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 ABSTRACT  

TRIBOINFORMATIC APPROACHES FOR SURFACE 

CHARACTERIZATION: TRIBOLOGICAL AND WETTING PROPERTIES 

by 

Md Syam Hasan 

The University of Wisconsin-Milwaukee, 2022 

Under the Supervision of Professor Michael Nosonovsky 

 

Tribology is the study of surface roughness, adhesion, friction, wear, and lubrication of 

interacting solid surfaces in relative motion. In addition, wetting properties are very important 

for surface characterization. The combination of Tribology with Machine Learning (ML) and 

other data-centric methods is often called Triboinformatics. In this dissertation, triboinformatic 

methods are applied to the study of Aluminum (Al) composites, antimicrobial, and water-

repellent metallic surfaces, and organic coatings. 

Al and its alloys are often preferred materials for aerospace and automotive applications 

due to their lightweight, high strength, corrosion resistance, and other desired material properties. 

However, Al exhibits high friction and wear rates along with a tendency to seize under dry 

sliding or poor lubricating conditions. Graphite and graphene particle-reinforced Al metal matrix 

composites (MMCs) exhibit self-lubricating properties and they can be potential alternatives for 

Al alloys in dry or starved lubrication conditions. 

In this dissertation, artificial neural network (ANN), k-nearest neighbor (KNN), support 

vector machine (SVM), random forest (RF), gradient boosting machine (GBM), and hybrid 

ensemble algorithm-based ML models have been developed to correlate the dry friction and wear 
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of aluminum alloys, Al-graphite, and Al-graphene MMCs with material properties, the 

composition of alloys and MMCs, and tribological parameters. ML analysis reveals that the 

hardness, sliding distance, and tensile strength of the alloys influences the COF most 

significantly. On the other hand, the normal load, sliding speed, and hardness were the most 

influential parameters in predicting wear rate.  

The graphite content is the most significant parameter for friction and wear prediction in 

Al-graphite MMCs. For Al-graphene MMCs, the normal load, graphene content, and hardness 

are identified as the most influential parameters for COF prediction, while the graphene content, 

load, and hardness have the greatest influence on the wear rate. 

The ANN, KNN, SVM, RF, and GBM, as well as hybrid regression models (RF-GBM), 

with the principal component analysis (PCA) descriptors for COF and wear rate were also 

developed for Al-graphite MMCs in liquid-lubricated conditions. The hybrid RF-GBM models 

have exhibited the best predictive performance for COF and wear rate. Lubrication condition, 

lubricant viscosity, and applied load are identified as the most important variables for predicting 

wear rate and COF, and the transition from dry to lubricated friction and wear is studied. 

The micro- and nanoscale roughness of zinc (Zn) oxide-coated stainless steel and 

sonochemically treated brass (Cu Zn alloy) samples are studied using the atomic force 

microscopy (AFM) images to obtain the roughness parameters (standard deviation of the profile 

height, correlation length, the extreme point location, persistence diagrams, and barcodes). A 

new method of the calculation of roughness parameters involving correlation lengths, extremum 

point distribution, persistence diagrams, and barcodes are developed for studying the roughness 

patterns and anisotropic distributions inherent in coated surfaces. The analysis of the 3×3, 4×4, 

and 5×5 sub-matrices or patches has revealed the anisotropic nature of the roughness profile at 
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the nanoscale. The scale dependency of the roughness features is explained by the persistence 

diagrams and barcodes. 

Solid surfaces with water-repellent, antimicrobial, and anticorrosive properties are 

desired for many practical applications. TiO2/ZnO phosphate and Polymethyl Hydrogen Siloxane 

(PMHS) based 2-layer antimicrobial and anticorrosive coatings are synthesized and applied to 

steel, ceramic, and concrete substrates. Surfaces with these coatings possess complex 

topographies and roughness patterns, which cannot be characterized completely by the traditional 

analysis. Correlations between surface roughness, coefficient of friction (COF), and water 

contact angle for these surfaces are obtained. The hydrophobic modification in anticorrosive 

coatings does not make the coated surfaces slippery and retained adequate friction for 

transportation application. 

The dissertation demonstrates that Triboinformatic approaches can be successfully 

implemented in surface science, and tribology and they can generate novel insights into 

structure-property relationships in various classes of materials. 
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CHAPTER 1: INTRODUCTION 

1.1. The object of study and methodology 

The selection of objects of study of this dissertation is motivated by their importance for 

practical applications, such as light-weight and self-lubricating materials for industry and 

antimicrobial and anticorrosive coatings. Aluminum and its alloys have many desired material 

properties including low density, high stiffness, high strength, corrosion resistance, and good 

thermal conductivity [1]. Further improved material and tribological performance can be achieved 

using graphite and graphene reinforced self-lubricating aluminum metal matrix composites 

(MMCs). Consequently, aluminum alloys and its MMCs are promising materials for weight-

critical automotive and aerospace engineering. 

Certain metals, such as Copper (Cu) and Zinc (Zn), have anti-bacterial properties. 

Additionally, surface coatings can be synthesized to confer antimicrobial, water repellent, and 

anticorrosive properties to metals, ceramics, concrete, and other substrates. Titanium dioxide/ Zinc 

oxide (TiO2/ZnO)-phosphate (TP/ZP) and polymethyl hydrogen siloxane (PMHS) based 2-layer 

hydrophobic antimicrobial coatings are tuned for application on steel which can resist the settling 

of pathogens. Similarly, TiO2-phosphate and PMHS based 2-layer water-repellent anticorrosive 

coatings are developed for ceramics concrete, ceramic, and asphalt surfaces to increase durability 

and to decrease water and ice-induced damages in roads and pavements. 

The methods used in this study involve tribological and wetting characterization of solid 

surfaces as well as Machine Learning (ML) methods. Tribology is the study of the surface 

roughness, adhesion, friction, wear, and lubrication of interacting solid surfaces in relative motion. 

Friction and wear are very common and even ubiquitous. For example, dry friction between two 
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surfaces occurs with all types of materials (e.g., metals, polymers, ceramics, composites, soft 

materials, and biomaterials) and in a broad range of conditions, such as loads ranging from nano-

newtons in nanotribology to billions of tons in seismology and geophysics. However, despite being 

very common, there is no general theory of dry friction explaining it from the first principles of 

physics or chemistry. Since the term “Tribology” was introduced by Peter H. Jost in 1966, the field 

has evolved and yielded new areas such as nanotribology, biotribology, ecotribology (sometimes 

called “Green Tribology”), biomimetic tribology, and many others [2]. 

The tribological characterization of a surface includes measuring the coefficient of friction 

(COF), wear rate, and surface roughness parameters. COF or 𝜇 is a dimensionless scalar quantity 

used to quantify friction. COF is the ratio of the friction force (𝐹𝑓) and normal load (N) pressing 

the sliding surfaces together, 𝜇 =
𝐹𝑓

𝑁
. Wear rate quantifies the progressive removal of materials 

during sliding interactions and is often presented in 𝑚𝑚3/𝑚 unit. Amplitude parameters and 

spacing parameters are the most used roughness parameters. Amplitude parameters characterize 

the vertical deviation of the surface profile relative to the mean line [2]. The most common 

amplitude parameter is the average roughness, 𝑅𝑎, defined as the arithmetic average of the absolute 

values of the profile height deviations from the mean line of the roughness profile. Mathematically, 

for a 2D roughness profile z(x), 𝑅𝑎 is given by 𝑅𝑎  =  
1

𝐿
∫ |𝑧 −  𝑚|𝑑𝑥

𝐿

0
. Here, L is the sampling 

length of the profile and 𝑚 =  
1

𝐿
∫ 𝑧

𝐿

0
𝑑𝑥 is the mean value of z(x). Spacing parameters are related 

to the shape of the asperities of the surface profile. Mean peak spacing, 𝑆𝑚 is a commonly used 

spacing parameter defined as the mean spacing between peaks at the centerline along the sampling 

length of the profile and given by the formula, 𝑆𝑚 =  
1

𝑛
∑ 𝑆𝑖 

𝑛
𝑖=1 . Here, n is the total number of 

profile peaks and 𝑆𝑖 is the individual peak spacing [2].  
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One of the main challenges in tribological studies is that while there is an abundance of 

data about the frictional, wear, and surface properties of various materials, systems, and 

engineering components, this interdisciplinary area is highly empirical. While many attempts have 

been made to formulate various laws or rules in tribology, the study of friction and surface 

properties still lacks derivation from physical or chemical first principles. Consequently, tribology 

remains a data-driven scientific discipline, especially for complex multi-phase materials, whose 

surface characteristics change with time. Due to the emergence and rapid development of new 

methods of “Big Data” analysis including ML, artificial intelligence (AI), topological data analysis 

(TDA), and others, it became possible to obtain and study new correlations in data-driven areas of 

science. In particular, recently, the area of so-called Triboinformatics (sometimes called 

“Intelligent Tribology) has been suggested [3]. Triboinformatics can be defined as an application 

of ML, TDA, and other data-centric methods of data analysis to tribological problems, such as 

establishing relationships between material and surface structure and properties and the 

tribological performance. 

Besides dry friction, which characterizes interaction of two solid surfaces, the interaction 

of rough surfaces with liquid (wetting) is also very important. The conventional parameter of 

quantitating the wettability of a surface by a liquid is the contact angle (CA) between the liquid 

and the solid surface. Surfaces are called hydrophilic (0° ≤ CA ≤ 90°), hydrophobic (90° ≤ CA ≤ 

120°), “over-hydrophobic” (120° ≤ CA < 150°) [4], and superhydrophobic (150° ≤ CA ≤ 180°) 

depending upon the CA. In many cases, the measured value of the CA depends on whether liquid 

advances or recedes. The advancing CA (θ𝐴𝑑𝑣) is usually higher than the receding CA (θ𝑅𝑒𝑐) 

corresponding to the maximum and the minimum values of the CA on a solid substrate when a 

liquid droplet is placed on it. CA hysteresis (CAH) which is the difference between the advancing 
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and the receding CAs is another important parameter in wetting characterization. The CA and 

CAH are two quantitative measures of adhesion between a liquid and a solid surface. Water 

repellent surfaces, such as superhydrophobic surfaces, generally have both a high CA and low 

CAH.  

 The extreme water repellence observed in the lotus leaf is an inspiration for developing 

artificial water repellent surfaces for engineering applications. A unique hierarchical roughness 

profile along with the presence of a low surface energy epicuticular wax crystalloids in the lotus 

leaf is responsible for the water repellence commonly known as the “lotus effect” [5]. 

Advancements in micro/nanotechnology have made it possible to synthesize water repellent 

superhydrophobic and self-cleaning surfaces mimicking the lotus effect. Biomimetic 

superhydrophobic surfaces are synthesized, for example, by introducing particle or fiber induced 

micro/nano-level roughness along with a low surface energy coating like polydimethylsiloxane 

(PDMS), polymethyl hydrogen siloxane (PMHS), polyethyl hydrogen siloxane (PESHO) or 

polytetrafluoroethylene (PTFE) [4]. Such techniques have been used recently also for synthesizing 

water repellent anticorrosive coatings for concrete, ceramic, and asphalt surfaces to increase 

durability and to decrease water and ice-induced damages in roads and pavements. These 

techniques have been further used to develop antimicrobial coating materials for a wide range of 

surfaces which can resist the settling of pathogens [6]. 

The CA depends on the surface free energy of a solid surface. For a low surface energy 

surface, the contact area and adhesion between the solid surface and a water droplet are small, 

which results in a high contact angle. As the low surface energy coating materials used for 

hydrophobic/superhydrophobic surfaces can reduce adhesion between the interacting surfaces and 

they can potentially affect the frictional behavior. Consequently, the application of “non-sticky” 
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coating materials, such as PTFE, PESHO, PMHS, and similar, would reduce the COF of the 

surfaces. For example, the COF between the tire and the concrete surface may be reduced due to 

the application of the water repellent anticorrosive coating materials. This is why, the question 

arises whether the application of hydrophobic/superhydrophobic anticorrosive coating materials 

to roads and pavements makes them slippery and unsafe for vehicles. This example suggests that 

any modifications of wetting properties can potentially alter the frictional behavior. However, a 

well-defined correlation between the wetting and frictional properties of 

hydrophobic/superhydrophobic surfaces is yet to be developed. A combined tribological and 

wetting characterization can help to develop such a comprehensive correlation. Additionally, such 

characterization can provide comprehensive information about a surface, for example, how the 

surface will interact with water and other liquids and how will be the friction and wear behavior, 

corrosion resistance, and durability in different engineering applications. Such characterization is 

also helpful in modifying a surface or synthesizing and optimizing novel surface coating materials 

for different applications.   

Rough surfaces possess complex topography, which cannot be characterized completely 

by a single parameter. The selection of appropriate roughness parameters depends on a particular 

application. The traditional surface analysis often comes short in characterizing complex surface 

properties and their interrelations. Recent advancements in data science have opened the door of 

successfully applying data-driven approaches like Machine Learning and Topological Data 

Analysis (TDA) in surface characterization. These datacentric analysis approaches can reveal 

novel insights into the roughness patterns, functional designs, and anisotropic distributions 

inherent in the complex surfaces not identifiable in traditional analysis. In this dissertation, a 

methodology of data-driven surface roughness analysis is developed consisting of calculating 
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roughness parameters, correlation length, extremum point distribution, persistence diagrams, and 

barcodes and applied for the 2-layer antimicrobial coatings, brass (Cu Zn alloy) samples roughened 

by a sonochemical treatment, and zinc oxide-coated stainless steel samples. 

In this dissertation, the friction and wear mechanisms of these alloys and MMCs will be 

studied using traditional 2-parameter analysis and data-driven ML models. Supervised standalone 

ML regression models: artificial neural network (ANN), k nearest neighbor (KNN), support vector 

machine (SVM), random forest (RF), and gradient boosting machine (GBM), and hybrid ensemble 

RF-GBM regression ML models will be developed to predict the COF and wear rate of these alloys 

and MMCs from the material properties and tribological test variables in dry and liquid lubricated 

conditions. 

The surface roughness, wetting, and friction properties of TiO2/ZnO-phosphate (TP/ZP) 

and polymethyl hydrogen siloxane (PMHS) based 2-layer hydrophobic antimicrobial and 

anticorrosive coatings tuned for application on steel and ceramics will be studied. Confocal laser 

scanning microscope (CLSM- Olympus LEXT OSL 4100 model), atomic force microscope 

(AFM), and scanning electron microscope (SEM- JEOL JSM-6460L model) will be used to 

characterize the surface roughness. The water contact angles will be measured using the Rame-

Hart 250 goniometer. The universal mechanical tester (CETR UMT 2) will be used to measure the 

COF of the coated samples under dry conditions.  

1.2. Objectives of the dissertation 

In this dissertation, data-driven Triboinformatic approaches will be applied to surface 

characterization, wetting, and tribological behavior prediction. The objectives are the following.  
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First, the development of artificial neural network, k-nearest neighbor, support vector 

machine, gradient boosting machine, and random forest algorithm-based ML regression models 

geared towards establishing correlations in structure and tribological properties of aluminum alloys 

and particle reinforced aluminum MMCs (aluminum-graphite and aluminum-graphene) in dry 

conditions by employing a Python language-based computational procedure. 

Second, to analyze structure-property relationships between the material properties, 

composition of the alloys and MMCs, test conditions, and tribological properties of aluminum 

alloys and aluminum-based MMCs and identify the most influential material properties and 

tribological parameters in predicting the friction and wear behavior of these alloys and MMCs. 

Third, the development of principal component analysis based unsupervised ML models 

and random forest and gradient boosting machine algorithm-based hybrid ensemble ML models 

for dimensionality reduction in structure-property relationships data and predicting the friction and 

wear behavior of aluminum-graphite MMCs in during the transition of lubrication regimes by 

employing a Python language-based computational method. 

Fourth, the development of a new method of data-driven surface roughness analysis 

consisting of the calculation of roughness parameters, correlation lengths, extremum point 

distribution, persistence diagrams, and barcodes for studying the roughness patterns, functional 

designs, and anisotropic distributions inherent in steel substrates coated with TiO2/ZnO phosphate 

and PMHS based 2-layer antimicrobial coating materials and brass (Cu Zn alloy) samples 

roughened by a sonochemical treatment. 

Fifth, to establish comprehensive correlations between surface roughness, COF, and water 

contact angle for steel substrates coated with TiO2/ZnO phosphate and PMHS based antimicrobial 
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and ceramic substrates coated with TiO2 phosphate and PMHS based anticorrosive coating 

materials.   

1.3. Organization of the dissertation 

In chapter 2, first the concepts of surface science and tribology including wetting, surface 

roughness, adhesion, friction, and wear will be introduced. Then, the basics of different ML 

algorithms commonly used in developing prediction models will be discussed. The strengths and 

weaknesses of these ML algorithms, their applicability for different types of data, and techniques 

of their optimization for problem solving will also be discussed. Additionally, topological data 

analysis (TDA), persistence homology, and other data centric methods which can be potentially 

applied in surface characterization will be discussed. Finally, a review of data-driven and 

Triboinformatics approaches of problem-solving in tribology, wetting, and surface 

characterization will be presented. 

In chapter 3, traditional and Triboinformatics approaches will be presented for analyzing 

the friction and wear behavior of aluminum alloys. Tribological behavior prediction of these alloys 

are important for their application in automotive and aerospace applications. For friction and wear 

behavior prediction of aluminum alloys, five supervised ML regression models: ANN, KNN, 

SVM, RF, and GBM will be developed and optimized.  Moreover, performance of these ML 

algorithms will be analyzed and a comparative analysis of different material and tribological test 

parameters influencing the friction and wear of these alloys will be presented. 

 In chapter 4, friction and wear mechanisms of aluminum-graphite and aluminum-graphene 

metal matrix composites will be studied using traditional and Triboinformatics approaches. 

Graphite and graphene reinforced aluminum MMCs are often preferred over the base alloys in 
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many engineering applications due to their improved tribological and material properties. Five 

supervised ML regression models: ANN, KNN, SVM, RF, and GBM will be developed using 

tribological data reported in the literature to predict the tribological behaviors of these MMCs and 

to find patterns in their tribological behavior. Also, the study will focus on identifying the most 

influential material variables for friction and wear rate prediction for these MMCs in dry 

conditions. 

 In chapter 5, friction and wear behavior of aluminum-graphite MMCs in liquid lubricated 

conditions and in the transition from lubricated to unlubricated conditions will be analyzed using 

traditional and Triboinformatics approaches. Analyzing the tribological and self-lubricating 

behavior in the presence of liquid lubrication and the transition from lubricated to unlubricated 

state as a result of drainage in lubricating liquid are of importance in situations where such sudden 

loss of lubricant can lead to instant seizures and catastrophic failures. Unsupervised principal 

component analysis (PCA) model, five supervised standalone ML regression models: ANN, KNN, 

SVM, RF, and GBM, and hybrid ensemble RF-GBM regression model will be developed for 

tribological behavior prediction and finding wear and friction patterns in the transition of 

lubrication conditions. 

