulk bandgap of the plasma, ω = 0.65ωp, and the collision frequency

is set to Γ = 0.015ωp. The values of thickness considered in Fig. 2-7(e),(f) are h = 0.1λp and

h = 0.045λp respectfully. Each pattern is normalized with respect to the beam maximum

obtained for a thick slab, |Er
z |max = 5 × 1014 V/m, in the limit h → ∞, assuming the

magnitude of the electric current source is J0 = 1A ·m. In Fig. 2-7(e) it is shown that the

beam maximum grows logistically with thickness and asymptotically approaches the thick

slab limit.

When the slab becomes thin enough, it is also possible that a source on the upper

interface excites SPPs on the lower interface where the two lower-surface SPP beams are

in the opposite direction of the SPP beams on the top interface. Figure 2-7(a),(b) shows

the scattered electric field profile at the lower (z = −h) and upper (z = 0) interfaces

respectively, obtained using the finite element method in COMSOL, while Fig. 2-7(c),(d)
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shows the magnitude of the transmitted and reflected fields obtained by evaluating the

Sommerfeld integrals, defined in Eqs. (2.24) and (2.25), for a small distance below and

above the slab. For a thin slab, two forward beams form at the upper interface while two

backward beams form at the lower interface.

2.6 Summary

In this chapter, we investigated the behavior of SPPs propagating at the interface between

air and gyrotropic plasma for both single-interface and finite-thickness biased-plasma slab

configurations. We identified a bulk bandgap, common to all propagation angles, and chose

the operating frequency to lie within the common band gap, wherein omni-directional,

bidirectional, and narrow directional SPP beam patterns were observed. Operating in

the bandgap gives the SPP interesting properties that protect it from backscatter and

diffraction in the presence of a discontinuity. The direction of the SPP beams are tunable

with operation frequency and also the external magnetic bias field. The scattered fields

excited by a near field point source and a quasi-static approximation to the dispersion were

also obtained analytically for a finite-thickness slab.
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Chapter 3

Magneto-optics and chiral

plasmonics with two-dimensional

materials

Figure 3-1 shows the (a) top and (b) side views of a nonreciprocal quasi-2D CrI3-graphene

heterostructure at the atomic level. Further details are provided in Sec. 3.4.

Figure 3-1: (a) Top and (b) side views of a quasi-2D CrI3-graphene heterostructure at the atomic
level (Carbon, C: yellow, Chromium, Cr: blue, Iodine, I: green), with the commensurate supercell
outlined in black. The interatomic separation between the graphene (upper) and CrI3 (lower) layers
is varied between 2.5 and 4.5 Å.
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3.1 Introduction

Since the discovery of graphene [58,59] and other two-dimensional materials such as the tran-

sition metal dichalchogenides (TMDs) [60], transition metal oxides (TMOs) [61–63], boron

nitride (BN) [64–66], black phosphorous (BP) [67–71], borophene [72], and α-MoO3 [73],

plasmonics research has continued to grow as many of these materials have useful conduc-

tive properties, making it possible for them to support robust SPPs with large confinement

and propagation length. In addition, the study of quasi-2D van der Waals heterostructures

consisting of two or more of these materials in parallel, is of growing popularity [25,74–79].

In contrast to artificial metasurfaces [80–83], where design parameters such as the unit

cell and periodicity govern behavior, interactions at the atomic level are the driving factor

behind the unique optical and electronic properties of natural 2D/quasi-2D materials.

For both artificial and natural materials, a tensor response function can arise. Of par-

ticular interest are materials and metasurfaces with anisotropic qualities due to asymmetry

(i.e., time-reversal and/or translational) which are especially attractive in applications sen-

sitive to polarization and/or the propagation direction. Translational asymmetry is found

naturally in the crystal lattice of black phosphorous and in patterned isotropic materi-

als [84–86]. Time reversal symmetry is broken in gapped Dirac materials pumped with an

AC plane wave [87] and in materials biased with an external magnetic field [23,88–90].

The novel properties of SPPs guided at the surface of two-dimensional materials are

heavily dependent on the conductivity. In addition to low loss, a strong SPP response

is obtained when the diagonal elements of the conductivity tensor are an order of mag-

nitude larger than the conductance quantum [91] G0 = 2e2/h where e and h denote the

fundamental charge unit and Planck’s constant respectively. For isotropic materials, the

capacitive/inductive nature of the conductivity is determined very simply by the sign of

the imaginary part, and governs the propagation of transverse-electric/magnetic (TE/TM)

SPP modes [92, 93] where transverse is defined with respect to the propagation direction.

In the time convention exp (−iωt), a capacitive/inductive local, dispersive conductivity has

Im {σ (ω)} ≶ 0 and Re {σ (ω)} > 0 with the real part accounting for loss. For anisotropic
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materials, the SPP modes are hybrid, generally having some combination of TE and TM

polarizations. These hybrid modes are commonly referred to as quasi-TE/TM (QTE/QTM)

depending on which polarization is dominant, and likewise experience a capacitive/inductive

response that, in addition to frequency ω, depends on the propagation direction [24].

The chapter is organized as follows. In Sec. 3.2, the material response tensor of an

arbitrary two-dimensional material is presented, and a change of basis is performed which

makes characterizing the response as capacitive/inductive with respect to the propagation

direction straightforward. In Sec. 3.3, the dispersion of quasi-TE/TM bulk modes is recov-

ered by solving the wave equation and enforcing boundary conditions at the interface. In

Secs. 3.3.1 and 3.3.2 the dispersion and response tensor for two anisotropic 2D materials

are provided which demonstrates the effectiveness of response characterization to predict

the spectral location of bandgaps in the dispersion of quasi-TM SPP modes. In Sec. 3.4

the material response of a new quasi-2D van der Waals heterostructure recently described

in Ref. [25] is summarized, and the properties of unidirectional SPPs guided along the edge

of such a material are investigated. In Sec. A.3 of the appendix, a full derivation of the

quasi-static edge SPP dispersion relation is provided.

3.2 Material response of a two-dimensional material

In the following, we consider a local, dispersive, anisotropic two-dimensional material em-

bedded in a simple, isotropic medium characterized by permittivity ε and permeability µ,

depicted in Fig. 3-2(a). Dominating the response is the surface conductivity, represented

generally in the standard (Cartesian) basis as

σ̄s (ω) =




σx̂x̂ (ω) σx̂ŷ (ω)

σŷx̂ (ω) σŷŷ (ω)


 , (3.1)

with the condition σx̂ŷ (ω) = −σŷx̂ (ω). To characterize the response, it is convenient to

work in a coordinate system spanned by the set of orthonormal basis vectors {q̂, ẑ, ẑ× q̂}

where q denotes the in-plane momentum. The representation of the surface conductivity
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Figure 3-2: (a) Anisotropic two-dimensional material characterized by surface conductivity tensor
σ̄2D, embedded in an isotropic medium characterized by relative permittivity ε and permeability
µ. Quasi-TM SPP modes supported by the structure have a dominant magnetic field component
parallel to ẑ × q̂, and propagate along the surface in the q̂ direction. The angle q̂ makes with x̂ is
denoted φ. (b)-(c) Perspective views of the 2D material shown in (a) where an edge is introduced
into the structure at x = 0, rendering the structure infinite along ŷ and semi-infinite along x̂.

in this frame is

σ̄ (ω, φ) = U−1 (φ) · σ̄s (ω) ·U (φ) , (3.2)

where

U (φ) =




cos (φ) − sin (φ)

sin (φ) cos (φ)


 , (3.3)

with φ denoting the angle of propagation (i.e., the angle q makes with x̂). Expanding the

transformation in Eq. (3.2) results in

σ̄ (ω, φ) =




σq̂q̂ (ω, φ) σq̂(ẑ×q̂) (ω, φ)

σ(ẑ×q̂)q̂ (ω, φ) σ(ẑ×q̂)(ẑ×q̂) (ω, φ)


 , (3.4)
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where

σq̂q̂ = σx̂x̂ (ω) cos
2 (φ) + σŷŷ (ω) sin

2 (φ) , (3.5)

σq̂(ẑ×q̂) = σx̂ŷ (ω) + δσs (ω) cos (φ) sin (φ) , (3.6)

σ(ẑ×q̂)q̂ = −σx̂ŷ (ω) + δσs (ω) cos (φ) sin (φ) , (3.7)

σ(ẑ×q̂)(ẑ×q̂) = σx̂x̂ (ω) sin
2 (φ) + σŷŷ (ω) cos

2 (φ) , (3.8)

and δσs = σŷŷ − σx̂x̂. Assuming low loss, the conductivity elements in the standard basis

are of the form σαα = iIm {σαα}+ εαα and σαβ = Re {σαβ}+ iεαβ for α, β ∈ {x̂, ŷ} (α �= β)

such that |Im (σαα)| � |εαα| and |Re (σαβ)| � |εαβ |. Both εαα and εαβ are real valued with

εαα > 0 while the sign of εαβ is determined with respect to an arbitrary axis along which

time reversal symmetry is broken.

3.3 Dispersion of bulk SPP modes

From Eqs. (1.77)-(1.78), the tangential boundary conditions on the electric E (q, z) and

magnetic fields H (q, z) at the interface (z = 0) in the spatial Fourier transform domain

with respect to the spatial coordinates x and y are

ẑ×
[
E
(
q, 0+

)
−E

(
q, 0−

)]
= 0 , (3.9)

ẑ×
[
H

(
q, 0+

)
−H

(
q, 0−

)]
= σ̄ ·E

(
q, 0+

)
, (3.10)

and lead to the recovery of the SPP dispersion relation

det
(
2Ȳ − σ̄

)
= 0 , (3.11)

where q is preserved across the interface and Ȳ is defined in the appendix, Sec. A.2.

Explicit solutions to Eq. (3.11) for the SPP wavenumber in terms of the propagation angle
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exist and can be written in the form

q± = k
√
R± + iI± , (3.12)

where k = ω
√
εµ, R± and I± denote the real and imaginary parts of the argument of the

square root respectively, and the ± distinguishes between the two solutions corresponding

to QTE and QTM SPP modes. The usual branch of the square root is assumed in which

Re{q±} > 0, and it is important to note that sgn (Im {q±}) is equal to that of I±). It can

be shown that

R± = 1 +
2 |∆±|
η2 |σq̂q̂|2

cos
(
2θ + γ±

)
, (3.13)

I± =
2 |∆±|
η2 |σq̂q̂|2

sin
(
2θ + γ±

)
, (3.14)

where

∆± = s4 − 2s2d ∓ s2
√

s4 − 4s2d , (3.15)

with s2 = 1 + η2det (σ̄) /4, s2d = η2σq̂q̂σ(ẑ×q̂)(ẑ×q̂)/4, and η2 = µ/ε. The angles θ, γ± ∈

[−π, π] are defined as

θ = sgn (Im {σq̂q̂}) tan−1

(
Re {σq̂q̂}
|Im {σq̂q̂}|

)
, (3.16)

γ± = tan−1

(
Im {∆±}
Re {∆±}

)
. (3.17)

In most cases, QTE SPP modes are fast propagating with small wavenumber (i.e.,

q+ � k). As a result, these modes tend to leak rapidly into the surrounding environment

and are loosely confined to the interface. Therefore, these modes are of little importance

and are not considered in the following analysis. In contrast, QTM modes tend to be slow

propagating with large wavenumber (i.e., q− � k) and tightly confined to the interface [93]
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which is ideal. It is straightforward to show, in the isotropic case, that

∣∣∣∣
Im {∆−}
Re {∆−}

∣∣∣∣ <
∣∣∣∣
Re {σq̂q̂}
Im {σq̂q̂}

∣∣∣∣ , (3.18)

and although difficult to formally prove, it is reasonable to assume Eq. (3.18) also holds in

the anisotropic case, as numerical tests have confirmed. We then find

∣∣γ−∣∣ = tan−1

∣∣∣∣
Im {∆−}
Re {∆−}

∣∣∣∣ < tan−1

∣∣∣∣
Re {σq̂q̂}
Im {σq̂q̂}

∣∣∣∣ = |θ| , (3.19)

indicating that 2θ + γ− and 2θ share the same quadrant. As a result, one is justified in

writing Eq. (3.14) in the form

I− = sgn (Im {σq̂q̂})

[
2 |∆−|
η2 |σq̂q̂|2

sin
∣∣2θ + γ−

∣∣
]

, (3.20)

where the term in brackets [·] is positive, making it clear that sgn (Im {σq̂q̂}) controls the

sign of I− and ultimately Im {q−}.

Outward propagating QTM SPP modes along a particular direction in the plane of

the interface are required to have Im {q} > 0 in order to satisfy the Sommerfeld radiation

condition. This condition is satisfied when I− > 0 and therefore, Im {σq̂q̂} > 0. Therefore,

we characterize the conductivity as inductive according to Im {σq̂q̂} > 0, which remains

valid in the isotropic limit.

