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ABSTRACT 

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF THE EFFECT OF 

NEWLY TESTED BLADES ON THE AERODYNAMIC PERFORMANCE AND 

POWER OUTPUT OF A HORIZONTAL AXIS WIND TURBINE 

 

by 

 Alaa Sayed Mahmoud Hasan 

The University of Wisconsin-Milwaukee, 2022 

Under the Supervision of Professor Ryoichi S. Amano 

 

There is no doubt that the effects of global warming are obvious for every human being on 

the Earth now. Therefore, the need to develop carbon dioxide-free sources of electricity is urgent. 

Wind Turbines are one of these most essential recently developed sources. For that reason, the 

University of Wisconsin-Milwaukee founded the wind tunnel lab., equipped with the state-of-the-

art research tools, to take part in this procession. 

In chapter (3) of this thesis it is desired to investigate in detail the scenario that takes place 

behind a single wind turbine unit by focusing on three parameters; average axial wind velocity 

component, velocity deficit, and total turbulence intensity. The testing was done at mainstream 

velocity, U∞, of 5.2 m/s, u and v velocity components were captured by x-probe dual-sensor hot 

wire anemometer. A massive amount of point data was obtained, which then processed by a Matlab 

script to plot the desired contours through the successive transverse sections along the entire length 

of the test section. By monitoring the previously mentioned flow parameters, the regions of low 

velocity and high turbulence can be avoided while the location of the subsequent wind turbine is 

selected. The estimation of the distance, at which the inlet flow field will restore its original 
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characteristics after being mixed through the rotor blades, is very important as this is the distance 

that should separate two successive turbines in an inline configuration wind farm to guarantee the 

optimum performance and to extract the maximum power out of the subsequent array of turbines. 

It is found that the hub height axial velocity recovery at six rotor diameters downstream distance 

is only 82%. This means that the power extraction out of the downstream turbine in an inline 

configuration wind farm is only 55% of the upstream turbine, if the same free stream velocity and 

blade design are adopted.   

Then, chapter (4) sheds light on wind farm layout design, site evaluation, and power output 

prediction by performing modeling and the experimental tests of a wind tunnel test section 

including a single wind turbine model inside was created and validated against present 

experimental data of the same model. The Large Eddy Simulation (LES) was used as a numerical 

approach to model the Navier-Stokes equations. The computational domain was divided into two 

areas; rotational and stationary. The unsteady Rigid Body Motion (RBM) model was adopted to 

represent the rotor rotation accurately. It is concluded through this investigation, if the rotational 

speed control is adopted, that the wind velocity increase enhances the axial velocity recovery. 

Hence, the separation distance between two successive turbines decreases while maintaining the 

same level of power extraction. This way, we can optimize available site exploitation. 

After that, chapter (5) of this work tries to popularize the use of residential-scale wind 

turbines because the last few decades witnessed a great development for the large-scale wind 

turbines, while small-scale wind turbines didn’t grab the same amount of interest. On this track, 

four airfoils (GOE 447, GOE 446, NACA 6412 and NACA 64(3)-618) characterized by their high 

published lift-to-drag ratios (161.3, 148.7, 142.7 and 136.3 respectively) are used to generate an 

entire 7 m long blades for three-bladed rotor wind turbine models tested numerically at 12.5 m/s 
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rated wind speed, with design tip speed ratio of 7. The criterion to judge each model’s performance 

is the power output. Thus, the blades of the model which produce the highest power are selected 

to undergo a leading-edge modification (tubercles), and a tip modification (winglet), seeking 

power improvement. Finally, the best basic model is tested at a spectrum of tip speed ratios (5 to 

7.5, with 0.5 step) to find the optimum tip speed ratio. 

Moreover, chapter (6) highlights that Most of the available research work of horizontal 

axis wind turbines is focused on either lab-scale (15-60 cm rotor diameter) or commercial large-

scale (80-130 m rotor diameter). There is a lack of published data on residential-scale turbines. 

The current work fills this gap because residential-scale turbines will be one of the key 

technologies during the next ten years since the current administration promotes dependence on 

renewables to cut carbon footprint. Therefore, the current work runs wind tunnel experimentation 

and performs 48 numerical simulations to evaluate the performance of a residential scale wind 

turbine with a blade generated from GOE 447 airfoil at three wind speeds (7.5, 12.5, and 17.5 m/s). 

Three different vortex generator designs were tested numerically when added on the suction side 

of a 7 m blade. Two of those designs produced more power than a baseline rotor does (7.2% and 

10.9% more power than the baseline rotor were achieved at 12.5 m/s wind speed). Furthermore, 

three winglet designs were added to the baseline design to investigate their effect on power 

production. The 90o, 60o, and 30o cant angles produce 5.0%,7.9% and 6.9% more power than the 

baseline design, respectively. It was very important to investigate the effect of combining the most 

successful vortex generator and winglet design on the performance of a single blade. Combining 

both techniques impairs the functionality of each other, leading to a deteriorated overall 

performance and less power (generally 6% to 8% less power than the baseline design). 
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Furthermore, chapter (7) utilizes wind tunnel experimentation and uses CFD simulations 

to evaluate the performance of a 14 m-rotor diameter residential scale wind turbine at three wind 

speeds (7.5, 12.5, and 17.5 m/s). The blades of the rotor baseline design are built using GOE 447 

airfoil. Five different tubercle designs were applied to the blade’s leading edge. One of those 

designs produces more power than a baseline rotor, with an optimum power improvement of 5.5% 

achieved at 12.5 m/s wind speed. Furthermore, three winglet designs were added to the tip of 

baseline design to investigate their influence on the power production. The 90o, 60o and 30o cant 

angles produce 5.0%,7.9% and 6.9% more power than the baseline design, respectively, at 12.5 

m/s. Moreover, it is vital to investigate the effect of integrating leading-edge tubercles with 

winglets, then evaluate the influence of the combination on the aerodynamic performance and 

power output of the turbine model. It is found that when combining both techniques on the same 

blade, the improvement mechanism associated with each of them interferes with the other, leading 

to poor overall performance and less power in the majority of the run simulations. 

 Finally, chapter (8) highlights the topics that have potential for future work.  
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Chapter 1 : Introduction 

1.1 Renewable Energy 

Energy consumption has increased dramatically over the last decades due to the increase in 

the population. Fossil fuels (coal, natural gas, and oil) are the primary energy sources in most of 

the world due to their availability and high calorific value. However, there are limiting factors on 

the fossil fuels leading the world to seek for new energy resources that are abundant and can be a 

reliable substitute for fossil fuels. Some of these limiting factors are: fossil fuels are non-

renewable, their consumption rate is much higher than their production rate thus expecting to 

deplete, and such resources are not clean energy sources since their extraction and energy 

production lead to a high carbon footprint [1]. Due to these reasons, the necessity to rely on and 

develop new technologies to harvest energy from renewable and clean resources like wind, hydro, 

and solar becomes a driving factor in the industry to fulfill the demand on electricity. 

Currently, renewable energy plays a significant role in new power generation worldwide. 

Hydropower, wind, biomass and photovoltaic are the leading renewable energy streams with 99% 

of total renewable sources. These streams add up to hundreds of gigawatts in global energy 

generation. Further, these mitigate tons of greenhouse gases emissions [2] [3]. 

Renewable power generation can help countries meet their sustainable development goals 

through the provision of access to clean, secure, reliable and affordable energy. Renewable energy 

has gone mainstream, accounting for the majority of capacity additions in power generation today. 

Tens of gigawatts of wind, hydropower and solar photovoltaic capacity are installed worldwide 

every year in a renewable energy market that is worth more than a hundred billion USD annually. 
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       Based on Renewables Global Status Report1 2019 [4], an evaluation of the world’s total 

energy consumption by source was done by the end of 2017 shows that the majority of the world’s 

total energy consumption still relies on fossil fuels (79.7%), while the modern renewable energy 

sources constitute only 10.6% of the world’s total energy consumption (see Figure 1-1).  

 

Figure 1-1: Estimated Renewable Share of Total Final Energy Consumption [4] 

 

Meanwhile, within the last ten years, the share of renewables in the net annual additions of 

power generating capacities increases on yearly basis from 42% in 2008 to 65% in 2018. This fact 

is represented in Figure 1-2. 

 
1 REN21: Renewable Energy Policy Network for the 21st Century; a global renewable energy policy network that 

provides international leadership for the rapid transition to renewable energy. 
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Figure 1-2: Annual Additions of Renewable Power Capacity, by Technology and Total [4] 

 

Figure 1-3 shows the increase in global power capacity within 10 years, 2008 through 

2018. The total world’s installed capacity in 2008 was about 4600 Gigawatts, 21.7% of it was the 

renewables’ share. However, the total world’s installed capacity in 2018 reached 7100 Gigawatts, 

with 33.8% of it as the renewables’ increasing share. It is worth mentioning that 50% of the 

renewables’ share in this year goes for hydropower. 

 

Figure 1-3: Global Power Generating Capacity, by Source [4] 
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1.2 Wind Power 

According to the Global Wind Report [5], 2018 was a good year for the global wind 

industry with 51.3 GW of new wind energy installed, a slight decrease of 4.0 per cent compared 

to 2017, but a strong year, nonetheless. Since 2014, annual installations have topped 50 GW each 

year, despite ups and downs in some markets. 

According to Renewables Global Status Report 2019 [4], global electricity production by 

the end of 2018, the world still depends on fossil fuel to generate the majority of its electricity 

(73.8%), while the renewable electricity share is only 26.2%. The largest share of the renewable 

electricity goes for hydropower (15.8%), while the wind power comes in the second place with 

5.5% of the total global electricity production (see Figure 1-4) 

 

Figure 1-4: Estimated Renewable Energy Share of Global Electricity Production [4] 

 

 Figure 1-5 depicts on the annual additions of renewable power capacity categorized based 

on technology. Within 7 years, 2012 through 2018, the total renewable power installed is 
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increasing. Solar PV panels technology comes as the fastest growing capacity (100 Gigawatts 

added by the end of 2018), then the wind technology comes in the second place with 51.3 

Gigawatts added by the end of 2018.  

 

Figure 1-5: Annual Additions of Renewable Power Capacity, by Technology and Total, 

2012-2018 [4] 

1.3 Modern Wind Turbines 

1.3.1 Definition of Wind Turbines 

A wind turbine is a machine which converts the power in the wind into electricity. This 

contrasts with a ‘windmill’, which is a machine which converts the wind’s power into mechanical 

power. As electricity generators, wind turbines are connected to some electrical network. These 

networks include battery-charging circuits, residential scale power systems, isolated or island 

networks, and large utility grids. 
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1.3.2 Principal of Operation 

 In modern wind turbines, the actual conversion process uses the basic aerodynamic force 

of lift to produce a net positive torque on a rotating shaft, resulting first in the production of 

mechanical power and then in its transformation to electricity in a generator. Wind turbines, unlike 

most other generators, can produce energy only in response to the resource that is immediately 

available. 

1.3.3 Types of Wind Turbines 

Wind turbines are classified into two general types: horizontal axis and vertical axis. A 

horizontal axis machine has its blades rotating on an axis parallel to the ground. A vertical axis 

machine has its blades rotating on an axis perpendicular to the ground. There are a number of 

available designs for both and each type has certain advantages and disadvantages. However, 

compared with the horizontal axis type, very few vertical axis machines are available 

commercially. 

1.3.3.1 Horizontal Axis Wind Turbines 

A Horizontal Axis Wind Turbine (HAWT) is the most common wind turbine design. In 

addition to being parallel to the ground, the axis of blade rotation is parallel to the wind flow. 

HAWTs have three designs, some wind turbines are designed to operate in an upwind mode (with 

the blades upwind of the tower). Large wind turbines use a motor-driven mechanism that turns the 

machine in response to a wind direction. Smaller wind turbines use a tail vane to keep the blades 

facing into the wind (see Figure 1-6 (a)). Meanwhile, other wind turbines operate in a downwind 

mode so that the wind passes the tower before striking the blades. Without a tail vane, the machine 

rotor naturally tracks the wind in a downwind mode, as shown in Figure 1-6 (b). Finally, Figure 
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1-6 (c) demonstrates some turbines that have an added structural design feature called an 

augmentor, a device intended to increase the amount of wind passing through the blades. 

 

Figure 1-6: HAWTs designs, (a) Upwind, (b) Downwind, (c) Shrouded 

 

HAWT Advantages 

• The tall tower base allows access to stronger wind in sites with wind shear. In some wind 

shear sites, every ten meters up the wind speed can increase by 20% and the power output 

by 34%. 

• High efficiency, since the blades always move perpendicularly to the wind, receiving 

power through the whole rotation. In contrast, all vertical axis wind turbines, and most 

proposed airborne wind turbine designs, involve various types of reciprocating actions, 

requiring airfoil surfaces to backtrack against the wind for part of the cycle. Backtracking 

against the wind leads to inherently lower efficiency. 

HAWT Disadvantages 

• Massive tower construction is required to support the heavy blades, gearbox, and 

generator. 
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• Components of a horizontal axis wind turbine (gearbox, rotor shaft and brake assembly) 

being lifted into position. 

• Their height makes them obtrusively visible across large areas, disrupting the appearance 

of the landscape and sometimes creating local opposition. 

• Downwind variants suffer from fatigue and structural failure caused by turbulence when 

a blade passes through the tower’s wind shadow (for this reason, the majority of HAWTs 

use an upwind design, with the rotor facing the wind in front of the tower). 

• HAWTs require an additional yaw control mechanism to turn the blades toward the wind. 

• HAWTs generally require a braking or yawing device in high winds to stop the turbine 

from spinning and destroying or damaging itself. 

• Cyclic Stresses & Vibration – When the turbine turns to face the wind, the rotating blades 

act like a gyroscope. As it pivots, gyroscopic precession tries to twist the turbine into a 

forward or backward somersault. For each blade on a wind generator’s turbine, force is at 

a minimum when the blade is horizontal and at a maximum when the blade is vertical. 

This cyclic twisting can quickly fatigue and crack the blade roots, hub and axle of the 

turbines. 

1.3.3.2 Vertical Axis Wind Turbines 

The Savonius turbine is S-shaped if viewed from above (Figure 1-7 (a)). This drag-type 

Vertical Axis Wind Turbine (VAWT) turns relatively slowly but yields a high torque. It is useful 

for grinding grain, pumping water, and many other tasks, but its slow rotational speeds make it 

unsuitable for generating electricity on a large-scale. However, the Darrieus turbine is the most 

famous VAWT. It is characterized by its C-shaped rotor blades which give it its eggbeater 
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appearance (Figure 1-7 (b)). It is normally built with two or three blades. Finally, the giromill is 

typically powered by two or three vertical airfoils attached to the central mast by horizontal 

supports (Figure 1-7 (c)). Giromill turbines work well in turbulent wind conditions and are an 

affordable option where a standard horizontal axis windmill type turbine is unsuitable. 

  

Figure 1-7: VAWTs designs, (a) Savonius, (b) Darrius, (c) Giromill 

 

 

Traditional VAWT Advantages 

• They can produce electricity in any wind direction. 

• Strong supporting tower in not needed because generator, gearbox and other components 

are placed on the ground. 

• Low production cost as compared to horizontal axis wind turbines. 

• As there is no need of pointing turbine in wind direction to be efficient so yaw drive and 

pitch mechanism is not needed. 

• Easy installation as compared to other wind turbine. 

• Easy to transport from one place to other. 

• Low maintenance costs. 
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• They can be installed in urban areas. 

• Low risk for human and birds because blades moves at relatively low speeds. 

• They are particularly suitable for areas with extreme weather conditions, like in the 

mountains where they can supply electricity to mountain huts. 

Traditional VAWT Disadvantages 

• As only one blade of the wind turbine works at a time, efficiency is very low compared to 

HAWTS. 

• They need an initial push to start; this initial push that to make the blades start spinning on 

their own must be started by a small motor. 

• When compared to HAWTs, they are very less efficient because of the additional drag 

created when their blades rotate. 

• They have relative high vibration because the air flow near the ground creates turbulent 

flow. 

• Because of vibration, bearing wear increases which results in the increase of maintenance 

costs. 

• They can create noise pollution. 

• VAWTs may need guy wires to hold it up (guy wires are impractical and heavy in farm 

areas). 

1.4 Modern Horizontal Axis Wind Turbines Design 

Today, the most common design of wind turbine, and the type, which is the primary focus 

of this research, is the HAWT. Figure 1-8 shows that the main advantage of HAWTs is having 

high power coefficient among other turbines which reach 49% at tip speed ratio (λ) = 7. All 
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turbines VAWTs have low power coefficient and the smallest power coefficient is Savonius 

turbine having maximum power coefficient 0.15 at λ = 0.8.  

 

Figure 1-8: Typical performance of wind power machines [6] 

 

HAWT rotors are usually classified according to the rotor orientation (upwind or 

downwind of the tower), hub design (rigid or teetering), rotor control (pitch vs. stall), number of 

blades (usually two or three blades), and how they are aligned with the wind (free yaw or active 

yaw). 

The principal subsystems of a typical, land-based HAWT are shown in Figure 1-9. These 

include:  

• The rotor, consisting of the blades and the supporting hub.  
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• The drive train, which includes the rotating parts of the wind turbine (exclusive of 

the rotor); it usually consists of shafts, gearbox, coupling, a mechanical brake, and 

the generator. 

• The nacelle and main frame, including wind turbine housing, bedplate, and the yaw 

system.  

• The tower and the foundation. 

• The machine controls. 

• The balance of the electrical system, including cables, switchgear, transformers, 

and possibly electronic power converters. 

 

Figure 1-9: The principal subsystems of a typical, land-based HAWT 

The main options in wind turbine design and construction include: 

• number of blades (commonly two or three) 

• rotor orientation: downwind or upwind of tower 
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• blade material, construction method, and profile 

• hub design: rigid, teetering, or hinged 

• power control via aerodynamic control (stall control) or variable-pitch blades  

• fixed or variable rotor speed 

• orientation by self-aligning action (free yaw), or direct control (active yaw); 

• synchronous or induction generator (squirrel cage or doubly fed); 
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Chapter 2 : Literature Review 

2.1 Introduction 

As the world proceeds on both residential and industrial tracks, the energy demand 

increases on a daily basis accordingly. Nowadays, the entire world witnesses the drastic effects of 

global warming. Besides, the world’s reserves of oil and fossil fuels come to an end one day soon. 

The two reasons mentioned above drive the world in the path of developing carbon-free and 

renewable energy resources. No doubt that wind turbines are one of these technologies which 

utilize the kinetic energy in the wind, then convert it into mechanical energy, eventually electrical 

energy. Therefore, the University of Wisconsin-Milwaukee founded the wind tunnel lab., equipped 

with the state-of-the-art research tools, to take part in this procession. 

As a quick review of the wake aerodynamics of a horizontal axis wind turbine. The wake 

is divided into two regions; near wake and far wake, which is represented in Figure 2-1. In the 

near wake region, the free stream energy extraction by the rotor blades leads to pressure and 

velocity gradients which dominates the shape of the flow in that region of the wake. By transition 

to the far wake region, it is characterized by its minimum velocity deficit; since the wake velocity 

starts to recover its original value approaching free stream velocity, the velocity profile sounds 

axisymmetric and Gaussian in shape. 
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Figure 2-1: Wake profiles of a horizontal-axis wind turbine

 

2.2 Wake prediction and wind farm optimization models 

Studies that quantify the extent to which the wind turbines can be built close to each other is of 

great importance to save, as much as possible, the cost of land and civil works related to wind farms, while 

maintaining the maximum power extraction. Therefore, the introduction of current work highlights the 

different approaches through which the wake region in wind farms was studied in the recent years, with 

the aim of either turbine blade optimization or wind farm optimization or both. The target approaches are 

the experimental approach, the Computational Fluid Dynamics (CFD) approach and any combination of 

them. 

Crespo et al. [6] issued a multi-disciplinary study that comprised five sections. Their work is one of the 

earliest works in the field that had this comprehensive nature.    

Section one covered some studies that treated turbines as distributed roughness elements. Based 

on that assumption, some researchers assumed a logarithmic wind profile for the free stream, others 

assumed the logarithmic profile for below hub height, but above hub height was supposed to have another 

pattern with a roughness related to turbine drag (due to power extraction). By this modified profile they 
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obtained the wind velocity attacking each turbine then calculated the extracted power. Although models 

depend on this assumption to study the wake are now replaced by more accurate ones, it still can predict 

overall changes in wind characteristics due to passing over large wind farms. 

Section two was devoted to discussing models for individual wakes. It started with a detailed 

description of the wake behavior to be simulated with kinematic and field models. The main factor that 

derive the wake behavior is the vortex sheets, formed due to variation in circulation along the blades, 

which results in tip vortices in the form of helical trajectories. These helical trajectories act as a cylindrical 

shear layer that separate the decelerated flow inside the wake from the ambient outside flow. As we go 

downstream, due to turbulent diffusion, the outer diameter of the cylindrical shear layer expands. 

However, that expansion length is limited to one rotor diameter. As we go further downstream, the shear 

layer thickness increases due to turbulence diffusion till it reaches the wake axis at about two to five rotor 

diameters, which ends the near wake region. By transition to the far wake region, it is found completely 

developed without any ambient shear perturbation.  

Section three was dedicated to discussing the wake effects in wind farms, starting from studying 

the interaction of several wakes. The simplest approach was adding the velocity deficits and turbulence 

kinetic energy of each single turbine to come up with the wind farm wake characteristics. A more accurate 

approach was to solve the flow equations for the whole wind farm, but the feasibility of this approach 

depended on the parabolic approximation as a simplifying assumption. One of the essential experimental 

outcomes presented in this section is that the turbulence intensity had a peak at the second row of turbines, 

then it settled down to an equilibrium value at the third to the fourth row of turbines. Moreover, this section 

focused on the topographic effect, turned to the simultaneous study of both the previously mentioned 

parameters, ended up with shedding light on the offshore wind farms.  
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Section four showed a brief idea about an alternative tool for wind farm designers, which is the 

quasi-analytical and semi-empirical expressions that describe the tendencies of the dominant parameters 

that drive wake evolution, while section five discussed some measurements of structural loads (i.e., 

dynamic and fatigue loads) affecting the turbine under wake conditions. However, both sections are out 

of the current work’s focus. 

Sanderse et al. [7] studied the state-of-the-art numerical calculation of wind turbine wake 

aerodynamics. Their study included different CFD techniques to model both the rotor and the wake. Their 

work comprised two approaches for rotor modeling, the generalized actuator disc approach, in which the 

rotor is represented by forces, and the direct approach. The generalized actuator disc approach can be 

represented by one of the following methods: actuator disk, actuator line or actuator surface. They 

discussed the applicability and limitations of the two most essential methodologies in turbulence modeling 

for wind turbine wakes, RANS and LES. The parabolic, elliptic and linearized models were included when 

studying RANS. 