In chapter 6, data topology approaches will be applied to analyze the surface roughness of 

zinc oxide-coated stainless steel samples and sonochemically treated brass (Cu Zn alloy) samples. 

Surface roughness data for these samples will be obtained from CLSM and AFM analysis.  

Microscale and nanoscale roughness of these metallic samples will be studied applying different 

approaches to the evaluation of roughness parameters including the standard deviation of the rough 

profile height, correlation length, analyzing the extreme point location, persistence diagrams, and 

barcodes in the surface roughness data space. Additionally, a data-driven analysis of asperity 
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contact and stick-slip motion using AFM data over the Robin Hood landscape for friction modeling 

will be discussed.  

In chapter 7, roughness patterns, wetting, and frictional behavior of TiO2/ZnO phosphate 

and PMHS based novel antimicrobial coatings and TiO2 phosphate and PMHS based anticorrosive 

coatings will be characterized using the traditional and data topology approaches. For many 

application, water-repellant and antimicrobial properties of the substrate materials are desired 

without a notable change in the friction behavior compared to the uncoated state. A proper 

understanding of the correlations between surface roughness, wetting, and friction parameters of 

the substrates is necessary to develop and optimize the performance of these novel coating 

materials for different applications. In this chapter, such correlations will be investigated.    

In chapter 8, the conclusions of the dissertation are summarized. 
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CHAPTER 2: BASIC CONCEPTS OF SURFACE SCIENCE, WETTING, 

TRIBOLOGY, AND A REVIEW ON TRIBOINFORMATICS 

In this chapter, the basic concepts of surface science, wetting, and tribology will be 

introduced. Basics of data-driven approaches, for example, ML algorithms and topological data 

analysis (TDA) that will be used extensively in the consequent chapters will be discussed. Finally, 

a comprehensive review of the Triboinformatic approaches to tribology, wetting, and surface 

science will be presented. 

2.1. Surface Science and Tribology 

 Surface science is the scientific study of different physical and chemical phenomena that 

take place at the interfaces of two different phases. Solid-liquid, solid-gas, solid-vacuum, liquid-

gas interfaces all are covered in the study of surface science. Surface physics, surface chemistry, 

and surface engineering at the macro-, micro-, and nano-levels are the branches of surface science. 

Surface chemistry is the study of chemical reactions at the interfaces while surface physics is the 

study of physical interactions at the interfaces. Surface engineering focuses on the modification of 

the chemical composition of the surfaces by controlled incorporation of selected materials and 

functional groups to enhance certain properties of the surfaces. Surface diffusion, adhesion, 

roughness, surface reconstruction all are the important topics of surface science. 

 Tribology is a section of surface science which deals with the study of interacting solid 

surfaces in their relative motion. Due to its complex and multidisciplinary aspects, tribology has 

established itself as interdisciplinary and draws the attention of researchers from versatile fields 
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like physics, chemistry, material science, engineering and so on. Surface roughness, adhesion, 

friction, wear, and lubrication are the most important topics of tribology. 

2.1.1. Surface Roughness 

 Surface roughness is defined as the irregularities observed as repetitive or random 

deviations from the nominal surface forming the three-dimensional topography. According to the 

texture scale, roughness can be classified into two different types: macroroughness (roughness at 

the centimeter of millimeter level) and micro/nanoroughness (roughness at the 

micrometer/nanometer level). Waviness in the surface texture resulting from machine or 

workpiece deflection, vibration, chatter or heat treatment is the example of the macroroughness. 

Nano/microroughness is formed by short wavelengths fluctuations of the surface of, characterized 

by hills and valleys of varying amplitude and spacing [1].  Irregularities due to nano- and 

microroughness are inherent in surface treatment process. There are several methods to quantify 

roughness. Most commonly surface roughness is quantified by variations in the height of the 

surface relative to a reference plane. It is measured along a single line profile or along a set of 

parallel line profiles (surface maps). 

Surface roughness has notable effects on tribological and wetting properties and the 

interaction with the environment. With an increase in surface roughness, the coefficient of friction 

(COF) also usually increases. Surface roughness may also affect adhesion. Rough surfaces tend to 

wear quicker than smooth surfaces. An increase in roughness value promotes the corrosion as the 

irregularities in surface texture may form nucleation sites for crack and corrosion. 

2.1.2. Adhesion  
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 Adhesion is the phenomenon that occurs when dissimilar particles or solid surfaces are 

brought into contact. Surface roughness governs the contact at discrete contact spots, and 

interfacial adhesion takes place. A finite normal force, which is known as adhesive force, is 

required for adhesion or bonding across the interface. Adhesion is different from cohesion. Atomic 

bonding forces associated within the same material is known as cohesion. On the other hand, 

adhesive bonds resulting from bringing two dissimilar (or even the same) materials into solid state 

contact with an interface is referred to as adhesion. Adhesion occurs in solid-solid contacts with 

or without the presence of a liquid (i.e. lubricated surfaces). Generally, the presence of thin films 

of lubricants and contaminants reduces the adhesion between the solid surfaces; however, in some 

cases the opposite may happen.  

Depending upon the engineering application, adhesion can be either desirable or 

undesirable. Machineries involving sliding and rotational mechanism, adhesion is undesirable as 

adhesion results in friction and wear. In some application like transportation system, controlled 

adhesion is required. 

2.1.3. Friction and friction mechanisms 

Friction is an important phenomenon in physics and engineering with a great practical 

significance [2]. Friction is the resistance to motion, which is experienced in relative motion of 

solid surfaces, liquid layers, or material elements in contact. The resistive tangential force is the 

friction force. Dry friction, as the name implies, describes the friction between two solid surfaces. 

The quantitative properties of friction between solid surfaces are generally subject to Amontions-

Coulomb’s laws of friction (sometimes called “Coulomb’s laws”). The first law states that the 

friction force between the surface of two bodies is directly proportional to the normal load with 

which the two bodies are pressed together. The proportionality constant is the COF. The COF 



15 

 

between two sliding surfaces is defined as the ratio of the frictional force (𝐹𝑓) between them and 

the normal force, N (the force pressing them together), 𝐶𝑂𝐹 =
𝐹𝑓

𝑁
.  

According to the second law, the friction force and the COF do not depend on the apparent 

(or nominal) area of contact between the contacting bodies. This is because the contact occurs only 

on the tops of the asperities, and the real area of contact is only a small fraction of the apparent 

area of contact. The third law governs the kinetic friction, and it states that the friction force is 

independent of the sliding velocity. Amontons-Coulomb’s laws of friction are just empirical 

approximations and are not theoretically justified propositions. In many cases, especially at the 

micro- and nanoscale, Coulomb’s laws of friction are not valid. In particular, the friction force and 

the COF are not always independent of the apparent area of contact [3]. Several experimental 

results have also established that the COF is dependent on the size (macroscale vs. 

micro/nanoscale), load, and sliding velocity [4-5]. 

Friction is a complex phenomenon, with several mechanisms contributing to it. Adhesion 

and deformation have the most significant contributions to the overall friction force. The widely 

accepted theory of friction mechanisms was proposed by Bowen and Tabor [6]. They proposed 

that for sliding contacts, friction mechanisms have two components: interfacial adhesion between 

asperities and asperity deformation (ploughing) at the real areas of contact between the surfaces 

(known as asperity contacts). There is negligible interaction between the adhesion component (𝐹𝑎) 

and the deformation component (𝐹𝑑) of friction and the total friction force (F) can be presented as 

the sum of these two friction components, 𝐹 = 𝐹𝑎+𝐹𝑑.    

Adhesion occurs when dissimilar particles or solid surfaces are brought into contact under 

a certain normal loading condition or a combination of normal and shear loads. The molecular 
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forces between the surfaces cause adhesion between them. The interaction force between the solids 

due to adhesion can be caused by the covalent, ionic, metallic, or van der Walls bonds. When two 

surfaces are placed in contact under load, the tip of the asperities of the two mating surfaces form 

the real area of contact. The physical and chemical interactions between the asperities result in 

adhesion at the interface [1]. The adhesion component 𝐹𝑎 of the friction force is proportional to 

the real area of contact (𝐴𝑟) and to the shear strength (τ𝑎)  of the material. The friction force for a 

dry contact due to adhesion is defined as 𝐹𝑎 = 𝐴𝑟𝜏𝑎.  

The deformation component of friction is caused by both microscopic and macroscopic 

deformation. At the microscopic level, the displacements of the interlocked surfaces occur through 

the plastic deformation of the asperities. Asperities of the harder material plow grooves in the 

softer material. Surface roughness and relative hardness of the two surfaces greatly influence the 

deformation component of friction. Reducing surface roughness reduces 𝐹𝑑. To maintain motion 

in the deformation process, the lateral force equal or exceeding 𝐹𝑑  is required. For perfectly smooth 

surfaces, no groove is produced through the deformation of the contacting bodies in sliding. In 

case of plowing, the shear strength of the material is proportional to the average value of the surface 

slope [7]. During plowing, wear particles of various sizes are generated. 

Depending upon the application, friction can be desirable or undesirable. For automobile 

tires on roadways, in vehicle clutch and braking systems and in frictional transmission of power 

(i.e., v belt drives), friction is desired. However, in most other machine assembly, where rotating, 

rolling and sliding contacts are expected, friction is undesired (i.e., bearings and seals). Loss of 

energy and wear the common consequence of friction in these cases. 

2.1.4. Wear and wear mechanisms 



17 

 

The surface damage or removal of material from one or both sliding surfaces due to friction 

is known as wear. The wear mechanism governs the progressive removal of material from the 

surfaces sliding against one other taking place under different loading conditions. Adhesive, 

abrasive, delamination, and fatigue wear are the most common wear mechanisms. The wear 

mechanisms in monolithic materials can be significantly different from those of composites and 

multi-phase materials.  

Adhesive wear is caused due to the adhesion between the mating surfaces during sliding 

contact. As the atoms from different surfaces come in contact due to the applied load, short-range 

forces (covalent bonding forces) act among them. Consequently, adhesive junctions are formed at 

the spots of the real area of contact. These adhesive junctions are sheared when sliding is initiated. 

Due to the fracture and plastic deformation during extensive shearing, material transfer from the 

softer to the harder surface takes place. In this form of wear, extended sliding produces loose wear 

debris. 

In delamination wear, the accumulation of dislocations causes subsurface cracking at a 

certain depth under the tribosurface as the surface is deformed. Frictional and material properties, 

and tribological parameters govern the crack initiation and propagation at the subsurface region. 

Under repeated loading, an unstable propagation of a crack takes place once it exceeds a critical 

length, and a thin laminate of the softer material is generated as wear debris. Besides these two 

forms of wear, abrasive wear is observed in materials while sliding against a much harder 

counterface. Several forms of plastic deformation: cutting, plowing, and wedge formation of the 

asperities of the softer surface take place in abrasive wear.  

Archard and Hirst suggested that there are two mechanisms of sliding wear, and they 

depend upon the normal load [8]. When the normal load is below a critical value, the wear regime 
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is known as mild. The mild wear mechanism is steady and involves oxidation of material during 

sliding contact. For a normal load above the critical value, the wear mechanism is considered 

severe. This wear mechanism involves adhesive wear and delamination as significant material 

removal and surface failure take place. The critical load at which the transition from mild to severe 

wear occurs is known as the transition point which is characterized by a sudden increase in wear 

rate. A higher transition point is preferred for MMCs in engineering applications. 

Wear regimes of various materials are often characterized by so-called wear maps, where 

a particular mechanism of wear is typically presented as a function of two variables: the normal 

pressure and sliding velocity. They provide an instantaneous and convenient approximation of 

general wear pattern in a wide range of tribological interactions. 

2.1.5. Lubrication and lubrication regimes 

Lubrication is an important concept of tribology. For the contact of fluid-lubricated 

surfaces, different lubrication regimes define the frictional behavior. The effect of liquid 

lubrication on friction is usually analyzed with the so-called Stribeck curve (Figure 2.1) which 

summarizes different fluid lubrication regimes. Typically, the coefficient of friction (COF) is 

plotted against the Hersey number [9], a dimensionless lubrication parameter, which is the product 

of absolute viscosity, η, and sliding speed, V, divided by the normal load, P. Large values of the 

Hersey number correspond to hydrodynamic lubrication regime, when liquid viscosity is the main 

factor supporting the load. Small values of the Hersey number correspond to the boundary 

lubrication with a nanoscale or molecular layer of the lubricant exists. The plot presents the COF 

between the two fluid-lubricated surfaces as a function of a dimensionless Hersey number [9].  
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Figure 2.1. Lubrication regimes in Stribeck curve 

Four distinct lubrication regimes are shown in the Stribeck plot: the hydrodynamic, 

elastohydrodynamic (EHD), mixed, and boundary lubrication. These regimes are characterized by 

different friction and wear behavior. For the hydrodynamic lubrication regime, the lubricating 

films between sliding surfaces are stable and thicker than the height of the asperities or 

irregularities. No direct contact among the asperities of the mating surfaces occurs in this regime, 

which is often considered as the ideal lubricating condition in sliding applications. Since the 

lubricating film supports almost the entire normal load, friction and wear are low. However, 

adhesive wear is noticed at the initiation and at the ending of sliding.  

The elastohydrodynamic lubrication regime is found for heavily loaded contacts where 

elastic deformation of the mating surfaces shapes the HDL process [1]. Deformation changes the 

geometry of the contacting surface which affects the film formation and overall lubrication 

process. Like HDL, the normal load is supported almost entirely by the lubricating film although 

the film thickness is notably thinner in EHD. Adhesive wear at the beginning and ending of sliding, 

corrosion, and fatigue are some common forms of wear mechanism noticed in EDL regime. 
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The mixed lubrication regime occurs at a low sliding speed and higher load or temperature 

where the lubricant viscosity is notable reduced. With further increased normal load combined 

with lower sliding speed and reduced viscosity of the lubricant, the boundary lubrication regime 

is observed. Due to the absence of any stable lubricating film between the sliding surfaces, the 

normal load is entirely supported by extensive asperity contact. Consequently, this lubrication 

regime is characterized by a high COF and wear rate. For composites and self-lubricating 

materials, such as the Al/Gr MMC, the Stribeck curve can be significantly different, because in 

the limit of moderate and absent lubrication, the solid lubrication prevails over other mechanisms.      

2.2. Wetting 

Wetting can be defined as the ability of liquids to form interfaces with solid or liquid 

surfaces. This section will focus on the basic concepts of wetting, for example, wettability, contact 

angle, contact angle hysteresis, and wetting states. 

2.2.1. Wettability, Contact Angle, and surface types 

The conventional way of quantitating the wettability of the surface by the liquid is the 

contact angle (CA) between a liquid and a solid surface. When there exists an interface between a 

liquid and a solid, the angle measured through the liquid where the liquid-vapor interface meets 

the solid is known as the contact angle. The smaller the contact angle, the greater the degree of 

wetting. When the contact angle is 0, maximum wetting occurs and is known as spreading. 

Contact angle between 0 to 90, the solid is wettable and above 90 it is not wettable.     

A surface that is wetted by water (CA less than 90) is known as a hydrophilic surface. Contact 

angle more than 90 refers to a hydrophobic surface which is characterized by a reduced contact 

area between the solid surface and a water droplet. CAs higher than 150 are for superhydrophobic 
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surfaces (Figure 2.2), which have further reduced contact area between the solid surface and the 

liquid droplet. 

     

(a)                                        (b)                                                    (c) 

Fig.2.2. (a) hydrophilic surface (CA <90) (b) hydrophobic surface (90<CA<150) (c) 

superhydrophobic surface (CA>150) 

2.2.2. Models of wetting and wetting mechanisms 

In the ideal situation, for a perfectly smooth and homogeneous surface, the wetting 

mechanism can be described by the Young equation. According to Young, the equilibrium value 

of the most stable contact angle (CA), 𝜃0  is expressed by the following equation [9]. 

𝑐𝑜𝑠𝜃0 =
𝛾𝑠𝑣−𝛾𝑠𝑙

𝛾𝑙𝑣
          (1) 

where 𝛾𝑠𝑣 , 𝛾𝑙𝑣, and 𝛾𝑠𝑙 are the surface tension forces (or interfacial energies) of the solid-vapor, 

the liquid-vapor and the solid-liquid interfaces respectively acting on the contact line.  

However, Young equation cannot explain the wetting mechanism of rough, chemically 

heterogeneous solid surfaces properly. The observed contact angles for such surfaces are much 

different from 𝜃0, [10] predicted by Young equation. Two wetting states: the Wenzel [11] state 

and Cassie-Baxter [12] state explain the effect of surface roughness and chemical heterogeneity 

on contact angle. Wenzel proposed the equation for finding the apparent contact angle on a rough 



22 

 

but chemically homogeneous surface. According to the Wenzel, the apparent contact angle 𝜃𝑤 

which incorporates with the stable equilibrium state of a rough surface is given by 

𝑐𝑜𝑠𝜃𝑤 = 𝑟𝑐𝑜𝑠𝜃0         (2) 

Here, r is termed as the roughness factor which is the ratio of the “actual surface” to the superficial 

or “geometric surface”. The “actual surface” is the total solid surface area and the “geometric 

surface” is the surface area measured in the plane of the interface. For a smooth surface 𝑟 = 1 and 

for rough surfaces 𝑟 > 1. From equation (2), it is observed that roughening the surface (increasing 

value of roughness factor, r) yields dissimilar effects for hydrophobic and hydrophilic surfaces. 

Roughening a hydrophobic surface makes it more hydrophobic (i.e., an increase in contact angle) 

and roughening a hydrophilic surface makes it more hydrophilic (i.e., a reduction in contact angle). 

The Wenzel wetting state is known as complete homogeneous wetting as the surface below the 

droplet is completely wetted by the liquid and thus creates a homogeneous solid liquid interface.  

The Cassie-Baxter state extends Wenzel’s analysis and explains the wetting mechanism of 

heterogeneous surfaces (i.e., composite material surfaces). According to this model, interfacial 

heterogeneities affect wetting as the apparent contact angle changes when composite materials are 

involved. According to Cassie-Baxter state, the apparent contact angle, 𝜃𝑐 for a smooth but 

chemically heterogeneous surface consisting of N components is expressed by the following 

equation 

𝑐𝑜𝑠𝜃𝑐 =  ∑ 𝑓𝑖𝑐𝑜𝑠𝜃𝑖
𝑁
𝑖=1         (3) 

 Where, 𝑓𝑖 is the fraction of the solid surface area wetted by the liquid and 𝜃𝑖 is the equilibrium 

contact angle. When tiny air pockets are trapped between the solid surface and the liquid droplets, 
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the interface formed by the solid, liquid and air pockets becomes non-homogeneous. In the Cassie-

Baxter state, the apparent contact angle (𝜃𝑐) is measured using the following equation. 