In summary, a local dispersive, anisotropic two-dimensional material supports QTM

SPP modes when the effective conductivity experienced by the wave along the propagation

direction σq̂q̂ (ω, φ) is inductive, with a positive imaginary part. In the limiting cases

φ = 2nπ and φ = nπ + π/2 for n ∈ {0, 1, 2, . . . }, we find σq̂q̂ = σx̂x̂ and σq̂q̂ = σŷŷ

respectively; the other diagonal element is effectively immaterial in these limits. As a result,

predicting the spectral location of bandgaps in the QTM SPP dispersion is straightforward.

Lastly, we note that in most cases, natural 2d/quasi-2D materials are supported by a

substrate of some kind. In this case, closed form solutions to the dispersion relation, Eq.

43



(3.11), no longer exist, and the above analysis no-longer rigorously applies as the material

properties above and below the material would differ. However, as long as the substrate

plays a negligible role in guiding the SPP, the above analysis is still useful.

3.3.1 Graphene in an external static magnetic field

In this example, we consider graphene biased with a perpendicular external magnetic field

B = ẑB0 [T]. The conductivity tensor in the standard basis is defined in Eq. (3.1) with

σx̂x̂ = σŷŷ = σd and σx̂ŷ = −σŷx̂ = σo, where σd,o = σintra
d,o + σinter

d,o . The intra- and inter-

band contributions are written as a discrete summation over Landau levels [94]

σ
inter/intra
d =

�ω̃
i

e2E2
1

2π�

∞∑
n=0

1

M±
n

N−
n+1 ±N−

n

M±
n M±

n − �2ω̃2
, (3.21)

σinter/intra
o = sgn (B0)

e2E2
1

2π�

∞∑
n=0

N+
n+1 −N+

n

M±
n M±

n − �2ω̃2
, (3.22)

where N±
n = nF (−En) ± nF (En) and M±

n = En+1 ± En with ω̃ = ω + 2iΓ, En =

vF
√

2�n |eB0|, and nF (E) = {exp [(E − µc) /kBT ] + 1}−1 is the Fermi-Dirac distribu-

tion function. Parameters {ω,Γ, µc, vF , e, T, �, kB} denote the excitation frequency, scatter-

ing rate, chemical potential, Fermi velocity � 106 m/s, fundamental charge, temperature,

Planck’s reduced constant, and Boltzmann constant respectively. One additional parameter

worth introducing is the magnetic length lB =
√
�/ |eB0|. This quantity places a bound on

q in the sense that for q > 1/lB a non-local model for the conductivity is required [88]. It

should also be noted that for relatively large magnetic field values (i.e., B0 > 0.1 T), the

infinite sums in Eqs. (3.21)-(3.22) converge rather quickly, making it sufficient to include

only a few terms. This yields the correct result for frequencies up to the first few landau

levels, however, additional terms are necessary at higher frequencies to obtain the correct

resonance behavior.

The QTM dispersion and associated equi-frequency dispersion contours are shown in

Figs. 3-3(a) and 3-3(b) respectively, while the imaginary part of σq̂q̂ is shown in Fig. 3-

3(c). Isotropy in the diagonal elements results in isotropic equi-frequency contours as the
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Figure 3-3: (a) Quasi-TM SPP dispersion (solid red) with bandgaps shaded. For Re{q}/k that
falls within the dashed black lines corresponding to Re{q} = 1/lB , a local model for the conductivity
tensor is valid. (b) Isotropic equi-frequency contours increasing with radius for the respective energies
{0.12, 0.14, 0.16, 0.18} eV. (c) Behavior of Im{σq̂q̂} shows how the spectral regions in which the
sign is negative correspond to the shaded bandgap regions in (a). Material parameters used in
the conductivity model described in Eqs. (3.21)-(3.22) are �Γ = 0.005eV, µc = 0.3E1 � 0.03eV,
B0 = 10T, and T = 40K. (d) Conductivity tensor elements represented in the standard basis for
a black phosphorous thin film. The hyperbolic regime in which Im{σxx}Im{σyy} < 0 is located
to the right of the vertical black line. (e) The hyperbolic equi-frequency dispersion contour for
�ω = 0.2eV. Bandgaps in the equi-frequency contours (shaded) are determined by Im{σqq} < 0
shown in (f). Material parameters used in the conductivity model described in Eq. (3.23) are
�Γ = 0.005eV, n = 5× 1013cm−2, m∗

x = 0.15m0, m
∗
y = 1.2m0, �ωx = 0.7eV, and σx = 3.5σ0, where

m0 denotes the free electron rest mass and σ0 = e2/4�.

dependence on φ drops out of σq̂q̂. Bandgaps that occur in the dispersion clearly correspond

to Im{σq̂q̂} < 0, indicated by the blue shaded regions.

3.3.2 Hyperbolic black phosphorous

Next, we consider an approximate model for the conductivity of multilayer black phospho-

rous thin films [67, 68] where anisotropy arises as a consequence of the in-plane crystallo-

graphic directions having different symmetries. In the hyperbolic regime, the imaginary

parts of σx̂x̂ and σŷŷ are of opposite sign, in which case the sign of the imaginary part of

σq̂q̂ may vary depending on propagation angle and excitation frequency. In what follows,

we restrict our consideration to bandgap dependence on propagation angle.

At sufficiently low frequency, intraband transitions dominate the material response and
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lead to a Drude type contribution to the conductivity of the form σintra
αα = iΩαα/ω̃ for

α ∈ {x̂, ŷ}, where ω̃ = ω + 2iΓ and Ωαα = e2 |n| /m∗
α denotes the drude weight. The

parameters {ω,Γ, n,m∗
α, e} denote the excitation frequency, scattering rate, charge carrier

density, fundamental charge, and effective mass respectively. At higher frequencies, inter-

band transitions dominate. However, in the case of multilayer black phosphorous, interband

transitions are negligible along one of the crystallographic directions which we conveniently

take to be ŷ. Thus, σŷŷ has only an intraband contribution while σx̂x̂ has both intra-

and inter-band contributions. We introduce the inter-band contribution phonologically by

modeling the absorption (real part) as a unit step and obtain the imaginary part from the

Kramers-Kronig relations. In total, we have [95]

σinter
x̂x̂ = σx̂

[
Θ(ω − ωx̂) +

i

π
ln

∣∣∣∣
ω − ωx̂

ω + ωx̂

∣∣∣∣
]

, (3.23)

where ωx̂ denotes the onset frequency of inter-band transitions and σx̂ is an amplitude

coefficient.

Figure 3-3(d) shows how the imaginary parts of the conductivity elements in the stan-

dard basis vary with respect to frequency. The solid black vertical line separates the elliptic

and hyperbolic regimes. Parameters used in the conductivity model correspond to a 20nm

thick Black Phosphorus film [68], doped with a 0.2eV chemical potential defined as the

energy difference between Fermi level and first conduction subband. For �ω = 0.6 eV, the

equi-frequency dispersion contour (EFC) is shown in Fig. 3-3(e), and the imaginary part of

σq̂q̂ as propagation angle varies is shown in Fig. 3-3(f). Bandgaps in the EFC are shaded

and agree with Im{σq̂q̂} < 0.

3.4 A CrI3-graphene van der Waals heterostructure

Graphite consists of parallel atomic layers of carbon atoms, the layers being weakly bound

together by van der Waals (vdW) forces. As such, graphite is easily cleaved to form few

layer materials, or even monolayers (graphene). Since its experimental isolation in 2004
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[96], graphene has been an object of considerable study for both scientific and industrial

investigators. Graphene’s most notable feature is its atomic hexagonal lattice, which results

in linear electronic dispersion and the presence of Dirac points at the Fermi level. As a

result, electrons behave as massless particles in the vicinity of the Dirac point, leading to

extraordinary electrical and mechanical properties [97].

Bulk chromium triiodide, CrI3, is also a layered vdW material that can be easily cleaved,

and is relatively stable in ambient conditions [98]. Bulk CrI3 is a ferromagnetic (FM)

insulator with a relatively high Curie temperature of Tc = 61 K [98]. The 2D/monolayer

form of CrI3 consists of Cr3+ ions and I− ions that form edge-sharing octahedra arranged

in a hexagonal honeycomb lattice with an approximate thickness of 0.6 nm. Like its bulk

form, monolayer CrI3 is also a FM insulator, with an out-of-plane easy axis and somewhat

reduced Tc of 45 K [99].

The controlled growth/deposition of 2D materials can lead to van der Waals heterostruc-

tures that result in exceedingly thin structures with enhanced functionality. Here, we exploit

the proximity exchange between a 2D ferromagnet and graphene. In its monolayer form,

CrI3 exhibits massive local Cr magnetic moments of 3µB, which can induce large exchange

splittings in adjacent layers of a heterostructure. Since 2D CrI3 has a hexagonal structure, it

is well lattice-matched with graphene. Magnetic order in CrI3 has been studied experimen-

tally in [100–104], and in other 2D magnets, such as MnSe2 [105,106] and CrGeTe3 [107,108].

In all cases, these 2D magnets have out of the plane magnetization. In some cases, magnetic

effects can be controlled via electrostatic gating [103,104], or strain [109,110].

Enormous pseudo-magnetic fields (on the order of hundreds of Tesla) and associated

pseudo-Landau levels (LLs) have been predicted in strained systems [111]. Such fields do

not break time-reversal (TR) symmetry, and therefore, lead to reciprocal behavior. Impor-

tantly, the exchanged-induced fields described here do break TR. The effective Hamiltonians

for both an external magnetic field and a ferro-/antiferro-magnetic system contain terms

that explicitly couple to the spin that are not invariant under time reversal. In contrast,

the pseudo-magnetic fields in strained graphene couple to charge only, and hence preserve
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time-reversal symmetry. Exchange interactions in similar vdW heterostructures have been

considered, e.g., Cr2Ge2Te6-graphene [112], where equilibrium exchange splittings are cal-

culated to be approximately 5 meV, and EuS-graphene [113]. A Chern insulating state can

be realized in graphene in proximity to CrI3, via the magnetic exchange field and Rashba

spin-orbit coupling (SOC) [110,114]. However, to achieve this, the heterostructure needs to

be compressed from its equilibrium state which increases the effective field [114].

In Ref. [25], first-principles density functional theory (DFT) calculations are used to

show that the proximity exchange in graphene due to monolayer CrI3 can result in an enor-

mous exchange field, and the conductivity of graphene in the presence of the CrI3 exchange

field is investigated. In addition, the behavior of bulk and nonreciprocal edge surface-

plasmon polaritons (SPPs) is studied in the far-infrared regime. Those results are then

compared with the conductivity and SPP properties of graphene in an external magnetic

field, and significant differences are found in the two cases.

The principal findings of Ref. [25] summarized in this section are: (1) the equilibrium

(minimum energy) separation between the CrI3 and graphene is approximately 3.75 Å, at

which point the exchange splitting is 21 meV, corresponding to an effective exchange field

of 100 T and a chemical potential of µ = −0.3 eV, which self-biases the graphene. Referring

to graphene’s conductivity in the CrI3-graphene heterostructure, (2) Landau levels, which

are the most prominent feature of the graphene conductivity in a strong external field, are

absent in the case of the exchange field. (3) In the far-infrared, the intraband conductivity

is dominant, with diagonal element values that are approximately the same as isolated

graphene with no applied magnetic bias and µ = −0.3 eV, whereas the off-diagonal elements

are similar in magnitude to those in the external bias case. (4) Because of the large diagonal

conductivity response compared to having an external bias (in which case most of the Drude

weight is transferred to the Landau levels), the resulting non-reciprocity due to the exchange

field is considerably less than for an external magnetic field of the same strength. For smaller

separation (achievable through, e.g., strain), a unidirectional edge SPP can be found.

The section is organized as follows. In Sec. 3.4.2 the exchange-field-induced graphene
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conductivity is discussed, and compared with that of isolated graphene in the presence and

absence of an external magnetic bias. Bulk and edge surface plasmons are then considered

in Sec. 3.4.3. The edge SPPs for the exchange field are slightly non-reciprocal for the

equilibrium separation, whereas for the external bias case they are highly nonreciprocal

(unidirectional), tightly-confined, long-lasting, and robust to material discontinuities. In

the appendix, a derivation of the edge SPP dispersion is provided. The suppressed time

harmonic dependence is e−iωt.

3.4.1 Electronic band structure of graphene in an exchange field

Density functional calculations for graphene on CrI3 have been reported previously, [110],

with an emphasis on the topological aspects of the compressed system. Here the focus is

on the effect of the induced exchange field on the graphene electronic structure, and the

implications for the calculation of optical properties discussed later in Sec. 3.4.2; detailed

first-principles calculations of the optical properties of the CrI3 itself have also been reported

previously [115]. To model the graphene-CrI3 heterostructure, we consider the commensu-

rate supercell outlined in black in Fig. 3-4(a), which consists of 5× 5 (unit cell) graphene

on a free-standing
√
3 ×

√
3 CrI3 monolayer. The two materials are well lattice-matched,

having only a ∼1% lattice mismatch. In addition, the following results are only very weakly

dependent on the horizontal registry between the two since graphene and CrI3 are both

layered van der Waals materials. The supercell Brillouin zone of the heterostructure, which

is a factor of 25 (3) times smaller than that of isolated graphene (CrI3), is shown in Fig.