For rotor modeling, they concluded that the direct approach is not yet appropriate to neither 

optimizing turbine blades nor optimizing farm layout. They justified the use of actuator approach because 

the differences between it and the direct approach in the far wake were minimal. Although the actuator 

line and actuator surface are more accurate, they preferred the use of the actuator disk method because it 

is sufficient and requires lower computational efforts. 

For wake modeling, they found that LES showed more agreement with the experimental data 

compared with RANS. However, they recommended the use of RANS because LES requires more 

computational effort, two orders of magnitude, which limits its use in farm applications. 
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Sumner et al. [8] performed a comprehensive study that covered CFD applications in the field of 

wind energy starting from the flow around 2D airfoils to the flow through an entire wind farm. Their work 

can be divided into three main sections. The first section dealt with the application of CFD on 2D airfoil 

to predict its characteristics to use it in the design of wind turbine blade. Then, the second section showed 

the great effort done in recent years to develop the numerical techniques used to solve the 3D flow field 

around an operating turbine. Finally, the third section presented alternative techniques to full 3D CFD 

studies, like actuator disk or surface techniques, which appeared promising to study the rotor 

aerodynamics, particularly when it is needed to model the wake effect in a wind farm. Besides, flow over 

original topography was represented.  

Sumner et al. concluded their work with that both the CFD analysis and wind tunnel experiment 

may be compared to each other in cost. However, CFD has the advantage of providing field data not only 

points. Moreover, in the short term, RANS approach will be the base of CFD applications by the wind 

energy sector. In the long term, LES – based methods will eventually supersede the RANS techniques to 

be able to solve the flow field over complex terrain and to determine the sitting of turbines in a wind farm 

accurately. 

Miller et al. [9] shed light on the trends in techniques, technology, and application of numerical 

simulation on the wind energy sector. Their work reviewed new numerical simulation techniques for 

analysis and optimization of flow over complex terrain, cost optimization models and wind farm layout 

optimization models. Such studies and models were not possible before. 

They also reviewed some papers that used the Atmospheric Boundary Layer (ABL) simulation 

models to select the proper location for a wind farm or to evaluate the current site of previously set up 

wind farm by simulating wind velocity through the site.  
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They concluded their work by confirming that replacing and supplement experiments with 

numerical simulations. For example, CFD analysis of a turbine's wake proved to be better than the wind 

tunnel analysis. They also presented a study that optimized the dual wind turbine design using CFD instead 

of depending only on the wind tunnel testing. Also, they included some reviews that were able to capture 

some phenomena using CFD which were difficult or impossible to observe by experimental 

measurements. For instance, it was possible to research the 3P pulsation due to wind shear by CFD. As 

well as finite element analysis (FEA) was able to predict and minimize damage due to vibration in turbine 

support structures.  

Xiaoxia et al. [10] reviewed in their literature some works that quantified the power output loss 

and increased fatigue load due to the grouping of multiple wind turbines in a wind farm. These works 

handled the problem of how to arrange the wind turbines in a wind farm. They reviewed some other works 

focused on the detailed knowledge of the flow and its turbulence structure within the wake region because 

such practices are essential for the wind farm turbines layout optimization and overall power output 

prediction. 

They developed and validated a newly proposed a 2D analytical wind turbine wake model that 

adopted Jensen’s wake model [11] as it is the most widely used model for the wind farm layout 

optimization studies, coupled with Gaussian function, to come up with Jensen-Gaussian wake model to 

predict the velocity deficit inside the wake region. Then, the new model was combined with the multiple 

population's genetic algorithm (MPGA) optimization method to optimize the wind farm layout. The 

performance of the new model was validated against the classic Jensen’s wake model, the cosine shape 

wake model, and also against real wind tunnel measurement data. 

They found that the new model prediction of the velocity deficit is in an excellent agreement to 

the experimental measurements at different downstream distances. The unique model considered the 
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turbulence inside the wake beside the ambient turbulence. Therefore, the new model ability of wind farm 

efficiency and power output prediction was more realistic when a comparison held between its 

performance and the performance of some previous layout studies. 

2.3 HAWTs performance and power optimization 

Studies that serve projects like wind farm design layout and power generation optimization are of 

critical importance because the global installed wind energy capacity by the end of 2018 exceeded 591 

GW and expected to soar to reach 700 GW by the end of 2020. The previous expectation is based on an 

increasing percentage of installed capacity ranging from 9.6% to 17.1% in the past five years. [5] 

During the last decade, most of the Computational Fluid Dynamics (CFD)-based research works 

aimed at two main objectives; the first one is HAWT blade optimization. The second one is the wind farm 

layout optimization. Therefore, the next two sub-sections shed light on 23 previous works; the first 20 of 

them focus on the first objective, the last three focus on the second objective. 

2.3.1 HAWTs blade design optimization 

2.3.1.1 Testing different airfoils, blade tapering and twist rates 

Amano et al. [12] presented a comparison between the straight and swept edged blades regarding 

wake sizes and shapes at different wind velocities. At that time, the Blade Element Momentum (BEM) 

based methods were widely used in industry and research to predict blade performance. The BEM could 

specify the chord length and angle of twist based on three inputs: rotation rate, wind speed, and spanwise 

position. The disadvantage of the BEM was that it dealt with each blade cross-section independently. 

Thus, the complex 3D flow effects were not taken into consideration. For that reason, they used CFD in 

their work since it solves the governing fluid flow equations instead of depending on predetermined airfoil 

data to predict blade performance as in BEM. They investigated the swept-edged blade in addition to the 
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straight blade because the swept-edged blade includes the effect of spanwise velocity component and the 

delay of the stall point of the rotor.  

Amano, et al. performed wind tunnel experiments on a full HAWT blade and generated a CFD 

model of the turbine blade using a 120o wedge-shaped domain taken lengthwise along the horizontal axis. 

They used the structured mesh near the blade as this is the area of interest and the unstructured mesh away 

from the blade. They used the Shear-Stress Transport (SST) k-ω turbulence model along with the moving 

reference frame function available in FLUENT to include the effect of rotation in fluid flow.  

They discovered that for both straight and swept-edged blades, full flow separation occurred at 15 

m/s, with power stall at higher speeds. In addition, they found that the wake length increased for both 

blades up to 15 m/s; at higher speeds, the wake length for the swept edged blade was larger than the 

straight blade due to the formation of higher spanwise flow along the swept blade.   

Shen et al. [13] used the lift surface model as a performance prediction model coupled with a 

genetic algorithm to describe an optimization method for the design of HAWTs. The two objectives of 

the proposed optimization method were obtaining the maximum annual energy production and minimum 

blade loads; hence the minimum cost of the turbine. They applied the method proceeds to the National 

Renewable Energy Laboratory (NREL) Phase VI rotor to show that the optimization model would result 

in a more efficient design. 

To verify the numerical simulation model, they adopted two ways of comparison. They compared 

the predicted power to the measurement and achieved 98% agreement in the attached flow region up to 9 

m/s wind speed of, but a deviation of 10% was detected beyond that speed limit due to blade stall. In 

addition, they compared the predicted normal and tangential force coefficients to the measured 

coefficients at 7 m/s and found 99% agreement along the entire blade span. 
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Shen proposed two optimized designs to apply to the NREL phase VI rotor blades, the swept-

curved and optimized swept-curved blades.  Both designs led to performance improvement. The amount 

of improvement was clearer at higher wind speed (7 & 9 m/s). For instance, for 9 m/s, at mid-span of the 

blade, the tangential force was 10% higher, and the normal force is 6% higher than their counterparts of 

the original blade. Besides, rotor thrust coefficient of the optimized designs was less by 3%.  Hence, it 

was discerned that the annual energy production increases and blade root flap wise momentum decreases 

due to the optimization.   

Unlike BEM, CFD considers the 3-D and rotational flows as a result of solving the Navier-Stokes 

equations for each cell in the domain. De Bellis et al. [14] used the ANSYS Fluent package with the 

Spalart-Allmaras (SA) turbulence model, integrated that into the single and multi-objective optimization 

models provided by the modFrontier software to propose a certain twist and chord distribution for a new 

blade profile, which was shown to give higher torque when compared to the NREL phase VI blade, under 

both attached (7 m/s) and stalled (20 m/s) flow conditions.   

Beyhaghi and Amano did great efforts to improve the aerodynamic performance of cambered 

airfoils using leading-edge slots. They investigated the effect of five design variables (slot’s length, slot’s 

thickness, inlet angle, exit angle, and vertical position) on two objective functions (lift and lift over drag 

ratio). They discovered that slot’s length, inlet angle and vertical position are more influential in 

controlling the objective functions [15]. Besides, they evaluated the capability of creating narrow channels 

near the leading edge of NACA 4412 airfoil in increasing lift and decreasing drag. By slightly lowering 

the slot position with respect to the original design, and tilting up the first leg a few degrees, they could 

get 8% improvement for lift coefficient over the entire range of angles of attack, without drag penalty 

[16]. 
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Since maximizing the amount of wind energy converted into electrical energy is essential, several 

studies were conducted to study the different parameters affect the wind turbine performance, to obtain 

the maximum energy available in the wind. One of the most essential perspectives is the aerodynamics 

analysis of different blade profiles, which was performed by Kurtulmus et al [17]. They studied the 

aerodynamics of different NACA blade profiles (NACA 0012, 4412, 4415, 23012) to get the most 

optimum angle of attack (at the maximum sliding rate) using Snack 2.0. It was found that for Re less than 

3,000,000 the optimum angle of attack was from 3o to 9o. However, for Re higher than 3,000,000, the 

range was from 3o to 7o. 

Three different Horizontal Axis Wind Turbine (HAWT) blade geometries with the same diameter 

of 0.72 m using the same NACA 4418 airfoil have been investigated both experimentally and numerically 

by Hsiao et al. [18]. The first is an optimum (OPT) blade shape, obtained using improved Blade Element 

Momentum (BEM) theory. The second is an untapered & optimum twist (UOT) blade with the same twist 

distributions as the OPT blade. The third blade is untapered & untwisted (UUT). All the wind tunnel 

experiments were performed at constant wind speed (10 m/s), while the different tip speed ratios (λ) were 

obtained by adjusting the wind turbine’s rotational speed. The mechanical torque, which is used to 

compute the power coefficient (CP), was measured by averaging the values of the torque transducer. 

They concluded that the OPT and UOT blades performed with the same maximum power 

coefficient, Cp = 0.428, but at different tip speed ratios; λ = 4.92 for the OPT blade and λ = 4.32 for the 

UOT blade. Meanwhile, OPT is considered better than UOT since it gives high Cp (higher than 0.420) at 

wider range of tip speed ratios (4 to 5.5). The UUT blade had a maximum power coefficient of Cp = 0.210 

at λ = 3.86, which is less than the first two blades. 
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2.3.1.2 Testing different winglet designs 

Regarding winglets, Tobin et al. [19] used a Particle Image Velocimetry (PIV) system to 

investigate two similar turbine models, one with the standard rotor design, the other with downstream-

facing winglets. It is wanted to see the effect of the winglets on the wake aerodynamics, power and thrust 

coefficients of the model. They opted for the downstream-facing winglet design since it was proven in 

their literature that this design was the most effective in power increase. Turbine power was obtained from 

DC generator terminals. 

They obtained an improvement of 8.2% and 15.0% for the power and thrust coefficients of the 

winglet model. They justified the power increase with the induced drag reduction happened in the winglet 

model case due to decrease in tip-vortex strength. 

Khaled et al. [20] investigated the influences of winglets on the aerodynamic performance of a 

small horizontal axis wind turbine, particularly on power and thrust coefficients. Firstly, they investigated 

the effect of winglet length variation (changed from 1% to 7% of the turbine rotor radius), while the cant 

angle is fixed at 90°, and Tip Speed Ratio (TSR) changed from 2.5 to 9.6. They found that for all cases, 

the power maximized at the design TSR of 5 then drops, while the thrust coefficient (CT) continued 

increasing till TSR is 8.4 then started to fall.  

Secondly, for each winglet length, the cant angle changed from 15° to 90°, while the TSR is 

maintained at its optimum value (5). They found that Cp range increased by the increase of winglet length. 

Moreover, at each length, Cp is maximum at a cant angle of 50°, while CT is maximum at 30°. 

Farhan et al. [21] numerically tested two different winglet planforms, rectangular and elliptical, 

using CFD. They applied the two planforms to two different airfoils, S809 and PSU 94-097. For each case 

of the four cases, two cant angles were tested (45° and 90°), with winglet length changed from 5 cm to 15 
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cm, and wind speed changed from 5 m/s to 25 m/s. They performed 144 simulations to investigate the 

effect of the winglet parameters mentioned above on the wind turbine’s power output, compared to a 

baseline design (the NREL phase VI rotor). They found that the optimum winglet design is the rectangular 

planform when applied to the S809 airfoil with 45° cant angle and 15 cm length at a wind speed of 10 m/s. 

Khalafallah et al. [22] investigated the capability of a winglet to increase the turbine power of a 

horizontal axis wind turbine. In particular, they studied the effects of winglet direction, cant angle, and 

twist angle for two winglet orientations: upstream and downstream directions. 

For each winglet direction, the twist angles are –2°, 2°, and 10° were studied at each of cant angles 

20°, 40°, and 60°. To focus on the effect of winglet parameters on the turbine performance, the 

computations have been performed at the design TSR of 6. In general, they concluded that the winglet 

pointing to the downstream side showed a more increase in power than those pointing to the upstream 

side. They claimed that a general increase of the power coefficient occurred except for the three cases of 

a cant angle of 60° at which the winglet was on the upstream side. A maximum increase in Cp of 1.75% 

(more than baseline design mentioned in their literature) was observed where winglet pointing to 

downstream side and has a cant angle of 60° and a twist angle of 2°. 

 Johansen et. al [23] studied the effect of winglets on wind turbine blades using CFD, they studied 

different winglet configurations with different heights (1-4% of the rotor radius), different curvature radius 

(12.5 – 100% of the winglet height), different sweep angles (0° and 30°) and different twist angles (0°-

8°). The maximum increase in power was 2.77% with a 3.55% increase in thrust when using 1% of the 

rotor radius as the winglet height and 50% of the winglet height as the curvature radius along with a twist 

angle of 4°. Generally, they claimed that mechanical power and thrust increases as the curvature radius 

decreases. Also, mechanical power and thrust increases as winglet height increases. The power and thrust 

dependency on the winglet tip twist are very minor. 
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Muhle et al. [24] performed a pure experimental study that focused on showing the effect of 

different wing tip configurations on the tip vortex formation and interaction in the near wake of a two-

bladed model wind turbine. They investigated the impact of switching from the straight-cut wing tip to 

the downstream-facing winglet on several parameters. Regarding the mean streamwise velocity, the 

presence of winglets didn’t significantly affect the mean velocity field. Regarding wake expansion, 

winglets generated a slightly wider wake than the straight-cut tip. Regarding the phase-averaged vorticity 

component, an analysis was done between two downstream distances (2.3D and 2.6D) revealed an 

instability caused by winglets that stimulated tip vortices interaction with the main wake and caused 

complete breakup at earlier downstream distance of 3D, whereas the straight-cut tip didn’t show any tip 

vortices interaction till 3.5D. Finally, considering applying winglets to models used in a wind farm, 

winglets caused earlier and faster tip vortex breakup, the point that enhanced the recovery of the mean 

wake kinetic energy, which means more potential power extraction out of a downstream turbine.   

Ostovan and Uzol [25] did also a pure experimental work to investigate the effect of installing 

winglets and some wing extensions on the performance of two identical and interacting horizontal axis 

wind turbines. The attached the winglets and the wing extensions to the upstream turbine to see how this 

impacts the Cp of the upstream turbine, downstream turbine, and the two turbines combination. They 

found the for the upstream turbine, the baseline design (without any tip devices) produced the lowest 

power. Attaching winglets produced 2.6% more power than the baseline design, while attaching the wing 

extensions produced 17.1% more power than the baseline design. On the other hand, the downstream 

turbine produced the highest power when the upstream turbine had no tip devices. Attaching the winglets 

to the upstream turbine caused the downstream one to generate 4.1% less power, while attaching the wing 

extensions to the upstream turbine resulted in generating 15.7% less power out of the downstream one. 

Regarding the overall power of the two turbines combination, it increases by 1.1% when winglets were 
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installed to the upstream turbine, while it increases by 9.6% when wing extensions were installed to the 

upstream turbine. 

2.3.1.3 Testing different tubercle designs 

Regarding tubercles, Ibrahim et al. [26] used the typical airfoil for entry level wind turbines, 

NACA 4412, to generate three blade configurations, straight, leading-edge slots and trailing-edge 

tubercles. Three models 60 cm rotor diameter each were tested at the University of Wisconsin-Milwaukee 

wind tunnel at a range of low wind speeds (4.1 to 5.15 m/s), to investigate the effect of the two addition 

to the straight blades on Cp. They found that the slotted leading-edge design gave the highest range of Cp 

(0.3 to 0.44), then the straight design with a Cp ranging from 0.2 to 0.4, while the trailing-edge tubercles 

gave the lowest range of Cp (0.08 to 0.18)   

Kumar et al. [27] performed a numerical study to investigate the effect of adding leading-edge 

tubercles to the basic wind turbine model using NACA 4412 airfoil. It is wanted to investigate the effect 

of adding tubercles on the velocity at which stall occurs. It was found that the tubercles retarded the stall 

occurrence up to 15 m/s.  

Abate et al. [28] studied the effect of 20 different tubercles configurations on the power production 

of the basic NREL phase VI wind turbine rotor. They found that a significant power improvement was 

achieved for the high wind speed cases (tubercles showed a 25% power increase at 20 m/s), while the 

opposite trend was obtained at lower wind speeds (tubercles showed a 45% less power at 10 m/s). The 

reason behind the previous finding is that the flow around tubercles was characterized by counter-rotating 

vortices generation, which counteracts the spanwise flow, resulting in a stall strength reduction. 

A study that included the effect of leading-edge slots, tubercles and winglets on the straight design 

power production was done by Amano el al. [29]. They used a hot wire anemometer to perform velocity 
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measurements in the wake of model wind turbine with straight blade generated using NACA 4412 airfoil. 

Then, they used the experimental data for a numerical model validation. Slots, winglets and tubercles were 

tested numerically only, to investigate the effect of those modifications on power generation of the straight 

design. At a wind speed of 9 m/s for both experiment and simulations, the slotted design gave 19.3% 

higher power than the straight design, then the winglet design produced a 2.5% higher power than the 

straight design, while the tubercle design produced 76.8% less than the straight design.  

Huang et al. [30] performed an experimental study to investigate the effect of applying leading 

edge protuberances (tubercles) on the performance of both static 3D airfoil and a three-bladed HAWT 

model. Four protuberant models were created to be applied on the leading edge of the baseline static 

airfoil, with an amplitude equals 1.5% and 8.5% of the chord length, and a wavelength equals 15% and 

6.5% of the chord length. To fix Re, the lower amplitude protuberances were tested at 9.5 m/s, while the 

higher amplitude protuberances were tested at 10.5 m/s, whereas the AoA was changed from -10 to 40. 

They found that the protuberance wavelength had a minor effect on the lift coefficients of those with 

smaller amplitudes. However, wavelength had a major effect on those protuberances with larger 

amplitudes. Regarding the rotor models, they applied four sinusoidal protuberance configurations to the 

leading edge of the baseline rotor. The four configurations come from combining two amplitudes (4% and 

12% of the chord length) to two wavelengths (40.4% and 14.5% of the chord). All resultant rotors were 

tested at wind speeds of 6, 8 and 10 m/s, while the TSR increased from 1 to 8 at each wind speed. All 

protuberances configurations didn’t improve Cp, except for the smaller- amplitude, larger- wavelength 

configuration that generated more power than the baseline rotor only at wind speed of 6 m/s. 

Zhang and Wu [31]  used RANS simulations to investigate the effect of adding sinusoidal waves 

(tubercles) to the leading edge of a rotor blade on the shaft torque of a wind turbine. They proposed five 
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different configurations of tubercles with wavelengths equal 17%, 25% and 42% of the root chord, and 

wave heights (half amplitudes of sine wave) equal 1.25%, 2.5% and 3.75% of the root chord. They found 

that for design condition (wind speed is less than 12 m/s), blade with leading-edge tubercles is unfavorable, 

since an early boundary-layer separation occurs due to the geometric disturbances of the leading-edge 

tubercles, hence shaft-torque decreased for the five cases. On contrast, for off-design conditions (wind 

speeds higher than 15 m/s), shaft-torque increased significantly, particularly for the cases with high 

wavelength and wave height (for instance, at 15 m/s, the shaft-torque is 85% higher than the torque of the 

straight blade). 

2.3.2 Turbine and wind farm performance optimization 

Jackson and Amano [32] carried out a comprehensive study which included experimental and CFD 

analyses of the wake dynamics behind a small-scale HAWT. The wind tunnel at UWM was used to 

perform single, double and triple testing at 6.6 m/s wind speed. Hotwire anemometry was used to measure 

the axial and vertical velocity components. Furthermore, high-speed camera imaging was done to provide 

only a qualitative description for the blade-generated vortices evolution and the wake turbulence structure. 

Regarding CFD, they used the Reynold Stress Model (RSM) with a fully-discretized rotor, the 

issue that raised the computational cost, but the UWM High-Performance Computing (HPC) cluster made 

the mission simpler. They implemented the steady state Moving Reference Frame (MRF) model hence 

used its results as an initial condition for the unsteady Rigid Body Motion simulation. Finally, the 

experimental results were in a good agreement to the experimental data. 

They concluded their work with that the fully-discretized rotor RSM simulations were more 

accurate than the actuator disc RANS based simulations, the issue that would help wind turbine and wind 



30 

 

farm designers for well understanding of wake regions hence build wind farms with less blade vibrations 

and higher efficiency. 

Ma et al. [33] used ANSYS Fluent software to perform coarse-resolution CFD simulations using 

two different techniques; the first technique was the unsteady Delayed-Detached-Eddy Simulation 

(DDES) with SA as a turbulence model, while the second technique was the steady Reynolds-Averaged 

Navier-Stokes (RANS) with the SST k-ω turbulence model. The purpose of these simulations was the 

performance of a real 5.8-kW HAWT in the form of power coefficient (Cp) comparison at several TSRs. 

They compared the experimental values of Cp at several TSRs to their predicted counterparts by both 

turbulence models. They recommended the use of the DDES technique for most of engineering and 

industrial wind turbine applications due to its reliability, regardless of the more significant computational 

effort required. 

Choi et al. [34] used the commercial multi-purpose CFD solver ANSYS CFX to build a full wind 

farm model which contained two HAWTs with full-scale dimensions; each turbine provided 2 MW output 

power. They carried out a steady-state analysis of the problem using the RANS approach with the SST k-

ω model. The separation distance between the two turbines was increased from one case study to another; 

hence, the power output of the downstream turbine increased significantly, which meant an increase in the 

wind farm annual energy production. 