𝑐𝑜𝑠𝜃𝑐 =  𝑟𝑓𝑓𝑆𝐿𝑐𝑜𝑠𝜃0 − 1 + 𝑓𝑆𝐿       (4) 

Here, 𝑟𝑓 is the roughness factor which is the ratio of the total solid-liquid surface area to 

the projected solid-liquid surface area, 𝑓𝑆𝐿 is the fractional solid-liquid interfacial area and  𝜃0 is 

the equilibrium contact angle. 𝑓𝑆𝐿 ranges between 0 ≤ 𝑓𝑆𝐿 ≤ 1 and the equation is valid when air 

pockets are formed and liquid penetration into the air pockets doesn’t take place. [13]. If the air 

cavities on the surface are filled by the liquid (known as “impregnating” Cassie wetting regime), 

the apparent contact angle is given by 

𝑐𝑜𝑠𝜃𝑐 =  1 + 𝑓𝑆𝐿(𝑐𝑜𝑠𝜃0 − 1)        (5)  

2.3. Triboinformatic approaches 

Triboinformatics can be defined as an application of ML and other data-centric methods of 

data analysis to tribological problems, such as establishing relationships between material and 

surface structure and properties and the tribological performance.  

2.3.1. Machine learning analysis 

ML is a data-driven analysis, which utilizes the idea that a model can learn from newly 

acquired data, similar to how humans learn from experience. ML algorithms use the learning 

experience to recognize patterns, establish correlations, and make decisions without extended 

programming and human intervention.  

ML approaches are particularly effective for solving problems where there are numerous 

potential answers, but no fully satisfactory models are available to label the correct answers. In 
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such cases, ML models can be trained with the available data to establish correlations among 

variables, refine the model from the learning experience, and find correct answers. ML has been 

successfully implemented in solving complex real-world problems in diverse areas ranging from 

trade and commerce to medical sciences, to face and pattern recognition, to materials behavior 

prediction, and in many other areas.   

 

Figure 2.3. Machine learning algorithm types 

ML algorithms are roughly classified into three general categories: supervised learning, 

unsupervised learning, and reinforced learning (Figure 2.3). Supervised learning algorithms 

which are often considered the most successful ML algorithms can automate the decision-making 

process through learning from training examples. For example, the coefficient of friction and wear 

rate could be the outputs and the material variables are the inputs. In supervised learning, first, the 

model is trained with examples where the output is known for a particular set of input variables. 

From these training examples, the model effectively learns about the input-output relation and 

develops a prediction scheme for any new set of input variables. Such supervised algorithms can 

be used in developing regression and classification models. Regression models are used to predict 

numerical or continuous outputs, for example, predicting the wear rate of a material from material 
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variables. Classification models are used to predict categorical or discrete outputs, for example, 

predicting the wear mechanism.  

On the contrary, in unsupervised learning, the algorithms are provided with only input data 

with no known output data or target variables. The algorithms exhibit self-organization and learn 

to identify patterns using data that are neither known nor labeled. Consequently, the unsupervised 

ML algorithms are more complex to visualize and evaluate in problem-solving. Mapping and 

clustering wear zones depending on the sliding speed and load during sliding interactions are an 

example of unsupervised learning problems. 

In reinforcement learning, the model is trained to make a sequence of decisions through 

trial and error. For example, reinforcement learning is used to train a self-driving car. In the 

training process, the ML model selects different options to perform a task and receives feedback. 

The feedback is provided through predefined award and punishment functions. If a selected option 

is beneficial to achieve the goal, a reward is assigned and vice versa. The model thus learns through 

its own actions and corresponding feedback and optimizes its actions for minimizing punishments 

and maximizing rewards. Reinforcement learning can be applied in experimental modeling, 

manufacturing process modeling, and optimization.  

The selection of the ML algorithms and the development of ML models depend on the 

problem to be solved, the goal of the problem-solving, and the available data. In this section, we 

present a brief description of different types of ML models successfully implemented in problem-

solving involving tribological structure-property relationships in metals and composites. 

2.3.1.1. Artificial Neural Network (ANN) 
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ANN is by far the most popular ML algorithm used in tribological studies [14-16]. ANN 

is an advanced ML algorithm that can mimic the learning process of a human brain and can be 

used in supervised, unsupervised, and reinforced learning. Through billions of neurons and 

synapses, the human brain forms a complex network that can process information, learn from past 

experiences, and generate meaningful decisions from these processes. ANN uses a similar data 

processing technique having a large number of interconnected processing units (Figure 2.4). With 

the processing network, ANN models map the input-output relation from the training examples 

and use that to predict outputs for new input variables.  

Generally, the structure of an ANN model consists of an input layer, multiple hidden layers, 

and an output layer. A large number of neurons or intermodal units in the hidden layer between 

the input and the output layers convert the data of the previous layer using a predefined activation 

function and pass it to the next layer. Backpropagation or feed-forward networks are selected for 

the multilayer perceptron (MLP) to develop the ANN model. Optimized performance of ANN 

models is generally ensured by adjusting the regularization parameter, activation function, number 

of hidden layers, and the number of neurons in each layer. ANN is an efficient algorithm for 

handling complex non-linear relationships with a big-data framework. Though several studies have 

shown that it can be satisfactorily adjusted for a small dataset [17], still its predictive performance 

for small datasets is often considered as its limitation.  
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Figure 2.4. The architecture of a feed-forward multilayer perception of an ANN model 

2.3.1.2. K-Nearest neighbor (KNN) 

KNN is a popular supervised ML algorithm used for both classification and regression 

analysis. This comparatively simple ML algorithm utilizes a non-parametric statistical method to 

develop a prediction model. The prediction for a new data point is based on a distance function 

and KNN predicts the output based on the closest data points (neighbor) in training data. Distance-

based weights can be assigned for each neighboring point to make sure that the nearest points are 

contributing more than the distant points in the overall prediction. The number of nearest data 

points (n_neighbors) that are considered for deciding the result for a new point is an important 

parameter in developing a KNN model. A poor generalization behavior for a new data point due 

to overfitting is observed for a small “n_neighbors”.  On the contrary, the model may fail to address 

the sensitivity of a new data point due to underfitting for a large “n_neighbors”. The proper 

adjustment of “n_neighbors” ensures the optimized model performance for KNN models. The 

“weight” of the distance function is another important optimization parameter for KNN models. 

Some strengths of the algorithm include easier understanding, simpler modeling, and reasonable 

performance with minimum parameter adjustments. The inability of handling many features, weak 
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performance in depicting complex correlations, and a slow processing speed for a large dataset are 

some of the limitations associated with this algorithm. 

2.3.1.3. Support vector machine (SVM) 

SVM is a popular supervised learning algorithm known for its excellent performance for a 

small dataset with a large number of input variables. Though SVM is more common in solving 

classification problems, it also performs satisfactorily in regression problems. Arranging data in 

the hyperplanes are performed through different kernel functions including the linear kernel, 

polynomial kernel, sigmoid kernel, and radial basis function (RBF) kernel. The ability to define 

hyperplanes in high-dimensional input space allows the kernelized SVM to solve non-linear 

complex problems effectively. RBF kernel is popular in developing SVM models for both 

classification and regression. Kernel coefficient (gamma) and the regularization parameter (C) 

are the two highly correlated parameters that regulate the complexity of these models and are 

adjusted concomitantly to ensure optimized model performance. However, SVM often 

underperforms in handling a large dataset, especially with the presence of noise and outliers in 

the data.    

2.3.1.4. Random Forest (RF) 

RF is a powerful ensemble algorithm that combines the prediction capacities of multiple 

prediction or decision-making units known as decision trees. A decision tree is a decision-making 

or prediction unit that employs a tree-like. As the name suggests, RF uses a collection of decision 

trees to develop the prediction model. Each decision tree is unique and works on a small portion 

of the data. The individual trees make effective prediction results with that small portion of the 

data. However, developing decision trees with a small portion of the data can cause the overfitting 
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problem in the presence of outliers and noise in the data. Overfitting is a situation when a 

prediction model fits precisely against a small number of training data and hence fails to provide 

accurate prediction for new data due to poor generalization capacity.  

The overfitting problem associated with a single tree is overcome in RF using the “bagging 

mechanism” in which the results of all decision trees are averaged to generate the final result. 

Unlike the GBM algorithm, RF incorporates randomness in the decision tree-building process 

that retains the uniqueness of the decision trees. The model complexity largely depends on the 

number of decision trees or n_estimators and the number of features in splitting or max_features. 

Feature scaling is optional, and RF performs satisfactorily even without a proper parameter 

optimization. RF is a popular choice in both regression and classification problems in all fields 

and can handle large datasets with outliers and many input variables efficiently [18]. Weak 

prediction performance for very complex, high dimensional, and sparse data is considered a 

limitation of the RF algorithm.  

2.3.1.5. Gradient boosting machine (GBM)        

GBM is a powerful ensemble algorithm that uses decision trees as the building block. This 

is a popular algorithm for both classification and regression problems and it often exhibits better 

performance than other ML algorithms with the same data. In this tree-based algorithm, each tree 

works on a small portion of the data and the optimization of the arbitrary loss function are done 

for each of them which is popularly known as the “boosting mechanism”. In different stages of 

tree-building in GBM regression algorithms, decision trees are adjusted to the negative gradient of 

the loss functions [18]. In an iterative process, collectively, the decision trees of GBM models, 

provide strong predictive performance. Unlike the RF algorithm, decision trees are not randomized 

in GBM, instead, they are pre-pruned in a serial manner. In this way, mistakes in the tree-building 
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of previous steps are corrected in the next tree. This feature along with the “boosting mechanism” 

enables the GBM algorithm to adapt with higher-order complex correlations existing in the data. 

For GBM, the number of boosting stages (n_estimators) and the learning rate are the most 

important optimization parameters to optimize the model complexity. Feature scaling is considered 

optional for GBM although feature scaling makes the model more sensitive to parameter tuning. 

Its ability to use very shallow decision trees to develop the prediction model makes it efficient in 

terms of memory utilization and speed. However, the sensitivity of this algorithm towards outliers 

present in the data is considered a limitation of GBM.     

2.3.1.6. Principal component analysis (PCA) 

PCA is an unsupervised learning algorithm popularly used in the visualization of higher-

dimensional data. It is well known for dimensionality reduction where numerous variables are 

transformed into a small number of uncorrelated variables preserving almost the entire information 

of the data. In this algorithm, the new variables or the features possess no statistical correlation as 

the actual dataset is rotated accordingly. The first principal component is a linear combination of 

variables presenting the maximum variance in the data. Similarly, the second principal component 

presents the maximum possible remaining variance while having no correlation with the first 

principal component. Using these two components, a dimensionally reduced visual representation 

of the high dimensional dataset is possible. The accuracy of the PCA models can be adjusted to a 

permissible level but the loss of information during the dimensionality reduction is considered as 

a limitation. However, PCA offers the extraction of the relevant features from a large multivariable 

dataset. The extracted features can also be used as inputs for other supervised ML algorithms in 

solving complex problems. 

2.3.1.7.  Hybrid and ensemble models 
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Hybrid and ensemble models are developed through the integration of multiple ML 

algorithms by soft computing and following certain optimization techniques [19]. The goal is to 

enhance the predictive performance by overcoming the limitations of a standalone algorithm while 

utilizing its strength. In the hybridization process of two standalone algorithms, often one unit 

develops the input-output prediction frame, and the other unit is responsible for its optimization 

for achieving superior accuracy in output prediction. Though organizing the standalone algorithms 

properly and optimizing the hyperparameters can be more complex in hybrid and ensemble 

models, they often yield better predictive performance for complex datasets. 

2.3.2. Triboinformatic studies of metals and composites 

This section discusses different variables affecting friction, wear, and surface properties of 

metals alloys, and MMCs and present studies where ML models have been used to predict these 

properties.    

2.3.2.1. Typical variables affecting friction, wear, and surface properties  

In traditional tribological studies, friction, wear, and surface properties are often presented 

as functions of a single variable considering several others as constant [20,21]. This approach is 

useful for simple and prompt visualization of the effect of a single variable on the output. However, 

this approach is too simplistic to get an accurate prediction of the tribological and surface 

properties. Friction, wear, and surface properties of metals, alloys, and metal matrix composites 

depend on numerous variables and factors. Intrinsic properties of a material, for example, density, 

hardness, or tensile strength, are closely related to the manufacturing process, for example, 

material processing techniques and heat treatment can be recognized as material variables. Sliding 
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speed, sliding distance, normal load, counterface, lubrication condition, and tribological testing 

methods are considered tribological variables.  

Friction and wear have complex mechanisms and share complex, higher-order 

relationships with material variables and tribological test conditions. The friction and wear 

mechanisms for metals and monolithic alloys can also be significantly different from those of 

multi-phase MMCs [1,6,8]. For example, unlike the base aluminum alloys, in the graphite 

reinforced aluminum MMCs, the formation of a self-lubricating graphite film from the smeared 

graphite particles dictates the friction and wear mechanisms [22].    

Kumar et al. [23] used surface methodology response (RSM) and ANN models to analyze 

the surface roughness properties of Al 7075 hybrid composites. They reported that multiple 

variables of the machining process including feed rate, speed, and approach angle have a 

significant impact on the average surface roughness of these composites. Radhika and co-workers 

[24] used pattern recognition-based RF models to predict the surface roughness of hybrid 

aluminum MMCs. They considered multiple variables of the turning process including feed, speed, 

depth of cut, and flank wear to successfully predict the average roughness of the hybrid MMCs.      

These studies suggest the importance of multivariate analysis for a reliable prediction of 

friction, wear, and surface properties. Data-driven, multivariate, ML models incorporating strong 

prediction algorithms can not only predict the tribological and surface properties with a satisfactory 

accuracy but are also capable of generating novel perceptions about them. 

2.3.2.2. Tribological and surface property prediction for metals and metallic composites 

The study by Jones et al. [25] was one of the first applications of an ML algorithm in wear 

volume prediction for metal and alloys. They collected experimental tribological data for rub shoe, 
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pin-on-disk, and four-ball test methods for various materials including different grades of steel and 

polymers from different sources to develop ANN models to predict the wear volume. They used 

load, speed, sliding distance, temperature, friction coefficient, and kinematic viscosity as the input 

variables. Despite having some limitations, such as a small dataset (55 datapoints) and fewer 

variables as the inputs, this preliminary study reported promising results and inspired future studies 

of ML in tribological behavior prediction.  

Zhang and co-workers [26] developed ANN prediction models for the specific wear rate 

and the coefficient of friction for short fiber reinforced polyamide composites. They used matrix 

volume, fiber volume, PTFE volume, compression modulus, compression strength, hardness, 

fracture toughness, temperature, normal force, and wear speed as the input variables in a 3-layer 

feed-forward ANN model with a tan-sigmoid transfer function. Despite using a small dataset of 

103 datapoints of experimental wear measurements, these models could predict the output 

satisfactorily (R2>0.9). 

Genel et al. [27] developed ANN models to predict the specific wear rate and friction 

coefficient of alumina fiber reinforced zinc-aluminum matrix composites. They considered applied 

load, fiber volume fraction, and orientation of fiber as the input variables for the multilayer feed-

forward ANN models. They determined the mean relative errors (MRE) for the prediction models 

and reported the accuracy of 94.2% and 99.4% in specific wear rate and friction coefficient 

prediction. However, they used only 44 experimental data as the dataset and only three variables 

as input. Rahimipour et al. [28] developed an optimization model with ANN to optimize the 

manufacturing process of boron carbide reinforced aluminum-coper MMCs to achieve a high wear 

resistance. They considered the cooling rate, temperature gradient, volume percentage, and 

average particle size of boron carbide as the optimization parameters for the output of porosity and 



34 

 

wear loss. They reported 10 C/Sec, 100,000 C/m, and 20.1% as the optimized cooling rate, 

temperature gradient, volume percentage of boron carbide, respectively, from the model. 

Besides the above-mentioned studies, several others also pursued ML and Triboinformatic 

approaches in surface and tribological behavior prediction and optimization of metals, alloys, and 

composites [29-35]. Table 2.1 presents a list of such studies in which ML models have been 

implemented. 

Table 2.1: Overview of the application of ML approaches in friction, wear, and roughness 

prediction of metal, alloys, and composites 

Material Dataset 

details 

Input 

variables 

Outputs ML models Prediction 

performance 

Metrics 

References 

Steel, 

polymers, 

and other 

metals 

A collected 

dataset of 

55 wear 

volume 

measureme

nts (training 

set: 43, test 

set: 12) 

load, speed, 

sliding 

distance, 

temperature, 

friction 

coefficient, and 

kinematic 

viscosity 

wear 

volume 

ANN 

regression 

(backpropagati

on, dampened 

recurrent, and 

jump 

connections) 

Coefficient of 

determination 

(R2) 

0.63<R2<0.97 

 

Jones et al. 

[25] 

PA46 

(Nylon 46) 

reinforced 

with glass or 

carbon 

fibers, 

PTFE and/or 

Graphite 

A dataset of 

72 wear 

volume 

measureme

nts (training 

set: 62, test 

set: 10) 

compressive 

strength, 

compression 

modulus, 

contraction to 

failure, tensile 

strength, strain 

to failure, 

impact 

strength, 

testing 

temperature, 

starting load, 

average 

load, average 

velocity 

wear 

volume 

ANN 

regression 

model (3-layer 

feed forward 

neural network) 

Coefficient of 

determination 

(R2) 

0.6<R2<0.8 

 

Velten et al. 

[16] 
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Short fiber 

reinforced 

polyamide 

4.6 (PA4.6) 

composites 

A dataset of 

103 wear 

measureme

nts (training 

set: 88, test 

set: 15) 

matrix volume, 

fiber volume, 

PTFE volume, 

compression 

modulus, 

compression 

strength, 

hardness, 

fracture 

toughness, 

temperature, 

normal force, 

and wear speed 

Specific 

wear 

rate, 

COF 

3-layer feed 

forward ANN 

regression 

model with tan-

sigmoid 

transfer 

function 

Coefficient of 

determination 

(R2), R2<0.9 

Zhang et al. 

[26] 

Alumina 

fiber 

reinforced 

zinc–

aluminum 

composites 

Separate 

datasets of 

44 wear and 

friction 

measureme

nts (training 

set: 32, test 

set: 12) 

Applied load, 

fiber volume 

fraction, and 

orientation of 

fiber 

Specific 

wear rate 

and 

friction 

coefficie

nt 

multiple-layer 

feed-forward 

ANN 

regression 

Mean relative 

error (MRE), 

MRE = 5.8% 

for wear rate, 

MRE = 0.6% 

for COF 

Genel et al. 