3-4(b), with the first Brillouin zone shaded yellow. The interatomic separation between

graphene and CrI3 is varied between 2.5 and 4.5 Å, as indicated in the 2D perspective view

of the heterostructure, shown in Fig. 3-4(c).

Each ferromagnetically coupled Chromium (Cr) atom in the CrI3 compound has a mag-

netic moment of 3 µB, and the moments are calculated (∼0.4 meV/atom) to be orientated

perpendicular to the plane. The spin-polarized k-projected [116, 117] bands of graphene

around the Dirac (K) point and of CrI3 at the calculated equilibrium separation of 3.75 Å
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Figure 3-4: (a) Top and (c) side views of the CrI3-graphene heterostructure at the atomic level
(Carbon, C: yellow, Chromium, Cr: blue, Iodine, I: green), with the commensurate supercell out-
lined in black. (b) The Brillouin zones of the supercell (black; first Brillouin zone highlighted in
yellow), CrI3 (blue), and graphene (red). The green circles (and enclosed lines) denote the portion of
momentum (k-) space where the graphene Dirac (K) points occur. (d)-(f) k-projected bands of the
graphene-CrI3 magnetic system. The Blue (orange) circles denote the majority (minority) electron
spin states, while the size of the circles represent the relative weight of each state. (d) Graphene
k-projected bands around the Dirac point (±1/4) along Γ-K of the (1 × 1) Brillouin zone, and (b)
CrI3 k-projected bands along the high symmetry directions of the (1 × 1) structure, both for a
graphene-CrI3 separation of 3.75Å. (c) Close-ups of the graphene k-projected bands within ±1/40
of K for different separations. The gray bands are (“folded” and CrI3) bands with small weights.
The green lines and red ovals show where the exchange splittings above and below the Dirac point,
respectively, are measured.

are shown in Figs. 3-4(d) and (e), respectively. The range of separations discussed here

may be experimentally accessible; the calculated pressures are 1.4, 3.7, and 13.5 GPa for

interatomic separations of 3.25, 3.0, and 2.5 Å, respectively.

The top of the CrI3 valence band and the lowest set of conduction bands are of majority

spin (blue curves). The graphene Dirac point lies above the Fermi level (referenced at

zero energy) in the conduction band of CrI3, and opens up a gap in the CrI3 conduction

bands along Γ-M; the red circle in Fig. 3-4(b) highlights the location of the gap. The

relative position of the graphene and CrI3 bands with respect to the Fermi-level varies with

interatomic separation. For separations of less than ∼3.2 Å, the graphene Dirac point is

in the gap and then crosses into the CrI3 conduction band as shown in Fig. 3-4(f). For

all separations, the minority (“spin 2”) graphene bands maintain their linear dispersions,

even including spin-orbit interaction. The majority bands, on the other hand, interact
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Figure 3-5: (a) Exchange (spin) splittings (meV) and effective magnetic bias field (T) experienced
by the graphene spin states around K for different inter-atomic separations determined at the posi-
tions shown in Fig. 3-4(f), where above and below the Dirac point indicates the green line and red
ovals respectively. (b) The chemical potentials of graphene for each spin, relative to the respective
Dirac points.

and hybridize with the (majority spin) conduction band states of CrI3, even for smaller

separations where the Dirac point is in the gap. Importantly, because of the proximity

of the graphene to the ferromagnetic CrI3, there are induced exchange splittings of the

graphene bands. For larger separations, the majority graphene bands that overlap the CrI3

conduction bands are strongly modified, whereas the minority bands retain the characteristic

graphene dispersions.

The calculated splittings of the Dirac point and the bands above (below), measured at

the indicated positions in Fig. 3-4(f), are given in Fig. 3-5(a). These splittings are large

compared to the Zeeman splittings induced by an external magnetic bias field; the effective

fields are in the range of 100 T. When the Dirac point is in the gap, the exchange splittings

are normal in the sense that the majority states are deeper in energy than the minority.

However, the exchange splitting of the Dirac point and the bands above reverse as the

Fermi level of the combined system moves into the conduction bands of CrI3. Because of

the exchange splitting and the relative positions of the bands, the graphene is effectively

doped, which can be described by spin-dependent chemical potentials, µ±, as shown in Fig.
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3-5(b). For smaller separations with the Dirac points in the gap, µ± are approximately

equal and of opposite sign, i.e., no net doping. The result is that for smaller separations

when the Fermi level is in the gap, the position of the (minority) Dirac cone is closer to the

Fermi level and determined by the size of the exchange splitting, while for larger separations,

doping determines the position. For larger separations, including the equilibrium one, the

graphene becomes hole doped with µ± ∼ −0.3 eV.

For graphene in external magnetic bias fields and non-zero chemical potential, the intra-

band contributions to σxx dominate over interband ones in the far-infrared optical conduc-

tivity, and the formation of Landau levels provide an explanation of the Hall conductivity

σxy. Although the effective fields due to the proximity-induced exchange splittings are large,

these do not create Landau levels; the formations of the minibands in the majority (blue)

bands seen in Fig. 3-4(f) are due to interactions and hybridization with the CrI3 conduction

bands. The Landau levels formed in graphene in the presence of external magnetic fields

or strain-induced pseudomagnetic fields [118] are both more localized in energy and have

their broad momentum distribution peaked around K. Similar to Landau levels, however,

these minibands change the dispersion and hence will modify the optical transitions.

3.4.2 Optical conductivity

Figure 3-6(a),(b) shows the computed conductivity in the far-infrared and, for comparison,

the conductivity computed (1) assuming isolated graphene in an external magnetic bias

of 100T and hole doped with chemical potential µ = −0.3 eV [119], (2) isolated unbiased

graphene (B = 0 T) using the spin dependent chemical potentials µ± plotted in Fig. 3-5(b)

for separations d ∈ {2.5, 3.25, 3.75} Å, and (3) the calculated CrI3 conductivity [115], which

is negligible at the considered frequencies. Figure 3-6(c) shows the off-diagonal element of

conductivity verses the inter-atomic CrI3-graphene separation, which is nondispersive (i.e.,

independent of frequency) in our calculation. For comparison, the off-diagonal conductivity

(averaged over frequency from 0 to 5 THz) of graphene in an external bias is also shown

where the effective fields “below the DP” plotted in Fig. 3-5(b) for each separation are
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Figure 3-6: (a),(b) Two dimensional conductivity of graphene in the presence of the CrI3 exchange
field (GR-CrI3) for inter-atomic separations d ∈ {2.5, 3.5, 3.75}Å. Also shown for comparison is the
conductivity of isolated biased graphene (Iso-GR, B = 100T) computed assuming (1) µ+

c = µ−
c =

−0.3eV, and (2) isolated unbiased graphene (B = 0T) using the spin dependent chemical potentials
that correspond to each of the aforementioned separations plotted in Fig. 3-5(b); in both the latter
computations, Γ = 2× 1012s−1 and T = 40K. (c) Off-diagonal element vs. inter-atomic separation
compared with isolated graphene in an external bias field where the value of effective bias ”below
the DP” plotted in Fig. 3-5(a) is assumed for each separation. (d) Off-diagonal element normalized
by the diagonal element. In (c),(d) the overbar indicates frequency average, as explained in the text,
and G0 = 2e2/h is the conductance quantum. (e) Calculated contributions to the optical response:
(blue) Drude intraband weights ΩDrude, (red, green) anomalous Hall effect (AHE) σ2D

xy and interband

contributions σ2D
xx .

assumed. Figure 3-6(d) shows the off-diagonal conductivity (averaged over frequency) in

the two cases (i.e., external bias and exchange field) normalized with respect to the averaged

diagonal element (imaginary part) which serves as a measure of nonreciprocity in the system

(i.e., the larger this ratio is, the more nonreciprocal the system is). Notably, non-reciprocity

induced by the exchange field case is much weaker than for the external magnetic bias field

for separations that exceed 3 Å.

The diagonal elements of the conductivity are dominated by the Drude intraband con-

tribution σ2D−Drude
xx = iΩ/(ω + 2iΓ) at the considered frequencies, with the Drude weights

Ω plotted verses layer separation in Fig. 3-6(e), and resemble very closely the conductiv-

ity for isolated unbiased graphene, as shown in Figs. 3-6(a),(b), when accounting for the

exchange-field induced spin-dependent values of chemical potential µ±. Because the Drude
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weight is transferred to the Landau levels in the case of an external magnetic bias, the

exchange field diagonal conductivity is several orders of magnitude larger than the equiv-

alent external field conductivity (i.e., for the external bias case, the formation of Landau

levels depresses the diagonal conductivity away from the Landau level), while forcing the

off-diagonal elements to be nonzero due to cyclotron motion of the charge carriers. This

results in relatively large ratios of the off-diagonal to diagonal elements for the external bias,

in contrast to the exchange field case where the diagonal elements are relatively unaffected

and hence the ratios are smaller as shown in Fig. 3-6(d).

Lastly, it is worth noting from Figs. 3-6(a),(b), that the CrI3 conductivity is much

smaller in magnitude than that of graphene. Since these effectively combine in parallel from

an electromagnetic standpoint, we can ignore the presence of CrI3 in the electromagnetic

calculations. Further confirmation of this fact is obtained by computing the dispersion of a

CrI3-graphene layered system that includes both conductivities, as in Ref. [120].

3.4.3 Uni-directional quasi-static edge SPP modes

Assuming an out-of-plane magnetic bias, bulk SPPs on graphene have reciprocal, isotropic

dispersion as shown in Fig. 3-3(a)-(b). Breaking inversion symmetry by introducing an edge,

allows for plasmons with nonreciprocal dispersion [121]. Specifically, here we introduce a

graphene half-space like the one depicted in Fig. 3-2(b),(c), and consider the unidirectional

quasi-static SPP modes that may propagate on the edge. This is a well-studied problem

[122,123], and here we consider the exchange field and external bias cases.

Figure 3-7(a),(b) shows the bulk and edge dispersions for a graphene half-space due

to the exchange fields corresponding to separations of (a) 3.0 Å, and (b) 3.75 Å. For

the 3 Å separation, the right-going edge mode exists until approximately 3THz, above

which the edge mode leaks into the bulk SPP (mathematically, it crosses onto an improper

Riemann sheet through a branch point associated with the bulk mode wave number); the

leaky mode (not shown) then approximately follows the bulk dispersion, with slightly lower

wave number. In this case, the edge mode is unidirectional. However, for the equilibrium

54



Figure 3-7: (a),(b) Bulk (solid red) and edge (dots) dispersion of quasi-TM graphene modes in
an exchange field for two inter-atomic separations. (c),(d) Dispersion of bulk (dashed red) and
edge (dots) quasi-TM modes and bulk quasi-TE modes (solid red) for graphene biased with an
external magnetic field. The shaded region indicates the bulk bandgap, ωB = 526.2 × 1012s−1 is
the frequency of the first Landau level, µ = −0.3eV, T = 40K, Γ = 2 × 1012s−1, B = 100T, and
lB =

√
�/eB = 2.6nm is the magnetic length. VAC indicates the dispersion of bulk modes in

vacuum.

separation of 3.75 Å separation, the edge mode is essentially reciprocal.

The bulk and edge dispersions for graphene in an external magnetic bias field are shown

in Fig. 3-7(c)-(d). The edge modes flip directions upon reversing the bias field. Although

the results are computed assuming B = 100 T, due to the normalization, the dispersion is

essentially independent of B for |B| > 1 T. For the external bias case, the Landau levels

are given by

Mn =
√
2nv2F |eB| ≈ 36.3 meV ×

√
n |B| , (3.24)

where vF � 106 m/s is the graphene electron Fermi velocity.

For the exchange field, the bulk SPPs are not gapped as shown in Fig. 3-7(a)-(b),

whereas for the external bias case, the bulk SPPs are strongly gapped as shown in Fig. 3-

7(c)-(d), which is a result of the behavior of Im(σ). Since TM and quasi-TM modes require

Im{σ} > 0 for a proper surface wave, gaps appear for Im{σ} < 0, which does not occur

for the exchange case in the far-infrared, where the conductivity dispersion is Drude-like.

55



Figure 3-8: (a) Edge SPP propagation length associated with the left branch of Fig. 3-7(a), and
(b) SPP wavelength on graphene in an exchange field as the inter-atomic separation varies. (d) Edge
SPP propagation length and (e) SPP wavelength on graphene in an external bias, with µc = 0.05eV,
T = 40K, and Γ = 2 × 1012s−1. In (d) and (e), the first LL occurs at 8.8

√
|B|, well beyond the

considered frequencies. (c),(f) Ratio of propagation length to wavelength for the CrI3-graphene
heterostructure and graphene biased with an external magnetic field.

In the external bias case, the formation of Landau levels causes this sign change at lower

frequencies, resulting in the TM gap shown in Fig. 3-7(c).