In the light of the importance of testing different airfoils and blade profiles [12-18], and the 

importance of winglets [19-25] and tubercles [26-31] for HAWTs power output improvement, in addition 

to the efforts done to optimize a wind farm power generation [32-34], this work decided to conduct 

experimental studies to understand the wake of a HAWT. Moreover, use a number of newly tested airfoils, 

and to implement the state-of-art modifications, to optimize power production of residential-scale wind 

turbines. 
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Chapter 3 : Experimental Study of the Wake Regions in 

Wind Farms 

This chapter scans the details the wake region that evolves behind a single wind turbine model by 

focusing on three parameters: average axial wind velocity component, velocity deficit and total turbulence 

intensity. The testing was done at mainstream velocity, U∞, of 5 m/s, the u and v velocity components 

were captured by x-probe dual-sensor hot wire anemometer. A detailed description of the experimental 

setup is presented including the wind tunnel, the model wind turbine, the traverse system, the hot wire 

probe, the hot wire anemometer, and the hot wire calibrator. 

A huge amount of point data was obtained then processed by a Matlab script to plot the desired 

contours through the successive transverse sections along the entire length of test section. By monitoring 

the previously mentioned flow parameters, the regions of low velocity and high turbulence can be avoided 

while the location of the subsequent wind turbine is selected. The estimation of the distance at which the 

inlet flow field will restore its original characteristics after being blended through the rotor blades is very 

important as this is the distance that should separate two successive turbines in an inline configuration 

wind farm to guarantee the optimum performance and to extract the maximum power out of the subsequent 

array of turbines.    

3.1 Experimental Setup 

3.1.1 Wind Tunnel at UWM 

The wind tunnel at UWM Lab. has hexagonal shaped cells at inlet section to reduce large scale 

turbulence. The first section is the contraction section which has an inlet area of about 9.3 m2 and a 

contraction ratio of 6.2. Then, the test section comes with dimensions of 1.2m x 1.2m x 2.43m, and cross-
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section area of 1.4 m2. It has polycarbonate walls to provide a smooth surface hence eliminate the 

boundary layer effect as much as possible. The final section is the diffuser section which has an expansion 

ratio of 2.25. This section ends up with six blades suction fan, which is of 1.83 m rotor diameter attached 

to 25.4 kW motor controlled by a variable frequency drive (VFD) to obtain different wind speeds through 

the test section. The wind tunnel with its three sections is shown in Figure 3-1.  

 

Figure 3-1: UWM wind tunnel sections 

 

3.1.2 Model Wind Turbine at UWM Lab. 

The design of the model used in this work is demonstrated in Figure 3-2 .It is a small scale 3-

blades model of 20.3 cm rotor diameter made from ABS plastic. Its tower is made from 12.7 mm diameter 

steel rod with hub height of 30.5 cm. In addition, it has a base in the form of steel plate with dimensions 

of 30.5 cm x 30.5 cm x 6.4 mm, to guarantee fixing the model in its place when the blowing wind speed 

is high. 
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The three-blade model, shown in Figure 3-3, was used to create the blades on a 3-D rapid 

prototyping machine. The turbine blade cross section was built according to NACA 4424 profile drawn 

in Figure 3-4. The reason why NACA 4424 profile was selected is that its design offered a thicker blade 

profile relative to the chord length to improve the strength and prevent the blades from breaking during 

testing. 

 

Figure 3-2: Model wind turbine design 

 

 

Figure 3-3: Design of rotor blades 
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Figure 3-4: NACA4424 blade profile 

3.1.3 Traverse System 

Inside the wind tunnel test section, a 3-axis traverse system is mounted on the top panel. Stepper 

motors are attached to each arm to allow the hot wire probe to be positioned accurately upon command. 

The stepper motors were driven by a Velmex VXM controller which is connected to the data acquisition 

card DAQ PC. The Velmex VXM controller is mounted on the top surface of the upper wall of the test 

section, which is shown in Figure 3-5.   

 

Figure 3-5: Velmex VXM stepping motors controllers 
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3.1.4 Hot Wire Probe 

The Dantec Model 55P61 miniature wire probe, shown in Figure 3-6, is used in this work for 

velocity measurement. It is a dual sensor, cross-wire (e.g. X-wire) type probe designed to measure u and 

v components of the velocity vector. The probe wires are aligned such that they are in the same plane of 

the mean flow, with the sensors plane parallel to probe axis. 

 

The 55P61 has two platinum-plated tungsten, 5 mm diameter, wires welded to the probe at 45o to 

each other and can measure velocity components within a ± 45o cone. The range of velocity that can be 

measured by the probe is from 0.05 m/s to 500 m/s. [35] 

 

Figure 3-6: Hot wire probe [35] 
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3.1.5 Hot Wire Anemometry 

Two Dantec 54T30 Miniature Constant Temperature Anemometers (CTA’s) are used. They can 

provide a 0-5 V analog output voltage based on the characteristics of the probe. The offset voltage on each 

wire was approximately 1.3 V at zero velocity. [36] 

3.1.5.1 Hot wire overheat adjustment 

Setting the desired wire operating temperature is critical for calibration and velocity 

measurements. The wire temperature setting is determined based on the probe manufacturer’s 

recommendations to prevent the wire from burning out while maintaining optimum sensitivity to velocity 

changes. If the wire temperature is set too high, the wires could burn out prematurely. Setting the wire 

temperature too low could result in a loss of sensitivity for turbulence measurements. Failure to account 

for differences in temperature between calibration and experimentation can lead to significant error in the 

measurements.  

The wire operating temperature is set through a process called overheat adjustment where the 

decade resistance is calculated from values of the wire temperature coefficient of resistance (TCR), sensor 

resistance, sensor lead resistance, support resistance, flow temperature, and desired operating wire 

temperature. All wire temperatures were set to 242oC based on the manufacturer’s recommendation. All 

the previous parameters are included in MS Excel spreadsheet provided by Dantec. In case of dual sensor 

probe, each wire has to be adjusted individually. Figure 3-7 and Figure 3-8 show a couple of screenshots 

representing the overheat adjustment of each wire. The outcome of the spreadsheet is how to adjust the 

dip switches inside each CTA.  
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Figure 3-7: Overheat adjustment spreadsheet for wire1. 

 

 

Figure 3-8: Overheat adjustment spreadsheet for wire2. 
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3.1.5.2 Hot wire calibration 

A Model 54H10 Hot-Wire Calibrator from Dantec Dynamics [37] was used to provide a uniform 

free jet to the hot-wire probe. The calibration velocity was based on isentropic relations and known 

geometry of an internal, low turbulence, nozzle. Figure 3-9 contains five parts that represent the entire 

equipment used for hot wire calibration process. Part 1 denotes the 54H10 calibrator with a 2-axis rotation 

probe support holder for measurements at different yaw angles, which is represented by part 5. The 54H10 

was modified, according to Dantec’s instructions, to use in continuous mode where the differential 

pressure across the exit nozzle could be adjusted to vary the calibration velocity. Part 2 indicates the Fluke 

Model 922 Airflow Meter/Micro manometer which was used to measure the differential pressure across 

the internal nozzle of the hot-wire calibrator. The micro manometer has a published 4000 Pascal (Pa) 

differential pressure range with 1 Pa resolution and ± 1% of reading +1 Pa accuracy. The Airflow 

Meter/Micro manometer was purchased as a kit that also included a 30.5 cm long pitot tube for air velocity 

measurement. With the pitot tube attached to the micro manometer, the air velocity measurement range 

was published as 1-80 m/s with 0.001 m/s resolution and 2.5% of reading accuracy.  
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Figure 3-9: Equipment used for hot wire calibration 

The 54H10 has an internal thermistor to measure the air temperature within the calibrator. The 

resistance of the thermistor was measured using a Fluke Model 87 Multimeter, which is demonstrated by 

part 3. The multimeter has a published accuracy of 0.05%+2  in the range of resistances of the thermistor. 

Barometric pressure (nozzle exit pressure) was measured using a Conex Electro Systems Model JDB1 

digital barometer, shown as part 4. The JDB1 barometer has an accuracy of ±0.05 inHg and a resolution 

of 0.01 inHg. Figure 3-10 depicts the entire calibration setup while it is inside the wind tunnel test section 

to emulate the circumstances of the actual measurements.  
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Figure 3-10: In-situ calibration of hot wire anemometer 

Dantec provided an Excel spreadsheet to use with the 54H10 calibrator where the calibration 

velocity is determined from user input for the barometric pressure, thermistor resistance, nozzle 

differential pressure, and measured wire voltages at various differential pressure settings. The spreadsheet 

calculates the coefficients of a 4th order polynomial curve fit for converting wire voltage to velocity. 

However, to reduce the time required for calibration, we used a LabVIEW instrument was created by 

Jackson [38] to read the hot wire voltages with user input for the thermistor resistance, nozzle differential 

pressure, barometric pressure, and ambient temperature. The data was stored in a text file with each 

measurement appended to the file. A MATLAB script was developed to read the table of calibration data 

and compute the calibration velocity based on acquired average wire voltages and user input for 

barometric pressure, thermistor resistance, nozzle differential pressure and ambient temperature. Figure 

3-11 depicts a sample of the generated calibration curves.  
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Figure 3-11: Sample of obtained calibration curves 

 

3.2 Equations of the studied parameters 

A statistical analysis of the velocity yielded quantities used to assess turbulence in the flow. The equations 

listed below consider the axial velocity to be a discrete time series composed of a mean, 𝑈̅, and a 

fluctuating component, u’. 

 

𝑢 = 𝑈̅ + 𝑢′                                                                   (1) 

 

A similar equation can be written for the vertical component, v. 
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𝑣 = 𝑉̅ + 𝑣′                                                                   (2) 

Mean velocities are determined from 

𝑈̅ =  
1

𝑁
∑ 𝑈𝑖

𝑁

1

                                                             (3) 

𝑉̅ =  
1

𝑁
∑ 𝑉𝑖

𝑁

1

                                                              (4) 

 

The root mean square (RMS) velocities of the fluctuating component are defined as 

𝑢′𝑟𝑚𝑠 =  √ 1

𝑁−1
∑ (𝑈𝑖−𝑈̅)2𝑁

1                                             (5)     

 

𝑣′𝑟𝑚𝑠 =  √ 1

𝑁−1
∑ (𝑉𝑖−𝑉̅)2𝑁

1                                               (6) 

 

The turbulent intensity, which indicates the fraction of the total energy of the flow that resides in the 

turbulent regime, can be estimated as relative turbulence intensity and total turbulence intensity. The 

relative turbulent intensity for each velocity component is 

𝐼𝑢 = 100 ×
𝑢′𝑟𝑚𝑠

𝑈̅
                                                           (7)   

𝐼𝑣 = 100 ×
𝑣′𝑟𝑚𝑠

𝑉̅
                                                            (8)   

 

 

and the total turbulence intensity is computed from 
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𝐼𝑇 = 100 × √
1
2 (𝑢′

𝑟𝑚𝑠
2 + 𝑣′

𝑟𝑚𝑠
2)

𝑈̅2 + 𝑉̅2
                              (9) 

Finally, velocity deficit can be calculated from the following equation, 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝐷𝑒𝑓𝑖𝑐𝑖𝑡 = 1 −
𝑈̅

𝑈∞
                                        (10) 

3.3 Results and discussion 

The entire setup in the test section during the experiment including the traverse system, probe 

holder, dual-sensor probe and the wind turbine model is depicted in Figure 3-12. Meanwhile, Figure 3-13 

shows a description of both the numbers and locations of the trasverse planes array selected to scan the 

details of both near and far wake regions, along with a clarification of coordinate system position. 

 

Figure 3-12: The entire setup in the test section during the experiment 
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Figure 3-13: locations of the transverse planes array. 

It is worth mentioning to define at this stage a term called blockage ratio, which is the ratio of rotor 

swept area to the test section inlet area. In this study, the blockage ratio is 2.25 %, much less than the 

range of 6-7.5% recommended by Howell et al. [39]. The blockage ratio must be less than the range above 

to guarantee a negligible wall effect on the flow. 

The downstream distance between the model turbine and the test section entrance is 0.305 m (1.5 

D). It is safe to put the turbine model at this downstream distance because the distance between the test 

section floor and the lowest position of rotor blade tip is 0.2035 m, which is larger than the boundary layer 

thickness at 0.305 m, which is 5.16 mm only. Hence, the boundary layer effect is away from the turbune 

model. 

The rotor blades speed of rotation was measured using a Monarch Model PLT200 laser tachometer 

mounted on a tripod. The tachometer has an LCD display for a direct reading in RPM. The accuracy of 

the tachometer is listed at 0.01% of reading. The rotor blades rotational speed corresponds to 5.2 m/s free 

stream velocity was found ranging from 1270 to 1280 RPM, which is equivalent to a tip speed ratio of 
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2.6. Generally, the optimum tip speed ratio for wind turbines, which gives the maximum power output, 

ranges from 7 to 8. The tip speed ratio of the current model is less than the optimum value because the 

rotor hub is coupled to small DC motor, which acts as a constant decelerating load. Unfortunately, the 

measurement of the motor output power and control of blade speed was given up because the efficiency 

of the motor is not known and the motor output voltage signal was very noisy and the current too small 

due to the low blade torque. It was fine to continue with this low tip speed ratio because the power 

extraction is not the current work’s focus, but the wake region investigation. 

Figure 3-14 shows the grid details of the measurement planes. Each plane covers a square area of 

11 inches x 11 inches ( i.e., 1.375 D x 1.375 D). The velocity measurements were carried out along 23 Z-

columns by 23 Y-rows with an increment of 0.5 inches in both Z and Y directions to make the grid 

resolution fine enough to capture the changes in velocity and turbulent intensity at every single point of 

the 529 points that form each plane. 

 

Figure 3-14: Grid details of the measurement planes 
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The wake region behind a turbine rotor is characterized by high-frequency eddies. Therefore, the 

velocity measurements were done with high frequency as well, and for a relatively extended period. The 

measurements were taken 10,000 times at each point, the sensor stayed at each point for 10 seconds, 

resulting in a measurement frequency of 1000 Hz. Table 3-1 shows measurement planes downstream 

distance in inches versus multiples of rotor diameter representation to give an impression of how far each 

plane is away from the rotor plane. 

Table 3-1: Planes downstream distance in inches versus multiples of rotor diameter representation 

Plane No. 

 

Downstream distance 

(inches) 

Downstream distance 

 (m) 

Multiples of 

rotor diameter 

1 2 0.0508 ¼ D 

2 4 0.1016 ½ D 

3 6 0.1524 ¾ D 

4 8 0.2032 D 

5 10 0.2540 1 ¼ D 

6 12 0.3048 1 ½ D 

7 14 0.3556 1 ¾ D 

8 16 0.4064 2 D 

9 20 0.5080 2 ½ D 

10 24 0.6096 3 D 

11 28 0.7112 3 ½ D 

12 32 0.8128 4 D 

13 36 0.9144 4 ½ D 

14 40 1.0160 5 D 

15 48 1.2192 6 D 

 

Figure 3-15 shows a scan for average axial velocity 𝑈̅ through nine planes. These planes cover 

the downstream distance between ¼ D and 4 D. Rotor and hub diameters are represented by two red circles 

for clarification. The z and y dimensions of the planes are trimmed to 1.25 rotor diameters for better axes 

representation. 𝑈̅  is determined from Eq. (3). Generally, 𝑈̅ is reduced lower than free stream axial velocity 

U∞ directly behind the rotor as the inlet flow field is blended by the rotating blades. 
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Figure 3-15, in part(a), it is evident that the minimum 𝑈̅ is about 2.8 m/s which is obtained directly 

behind the nacelle, as the nacelle blocks the flow. Average value of 𝑈̅ in the upper half-plane is 5.2 m/s, 

which is the axial free stream velocity, as the effect of the shear layer expansion explained by Crespo [2] 

is negligible directly behind the rotor. This shear layer is formed by the vortex sheets generated by 

different circulation along blades. These vortices leave the blades at its trailing edge, then start rolling up 

and expansion downstream till it converges at a certain downstream distance. The length of this expansion 

region is evaluated by Crespo to be one turbine diameter. The maximum value of 𝑈̅ over this plane is 5.7 

m/s which is reached at the center of the lower-half plane. This value is higher than free stream velocity 

U∞, and is obtained due to the Venturi effect which forces the velocity of fluid particles to accelerate. This 

Venturi effect is caused by the narrow flow area formed between the rotating blades at its lowest position 

and the wind tunnel test section floor, which chokes the streamlines within this particular zone. Figure 

3-15: Average axial velocity of nine planes. (a) plane 1 at downstream distance = ¼ D. (b) plane 2 at 

downstream distance = ½ D. (c) plane 3 at downstream distance = ¾ D. (d) plane 4 at downstream distance 

= D. (e) plane 5 at downstream distance = 1 ¼ D. (f) plane 6 at downstream distance = 1 ½ D. (g) plane 8 

at downstream distance = 2 D. (h) plane 10 at downstream distance = 3 D. (i) plane 12 at downstream 

distance = 4 D. 

Figure 3-15, part (b) shows a scan for average axial velocity 𝑈̅ over plane 2 at downstream 

distance = ½ D. the hub height 𝑈̅ the value behind nacelle starts to jump, reaching about 3 m/s. Average 

value of 𝑈̅ in the upper half-plane again is 5.2 m/s, while its value in the lower half-plane is about 5.3 m/s 

which is still higher than an upper-half plane, but uniform to an extent which means that the Venturi effect 

starts to fade away. 

In parts (c), (d), (e) and (f) of Figure 3-15, as we go further downstream, the rate of hub height 𝑈̅ 

value recovery is relatively high. The reason why the recovery rate is relatively high at that downstream 
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distance is that the increase in shear layer thickness still doesn’t reach the axis of the wake (i.e., the 

thickness of the shear layer doesn’t converge to reach the wake axis yet), which allows the axial velocity 

to recover with a relatively high rate without suppression. An axial velocity of 4 m/s is reached at the hub 

height in part (f) of Figure 3-15.  

In parts (g) and (h) of Figure 3-15, the hub height axial velocity continues its increase almost with 

the same high rate, where an axial velocity of 4.3 m/s is reached at the hub height in part (h). However, in 

part (i), of the same figure, the hub height axial velocity rate of increase becomes lower, where an axial 

velocity of only 4.4 m/s is reached at the hub height. Hence, the axial velocity recovery is suppressed to 

4.4 m/s, and its value fluctuates between 4.3 to 4.4 m/s till the last measurement plane at a downstream 

distance of six rotor diameters. 

The reason why this axial velocity recovery suppression occurs at about 2.5 rotor diameters is that, 

regardless of the shear layer outer diameter expansion, the shear layer thickness increase inward as we go 

downstream till it reaches the wake axis at about 2.5 rotor diameters, so this convergence hinders more 

velocity recovery starting from the aforementioned downstream distance. This finding agrees with 

Crespo’s finding who told in his work that the shear layer convergence occurs between two and five rotor 

diameters. 
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Figure 3-15: Average axial velocity of nine planes. (a) plane 1 at downstream distance = ¼ D. (b) 

plane 2 at downstream distance = ½ D. (c) plane 3 at downstream distance = ¾ D. (d) plane 4 at 

downstream distance = D. (e) plane 5 at downstream distance = 1 ¼ D. (f) plane 6 at downstream 

distance = 1 ½ D. (g) plane 8 at downstream distance = 2 D. (h) plane 10 at downstream distance = 

3 D. (i) plane 12 at downstream distance = 4 D. 
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Figure 3-16 shows a scan for the average vertical velocity 𝑉̅ through the same nine planes which 

cover the downstream distance between ¼ D and 4 D. In all parts of Figure 3-16 the average vertical 

velocity on the right half of the red circle that represents the rotor swept area is negative, while in the left 

half is positive, this is because the rotor blades are rotating counter clock wise when the rotor is observed 

from the back side. So, fluid particles in the right half are forced to move downward (negative vertical 

velocity), while the other particles in the left half are forced to move upward (positive velocity value). As 

we go downstream, both right and left rotation-affected areas to expand, but the rotation effect itself erodes 

due to turbulence diffusion and interaction with the free stream.  

As defined in Eq. (10), velocity deficit is a way to monitor the reduction that happens to the axial wind 

velocity after mainstream momentum transfer to the rotor. A positive value of velocity deficit means that 

average axial velocity 𝑈̅ is less than main stream velocity U∞. A negative value of velocity deficit means 

that 𝑈̅  is larger than U∞.Error! Reference source not found. 
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Figure 3-16: Average vertical velocity of nine planes. (a) plane 1 at downstream distance = ¼ D. 

(b) plane 2 at downstream distance = ½ D. (c) plane 3 at downstream distance = ¾ D. (d) plane 4 at 

downstream distance = D. (e) plane 5 at downstream distance = 1 ¼ D. (f) plane 6 at downstream 

distance = 1 ½ D. (g) plane 8 at downstream distance = 2 D. (h) plane 10 at downstream distance = 

3 D. (i) plane 12 at downstream distance = 4 D 
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In Figure 3-17, it is desired to show images of the velocity deficit as measurement planes go 

downstream, covering the same downstream distance that extends from ¼ D to 4 D. Parts from (a) to (f) 

of this figure comprises the first 1 ½ D, where the drastic velocity deficit change occurs. The hub height 

deficit decreases from 0.6 in part (a) to 0.2 in part (f). Parts (g) to (h) cover the downstream distance from 

2 D to 4 D, where the hub height deficit comes to an almost stable condition. The hub height velocity 

deficit decreases from 0.2 in part (g) to 0.1 in part (i). 

Figure 3-18 shows the total turbulent intensity through the same selected nine transverse planes 

extending from ¼ D to 4 D. Total turbulence intensity is computed from Eq. (9). In part (a) of this figure, 

the total turbulence intensity has a value of zero everywhere in the plane outside the rotor swept area, as 

the shear layer expansion effect is still negligible at this downstream distance. Then, its value ranges from 

10% to 15% within the rotor swept area. Moreover, its maximum value is around 45% which is reached 

directly behind the nacelle. Finally, the turbulence caused by the tower justifies the reason for the relatively 

high turbulent intensity region ranges from 25% to 35% just behind it. It is worth mentioning that the 

gradual expansion of the cylindrical shear layer diameter expansion is well-represented through parts (a) 

to (f) of the figure. Most of the expansion is obtained at 1.5 rotor diameters, then the rate of expansion is 

significantly decelerated.  