[27] 

Boron 

carbide-

reinforced 

aluminum-

copper 

composites 

Optimizatio

n problem 

to select the 

input 

variables 

Cooling rate, 

temperature 

gradient, 

volume 

percentage, 

and average 

particle size of 

B4C 

Porosity, 

wear loss 

3-layer back 

propagation 

ANN 

optimization 

model 

Root mean 

squared error 

(RMSE), 

Optimized 

RMSE = 0.09 

Rahimipour 

et al. [28] 

Tungsten 

reinforced 

copper 

composites 

Experiment

al dataset of 

180 

datapoints, 

training: 

126, 

validation: 

27, test: 27 

W wt.%, 

sintering 

temperature, 

sliding 

distance, and 

load 

Specific 

wear rate 

and COF  

ANN 

regression 

model 

(RBFNN) 

Correlation 

coefficient (R), 

R= 0.976452 

(wear rate), R= 

0.96571 (COF) 

Leema et al. 

[29] 

SiC 

reinforced 

Al 2219 

composites 

81 

datapoints, 

training set: 

49, 

validation 

set: 16, test 

set: 16. 

Weight percent 

of SiC, 

sintering 

temperature, 

normal load, 

and speed 

Wear, 

friction 

force, 

temperat

ure rise 

of pin 

ANN 

regression 

model (feed 

forward back 

propagation) 

Correlation 

coefficient (R) 

and MSE, wear 

(MSE=0.0017, 

R=0.7149 ), 

friction force 

(MSE=2.68218 

, R =0.8175), 

temperature 

rise of 

pin(MSE=2.97

357 , R 

=0.9138) 

Radhakrishn

an et al. [30] 
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Hybrid 

copper 

composites 

27 

experimenta

l datapoints 

(training: 

24, 

validation:3

) 

Volume 

percentage, 

load, sliding 

velocity, 

sliding speed 

Wear 

rate 

ANN 

regression 

(feed forward 

back 

propagation) 

Mean absolute 

error (MAE), 

MAE<3.41% 

Thankachan 

et al. [31] 

SiC 

reinforced 

aluminum 

composites 

27 

experimenta

l datapoints 

(training:19

, 

validation:4

, test:4) 

applied load, 

experiment 

time, and SiC 

wt % 

Wear 

(%) 

ANN 

regression 

(Back 

propagation) 

Mean squared 

error (MSE), 

MSE = 2.0×10-

4  

Idrisi and 

Mourad [32] 

Al2O3 

reinforced 

Al7075 

MMCs 

1080 

datapoints 

(training 

set:898, test 

set:182) 

Density, 

Al2O3 wt.%, 

load, and 

sliding distance 

Wear 

height 

loss 

ANN 

regression 

(Back 

propagation) 

Mean squared 

error (MSE) 

=4.6563, 

Correlation 

coefficient 

(R)=0.99908 

Pramod et 

al. [33] 

Al/SiC/Gr 

hybrid 

composites 

27 

experimenta

l datapoints 

(training: 

70%, 

validation: 

15%, 

test:15%) 

sliding speed, 

normal load, 

and graphite 

addition (wt.%) 

Wear 

rate, 

COF 

ANN 

regression (feed 

forward back 

propagation) 

 Regression 

coefficient (R)= 

0.98905 

Stojanović 

et al. [34] 

SiC 

reinforced 

Al 7075 

composites 

Experiment

al dataset of 

160 

datapoints, 

training set: 

120, 

validation 

set: 20, test 

set: 20 

feed rate, 

speed, and 

approach angle 

Surface 

roughnes

s 

surface 

methodology 

response 

(RSM) and 

ANN (feed 

forward back 

propagation) 

Regression 

coefficient (R), 

Mean squared 

error (MSE), 

R= 0.9972 

(RSM), R= 

0.99571 

(ANN), MSE = 

0.0022678 

(ANN) 

Kumar and 

Chauhan 

[23] 

9SMnPb28k

(DIN) 

machining 

steel 

Experiment

al dataset of 

30 

datapoints, 

training set: 

27, 

validation 

set:3 

feed rate, 

cutting speed 

and depth of 

cut 

average 

roughnes

s (Ra) 

and 

maximu

m peak 

to valley 

height 

(Rt) 

ANN 

regression 

(back 

propagation) 

Mean absolute 

error (MAE), 

MAE < 28.29% 

(Ra), MAE < 

8.91% (Rt) 

Davim et al. 

[35] 

 

2.3.3. Topological data analysis (TDA) 
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Topological data analysis (TDA) is another method that belongs to the Big Data paradigm 

which has been applied for surface roughness analysis. TDA is an approach to the analysis of 

multi-dimensional datasets using techniques from topology, an area of geometry concerned with 

the properties of objects that are preserved under continuous deformations. The traditional 

analysis of surfaces involves their characterization of a single or a limited number of parameters. 

Such analysis often comes short in characterizing surfaces with complex topographies.  

From the physics point of view, dry friction is a collective phenomenon characterized by a 

dramatic reduction of the number of degrees of freedom (e.g., corresponding to individual asperity 

contacts) to a small number of macroscale degrees of freedom. However, traditional approaches, 

such as thermodynamic methods, do not always explain friction because it is a thermodynamically 

non-equilibrium process. In this situation, computational methods of reduction of degrees of 

freedom (e.g., principal component analysis) may be useful. TDA is one of such methods, which 

has been successfully applied to the analysis of visual images.    

A rough surface is a complex object, and it is often difficult to completely characterize 

surface roughness with one or several parameters.  Such parameters may be different for different 

applications. Thus, the traditional tribological surface roughness parameter, Ra, or the mean 

deviation of the rough profile is not applicable to the studies of wetting of rough surfaces and 

superhydrophobicity, where other parameters, such as the Wenzel roughness factor, Rf, are used 

[36]. Moreover, different surfaces may need different parameters even for the same application; 

thus, the same value of Ra, which only characterizes the height of surface asperities, may 

correspond to surfaces with very different horizontal surface roughness features. In general, a 

rough surface is characterized by an infinite number of parameters that can be represented as 

belonging to certain high-dimensional data space. TDA is used for dimensionality reduction of 
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complex higher-dimensional surface property data and inferring relevant features and properties 

of the underlying surfaces [37].  The difference between the PCA and TDA methods is that the 

latter concentrate on topological features (such, for example, as multidimensional holes) rather 

than on finding principal components.  

2.3.3.1. Data topology of visual images 

The TDA analysis of 2D surface roughness profiles is based on the analogy with visual 

images consisting of pixels of various brightness, which corresponds to the height of the rough 

profile.  Natural images captured by a digital camera are represented as vectors of pixels in a very 

high dimensional vector space with each dimension corresponding to one pixel [38]. Lee et al. 

[39] suggested that images can be effectively processed by breaking them down into small pixel 

patches and extracting useful information through dimensionality reduction. They worked on the 

database of black and white images collected by Van Hateren et al. [40] and considered 3×3 pixel 

patches within the images. Each patch was represented by one value of contrast, and the 3×3 

patches were viewed as arrays of pixels in a 9D dataspace. Through the normalization of the data, 

the probability distribution of the contrast gradient could be identified from the gradual change 

in contrast in the high and low contrast patches.  

The distribution of patches in the dataspace was not random. It turned out, that patches 

with either sharp (i) horizontal or (ii) vertical features dominated over those inclined under an 

arbitrary angle, while (iii) gradual change of brightness (in any direction) dominated over random 

features. Depending on the directionality in the isotropic contrast gradients, data points tended to 

organize in parametrically specified nonintersecting primary and secondary circles (one primary 

circle corresponding to a gradual change of brightness in any direction and two secondary circles 

corresponding to the horizontal and vertical features) in the 9D or 8D data space (Figure 2.5). 
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Carlsson et al. [38] further reported that the organization of data in primary and secondary circles 

in the study of Lee et al. [39] can be considered topologically equivalent to the Klein bottle 

formation.  

Singh et al [41] studied the cell arrangement architecture in breast cancer histology images 

using TDA and proposed a framework of using this approach in extracting the geometric features 

inherent in tumor cell arrangements. They developed classifiers where they employed Betti 

numbers as means to extract relevant features from the images and differentiate various subtypes 

of cancer. They reported an accuracy of 69.86% of their TDA based classifier which was 

impressive compared to other alternative methods. Dey et al. [42] also used topological 

persistence analysis to develop models to improve image classification techniques. Vandaele and 

co-workers [43] further developed TDA based methods for Topological Image Processing (TIP) 

and Topological Image Modification (TIM) to detect objects. They presented a case study using 

skin lesion images to demonstrate the effectiveness of their TDA based model. 
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Figure 2.5. (a) The primary circle and two mutually nonintersecting secondary circles 

corresponding to isotropic contrast gradients and vertical and horizontal features, respectively, in 

3×3 patches in the R8 space for natural images. Each secondary circle intersects twice with the 

primary circle. (b) The Klein bottle surface that fits that such configuration topologically. (c) The 

roughness profile image of a ceramic tile surface received from confocal microscopy, and (d) 

isotropy and anisotropy in surface roughness distribution 

2.3.3.2. Data topology for surface characterization 

In tribological applications, surface roughness and topography are crucial aspects in 

characterizing friction, wear, and damage [44]. Rough surfaces possess complex topography, 

which cannot be characterized by a single parameter. The selection of appropriate roughness 

parameters depends on a particular application. Large datasets representing surface topography 

possess orderliness, which can be expressed in terms of topological features in high-dimensional 

dataspaces reflecting such properties as anisotropy and number of lay directions. The features are 

scale dependent because both sampling length and resolution affects them. In traditional analysis, 

often macroscale measurements are devised for surface roughness and irregularities which are 

sometimes nanoscale in nature. Such approaches may come short in characterizing the true nature 

of the underlying surface. The study of correlation length, extremum point distribution, persistence 

diagrams, and barcodes using data-driven analysis can provide valuable information such as scale 

dependency and anisotropic behavior besides the traditional analysis. However, there are only a 

few examples of TDA based study in surface characterization.  

Yesilli and Khasawneh [45] employed a TDA-based approach to study persistent 

homology for extracting information about the surface. They used persistence images, Carlsson 

coordinates, and template functions to acquire feature matrices for each surface or profile. They 
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considered both areal images and profiles of synthetic surfaces in their study and proposed a TDA-

based approach to classifying the roughness level. They also argued that the TDA-based approach 

can be utilized to fully automate the process of adaptive feature extraction, unlike the traditional 

surface analysis tools. Besides the above-mentioned study, several others also pursued TDA based 

approaches in analyzing surface properties [46-48]. 

2.4. Conclusion  

 The basic concepts of surface science, tribology, and wetting are discussed in this chapter. 

Triboinformatics approaches, different ML algorithms and TDA approaches have been discussed. 

These concepts have been extensively used in next chapters of the dissertation where tribological, 

wetting and surface properties have been studied. Also, a review on Triboinformatic approaches 

in surface science have been presented.   
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CHAPTER 3: FRICTION AND WEAR PREDICTION OF ALUMINUM 

ALLOYS USING TRIBOINFORMATIC APPROACHES 

In the previous chapter, the basic concepts of surface science, wetting, and tribology along 

with a review of Triboinformatics approaches had been presented. In this chapter, Correlations of 

friction and wear of aluminum (Al) base alloys with their material properties, processing 

procedure, and tribological test variables are studied using traditional and Triboinformatics 

approaches. Data-driven approaches, for example, ML algorithms can yield a better understanding 

of how tribological and material properties correlate.  Five ML regression models are developed 

to predict the friction and wear behavior of these alloys and to find the most important parameters 

influencing these behaviors.  

3.1. Introduction  

Monolithic aluminum and its alloys receive widespread attention in industrial applications 

due to their unique material properties. About 75% of the total aluminum metal ever processed is 

still in the application for high durability and excellent recyclability of aluminum while retaining 

desirable properties [1]. Corrosion resistance, high specific strength and stiffness, and high 

conductivity are some of the desired mechanical properties that make aluminum and its alloys 

promising materials in weight-critical aerospace and automotive applications [2-3]. Due to 

superior mechanical properties and commercial aspects, they have been extensively investigated 

for their potential use in tribological applications [4-7]. Modest wear rate, less friction, limited 

material removal, and less temperature raise during sliding contacts are some of the requirements 

in such applications. However, a high wear rate and friction, tendency to seize, and extensive 

plastic deformation [8-9] are some limitations in the tribological performance of aluminum alloys 
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that prevent their widespread tribological applications in dry sliding and under poor lubrication. 

To improve the tribological performances of aluminum alloys while retaining their desired 

mechanical properties, the incorporation of graphite particles as solid lubricants into the aluminum 

matrix for manufacturing self-lubricating aluminum metal matrix composites (MMC) has been 

explored extensively in recent years [10-18]. However, understanding the tribological behavior 

and the effect of different material and tribological variables on tribological performance remains 

the key aspect for such tribological performance enhancement of aluminum alloys.     

The coefficient of friction (COF) is a dimensionless scalar quantity used to quantify friction 

[19]. COF is the ratio of the friction force (𝐹𝑓) and normal load (N) pressing the sliding surfaces 

together. 

𝜇 =
𝐹𝑓

𝑁
            (1) 

Bowden and Tabor theorized two independent components of friction for sliding contacts: 

adhesion (𝐹𝑎) and deformation / plowing (𝐹𝑑) [20]. Although the assumption that these 

components are independent is a simplification, the total friction force (𝐹𝑓), and the COF is often 

presented as a sum  

𝜇 =
𝐹𝑓

𝑁
=

𝐹𝑎+𝐹𝑑

𝑁
=

𝐹𝑎

𝑁
+

𝐹𝑑

𝑁
= 𝜇𝑎 + 𝜇𝑑       (2) 

Where the COF due to adhesion and deformation are 𝜇𝑎 and 𝜇𝑑, respectively. Physical and 

chemical interactions due to molecular forces at the real area of contact between the asperities of 

the surfaces under different loading conditions cause adhesion [21]. The deformation component 

of friction is caused by deformations (both elastic and plastic) of asperities of the mating surfaces 
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at both microscopic and macroscopic levels. It depends upon several mechanical properties, for 

example, yield strength and hardness of the aluminum alloys.  

Oxidation-dominated wear, adhesive wear, delamination wear, and melt lubrication wear 

are the most dominant wear mechanisms found in aluminum alloys [9]. The frictional heat 

generated during sliding promotes the oxidation of aluminum and form a thin, chemically inert 

oxide layer on the surface. With increasing loads, adhesion between the surfaces initiates adhesive 

wear where the adhesive junctions are deformed plastically and material removal from the 

aluminum surface takes place including the oxide layer. In delamination wear, plastic shearing of 

metal in the sliding direction takes place. The laminate wear debris is generated through subsurface 

cracking taking place at certain depths under the surface. 

Though several fields of science including chemistry, medical science, and biology have 

already accommodated AI and data-driven ML algorithms as reliable tools, they are comparatively 

newer addition in material science [22]. Recent successes in integrating ML in material and 

tribological property prediction [23-25] have opened new prospects in material science and 

tribology. Traditional analysis focusing on isolated experimental observations often comes short 

in generating a universal understanding of tribological behavior due to the complexity associated 

with numerous parameters characterizing friction and wear. ML algorithms can be trained with 

experimental tribological data to predict the tribological behavior for different combinations of 

material and tribological variables. Complex ML algorithms like support vector machine (SVM) 

and artificial neural network (ANN) can identify the variability in the data and adjust their learning 

process to predict an accurate outcome which can provide a broader understanding of tribological 

behavior.  
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In this chapter, first, a traditional analysis of the friction and wear behavior of aluminum 

alloys is presented in terms of material and tribological test variables. Then, using tribological data 

of these alloys reported in the literature, ML models are developed to predict the COF and wear 

rate. Finally, the performance of different ML algorithms in predicting the tribological behavior is 

analyzed and a comparative analysis of different material and tribological test parameters 

influencing the tribological behavior of aluminum alloys is presented. 

3.2. Variables influencing tribological behavior of aluminum alloys 

Variables influencing the tribological behavior of aluminum alloys can be classified into 

two general classes: material variables and tribological test variables. In this section, a traditional 

analysis of the effect of these variables on the tribological behavior of aluminum alloys will be 

discussed.   

3.2.1. Material variables 

Quantitative material or microstructural properties, and parameters related to the 

processing procedure are the material variables. Alloying composition, average grain size, 

hardness, yield strength, ductility, processing procedure, and heat treatment are some of the 

material variables affecting the tribological behavior of aluminum alloys. 

3.2.1.1. Effect of alloy composition 

Alloying composition is a primary reason of the variation in tribological behavior among 

aluminum alloys. Copper, silicon, manganese, magnesium, iron, zinc, chromium, nickel, and 

titanium are some of the typical alloying elements combined with pure aluminum in different 

weight percentages to form various industrial-grade aluminum alloys with unique physical and 
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mechanical properties [7-9]. Alloying enhances wear resistance, strength, modulus, material 

hardening [8, 26], and the critical load for mild to severe wear transition [4, 27-28]. 

 

Figure 3.1. Average (a) COF [10-17, 29-30], (b) wear rate [10-12, 14-18, 30] of different 

aluminum base alloys under dry conditions against a steel counterface 

 Comparisons of average COF and average wear rate among some common aluminum 

alloys under dry conditions against steel counterfaces in pin-on-disc testing methods are presented 

in Figure 3.1(a) and Figure 3.1(b), respectively. The average COF of aluminum alloys varied 

significantly with alloy composition ranging from 0.165 to 0.53. Al 2024 alloy exhibited the lowest 

average COF while the maximum was reported for Al 2014 alloy. The average wear rate also 

varied notably with alloy composition ranging between 0.00075 mm3/m to 0.0132 mm3/m. The 

lowest average wear rate was reported for Al 7075 alloy, and the maximum was reported for Al 

6101. 

3.2.1.2. Effect of microstructural properties and material processing 

Microstructural properties such as degrees of grain refinement, nature of the grain 

boundary, distribution and size of grains, distribution of second phases, dislocation density, 

presence of nano and microscale cracks in microstructure influence tribological behavior of 

aluminum alloys.  
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Grain refinement is a microstructural recrystallization process that ensures uniform 

distribution of second phases in the primary aluminum phase, reduces casting defects such as 

porosity, improves fatigue life, and enhances mechanical performance. Improved friction and wear 

performance in aluminum alloys can be attributed to grain refinement of alloy microstructure 

generally performed through classical thermo-mechanical treatments and severe plastic 

deformation methods [31]. The average grain size of the microstructure is a measurable 

representation of grain refinement. The COF and wear rate of different aluminum base alloys are 

plotted against the average grain size in Figure 3.2(a) and Figure 3.2(b), respectively.  