Figure 3-8(a),(b) shows edge SPP propagation length and guided wavelength on the

graphene layer as a function of inter-atomic separation. The SPP propagation length

1/2 Im(ky) generally increases with separation, and decreases with increasing frequency.

A ratio of the propagation to wavelength is shown in Fig. 3-8(c). Because the SPP wave-

length is so long, LSPP/λSPP 	 1, the SPP is not very useful. On the other hand, the

corresponding edge SPP propagation length and wavelength on the graphene layer in an

external field as a function of the external bias are shown in Fig. 3-8(d),(e). As the mag-

netic bias increases, the SPP propagation length increases, and LSPP/λSPP > 1 (for large

magnetic bias fields, LSPP/λSPP ≈ 6-8). However, when �ωB/ |µc| < 1, the SPP is not well
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Figure 3-9: (a)-(c) Normalized field profile of an edge SPP launched by a dipole source polarized
along ẑ (i.e., normal to the interface) for the exchange field magnetic bias corresponding to two
CrI3-graphene separations. (d) Normalized edge SPP field profile along the edge for several values
of external magnetic bias, with f = 13.87THz, µ = 0.05eV, T = 40K, and Γ = 2× 1012 s−1.

formed as shown in Fig. 3-8(f).

Figure 3-9(a)-(c) shows the edge SPP on the exchange-field biased graphene due to

a dipole source in the vicinity of the graphene-vacuum edge, computed using the finite

element method (FEM) in COMSOL for different operating frequencies and inter-atomic

separations. In correspondence with the dispersion shown in Fig. 3-7(a)-(b), for the equilib-

rium separation of 3.75Å the SPP is essentially reciprocal, as it is at 2.5 THz for separation

3 Å. However, while for 3 Å and 4 THz, the SPP is unidirectional, LSPP/λSPP is small

indicating that the SPP does not propagate well. In these simulations, an extremely fine

adaptive physics based tetrahedral mesh, defined in the COMSOL software, was used. A

surface current boundary condition, defined in terms of the surface conductivity tensor for

graphene at the interface, was used. At the edges of the computational domain, a perfectly

matched layer (PML) was applied to mimic an open and nonreflecting infinite domain.

In contrast to Fig. 3-9(a)-(c), Fig. 3-9(d) shows the edge SPP on externally-biased

graphene due to a dipole source in the vicinity of the edge. The size of the discontinuity

is on the order of λSPP (e.g., the length of the discontinuity contour in the second panel

is 5λSPP). As the magnetic bias increases, the SPP propagates further, in agreement with

Fig. 3-8(d), while its wavelength increases. The edge SPP is clearly robust, and propagates
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around the discontinuity. Although there appears to be a weak field to the left of the source,

which is due to the imperfect boundary condition at the edge of the computational domain,

and therefore nonphysical.

3.5 Summary

In this chapter, we used the conductivity of local, dispersive, anisotropic two-dimensional

materials to predict the spectral location of bandgaps in the QTM SPP dispersion. These

bandgaps were found to occur in regions of the spectrum where the imaginary part of

the conductivity along the direction of propagation is negative (i.e., Im{σq̂q̂} < 0) which

remains valid in the isotropic limit. Conversely, we found that QTM SPP mode propaga-

tion is supported by inductive surfaces, which we characterized according to Im{σq̂q̂} > 0.

To demonstrate the proposed formalism, we provided two numerical examples of natural

materials. In addition, we investigated exchange splitting in a monolayer chromium triio-

dide (CrI3)–graphene van der Waals (vdW) heterostructure using density-functional theory

where effective exchange fields of hundreds of Tesla are predicted. These enormous fields

serve as the magnetic bias for the graphene layer. Graphene conductivity and SPP proper-

ties for the exchange field were considered, and compared with the external bias case. Since

no Landau levels occur for the exchange field, the resulting non-reciprocity is found to be

considerably weaker than for an equivalent external field bias (where strongly nonreciprocal

electromagnetic edge modes that are tightly-confined, robust, and unidirectional are shown

to exist).
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Chapter 4

Topologically protected

unidirectional surface magnon

polaritons on a magnetized

yttrium iron garnet

4.1 Introduction

Recently, a connection to momentum space topology has been made for plasmonic and

ferrimagnetic continua biased with an external static magnetic field in the Voigt configu-

ration [124–132], where bulk electromagnetic waves propagate in a direction perpendicular

to the bias; see [8, 133–136] for comprehensive reviews. In this configuration, the field

profile (i.e., polarization) of the wave may be decomposed into transverse-magnetic (TM)

and -electric (TE) bulk modes, where transverse is defined with respect to the propaga-

tion direction. When the external bias is removed, these modes have the same dispersion

(i.e., their wavenumbers are degenerate). However, once the bias is applied, the degen-

eracy is lifted, and a nontrivial bandgap forms in the TM/TE dispersion associated with

plasmonic/ferrimagnetic continua over a frequency range wherein the effective permittiv-
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ity/permeability experienced by the mode is negative. The nontrivial nature of the bandgap

stems from the fact that time reversal (TR) symmetry in the material response is broken

due to the applied bias, which results in a nonzero Berry curvature, described as a rotation

in momentum space of the Berry connection, defined in terms of the material response

tensor and TM/TE polarization [124,125].

From a topological perspective, a bandgap in the dispersion of bulk modes is charac-

terized by a topological invariant (usually normalized to be integer-valued) called the gap

Chern number Cgap, defined in terms of the Berry curvature associated with modes that

propagate below the bandgap [134]. The bandgap is classified as topologically trivial when

Cgap = 0 (a trivial gap Chern number may also indicate the absence of a bandgap in the

dispersion) and nontrivial when Cgap �= 0. For biased plasmonic/ferrimagnetic continua, it

has been shown that the TM/TE gap Chern number is +1 [21,124], therefore classifying the

bandgap as nontrivial. Moreover, when interfaced with another material for which the bulk

dispersion is topologically trivial, the difference between gap Chern numbers associated with

each material, ∆Cgap = 1−0 = 1, corresponds to the number of unidirectional surface wave

modes that propagate in the nontrivial bulk bandgap. The correspondence between bulk

and surface wave modes made via the gap Chern number, known as the bulk-edge corre-

spondence principle, has been studied extensively for periodic photonic structures [137–142],

and recently, the concept has been extended to continuous media [143–145].

The unidirectional nature of the surface wave modes grants them topological protection

against reflection when encountering an abrupt change (e.g., a step) in the material in-

terface [146–148]. And, because these modes propagate in the nontrivial bulk bandgap,

they are immune to diffraction into the bulk. However, diffraction into the bulk of the

interfaced trivial medium is possible if it lacks a common bandgap (e.g., air) [149]. While

the aforementioned description in terms of momentum space topology is not really needed

(i.e., classical terms concerning non-reciprocity and bandgaps already describe the phenom-

ena [8,12]), the language of topology provides new insights into the underlying physics, and

allows for instance, the potential engineering of photonic structures to achieve nontrivial
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gap Chern numbers [138], which could be quite useful in designing nonreciprocal devices

such as isolators [16–19], gyrators [20], circulators [150], and directional couplers [21, 22].

Although the existence of topologically protected surface wave modes supported by pe-

riodic photonic structures has been experimentally verified [151–155], here we verify, for the

first time, the existence of a topologically protected surface magnon polariton (SMP) mode

(i.e., a type of surface wave mode that arises from the coupling between the electromagnetic

field and magnetic dipole polarization of a material) guided along the interface between a

biased ferrimagnetic Yttrium Iron Garnet (YIG) continuum and air; see Fig. 4-1(a) for a

schematic of the layered media structure under consideration. To demonstrate topological

protection, we measure the S-parameters between two small loop magnetic dipole antennas

that launch and receive the SMP, and show that transmission of the SMP remains largely

unaffected when an abrupt change in the form of a step is present in the interface.

In Sec. 4.2, we provide a brief review of the theory already well established by the

community that describes the topologically protected SMP, and provide numerical and

simulated results that give qualitative and quantitative insight into the propagation char-

acteristics. In Sec. 4.3, we provide an extensive overview of the experimental apparatus

and a detailed analysis of the measurements.

4.2 Theory and simulation

4.2.1 Material response of a magnetized ferrite

Magnetic anisotropy in the material response of ceramic YIG ferrites is achieved by applying

an external static (DC) magnetic bias field H0 which induces a DC magnetization M0

parallel to the bias. As a general consideration, the internal field of the YIG is reduced

from the external field by a demagnetizing term which depends on the geometry and bias

configuration. However, in the following analysis, we consider a thin square plate magnetized

in the Voigt configuration [156], for which the demagnetizing term may be neglected [157].

The details of this contribution and its potential effect on the response are therefore omitted
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Figure 4-1: (a) Schematic depicting the air-YIG interface. The external magnetic bias field H0

is oriented in a plane parallel to the interface. In the Voigt configuration, EM wave propagate
perpendicular to the bias along n̂ × Ĥ0 where n̂ denotes the interface normal. (b) Table of YIG
response parameters provided by the manufacturer, Exxelia Temex.

for conciseness.

Working in the saturated regime of the YIG hysteresis curve, we consider biases that

are well beyond the coercive field, which may be anywhere from 1 to a few Oe (i.e., ∼10

to ∼50 mT). In this regime, the DC magnetization is maximized to the point of saturation

Ms, and small signal analysis may be used to linearize Maxwell’s equations governing

electromagnetic wave propagation. The linear relationship between a time harmonic (AC)

magnetic field H and resultant AC magnetization M such that |H| 	 |H0| is given by

H+M = µ̄ ·H where

µ̄ = µ⊥

(
Ī− Ĥ0Ĥ0

)
− jµ×

(
Ĥ0 × Ī

)
+ µ‖Ĥ0Ĥ0 (4.1)

is the relative permeability tensor derived semi-classically from the Landau-Lifshitz-Gilbert

equation [158] describing precessional motion of the total magnetization vector Ms + M.

The dispersive tensor elements with respect to the radial frequency ω = 2πf are given by

µ⊥ = 1 +
ωsω̃0

ω̃2
0 − ω2

, µ× =
ωsω

ω̃2
0 − ω2

, µ‖ = 1 , (4.2)

where ωs = µ0γMs and ω̃0 = ω0 + jαω with ω0 = µ0γH0; the quantities µ0, ω0, and

γ = geffµB/� are respectively the permeability of freespace, Larmor precessional (resonant)

frequency, and gyromagnetic ratio defined in terms of the effective Landé g-factor geff , Bohr
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magneton µB, and reduced Planck constant �. Material losses are accounted for in the loss

rate α which is well defined on and off resonance at saturation [159].

Resonant cavity methods make it possible to determine α by measuring the linewidth

∆H associated with the imaginary part of µ⊥ at resonance [160]. In the saturated regime,

α = µ0γ∆H/4πf∗
0 , where f∗

0 denotes the resonant frequency at which the linewidth is

measured. Off resonance, losses decrease significantly and the replacement of ∆H with

∆Heff in the calculation of α is made.

Figure 4-1(b) provides a table of the necessary parameters used to calculate the relative

permeability tensor elements of the YIG obtained from the specification sheet provided by

the manufacturer, Exxelia Temex. In addition to those already mentioned, the table lists

the relative dielectric constant ε and loss tangent tgδ.

4.2.2 Dispersion of guided electromagnetic modes

To obtain the dispersion of guided electromagnetic modes supported by a YIG slab of thick-

ness 2h, biased with a static uniform magnetic field H0 = ẑH0 in the Voigt configuration

and interfaced with air, we treat the slab as invariant with respect to the x-z plane and

assume the propagation direction is perpendicular to the bias (i.e., the wavevector k is

perpendicular to H0), in which case, the wave may be decomposed into transverse-electric

(TE) and -magnetic (TM) modes, where transverse is defined with respect to k. In the air

and YIG regions, the electric ETE
z and magnetic HTM

z vector components of TE and TM

bulk modes satisfy the source-free scalar Helmholtz equation

(
∂2
y − q2x +

{
k2TE, k

2
TM

}) {
ETE

z , HTM
z

}
= 0 , (4.3)

where the bulk wavenumbers kTE = kTM = k0
√
εrµr in air, and kTE = k0

√
εµeff and

kTM = k0
√
εµ‖ in YIG; parameters εr and µr are the relative permittivity and permeability

of air, µeff = µ⊥ − µ2
×/µ⊥ is the effective relative permeability experienced by the TE

modes in YIG, and k0 is the free space wavenumber (all other parameters are defined in

Sec. 4.2.1). The magnetic
(
HTE

x , HTE
y

)
and electric

(
ETM

x , ETM
y

)
vector components of TE
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and TM bulk modes are then recoverable from Maxwell’s equations upon solving Eq. (4.3)

for ETE
z and HTM

z .