Parts (g), (h) and (i) of Figure 3-18 shows a scan for the turbulence intensity through planes 8 to 

12 in the far wake region. These planes cover the downstream distance between 2 D and 4 D. The scale 

upper limit is set to 25% instead of 45%, particularly for the far wake region planes, to increase the ability 

of colors contrast to represent the turbulence intensity difference through a single plane well. As we go 

downstream, the turbulence caused by nacelle vanishes gradually. In part (g) (plane 8), the hub height 

turbulence intensity significantly erodes till it reaches about 8%, and it continues declining till it reaches 



53 

 

5% in part (i) (plane 12). Moreover, the parts of this figure emphasize the decelerated expansion rate of 

the shear layer and shows the eccentricity of the wake towards the bottom-left. 
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Figure 3-17: Velocity deficit of nine planes. (a) plane 1 at downstream distance = ¼ D. (b) plane 2 

at downstream distance = ½ D. (c) plane 3 at downstream distance = ¾ D. (d) plane 4 at 

downstream distance = D. (e) plane 5 at downstream distance = 1 ¼ D. (f) plane 6 at downstream 

distance = 1 ½ D. (g) plane 8 at downstream distance = 2 D. (h) plane 10 at downstream distance = 

3 D. (i) plane 12 at downstream distance = 4 D. 
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Figure 3-18: Turbulence intensity of nine planes. (a) plane 1 at downstream distance = ¼ D. (b) 

plane 2 at downstream distance = ½ D. (c) plane 3 at downstream distance = ¾ D. (d) plane 4 at 

downstream distance = D. (e) plane 5 at downstream distance = 1 ¼ D. (f) plane 6 at downstream 

distance = 1 ½ D. (g) plane 8 at downstream distance = 2 D. (h) plane 10 at downstream distance = 

3 D. (i) plane 12 at downstream distance = 4 D. 
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A different perspective to look at the behavior of axial velocity recovery that happens behind the 

rotor is to trace the horizontal centerlines axial velocity deficit at different downstream distances along 

the entire length of the test section. This array is represented by Figure 3-19. It is evident that the deficit 

values for all line graphs are symmetric about z/R=0. In addition, the hub height deficit value reaches a 

maximum of 0.65 at a downstream distance of x/D=0.25; then it decays as we go downstream till it reaches 

a minimum of 0.15 at x/D=6. 

An analogous perspective is adopted in Figure 3-20 which depicts the vertical centerlines axial 

velocity deficit at different downstream distances along the entire length of the test section. Although the 

decay behavior is still present, however, the symmetry about y/R=0 is lost because of the turbulence 

caused by the tower and the interaction with the test section bottom side.  

Figure 3-21 represents horizontal centerlines turbulence intensity at normalized different 

downstream distances along the entire test section length. Typically, outside the rotor swept area, the 

turbulence intensity is 0 %. Touching blade tips lead to a significant jump in turbulence intensity 

percentage, the turbulence intensity increases dramatically till it reaches its maximum value along each 

line graph at z/R = 0. It seems that the line graphs are perfectly symmetric about z/R = 0. On the other 

hand, Figure 3-22 represents vertical centerlines turbulence intensity at normalized different downstream 

distances along the entire test section length. Similarly, to the deficit behavior, the symmetry about y/R = 

0 is lost as the effect of tower and nacelle is significant while tracing the vertical centerlines. 
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Figure 3-19: Horizontal centerlines axial velocity deficit at normalized different downstream 

distances 

 

Figure 3-20: Vertical centerlines axial velocity deficit at normalized different downstream 

distances. 
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Figure 3-21: Horizontal centerlines turbulence intensity at normalized different downstream 

distances 

 

 

Figure 3-22: Vertical centerlines turbulence intensity at normalized different downstream 

distances 
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Figure 3-23 represents wake characteristics along the axial direction at hub height for free stream 

velocity of 5.2 m/s. The 𝑈 ̅/𝑈∞ value increases till it maintains an average value of 0.82 along the wake 

centerline from a downstream distance of x/D = 3 to x/D = 6, which represents the length limit of the test 

section. It is known that the turbine power output is directly proportional to the wind velocity. So, the 

obtained 0.82 velocity recovery corresponds only 0.55 of the power that would be generated if the axial 

velocity recovery was 1. 

 

 

Figure 3-23: Wake characteristics along the axial direction at hub height for free stream velocity 

of 5.2 m/s. 

3.4 Conclusions 

Through this investigation, the following conclusions emerged: 

▪ The data obtained from this work is an excellent base to validate computational fluid dynamics 

(CFD) models by comparing the CFD results to these experimental outcomes. 
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▪ This work can be considered as a strong pillar to support projects like wind farm layout design, 

site evaluation, and power output prediction. 

▪ The investigation on the wake region characteristics provided by this study, can experimentally, 

strengthen our grasp of blade-formed vortices shedding downstream of a single wind turbine, the 

behavior of the resultant shear layer expansion, and its thickness increase till it reaches the wake 

axis, particularly for low inflow wind speed (5.2 m/s) 

▪ Finally, sites with low wind speeds do not enhance the axial velocity recovery, in contrast, it has 

slower velocity recovery compared to sites with higher wind speeds. Therefore, while selecting 

the distance between two successive wind turbines in an inline configuration wind farm, for low 

inflow wind speed (5.2 m/s), six-rotor diameters are very short to obtain an appropriate velocity 

recovery, since it does not exceed 82 %. 
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Chapter 4 : Comparative Study of the Inline 

Configuration Wind Farm 

Studies that serve projects like wind farm design layout and power generation optimization are of 

critical importance because the global installed wind energy capacity by the end of 2018 exceeded 591 

GW and expected to soar to reach 700 GW by the end of 2020. The previous expectation is based on an 

increasing percentage of installed capacity ranging from 9.6% to 17.1% in the past five years. [5] 

Therefore this chapter provides an in-depth analysis of the flow around the rotor and in the wake of a 

single Horizontal Axis Wind Turbine (HAWT) model at different free stream velocities and Tip Speed 

Ratios (TSRs). Moreover, it extracts some recommendations that might be beneficial for large scale 

projects such as wind farm layout design and power output prediction. For this purpose, a modeling and 

experimental testing of a wind tunnel test section, including a single wind turbine model inside were 

created and validated against present experimental data of the same model. The Large Eddy Simulation 

(LES) was used as a numerical approach to model the Navier-Stokes equations. The computational domain 

was divided into two areas: rotational and stationary. The unsteady Rigid Body Motion (RBM) model was 

adopted to represent the rotor rotation accurately. 

4. 1 Numerical Simulations 

4.1.1 Validation Model 

For this work, the commercial software STAR CCM+ was used to build a 3D model, including the 

turbine model inside the wind tunnel test section. The length of the wind tunnel test section is about 12D. 

Therefore, an upstream distance of 1.5D and a downstream distance of 10.5D were left as spacing to do 

the experiment and build the numerical model used for validation. The inlet section was set to be velocity 
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inlet with 5.2 m/s as incoming wind speed. The exit section was configured to be a pressure outlet. While 

the top, bottom, and both sides were set to be walls. 

The computational domain of this model is divided into two sub-domains: (a) the cylindrical 

rotating sub-domain surrounding the rotor which is represented by the unsteady RBM model and (b) the 

rectangular stationary sub-domain that describes the flow through the rest of the test section. In Figure 

4-1 (a), the rotating sub-domain is represented by the circle that bounds the rotor, which is characterized 

by the fine meshing that can capture the extreme velocity and pressure gradients caused by rotor blades. 

The rectangle outside the previously mentioned circle represents the stationary sub-domain, which is 

characterized by its less fine meshing. In Figure 4-1 (b), there is a volumetric control in the form of cuboid 

which enables setting the mesh inside the wake region to a finer size than the rest of mesh domain outside, 

since the wake region is the part of the computational domain which is more essential to focus. Moreover, 

prism layers are of high importance to be able to simulate the viscous sublayer well and to predict the 

change in velocity near the solid boundaries accurately.  

Therefore, Figure 4-2 highlights the 12 prism layers that were generated to enclose all this model's 

solid boundaries, including tower, nacelle, and blades. The red square at the top-right corner of the figure 

represents a blade cross-section at its mid-span length. A higher-resolution grid was generated at blade 

leading edge since it is the locus where the blade-generated vortices detach and go downstream forming 

the wake cylindrical shear layer [40]. 
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Figure 4-1: Computational domain (a) transverse sectional plane at 1.5D (b) longitudinal vertical 

sectional plane at wake centerline. 

 

Figure 4-2: Prism layers around solid boundaries. 

 

Although the unstructured mesh takes longer convergence time, the polyhedral unstructured mesh 

was embraced in this work for both rotating and stationary sub-domains. That is because the eddies, 

separation and wake regions around blades, tower, and a nacelle, as well as vortices shedding behind the 

rotor, are expected to be more accurate and well represented. It is worth mentioning that the cell base size 
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for the stationary sub-domain is 0.0425 m, while it is 0.0275 m for the rotational sub-domain, it is intended 

to be finer to be able to capture the abrupt changes in velocity, pressure, turbulence, and shear stresses 

caused by the rotor blades. 

LES deals with the different-scale eddies using two techniques. For large-scale eddies, they are 

solved by Navier-Stokes equations. For small-scale eddies, they are shaped by the Wall-Adapting-Local-

Eddy viscosity (WALE) Sub-Grid Scale (SGS) model.  WALE outperforms the Smagorinsky SGS in 

formulating the turbulent eddy viscosity and the accurate scaling near the wall without damping effects 

[41].  Regarding the unsteady conditions, the total simulation time is 0.54 seconds, which represents 12 

rotor revolutions, with a time step of 0.12 milliseconds.   

4.1.2 Model Assessment & Grid Independency Check 

Four different grid counts were used to discretize this model domain. A comparison between the 

numerical axial velocity values and its experimental counterparts was held along central horizontal line 

probes at different downstream distances. Table 4-1 shows a comparison of the average error percentage 

which was investigated for each grid count.  

Table 4-1: Axial velocity error percentage at different grid counts. 

 

Case No. Grid Count (Millions) Average Error % at x/D=0.25 Average Error % at x/D=0.5 

1 2.8 7.82 8.46 

2 4.7 7.51 8.26 

3 6.5 4.77 5.03 

4 7.8 4.72 4.79 
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Figure 4-3 plots a graphical axial velocity comparison between the experimental and numerically-

obtained values from different cell counts at x/D= 0.25. Figure 4-4 plots the same comparison but for 

x/D= 0.5. Although for both line probes, the error percentage decreases as the cell count increases, 

however, the simulations of the current work will adopt grid size 3 to compromise between the results 

accuracy and the simulation time cost. It is worth mentioning that each simulation of the present work was 

completed in 3 days, using the UWM computation clusters with 320 cores. 

 

Figure 4-3: Axial velocity comparison at different cell counts, where x/D=0.25 
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Figure 4-4: Axial velocity comparison at different cell counts, where x/D=0.5 

 

Compromising between the minimized error and the total computational time was the main 

criterion in the independence test.  While the change in the error between the different grid sizes 

significantly diminished between the grid size 3 and 4 (0.05% and 0.24% respectively), the time 

consumption was 1.5 times. Additional to such test, an assessment for the time-averaged y+ on the turbine 

blades was checked to be found in the viscous sublayer zone (y+ < 5) as shown in Figure 4-5. Finally, 

and though using unconditionally-stable implicit time marching, the convective Courant number was 

below 5 (seen in Figure 4-6) as recommended to keep excellent stability for the LES computation. 
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Figure 4-5: Mean of wall Y+ over the upstream surface of rotor blades 

 

 

Figure 4-6: Mean of Convective Courant Number over a longitudinal plane at the centerline of the 

domain. 

 

Large Eddy Simulation (LES) is used as the turbulence model to be able to deal successfully with 

the various scale eddies resulting from the rotor blades and its interactions with the surrounding flow. The 

x 

y 
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advantage of LES is that it can deal with both large-scale and small-scale eddies. It can compute the large-

scale eddies directly, and models only the sub-grid scale motions. [42] 

Since it is an incompressible flow, the segregated flow model is used with the SIMPLE-type 

algorithm for pressure-velocity coupling. Moreover, the transient rigid body motion was used to model 

the rotor since it considers the periodic interactions of the rotating blades with the nacelle, tower, and even 

the wake. Although it is time-consuming but more accurate than steady-state approximations. For highly 

skewed cells at rotating interfaces, second-order upwind spatial discretization is used with LES since it 

reduces the spectral magnitudes at higher frequencies.  

In the meantime, the discretization error in the LES, like any other numerical method, is a function 

of the grid size. Finer resolutions in the space and time help in achieving better accuracy to the real case 

data; especially with modeling the Kolmogorov scale eddies.  

4.1.3 Case Studies 

In this work, it is desired to shed light on the effect of two factors on the wake region length and 

power generation of a single wind turbine model. These two factors are: 

▪ The variation of free stream velocity, while the Tip Speed Ratio (TSR) is kept constant. 

▪ The variation of TSR, while the free stream velocity is kept constant. 

Three different free stream velocities were adopted in the CFD simulations; 7, 10 and 13 m/s, to 

consider the entire range from low wind speed to high wind speed. Simulations with stream velocities 

more than 13 m/s are avoided since the HAWTs starts to stall at 15 m/s, then lose power. At every single 

velocity, four different TSR values were simulated 2.5, 4, 5.5, and 7, since it is desired to capture the TSR 

at which the power production is optimized. The domain downstream distance is extended to 17D, instead 



69 

 

of 10.5D in case of validation model, so that the complete axial velocity recovery distance would be 

contained within the extension for high wind speeds. 

4.2 Results 

4.2.1. The effect of TSR variation (free stream velocity is constant) 

4.2.1.1 Low wind speed (free stream velocity = 7 m/s) 

Figure 4-7 represents the axial velocity decay downstream of the turbine model through a 

longitudinal sectional plane cutting through the entire length of the simulation domain at the wake 

centerline. This decay is caused by the streamlines blending due to interaction with the rotating blades. 

The common condition among the four cases enclosed in this figure is that the free stream velocity is 7 

m/s, but the TSR is increased from one case to the next. Part (a) represents the case of TSR=2.5, where 

the complete axial velocity recovery occurs at a downstream distance of 14.5 rotor diameters (14.5 D). 

The complete velocity recovery is retarded because of the poor mixing between the wake region and 

surrounding environment, since the rotational speed, hence TSR, is still relatively low. In part (b), the 

TSR is increased to 4, then the interaction between the turbine wake and the surrounding environment is 

enhanced, resulting in a shorter downstream distance of 9.5 rotor diameters (9.5 D) to reach complete 

velocity recovery. Similarly, in part (c), the downstream distance of complete velocity recovery is 

shortened more when the TSR is increased to 5.5 to be 7.5 D. In part (d) a complete velocity recovery is 

reached at 6.5 D. 
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Figure 4-7: Longitudinal section for axial velocity Vx (m/s) for free stream velocity of 7 m/s, (a) 

TSR=2.5, (b) TSR=4, (c) TSR=5.5, TSR= 7 
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Figure 4-8 shows a graphical comparison of the hub height axial velocity recovery, which is 

defined as the ratio of the hub height axial velocity to the free stream velocity, for different TSRs while 

the free stream velocity is kept constant at 7 m/s. It is evident that as the TSR is increased, the complete 

velocity recovery is attained earlier. In addition to that, the graph indicates another finding, the rate of 

velocity recovery is enhanced as the TSR is increased. For example, the 80% velocity recovery is obtained 

at 7.5 D for TSR=2.5, while the same velocity recovery is obtained at 7 D for TSR=4, in the meantime, 

the same velocity recovery is obtained at 5.5 D for TSR=5.5. Finally, it is obtained at 2.5 D for TSR=7. 

 

Figure 4-8: Hub height axial velocity recovery with free stream velocity of 7 m/s for different 

TSRs. 

If it is wanted to highlight the close details of the wake region within the first three rotor diameters 

downstream of the rotor, Figure 4-9 is the best scene to investigate these details. The wake details in case 

of free stream velocity of 7 m/s with TSR=4 are shown in such figure. In the upstream region of the 

rotating blades and tower, the velocity is decelerated to 6 m/s, while the air particles are forced to a 

complete stop at the hub nose. Furthermore, the fluid particles adjacent to the pressure side of the blades 
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is decelerated to 1 m/s, but the flow at the blade tip is accelerated to 9 m/s. Moreover, there is a 

recirculation zone directly downstream of the tower, where the velocity is -2 m/s (reversed direction). All 

of these velocity variances are considered while calculating the vibrational loads affecting the rotor and 

tower. 

 

 

Figure 4-9: Wake region close details for free stream velocity of 7 m/s with TSR=4. 

Finally, the lowest axial velocity is obtained directly behind the nacelle, and the width of the 

generated shear layer doesn’t show a remarkable expansion, neither in the near wake region represented 

in this figure nor in the far wake region represented in part (b) of Figure 4-7. 

4.2.1.2 Medium wind speed (free stream velocity = 10 m/s) 

Figure 4-10 represents the axial velocity decay downstream of the turbine model through a 

longitudinal sectional plane. The common free stream velocity among the four cases enclosed in this figure 

is 10 m/s, which is the only difference from what is provided in Figure 4-7. Fortunately, the distance of 

complete velocity recovery at different TSRs is identical for both free stream velocities (7 & 10 m/s). 

There is just one shift in case of TSR=7; the complete velocity recovery is obtained at 6.5D for 7 m/s, 

while obtained at 6.2D for 10 m/s. 
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Figure 4-10: Longitudinal section for axial velocity Vx (m/s) for free stream velocity of 10 m/s, (a) 

TSR=2.5, (b) TSR=4, (c) TSR=5.5, TSR= 7. 
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Figure 4-11 presents identical trends to what is presented in Figure 4-8, in terms of earlier velocity 

recovery for higher TSR. Even the rates of velocity recovery are almost similar to the rates of the 7 m/s 

case. 

 

Figure 4-11: Hub height axial velocity recovery with free stream velocity of 10 m/s for different 

TSRs 

Figure 4-12 shows the wake region close details for free stream velocity of 10 m/s with TSR=4. 

It provides similar features to what is obtained in Figure 4-9. We still have a decelerated flow upstream 

of the rotor, stagnation point at the hub nose, accelerated flow at the blade tip, and a recirculation zone 

behind the tower.   
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Figure 4-12: Wake region close details for free stream velocity of 10 m/s with TSR=4. 

 

4.2.1.3 High wind speed (free stream velocity = 13 m/s) 

Figure 4-13 represents the axial velocity decay downstream of the turbine model through a 

longitudinal sectional plane with a free stream velocity of 13 m/s. The distance at which the complete 

velocity recovery is accomplished with TSR increase is identical to the two previous cases (7 & 10 m/s). 
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Figure 4-13: Longitudinal section for axial velocity Vx (m/s) for free stream velocity of 13 m/s, (a) 

TSR=2.5, (b) TSR=4, (c) TSR=5.5, TSR= 7. 

 

 

Figure 4-14 indicates earlier complete velocity recovery with the increased TSR. Generally, the 

velocity recovery rate is increased as the TSR is increased, but with little differences from the cases of 7 

& 10 m/s. For example, the 80% velocity recovery for TSR=2.5 is attained at 9D, while it was 7.5D for 7 

&10 m/s. Another example, the 80% velocity recovery for TSR=4 is attained at 7.5D, while it was 7D for 

7 &10 m/s. 
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Figure 4-14: Hub height axial velocity recovery with free stream velocity of 13 m/s for different 

TSRs 

The general flow features provided by Figure 4-15 for 13 m/s free stream velocity are so similar 

to the two previous two cases (7 & 10 m/s), except for little differences; the decelerated flow region 

upstream of the rotor is larger, the recirculation downstream of the tower is suppressed, and the volume 

of the wake affected by the nacelle extends further downstream through the turbine wake. 

 

 
Figure 4-15: Wake region close details for free stream velocity of 13 m/s with TSR=4 

 

Figure 4-16 provides a qualitative description of the axial velocity change captured on four 

transverse planes at different downstream distances within the first rotor diameter of the wake. The free 
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stream velocity is 13 m/s with TSR=4. Part (a), where x/D=0, the planes cut through the rotor blades, it 

shows that the flow is decelerated upstream of the tower and blades to 11 m/s, particularly at the root of 

the blades where the velocity is 7 m/s. Part (b) is at x/D=0.25, it shows how the wake starts to evolve 

downstream of the rotor and tower. The velocity behind the tower is decreased to 10 m/s, while the flow 

behind the nacelle is more decelerated to 7 m/s. For parts (c) and (d), where x/D equals 0.5 and 1 

respectively, flow features are similar to (a), besides, the core of the wake starts to meander to the right.   

 

 
 

Figure 4-16: Axial velocity change captured on four transverse planes at different downstream 

distances; (a) x/D=0, (b) x/D=0.25, (c) x/D=0.5 and (d) x/D=1. 

 

4.2.2 The effect of free-stream velocity variation (TSR is constant) 

Figure 4-17 and Figure 4-18 are created to examine this factor, so the two figures show a graphical 

comparison of the hub height axial velocity recovery of the three different free stream velocities (7, 10 

and 13 m/s), while the TSR is constant and equal to 4 and 5 respectively. It is found that whatever the free 

stream velocity is, the TSR dictates the distance of complete velocity recovery. Furthermore, the rates of 

velocity recovery increase are almost the same for constant TSR. 
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Figure 4-17: Hub height axial velocity recovery of the three different free stream velocities (7, 10 

and 13 m/s), while the TSR is constant and equal to 4. 

 

Figure 4-18: Hub height axial velocity recovery of the three different free stream velocities (7, 10 

and 13 m/s), while the TSR is constant and equal to 5.5. 

4.2.3 The effect of TSR variation on power production 

Table 4-2 highlights the most important findings of the current chapter. For fixed free stream, 

increasing the TSR increases the numerically predicted power production, hence the Power Coefficient 

(Cp), to an optimum value then the power falls. For instance, the free stream velocity of 13 m/s generates 

33.4 W power for TSR=2.5. the generated power jumps to an optimum of 87 W at TSR=4. Then the power 

falls again to 50 W at TSR=5.5. Finally, it becomes –33 W at the TSR=7. The negative power means that 
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the turbine can’t respond to this high TSR, it no longer produces power at this high rotation, it needs some 

power from an external source to rotate at this high TSR. Therefore, it is an impossible case. It is obvious 

that the TSR range of 4 to 5.5 is the optimum TSR for all free stream velocities. 

Table 4-2: Calculated CFD power output (W) and its corresponding power coefficient for each 

case study 

TSR 7 m/s 10 m/s 13 m/s 

P(W) Cp P(W) Cp P(W) Cp 

2.5 3.8 0.06 13.7 0.08 33.4 0.09 

4 12 0.2 38.2 0.22 87 0.23 

5.5 6 0.1 20 0.11 50 0.13 

7 -9 -0.15 -18 -0.1 -33 -0.08 

 

For running at constant TSR, the generated power slightly increases, hence the Cp, as the free 

stream velocity increases. For example, the TSR=4 generates 12 W power (Cp=0.2) for 7 m/s as free 

stream velocity, while it generates 38.2 W power (Cp=0.22) for 10 m/s as a free stream velocity. Finally, 

the power is 87 W (Cp=0.23) for 13 m/s as a free stream velocity. The reason why the current work’s 

optimum TSR, hence optimum Cp, is less than the optimum TSR for modern turbines is the limitation of 

the blade design. The NACA 4424 profile was selected, regardless of its poor power generation, because 

it offered a thicker blade profile relative to the chord length to improve the strength and prevent the blades 

from breaking during experimental testing. 
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4.3 Conclusions 

For fixed free stream velocity (whatever its low or medium or high wind speed), increasing the 

TSR (between 4 and 5.5 for this particular blade design) reduces the distance of complete velocity 

recovery, hence the separation distance between two turbines in a wind farm, while both the generated 

power and associated Cp increases to a maximum value (0.2 to 0.23) then falls. 