 

Figure 3.2.(a) COF vs average grain size, (b) wear rate vs average grain size, (Al 7075 = 

60 𝜇𝑚, Al 6061 = 28 𝜇𝑚, A356 = 50 𝜇𝑚, A356.2 = 73 𝜇𝑚, A359 = 35 𝜇𝑚, Al 6101 = 110, Al 

2024 = 40) [10-13,15-17] under dry conditions against a steel counterface 

For wear rate, an overall linear relationship can be observed in Figure 3.2(b), and wear 

rate decreases with decreasing grain size of aluminum alloys. An R2 value of 0.66 indicates that 

the linear approximation between wear rate and average grain size is statistically significant. In 

contrast, a small R2 value of 0.3416 in Figure 3.2(a) indicates that there exists no statistically 

significant linear relationship between COF and grain size. However, an overall improvement of 
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tribological behavior is observed with grain refinement as both COF and wear rate decreased with 

decreasing grain size. 

Figure 3.3. presents the optical microstructures of several aluminum alloys considered in 

previous sections for traditional tribological analysis. In the microstructure of Al 2024 (Figure 

3.3e) that exhibited the minimum COF among the alloys in the previous section, a homogeneous 

crystalline distribution of grains is observed, and the grain boundaries are not well-defined. 

Extensive grain refinement, homogeneous distribution of grains, and the absence of well-defined 

grain boundaries are some probable reasons that contributed to the low COF.   
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Figure 3.3. Optical microstructures of (a) Al 7075 [31], (b) Al 6061 [32], (c) A356 [12], (d) 

A356.2 [33], (e) Al 2024 [17], (f) A359 [15]. 

In Al 7075 microstructure (Figure 3.3a) that exhibited the minimum wear rate, isometric 

crystals and many undissolved large-phase particles of secondary phases are observed [10]. 
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Moreover, precipitation hardening of the base alloy contributed to the excellent wear performance 

during tribological tests. 

Casting, powder metallurgy, mechanical alloying, hot extrusion, cold extrusion, rolling, 

and forging are some common processing procedures for aluminum alloys. Mechanical and 

physical properties like tensile strength, yield strength, density, residual stress, and ductility and 

microstructural properties like distribution and size of the grains are greatly influenced by material 

processing procedures. Heat treatment is an essential process additive to processing procedures 

that enhances mechanical properties by increasing ductility, fatigue resistance, modulus, strength, 

and hardness. All these improvements in microstructural and mechanical properties directly affect 

tribological behavior. Some of the most common heat treatment processes of aluminum alloys are 

annealing, homogenization, solution treatment, and T6 heat treatment which is a two-phase process 

consists of the solution treatment followed by an age hardening.  

3.2.1.3. Effect of mechanical properties on tribological behavior 

Hardness, yield strength, tensile strength, and ductility are some of the mechanical 

properties influencing the tribological behavior of aluminum alloys. Hardness is often considered 

as the most important mechanical property in the traditional tribological analysis [34]. During 

surface interactions, alloys having high hardness exhibit higher cohesion and lower adhesion with 

another material than a softer alloy. The deformation component of friction is also low for harder 

alloys due to low plastic deformability. Having both adhesion and deformation components of 

friction low, harder alloys are expected to have low overall COF. The COF vs Brinell hardness 

plot (Figure 3.4a) for different aluminum base alloys shows that COF decreases linearly with the 

increasing hardness of the alloys. However, such a simple traditional approach of correlating COF 
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and hardness can produce flawed results as there exists no straightforward relation between COF 

and hardness. 

Unlike COF, in the wear rate vs Brinell hardness plot for aluminum alloys (Figure 3.4b), 

a nonlinear trend was observed. Generally, the wear rate of harder materials during sliding contact 

is low due to low adhesive wear, plastic deformation, and material removal. Gore and Gates 

reported that the general trend of wear rate reduction with increasing hardness is observed for 

single-phase materials [35]. They found no such general trend for multiphase materials and 

suggested that micro-fracture wear mechanisms in multi-phase materials could be a possible 

reason for this. However, Gopi et al. reported that the wear rate reduced consistently with 

increasing hardness for multi-phase materials and alloys [36]. The inconsistencies in different 

findings of traditional analysis indicate that the relation between hardness and tribological 

behavior is not straightforward either.  

 

Figure 3.4(a) COF vs Brinell hardness (b) wear rate vs Brinell hardness of aluminum base 

alloys (Al 7075 = 86 BHN, Al 6061 = 95 BHN, A356 = 75 BHN, A356.2 = 70 BHN, A359 = 

87.5 BHN, Al 6101 = 71 BHN, Al 2024 = 120 BHN, Al 2014 = 135 BHN) [10-13,15-17] under 

dry conditions against a steel counterface 
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The contact region of tribo-surfaces made from ductile metals like aluminum, iron, copper, 

nickel, and their alloys undergoes extensive plastic deformation and wear in sliding contact. 

Reducing ductility of these materials within a certain range (not turning brittle) by incorporating a 

reinforcement phase (e.g., SiC or graphite particles) at a certain volume percentage reduces the 

wear rate. Brittle materials tend to have a brittle fracture at tribo-surface during sliding contacts 

and are not recommended for many tribological applications. Thus, ductility plays an important 

role in the tribological behavior and can be an important material variable in the tribological study. 

Tensile and yield strength are other mechanical properties that affect the tribological behavior. 

Dhokey et al. reported that there is a reasonable correlation between wear behavior and tensile 

strength [37]. After statistical factorial analysis, Aly and El-Koussy reported an inverse relation 

between wear rate and yield strength [38]. In another study, Bellemare et al. reported that the effect 

of yield strength on COF for elastoplastic materials is significant while COF is independent of 

yield strength for completely plastic materials [39]. 

3.2.2. Tribological test variables 

Variables that are related to the tribological tests are sliding speed, sliding distance, and 

normal load. The effect of these variables on the tribological behavior of aluminum alloys will be 

discussed in this section. 
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Figure 3.5. (a) COF vs sliding speed for A359 alloy [15], (b) wear rate vs sliding speed for Al 

2219 alloy [41], (c) COF vs sliding distance for Al 2024 alloy [42], (d) wear rate vs sliding 

distance for Al 6061 alloy [43], (e) COF vs normal load for Al 2024 alloy [17], (f) wear rate vs 

normal load for Al 2024 alloy [42] under dry conditions against a steel counterface 

3.2.2.1. Effect of sliding speed 

The empirical third law of friction (Coulomb’s law) identifies friction to be independent of 

sliding speed. However, in practice, COF is reported to be a function of sliding speed throughout 
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the sliding contact [40]. Predicting frictional behavior depending on sliding speed can be 

challenging due to two contrasting factors. The frictional heat due to high sliding speed promotes 

the formation of thin molten layers and oxide layers on metallic surfaces that results in low friction. 

In contrast, the resulting frictional heat from high sliding speed softens the metallic surface and 

induces increased plastic deformation and plowing that generates high friction. Generally, for a 

constant normal load, COF decreases with increasing sliding speed. In the COF vs sliding speed 

plot for A359 alloy, a reduction in COF is observed with increasing sliding speed (Figure 3.5a). 

Unlike COF, as a general trend, wear rate increases when sliding speed increases. 

Microthermal softening of the tribo-surface, flow stress reduction, dissolution of precipitates, and 

oxide formation are some are the consequences of the interfacial temperature increase caused by 

frictional heat due to increasing sliding speed that contribute to increased wear rate. In the wear 

rate vs sliding speed plot for Al 2219 alloy, an increase in wear rate with increasing sliding speed 

is observed (Figure 3.5b). 

3.2.2.2. Effect of sliding distance 

Sliding distance and COF do not have a straightforward relationship. It depends upon the 

nature of sliding surfaces, sliding arrangements, and the wear mechanism that causes material 

removal during sliding. However, for most tribo-pairs, a steady increase or decrease in COF is 

observed before reaching an asymptotic value. No specific trend incorporating random increase 

and decrease in COF with increasing sliding distance is also found for different materials. In COF 

vs sliding distance plot for Al 2024 alloy, a steady increase in COF has been observed with 

increasing sliding distance (Figure 3.5c) [42]. 
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Generally, the wear rate increases when the sliding distance is increased. Frictional heat 

generated at the interface due to extensive sliding softens the metallic surface. This microthermal 

softening of the tribo-surface induces increased plastic deformation and plowing that result in 

extensive material removal at a higher rate. In the wear rate vs sliding distance plot for Al 6061 

alloy, an increase in wear rate is observed with increasing sliding distance (Figure 3.5d). 

3.2.2.3. Effect of normal load 

The normal load is an important tribological parameter, especially for metals and alloys.  

Due to a high oxygen affinity, when exposed to air, aluminum and its alloys are oxidized, and a 

thin, chemically inert, hard, and whitish-colored oxide layer is formed on the surface. This thin 

oxide layer separates the metal surfaces during sliding and reduces the COF. The effect of normal 

load on COF largely depends on the durability of this layer. At low loads, the oxide layer remains 

intact and causes a low COF. When the load is high enough to breakdown the layer, a higher COF 

is observed due to extensive metal-metal contact. When the normal load is increased, the micro 

and nono-level asperity contacts between the sliding surfaces also increase which contributes to 

an increased COF. COF as a function of normal load for Al 2024 alloy is presented in Figure 

3.5(e) where an increase in COF with normal load is observed. 

During sliding contact, metal and alloys exhibit two forms of wear: mild and severe 

depending on normal load [44]. The mild form is observed at small loads where oxidation of 

material takes place, and a steady increase in wear rate is observed with the increasing load during 

sliding. In contrast, the severe form of wear takes place at higher loads where delamination and 

adhesive wear cause extensive material removal at a high rate. The transition between mild to 

severe form takes place at the critical load when an abrupt increase in wear rate is observed. In the 
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wear rate vs normal load plot for Al 2024 alloy, the wear rate increases with the normal load 

(Figure 3.5f). 

In preceding sections, a traditional analysis of the effect of material and tribological test 

variables on tribological behavior of aluminum alloys has been presented. Though the 2-parameter 

traditional analysis is a simple and useful approach to understand tribological relationships, it often 

comes short in addressing the complexity associated with those relationships. Data-driven ML 

analysis can potentially be a useful tool in understanding the tribological behavior of aluminum 

alloys more efficiently.  

3.3. Materials and methods 

ML algorithms were formulated to predict the tribological behavior of aluminum alloys 

under dry conditions. In this section, we will discuss data collection, data preprocessing, parameter 

optimization, and performance-enhancing techniques used for the ML algorithms. 

3.3.1. Data collection 

Data collection is a crucial step to develop an efficient data-driven ML algorithm. When a 

large, relevant dataset is used to train an ML algorithm, a better predictive performance is 

observed. Performing tribological experiments to generate adequate data for an ML analysis is an 

expensive and time-consuming task. Moreover, experimental data from a single experimental 

setup may pass undesired trends and biases in the training process of an ML model. This can 

severely hamper the predictive performance of the ML model for new datasets of other sources. 

Considering these issues, we have collected friction and wear rate data of aluminum alloys under 

dry condition against a steel counterpart from different sources reported in the literature [10-
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18,29,41-43,45-59]. For wear rate and COF prediction, tribological data sets of 612 and 463 

sample data points were used, respectively.   

3.3.2. Input and output parameters 

Seven material variables: hardness, tensile strength, yield strength, ductility, heat 

treatment, processing procedure, silicon carbide content, and three tribological test variables: 

sliding speed, sliding distance, and normal load were the input parameters for the ML algorithms. 

Among the input parameters, heat treatment and processing procedure were defined as categorical 

data for the ML algorithms while the rest of them were numerical. COF and wear rate were the 

target or output parameters. 

3.3.3. Machine learning algorithms 

Regression analysis of supervised ML is used to find the correlation between the input and 

output parameters and get numerical outputs. For this study, we have trained five ML algorithms: 

K Nearest Neighbor (KNN), Support Vector Machine (SVM), Artificial Neural Network (ANN), 

Random Forest (RF), and Gradient Boosting Machine (GBM) with tribological data of aluminum 

alloys to find correlations between the input and output parameters and predict the tribological 

behavior. The ML analyses were performed using Python and its built-in “scikit-learn” toolkit. A 

detailed description of the ML algorithms used in this study is presented in Chapter 2 of this 

dissertation. 

3.3.4. Data preprocessing    

Data preprocessing or data cleaning is important for developing an efficient ML model. 

Correction for unusual and missing values, data splitting for training and test sets, and data 

normalization (feature scaling) are some important data preprocessing techniques. We looked for 
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any missing or unusual values in the dataset and corrected them accordingly. Data shuffling was 

done to prevent the passing of any bias or undesired trend in the dataset (associated with data 

collection) to the ML models. Then using python, the entire data was split into two mutually 

exclusive sets: training set and test set. ML model building and validation were done using the 

training set while the performance of the models on new data was evaluated using the test set. 

Standard data splitting strategy was chosen: 75% for the training and 25% for the test set. Again, 

75% of the training set data was used for training and the rest 25% was used for model validation. 

ML algorithms incorporated 344, 115, and 153 data points (total 612 data points) in the training, 

validation, and test set respectively for wear rate prediction. For COF prediction all ML algorithms 

used a total of 463 data points (260 in the training, 87 in the validation, and 116 in the test set).  

Data normalization or data standardization is the next data cleaning step. It is also known 

as feature scaling where all the features are brought in the same scale for a better predictive 

performance of the ML algorithms. “RobustScaler” of the Scikit-learn toolkit was used for feature 

scaling of the training, validation, and test sets as it can handle outliers in the dataset more 

efficiently.  

3.3.5. Parameter optimization of ML models 

Parameter optimization is a process of performance optimization of ML algorithms. We 

used the grid search method to find the optimal parameters (including the activation function of 

the ANN algorithms) for ML models that are reported in Table 3.1 and Table 3.2. Python codes 

were written to run the grid search method which is an optimization technique additive to the ML 

algorithms. Ranges of different parameters were set, and the grid search method took different 

combinations of these parameters and executes numerous ML analysis. Comparing the model 

performance for different parameter combinations, the grid search method suggests the parameters 
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that produce the best performance. The parameter optimization of ML algorithms for COF and 

wear rate predictions are presented in Table 3.1 and Table 3.2. 

Table 3.1. Parameter optimization for COF  

ML model Parameter optimization 

Artificial Neural 

Network 

Hidden layer sizes = (5,5,5), alpha = 0.035, 

activation function: tanh 

K-Nearest Neighbor n=3, weight = “uniform” 

Random Forest n_estimators= 70, max_features = 7  

Support Vector Machine kernel = "rbf", C = 50, gamma = “scale” 

Gradient boosting n_estimator =100, learning rate = 0.3 

 

Table 3.2. Parameter optimization for wear rate 

ML model Parameter optimization 

Artificial Neural 

Network 

Hidden layer sizes = (10,10,10), alpha = 0.01, 

activation function: “relu” 

K-Nearest Neighbor n=3, weight = “uniform” 

Random Forest n_estimators= 90, max_features = 5 

Support Vector Machine kernel = "rbf", C = 20, gamma = 0.9 

Gradient boosting n_estimator = 50, learning rate = 0.4 

3.4. Result and discussion 

In this section, we will present the results of ML analysis for COF and wear rate prediction 

of aluminum base alloys and interpret them based on established concepts of material science. We 
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will also analyze the performance of each ML model and discuss the feature importance in COF 

and wear rate prediction. 

3.4.1. Model performance evaluation 

Performance metrics present a numerical estimation of ML models fitting with actual data. 

For a supervised learning regression problem, the coefficient of determination (𝑅2 𝑣𝑎𝑙𝑢𝑒) is the 

most important performance metric. The percentage of variation in data explained by the model is 

indicated by the 𝑅2 𝑣𝑎𝑙𝑢𝑒. This value ranges from 0 to 1. 𝑅2 = 0 indicates no correlation, and the 

model cannot explain the variation in data. 𝑅2 < 0.5 indicates a small correlation, and the ML 

model is considered inadequate in predicting the output. 𝑅2 𝑣𝑎𝑙𝑢𝑒 ranging between 0.70 to 0.9 

indicates satisfactory performance and a value over 0.9 refers to a very satisfactory model 

execution. 𝑅2 = 1 indicates perfect fitting, and the model can accurately explain the variation in 

data without any error which is unlikely for experimental data.   

Mean absolute error (MAE), mean squared error (MSE), and root mean squared error 

(RMSE) are three other important metrics used to evaluate model performance. MAE presents the 

average value of the absolute difference between the predicted and actual values. MSE is the 

average of the squared differences between the actual and predicted values of the data points while 

RMSE is the square root of MSE. These error terms provide important information about the model 

performance. Small values of these error terms indicate the high accuracy of the prediction 

performance of the ML models. 

Table 3.3. Performance of the ML methods for COF 
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ML Model Mean 

squared 

error (MSE) 

Root mean 

squared 

error 

(RMSE) 

Mean 

absolute 

error 

(MAE) 

R-squared 

value 

Artificial Neural 

Network 

0.0055 0.0744 0.0487 0.76 

K Nearest Neighbor 0.0028 0.0536 0.0345 0.82 

Random Forest 0.0028 0.0529 0.0324 0.83 

Support Vector Machine 0.0034 0.0583 0.0340 0.79 

Gradient Boosting 0.0030 0.0551 0.0331 0.81 

 

Table 3.4. Performance of the ML methods for wear rate 

ML Model Mean 

squared 

error 

(MSE) 

Root mean 

squared error 

(RMSE) 

Mean 

absolute 

error 

(MAE) 

R-squared 

value on test 

Artificial Neural 

Network 

0.0009 0.0294 0.0084 0.71 

K Nearest Neighbor 0.0008 0.0281 0.0053 0.73 

Random Forest 0.00001 0.0037 0.0015 0.81 

Support Vector 

Machine 

0.0007 0.0273 0.0063 0.75 
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Gradient Boosting 0.00002 0.0041 0.0022 0.76 

 

Table 3.3. presents the performance metrics of ML models in COF prediction. For different 

ML models, 𝑅2 values on test sets ranged from 0.76 to 0.83. MAE ranged between 0.0331 to 

0.0487, MSE ranged between 0.0028 to 0.0055 and RMSE varied between 0.0529 to 0.0744 for 

the ML models which are significantly low. These statistical performance metrics indicate that the 

developed ML models can predict the COF of aluminum alloys from the material and tribological 

variables at a satisfactory level.  

The decision tree-based RF model exhibited the maximum 𝑅2 value of 0.83 that can be 

considered satisfactory. This model could predict the COF of aluminum alloys from the material 

and tribological test variables with an accuracy of 83%. MSE, RMSE, and MAE values of this 

model were 0.002, 0.0529, and 0.0324 respectively which are significantly low and indicated high 

prediction accuracy. The predicted vs actual COF plot for the RF model is presented in Figure 

3.6. The figure indicates that there is an acceptable agreement between the predicted and actual 

results. KNN and decision tree-based RF and GBM models also performed satisfactorily almost 

had identical performance metrices as RF. ANN and SVM models also performed reasonably well 

in predicting the COF of aluminum base alloys.   