Of particular interest are the topologically nontrivial TE bulk modes of YIG which

experience an effective permeability µeff dependent on the external magnetic bias. Over the

frequency range ω ∈ [ωl, ωu], where ωu = ω0 + ωs and ωl =
√
ω0ωu, the response may be

characterized as an imperfect magnetic conductor with Re{µeff} < 0, which corresponds to

the nontrivial bandgap that forms in the dispersion. As a result, the YIG has a finite skin

depth δ = 1/Im{kYIG} in the bandgap, where kYIG denotes the TE bulk wavenumber in

YIG (in the following, kAIR likewise denotes the TE bulk wavenumber in air). Figure 4-2(b)

shows how the skin depth varies in the bandgap associated with a 500 mT bias. At the

lower band edge ωl, the YIG functions as a near perfect magnetic conductor with δ ∼ 0, and

gradually transitions back to an insulator as frequency increases, with δ → ∞ as frequency

approaches the upper band edge ωu.

After obtaining the field profile of TE bulk modes in the air and YIG regions, the

dispersion of TE guided modes supported by the slab (i.e., SMP and guided via total

internal reflection) are obtained by enforcing continuity of ETE
z and HTE

x at each interface.

It can be shown that the dispersion relation for TE modes guided by the slab via total

internal reflection is [161,162]

q2xµ
2
rµ

2
×/µ

2
⊥ = [κAIRµeff coth (κYIGh) + κYIGµr]

× [κAIRµeff tanh (κYIGh) + κYIGµr] , (4.4)

where κ2ν = q2x − k2ν for ν ∈ {AIR,YIG}. Cutoff frequencies for nth order modes that

propagate above/below the bandgap are recovered when qx = kAIR,

ω±
n =

√
−Bn ±

√
B2

n − 4ACn

2A
: n ∈ {0, 1, 2, . . . } , (4.5)
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Figure 4-2: (a) Dispersion of TE bulk, upper-interface SMP, and nth order guided modes (n ∈
{0, 1, 2, 3, 4}) for a 6mm thick YIG slab (i.e., h = 3mm) biased with 500mT in the Voigt configuration
and interfaced with air. The shaded frequency band highlights the TE bulk bandgap. (b) Skin depth
of YIG in the bandgap. (c) Confinement of the SMP in the air and YIG regions. (d) SMP wavelength
for magnetic bias settings that decrease in magnitude from 500mT in steps of 25mT. The shaded
bandgap regions correspond to each bias setting, with maximum overlap occurring over a narrow
frequency band centered about ∼16.8GHz. (e) Propagation length L of the SMP, shown to decrease
with increasing loss rate α (i.e., increasing effective linewidth ∆Heff).

where

A = 4h2 (ε− µrεr) , (4.6)

Bn = 4h2
(
µrεrω

2
l − εω2

u

)
− n2π2c2 , (4.7)

Cn = n2π2c2ω2
l . (4.8)

In the thick slab limit h → ∞, Eq. (4.4) factors into the dispersion relations of SMP modes
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that propagate in the bandgap at the upper and lower interfaces of the slab [156,161]

0 = (κYIGµr + κAIRµeff − qxµrµ×/µ⊥)

× (κYIGµr + κAIRµeff + qxµrµ×/µ⊥) . (4.9)

Solutions for qx that satisfy the nth order guided, Eq. (4.4), and SMP, Eq. (4.9) mode dis-

persions are denoted kSMP and kTEn respectively, and must be obtained via numerical root

search since there exists no closed form solutions. While the dispersion of nth order guided

modes is clearly reciprocal due to the q2x dependence, it can be shown that each SMP mode

is unidirectional at the upper/lower interfaces of the slab, propagating in the ±x̂ direction

for operating frequencies ω ∈ [ωl, ωu − ωs/2) and ∓x̂ direction for ω ∈ [ωu − ωs/2, ωu].

The dispersion of TE bulk, upper-interface SMP, and nth order guided modes is shown

in Fig. 4-2(a) for h = 3mm and µ0H0 = 500 mT. The SMP mode branch that propagates in

the −x̂ direction for ω ∈ [ωu − ωs/2, ωu] attenuates differently on either side of the interface

at rates κAIR and κYIG into the air and YIG regions. The higher these rates are, the more

tightly confined the SMP is to the interface. Confinement C = 1/Re{κ} of the SMP is

shown in Fig. 4-2(c). At the lower band edge ωu − ωs/2, the SMP is not well confined to

the interface in the air region with C → ∞, but tightly confined in the YIG region with

C ∼ 0. As frequency increases, confinement increases/decreases in the YIG/air regions. In

Fig. 4-2(d), the SMP wavelength λ = 2π/kSMP is shown for a few bias settings that decrease

in magnitude from 500 mT in steps of 25 mT. As bias decreases, the spectral location of

the bandgap red shifts. Over a narrow band centered about ∼16.8 GHz, the bandgap is

common to all magnetic biases, and for a set frequency, each SMP mode exists within it

having wavelengths that decrease with bias. The figure also suggests that if a nonuniform

bias, slowly varying with respect to the SMP wavelength, were distributed across the slab,

the bandgap would effectively broaden (i.e., the transmission of bulk radiation between

two points in the spatial plane would be blocked over a broader frequency range), with a

strong SMP excitation likely possible at some operating frequency within the broadened
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Figure 4-3: COMSOL generated normalized SMP field profile, excited using a near field magnetic
dipole point source (src.) oriented perpendicular to the upper interface and positioned near the right
edge of each biased YIG slab having dimensions (a) 50.6mm×1.8mm and (b) 50.6mm×3.6mm. The
operating frequency is 17.9GHz, corresponding to the bandgap center. (c) Uniform and nonuniform
magnetic bias distributions considered in FEM simulations to generate the SMP field profiles on the
YIG slab structure outlined in panels (d) and (f) respectively. (e) A spatial average of the magnetic
field magnitude normal to the uppermost interface, defined in Eq. (4.10) and normalized with re-
spect to the maximum value associated with the nonuniform distribution. The dark shaded band
centered about the selected operating frequency f = 13.5GHz corresponds to the bandgap center
associated with the uniform bias distribution, while the light shaded band corresponds to the broad-
ened bandgap associated with the nonuniform distribution. In each simulation, the computational
domain is invariant with respect to the bias direction ẑ.

bandgap due to SMP mode overlap. In fact, simulation and experiment later confirm this

theory. Figure 4-2(e) shows the profound effect that loss has on the propagation length

L = 1/ [2Im{kSMP}]. However, for this application, the bandgap is far enough from the

resonant frequency ω0 (i.e., off resonance, ∆Heff = 3 Oe is used to define the loss rate α)

and so, loss does not significantly damp the SMP mode.
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4.2.3 SMP excitation

To excite the SMP mode, the easiest way is to use a near field source that induces a time

harmonic magnetic dipole moment perpendicular to the air-YIG interface. For example,

this type of excitation may be implemented experimentally using a small loop magnetic

dipole antenna with the loop oriented in the plane of the interface. Figure 4-3(a),(b) shows

field maps of the SMP excitation above 1.8 mm and 3.6 mm thick YIG slabs, using a

magnetic dipole point source operating at the bandgap center frequency associated with a

uniform 500 mT bias. To generate the field maps, finite element method (FEM) simulations

are performed in COMSOL, where the computational domain in each case is invariant with

respect to the bias direction ẑ. Due to a nonzero confinement C ∼ 0.6 mm in the YIG,

as shown in Fig. 4-2(c), the magnetic field components of the SMP normal to the upper

and lower interfaces begin to interfere considerably as thickness decreases from 3.6 mm,

which forms a quasi-standing wave within the slab. In these simulations, an extremely fine

adaptive physics based tetrahedral mesh, defined in the COMSOL software, was used. At

the edges of the computational domain, a perfectly matched layer (PML) was applied to

mimic an open and nonreflecting infinite domain.

4.2.4 Effects of nonuniformity in the external bias distribution

In Sec. 4.2.2, we speculated from Fig. 4-2(d) that if a nonuniform bias, slowly varying with

respect to the SMP wavelength, were distributed across the YIG between two points in the

spatial plane, the bandgap would effectively broaden since transmission of bulk radiation

between the points would be blocked for operating frequencies within the broadened range.

In addition, due to SMP mode overlap, we speculated that a strong SMP excitation would

likely be possible for some operating frequency within the broadened bandgap. In what

follows, we provide a simulation that confirms this theory.

Drawing a connection between the simulation described here and the measurement de-

scribed in Sec. 4.3.2, we consider the YIG slab structure shown in Fig. 4-3(d),(f) which

contains an abrupt change in the form of a step along the upper interface. The structure is
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biased with (d) a uniform 346 mT, and (f) an interpolated nonuniform distribution obtained

from measurement. The bias distributions in each case are shown in Fig. 4-3(c). In Fig.

4-3(e), a spatial average of the magnetic field magnitude normal to the uppermost interface

defined by

〈|Re {Hy}|〉 =
1

xf − xi

∫ xf

xi

|Re {Hy (x, y0)}| dx , (4.10)

with xi = −34.5 mm, xf = 16.1 mm, and y0 = 3.6 mm, is shown for the uniform and nonuni-

form bias distributions, where each quantity is normalized with respect to the maximum

value associated with the nonuniform distribution. The averaged field provides qualitative

insight into how intense the field is at the uppermost interface over a broad range of fre-

quencies. For the uniform and nonuniform distributions, the field peaks as a result of SMP

propagation at the center of the dark shaded frequency band, which corresponds to the

bandgap associated with the uniform distribution. Outside of this region where the SMP

does not propagate, bulk radiation contributes to a nonzero field at the interface. However,

for the nonuniform distribution, bulk radiation is suppressed significantly in the lightly

shaded band corresponding to the broadened bandgap, relative to the case where the bias

is uniform. Figure 4-3(d),(f) shows the SMP field profile for the uniform and nonuniform

distributions respectively when the operating frequency is 13.5 GHz, corresponding to the

bandgap center associated with the uniform bias. For the nonuniform distribution, SMP

wavelength differs at various points along the interface in a way that is consistent with Fig.

4-2(d).

4.3 Experimental methods and measurement

To demonstrate the effectiveness of topological protection, we designed an experiment to

measure transmission of the SMP between two small loop magnetic dipole antennas dis-

placed a short distance above the upper interface between air and various YIG slab struc-

tures, including those considered for simulation in Secs. 4.2.3 and 4.2.4. Each structure is

created by layering YIG plates having dimensions of 50.6 mm× 50.6 mm× 1.8 mm. Using
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Figure 4-4: Top view of the apparatus used to conduct the experiment, where two Neodymium
ferromagnets in series bias a YIG slab in the Voigt configuration, and two small loop magnetic dipole
antennas (labeled ant. 1,2) mounted onto 1.85mm coaxial cables, displaced a small distance above
the upper interface by an insulating cover (white), transmit and receive at operating frequencies
between 4 and 22GHz. The inset in the top right corner shows a zoomed view of the antennas
formed by connecting the inner SMA conductor to the outer via a piece of 19AWG copper wire with
the enamel stripped off. A vector network analyzer (not shown) measures transmission.

a vector network analyzer, transmission is measured at operating frequencies in the range

of 4 to 22 GHz.

A full top view of the apparatus used to conduct the experiment is shown in Fig. 4-

4. Two 2 in3 Neodymium magnets coated in Nickel, manufactured by K&J Magnetics,

are connected in series to provide a magnetic bias distribution across the thin edge of

each structure. Individually, the magnets provide a maximum surface field of ∼575 mT.

Additional perspective views of the apparatus are shown in Figs. 4-5(a),(c),(e).

4.3.1 Isolation Dependence on Slab Thickness

For the system under study, signal isolation in the bandgap is a measure of how efficiently the

SMP is received by one antenna over the other. Since the SMP is unidirectional, an SMP

launched by antenna 1 (ant. 1) takes the upper interface path, while an SMP launched

by antenna 2 (ant. 2) takes the lower interface path. Due to the way the antennas are

positioned, when the SMP is transmitted via the upper interface path, the flux is received
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Figure 4-5: (a),(b) Perspective views of the apparatus for single and double stacked YIG plates
having a combined thickness of 1.8mm and 3.6mm. In each case, the ẑ component of magnetic bias
is measured using a gauss meter in the vicinity of 480mT and 495mT at a variety of points along
the upper interface path between antennas. (c),(d) Measured transmission spectra for the 1.8mm
and 3.6mm thick slabs respectively. Transmission is nonreciprocal, and peaks as a result of SMP
propagation in the expected bandgap region associated with the measured bias. (e) Perspective view
of the apparatus for the YIG slab structure shown in Fig. 4-3(d),(f), formed by stacking 4 YIG plates
and sliding the bottom plate out 18.4mm. The entire structure is centered on the magnet which
results in a near symmetric nonuniform bias distribution across the structure; see Fig. 4-3(c) for
the interpolated distribution. Points labeled {1, 2, 3, 4, 5, 6} correspond to locations along the upper
interface where the magnetic field is measured in the vicinity of {160, 266, 366, 330, 285, 148}mT.
The distance of each point from point 1 is {8.8, 34.5, 50.6, 58.3, 69}mm. (f) Measured S-parameters
for a three layer structure, similar to those shown in (a) and (b) with the bias measured in the
vicinity of 450mT. (g) Measured S-parameters for the slab structure shown in (e). In (f), the
shaded frequency band corresponds to the bandgap associated with the measured bias. In (g), the
lightly shaded band corresponds to the broadened bulk bandgap associated with the nonuniform
bias distribution, and the dark shaded band centered about peak S21 corresponds to the bandgap
associated with a uniform 275mT bias.

more efficiently because there would neither be diffraction at the edges nor scattering at

the antenna feeds before being received. However, for a thin slab such as the one shown in

Fig. 4-3(a), a nonzero confinement may result in the magnetic field of an SMP taking the

lower interface path being detected at the upper interface by the receive antenna (i.e., ant.