For fixed TSR, increasing the free stream velocity almost does not affect the distance of complete 

velocity recovery (the separation distance), but the generated power increases significantly (transition to 

medium wind speed generates 3.25 times the power generated by low wind speed, in addition, transition 

to high wind speed generates 2.5 times the power generated by medium wind speed) 

For fixed TSR, increasing the free stream velocity results in an increase for the associated Cp 

(transition from a wind speed value to a higher one leads to 5 to 15% increase in Cp).  
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Chapter 5 : Study of Aerodynamic Performance and 

Power Output for Residential-Scale Wind Turbines 

 This chapter presents the rotor blade airfoil analysis of residential-scale wind turbines. On this 

track, four new airfoils (GOE 447, GOE 446, NACA 6412, and NACA 64(3)-618) characterized by their 

high lift-to-drag ratios (161.3, 148.7, 142.7, and 136.3, respectively). Those new airfoils are used to 

generate an entire 7 m long blades for three-bladed rotor horizontal axis wind turbine models tested 

numerically at low, medium, and rated wind speeds of 7.5, 10 and 12.5 m/s, respectively, with a design 

tip speed ratio of 7. The criterion to judge each model’s performance is power output. Thus, the blades of 

the model which produce the highest power are selected to undergo a tip modification (winglet) and 

leading-edge modification (tubercles), seeking power improvement. It is found that the GOE 447 airfoil 

outperformed the other three airfoils at all tested wind speeds. Thus, it is opted for adding winglets and 

tubercles. At 12.5 m/s, winglet design produced 5% more power, while tubercles produced 5.5% more 

power than the GOE 447 baseline design. Furthermore, the computational domain is divided into two 

regions; rotating (the disc that encloses the rotor) and stationary (the rest of the flow domain). Meanwhile, 

the numerical model is validated against the experimental velocity measurements. Since Reynolds-

Averaged Navier-Stokes (RANS) with k-ω SST turbulence model can capture the laminar-to-turbulent 

boundary layer transition, it is used in the 18 simulations of the current work. However, Large Eddy 

Simulation (LES) can deal successfully with the various scale eddies resulting from the rotor blades and 

its interactions with the surrounding flow. Thus, the LES was used in the six simulations done at the rated 

wind speed. LES power output calculation is 7.9% to 11.9% higher than the RANS power output 

calculation.  
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5.1 Model Geometry 

Figure 5-1, Figure 5-2, Figure 5-3 and Figure 5-4 show the profiles of the three airfoils opted 

for the current study. The reason behind this selection is the high lift-to-drag ratios that characterize the 

three air foils. The data obtained from NACA Airfoil Tool website is concluded in Table 5-1. It is worth 

mentioning that airfoil NACA 6412 will be my focused part in the results analysis, since it is wanted to 

provide three individual reports. 

 

 

 

Figure 5-2: Airfoil GOE 446. 

 

 

Figure 5-3: Airfoil NACA 6412. 

 

Figure 5-1: Airfoil GOE 447 
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Figure 5-4: Airfoil NACA 64(3)618 

 

Table 5-1: Aerodynamic properties of the opted airfoils. 

Airfoil type 
Lift-to-drag 

ratio 
α 

Max. thickness 

(% of chord) 

Max. camber (% of 

chord) 

NACA 64(3)618 136.3 6.5° 17.9 3.3 

NACA 6412 142.7 5.75° 12 6 

GOE 446 148.7 2.75° 12.9 6.3 

GOE 447 161.3 4° 12.7 8 

 

As shown in Table 5-2, Table 5-3, and Table 5-4, the following set of equations [43] are used to 

generate the design parameters of each blade at various cross section along the span from root to tip: 

 𝑟 = (
𝑟

𝑅
) 𝑅 (1) 

 𝜆𝑟 = (
𝑟

𝑅
)𝜆 (2) 

 ɸ = 𝑡𝑎𝑛−1(2/(3 𝜆𝑟)) (3) 

 𝐶 = 8𝜋𝑟 𝑠𝑖𝑛 ɸ/(3𝐵𝐶𝑙  𝜆𝑟) (4) 

 𝜃𝑝 =  ɸ − α (5) 

 𝜃𝑇 = 𝜃𝑝 − 𝜃𝑝,𝑜 (6) 

Where  
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R : Rotor radius at tip section 

r : Rotor radius at any section along the blade span 

λ : Rotor Tip speed ratio 

λr : Speed ratio at any section along the blade span 

ɸ : Angle of relative wind 

C : Chord length 

Cl : Lift coefficient 

B : Number of rotor blades 

θT : Twist angle 

θp : Pitch angle 

θp,o : Pitch angle at the tip 

 

Table 5-2: Geometry parameters of various sections of the blade (GOE 446) 

r/R r(m) λr ɸ(rad) ɸ(deg) θp (deg) θT (deg) C (m) 

1 7 7 0.094951706 5.4403 2.6903 0.0000 0.2648 

0.9 6.3 6.3 0.105427751 6.0406 3.2906 0.6003 0.2939 

0.8 5.6 5.6 0.118489959 6.7890 4.0390 1.3487 0.3301 

0.7 4.9 4.9 0.135224132 7.7478 4.9978 2.3075 0.3765 

0.6 4.2 4.2 0.157416873 9.0193 6.2693 3.5790 0.4378 

0.5 3.5 3.5 0.188221505 10.7843 8.0343 5.3440 0.5225 

0.4 2.8 2.8 0.233743181 13.3925 10.6425 7.9522 0.6468 

0.3 2.1 2.1 0.307397473 17.6126 14.8626 12.1723 0.8450 

0.2 1.4 1.4 0.44441921 25.4633 22.7133 20.0230 1.2006 
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Table 5-3: Geometry parameters of various sections of the blade (NACA 6412) 

r/R r(m) λr ɸ(rad) ɸ(deg) θp (deg) θT (deg) C (m) 

1 7 7 0.094951706 5.4403 -0.3097 0.0000 0.2648 

0.9 6.3 6.3 0.105427751 6.0406 0.2906 0.6003 0.2939 

0.8 5.6 5.6 0.118489959 6.7890 1.0390 1.3487 0.3301 

0.7 4.9 4.9 0.135224132 7.7478 1.9978 2.3075 0.3765 

0.6 4.2 4.2 0.157416873 9.0193 3.2693 3.5790 0.4378 

0.5 3.5 3.5 0.188221505 10.7843 5.0343 5.3440 0.5225 

0.4 2.8 2.8 0.233743181 13.3925 7.6425 7.9522 0.6468 

0.3 2.1 2.1 0.307397473 17.6126 11.8626 12.1723 0.8450 

0.2 1.4 1.4 0.44441921 25.4633 19.7133 20.0230 1.2006 

 

Table 5-4: Geometry parameters of various sections of the blade (NACA 64(3)618) 

r/R r(m) λr ɸ(rad) ɸ(deg) θp (deg) θT (deg) C (m) 

1 7 7 0.094951706 5.4403 -1.0597 0.0000 0.2648 

0.9 6.3 6.3 0.105427751 6.0406 -0.4594 0.6003 0.2939 

0.8 5.6 5.6 0.118489959 6.7890 0.2890 1.3487 0.3301 

0.7 4.9 4.9 0.135224132 7.7478 1.2478 2.3075 0.3765 

0.6 4.2 4.2 0.157416873 9.0193 2.5193 3.5790 0.4378 

0.5 3.5 3.5 0.188221505 10.7843 4.2843 5.3440 0.5225 

0.4 2.8 2.8 0.233743181 13.3925 6.8925 7.9522 0.6468 

0.3 2.1 2.1 0.307397473 17.6126 11.1126 12.1723 0.8450 

0.2 1.4 1.4 0.44441921 25.4633 18.9633 20.0230 1.2006 

 

 

The current wind turbine model geometry was generated using SoildWorks, then exported into 

Star CCM+ to generate mesh and solve the fluid flow of the wake region. The Following simulation 

includes a model of 14 m rotor diameter, with a hub height of 21 m. It is subtracted from the block that 

represents the fluid domain. The fluid block cross section dimensions are 42 m x 42 m while its total 
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length is 310 m. Turbine model is located 30 m downstream of the entrance, while the distance allowed 

downstream of it is 280 m. According to previous research works in this field, the current work’s 9% 

blockage ratio is small enough to avoid the fluid domain’s solid boundary effect. In addition, the 20 rotor 

diameters left behind the rotor to study the wake is reasonable. The current work’s geometry and domain 

are shown in Figure 5-5. 

 

Figure 5-5: Model geometry. 

 

      For the tubercles, it is designed as a sine wave with a constant amplitude of 4.5% of the cord at the 

root section and a constant wavelength of 15.8% of the cord at the root section. This design was inspired 

by the work of Abate et al. [28].  Whereas, for the winglets, its orientation is selected to be downstream 

facing since this is the orientation found to be most effective in power increase [19]. The winglet height 

is designed to be 2.0% of the blade radius (R), while the radius of curvature is designed as 25.0% of the 

winglet height, and the cant angle is 90°. The previous design was tested with different blades by Johansen 

et al. [23] and found to give higher power production. The basic, tubercle, and winglet blades generated 

using the GOE 447 airfoil are shown in Figure 5-6 (a), (b), and (c), respectively. 



88 

 

 

Figure 5-6: Basic, tubercle and winglet blades made with the GOE 447 airfoil. 

 

       To reach the maximum accuracy obtained through validation, the fluid domain of NACA 64(3)618 

model is discretized to 6.5M cells. However, the new airfoils are thinner and more curved (NACA 6412, 

GOE 446, and GOE 447), besides having some designs with winglets and tubercles.  

       For each LES simulation, it took about three days using 200 cores of the University of Wisconsin-

Milwaukee high-performance computational clusters. The time step is set to 6.9×10^-4 seconds, which 

covers only half a degree of rotor rotation. The maximum Courant-Friedrichs-Lewy (CFL) number of 3 

appears at a very low number of cells at the tip of the blade leading edge, as presented in Figure 5-7. 

Although using unconditionally stable implicit time marching, the convective CFL number should be 

below five as recommended to keep excellent stability for the LES computation. [42] 
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Figure 5-7: Convective Courant Number over the blades generated using NACA 64(3)618 airfoil. 

 

       The minimum cell size for the validation CFD model was selected after several trials and errors 

until the 5% error in axial velocity along the line probes was obtained. Then, for the scaled-up CFD model, 

the ratio of the minimum cell size to the chord length and the growth rate is kept equal for both the small 

and scaled models. Moreover, because the new airfoils are thinner and more curved, besides having some 

designs with winglets and tubercles, the minimum cell size in the rotational domain is reduced to 0.02 m 

(cell count inside the rotational domain only is about three million), to capture the vortices generated by 

these small geometrical features accurately. Therefore, the LES simulations have a cell count of about 

nine million. 

      Large-eddy simulation (LES) requires a much finer mesh than that required for standard RANS 

simulations.  If the local grid size is insufficient, the LES subgrid-scale (SGS) model is employed for 

inappropriate length scales, and the results will be inaccurate. Guidelines such as the ratio of turbulence 
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kinetic energy to modeled turbulence kinetic energy are useful to determine if a grid size is appropriate 

for LES simulation or not.    

       Reasonable local cell sizes should be larger than Kolmogorov Length Scale, and less than Taylor 

Micro Scale at the same time, where the Kolmogorov scale represents an expensive over-refinement of 

mesh more appropriate to direct numerical simulation, and values above the Taylor scale indicate an 

inappropriate cell size for the SGS model to contribute substantially. The minimum cell size of the current 

work’ LES simulations is selected according to the Taylor scale, to maintain the results accurately and 

keep the computational cost reasonable at the same time. 

       In LES computations, one of the ways to determine the quality of a coarse mesh and to see how 

well the flow is resolved is by calculating, based on time averaged LES results, the ratio of SGS turbulence 

kinetic energy to total turbulence kinetic energy. The ratio which gives the fraction of turbulence kinetic 

energy in the resolved motions, M, is given as: 

 

M=ksgs/(ksgs+kres)                 (7) 

 

where ksgs is SGS turbulence kinetic energy, and kres is resolved kinetic energy. 

 

  It is worth mentioning that M = 0 corresponds to direct numerical simulation (DNS) and indicates 

that the flow is very well resolved, while M = 1 corresponds to RANS and indicates poor resolution for a 

coarse mesh. It is recommended to get 80% or higher of the large scales resolved for an accurate LES 

simulation. Otherwise, the mesh should be refined. Figure 5-8 shows that the surface average of M over 

the central longitudinal plane is 0.039, which means that 96.1% of the large scales were resolved, and the 

grid size is fine enough. 
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Figure 5-8: Fraction of turbulence kinetic energy in the resolved motions, M, over a central 

longitudinal plane for NACA 64(3)618 LES simulation 

 

5.2 Results         

         In total, 18 simulations were performed for the current chapter; all of them are done at TSR equal to 

7. RANS equations with the k-ω SST turbulence model can capture the laminar-to-turbulent boundary 

layer transition, particularly when combined with fine enough, near-wall prism layer meshing with low 

Y+ value [44], [45]. In addition, the whole aerodynamic performance of wind turbine blades was proven 

to be insignificantly affected by the unsteady behavior of localized vortices [31]. Therefore, RANS 

equations have acceptable accuracy and more time-efficient (compared to LES). Thus, it is used for the 

18 simulations of the current chapter. 

        Moreover, LES is used only in the six simulations done at the rated wind speed (12.5 m/s) to promote 

the RANS results by performing the six simulations using both RANS and LES and showing how close 
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the power outputs are. It was not time-efficient to use LES for the 18 simulations since each LES 

simulation took three days of running on 200 cores, while each RANS simulation took only four to five 

hours. In short, the general aerodynamic performance is found to be very similar using RANS and LES. 

However, LES outperforms RANS in describing the unsteady behavior of localized vortices, that’s why 

LES was opted for performing the six rated wind simulations.       

   A detailed description of the simulations performed, TSR, wind velocity, power output, and power 

coefficient for each model can be found in Table 5-5. For all tested wind speeds, GOE 447 showed the 

best performance in terms of generating high power output, that is why it is selected to implement further 

blade modifications. Tubercles outperform the GOE 447 baseline design and the one with winglets at all 

wind speeds. The power output of the LES simulations is 7.9% to 11.9% higher than the power obtained 

using the k-ω SST model.  

        In the following discussion, pressure distribution around airfoils, axial velocity, and vorticity scenes 

of the LES simulations that were done at rated wind speed (12.5 m/s) are presented. 

        The absolute pressure distribution around both root (r/R=0.2) and tip (r/R=0.9) sections of the blades 

generated using NACA 64(3)618, NACA 6412, and GOE 447, respectively, are shown in Figure 5-9. The 

counterclockwise direction of rotation is evident since, in the six parts of the figure, the high-pressure side 

of the blade is to the left of the airfoils, while the low-pressure side to the right of the airfoils. In addition, 

higher pitch angles at the root are well-demonstrated in parts (a), (c), and (e), while the pitch angle is 

almost zero at blade tip in parts (b), (d), and (f).  

        Moreover, at the root sections, in parts (a), (c), and (e), the average pressure differential between the 

pressure- and suction- sides of the blade is 400, 500, and 550 Pa, respectively. On the other hand, at the 

tip sections, in parts (b), (d), and (f), the average pressure differential between the pressure- and suction- 
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sides of the blade is 2000, 3500, and 4500 Pa, respectively. The increase in pressure differential between 

the pressure- and suction-sides explains why the power output increases from the model with NACA 

643(3)618 to the model with GOE 447. Power output is discussed in detail later (see Table 5-5). 
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Figure 5-9: Absolute pressure distribution around blades at wind speed of 12.5 m/s:(a)Airfoil 

NACA 64(3)618 at r/R=0.2, (b)Airfoil NACA 64(3)618 at r/R=0.9,(c)Airfoil NACA 6412 at 

r/R=0.2, (d)Airfoil NACA 6412 at r/R=0.9,(e) Airfoil GOE 447 at r/R=0.2, (f)Airfoil GOE 447 at 

r/R=0.9  

 

        To investigate the evolution of the wake region, the hub height axial velocity recovery for various 

models at a wind speed of 12.5 m/s is traced in Figure 5-10. All models included in the figure produce a 

wake that reaches 100% velocity recovery at a downstream distance of 7.5D. However, the difference can 

be seen in the level of maximum velocity deficit and the level of velocity fluctuations within each model’s 

wake. Hence, the basic and winglet GOE 447 models are characterized by reaching the highest level of 

velocity deficit (axial velocity drops to 0 m/s at 3.1D). Meanwhile, the NACA 6412 and the tubercle GOE 

447 models have a lower velocity deficit (1.2 m/s at 3.1D and 3.5D, respectively). Finally, the wake of 

the NACA 64(3)618 model reached 3.2 m/s at 2.4D, which is the least hub height velocity deficit among 

the five models shown in the graph. So, thicker and less curved airfoil (NACA 64(3)618) generates less 

and earlier maximum velocity drop than the thinner and more curved airfoils (NACA 6412 and GOE 447).  
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Figure 5-10: Hub height axial velocity recovery for various models at wind speed of 12.5 m/s.  

 

         The absolute axial velocity (Vx) distribution over a horizontal plane cuts through the wake region at 

each model’s hub height is shown in Figure 5-11. For all models, the axial velocity component is 

decelerated ahead of the rotor from the 12.5 m/s incoming wind speed to 9.5 m/s. After that, the wake 

behind the rotor is a stream tube that expands to a specific larger diameter downstream, then contracts 

until dissipates. Therefore, the relative flow area around the wake stream tube is getting narrower as we 

go further downstream. Thus, the axial velocity is higher than the surrounding environment within this 

annulus. Therefore, the stream tube expansion explains the reason behind the emergence of the sub-

envelope region of accelerated flow around the wake. It then follows that momentum transport from the 

rotor weakens, while mixing with the surrounding environment is enhanced. Therefore, the wake region 

disappears at almost 7.5D for all models. 
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          Moreover, also in, the high-velocity spots generated near the blade tip is a good indication of the 

tip-generated vortices. These vortices are shedding and losing strength by going downstream. The strength 

of these tip vortices is relatively low for the NACA 64(3)618 (high-velocity spots are absent), compared 

to the NACA 6412 and the basic GOE 447 models. On the other hand, considering the basic GOE 447 as 

a baseline, the leading-edge tubercles mitigate the strength of the tip vortices, but they do not lose 

coherence and disperse earlier than the baseline design. At the same time, the winglets generate higher 

levels of turbulence and stronger tip-vortices in the near wake. Also, winglets force the tip-vortices layer 

to lose its coherence at a far wake and made the tip vortices sheet to break at an earlier downstream 

distance. That is, tip vortices disperse at 3.4D for the basic GOE 447 design while they disperse at 3.0D 

for the winglet blade model.   
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Figure 5-11: Absolute axial velocity (Vx) distribution over a horizontal plane cuts through the 

wake body at each model’s hub height at wind speed of 12.5 m/s:(a) model with blades generated 

using NACA 64(3)618, (b) model with blades generated using NACA 6412, (c) model with blades 

generated using GOE 447, (d) model with blades generated using GOE 447 with leading-edge 

tubercles, (e) model with blades generated using GOE 447 with downstream-facing winglet 
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        Vorticity is the tendency of a fluid particle to rotate upon itself. Turbulence is rotational, three 

dimensional, and characterized by high levels of fluctuating vorticity. Therefore, vorticity dynamics are 

essential for turbulent flows description [46]. Figure 5-12 shows the vorticity magnitude contours for the 

same five models represented in Figure 5-11. For all models, a core, high vorticity region is generated 

because of the turbulence created by the hub and nacelle (11Hz), this high vorticity flow region loses its 

vorticity strength by mixing with the outer wake flow and expands as we go downstream (3.5Hz). 

Moreover, the wake region is bounded by a circumferential layer characterized by higher vorticity than 

the inside of the wake tube. This high vorticity layer is a good demonstration of the tip-generated vortices.  

        In Figure 5-12 (a) that represents the thicker airfoil NACA 64(3)618, the magnitude of the vorticity 

in the circumferential layer is relatively low (5Hz) compared to the thinner airfoils. In addition, the 

circumferential layer keeps its form until the end of the wake region. Figure 5-12 (b) and (c) represent 

airfoils NACA 6412 and GOE 447, which are thinner and more curved than NACA 64(3)618. The 

vorticity magnitude in the circumferential layers of both airfoils is higher (9 and 10 Hz, respectively), 

which means that both airfoils create more energetic tip vortices than NACA 64(3)618. Besides, the 

circumferential layer starts to lose coherence, tip vortices-breakup takes place, and localized vortices begin 

to exist individually.   

       Figure 5-12 (d) and (e) confirm the fact that considering the basic GOE 447 as a baseline, the leading-

edge tubercles mitigate the strength of the tip vortices (7.5 Hz). In comparison, the winglets generate 

higher levels of turbulence and stronger tip-vortices in the near wake (10.5 Hz). In addition, winglets force 

the tip-vortices layer to lose its coherence at a far wake and made the tip vortices sheet to break at an 

earlier downstream distance. 

       Comparing Figure 5-12(d) that represents GOE 447 with tubercles to Figure 5-12(c) that represents 

the baseline, and by focusing on the vorticity in the region between the nacelle and blade tip, relatively 
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high-intensity streaklines can be noticed with tubercles (2 Hz). At the same time, they do not exist with 

the baseline design (1Hz). This is an indication of the ability of the tubercles to counteract the spanwise 

flow and guiding the flow across the span. This action enhances flow attachment to the blade, reducing 

stall, hence increases the power output. 

         Comparing Figure 5-12(e) that represents GOE 447 with winglets to Figure 5-12 (c) that represents 

the baseline, and by focusing on the vorticity in the region between the nacelle and blade tip, it can be 

noticed that winglets reduce vorticity magnitude behind blade root to 0 Hz and to 0.5 Hz behind blades 

span. At the same time, it is 1Hz in the baseline design. The vorticity reduction associated with the 

winglets indicates the ability of the winglets to reduce the spanwise flow and move the tip vortex away 

from the rotor plane, reducing both downwash and rotor induced drag, hence increasing power output.    
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Figure 5-12: Vorticity magnitude distribution over a horizontal plane cuts through the wake body 

at each model’s hub height at wind speed of 12.5 m/s:(a) model with blades generated using NACA 

64(3)618, (b) model with blades generated using NACA 6412, (c) model with blades generated 

using GOE 447, (d) model with blades generated using GOE 447 with leading-edge tubercles, (e) 

model with blades generated using GOE 447 with downstream-facing winglet. 
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Table 5-5: Power output and associated power coefficient for all simulated models. 