Table 3.4. presents the performance metrics of ML models for the wear rate prediction of 

aluminum base alloys. The 𝑅2 values on test sets ranged from 0.71 to 0.81 for the ML models. 

MAE ranged between 0.0015 to 0.0084, MSE ranged between 0.00001 to 0.0009 and RMSE varied 

between 0.0037 to 0.0294 which are significantly low. The values of these statistical performance 

metrics indicate that the developed ML models can predict the wear rate satisfactorily from the 

material and tribological variables for aluminum alloys. Decision tree-based RF outperformed the 
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other ML models and generated the maximum 𝑅2 value of 0.81. This indicates that the model can 

predict the wear rate of aluminum alloys from the material and tribological variables with an 

accuracy of 81%. Moreover, MSE, RMSE, and MAE values of this model were notably low 

(0.00001, 0.0037, and 0.0015 respectively). Figure 3.6 presents the predicted vs the actual wear 

rate plot of the RF model. The actual experimental wear rate data varied in a wide range. The 

figure shows that the RF model could satisfactorily predict the wear rate and address the variability 

inherent in the wear rate data of the aluminum base alloys. 

 

Figure 3.6. Predicted vs actual COF and wear rate for aluminum base alloys using RF model 

The ML models developed in our study successfully predicted the wear rate and COF of 

aluminum base alloys at a satisfactory level from different material and tribological variables. 
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3.4.2. Importance of different independent variables 

The “feature importance” attribute of RF models allows us to analyze the relative 

importance of different independent variables or features in predicting the output. Scores ranging 

from 0 to 1 are assigned to the features where the sum of the scores equals 1. A high score indicates 

the high importance of a feature in output prediction. Figure 3.7(a) presents the feature importance 

chart for COF prediction of aluminum alloys. 

All the considered independent variables had nonzero scores and contributed to COF 

prediction. The hardness of the aluminum alloys had the highest score and thus the highest 

contribution in COF prediction. Aluminum alloys having high hardness exhibit higher cohesion at 

the molecular level and lower adhesion with another material than a softer alloy. Consequently, a 

low adhesion component of friction is observed. The deformation component of friction is also 

low for harder alloys due to low plastic deformability in sliding contact. Having both adhesion and 

deformation components of friction low, harder alloys generally exhibit low overall COF during 

sliding contact. 

The sliding distance was identified as the second most important feature in COF prediction. 

Frictional heat generated at the interface due to extensive sliding softens the metallic surface. This 

microthermal softening of the tribo-surface causes increased plastic deformation and plowing that 

affect the COF. A steady increase or decrease in COF is observed before reaching an asymptotic 

value with increasing sliding distance for most tribo-pairs. Among other variables, tensile strength, 

load, sliding speed, and yield strength of the base alloys have notable effects on COF prediction. 

Heat treatment and processing procedure were found to have a negligible impact in predicting the 

COF of aluminum alloys. 
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Figure 3.7. Feature importance for predicting (a) COF and (b) wear rate of aluminum 

base alloys 

Figure 3.7(b) presents the feature importance chart for wear rate prediction of aluminum 

alloys. All the independent variables contributed fairly (nonzero score) in wear rate prediction. 

Normal load, an important tribological variable had the highest score and the maximum 

contribution in wear rate prediction. The transition between the mild to severe form of wear of 

aluminum base alloys depends on the load. At a lower load, mild wear takes place when a low 

wear rate is observed due to the intact oxide layer on the tribosurface. In contrast, the severe form 

of wear takes place at higher loads when delamination and adhesive wear cause extensive material 

removal at a high rate during sliding contact. Therefore, the normal load was identified as the most 

important parameter in wear rate prediction.  

Sliding speed was identified as the second most important variable in wear rate prediction. 

Interfacial temperature increase caused by frictional heat during sliding depends on the sliding 

speed. Oxide layer formation, microthermal softening of the tribo-surface, flow stress reduction, 

and dissolution of precipitates are some are the consequences of the interfacial temperature 

increase. Consequently, the sliding speed becomes an important variable in wear rate prediction 

of aluminum alloys. Hardness was identified as the most important material variable in wear rate 
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prediction. The extent of plastic deformation, adhesive wear, and material removal during sliding 

contact depends on hardness. Generally, harder materials tend to have low wear rates. Stronger 

molecular bonds at the surface of harder materials cause a higher resistance to adhesive wear. 

Therefore, for aluminum base alloys, the difference in hardness was found as a key parameter in 

wear rate prediction. 

Data-driven ML analysis provides novel insights analyzing the tribological data that are 

often unattainable with traditional analysis. For example, the feature importance attribute provides 

a broader understanding of the impact of different parameters on friction and wear behavior. This 

information can be further utilized in tribological behavior modification of aluminum alloys in 

different applications.  

3.5. Conclusion 

The tribological behavior of aluminum base alloys and their dependency on material and 

tribological test variables were studied through traditional and data-driven analysis. Using 

tribological data of these alloys reported in the literature, five different ML models were developed 

to predict COF and wear rate. Through performance analysis, it was demonstrated that the ML 

models can satisfactorily predict the friction and wear behavior of aluminum alloys. In absence of 

any form of lubrication (liquid and solid), the transition from mild to severe wear is more abrupt 

during extended sliding. Consequently, more fluctuations and outliers are prevalent in COF and 

wear rate data of aluminum base alloys. The performance metrics (𝑅2 values and error terms) of 

the ML algorithms greatly depend on the uniformity of the dataset. Decision tree-based RF 

outperformed other ML models in both COF prediction (𝑅2 value = 0.83, MSE = .0028, RMSE = 

0.0529, MAE = 0.0324) and wear rate prediction (𝑅2 value = 0.81, MSE= 0.00001, RMSE = 
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0.0037, MAE = 0.0015). This can be attributed to the bagging mechanism employed by the RF 

algorithms in the tree building process which is more efficient in handling large fluctuations or 

inherent variability present in the tribological dataset. Feature importance analysis further 

revealed that normal load, sliding speed, and hardness have the maximum influence in predicting 

wear rate of aluminum base alloys. The variation in hardness, sliding distance, and tensile strength 

of the aluminum alloys influenced the COF prediction the most. Such findings from ML analysis 

can be used in material designing for specialized tribological applications.   
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CHAPTER 4: FRICTION AND WEAR MODELING OF GRAPHITE AND 

GRAPHENE REINFORCED ALUMINUM METAL MATRIX 

COMPOSITES USING TRIBOINFORMATICS APPROACHES 

In the previous chapter, correlations of friction and wear of aluminum alloys with their 

material properties, processing procedure, and tribological test variables had been studied using 

traditional and Triboinformatics approaches. The friction and wear mechanisms in aluminum-

graphite and aluminum-graphene metal matrix composites (MMC) are significantly different 

than those of aluminum base alloys. Graphite and graphene embedded in the aluminum matrix 

act as a solid lubricant during sliding interaction that affect the friction and wear behavior in 

these MMCs. In this chapter, ML models have been developed to predict the friction and wear 

behavior of these MMCs in dry conditions and to establish correlations between material 

properties, tribological test conditions, and tribological properties. 

4.1. Introduction 

Metal matrix composites (MMCs) are often preferred over the base alloys in many 

engineering applications due to their improved material properties. For example, aluminum MMCs 

are more attractive than monolithic aluminum alloys for weight critical aerospace and automobile 

industry and for tribological applications [1-2]. Though aluminum alloys are known for their high 

stiffness, strength, and corrosion resistance, they exhibit poor tribological performance and suffer 

a seizure in dry sliding or with insufficient lubrication [3-4]. Suitable particles, for example, 

ceramic, graphite, graphene, or fiber-reinforced aluminum MMCs can be attractive alternatives 

having superior mechanical and tribological properties. Aluminum composites reinforced with 

ceramic particles have been considered by many researchers for improved strength and tribological 
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performance [5-6]. Powder metallurgy, stir casting, centrifugal casting, and conventional casting 

are some of the processing routes of these MMCs. However, poor dispersion of ceramic particles 

in the aluminum matrix, increasing brittleness, and inferior machinability are some of the 

undesired properties associated with these composites. 

Self-lubricating Al/Graphite particles composites are the promising low-cost materials to 

reduce friction, wear, and the tendency of seizing. Graphite has a hexagonal structure where the 

carbon atoms are arranged in layers. The atoms in the plane of a layer share strong covalent bonds, 

while the layers are bonded by weak van der Waals bonds which allows them to shear past each 

other easily. The layered structure in graphite makes it strong in compression but weak in shear. 

This is the reason for the inherent quality of lubricity in graphite [7]. In aluminum MMCs, graphite 

acts as a solid lubricant and improves the tribological properties. In graphite reinforced aluminum 

(Al/Gr) MMCs, the continuous supply of the solid lubricant between the two sliding surfaces is 

ensured by incorporating graphite particles into the aluminum matrix. Rohatgi et al. reported that 

the friction and wear of the Al/Gr MMCs are characterized by the transient process followed by 

the steady state [1,2]. At first, the graphite particles of the MMCs are squeezed out from the 

embedded state and smeared on the surface reducing surface to surface contact and forming a 

lubricating film. The graphite film is continuously replenished since newly exposed graphite 

particles due to wear contribute to the lubricating film. Embedding solid lubricating graphite 

particles in the matrix has an advantage over self-lubricating graphite coatings, which wear off 

after short periods. 

Tribological behavior of self-lubricating Al/Gr MMCs has been studied since the synthesis 

of low-cost cast aluminum graphite composites around 1965. Low friction and wear properties of 

these materials have been documented by several researchers [8-15]. Low thermal expansion, 
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improved antiseizure properties [16-17], high damping behavior [18], and reduced temperature 

rise at the contact surface [6,19] are some other attractive features of these composites. On the 

other hand, mechanical properties including ductility, hardness, and fracture toughness of the 

MMCs can decrease with the addition of large graphite particles to the metal matrix [20-22]. 

Several other studies reported the optimization of mechanical and tribological properties by 

controlling graphite content and other variables [20, 23]. The friction and wear of Al/Gr MMCs 

are influenced by material variables such as matrix characteristics, graphite content, size and shape 

of the graphite particles, and material processing procedure [24-25]. Tribological test variables 

like the normal load, sliding velocity, and sliding distance are also important factors. However, 

since such a large number of variables influence the mechanical and tribological properties of 

Al/Gr composites, the effects of multiple-parameter variations have not been quantified, despite 

considerable investigation of two-parameter relationships. The multi-parameter study requires 

data-driven approaches. 

Though the self-lubricating aluminum-graphite MMCs possess improved thermal, tribological, 

and antiseizure properties, mechanical properties including tensile strength, hardness, ductility, 

and fracture toughness can deteriorate with the incorporation of large graphite particles [20,22]. 

However, recent studies on self-lubricating aluminum-graphene MMCs have revealed that 

superior tribological and mechanical properties can be achieved at the same time using graphene 

as the reinforcement material [26].  

Graphene has a two-dimensional honeycomb lattice structure with compactly packed single 

atomic carbon sheets [24]. The unique friction and wear properties of graphene separate it from 

conventional materials. Being ultrathin in both single and multilayers with atomically smooth 

surfaces, graphene can be used in nanoscale and microscale applications. The extremely high 
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mechanical strength of graphene is one of the reasons behind its excellent wear resistance [27]. 

Using the nanoindentation technique in atomic force microscopy (AFM) for monolayer graphene 

membranes, Lee and coworkers [28] identified graphene as the strongest material ever quantified. 

They reported the tensile strength and the Young’s modulus (E) of defect-free monolayer graphene 

as 130 GPa, and 1 TPa, respectively. In a separate study, Lee et al. [29] measured the tensile 

strengths of bi and trilayer graphene as 126 and 101 GPa, and the Young’s moduli as 1.04 and 0.98 

TPa, respectively. MMCs possess mechanical and material properties which are a combination of 

those of the matrix and the reinforcement materials. For example, MMCs often obtain similar 

toughness and ductile nature of the matrix material and strength and moduli of the reinforcement 

material. Moreover, due to the plate shape, the dispersion of graphene in the matrix phase is more 

convenient than other carbon-based reinforcements like graphite or carbon nanotubes (CNTs) [30]. 

With superior mechanical properties besides easy shear capability, excellent electrical, optical, and 

thermal properties, graphene can be an ideal material as the reinforcement phase in self-lubricating 

MMCs. 

Manufacturing processes and the corresponding mechanical properties of graphene 

reinforced aluminum MMCs have been reported in many recent research publications [24, 28-31]. 

The mechanical strength of these MMCs relies on the dispersion of the graphene as a reinforcement 

in the metal matrix. A nonuniform dispersion due to the agglomeration of particles may adversely 

affect the strengths.  For example, Wang and co-workers [18] reported an increase in the tensile 

strength of the aluminum-graphene MMC compared to the aluminum base alloy by 62% using 0.3 

wt% of graphene nano-sheets as the reinforcement phase. El-Ghazaly and co-worker [31] reported 

a 20.4% and 21.6% increase in tensile strength and a 104% and 127% increase in yield strength 

for 3 and 5 wt% of graphene, respectively, in the aluminum AA2124 matrix. Alipour et al. [32] 
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also reported similar increases in the tensile strength for 0.1-1 wt% of graphene nanoplatelets 

addition in aluminum AA7068 matrix. On the contrary, several researchers including Bartolucci 

and co-workers [33] reported a decrease in tensile strength in aluminum-graphene MMCs due to 

graphene addition. However, graphene nanoparticle reinforced aluminum MMCs are reported to 

have higher hardness compared to base alloys, macroparticle reinforced (graphite) MMCs or even 

CNT reinforced MMCs [34].  

A number of recent studies have reported the tribological behavior of aluminum-graphene 

MMCs to date [24, 31, 32, 34-56]. During sliding application, after a brief running-in period, the 

tribosurface of the aluminum-graphene MMC is covered with soft lubricating films of graphene. 

With further sliding, due to extensive smearing of graphene, a continuously replenishable, stable 

graphene-rich solid-lubricating film is formed at the interface [31, 36, 46]. Similar to self-

lubricating aluminum-graphite MMCs, the graphene lubricant film separates the sliding surfaces, 

inhibits metal-on-metal contact, and lowers the friction and wear. However, with superior 

mechanical strength and hardness, graphene nanoparticle reinforced aluminum MMCs are 

expected to exhibit superior tribological performance as compared to graphite macroparticle 

reinforced MMCs [24]. Tribological behavior, which is a system response rather than a material 

property, is of paramount importance for designing and synthesizing machine elements involving 

sliding, rotating, and oscillating contacts. Friction and wear of aluminum-graphene MMCs follow 

complex mechanisms, and a proper understanding and characterization of these behaviors may 

help in designing efficient systems for tribological applications. However, this is a challenging 

task as the complex friction and wear behavior of such two-phase materials depend on numerous 

material, mechanical, and tribological variables. Most of the traditional studies on aluminum-

graphene MMCs have tried to characterize the friction and wear behavior using isolated 
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experiments and studying 2-parameter relationships. In such an analysis, the coefficient of friction 

(COF) or wear rate is presented as a function of a single variable with a few experimental data 

considering other parameters as constants. Such a simple approach of presenting complex 

tribological correlations is often inadequate, and not efficient to generate a comprehensive 

understanding. However, a data-driven approach incorporating the effect of multiple variables 

simultaneously in a wider range can overcome the shortcomings of the 2-parameter analysis. 

As seen from the above, the absence of mathematical derivations from the first principles 

of physics and chemistry is a major challenge in the tribological study [57]. However, a data-driven 

approach in tribological studies, popularly known as “Triboinformatics” has been successfully 

applied to anticipate the wear and friction characteristics of aluminum alloys and aluminum-

graphite MMCs from tribological test conditions and mechanical and material properties [58-60]. 

Hasan and co-workers [61] further used standalone and hybrid models to understand the wear and 

friction of aluminum-graphite MMCs during the progression between lubrication conditions. Such 

a data-driven approach can reveal novel insights and present a broader understanding of the friction 

and wear phenomena observed in aluminum-graphene MMCs. 

In this chapter, friction and wear mechanisms of aluminum-graphite and aluminum-graphene 

MMCs and the effect of different material and tribological test variables on their tribological 

behaviors will be systematically studied. Finally, ML models will be developed using tribological 

data reported in the literature to predict the tribological behaviors of these aluminum MMCs and 

to find patterns in their tribological characteristics.  

4.2. Friction mechanisms in aluminum-graphite and aluminum-graphene MMCs 
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Friction and wear are behind the processes of material deterioration and energy dissipation 

of dynamic systems and are the central aspects of tribological studies. For multi-phase metal matrix 

composite materials like aluminum-graphite and aluminum-graphene, the proper characterization 

of the friction and wear mechanisms is a challenging task. In this section, we present the 

mechanisms of friction and wear observed in these MMCs. 

Friction is the resistance of motion between interacting surfaces and is often quantified by 

the dimensionless coefficient of friction (COF) or µ [62, 63]. The following equation involving 

the friction force (𝐹𝑓) and the normal load (N) quantifies the COF between the surfaces. 

𝜇 =
𝐹𝑓

𝑁
=

𝐹𝑎+𝐹𝑑

𝑁
=

𝐹𝑎

𝑁
+

𝐹𝑑

𝑁
= 𝜇𝑎 + 𝜇𝑑       (1) 

𝜇𝑎, the COF due to the adhesion between the sliding surface is caused by the molecular 

forces acting in covalent, ionic, metallic, and van der Walls bonds [64]. 𝜇𝑑 is the COF due to the 

microscopic and macroscopic deformation of asperities of the tribosurface and is influenced by 

mechanical and material properties like hardness, strength, and modulus. The real area of the 

asperity contact between the sliding surfaces controls the adhesion component of friction. 

.  The 𝐹𝑎 and 𝜇𝑎 are strongly influenced by the microstructure including the presence of second 

phase particles like graphite, lubricants, surface films, and contaminants. They prevent the direct 

contacts between the mating surfaces and impede strong adhesion. When a graphite reinforced 

MMC slides against another surface, a thin film of graphite solid lubricant covers the interface 

reducing  𝐹𝑎 and 𝜇𝑎. The COF of the two-phase material containing graphite depends on the extent 

of graphite film formation on the tribosurface [1]. According to the rule of mixture, the COF can 

be expressed by the following equation. 