1). In this case, path preference becomes less clear and would result in low isolation.

Figure 4-5(a),(b) shows a perspective view of the apparatus for 1.8 mm and 3.6 mm

thick slabs constructed from one and two layered YIG plates. Using a MF100 Gauss meter

by Extech Instruments, the ẑ component of magnetic bias (i.e., the bias component per-
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pendicular to the line of sight between antennas) is measured in the vicinity of (a) 480 mT

and (b) 495 mT, with slight deviations from these values at various points along the upper

interface path. In Fig. 4-5(c),(d), the corresponding measured S-parameters are shown.

Transmission of the SMP is nonreciprocal (i.e., S21 �= S12) with S21 peaking well within

the expected bandgap region (shaded) associated with the measured bias. For this antenna

configuration, we find a substantial increase in isolation when the slab thickness increases

from 1.8 mm to 3.6 mm.

4.3.2 Topological Protection

The third slab structure under consideration is one having a step in the upper interface path,

comparable to one SMP wavelength. Layering four YIG plates, the structure shown in Fig.

4-3(d),(f) is created by sliding the bottom plate out by 18.4 mm. This places its maximum

dimension at 69 mm, slightly larger than the magnet dimension. As a result, the bias is

substantially nonuniform across the structure relative to the previous two cases considered,

but does not vary too significantly so as to dramatically alter the underlying physics. Figure

4-5(e) shows a perspective view of the apparatus, with the structure centered on the magnet.

Points {1, 2, 3, 4, 5, 6} correspond to locations along the upper interface path where the ẑ

component of the bias is measured. The measured values and relative distances from point

1 are provided in the figure caption and shown in Fig. 4-3(e).

Figure 4-5(f),(g) shows the measured transmission for (f) a three layer slab, similar to

the one and two layer slabs shown in Fig. 4-5(d),(f), with the ẑ component of the bias

measured in the vicinity of 450 mT, and (g) the elongated four layered structure biased

with a nonuniform field distribution. In (f), the shaded frequency band corresponds to the

bandgap associated with the measured bias, and in (g), the lightly shaded band corresponds

to the broadened bandgap associated with the nonuniform bias distribution, while the dark

shaded band centered about peak S21 has the same bandwidth and location as the bandgap

associated with a uniform 275 mT bias. In all of the four cases considered, SMP transmission

peaks in the bandgap near the same level (i.e., 20 log10 |S21| � −20 dB), demonstrating that
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Figure 4-6: Measured S-parameters for the slab structure shown in Fig. 4-5(e)
when the bias is removed, where slight deviations in S21 and S12 are attributed
to a small remnant magnetization. At operating frequencies beyond ∼5GHz, a
fair amount of transmission occurs due to bulk radiation that is guided by the
structure via total internal reflection. When biased, transmission is suppressed
significantly in the broadened bandgap as shown in Fig. 4-5(g).

the SMP is indeed topologically protected against reflection. For reference, a transmission

measurement obtained in the absence of bias (i.e., with the magnet removed) for the four

layer structure is shown in Fig. 4-6.

A peak in S21 is directly correlated with a peak in the magnetic flux associated with the

SMP received by antenna 2. Likewise, the received flux may be correlated with a spatial

average of the magnetic field magnitude normal to and distributed across the uppermost

interface. In Fig. 4-3(e), it is shown that this spatial average obtained from simulation

peaks within the broadened bandgap over a frequency band corresponding to the bandgap

associated with a uniform 346 mT bias, and confirmed this peak was in fact due to SMP

propagation by examining the field profile shown in 4-3(f). However, in experiment, we find

that S21 peaks within a frequency band corresponding to the bandgap associated with a

uniform 275 mT bias. The slight spectral shift of the SMP resonance observed in experi-

ment is likely attributed to demagnetization (which we did not account for in our model),

since the total bias field H0 is not strictly oriented in the Voigt configuration (i.e., in the
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simulation, we only consider the bias component perpendicular to the line of sight between

antennas). In addition, the broadened bandgap effectively blocks transmission of bulk mode

radiation between two points in the spatial plane which is evident from both simulation and

experiment.

4.4 Summary

In this chapter, we obtained experimental evidence of topologically protected unidirectional

SMPs guided along the interface between air and various YIG slab structures biased with an

external magnetic bias field in the Voigt configuration. The SMPs are transmitted and re-

ceived via two small loop magnetic dipole antennas placed a distance across from each other

near the interface. We showed that for a fixed antenna position, isolation in the bandgap

increases with thickness as a result of the lower interface path becoming less preferred than

the upper interface path. In addition, we showed that the SMP is topologically protected

against reflection when encountering an abrupt change in the interface as peak transmission

of the SMP remained largely unaffected. Furthermore, we showed in simulation and exper-

iment that a fair degree of nonuniformity in the bias distributed across the structure has

the net effect of broadening the bulk bandgap without compromising the SMP resonance.
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Chapter 5

Conclusion

In this dissertation, we investigated the dispersive properties of two types of highly non-

reciprocal (unidirectional) surface waves, surface plasmon polaritons (SPPs) and surface

magnon polaritons (SMPs), guided by the interface between free-space and a variety of

2D and 3D gyrotropic continua. Our research builds on previous work done in the areas

in nonreciprocal electromagnetics and topological photonics in the following ways: (1) in

Chap. 2, we developed new analytic formalism to to model near-field excitations of SPPs on

a magnetized plasma slab (i.e., a plasma slab biased with an external magnetic bias field),

(2) in Chap. 3, we developed new formalism to predict the spectral location of bandgaps

in the quasi-transverse-magnetic SPP dispersion for 2D materials, and investigated a non-

traditional way of achieving a gyrotropic response (i.e., without an external magnetic bias

field) in graphene, and (3) in Chap. 4 we experimentally verify the unidirectional nature of

a recently theorized topologically protected, unidirectional SMP mode. This chapter serves

as a cumulative summary of the key findings presented in each chapter of the dissertation.

In Chap. 2, we solved the dispersion relation for SPP modes supported by the interface

between free-space and a 3D magnetized plasma using a numerical root. In addition, we

identified a common bulk bandgap, common to all propagation angles made with respect

to the external magnetic bias direction, in which unidirectional, hyperbolic like SPP modes

are found to propagate. Importantly, the reflection and transmission tensor coefficients
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were also obtained for a finite thickness slab immersed in free-space, which were used in

the evaluation of the scattered fields due to a localized near-field electric current density.

Evaluation of the inverse Fourier transform integral in the definition of the scattered fields

was compared with the field pattern obtained in COMSOL using the finite-element method,

where we found good agreement between the two methods.

In Chap. 3, conditions on the spectral location of bandgaps in the dispersion of quasi-

transverse-magnetic (QTM) SPP modes for anisotropic 2D materials are obtained. For

two examples of anisotropic materials (i.e., gyrotropic graphene and hyperbolic black phos-

phorus), we demonstrated the effectiveness of the proposed formalism. In addition, we

investigated the nonreciprocal effect of exchange splitting in a monolayer chromium triio-

dide (CrI3)-graphene van der Waals heterostructure using density-functional theory where

effective exchange fields of hundreds of Tesla were predicted. These enormous fields served

as an effective magnetic bias for the graphene layer. Differences between the exchange field

and external magnetic bias field cases are compared contrasted. While the graphene-CrI3

heterostructure was found to support a unidirectional edge SPP, it did so only for separa-

tions smaller than the equilibrium separation. In addition, we found that the SPP did not

propagate well relative to edge SPPs that propagate on graphene in an external magnetic

bias field, which is largely attributed to material loss.

In Chap. 4, we obtained experimental evidence of a topologically protected, unidi-

rectional SMP guided along the interface between free-space (air) and various YIG slab

structures, biased with an external magnetic bias field in the Voigt configuration. We also

investigated the effect that a nonuniform bias distribution along the interface has on the

SMP. Importantly, we found that the experimental results aligned well with our simulated

and numerical results.
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Appendix

A.1 Scattered fields above and below a magneto-plasma slab

The incident field excited by an impressed electric dipole current source Ji
e = J0δ (r− r0)

suspended a distance d above the first interface in the air/freespace region, is given by

E (r) =
(
∇∇+ Īk0

)
· π (r) (A.1)

where (see Sec. 1.2 for additional details)

π (r) = g (r, r0)
J0

−iωε0
(A.2)

denotes the principal Hertzian potential due to the dipole source, defined in terms of the

scalar Green’s function g (r, r0) = eik0|r−r0|/4π |r− r0| where r0 = (0, 0, d). Following [47],

the scattered fields may be written in the Fourier transform domain with respect to kx and

ky,

Er (r) =
1

4π2

∫
dqeiq·(r−r0)

e−γ0(d+z)

2γ0
C̄r (q) · J0

−iωε0
, (A.3)

Et (r) =
1

4π2

∫
dqeiq·(r−r0)

e−γ0(d−z)

2γ0
C̄t (q) · J0

−iωε0
, (A.4)
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Figure A-1: Cross-sectional view of the slab shown in Fig. 2-1(a). The upper
and lower interfaces are positioned at z = z1 and z = z2 respectively. Regions
(0) and (2) are characterized by an isotropic relative (scalar) permittivity εr,
while region (1) is characterized by a gyrotropic permittivity tensor ε̄r defined
in Eqs. (2.1)-(2.2). The Fourier coefficients associated with the incident and
scattered fields are shown in each region, propagating in the ±z directions.

where

C̄r (q) =

(
Ī‖ −

ẑq

iγ0

)
· R̄ ·

(
k20 Īs − qq+ iγ0qẑ

)
, (A.5)

C̄t (q) =

(
Ī‖ +

ẑq

iγ0

)
· T̄ ·

(
k20 Īs − qq+ iγ0qẑ

)
, (A.6)

such that Ī‖ = x̂x̂+ ŷŷ and γ0 =
√
k2x + k2y − k20.

In what follows, we derive the plane wave reflection and transmission coefficients, R̄ (ω,ks)

and T̄ (ω,ks), which relate the tangential field components of the electric field reflected and

transmitted from a gyrotropic slab of finite thickness, as shown in Fig. A-1. As in [47], it

is important to define a convenient, orthogonal coordinate system in which to expand the

amplitude vector of a plane wave propagating in the gyrotropic medium. The set of orthog-

onal unit vectors which span this coordinate system is given by
{
k̂±
t,j , ŷ, k̂

±
t,j × ŷ

}
, where

k̂±
t,j = x̂kx ± ẑiγj for j ∈ {1, 2}. The fields above and below the interface are expanded in

terms of the Cartesian basis {x̂, ŷ, ẑ}. The relationship between the tangential electric and
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magnetic fields in the structure is




ωµ0H
±
y

ωµ0H
±
x


 =

{
Ȳ±, Ȳ±

g

}
·




E±
x

E±
y


 , (A.7)

where Ȳ± relates the electric and magnetic fields in the dielectric regions above and below

the slab, and Ȳ±
g relates the electric and magnetic fields within the slab. These tensors are

given by

Ȳ± =
±1

iγ0




k2x − γ20 kxky

−kxky γ20 − k2y


 , (A.8)

Ȳ±
g =




−δ1k
2
t,1 −δ2k

2
t,2

kyφ
±
1 kyφ

±
2


 ·




β±
1 β±

2

kyθ1 kyθ2




−1

. (A.9)

Matching the tangential components of the electric and magnetic fields at each interface,

we obtain

(̄
Is + R̄01

)
·E−

0 (z1) = T̄01 ·E−
0 (z1) , (A.10)

(̄
Is + R̄10

)
·E+

1 (z1) = T̄10 ·E+
1 (z1) , (A.11)

(̄
Is + R̄12

)
·E−

1 (z2) = T̄12 ·E−
1 (z2) , (A.12)

(
Ȳ− + Ȳ+ · R̄01

)
·E−

0 (z1) = Ȳ−
g · T̄01 ·E−

0 (z1) , (A.13)

(
Ȳ+

g + Ȳ−
g · R̄10

)
·E+

1 (z1) = Ȳ+ · T̄10 ·E+
1 (z1) , (A.14)

(
Ȳ−

g + Ȳ+
g · R̄12

)
·E−

1 (z2) = Ȳ− · T̄12 ·E−
1 (z2) . (A.15)

where

R̄nn′ =
(
Ȳm1 − Ȳm2

g

)−1 ·
(
Ȳm3

g − Ȳm3
)
, (A.16)
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such that

(m1,m2,m3) =




(+,−,−) (n, n′) = (0, 1)

(+,−,+) (n, n′) = (1, 0)