Model TSR 

Wind 

speed  

(m/s) 

Power output (kW) Power coefficient (Cp) 

k-ω SST LES k-ω SST LES 

NACA 64(3)618 7 12.5 47.1 51.8 0.261 0.287 

GOE 446 7 12.5 56.3 60.8 0.312 0.337 

NACA 6412 7 12.5 58.2 64.6 0.323 0.358 

GOE 447 7 12.5 60.3 67.5 0.334 0.374 

GOE 447 (winglet) 7 12.5 63.3 69.6 0.351 0.386 

GOE 447 

(tubercles) 
7 

12.5 

63.6 70.0 0.353 0.388 

NACA 64(3)618 7 10 23.8 - 0.258 - 

GOE 446 7 10 28.6 - 0.310 - 

NACA 6412 7 10 29.3 - 0.317 - 

GOE 447 7 10 30.7 - 0.333 - 

GOE 447 (winglet) 7 10 32.1 - 0.347 - 

GOE 447 

(tubercles) 
7 

10 

32.2 

- 

0.348 

- 

NACA 64(3)618 7 7.5 9.7 - 0.249 - 

GOE 446 7 7.5 11.9 - 0.306 - 

NACA 6412 7 7.5 12.2 - 0.313 - 

GOE 447 7 7.5 12.8 - 0.328 - 

GOE 447 (winglet) 7 7.5 13.3 - 0.342 - 

GOE 447 

(tubercles) 
7 

7.5 

13.3 

- 

0.342 

- 
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5.3 Conclusions 

         Different rotor blade airfoils used to generate a wind turbine blade has a minor effect on the wake 

of each model as long as having the same hub height axial velocity recovery, a small variance in the 

maximum velocity deficit achieved, close rates of axial velocity recovery, and close wake expansions. 

However, the type of airfoil has a significant effect on pressure distributions around the blades, and the 

rate of the tip-vortices generation, hence the airfoil design strongly impacts on power outputs and 

associated power coefficients. 

        Given that TSR is fixed at seven for all simulations of this work, at all wind speeds, thinner and more 

curved airfoils (NACA 6412 and GOE 447) produce more power than thicker and less curved ones (NACA 

64(3)618). 

        GOE 447 outperforms the other three airfoils at all wind speeds. Moreover, adding tubercles and 

winglets to the baseline GOE 447 generates more power. At 12.5 m/s, winglet design produces 5% more 

power, while tubercles produce 5.5% more power than the GOE 447 baseline design. With the wind speed 

of 10 m/s, winglet design provides 4.4% more power, while tubercle blades produce 4.7% more power 

than the GOE 447 baseline design. With the wind speed of 7.5 m/s, both winglet and tubercle blade designs 

generate almost equal power, which is 4.2% higher than the baseline output power. Moreover, at the rated 

wind speed, the LES power output calculation is 7.9% to 11.9% higher than the RANS power output 

calculation. 

        It is interesting for future experimental and numerical work to investigate the effect of different 

winglet configurations (different cant angles and lengths), different tubercles configurations (different 

amplitudes and wavelengths), and a combination of them on the blade aerodynamic performance and 
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power production. In addition, a study of the vortex generators used for aviation technology will be 

interesting too. 

      Numerical limitations restricted the total cell count to a maximum of 9M, the issue that will be handled 

at UWM soon by adding more computational power. This added power can enable increasing the cell 

count so that the minimum cell size gets closer to the Kolmogorov scale. Hence more accurate LES results 

can be obtained. 
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Chapter 6 : Experimental and Numerical Investigation of 

Vortex Generators and Winglets in Horizontal Axis Wind 

Turbine Blade Design 
 

6.1 Introduction 

Energy consumption has increased dramatically over the last decades due to the increase in the 

population. Fossil fuels are the primary energy source in most of the world due to their availability and 

high calorific value. However, there are limiting factors on the fossil fuels leading the world to seeking 

new energy resources that are abundant and can be a reliable substitute for fossil fuels [1]. According to 

Renewables Global Status Report [4], the world still depends on fossil fuel to generate most of its 

electricity (73.8%), while the renewable electricity share is only 26.2%. The largest share of renewable 

electricity goes for hydropower (15.8%), while wind power comes in second place with 5.5% of the total 

global electricity production. Within the last decade, the total installed renewable power capacity has been 

increasing. Solar photovoltaic (PV) panels technology comes as the fastest growing capacity, then the 

wind technology comes in the second place (by the end of 2018, 100 Gigawatts were added as PV, while 

51.3 Gigawatts were added as wind power).  

Because of the integral role wind power plays in shaping the future of the world’s energy, many 

studies integrated wind power with the rest of renewable energy technologies in a single system to achieve 

a net-zero energy model in different applications [47], [48], [49], [50], [51]. Anwar et al. [52] used HOMER 

software to perform feasibility and sensitivity analysis of a system that integrated PV panels, wind, biogas, 

fuel-cell, diesel, and batteries for electrification of rural, off-grid areas. Qandil et al. [53] used the same 

software to investigate the possibility of combining energy efficiency opportunities with a system of 
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renewables (PV, wind, digester gas, and aeration tanks’ microturbines) to achieve a net-zero energy model 

in small size wastewater treatment plants.  

Although vertical-axis wind turbines (VAWTs) have lower efficiency than horizontal-axis 

counterparts, they are receiving a lot of interest from researchers because they can produce electricity in 

any wind direction. Therefore, neither yaw drive nor pitch mechanism is needed [47]. Moreover, VAWTs 

do not need a strong support structure to carry power generation components off the ground. Therefore, 

Laws, et al. [54] have used OpenFOAM to introduce a simple design modification to the blade of a Savonius 

wind turbine. The design modification improved the power efficiency by 10-28%. Hassanzadeh et al. [55] 

tested experimentally four different blade profiles of two-blade Savonius wind turbine under different 

wind speeds to get the maximum power coefficient among all tested cases. Alom and Saha have examined 

newly developed elliptical-bladed Savonius rotor [56].   

On the other hand, horizontal axis wind turbines (HAWTs) are the most commercially used wind 

turbines due to their high efficiency. Therefore, many studies have been performed, experimentally and 

numerically, to improve the performance of both the individual wind turbine and the whole wind farm 

[47].  

Regarding wind farms’ output improvement, Hasan et al. [57] tested the wake region of a small-

scale HAWT inside a wind tunnel using hot-wire anemometry to show axial and vertical velocity 

components, besides turbulence intensity, over many transverse sectional planes along the wake. Then, 

the previous study was expanded to include computational fluid dynamics (CFD) simulations of the same 

turbine model under different operating conditions. By tracking the hub-height axial velocity recovery at 

different wind speeds and tip speed ratios (TSRs), the separation distance between two successive units 

in a wind farm was determined [58]. Moreover, Jackson and Amano [32] investigated, experimentally and 

numerically, the velocity deficit in case of having single, double, and triple wind turbine models in an in-
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line configuration inside a wind tunnel. Choi et al. [34] used the commercial multi-purpose CFD solver 

ANSYS CFX to build a full wind farm model which contained two HAWTs with full-scale dimensions; each 

turbine provided 2 MW output power. They carried out a steady-state analysis of the problem using the 

Reynold Averaged Navier Stokes (RANS) approach with the Shear Stress Transport (SST) k-ω model. 

The separation distance between the two turbines was increased from one case study to another; hence, 

the power output of the downstream turbine increased significantly, which yielded an increase in the wind 

farm annual energy production. 

Regarding individual wind turbines, many researchers utilized various techniques seeking 

optimizing the performance of a wind turbine model. Addamane et al. [59] studied the effect of pitch angle 

on the performance of HAWTs under three wind velocities. They found that increasing the pitch angle 

decreases the thrust. Furthermore, they found that for each velocity, there is a pitch angle that maximizes 

the generated power where the optimum pitch angle tends to increase with wind velocity. At the optimum 

pitch angle, the angle of attack (AoA) is close to stall angle. Muheisen et al. [60] studied the effect of 

equipping the HAWT blades with multi-cross sections with fences. They found that using-multi section 

blades enhances the power coefficient by eight percent for the studied case. Moreover, they found that 

introducing fences to multi-cross section blades enhances the rotor’s performance and stability. Eltayesh 

et al. [61] investigated the solidity effect on the thrust, power and flow field generated from HAWTs. 

They showed that using a 3-bladed rotor maximizes the power coefficient among all studied 

configurations, on the other hand, they yield stronger vortices and flow separation. Besides, Mohammadi 

and Maghrebi [62] investigated reducing boundary layer separation by blowing a different number of air 

jets on the suction side of HAWT blades. They found that the generated torque was doubled compared to 

the baseline blade in the best case. They also proved that the torque increases with the number of blown 

https://www.sciencedirect.com/science/article/pii/S1110016821001381#!
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air jets. Besides, they showed that placing air jets near the blades’ tips enhances the performance more 

than placing them in the middle or inner portions of blades.  

 Since most of the research and development in the field of HAWTs focuses on large, utility-scale 

wind turbines, more attention should be paid to the small wind turbines for residential and urban 

applications. Therefore, Hasan et al. [63] performed a numerical study that investigated the effect of using 

four newly introduced airfoils for blades generation of residential scale turbines. Airfoils are NACA 

64(3)618, GOE 446, NACA 6412, and GOE 447. Since GOE 447 was proven to generate the highest 

power, it was selected to add leading edge tubercles and winglets, which achieved an increase in the power 

output at all tested wind speeds (4.2-5.5% power increase than the GOE 447 baseline design). 

Furthermore, Hays and Treuren [64] focused on utilizing small wind turbines in urban environment. 

Having the turbines working near the end user makes the optimization process not only limited to power 

maximization, but also noise suppression. Therefore, they studied two rotors designed with NREL S823 

and Eppler 216 airfoils. They found that the thinner profile and increased camber of the Eppler 216 

improved the turbine aerodynamic performance, increased power, and reduced the noise significantly. 

Other works adopted winglets as a tip modification to improve the turbine’s aerodynamic 

performance, hence power maximization. Khaled et al. [20] investigated the influences of winglets on 

power and thrust coefficients. Firstly, they investigated the effect of winglet length variation (changed 

from 1% to 7% of the turbine rotor radius), while the cant angle is fixed at 90°, and TSR changed from 

2.5 to 9.6. They found that for all cases, the power maximized at the design TSR of 5 then drops, while 

the thrust coefficient (CT) continued increasing till TSR is 8.4 then started to fall. Secondly, for each 

winglet length, the cant angle changed from 15° to 90°, while the TSR is maintained at its optimum value 

(5). They found that Cp range increased by the increase of winglet length. Moreover, at each length, Cp 

is maximum at a cant angle of 50°, while CT is maximum at 30°. 
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Khalafallah et al. [22] investigated the effects of winglet direction, cant angle, and twist angle for 

two winglet orientations: upstream and downstream directions. For each winglet direction, –2°, 2°, and 

10° twist angles were studied at 20°, 40°, and 60° cant angles, with fixed TSR of 6 in all simulations. They 

concluded that the winglet pointing to the downstream side showed a more increase in power than those 

pointing to the upstream side. They claimed that a general increase of the Cp occurred except for the three 

cases of a cant angle of 60° at which the winglet was on the upstream side. Compared to the baseline 

design mentioned in their literature, maximum increase in Cp of 1.75% was observed where winglet 

pointing to downstream side and has a cant angle of 60° and a twist angle of 2°. 

Muhle et al. [24] performed a pure experimental study that showed the effect of different wingtip 

configurations on the tip vortex formation and interaction in the near wake of a two-bladed model wind 

turbine. They investigated the impact of switching from the straight-cut wing tip to the downstream-facing 

winglet on several parameters. Regarding the mean streamwise velocity, the presence of winglets didn’t 

significantly affect the mean velocity field. Regarding wake expansion, winglets generated a slightly wider 

wake than the straight-cut tip. Regarding the phase-averaged vorticity component, an analysis was done 

between the two downstream distances 2.3D and 2.6D, revealing an instability caused by winglets that 

stimulated tip vortices interaction with the main wake and caused complete breakup at an earlier 

downstream distance of 3D, whereas the straight-cut tip didn’t show any tip vortices interaction till 3.5D. 

Then, considering applying winglets to models used in a wind farm, winglets caused earlier and faster tip 

vortex breakup, the point that enhanced the recovery of the mean wake kinetic energy, which means more 

potential power extraction out of a downstream turbine.   

Ostovan and Uzol [25] also did pure experimental work to investigate the effect of installing 

winglets and some wing extensions on the performance of two identical and interacting HAWTs. They 

attached the winglets and wing extensions to the upstream turbine to see how this impacts the Cp of the 
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upstream, downstream, and the two turbines combination. They found that for the upstream turbine, the 

baseline design (without any tip devices) produced the lowest power. Attaching winglets produced 2.6% 

more power than the baseline design while attaching the wing extensions produced 17.1% more power 

than the baseline design. Besides, the downstream turbine produced the highest power when the upstream 

turbine had no tip devices. Attaching the winglets to the upstream turbine caused the downstream one to 

generate 4.1% less power, while attaching the wing extensions to the upstream turbine resulted in 

generating 15.7% less power out of the downstream one. Regarding the overall power of the two turbines 

combination, it increased by 1.1% when winglets were installed to the upstream turbine, while it increased 

by 9.6% when wing extensions were installed to the upstream turbine. 

Qaissi et al. [65] investigated the effect of integrating a vortex trapping cavity (VTC) in the critical 

region of a highly twisted span blade for 2-D and 3-D models in terms of lift coefficient and torque, 

respectively. Their 2-D case analysis results showed that integrating the VTC enhanced the generated lift 

force with a smaller wake region, while their 3-D case analysis results showed that integrating the VTC 

enhances the generated torque by trapping separated eddies inside the cavity.  

Regarding vortex generators (VGs) which are flow-guiding devices known for their ability to 

increase turbine efficiency and hence annual energy production via energizing the flow around the blade 

root section [66]. VGs are typically attached to the suction side of a turbine blade, where they cause local 

mixing in the boundary layer [67]. The high kinetic energy flow outside the boundary layer is induced to 

mix with the low momentum fluid within the boundary layer. The mixing action promotes both the energy 

and momentum of the fluid within the boundary layer. Consequently, delaying (or preventing) the 

undesired flow separation. [68], [69], [70] 

Early studies were performed to determine the optimum geometry parameters of a VG (chordwise 

location, length, thickness, height, opening, spacing, and the angle a VG makes with the chordwise flow). 
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It was a hot research interest back in the days to determine the optimum values of those parameters that 

can achieve the optimum turbine power improvement [71]. Recently, some other studies shed light on the 

evaluation of utilizing VGs to upgrade power values of both lab-scale [72] and multi-megawatt wind 

turbines [73].  

This work is an extension of a previous work of the principal author [63] that numerically proposed 

the GOE 447 airfoil as an excellent candidate for building turbine blades of residential-scale HAWTs. 

This work aims to investigate two modern blade modifications (VGs and winglets) when added 

individually to a turbine blade and study the cases of combining these two modifications at the same time 

to a single blade. It is desired to determine the effect of the mentioned scenarios on the turbine’s power 

output for such thin and curved airfoils as GOE 447.  

Most of the available research work of HAWTS is focused on either lab-scale (15-60 cm rotor 

diameter) or commercial large-scale (80-130 m rotor diameter). There is a lack of published data on 

residential-scale wind turbines. The current work fills this gap since it is going to be counted on during 

the next 10 years since the current US administration promotes dependence on renewables to cut carbon 

footprint [74]. In the windy Midwest, residential-scale WTs will be a good alternative for the less efficient 

solar panels in the region. 

Earlier blades were built using thin airfoils, but they were susceptible to fracture. That’s why recent 

blades are built using thick airfoils, but it comes with an early separation problem. Nowadays with the 

recent advances in composites manufacturing, thinner blades can be manufactured without the fear of 

fracture [75]. Very rare data are available for thin airfoil blades. All previously published work discusses 

modifications applied to thick airfoils blades. However, it is essential to provide data to study the effect 

of modern blade modifications on thinner airfoils. 
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6.2 Experimental Setup 

The details of the experimental setup are shown in Figure 6-1. Briefly, the wind tunnel at the 

University of Wisconsin-Milwaukee was used to perform velocity measurements at several transverse 

planes in the wake region of a single wind turbine model. The test section has a 1.2m×1.2m×2.4m window. 

The entire tunnel as 3m×3m inlet section with multi-layered honey-combed converging to the test section. 

The total length of the tunnel is 18 m. Its suction fan is equipped with a Variable Frequency Drive (VFD) 

motor to control the incoming wind speed at the test section entrance, which was set to 5.2 m/s for the 

experiment. 

The axial and vertical velocity components were measured at 529 points in each measurement plane 

using a dual sensor, cross-wire type hot wire anemometer (HWA) probe. It has two platinum-plated 

tungsten, 5 micrometers diameter, and wires welded to the probe at 45o to each other. The tested model is 

a small-scale 3-blades model of 20.3 cm rotor diameter made from ABS plastic. Its tower is made from a 

12.7 mm diameter steel rod with a hub height of 30.5 cm. The turbine blade cross-section was built using 

the NACA 4424 airfoil. 

 

Figure 6-1: Experimental setup, (left) UWM wind tunnel, (right) measurement setup inside the test section 
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6.3 Numerical Model Validation 

The validation model mesh details are shown in Figure 6-2. There are two meshing domains: the 

rotating domain for the disc that encloses the rotor (35% of the total number of cells is devoted to 

discretizing the rotational domain) and the stationary domain for the rest of the fluid domain. Figure 6-3 

plots a graphical axial velocity comparison between the experimental and numerically obtained values 

from different cell counts at y/D= 0.25, where the incoming wind speed is 5.2 m/s. Figure 6-4 plots the 

same comparison but for y/D= 0.5. For both line probes, the error percentage decreases as the cell count 

increases. Four different grid counts were used to discretize this model domain. Table 6-1 compares the 

average error percentage, which was investigated for each grid cells count. A cell count of 8.8M is 

considered for the subsequent simulations to obtain a tradeoff between the accuracy of the results (less 

than 5% average error in axial velocity measurements) and the simulation time cost, noting that the 

maximum deviation between 8.8M and 10.2M is about 0.25%  

Meanwhile, there is a cylinder generated around the rotor and a block along the wake centerline to 

increase cell density locally at these regions since they are the critical regions of the fluid flow where 

streamlines are blended; the velocity components change drastically (Figure 6-2). Moreover, local mesh 

at the blade surface and tip is finer than the rest of the rotational domain, since these are the locations 

where velocity gradient is initiated, and wake vortices are evolved. Furthermore, the mesher tessellates all 

the model’s solid boundaries with 12 prism layers for good near-wall representation. Figure 6-5 shows 

the Y+ value over the upstream surface of the rotor blades. The Y+ is equal to one everywhere on the 

surface, except for limited region at blade’s leading edge where Y+ reaches its maximum value of 2.3, 

which is low enough to capture the laminar-to-turbulent transition.  
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In total, 48 simulations were performed for the current work; all of them were done at TSR equal to 

7. RANS equations with the k-ω SST turbulence model can capture the laminar-to-turbulent boundary 

layer transition, particularly when combined fine enough, near-wall prism layer meshing with low Y+ 

value [44], [45]. In addition, the whole aerodynamic performance of wind turbine blades was proven to 

be insignificantly affected by the unsteady behavior of localized vortices [76]. Therefore, RANS equations 

have acceptable accuracy and more time-efficient (compared to LES). Thus, the previous physics were 

used for the 48 simulations of the current work.  

 

Figure 6-2: Mesh details of the computational domain (a) transverse sectional plane cuts through 

rotor blades, (b) longitudinal vertical sectional plane at wake centerline 
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Figure 6-3: Axial velocity comparison at different cell counts, where z/D=0.25, at wind speed of 5.2 

m/s 

 

Figure 6-4: Axial velocity comparison at different cell counts, where z/D=0.5, at wind speed of 5.2 

m/s 
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Figure 6-5: Mean of wall Y+ over the upstream surface of the rotor blades, at a wind speed of 5.2 

m/s 

Table 6-1: Axial velocity error percentages for different grid counts 

 

6.4 Geometry Models 

SolidWorks was used to generate the geometry models for the upcoming CFD work. It is worth 

mentioning that the blade length of all upcoming simulations is 7 m. Figure 6-6 shows very small objects 

on the backside of the blades, the suction side VGs. Figure 6-7 demonstrates the downstream side of the 

rotor highlighting the winglets (tip modifications). In this figure, the reader can notice that the winglets 

point towards the downstream direction.  

Case No. Grid Count (Millions) Average Error % at y/D=0.25 Average Error % at y/D=0.5 

1 5.5 6.86 6.48 

2 7.1 5.72 5.76 

3 8.8 4.55 4.53 

4 10.2 4.51 4.50 
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Figure 6-6: GOE 447 blades with suction-side vortex generators 

 

Figure 6-7: GOE 447 blades with downstream-facing winglets 

6.4.1 Vortex Generators 

Figure 6-8 focuses on a turbine blade suction side leading edge to show the design parameters of 

the VGs. The figure represents Θ, the installation angle on the suction side, which is the angle that a VG 

makes with the chordwise flow direction. The figure also demonstrates S, the spacing between two VGs, 
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H, the VG's height, L, the VG's length, and T, the VG’s thickness. It is worth noting that the proposed 

design parameters are set in the light of previous research work [77], [78], [79]. 

 

Figure 6-8: Vortex generator design parameters 

Table 6-2: Geometry parameters of the vortex generator configurations 

Configuration Θ (degree) H (m) S (m) L (m) T (m) 

VG 1 20 0.026 0.028 0.0154 0.00154 

VG 2 20 0.01 0.028 0.0154 0.00154 

VG 3 16 0.01 0.028 0.0154 0.00154 

 

Table 6-2 shows the dimensions of each geometry parameter used for the three VGs 

configurations. The inlet opening for all configurations is one-third of the spacing. It is worth mentioning 

that these configurations are created as per design considerations of references [79] and [80]. 

Figure 6-9 focuses on the leading-edge section of the suction surface to highlight the details of 

configurations 1 and 2.  
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Figure 6-9: Vortex generators:(left) configuration 1, (right) configuration 2, both at a 10%C 

distance from the leading edge 

 

6.4.2 Winglets 

The orientation of all winglets in this work is selected to be downstream facing since this is the 

orientation found to be most effective in power increase [81]. The winglet height is 2.0% of the blade 

length (R), while the curvature radius is 25.0% of the winglet height, and the cant angle is 90°. Amano et 

al. [47], [48], [49], [50], [51].     reported that the cant angle with 45 degrees with 4% tip-to-span ratio 

gives the best power performance. The previous design was tested with different blades by Johansen et al. 