𝜇 = (1 − 𝐴𝑔)𝜇𝑚 + 𝐴𝑔𝜇𝑔         (2) 
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where 𝜇𝑚 and 𝜇𝑔 are the COFs of the matrix material and the tribosurface covered by the graphite 

film respectively, and 𝐴𝑔 is the fraction of the tribosurface covered by the graphite film. The COF 

of the matrix is the sum of the adhesion and deformation components 

𝜇𝑚 = 𝜇𝑚𝑎 + 𝜇𝑚𝑑          (3) 

Microscopic and macroscopic deformations of the asperities of the interlocked surfaces 

facilitate the deformation component of friction. The latter is highly dependent on material 

properties such as hardness, yield strength, and elastic properties. The hardness, yield strength, 

and deformation behavior of Al alloys are influenced by the incorporation of graphite particles in 

the matrix, and therefore the friction and wear are influenced by the presence of graphite particles 

in the matrix. 

For aluminum-graphene MMCs, after a brief running-in period, due to smearing of 

graphene the tribosurface is covered with soft graphene tribofilms [31, 36, 46]. With further 

sliding, a stable solid-lubricating graphene film is formed at the interface that reduces the real area 

of the asperity contact between the MMC and the counterface. With the diminution of the real area 

of the asperity contact and reduced metal-on-metal contact, the adhesive component of the COF 

reduces significantly. Moreover, mechanical and material properties like hardness, tensile strength, 

and ductility undergo significant improvement due to the graphene additions to an aluminum 

matrix. As a result, a decrease in the deformation component or the plowing component of friction 

occurs against the same harder counterface material like steel. As, both the adhesive and 

deformation components of the COF are reduced, a low overall COF is expected for aluminum-

graphene MMCs. 

4.3. Wear mechanisms in aluminum-graphite and aluminum-graphene MMCs 
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The wear mechanism governs the progressive removal of material from the surfaces sliding 

against one another taking place under different loading conditions. Analysis of the worn surface 

can reveal the dominant wear mechanisms for a material pair. In the tribological application of 

aluminum MMCs, the dominant wear mechanisms involve adhesive, abrasive, and delamination 

wear [65]. 

  Adhesive wear is caused by the adhesion between the sliding surfaces. At spots of asperity 

contacts, strong interatomic adhesive junctions are formed due to intermolecular forces and cold 

welding. A relative motion between the mating surfaces results in shear at the adhesive junctions. 

Plastic deformation and surface fracture at asperity level cause detachment and transfer of 

materials from one surface to another.  

Subsurface cracking at a certain depth under the surface due to the accumulation of 

dislocations generate the laminate wear debris. Crack initiation and propagation at the subsurface 

are dependent on tribological variables, material properties, and friction properties of the surface. 

When the crack exceeds a critical length, it propagates unstably and generates a thin laminate of 

the softer material as wear debris. 

In aluminum-graphite MMCs, the wear behavior depends upon the wear of the matrix and 

graphite originally present in the composites and the formation of the graphite film over the 

tribological interface. At the starting of the sliding or when graphite content is low, the interface 

is only partially covered by the graphite film. At this point, due to a direct metal to metal contact, 

a high wear rate is observed. With increasing graphite content, the tribosurface is extensively 

covered by the graphite film and a superior wear behavior is observed. When a stable graphite film 

has been established and its thickness has exceeded a critical value, the delamination wear 

mechanism becomes dominant for these composites.  Subsurface cracking occurs as the softer 
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asperities of the graphite film is deformed by the counterface. Under repeated loading, as the crack 

exceeds the critical length, the material between the surface, and the subsurface-crack shears. 

Finally, delamination wear occurs. 

The wear mechanisms in aluminum-graphite MMCs are highly dependent on material 

properties and tribological test parameters. Wear resulting from adhesion, abrasion, and 

delamination are also related to hardness, applied normal load, and the sliding distance. While 

various attempts to create comprehensive models of friction and wear have been made [1,65,66], 

it is still extremely difficult to take into account all complex interactions involved. This is why 

looking for data correlations may be more helpful.    

For aluminum-graphene MMCs, the graphene film provides lubrication at the tribosurface 

and limits the cold welding and adhesive junctions between asperities during the sliding contact 

[31, 46]. Consequently, an overall smaller wear rate compared to aluminum alloys is observed. 

Several tribological studies on aluminum-graphene have reported adhesive wear as the dominant 

wear mechanism [31, 35]. 

Besides material properties, the operating condition plays a vital role in defining the 

dominant wear mechanism. According to Archard and Hirst [67], the wear during sliding 

interaction can be either mild or severe based on the normal load. These two wear regimes cause 

distinct wear behavior, and the transition between these two occurs at a critical load. A similar 

change in the wear pattern is observed for the sliding speed as well. The mild wear regime is 

characterized by a smaller wear rate where abrasion often becomes the dominant wear mechanism. 

Smoother worn surface and the presence of fine grooves in the sliding direction indicate abrasive 

wear in aluminum-graphene MMCs. In mild wear, the graphene film remains operational and 

contributes to limiting the wear [31,68,69].  
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The transition between mild to severe wear is indicated by a sudden increase in wear rate 

that occurs at a higher load or sliding speed (beyond the critical values). The lubricating film is 

often destroyed or is no longer able to protect against severe wear. Delamination is often reported 

as the prevalent wear mechanism in severe wear [24]. Accumulation of dislocations, initiation of 

crack at a subsurface level, and poor mechanical properties due to an ununiform mixing of the 

matrix and reinforcement phases are some of the prerequisites of the delamination wear. 

Delamination wear is characterized by the removal of thin laminates as wear debris due to unstable 

crack propagation at the subsurface level of the tribosurface. Comparing the worn surfaces, El-

Ghazaly and co-workers [31] reported that the delamination, craters, and scratches on aluminum-

graphene MMCs are notably less than those of base aluminum alloys. 

4.4. Variables influencing friction and wear 

Tribological variables and material variables are two distinct types of variables influencing 

the wear and friction of aluminum-graphite and aluminum-graphene MMCs. Here, the effect of 

these variables on friction and wear of these MMCs will be discussed using traditional analysis. 

4.4.1. Material variables 

Material variables are quantitative material or microstructural properties, or parameters 

directly related to the processing procedure, which affect the tribological behaviors. For analyzing 

the friction and wear of aluminum graphite and aluminum-graphene MMCs, manufacturing 

process, heat treatment, graphite content, graphene content, type of graphene, aluminum content, 

density, the composition of the matrix, and mechanical properties such as tensile strength, ductility, 

and hardness are some of the crucial material variables. 

4.4.1.1. Effect of graphite content    
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The friction and wear of the aluminum-graphite MMCs depend on the volume fraction, 

size, and shape of graphite particles, matrix microstructure, matrix-reinforcement bonding and the 

graphite film formation on the tribosurface. Besides that, tribological behavior depends upon two 

contrasting factors [21]. First, addition of graphite particles reinforcement above certain sizes often 

negatively affects mechanical properties including ductility, hardness, and fracture toughness of 

the MMC. Particle agglomeration and weak bonding between the Al matrix and graphite particles 

may also lead to crack propagation during sliding contact. Increasing graphite content leads to 

crack propagation and delamination of the reinforcement phase due to its weaker bonding with the 

matrix. These factors can potentially increase wear of aluminum-graphite composites. On the other 

hand, during sliding, once the metallic layer masking the graphite layer wears away, the graphite 

particles are squeezed out from the matrix under normal and shear stresses, and they spread over 

the surface forming an in situ tribofilm of graphite solid lubricant, which reduces friction [1]. Using 

Auger spectroscopy, Rohatgi et al. found that on the tribosurface of Al/10% vol.% Graphite 

composites, the major elements are Al, C, and O [8]. A clear indication of graphite smearing was 

observed as about 30% volume percentage of the tribosurface is covered by the graphite film. With 

increasing graphite content, the thickness of the film on the tribosurface increased. The formation 

of the solid lubricant film between asperities reduces metal-metal contact and thus reduces friction. 
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Figure 4.1. Dependencies on the graphite content of (a) the COF (Al 6061/ Gr) [10], and (b) 

wear rate, Al 6061/Gr [70], (c) Al 6061/Gr and Al 6061/30% SiC/Gr [22], (b) Al 6061/7% Gr 

composites [71] for sliding against steel.  

Having these two countering effects, aluminum-graphite MMCs could have an optimum 

composition when both the wear rate and the COF are at minimum. Akhlaghi et al [20], Ravindran 

et al. [72], Baradeswaran et al. [23] reported that the wear rate decreases significantly with 

increasing graphite content and reaches the minimum value at 5% graphite content, which they 

described as the optimum composition from the wear standpoint. With a further increase in 

graphite content, the wear rate increases though it is significantly lower than the base aluminum 

alloys. Similar results were reported for COF (Figure 4.1(a)), where the COF reduced sharply 

with graphite content, reached a minimum value, and then again increased with further graphite 

addition [10, 15, 20, 23, 72]; the reason as to why the COF increases above a certain percentage 
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of graphite is not clear. In another study, Baradeswaran and co-worker reported that the optimum 

graphite content for minimum wear rate varies with tribological test parameters, including sliding 

velocity [70]. They observed the minimum wear rate at 5%, 10%, and 15% graphite content for 

sliding velocities of 0.5 m/s, 1 m/s, and 1.25 m/s respectively for Al 6061/Gr composites (Figure 

4.1(b)). The optimum graphite content for COF was dependent on other parameters as well. 

In another study, Mahdavi and co-workers reported that for Al 6061/ Graphite composites, 

the wear rate increased with increasing graphite addition (Figure 4.1(c)). A similar finding about 

wear rate was reported by Jha and co-workers (Figure 4.1(d)) [71]. Mechanical properties like 

ductility or fracture toughness and surface properties like porosity were reported as the possible 

reasons for this unusual wear behavior of Al 6061/Graphite composites. With increasing graphite 

content in the Al matrix, the tendency of crack propagation and delamination of the reinforcement 

phase increase. The increased amount of porosity with increasing graphite content can speed up 

the crack propagation process by decreasing the required linking length between two cracks. 

4.4.1.2. Influence of graphene content 

The incorporation of graphene in the matrix material causes a direct enhancement in the 

tribological performance of the composites. The single or multi-layer graphene embedded in the 

matrix serves as a solid lubricant that provides lubrication during sliding application. Additionally, 

the presence of graphene modifies mechanical properties including hardness and tensile strength 

that impact the tribological characteristics of these MMCs. 

4.4.1.2.1. Graphene as a solid lubricant 
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The lowering of the COF and wear rate of aluminum-graphene MMCs due to graphene 

addition is achieved through two underlying mechanisms: increase of hardness and tribofilm 

formation [68]. 

The increase of hardness of the MMC due to graphene addition is achieved through 

Orowan strengthening, load transfer, grain refinement, and the mismatch of CTE between 

graphene and the aluminum matrix [68]. As the Archard equation correlates hardness to be 

inversely proportional to wear, an increase in hardness caused by graphene addition effectively 

lowers the wear rate. The wear rate vs. graphene content plots (Figure 4.2(a)) for aluminum-

graphene MMCs show a consistent lowering in the wear rate with graphene addition. A sharp 

decrease is observed at a smaller graphene content and then a more gradual decrease is observed 

up to a critical graphene content where the wear rate is the minimum. Often a slight increase in the 

wear rate is observed after the optimum graphene content. It could be due to an increase in 

brittleness of aluminum-graphene above a certain level of graphene in the matrix. However, this 

slight increase is not as drastic as the increase in wear rate that would be achieved by lowering the 

graphene content. 
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Figure 4.2. Effect of graphene content on (a) wear rate [41,44,48] (b) COF [38,41,44] of 

aluminum-graphene MMCs 

The graphene-rich tribofilm formation depends on the graphene nanosheets in the bulk that 

smear on the tribosurface during sliding wear [69]. The successful formation of a stable micro 

tribofilm causes a diminution of the max peak (Rp) and max valley (Rv) of the surface profile and 

lowers the contact between asperities of the mating surfaces [44]. Consequently, the tribofilm 

effectively smoothens the tribosurface and minimizes direct metal-on-metal interaction and the 

frictional heat during the sliding interaction [41]. The COF vs graphene content plots (Figure 

4.2(b)) for aluminum-graphene MMCs show a consistent decrease in the COF with graphene 

addition. After increasing graphene content slightly from 0 wt.%, the COF decreases significantly. 

Further increases in the graphene content above a critical value cause further smaller decreases in 

COF, but the decrease is not quite as sharp as the initial decrease.  

The type of graphene (graphene nanoplatelets, graphene microplatelets, graphene flakes, 

monolayer graphene, graphene oxide, reduced graphene oxide, multilayer graphene, etc.) as the 

reinforcement phase and the number of graphene layers influences the extent to which the friction 

and wear are lowered. The frictional force has been reported to decrease with the number of 

graphene layers [73]. Interlayer sliding in multilayer graphene, graphene nanosheets, and even in 

graphene nanoparticles is responsible for the reduction of the frictional force [68]. Berman et al. 

[27] further experimentally demonstrated that the multilayer graphene (3-4 layers) has a longer 

lifespan than the monolayer graphene and is more durable against sliding wear. The interlayer 

sliding between nanolayers of graphene in aluminum-graphene MMCs is a major reason behind 

the superior friction performance of these MMCs compared to aluminum-graphite MMCs.  

4.4.1.2.2. Graphene addition and mechanical properties 
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Mechanical properties including hardness, ductility, strength, and elastic modulus of 

aluminum MMCs are dependent on the size of the reinforcement particles. Large reinforcement 

particles or particle agglomeration in the aluminum matrix adversely affects mechanical properties 

by promoting defects such as pores and cracks. Material hardness and tensile strength of 

aluminum-graphene MMCs with respect to graphene content are presented in Figure 4.3. Almost 

similar trends are observed across studies where the tensile strength and hardness increase with 

graphene addition until a certain point, and then exhibit a downward trend with further increases. 

 

Figure 4.3. Effect of graphene content on (a) hardness [38,39,44] and (b) tensile strength 

[74,75,76] of aluminum-graphene MMCs  

A uniform dispersion and orientation of graphene in the aluminum matrix promotes a better 

bonding between the matrix and the reinforcement phase and attain superior mechanical properties 

in aluminum-graphene MMCs. Shahzad et al. [41] reported that uniform dispersion of graphene 

nanoplatelets (GNPs) in aluminum matrix resulted in an efficient load transfer, citing this as the 

reason for the increase in strength of the composites. They also observed more graphene shearing 

at the tribosurface and deterioration of mechanical performance for 1.2 wt.% graphene compared 

to 0.6 wt.% graphene as the reinforcement. They attributed this to the weight fraction being too 
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high for the GNPs to uniformly disperse within the matrix. Kumar and co-workers [40] reported 

that graphene addition at and above 1.2 wt.% can cause agglomeration, which weakens the 

structure by increasing porosity and cracks. Furthermore, significant agglomeration of graphene 

causes serious defects in aluminum-graphene MMCs and promotes premature failure of the 

composites [68].   

Several strengthening mechanisms including coefficient of thermal expansion (CTE) 

mismatch, load transfer, grain refinement strengthening, and Orowan strengthening have been 

reported for aluminum-graphene MMCs with graphene addition [68]. The CTE mismatch 

increases the strength of the composites through interfacial prismatic punching of dislocations. 

The load transfer depends on the matrix-reinforcement bonding and works especially well with 

types of graphene reinforcements that have high aspect ratios. In the case of GNPs, the 2D structure 

and crumpled surface increase the interfacial contact with the aluminum matrix [41]. The grain 

refinement strengthening is explainable by the Hall-Petch relationship [68]. In the Orowan bypass 

mechanism, inserting nanometer-scale particles such as GNPs forms residual dislocation loops, 

whose resulting back stress increases the strength by repelling the motion of the dislocation [41]. 

4.4.1.3. Effect of matrix material 

Properties of the aluminum alloys used as the matrix phase in aluminum-graphene MMCs 

influence the mechanical and tribological behavior. The addition of different alloying elements 

with the pure aluminum alloys enhances mechanical properties like strengths, elastic modulus, and 

hardness. Dispersion of graphene in the aluminum matrix, bonding between the matrix and the 

reinforcement phase, and the possibility of any chemical reaction depend on the unique 

microstructural properties of different aluminum alloys. Consequently, different friction and wear 
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characteristics including wear resistance and critical load for the transition from mild to severe 

wear can be notably different in aluminum MMCs depending on the matrix alloy. 

     

Figure 4.4. Comparison of (a) the COF [9,10,13,14,23,77-79] and (b) wear rate 

[9,10,12,14,23,78,79] between different Al base alloys and their graphite (Gr) MMCs (5 wt.% 

Gr).  

Comparative representation of the COF and wear rates between different aluminum base 

alloys and their corresponding MMCs containing graphite (5 wt.%), are represented in Figure 

4.4(a) and Figure 4.4(b), respectively. The COF of the base alloys without any graphite 

significantly varied with alloy composition in the range 0.165 to 0.53. The same is true for wear 

rate that varies between 0.0011 mm3/m to 0.006 mm3/m. The tribological behavior improvement 

of the MMCs with graphite addition greatly depended on the matrix alloys. In all cases, for every 

aluminum alloy composition, the COF and wear rate decreased with the incorporation of graphite 

particles (5 wt.%) in their matrices (except LM 13). However, the amount of decrease in COF and 

wear rate is different for different base alloys. The COF for 5 wt.% graphite containing aluminum 

alloys ranges from 0.15 to 0.51. However, the minimum COF (0.08) and wear rate (0.00038 

mm3/m) under dry condition were reported for Al 6061 alloy with 8.9 wt.% graphite, and A359 
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alloy with 8 wt.% graphite respectively [24, 78]. Among different alloys, a significant reduction 

of COF was observed in Al 7075, Al 6061, A359, and Al 6101 alloys while better wear 

performance was observed in A359, Al 6061, Al 2014, and Al 7075 alloys as a result of 

incorporation of graphite particles in the matrix. Composition of the base alloys, processing 

procedure, microstructure, and several other factors can be responsible for this. 

 

Figure 4.5. (a) wear rate and [32, 36, 37, 40, 44, 80] (b) coefficient of friction [32, 37, 40, 44, 45] 

of different aluminum base alloys and their corresponding aluminum-graphene (Gr) composites 

The average wear rate and COF of different unreinforced aluminum alloys and their 

graphene-reinforced (0.25 wt.% - 0.5 wt.%) composites at comparable loading and testing 

conditions are presented in Figure 4.5(a). The aluminum-graphene MMCs consistently showed 

reduced friction and reduced wear compared to the corresponding unreinforced alloys (Figure 

4.5(b)). However, the difference in COF and wear rate is more pronounced for some alloys than 

others. Also, a significant decrease in wear rate does not necessarily occur with a significant 

decrease in COF, and vice versa. For example, AA7075 showed the most drastic decrease in COF 

for 0.3 wt.% of graphene addition, while the decrease in wear rate was comparatively small for the 

same composition [37]. 
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4. 4.1.4. Effect of the manufacturing process and heat treatment 

Powder metallurgy, casting, and spray deposition are the common processing techniques 

used for synthesis of aluminum-graphite MMCs. The synthesis of the composites using powder 

metallurgy (PM) involves the mixing of aluminum and graphite in the powder phase, compacting, 

and sintering [20]. The large size and regular shape (spherical) of the powder ensure better 

distribution and mixing of the particles [1]. Casting is another popular processing technique for 

Al/Graphite composites due to its ability to manufacture complex shapes at a relatively lower cost. 