(−,+,−) (n, n′) = (1, 2)

, (A.17)

and from (A.10)-(A.15), it follows that T̄nn′ = Īs + R̄nn′ . Furthermore, it is important to

note the relations,

E−
1 (z1) = T̄01 ·E−

0 (z1) + R̄10 ·E+
1 (z1) , (A.18)

E+
0 (z1) = R̄01 ·E−

0 (z1) + T̄10 ·E+
1 (z1) , (A.19)

E+
1 (z2) = R̄12 ·E−

1 (z2) , (A.20)

E−
2 (z2) = T̄12 ·E−

1 (z2) , (A.21)

where the electric field associated with a plane wave propagating a distance, h = |z2 − z1|,

along the ±z direction within the gyrotropic slab, is given by

E+
1 (z1) = P̄+ ·E+

1 (z2) , (A.22)

E−
1 (z2) = P̄− ·E−

1 (z1) , (A.23)

where P̄± denotes the spacial propagator that effectively propagates the electric field a

distance h through the slab and takes the form

P̄± = Ū± · P̄ · Ū−1
± (A.24)

where

Ū± =




β±
1 /kt,1 β±

2 /kt,2

kyθ1/kt,1 kyθ2/kt,2


 , P̄ =




e−γ1h 0

0 e−γ2h


 . (A.25)
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Using (A.22)-(A.23) in (A.18)-(A.21) leads to

E+
0 (z1) = R̄ ·E−

0 (z1) , (A.26)

E−
2 (z2) = T̄ ·E−

0 (z1) , (A.27)

where

R̄ = R̄01 + T̄10 · R̄′
12 ·

(̄
Is − R̄10 · R̄′

12

)−1 · T̄01 , (A.28)

T̄ = T̄12 · P̄− ·
(̄
Is − R̄10 · R̄′

12

)−1 · T̄01 , (A.29)

such that R̄′
12 = P̄+ · R̄12 · P̄−. Finally, after some algebra, it can be shown that (A.16),

(A.24), (A.28), and (A.29) may be written in quotient form as

R̄nn′ =
1

Ωnn′




Πnn′
11 Πnn′

12 /ky

kyΠ
nn′
21 Πnn′

22


 , P̄± =

1

χ±




∆±
11 ∆±

12/ky

ky∆
±
21 ∆±

22


 , (A.30)

R̄ =
1

ΛΩ01




Ξ11 Ξ12/ky

kyΞ21 Ξ22


 , T =

Ω10χ+

ΛΩ01




Ψ11 Ψ12/ky

kyΨ21 Ψ22


 , (A.31)
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where

Ωnn′
= m1m3γ0χ

m3
(
Qm2

E − εrχ
m2

)
+m3χ

m3
[(
k2y − γ20

)
QA + kxk

2
yQ

m2
C

]
(A.32)

−m3χ
m3

[(
k2x − γ20

)
Qm2

D + kxQ
m2
B

]
, (A.33)

Πnn′
11 = γ0

[
εrχ

m2χm3 +m1m3k
2
0

(
QAQ

m2
D −Qm3

C Qm2
B

)]
(A.34)

−m3χ
m2

[(
k2y − γ20

)
QA + kxk

2
yQ

m3
C

]
+m1χ

m3
[(
k2x − γ20

)
Qm2

D + kxQ
m2
B

]
, (A.35)

Πnn′
12 = m1m3γ0k

2
0

(
Qm2

D Qm3
B −Qm3

D Qm2
B

)
(A.36)

+ kxk
2
y

(
m1χ

m3Qm2
D −m3χ

m2Qm3
D

)
+

(
k2y − γ20

) (
m1χ

m3Qm2
B −m3χ

m2Qm3
B

)
, (A.37)

Πnn′
21 = m1m3γ0k

2
0

(
QAQ

m3
C −QAQ

m2
C

)
(A.38)

− kx (m1χ
m3QA −m3χ

m2QA)−
(
k2x − γ20

) (
m1χ

m3Qm2
C −m3χ

m2Qm3
C

)
, (A.39)

Πnn′
22 = γ0

[
εrχ

m2χm3 +m1m3k
2
0

(
QAQ

m3
D −Qm2

C Qm3
B

)]
(A.40)

−m1χ
m3

[(
k2y − γ20

)
QA + kxk

2
yQ

m2
C

]
+m3χ

m2
[(
k2x − γ20

)
Qm3

D + kxQ
m3
B

]
, (A.41)

and

∆±
11 = k2t,1ξ1�2α

±
2 e

−γz,2h − k2t,2ξ2�1α
±
1 e

−γz,1h , (A.42)

∆±
12 = �1�2α

±
1 α

±
2

(
e−γz,2h − e−γz,1h

)
, (A.43)

∆21 = k2t,1k
2
t,2ξ1ξ2

(
e−γz,1h − e−γz,2h

)
, (A.44)

∆±
22 = k2t,1ξ1�2α

±
2 e

−γz,1h − k2t,2ξ2�1α
±
1 e

−γz,2h , (A.45)

and

Ξ11 = ΛΠ01
11 +Π10

12 (Υ21Σ11 +Υ22Σ21) +
(
Ω10 +Π10

11

)
(Υ11Σ11 +Υ12Σ21) , (A.46)

Ξ12 = ΛΠ01
12 +Π10

12 (Υ21Σ12 +Υ22Σ22) +
(
Ω10 +Π10

11

)
(Υ11Σ12 +Υ12Σ22) , (A.47)

Ξ21 = ΛΠ01
21 +Π10

21 (Υ11Σ11 +Υ12Σ21) +
(
Ω10 +Π10

22

)
(Υ21Σ11 +Υ22Σ21) , (A.48)

Ξ22 = ΛΠ01
22 +Π10

21 (Υ11Σ12 +Υ12Σ22) +
(
Ω10 +Π10

22

)
(Υ21Σ12 +Υ22Σ22) , (A.49)
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and

Ψ11 = Π12
12

(
∆21Σ11 +∆−

22Σ21

)
+

(
Ω12 +Π12

11

) (
∆−

11Σ11 +∆−
12Σ21

)
, (A.50)

Ψ12 = Π12
12

(
∆21Σ12 +∆−

22Σ22

)
+

(
Ω12 +Π12

11

) (
∆−

11Σ12 +∆−
12Σ22

)
, (A.51)

Ψ21 = Π12
21

(
∆−

11Σ11 +∆−
12Σ21

)
+

(
Ω12 +Π12

22

) (
∆21Σ11 +∆−

22Σ21

)
, (A.52)

Ψ22 = Π12
21

(
∆−

11Σ12 +∆−
12Σ22

)
+

(
Ω12 +Π12

22

) (
∆21Σ12 +∆−

22Σ22

)
, (A.53)

and

Λ =
(
Ω10Ω12χ+χ− −Θ11

) (
Ω10Ω12χ+χ− −Θ22

)
−Θ12Θ21 , (A.54)

such that

Υ11 = ∆+
11

(
Π12

11∆
−
11 +Π12

12∆21

)
+∆+

12

(
Π12

21∆
−
11 +Π12

22∆21

)
, (A.55)

Υ12 = ∆+
11

(
Π12

11∆
−
12 +Π12

12∆
−
22

)
+∆+

12

(
Π12

21∆
−
12 +Π12

22∆
−
22

)
, (A.56)

Υ21 = ∆21

(
Π12

11∆
−
11 +Π12

12∆21

)
+∆+

22

(
Π12

21∆
−
11 +Π12

22∆21

)
, (A.57)

Υ22 = ∆21

(
Π12

11∆
−
12 +Π12

12∆
−
22

)
+∆+

22

(
Π12

21∆
−
12 +Π12

22∆
−
22

)
, (A.58)

and

Θ11 = Π10
11Υ11 +Π10

12Υ21 , (A.59)

Θ12 = Π10
11Υ12 +Π10

12Υ22 , (A.60)

Θ21 = Π10
21Υ11 +Π10

22Υ21 , (A.61)

Θ22 = Π10
21Υ12 +Π10

22Υ22 , (A.62)
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and

Σ11 =
(
Ω10Φ−Θ22

) (
Ω01 +Π01

11

)
+Θ12Π

01
21 , (A.63)

Σ12 =
(
Ω10Φ−Θ22

)
Π01

12 +Θ12

(
Ω01 +Π01

22

)
, (A.64)

Σ21 =
(
Ω10Φ−Θ11

)
Π01

21 +Θ21

(
Ω01 +Π01

11

)
, (A.65)

Σ22 =
(
Ω10Φ−Θ11

) (
Ω01 +Π01

22

)
+Θ21Π

01
12 , (A.66)

and

QA = εgk
2
t,1k

2
t,2 (�1ξ2 −�2ξ1) , (A.67)

Q±
B = εg�1�2

(
k2t,1α

±
2 − k2t,2α

±
1

)
, (A.68)

Q±
C = k2t,1ζ

±
2 ξ1 − k2t,2ζ

±
1 ξ2 , (A.69)

Q±
D = ζ±2 α±

1 �1 − ζ±1 α±
2 �2 , (A.70)

Q±
E = εgk

2
0

(
k2t,1ζ

±
2 �1 − k2t,2ζ

±
1 �2

)
, (A.71)

and

ζ±j = εgkx�j ± εaξiγz,j , (A.72)

α±
j = kxξj ± εgk

2
0γz,j , (A.73)

χ± = k2t,1ξ1�2α
±
2 − k2t,2ξ2�1α

±
1 , (A.74)

and

β±
j = kx ∓ iγjδj , φ±

j = δjkx ∓ iγj (θj − 1) ,

δj = ik20εg/ξj , θj = −k2t,j/�j , γ0 =
√
k2x + k2y − k20 ,

ξj = k20εt − k2b,j , �j = k20εa − k2t,j ,

k2t,j = k2x − γ2j , k2b,j = k2t,j + k2y . (A.75)
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Matlab code for the reflection and transmission coefficients is available on Code Ocean,

DOI: 10.24433/CO.7785417.v1.

A.2 Dispersion of bulk SPP modes for a 2D plasma

In the following, we obtain the natural modes of the 2D/quasi-2D structure shown in Fig.

3-2(a). These modes are defined as a field configuration that exists in the absence of sources

and satisfies the appropriate boundary conditions.

Above and below the interface, in the isotropic dielectric regions, Maxwell’s equations

in the absence of sources combine to form the wave equation for the electric and magnetic

fields (i.e., the vector Helmholtz equation)

∇2Ψ+ ω2µεΨ = ∇∇ ·Ψ (A.76)

for Ψ ∈ {E,H} where ∇ ·Ψ = 0. The general solutions to (A.76) in the spatial transform

domain with respect to x, y are Ψm (q, z) = Ψm
0 (q) exp (ikmz z), where q = x̂qx + ŷqy is

the in-plane wavevector preserved across the interface, Ψm
0 ∈ {Em

0 ,Hm
0 } is the polarization,

and kmz = m
√

k2 − q2 with k2 = ω2µε and m ∈ {±} used to indicate forward/backward

propagation with respect to ẑ.

Expanding Em
0 in a coordinate system spanned by the unit vectors {ẑ, q̂, ẑ× q̂}, we

have

Em
0 = Em

q̂ q̂+ Em
ẑ ẑ+ Em

ẑ×q̂ (ẑ× q̂) , (A.77)

and choosing the tangential components Em
q̂ and Em

ẑ×q̂, it follows that Em
ẑ = −qEm

q̂ /kmz .

The associated magnetic field polarization is obtained from Faraday’s law as

ωµHm
0 = −kmz Em

ẑ×q̂q̂+
k2

kmz
Em

q̂ (ẑ× q̂) + qEm
ẑ×q̂ẑ . (A.78)

From (A.77) and (A.78), it is straightforward to recover the relation ẑ×Hm
0‖ = mȲ · Em

0‖,
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where Em
0‖,H

m
0‖ are the tangential components of the polarization and

Ȳ =
−1

ωµ
√
k2 − q2




k2 0

0 k2 − q2


 . (A.79)

Applying the typical outgoing wave conditions in the unbounded regions (i.e., z → ±∞)

and enforcing the boundary conditions at the interface leads to

(
2Ȳ − σ̄

)
·E+

0‖ = 0 , (A.80)

for which non-trivial solutions are obtained when

det
(
2Ȳ − σ̄

)
= 0 . (A.81)

Valid solutions to (A.81) take the form of ω, q pairs which describe the natural, propagating

SPP modes supported by the structure.

A.3 Dispersion of edge surface plasmon polariton modes for

a 2D plasma

Consider the dielectric interface structure in Fig. 3-2(a). For a charge distribution assumed

to be in Region I (z < 0), Poisson’s equation relates the electrostatic potential to the net

charge density as

∇2




Φ1 (r)

Φ2 (r)




=




−ρ (r) /ε1

0




, (A.82)

subject to the electrostatic boundary conditions at the interface

Φ1 (r)|z=0 = Φ2 (r)|z=0 , (A.83)

ε1
∂

∂z
Φ1 (r)

∣∣∣∣
z=0

= ε2
∂

∂z
Φ2 (r)

∣∣∣∣
z=0

. (A.84)
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Figure A-2: Schematic of a two layer, laterally-infinite, dielectric medium.