[82] and found to give higher power production than the basic design. In addition, Khalafallah et al. [22] 

showed that the 60° cant angle design has a promising potential towards power improvement. Therefore, 

it is included in the current work, besides the 30° cant angle design, to investigate the effect of adding a 

wide range of winglet designs on the proposed GOE 447 blade’s aerodynamic performance. The three 

designs of winglets are shown in Figure 6-10. 
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Figure 6-10: Blade with winglet: (left) cant angle 30, (middle) cant angle 60, (right) cant angle 90 

 

6.5 Results 

6.5.1 Vortex Generators Analysis 

When the flow passes the blade, VGs create a pair of contra-rotating vortices, which transport 

momentum from the upper part of the boundary layer to the lower part of the boundary layer thereby 

increasing the mixing closer to the wall. 

It is worth noting that VGs are installed on the suction side downstream of the leading edge at 10% 

of the chord length. Essential perspectives to look at the effect of VGs can be horizontal planes that cut 

through the computational domain longitudinally and cut through the one of the blades in the spanwise 

direction at 10%, 12% and 25% of the chord (see Figure 6-11). It is essential to highlight that wind speed 

is 12.5 m/s blowing in the negative-y direction for all VG analysis results shown in this section. 
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Figure 6-11: Demonstration of the horizontal x-y plane that cuts the blade in the spanwise 

(negative x) direction 
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Figure 6-12: Vz contours along a horizontal plane that cuts a blade in a spanwise direction at 

10%C (across vortex generators: (a) GOE 447 base design, (b) vortex generator configuration 1, 

(c) vortex generator configuration 2, (d) vortex generator configuration 3 

Figure 6-12 shows the Vz contours along a horizontal x-y plane that cuts through VGs. Only a portion 

of the blade with seven VGs is shown. The white bar in the middle of each figure part is the blade’s 

section. It is worth noting that the main relative flow is in the negative z direction (into the paper). On the 

suction side (right hand side of each figure part), Vz takes a negative value, which means the flow moves 

into the paper. This scene is selected since it shows the dominant velocity component of the flow. In 
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Figure 6-12 part (a), where there are no VGs, the average Vz in the vicinity of the suction side is -25 m/s. 

Moreover, for the three VG configurations, two darker spots are seen inside every VG, an excellent 

representation of the pair of contra-vortices described in reference [79]. Furthermore, the size of the 

vortices generated by configurations 2 ( Figure 6-12 (c)) and 3 (Figure 6-12 (d)) is less than configuration 

1 (Figure 6-12(b)) because the height of VG 2 and 3 is less than 1. 

 

 

Figure 6-13: Vz contours along a horizontal plane that cuts a blade in a spanwise direction at 

25%C (downstream of vortex generators: (a) GOE 447 base design, (b) vortex generator 

configuration 1, (c) vortex generator  
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In Figure 6-13, downstream of the VGs themselves, mixing zones are created because of the VGs. 

It is also obvious that VG 2 and 3 (characterized by less heights) produce more homogeneous mixing than 

VG 1. VG 1 tends to create more disturbance in the near-wall flow than VG 2 and 3. In contrast, VG 2 

and 3 make effective and less chaotic mixing. 

Again, Figure 6-14 emphasizes the ability of VGs to generate a pair of vortices in the middle of 

each adjacent VGs. This can be demonstrated by the high vorticity spots introduced by VGs. Also, it can 

be noticed that the size of high vorticity spots caused by VG 1 is slightly amplified than VG 2 and 3. 

Figure 6-15 demonstrates the position of the plane that cuts through the blade at 30% of the span 

measured from the hub. The plane is used to show the contours of the z-component of the velocity, velocity 

magnitude, absolute pressure, and turbulent viscosity around the root section of the blade in the subsequent 

few figures in Figs. 16 thru 19 since the tip and root sections are where the off-design conditions are likely 

to happen.  
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Figure 6-14: Vorticity contours along a horizontal plane that cuts a blade in a spanwise direction 

at 25%C (downstream of vortex generators: (a) GOE 447 base design, (b) vortex generator 

configuration 1, (c) vortex generator configuration 2, (d) vortex generator configuration 3 
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Figure 6-15: Demonstration of the plane that cuts the blade at 30% of the span 

 

In Figure 6-16, it is essential to point out that the blade rotates to the left (positive z-direction). The 

dominant relative flow is in the negative z direction. It is obvious that the disturbance that VG 1 introduces 

is intense so that it causes earlier separation when compared to the baseline design and the other two VG 

configurations. VG 1 forces the negative z velocity component that generates lift away from the airfoil 

suction side earlier than VG 2 and 3. In contrast, VG 2 and 3 guide the flow to stay attached slightly longer 

than the baseline design, and VG 1, leads to power improvement. Moreover, at the trailing edge, Vz 

contours show that VG 1 creates a more intense region of reversed flow, in positive z direction, than the 

baseline and the other two VG configurations. Therefore, VG 1 causes power deterioration. 
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Figure 6-16: Contours of Vz around the root section at 30% of the span: (a) GOE 447 baseline 

design, (b) VG configuration 1, (c) VG configuration 2, (d) VG configuration 3 
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Figure 6-17 Contours of velocity magnitude around the root section at 30% of the span: (a) GOE 

447 baseline design, (b) VG configuration 1, (c) VG configuration 2, (d) VG configuration 3 

 

       Figure 6-17 confirms what have been discovered from the previous figure. It is obvious that VG 2 

and 3 support boundary layer attachment for a longer distance than VG 1 and the baseline design. That is 

why VG configurations 2 and 3 sustains lift, hence increases power. 
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Figure 6-18: Contours of pressure distribution around the root section at 30% of the span: (a) 

GOE 447 baseline design, (b) VG configuration 1, (c) VG configuration 2, (d) VG configuration 3 

 

       The most important thing about Figure 6-18 is that it demonstrates the ability of VGs to generate 

high negative pressure (-1100 Pa) on the suction side of the blade than the baseline design does (only -

900 Pa). Although VG 1 generates high negative pressure, the area on the suction side of VG 1 blade that 

keeps this low pressure is less than VG 2 and 3. Subsequently, VG 2 and 3 can generate higher net pressure 

than VG 1 and the baseline design, ensuring that higher lift is generated too. 
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Figure 6-19: Contours of turbulent viscosity around the root section at 30% of the span: (a) GOE 

447 baseline design, (b) VG configuration 1, (c) VG configuration 2, (d) VG configuration 3 

 VGs generate eddies on the suction side of the blade that rolls over towards the trailing edge. The 

turbulent viscosity is a measure of the turbulent transfer of energy due to the mentioned moving eddies. 

In Figure 6-19, the excited mixing that VGs cause is well-demonstrated for all VG configurations. The 

amount of turbulence induced by VG 2 and 3 is just enough to energize the near boundary layer flow, 

hence sustaining flow attachment and increasing power. Besides, VG 1 over-energizes the flow and causes 

the separation to happen earlier. Thus, losing lift and decreasing power. 
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6.5.2 Winglets Analysis 

Due to pressure differences on both sides of an operating turbine blade, an outward spanwise flow 

on the pressure side and an inward spanwise flow on the suction side are incurred through the tip. This 

action creates tip vortex flow that leads to lift force reduction and an additional induced drag. The main 

purpose of a winglet is to reduce the spanwise flow by diffusing and moving the tip vortex away from the 

rotor plane towards the wake’s downstream direction. Hence reducing the induced drag on the blade. 

Consequently, increasing the aerodynamic efficiency of the turbine. 

 

Figure 6-20: Representation of the tilted plane that cuts through one of the blades 

 

For the purpose of understanding the aerodynamic performance of winglet blades, the tilted plane 

shown in Figure 6-20 has been selected so that it cuts one of the blades at the tip.  
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Figure 6-21: Absolute axial velocity contours over a tilted plane that cuts through one of the 

blades: (a) GOE 447 base design, (b) 30 degrees cant angle winglet, (c) 60 degrees cant angle 

winglet, (d) 90 degrees cant angle winglet 

Figure 6-21 compares the three winglet designs to the GOE 447 baseline design by portraying the 

absolute axial velocity contours. It is evident that the axial velocity component is maximized at the blade 

tip in the four parts of the figure. However, the axial velocity maximization is greater for the winglet 

blades than in the GOE447, baseline blade. Axial velocity maximization is the greatest at the tip of the 

60o cant angle winglet (part c) which indicates the ability of this design to better diverge the tip vortex 

flow, hence allowing higher turbine efficiency. Moreover, by comparing the axial velocity value in the 

near wake of the rotational plane, it can be seen that the axial velocity in the near wake of the baseline 

design drops from 12.5 m/s to only 10 m/s. However, the axial velocity in the near wake of the winglet 

rotors decreases to 6 m/s. The greater the axial velocity drop, the increased rotor ability to extract more 
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momentum from the upstream flow. The previous phenomenon is a good indication of the ability of 

winglets to reduce induced drag, increasing lift force, hence increasing the turbine efficiency. 

Table 6-3 shows a conclusive comparison that highlights the entire outcomes of the current work. 

It is obvious that all winglet configurations lead to higher power production, particularly the 60o cant angle 

design. Moreover, VGs configuration (1) seems to induce earlier separation rather than enhancing flow 

attachment. However, VGs configurations (2) and (3) successfully promote flow attachment at all wind 

speeds, hence leading to higher power production.  

Table 6-3: Quantitative comparison of power output and power coefficient values for the GOE 447 

baseline blade and all proposed blades 

Model 

7.5 m/s 12.5 m/s 17.5 m/s 

P Cp 
Improvement 

% 
P Cp 

Improvement 

% 
P Cp 

Improvement 

% 

447 baseline design 12.75 0.3274  60.30 0.3344  163.43 0.3303  

VG_1 11.87 0.3048 -6.9 57.71 0.3201 -4.3 162.23 0.3279 -0.7 

VG_2 13.69 0.3517 7.4 65.39 0.3627 8.4 182.23 0.3683 11.5 

VG_3 14.05 0.3608 10.2 66.87 0.3709 10.9 185.67 0.3753 13.6 

winglet 30 13.66 0.3508 7.1 64.45 0.3575 6.9 178.56 0.3609 9.3 

winglet 60 13.78 0.3539 8.1 65.09 0.3610 7.9 180.65 0.3651 10.5 

winglet 90 13.33 0.3423 4.6 63.34 0.3513 5.0 179.56 0.3629 9.9 

VG_2& winglet 30 11.93 0.3064 -6.4 56.36 0.3126 -6.5 156.1 0.3155 -4.5 

VG_2& winglet 60 11.96 0.3071 -6.2 56.7 0.3145 -6.0 157.19 0.3177 -3.8 

VG_2& winglet 90 11.68 0.2999 -8.4 55.24 0.3064 -8.4 153.57 0.3104 -6.0 

VG_3& winglet 30 12.01 0.3084 -5.8 56.56 0.3137 -6.2 157.18 0.3177 -3.8 

VG_3& winglet 60 12.09 0.3105 -5.2 57.25 0.3175 -5.1 159.13 0.3216 -2.6 

VG_3& winglet 90 11.73 0.3012 -8.0 55.33 0.3069 -8.2 154.27 0.3118 -5.6 
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6.5.3 Combining VGs and winglet on a single blade 

(a) 

 

(b) 
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(c) 

 

 

Figure 6-22: Absolute axial velocity contours over a tilted plane that cuts through one of the blades: (a) Blade with  

VG 3 only, (b) Blade with winglet 60 only, (c) Blade with both VG 3 & winglet 60. 

 

Table 6-3 shows that combining the most efficient VGs designs with the most efficient winglet 

design leads to, unexpectedly, a reduction in power production (an average of 6.5% less power than the 

baseline design at rated wind speed). The reason behind this observation can be explain by Figure 6-22. 

In part (a), VG 3 is used alone, where there is no significant change on the tip axial velocity compared to 

the baseline design. However, VG allows the axial velocity to drop from 12.5 m/s upstream to 5 m/s 

downstream. This great axial velocity drop reflects the ability of VGs to enhance flow attachment to the 
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blade and allows for greater momentum extraction by the rotor, hence higher power than the baseline. In 

part (b), where the 60-degrees winglet is used alone, the change in the tip axial flow is significant. The 

significant increase in tip flow velocity reflects the ability of winglets to diverging tip vortex away from 

the rotor, thus reducing induced drag, allowing great momentum extraction and higher power than the 

baseline. In contrast, part (c) shows the blade when both techniques combined. VGs dictates the chordwise 

flow structure. Consequently, the spanwise floe structure is affected. Hence, the winglet function is 

impaired by the change in the spanwise flow structure. So, the generated power is less than the baseline. 

It can be noticed in part (c) that the axial flow velocity behind rotor only drop to 10 m/s. 

 

6.6 Conclusions 

Geometry parameters of VGs play a key role in dictating the chordwise flow, hence the turbine's 

flow attachment and power production. Less height and incidence angle of a VG lead to more effective 

mixing on the suction side. Consequently, greater acceleration for the flow attached to the suction side 

results in higher net pressure, generating more lift and higher power production. Average power 

improvement increases with the increase in wind speed. The power improvement percentage increases 

with the increase of wind speed. For instance, maximum power improvement is achieved with the VG 3 

attached to the baseline blade. 13.6% power improvement is achieved at 17.5 m/s wind speed. 

Winglets’ ability to diverge tip vortex flow away from the rotor to reduce induced drag and produce 

more power are excellent for thin airfoils. The power improvement drops slightly at the rated wind speed 

for winglets with cant angles 30o and 60o However, power improvement gets higher as the wind speed 

goes higher for the wiglet with 90o cant angle. For instance, a maximum of 10.5% power improvement is 

achieved by the 60o winglet blade at 17.5 m/s wind speed. 
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Chapter 7 : Experimental and Numerical Investigation of 

Tubercles and Winglets in Horizontal Axis Wind Turbine 

Blade Design 

7.1 Introduction 

Due to their availability and high calorific value, fossil fuels are still the main energy sources in 

most of the world to facing the soaring energy demand [1]. According to Renewables Global Status Report 

[4], the world still depends on fossil fuel to generate most of its electricity (73.8%), while the renewable 

electricity share is only 26.2%. The worldwide endeavors towards decarbonization are in the transition 

from incentivizing buildings and facilities that participate in cutting carbon footprint to applying fines on 

the entities that exceeds certain amount of CO2 emissions. Many countries around the world are working 

hard to prevent fossil fuel infrastructure build-out. Other countries passed local laws, decarbonization 

legislation and executive orders to transform to low-carbon economy. Even some countries announced 

banning the sales of internal combustion engines vehicles and replacing that with electric vehicles by 

2035. [83], [84], [85], [86] 

Wind turbine technology plays a key role in shaping the future of world’s energy [47], [48], [49], 

[50], [51]. Therefore, many studies incorporated wind power with other renewables to achieve a net zero 

energy model in different applications. Anwar et al. [52] used HOMER software to perform feasibility and 

sensitivity analysis of a system that integrated PV panels, wind, biogas, fuel-cell, diesel, and batteries for 

electrification of rural, off-grid areas. Qandil et al. [53] used the same software to investigate the 

possibility of combining the application of energy efficiency opportunities with a system of renewables 

(PV, wind, digester gas, and aeration tanks’ microturbines) to achieve a net zero energy model in small 

size wastewater treatment plants.  
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Since vertical axis wind turbines (VAWTs) can produce electricity in any wind direction, and they 

need neither yaw drive nor pitch mechanism, they catch the attention of many researchers [87], [88], [89], 

despite having lower efficiency than horizontal axis counterparts. Moreover, VAWTs do not need strong 

support structure to carry power generation components off the ground. So, Laws et al. [54] have used 

OPENFOAM to introduce, numerically, a simple design modification to the blade of a Savonius wind turbine. 

The design modification improved the power efficiency by 10-28%. Hassanzadeh et al. [55] tested 

experimentally four different blade profiles of two-blade Savonius wind turbine under different wind 

speeds to get the maximum power coefficient among all tested cases. Alom and Saha have examined the 

aerodynamic drag and lift characteristics of a newly developed elliptical-bladed Savonius rotor [56].   

On the other hand, horizontal axis wind turbines (HAWTs) are the most commercially used wind 

turbines due to their high efficiency. That is why HAWTs performance has been investigated by many 

researchers to improve the performance of both the individual wind turbine, and the whole wind farm. 

[90] 

Regarding individual wind turbines, many researchers utilized various techniques seeking 

optimizing the performance of a wind turbine model. Eltayesh et al. [61] investigated the solidity influence 

on the thrust, power and flow field generated from HAWTs. They showed that using a 3-bladed rotor 

maximizes the power coefficient among all studied configurations, on the other hand, they yield stronger 

vortices and flow separation. Additionally, Muheisen et al. [60] studied the effect of equipping the HAWT 

blades with multi-cross sections with fences. They found that using-multi section blades enhances the 

power coefficient by eight percent for the studied case. Moreover, they found that introducing fences to 

multi-cross section blades enhances the rotor’s performance and stability. Besides, Mohammadi and 

Maghrebi [62] investigated reducing boundary layer separation by blowing a different number of air jets 

on the suction side of HAWT blades. They found that the generated torque was doubled compared to the 

https://www.sciencedirect.com/science/article/pii/S1110016821001381#!
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baseline blade in the best case. They also proved that the torque increases with the number of blown air 

jets. Besides, they showed that placing air jets near the blades’ tips enhances the performance more than 

placing them in the middle or inner portions of blades.  

Regarding wind farms’ output improvement, Jackson and Amano [32] investigated, 

experimentally and numerically, the velocity deficit in case of having single, double, and triple wind 

turbine models in an in-line configuration inside a wind tunnel. Choi et al. [34] used the commercial multi-

purpose CFD solver ANSYS CFX to build a full wind farm model which contained two HAWTs with full-

scale dimensions; each turbine provided 2 MW output power. They carried out a steady-state analysis of 

the problem using the Reynold Averaged Navier Stokes (RANS) approach with the Shear Stress Transport 

(SST) k-ω model. The separation distance between the two turbines was increased from one case study to 

another; hence, the power output of the downstream turbine increased significantly, which yielded an 

increase in the wind farm annual energy production. 

Hasan et al. [57] have tested the wake region of a small scale HAWT inside a wind tunnel using 

hot wire anemometry, to show axial and vertical velocity components, besides turbulence intensity, over 

many transverse sectional planes along the wake. Then, the previous study was expanded to include 

computational fluid dynamics (CFD) simulations of the same turbine model under different operating 

conditions. By tracking the hub-height axial velocity recovery at different wind speeds and tip speed ratios 

(TSRs), the separation distance between two successive units in a wind farm was determined [58].  

Since most of the research and development in the field of HAWTs focuses on large, utility-scale 

wind turbines, more attention should be paid to the small wind turbines for residential and urban 

applications. Therefore, Hasan et al. [63] performed a numerical study that investigated the effect of using 

four newly introduced airfoils for blades generation of residential scale turbines. Airfoils are NACA 

64(3)618, GOE 446, NACA 6412, and GOE 447. Since GOE 447 was proven to generate the highest 
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power, it was selected to add leading edge tubercles and winglets, which achieved an increase in the power 

output at all tested wind speeds (4.2-5.5% power increase than the GOE 447 baseline design). 

Furthermore, Hays and Treuren [64] focused on utilizing small wind turbines in urban environment. 

Having the turbines working near the end user makes the optimization process not only limited to power 

maximization, but also noise suppression. Therefore, they studied two rotors designed with NREL S823 

and Eppler 216 airfoils. They found that the thinner profile and increased camber of the Eppler 216 

improved the turbine aerodynamic performance, increased power, and reduced the noise significantly. 

Many studies proposed the leading-edge tubercles for HAWTs power maximization. Abate et al. 

[28] studied the effect of 20 different tubercles configurations on the power production of the basic NREL 

phase VI wind turbine rotor. They found that a significant power improvement was achieved for the high 

wind speed cases (tubercles showed a 25% power increase at 20 m/s), while the opposite trend was 

obtained at lower wind speeds (tubercles showed a 45% less power at 10 m/s). The reason behind the 

previous finding is that the flow around tubercles was characterized by counter-rotating vortices 

generation, which counteracts the spanwise flow, resulting in a stall strength reduction. 

Huang et al. [30] performed an experimental study to investigate the effect of applying leading 

edge protuberances (tubercles) on the performance of both static 3D airfoil and a three-bladed HAWT 

model. Four protuberant models were created to be applied on the leading edge of the baseline static 

airfoil, with an amplitude equals 1.5% and 8.5% of the chord length, and a wavelength equals 15% and 

6.5% of the chord length. To fix Re, the lower amplitude protuberances were tested at 9.5 m/s, while the 

higher amplitude protuberances were tested at 10.5 m/s, whereas the AoA was changed from -10 o to 40 

o. They found that the protuberance wavelength had a minor effect on the lift coefficients of those with 

smaller amplitudes. However, wavelength had a major effect on those protuberances with larger 

amplitudes. Regarding the rotor models, they applied four sinusoidal protuberance configurations to the 
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leading edge of the baseline rotor. The four configurations come from combining two amplitudes (4% and 

12% of the chord length) to two wavelengths (40.4% and 14.5% of the chord). All resultant rotors were 

tested at wind speeds of 6, 8 and 10 m/s, while the TSR increased from 1 to 8 at each wind speed. All 

protuberances configurations didn’t improve the power coefficient (Cp), except for the smaller- amplitude, 

larger- wavelength configuration that generated more power than the baseline rotor only at wind speed of 

6 m/s. 

Zhang and Wu [76]  used RANS simulations to investigate the effect of adding sinusoidal waves 

(tubercles) to the leading edge of a rotor blade on the shaft torque of a wind turbine. They proposed five 

different configurations of tubercles with wavelengths equal 17%, 25% and 42% of the root chord, and 

wave heights (half amplitudes of sine wave) equal 1.25%, 2.5% and 3.75% of the root chord. They found 

that for design condition (wind speed is less than 12 m/s), blade with leading-edge tubercles is unfavorable, 

since an early boundary-layer separation occurs due to the geometric disturbances of the leading-edge 

tubercles, hence shaft-torque decreased for the five cases. On contrast, for off-design conditions (wind 

speeds higher than 15 m/s), shaft-torque increased significantly, particularly for the cases with high 

wavelength and wave height (for instance, at 15 m/s, the shaft-torque is 85% higher than the torque of the 

straight blade). 

Other works adopted winglets as a tip modification to improve the turbine’s aerodynamic 

performance, hence power maximization. Khaled et al. [20] investigated the influences of winglets on 

power and thrust coefficients. Firstly, they investigated the effect of winglet length variation (changed 

from 1% to 7% of the turbine rotor radius), while the cant angle is fixed at 90°, and TSR changed from 

2.5 to 9.6. They found that for all cases, the power maximized at the design TSR of 5 then drops, while 

the thrust coefficient (CT) continued increasing till TSR is 8.4 then started to fall. Secondly, for each 
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winglet length, the cant angle changed from 15° to 90°, while the TSR is maintained at its optimum value 

(5). They found that Cp range increased by the increase of winglet length. Moreover, at each length, Cp 

is maximum at a cant angle of 50°, while CT is maximum at 30°. 