The associated Green’s function for each region then satisfies

∇2




G1 (r, r
′)

G2 (r, r
′)




=




−δ (r− r′) /ε1

0




, (A.85)

subject to the same boundary conditions. The electrostatic potential in the ith region may

then be written as

Φi (r) =

∫
Gi

(
r, r′

)
ρ
(
r′
)
d3r′ . (A.86)

In the spatial transform domain, it is easy to show that the particular solution of (A.85)

in Region I is

Gp
1

(
k, r′

)
= Gp

1 (k) e
−ik·r′ , (A.87)

where GP
1 (k) = 1/ε1 |k|2. The principal Green’s function in Region I, is then given by the

inverse spacial transform of (A.87) with respect to z,

Gp
1

(
q, z, z′

)
=

1

2π

∫ ∞

−∞
dkzG

p (k) eikz(z−z′) =
1

2ε1q
e−q|z−z′| , (A.88)

where q ≡ x̂kx + ŷky and q ≡ ||q|| =
√

k2x + k2y. In addition to the principal Green’s

function in Region I, we add a homogeneous contribution GH
1 (q, z) satisfying ∇2GH

1 = 0.

Since there is no source terms in Region II, the Green’s function there consists only of

a homogeneous term, G1 (q, z, z
′) = GH

2 (q, z) where GH
2 (q, z) satisfies ∇2GH

2 = 0. It is
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straightforward to show that

GH
1 = A (q) eqz , GH

2 = B (q) e−qz , (A.89)

where A (q) and B (q) are determined by applying the boundary conditions (A.83)-(A.84)

at the interface. For z′ ≤ 0, it follows that

G1

(
q, z, z′

)
= Gp

1

(
q, z, z′

)
+A (q) eqz , (A.90)

G2

(
q, z, z′

)
= B (q) e−qz , (A.91)

where

A (q) =
1

2ε1

ε1 − ε2
ε1 + ε2

eqz
′

q
, (A.92)

B (q) =
1

ε1 + ε2

eqz
′

q
. (A.93)

In the limit z′ → 0, we obtain the Green’s function for a source positioned at the interface,

G (q, z, 0) =
1

2ε̄

e−q|z|

q
, (A.94)

where ε̄ ≡ (ε1 + ε2) /2. This Green’s function accounts for the background structure that

will host the graphene.

A.3.1 Charge Density on Semi-Infinite Graphene

In this section, we consider a 2D charge density on graphene localized at z = 0. The

graphene exists for x < 0, invariant with respect to y. The charge density is given by

ρ (r) = ρs (x) δ (z) e
ikyy , (A.95)

where ρs (x) denotes the surface charge density at the interface. Because the electrostatic

potential is also invariant with respect to y, we write Φ (r) = Φ (x, z) eikyy. Application of
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(A.86) leads to

Φ (x, z) =

∫ ∞

−∞
dx′G

(
x, x′, z, 0

)
ρs

(
x′
)
, (A.96)

where

G
(
x, x′, z, 0

)
=

1

2ε̄

∫ ∞

−∞

dkx
2π

e−q|z|

q
eikx(x−x′) =

1

2πε̄
K0

(
|ky|

√
(x− x′)2 + z2

)
, (A.97)

with K0 (·) denoting the zero-order modified Bessel function of the second kind. The abso-

lute value |ky| arises from having q =
√

k2x + k2y.

The continuity equation relates the surface charge density to the surface current at the

interface by iωρs (x) = ∇·Js (x) where Js (x) = Θ (−x) σ̄ · −∇Φ (x, z)|z=0. The components

of the current expand to

Jsx (x) = −Θ(−x)

[
ikyσxy + σxx

d

dx

]
Φ (x, 0) , (A.98)

Jsy (x) = −Θ(−x)

[
ikyσyy + σyx

d

dx

]
Φ (x, 0) , (A.99)

which are used in the continuity equation to obtain ρs (x) ≡ δ (−x) ρe (x) + Θ (−x) ρb (x),

where ρe (x) ≡ D̂e (x) Φ (x, 0) and ρb (x) ≡ D̂b (x) Φ (x, 0) such that

D̂e (x) ≡ kyχxy + ηxx
d

dx
, (A.100)

D̂b (x) ≡ k2yηyy − ky (χxy + χyx)
d

dx
− ηxx

d2

dx2
, (A.101)

where we define ηαα ≡ σαα/iω and χαβ ≡ σαβ/ω for α, β ∈ {x, y}. Substituting ρe and ρb

defined in terms of Eqs. (A.100)-(A.101) into (A.86), we obtain

Φ (x, z) =

∫ ∞

−∞
G
(
x, x′, z, 0

)
ρs

(
x′
)

(A.102)

= G (x, 0, z, 0) ρe (0) +

∫ 0

−∞
dx′G

(
x, x′, z, 0

)
ρb

(
x′
)
, (A.103)

where ρe (0) and ρb (x) should be interpreted as the charge density at the edge (x = 0) and
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in the bulk region (x < 0), respectively. Setting z = 0, we obtain an integro-differential

equation for the potential in the plane of the interface,

φ (x) = g (x, 0) ρe (0) +

∫ 0

−∞
dx′g

(
x, x′

)
ρb

(
x′
)
, (A.104)

where φ (x) ≡ Φ (x, 0) and g (x, x′) ≡ G (x, x′, 0, 0).

We now expand the potential in terms of Laguerre polynomials,

φ (x) = e|ky |x
∞∑
n=0

cnLn (−2 |ky|x) , (A.105)

for which we have the orthogonality condition

∫ 0

−∞
e2|ky |xLm (−2 |ky|x)Ln (−2 |ky|x) dx =

δnm
2 |ky|

. (A.106)

Exploiting orthogonality by multiplying both sides sides of (A.104) by e|ky |xLm (−2 |ky|x)

and integrating over x from 0 to ∞ leads to the dispersion relation

cm
2 |ky|

=

∞∑
n=0

cnAmn , (A.107)

where

Amn ≡ Jmn + ηxx (2n+ 1) Im + sgn (qy)χxyIm , (A.108)

with

Im ≡ |ky|
∫ 0

−∞
dxe|ky |xLm (−2 |ky|x) g (x, 0) , (A.109)

Jmn ≡
∫ 0

−∞

∫ 0

−∞
dxdx′G

(
x, x′

)
D̂b

(
x′
)
e|ky |(x+x′)Lm (−2 |ky|x)Ln

(
−2 |ky|x′

)
. (A.110)
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Figure A-3: (a) Bulk and (b) edge charge density for graphene in an external magnetic field. ρ̃bulk
is the bulk charge density normalized by ρbulk at kxx = −1, and ρ̃edge is the edge charge density
normalized by ρedge at B = 10T and µ = −0.3eV. (c) Decay of edge plasmon in comparison with
the perturbative solution obtained by introducing loss in Eq. (A.130), and full solution of Maxwell’s
equations obtained via FEM simulations in COMSOL for graphene in an external magnetic field. The
operating frequency is 14THz and µc = 0.05eV. (d)-(f) Real and imaginary parts of the bulk (pink)
and edge SPP wave numbers for graphene biased with an external magnetic field. The shaded region
in (d) indicates the bulk quasi-TM bandgap, with ωB denoting the radial frequency corresponding
to the first Landau level energy. Approx. 1 is obtained using Eq. (A.128) and Approx. 2 is obtained
using Eq. (A.129) for B = 100T and µ = −0.3eV, with lB =

√
�/eB denoting the magnetic length.

In all cases, T = 40K and Γ = 2× 1012s−1.

Making the change of variable y ≡ |ky|x, reduces (A.109)-(A.110) to

Im =

∫ 0

−∞
dyG (y, 0) eyLm (−2y) , (A.111)

Jmn =

∫ 0

−∞

∫ 0

−∞
dydy′G

(
y, y′

)
D̂b

(
y′
)
e(y+y′)Lm (−2y)Ln

(
−2y′

)
. (A.112)

where

G
(
y, y′

)
=

1

2πε̄
K0

(∣∣y − y′
∣∣) , (A.113)

D̂b

(
y′
)
= ηyy − sgn (qy) (χxy + χyx)

d

dy
− ηxx

d2

dy2
. (A.114)

103



Note that σxx = σyy and σxy = −σyx, which significantly reduces (A.112) to

Jmn = −ηxx

∫ 0

−∞

∫ 0

−∞
dydy′G

(
y, y′

)
e(y+y′)Lm (−2y)

d2

dy′2
Ln+1

(
−2y′

)
, (A.115)

which is straight forward to derive obtain using the recursive formulas

e−y′ d

dy′
ey

′
Ln

(
−2y′

)
=

d

dy′
Ln+1

(
−2y′

)
− Ln

(
−2y′

)
, (A.116)

e−y′ d2

dy′2
ey

′
Ln

(
−2y′

)
=

d2

dy′2
Ln+1

(
−2y′

)
+ Ln

(
−2y′

)
. (A.117)

Truncating the expansion to N +1 terms allows us to cast (A.107) as a standard eigen-

value equation 


A00 A01 · · · A0N

A10 A11 · · · A1N

...
...

. . .
...

AN0 AN1 · · · ANN







c0

c1
...

cN



= λ




c0

c1
...

cN




, (A.118)

where λ ≡ 1/2 |ky|.

A.3.2 Surface Charge Density

Once the eigenvalue equation is solved for {cn}, one can obtain numerical solutions for the

potential and the surface charge density. Using the expressions for ρe and ρb together with

Eq. (A.105), it can be shown that

ρe (y) = |ky| ey
∞∑
n=0

cn

[
(sgn (ky)χxy − ηxx)Ln (−2y) + ηxx

d

dy
Ln+1 (−2y)

]
, (A.119)

ρb (y) = k2ye
y

∞∑
n=0

cn {[ηyy − ηxx + sgn (qy) (χxy + χyx)]Ln (−2y)

−sgn (qy) (χxy + χyx)
d

dy
Ln+1 (−2y)− ηxx

d2

dy2
Ln+1 (−2y)

}
. (A.120)
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Then, using Ln (0) = 1 and L′
n (0) = −n, we obtain

ρe (0) ≡ |ky|
∞∑
n=0

cn [sgn (ky)χxy + (2n+ 1) ηxx] . (A.121)

Assuming σxx = σyy and σxy = −σyx,

ρb (y) = −ηxxk
2
ye

y
∞∑
n=0

cn
d2

dy2
Ln+1 (−2y) . (A.122)

Figures A-3(a),(b) shows bulk and edge charge density at several values of external

magnetic bias.

A.3.3 Approximating the Dispersion Relation

To a good approximation, the edge dispersion within the first TM band gap is obtained

by considering only the n = 0 term in the expansion (A.105). With the assumption that

σxx = σyy and σxy = −σyx, we find J00 = 0, leading to

|ky| = [2I0 (ηxx ± χxy)]
−1 , (A.123)

where

I0 = |ky|
∫ 0

−∞
dxe|ky |xg (x, 0) , (A.124)

such that

g (x, 0) =
1

2ε̄

∫ ∞

−∞

dkx
2π

1

q
eikxx , (A.125)

which we approximate by expanding q =
√
k2x + k2y about kx = 0,

√
k2x + k2y � |ky|+

k2x
2 |ky|

. (A.126)

This leads to the closed form approximate solution of (A.125)

g (x, 0) � g0 (x, 0) ≡
1

2ε̄
√
2
e−

√
2|ky ||x| , (A.127)
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which we use in (A.130), simplifying the dispersion relation to

|ky| = ε̄
1 +

√
2

ηxx ± χxy
. (A.128)

We find this result better approximates the exact edge mode dispersion than that used

in previous works [163], [164],

|ky| = ε̄
3ηxx − sgn (ky) 2

√
2χxy

η2xx − χ2
xy

. (A.129)

A.3.4 Material Loss

In statics, there is no concept of loss. However, our interest is in the quasi-static regime,

such that we can perturb the system slightly by introducing a non-zero scattering rate Γ in

the conductivity. Then, we can make the replacement

|ky| → ky =




+Re (ky) + iIm (ky) Re (ky) , Im (ky) > 0

−Re (ky)− iIm (ky) Re (ky) , Im (ky) < 0
(A.130)

which ensures that the wave decays in the case of both forward and backward propagation.

This results in complex-valued wavenumbers for the edge dispersion from both the exact

method (A.118) and from the approximate value (A.128). As a check, we compared decay

rates of the edge SPP generated using this perturbative approach and the result found via

COMSOL. Figure A-3(c) shows good agreement between the two methods for graphene in

an external magnetic field.

Figure A-3(d) shows the bulk and edge dispersion for graphene in an external magnetic

bias field. The edge modes are computed using the exact quasi-static analysis, Eq. (A.118),

and a comparison between the exact and approximate edge dispersion solutions is also

shown in A-3(e),(f). Although the results were computed assuming B = 100 T, due to the

normalization the dispersion diagrams are essentially independent of B for |B| > 1 T.
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