Khalafallah et al. [22] investigated the effects of winglet direction, cant angle, and twist angle for 

two winglet orientations: upstream and downstream directions. For each winglet direction, –2°, 2°, and 

10° twist angles were studied at 20°, 40°, and 60° cant angles, with fixed TSR of 6 in all simulations. They 

concluded that the winglet pointing to the downstream side showed a more increase in power than those 

pointing to the upstream side. They claimed that a general increase of the Cp occurred except for the three 

cases of a cant angle of 60° at which the winglet was on the upstream side. Compared to the baseline 

design mentioned in their literature, maximum increase in Cp of 1.75% was observed where winglet 

pointing to downstream side and has a cant angle of 60° and a twist angle of 2°. 

Muhle et al. [24] performed a pure experimental study that focused on showing the effect of 

different wing tip configurations on the tip vortex formation and interaction in the near wake of a two-

bladed model wind turbine. They investigated the impact of switching from the straight-cut wing tip to 

the downstream-facing winglet on several parameters. Regarding the mean streamwise velocity, the 

presence of winglets didn’t significantly affect the mean velocity field. Regarding wake expansion, 

winglets generated a slightly wider wake than the straight-cut tip. Regarding the phase-averaged vorticity 

component, an analysis was done between the two downstream distances 2.3D and 2.6D revealed an 

instability caused by winglets that stimulated tip vortices interaction with the main wake and caused 

complete breakup at earlier downstream distance of 3D, whereas the straight-cut tip didn’t show any tip 

vortices interaction till 3.5D. Finally, considering applying winglets to models used in a wind farm, 

winglets caused earlier and faster tip vortex breakup, the point that enhanced the recovery of the mean 

wake kinetic energy, which means more potential power extraction out of a downstream turbine.   
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Ostovan and Uzol [25] also did a pure experimental work to investigate the effect of installing 

winglets and some wing extensions on the performance of two identical and interacting HAWTs. They 

attached the winglets and the wing extensions to the upstream turbine to see how this impacts the Cp of 

the upstream turbine, downstream turbine, and the two turbines combination. They found that for the 

upstream turbine, the baseline design (without any tip devices) produced the lowest power. Attaching 

winglets produced 2.6% more power than the baseline design, while attaching the wing extensions 

produced 17.1% more power than the baseline design. On the other hand, the downstream turbine 

produced the highest power when the upstream turbine had no tip devices. Attaching the winglets to the 

upstream turbine caused the downstream one to generate 4.1% less power, while attaching the wing 

extensions to the upstream turbine resulted in generating 15.7% less power out of the downstream one. 

Regarding the overall power of the two turbines combination, it increases by 1.1% when winglets were 

installed to the upstream turbine, while it increases by 9.6% when wing extensions were installed to the 

upstream turbine. 

This work is an extension of a previous work of the main author [63] that numerically proposed 

the GOE 447 airfoil as an excellent candidate for building turbine blades of residential scale HAWTs. 

This work is aimed at investigating two modern blade modifications (tubercles and winglets) when added 

individually to a turbine blade, in addition to studying the cases of combining these two modifications at 

the same time to a single blade. It is desired to determine the influence of the mentioned modifications on 

turbine’s power output for such thin and curved airfoils as GOE 447.  

Most of available research work of HAWTS is focused on either lab-scale (15-60 cm rotor 

diameter) or commercial large scale (80-130 m rotor diameter). There is a lack of published data of 

residential-scale wind turbines. The current work fills this gap since it is going to be counted on during 

the next 10 years, since the current US administration promotes dependence on renewables to cut carbon 
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footprint [74]. In the windy Midwest, residential-scale WTs are going to be a good alternative for the less 

efficient solar panels in the region. 

Earlier blades were build using thin airfoils, but they were susceptible to fracture. That’s why 

recent blades are built using thick airfoils, but it comes with early separation problem. Nowadays with the 

recent advances in composites manufacturing, thinner blades can be manufactured without the fear of 

fracture [75]. Very rare data are available for thin airfoil blades. All previous published work discusses 

modifications applied to thick airfoils blades. However, it is essential to provide data to study the effect 

of modern blade modifications on thinner airfoils. 

7.2 Geometry Models 

Figure 7-1 shows an upstream isometric of the GOE 447 rotor with the tubercles (wavy pattern) 

at the leading edge. Figure 7-2 demonstrates the downstream side of the rotor highlighting the winglets 

(tip modifications) on two blades. In this figure, the reader can notice that the winglets points towards the 

downstream direction. Figure 7-3 demonstrates GOE 447 blades with combined leading-edge tubercles 

and downstream facing winglets.  
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Figure 7-1: GOE 447 blades with leading edge tubercles 
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Figure 7-2: GOE 447 blades with downstream-facing winglets 

 

Figure 7-3: GOE 447 blades with combined leading-edge tubercles and downstream facing 

winglets 
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7.2.1 Tubercles 

Table 7-1 shows the five different configurations adopted in this work. It is desired to cover a 

wide range of amplitudes of the wavy shape, specifically from 3% to 6.5% of the chord length at the root 

section (C). Also, it is wanted to investigate a wide range of wavelengths, specifically from 7% of C to 

28% of C. 

Table 7-1: The five different tubercles configurations 

Tubercle configuration Amplitude (% of C) Wavelength (% of C) 

a 4.5 28 

b 3.5 18 

c 3 12 

d 3.5 7 

e 6.5 7 

 

Figure 7-4 illustrates how the parameters in the previous table applied to the leading edge of the 

baseline GOE 447 blade. 
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Figure 7-4:Leading edge tubercles, five different configurations 
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7.2.2 Winglets 

The orientation of all winglets in this work is selected to be downstream facing since this is the 

orientation found to be most effective in power increase [81]. The winglet height is designed to be 2.0% 

of the blade length (R), while the radius of curvature is designed as 25.0% of the winglet height, and the 

cant angle is 90°. The previous design was tested with different blades by Johansen et al. [82] and found 

to give higher power production than basic design. In addition, Khalafallah et al. [22] showed that the 60° 

cant angle design has a promising potential towards power improvement. Therefore, it is included in the 

current work, besides the 30° cant angle design, to investigate the effect of adding wide range of winglet 

designs on the proposed GOE 447 blade’s aerodynamic performance. The three designs of winglet are 

shown in Figure 6-10. 

 

Figure 7-5: Blade with winglet: (left) cant angle 30, (middle) cant angle 60, (right) cant angle 90 
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7.3 Results 

Table 7-2 shows a conclusive comparison that highlight the entire outcomes of the current work. 

It is obvious that all tubercle configurations lead to poorer aerodynamic performance, compared to the 

GOE 447 baseline design, except for configuration (d) which is characterized by low values of both 

amplitude and wavelength. Moreover, all winglet configurations lead to higher power production, 

particularly the 60o cant angle design.  

The current work also investigates the effect of combining both tubercles and winglets together on 

a single blade. It is essential to evaluate the influence of the tubercles-winglets combination on the 

aerodynamic performance and power production of the baseline GOE 447 rotor. The tubercles-winglets 

combination was solely investigated by running 36 simulations. Four tubercles designed were integrated 

with the three winglet designs, and each of the 12 resultant rotor was simulated at three different wind 

speeds (7.5, 12.5 and 17.5 m/s).  

It can be noticed that the tubercles-winglets combination results in less power production than the 

baseline design in all cases, except for four simulations. Three of them are the rotors resultant from 

integrating tubercle (d) with the three winglet designs at 17.5 m/s, achieving an average of 4% power 

improvement only. However, this power improvement is not valuable because of two reasons; first the 

17.5 m/s wind speed is less likely to happen. Second the power improvement accomplished by integrating 

one technology at rated wind speed is higher. For instance, tubercle (d) design achieves 5.5% power 

improvement. Additionally, winglet with cant angle 60o achieves 7.9% power improvement. 
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Table 7-2: Quantitative comparison of power output and power coefficient values for the GOE 447 

baseline blade and all proposed blades 

Model 

7.5 m/s 12.5 m/s 17.5 m/s 

P Cp 
Improvement 

% 
P Cp 

Improvement 

% 
P Cp 

Improvement 

% 

447 baseline design 12.75 0.3274  60.30 0.3344  163.43 0.3303  

Tubercle a 9.41 0.2417 -26.2 46.19 0.2562 -23.4 132.47 0.2678 -18.9 

Tubercle b 9.54 0.2450 -25.2 47.83 0.2653 -20.7 137.77 0.2785 -15.7 

Tubercle c 10.64 0.2732 -16.5 52.74 0.2925 -12.5 151.41 0.3060 -7.4 

Tubercle d 13.34 0.3426 4.6 63.60 0.3527 5.5 167.67 0.3389 2.6 

Tubercle e 7.38 0.1895 -42.1 38.76 0.2150 -35.7 113.13 0.2287 -30.8 

Winglet 90 13.33 0.3423 4.6 63.34 0.3513 5.0 179.56 0.3629 9.9 

Winglet 60 13.78 0.3539 8.1 65.09 0.3610 7.9 180.65 0.3651 10.5 

Winglet 30 13.66 0.3508 7.1 64.45 0.3575 6.9 178.56 0.3609 9.3 

Tubercle a & Winglet 30 9.46 0.2429 -25.8 47.55 0.2637 -21.1 133.42 0.2697 -18.4 

Tubercle a & Winglet 60 9.17 0.2355 -28.1 47.37 0.2627 -21.4 135.32 0.2735 -17.2 

Tubercle a & Winglet 90 9.43 0.2422 -26.0 46.91 0.2602 -22.2 133.66 0.2702 -18.2 

Tubercle b & Winglet 30 8.82 0.2265 -30.8 44.58 0.2473 -26.1 130.67 0.2641 -20.0 

Tubercle b & Winglet 60 8.69 0.2232 -31.8 44.33 0.2459 -26.5 130.1 0.2630 -20.4 

Tubercle b & Winglet 90 9.81 0.2519 -23.1 48.4 0.2684 -19.7 134.25 0.2713 -17.9 

Tubercle c & Winglet 30 10.51 0.2699 -17.6 51.79 0.2872 -14.1 144.2 0.2915 -11.8 

Tubercle c & Winglet 60 10.5 0.2696 -17.6 52.24 0.2897 -13.4 145.32 0.2937 -11.1 

Tubercle c & Winglet 90 11.43 0.2935 -10.4 55.48 0.3077 -8.0 152.14 0.3075 -6.9 

Tubercle d & Winglet 30 12.37 0.3177 -3.0 60.48 0.3354 0.3 170.94 0.3455 4.6 

Tubercle d & Winglet 60 12.35 0.3172 -3.1 59.55 0.3303 -1.2 170.52 0.3447 4.3 

Tubercle d & Winglet 90 12.19 0.3130 -4.4 59.29 0.3288 -1.7 167.44 0.3384 2.5 

 

7.3.1 Tubercles Analysis 

All the contours shown in the following analyses are captured from the 12.5 m/s wind speed 

simulations since it represents the rated wind speed. 

Figure 7-6 demonstrates the location of the horizontal sectional x-y plane that cuts a blade exactly 

at its leading edge and cuts the computational domain at hub-height. The selected plane is essential 

because of its ability to display the interaction between the main flow in the y-direction and the tubercles.  



151 

 

Figure 7-7 represents a visual comparison of the turbulent kinetic energy contours for the baseline 

design, tubercle (a) and tubercle (d) configurations respectively. Tubercle (a) and (d) configurations are 

selected since the former leads to the most significant decrease while the later is the only tubercle 

configuration that leads to power increase. It is obvious that both configurations produce less turbulent 

wake, compared to the baseline design. The phenomenon is interesting to visualize, but still doesn’t 

explain why configuration (a) reduces power while (d) increases it. 

Figure 7-8 shows a comparison of the vorticity magnitude contours for the baseline design, 

tubercle configuration (a) and (d) respectively. It is observed that configuration (a) slightly increases the 

vorticity magnitude, while configuration (d) slightly decreases it, compared to the baseline design. The 

reduced vorticity is an indication of the ability of configuration (d) to drive the flow in the blade chordwise 

direction with less rotation in the wake. The phenomenon is also an indication of an enhanced attachment 

of the flow, less separation, hence more power extraction from the wind.  

 

Figure 7-6: Demonstration of the sectional plane location 
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Figure 7-7: Turbulent kinetic energy contours for: (a) baseline GOE 447, (b) tubercle [a], (c) 

tubercle [d] design over a hub-height horizontal plane 
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Figure 7-8: Vorticity magnitude contours for: (a) baseline GOE 447, (b) tubercle [a], (c) tubercle 

[d] design over a hub-height horizontal plane 

7.3.2 Winglets Analysis 

Due to pressure difference on both sides of an operating turbine blade, an outward spanwise flow 

on the pressure side and an inward spanwise flow on the suction side are incurred through the tip. This 

action creates tip vortex flow that leads to lift force reduction and an additional induced drag. The main 

purpose of a winglet is to reduce the spanwise flow by diffusing and moving the tip vortex away from the 

rotor plane towards the wake’s downstream direction. Hence reducing the induced drag on the blade. 

Consequently, increasing the aerodynamic efficiency of the turbine. 
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Figure 7-9: Representation of the tilted plane that cuts through one of the blades 

 

It is worth noting that all the scenes for winglets analyses are captured from the 12.5 m/s 

approaching wind simulations. It is also essential to emphasize that the wind blows in the negative Y 

direction. For the purpose of understanding the aerodynamic performance of wingletted blades, the tilted 

plane shown in Figure 7-9 have been selected so that it to cuts one of the blades at the tip.  

Figure 7-10 compares the three winglet designs to the GOE 447 baseline design by portraying the 

axial velocity contours. It is obvious that the axial velocity component is maximized at the blade tip in the 

four parts of the figure. However, the axial velocity maximization is greater for the wingletted blades than 

in the baseline blade. Axial velocity maximization is the greatest at the tip of the 60o cant angle winglet 

(part c) which indicates the ability of this design to better diverge the tip vortex flow, hence allowing 

higher turbine efficiency. Moreover, be comparing the axial velocity value in the near wake of the 

rotational plane, it can be seen that the axial velocity in the near wake of the baseline design drops from 

12.5 m/s to only 10 m/s. However, the axial velocity in the near wake of the wingletted rotors drops to 6 
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m/s. The grater the axial velocity drop is an evident sign of the increased rotor ability to extract more 

momentum from the upstream flow. The previous phenomenon is a good indication of the ability of 

winglets to reducing induced drag, increasing lift force, hence increasing the turbine efficiency. 

 

 

 

Figure 7-10: Axial velocity contours over a tilted plane that cuts through one of the blades: (a) 

GOE 447 base design, (b) 30 degrees cant angle winglet, (c) 60 degrees cant angle winglet, (d) 90 

degrees cant angle winglet 

 

Figure 7-11 demonstrates a plane that cuts the computational domain at hub height. The plane 

cuts through no blades. It is used to show vorticity magnitude contours for the baseline design and all 

winglet configurations. 
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Figure 7-11: Representation of the horizontal plane that cuts the domain at the hub height 

Figure 7-12 shows the vorticity magnitude contours over a horizontal plane that cuts the wake at 

hub height for the baseline and three winglet designs. It is obvious in all parts that tip vortices are guided 

to shed from the blade's tip and meander downstream. The previous observation is demonstrated by the 

circumferential sheets of localized high vorticity magnitude that extend downstream of the rotor tips. 

However, it can be noticed that the strength of the high vorticity circumferential sheet of the winglet 

designs is higher than its counterpart in the baseline design. For the baseline design, the vorticity 

magnitude of the vortex sheet in the near wake is 5Hz, while it is 2Hz in the far wake. Whereas the vorticity 

magnitude of the vortex sheet in the near wake is 7 Hz for the 30o cant angle winglet, 9 Hz for the 60o cant 

angle, and 8 Hz for the 90o cant angle. Nevertheless, vorticity is 3Hz in the far wake of all winglet designs.  

One more feature that characterizes the winglet blade vortex sheet is its coherence and ability to 

hold its form until the far wake. This observation proves the ability of winglets to a diverging tip generated 

vortices away from the rotor, reducing induced drag and thus increasing turbine efficiency.  Part (c) 
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represents the 60o cant angle winglet has the most coherent vortex sheet. Therefore, this winglet achieves 

the most drag reduction, hence the most rotor efficiency improvement. 

 

Figure 7-12: Vorticity magnitude contours over a horizontal plane that cuts the wake at hub 

height: (a) GOE 447 base design, (b) 30 degrees cant angle winglet, (c) 60 degrees cant angle 

winglet, (d) 90 degrees cant angle winglet 

 

Figure 7-13 and Figure 7-14 shed light on the same previous phenomenon but from different 

perspective. They demonstrate the evolution of winglets' impact on the flow. The winglets effect is 

initiated at the blades tip and propagates downstream of the rotor. 
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Figure 7-13: Representation of the longitudinal plane that cuts the blade at its tip 

 

Figure 7-14:  Vorticity magnitude contours over a longitudinal plane that cuts a blade at its tip: 

(a) GOE 447 base design, (b) 30 degrees cant angle winglet, (c) 60 degrees cant angle winglet, (d) 

90 degrees cant angle winglet 
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In Figure 7-14 part (a), the turbine model is behind the display scene, while parts (b), (c) and (d) 

have the model in front of the display scene. The highest vorticity location in all parts is the tip, which is 

an indication of the location where the generated vortices detach from the blade in the wake downstream. 

In parts (c) and (d) winglets with 60o and 90o can’t angles, the sheet of high vorticity can keep its form 

and strength until the end of the wake region, which entails the ability of the 60o and 90o can’t angles to 

better guiding the tip vortices away from the rotor. Consequently, reduced induced drag and higher power 

are obtained. 

7.3.3 Tubercles-Winglets Combination Analysis 

 

 

Figure 7-15: Contours of vorticity magnitude over a horizontal x-y plane that cuts the domain at 

hub height: (top) model with combined tubercle [c] and winglet 60, (bottom) model with combined 

tubercle [d] and winglet 60 
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In Figure 7-15, it is obvious that the leading-edge tubercles negatively influence the ability of the 

winglets to lead the tip vortices away from the rotor plane. Tubercles guide the flow in the chordwise 

direction. This action interferes with the structure of the spanwise flow. Subsequently, limiting the ability 

of winglets to efficiently diverge the tip vortex, which can be deduced from the disability of the high-

vorticity sheet to keeping its strength far downstream, hence not reaching the optimum power increase.  

 

 

Figure 7-16: Absolute axial velocity contours over a tilted plane that cuts through one of the 

blades: (a) model with combined tubercle [c] and winglet 60, (b) model with combined tubercle [d] 

and winglet 60 

 

Table 7-2 shows that combining different tubercle designs with all winglets leads to, unexpectedly, 

a reduction in power production (an average of 20% less power than the baseline design at rated wind 

speed) or negligible power improvement. The reason behind this observation can be explain by comparing 

part (c) of Figure 7-10 to both parts of Figure 7-16. When tubercles are incorporated with a winglet on 

the same blade, tubercles mechanism of enhancing the chordwise flow interferes with the ability of winglet 
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to moving the tip vortex away from the rotor plane towards the wake’s downstream direction. Hence 

inefficient reduction of induced drag on the blade. In both parts (a) and (b) of Figure 7-16, only 10 m/s 

of axial velocity obtained in the wake, which entails reduced rotor’s ability to power extraction, compared 

to part (c) of Figure 7-10 where 6 m/s is obtained in downstream of the rotor. 

7.4 Conclusions 

Geometry parameters of leading-edge tubercles plays a key role in dictating chordwise flow 

structure around the turbine blade, hence power production. Four among the five tested designs are unable 

to increase power, except for one design characterized by low values of both amplitude and wavelength. 

Moreover, power improvement percentage using this technique is wind speed dependent and maximizes 

at rated speed (5.5%). 

Winglets’ ability to diverge tip vortex flow away from the rotor to reduce induced drag and produce 

more power are excellent for thin airfoils. The power improvement drops slightly at the rated wind speed 

for winglets with cant angles 30o and 60o However, power improvement gets higher as the wind speed 

goes higher for the wiglet with 90o cant angle. For instance, a maximum of 10.5% power improvement is 

achieved by the 60o winglet blade at 17.5 m/s wind speed. 

The tubercles-winglets combination is found to produce less power than the baseline design in 

most of the cases, except for four cases. One case with a negligible increase at the rated wind speed. In 

addition to three cases at 17.5 m/s, achieving an average of 4% power improvement only. However, this 

power improvement is not more than what a single technique can achieve. Additionally, the 17.5 m/s wind 

speed is less likely to happen. 
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Chapter 8 :  Future Work 

8.1 Proposed Setup 

It was planned to build a setup to measure the turbine mechanical power using a torque sensor 

shown in Figure 8-1. The idea is shown in Figure 8-2, where the torque sensor will be connected from 

its active end to the turbine rotor, instead of the motor demonstrated. Whereas the other end of the sensor 

will be connected to the eddy current brake or a generator. The output torque reading can be obtained by 

any of the three devices shown in (USB, handheld display or digital display).  

  

Figure 8-1: Torque meter 
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Figure 8-2: Proposed experimental setup. [91] 

 

The decision was to go with the USB device shown in Figure 8-3. Since it eliminates the need for 

power supply and display equipment. The module is supplied by PC power through a USB Cable, 

providing excitation voltage for the sensor. The analog output voltage of the sensor is then digitized and 

processed by a microprocessor using the integrated high resolution (24 bits) analogue to digital converter 

(ADC). The on-board USB device allows the microprocessor to communicate with the PC by means of 

the USB link. [91]  
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Figure 8-3: USB digital device 

8.2 Actual Built Setup 

The left picture of Figure 8-4 shows the actual setup built for mechanical power measurement. 

The setup is going to be very useful platform to be utilized for future work in the wind tunnel lab. It is 

always essential to validate CFD models against experimental data to ensure the effectiveness of CFD 

models in predicting the flow parameters, In the past, wind tunnel lab researchers were only able to verify 

CFD velocity measurements versus experimental data, since the lab is equipped with HWA system. 

However, there was no setup to measure mechanical turbine power so that one has a reference to compare 

CFD calculated power to. Therefore, this setup will facilitate a lot of HAWTs research in the future.  

The right picture of Figure 8-4 shows the straight blade turbine model ready for power 

measurement in the test section. It is a 60-cm rotor. It is worth noting that the attached hub and blades are 

replaceable so that any blade design can be 3D printed in the future and get tested in a very short time. 

Blades can be fixed in position with simple set screws 
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Figure 8-4: (left) the actual built power measurement setup details, (right) side view of the straight 

blade model. 

Left picture of Figure 8-5 shows the turbine model with upstream winglets, while the right picture 

shows the blades with trailing edge tubercles. 
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Figure 8-5: (left) front view of the upstream wingletted model, (right) front view of the trailing 

edge tubercles model 
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