Pressure infiltration and stir mixing followed by casting are the two major types of casting 

techniques used for the synthesis of Al/Graphite MMCs. Squeeze casting is a common example of 

an impregnation method where a pressure differential governs the liquid metals into a preform of 

particles to form the composite. Compocasting and stir casting are some of the examples of the 

dispersion method where graphite particles are stirred into aluminum alloys [81]. Then the slurry 

mixture is cast by a conventional casting process using gravity or external pressure. Spray 

deposition is another processing technique for Al/Graphite composites. Dispersed graphite powder 

in liquid aluminum is sprayed directly on the substrate using an atomizer in this technique. The 

bonding between the matrix and reinforcement phase, distribution of graphite particles in the Al 

matrix, and physical properties like density and porosity depend upon the processing procedure. 

As a result, material processing procedures have significant effects on the tribological behaviors 

of the MMCs. 

Theoretically, graphene addition in the aluminum matrix should cause dramatic 

improvement in the mechanical and tribological properties [24]. However, uniform dispersion of 

graphene in the aluminum matrix and good interfacial bonding between them is required to achieve 

these improvements. Consequently, manufacturing processes and heat treatments are important for 
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aluminum-graphene MMCs. Nanoparticle agglomeration, formation of pores, weak interfacial 

bonding, carbide formation, and cracks in subsurface regions are some of the common defects 

associated with the manufacturing processes. Powder metallurgy, conventional casting, severe 

plastic deformation, and additive manufacturing are some of the common manufacturing processes 

for these MMCs [68].  

Powder metallurgy has been the most popular manufacturing route for aluminum-graphene 

MMCs. Unclean aluminum-graphene interfaces and oxidation of the aluminum matrix often occur 

in this process due to improper selection of process parameters [68]. In addition, graphene is often 

present at grain and powder boundaries. These defects can notably impact the mechanical and 

tribological properties. Casting is less commonly used for aluminum-graphene MMCs, compared 

to powder metallurgy. This manufacturing route can be cost-effective, but it offers less control 

over the distribution of graphene in the aluminum matrix. High processing temperatures in casting 

processes promote interfacial reactions between aluminum and graphene. Moreover, the density 

mismatch between aluminum and graphene often causes segregation and agglomeration of 

graphene nanoparticles [68]. Porosity is another issue associated with the gravity casting process 

which can reduce the strength in these MMCs. All these casting issues can negatively affect 

mechanical and tribological properties. Cracks and fractures in the microstructure are often the 

issues associated with the severe plastic deformation technique of manufacturing aluminum-

graphene MMCs. The main challenges with additive manufacturing like the selective laser melting 

of aluminum-graphene composites involve porosity and low plasticity, which can make it difficult 

to process them into complex parts. 

Solution treatment and T6 heat treatment are some of the most common processes used for 

the heat treatment of aluminum alloys and their composites. Mechanical property enhancement 
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(e.g., increasing ductility, fatigue resistance), microstructural refinement (e.g., grain size 

refinement), and increasing strength and material hardness are some of the effects of heat treatment 

processes that can directly influence tribological behavior. However, in the traditional tribological 

studies, the effects of processing techniques and heat treatment are often ignored. Data-driven 

approaches are suitable for solving this problem. In this study, the effect of the material processing 

procedures and heat treatment on friction and wear of aluminum-graphite and aluminum-graphene 

MMCs will be analyzed. 

4.4.1.5. Effect of hardness 

The hardness of the Al matrix, and composite materials is an important parameter in 

predicting tribological behaviors. Molecules at the surface of materials possessing high hardness 

have strong molecular bonds which contribute to higher resistance to adhesion. As a result, the 

adhesion component of friction is low in sliding contact. Again, high hardness refers to low plastic 

deformability in a material. So, the deformation component of friction is also low. As both the 

adhesion and deformation components are small, generally a low COF is expected for harder 

materials. However, the relation between friction and hardness is not straightforward, and singling 

out hardness to predict COF can produce unreliable results. On the other hand, wear behaviors 

exhibit a more consistent trend with hardness than COF. As a harder material offers less plastic 

deformation and material removal during sliding contact, a lower wear rate is observed. Gore and 

Gates studied the effect of hardness on different forms of wear and reported that for single-phase 

materials, a general reduction in wear is observed with increasing hardness while for multi-phase 

materials, no such general trend is observed [82]. They opined that micro-facture wear mechanisms 

and other material variables can be the reasons for the unexpected wear behavior of the multi-

phase materials. However, Gopi et al. reported the general trend of wear rate reduction with 
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increasing hardness in multi-phase materials and alloys as well [83]. Such differences in findings 

across studies imply that the effect of hardness on tribological behaviors can be better understood 

if analyzed together with other material and tribological variables. 

4.4.2. Tribological variables 

Normal load, tribological testing methods, counterface material, sliding distance, sliding 

speed, and the lubrication condition are some of the important tribological testing variables. In 

this section, the effect of tribological test variables on friction and wear behaviors of aluminum-

graphite and aluminum-graphene MMCs will be discussed. 

4.4.2.1. Effect of normal load 

The normal load is often regarded as the most influential tribological parameter during 

sliding interactions. According to Archard and Hirst [67], wear is directly proportional to normal 

load, and the progression from mild to severe wear also depends on this parameter. Figure 4.6 

presents the effect of normal load on the wear rate and the COF of aluminum-graphene and 

aluminum-graphite MMCs. Increasing the load enhances the nano- and microscale asperity contact 

between the sliding surfaces. Moreover, larger plastic deformation of the tribosurface is expected 

with an increased asperity contact. All of these contribute to the increase of the overall friction 

force. However, for a two-phase self-lubricating material like aluminum-graphene MMCs, the load 

dependency of the friction and wear characteristics may be more complex since the increasing load 

can also lead to increased spreading of the softer phase on the tribosurface. Consequently, for 

aluminum-graphene MMCs, both increase and decrease in the COF with normal load are observed 

across studies (Figure 4.6(b)). 
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Figure 4.6. Effect of normal load on (a) wear rate [37, 44, 23], (b) coefficient of friction [36, 40, 

72]  

Also, the friction and wear of aluminum-graphite MMCs containing a higher wt.% of 

graphite were found higher compared to aluminum-graphene MMCs containing much smaller 

wt.% of graphene at similar loading conditions (Figure 4.6). Superior mechanical properties of 

aluminum-graphene MMCs and the formation and retention of the graphene-rich film play an 

important role in this. At the initial stage of sliding, the tribosurface is scratched and the graphene 

phase embedded in the metal matrix smeared on it [68]. Further sliding can cause more graphene 

smearing and eventually the formation of a stable graphene-rich film which can lower the friction 

and wear between the surfaces with load compared to the initial condition. However, once the 

stable graphene film has been formed, both the friction and wear are expected to increase with the 

normal load. In lower normal loads, mild wear is expected when the graphene film remains intact 

and contributes to limiting the friction and wear. The graphene-rich film is often destroyed or is 

no longer able to protect against the severe wear which is observed at higher loads. Wu et al. [36] 

reported that the wear mechanism in aluminum-graphene MMCs transitions from abrasive to 

delamination wear with increasing load. They also reported high surface roughness and shear strain 

at high normal loads. After ANOVA analysis, Venkatesan et al. [37] reported the normal load as 
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the most influential parameter for aluminum-graphene MMCs for the prediction of both the wear 

rate and COF. 

4.4.2.2. Influence of sliding distance 

For self-lubricating aluminum matrix composites, the influence of sliding distance on 

friction and wear is not straightforward. The solid-lubricating film formation, loading, and sliding 

conditions can make the relation complex. The effect of sliding distance on the wear rate and the 

COF of aluminum-graphene and aluminum-graphite MMCs are presented in Figure 4.7. For 

aluminum-graphite MMCs, both the COF and the wear rate increased with increasing sliding 

distance. Microthermal softening caused by interfacial heat and diminished graphite film on the 

tribosurface during extended sliding are considered to be responsible for these [59].  

 

Figure 4.7. Effect of sliding distance on (a) wear rate [32, 47, 23], (b) coefficient of friction [31, 

47, 72]. 

For aluminum-graphene MMCs, both the COF and the wear rate decrease with sliding 

distance. This inverse correlation linking the wear rate and sliding distance can be attributed to the 

hard graphene materials that protrude from the surface with extended sliding providing a 

mechanism through which the aluminum-graphene composites resist wear [37]. The presence of 
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stable graphene layers on the tribosurface also helps to reduce the COF with sliding distance. 

Furthermore, the ANOVA analysis performed by Venkatesan et al. [37] with tribological data of 

aluminum-graphene MMCs suggested that sliding distance has a greater influence on the wear rate 

than on the COF. 

4.4.2.3. Influence of sliding speed 

An increase in sliding speed generates frictional heat that raises the tribosurface 

temperature. This temperature rise promotes microthermal softening of the matrix. Moreover, it 

contributes to oxide formation, dissolution of precipitates in microstructure, and flow stress 

reduction [61]. All of these contribute to an elevated wear rate in aluminum MMCs. The effect of 

sliding speed on the wear rate and the COF of aluminum-graphene and aluminum-graphite MMCs 

are presented in Figure 4.8. 

 

Figure 4.8. Effect of sliding speed on (a) wear rate [40, 41, 71], (b) coefficient of friction [36, 

78]. 

The wear mechanism can be either mild or severe depending on the sliding speed. At a low 

sliding speed, mild wear is observed in aluminum-graphene MMCs when small wear rates are 

observed due to the fully functioning graphene lubrication films. In aluminum-graphite MMCs, 
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the wear rate is reported to decrease briefly with sliding speed in the mild wear regime [71]. As 

the sliding speed moves up towards a critical value, the wear rate increases both for aluminum-

graphene and aluminum graphite MMCs. However, the wear rates observed in aluminum-graphene 

MMCs were notably lower than that of the aluminum-graphite MMCs even with a higher 

percentage of reinforcement.    

On contrary, up to a critical value, the COF of aluminum-graphene and aluminum-graphite 

MMCs decreases with sliding speed. Besides the lubrication provided by the graphene or graphite-

rich layers, an increase in sliding speed minimizes the real area of contact which reduces the 

adhesive component of friction between the sliding surfaces. Frictional heat generated with 

increasing sliding speed also helps to reduce the friction during sliding interactions. Also at low 

sliding speeds, the resulting increase in strain rate increases flow strength and hardness [41]. 

Consequently, the real area of contact is reduced between the mating surfaces and the COF and 

wear are reduced.  

4.5. Friction and wear performance of aluminum-graphite and aluminum-graphene 

composites 

Analysis of the tribological performances of different studies indicated that the required 

amount of graphene in weight percentage as the reinforcement phase is significantly lower than 

graphite to obtain similar COF and wear rate under comparable loading conditions 

[20,22,32,35,36,70,72]. The incorporation of larger graphite particles in aluminum matrix causes 

notable decrease in mechanical properties including hardness, ductility, and strength in aluminum-

graphite MMCs. Also, large graphite particles have a higher tendency to agglomerate in the 

aluminum matrix [24]. All of these can adversely affect the tribological performance of these 

MMCs compared to aluminum-graphene MMCs. On the other hand, comparatively smaller 
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graphene nanoparticles are reported to disperse in the aluminum matrix more uniformly. The 

graphene nanoparticle addition significantly improves the mechanical properties and the 

corresponding tribological performance of aluminum-graphene MMCs. These could be probable 

reasons of a better friction and wear performance in nanoparticle reinforced aluminum-graphene 

MMCs compared to microparticle reinforced aluminum-graphite MMCs. 

Through statistical analysis using the experimental data of the above studies, we intended 

to test the hypothesis if a notably lesser wt.% of graphene as the reinforcement in aluminum matrix 

can exhibit a similar friction performance to a much higher wt.% of graphite. We performed the 

Linear Contrast Analysis (LCA) with the COF data of aluminum-graphite (10 wt.% graphite) and 

aluminum-graphene (0.5 wt.% graphene) under similar loading conditions using the IBM SPSS 

Statistics software to find if the COF values of the paired combination are statistically similar. 

Datasets of 33 COF values were considered where the mean and the standard deviation (SD) of 

the COF of aluminum-graphite composites were 0.1968 and 0.0862 and those of aluminum-

graphene composites were 0.2047 and 0.0603, respectively. The sample size of the test satisfied 

the requirement of the central limit theorem for the normal distribution approximation. The LCA 

test yielded a p-value of 0.77 for the linear term larger than α (0.05), indicating the failure of 

rejecting the null hypothesis. As a result, with a 95% confidence level, we could conclude that 

there is no statistical evidence that the mean COF values of the paired combination of aluminum-

graphite (10 wt.% graphite) and aluminum-graphene (0.5 wt.% graphene) composites are different. 

So, the statistical analysis validated the claim that a much lesser amount of graphene in the 

aluminum matrix as the reinforcement phase can generate a similar tribological performance as a 

higher amount of graphite in the aluminum matrix in comparable tribological conditions. 

4.6. Materials and methods 
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In this section, the development and performance enhancement of ML models in detail to 

predict the friction and wear behavior of aluminum-graphite and aluminum-graphene MMCs are 

discussed. This discussion includes data collection, data processing, model development, and 

optimization of parameters of different ML models. 

4.6.1. Data collection and input-output parameters 

The predictive capacity and robustness of ML models largely depend on the data collection 

process. Using a large relevant dataset from multiple sources covering a wide range of input-output 

relations for developing ML models ensures generalization capability and robustness. Using data 

from different sources is recommended as it prevents the passing of unsought trends from a 

particular source which can weaken the generalization capacity of the models. The resource and 

time required for developing multiple tribological testing set-ups and preparing samples with 

different material properties to generate the required data are formidable. For developing efficient 

ML models, we collected published tribological performance data for aluminum-graphite [2,9-

17,20-23,70-72,77-79,81,84] and aluminum-graphene [24, 31, 32, 34-50, 80] MMCs separately.  

For aluminum-graphite MMCs, eleven material and tribological variables namely graphite 

content, hardness, ductility, processing procedure, heat treatment, silicon carbide content, yield 

strength, tensile strength, normal load, sliding speed, and sliding distance were considered as the 

input parameters or features. Among these variables, processing procedure, and heat treatment 

were considered as categorical, while other variables were numerical. COF, and wear rate were 

the two output parameters. For modeling different ML algorithms to predict COF, and wear rate, 

533 and 852 sample data points were used respectively.     
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For aluminum-graphene MMCs, datasets of 432 and 390 sample data points were 

considered to build ML models to predict the COF and the wear rate, respectively. 15 tribological 

and material variables were considered as the inputs of regression models. Graphene content, 

aluminum content, SiC content, hardness, tensile strength, type of graphene, manufacturing 

process, heat treatment, ductility, and density were the considered material variables. Sliding 

distance, normal load, speed, counterface, and tribo-testing method were the considered 

tribological variables. Among the input variables, type of graphene, manufacturing process, heat 

treatment, counterface, and tribo-testing method were categorical, and the rest were numerical. 

4.6.2. Machine learning algorithms 

Supervised machine learning regression models can predict the output from input variables. 

For this purpose, the models are required to be trained with training examples consisting of input-

output relationships. 5 Machine Learning (ML) regression models: Artificial Neural Network 

(ANN), K-Nearest Neighbor (KNN), Random Forest (RF), Support Vector Machine (SVM), and 

Gradient Boosting Machine (GBM) were developed for predicting the wear rate and COF of 

aluminum-graphite and aluminum-graphene MMCs. Python programing language and the scikit-

learn toolkit were used for developing the models and running the ML analysis. The details of the 

abovementioned ML models are discussed at length in chapter 2 of this dissertation. 

4.6.3. Data preprocessing and standardization 

Data cleaning, handling of missing and unusual values, shuffling, data standardization, and 

splitting to the training and test sets are some important data preprocessing steps before developing 

the ML models. We performed the preprocessing steps on the data using manual techniques and 

using Python and its standard libraries. Through manual techniques, the missing and unusual 
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values in the datasets were dealt with accordingly. We shuffled the data to restrict unsolicited 

biases passing into the ML models. 

Bringing the inputs in a comparable numeric range improves the responsiveness of the 

developed models. This process of data standardization/feature scaling was executed using the 

“RobustScaler” which is known for its effectiveness with outliers in the dataset. Splitting the 

dataset into mutually exclusive training and test sets is required for developing ML regression 

models. The standard 75%-25% splitting scheme was selected where 75% of the total data were 

used to train the ML models and the remaining 25% were used as the test set.  

4.6.4. Optimization of the ML models 

Careful optimization of the developed ML models ensures maximization of predictive 

performance. The parameters of different models that require optimization are discussed in 

Chapter 2 of this dissertation. We used grid search and cross-validation techniques to find the 

optimized parameters for the prediction models. Under these optimization techniques, we selected 

different ranges of the parameters and run the prediction models numerous times. The optimization 

parameters generating the finest performance in wear rate and COF prediction models for 

aluminum-graphite MMCs were selected and are presented in Table 4.1 and Table 4.2.  

Table 4.1. Parameter optimization for COF of aluminum-graphite MMCs 

ML model Parameter optimization 

ANN Hidden layer sizes = (10,10,10), alpha = 0.01, 

activation function: logistic 

KNN n=3 
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RF n_estimators= 100, max_features = 4 

SVM kernel = "rbf", C = 100, gamma = .01 

GBM n_estimator = 100, learning rate = 0.3 

 

Table 4.2. Parameter optimization for wear rate of aluminum-graphite MMCs 

ML model Parameter optimization 

ANN Hidden layer sizes = (10,10,10), alpha = 0.06, 

activation function: tanh 

KNN n=7 

RF n_estimators=100, max_features = 4 

SVM kernel = "rbf", C = 100, gamma = .25 

GBM n_estimator = 100, learning rate = 0.1 

 

Similarly, the optimization parameters of the ML models for aluminum-graphene MMCs were 

presented in Table 4.3 and Table 4.4.      

Table 4.3. Optimization of COF models for aluminum-graphene MMCs 

Model name Selected Parameters 

ANN alpha = 0.012, activation function: tanh, 

hidden layers = (10,10,10), 

KNN weights= 'uniform', n_neighbors=5 

RF max_features = 4, n_estimators= 80, 

SVM gamma = 0.08, C = 100, kernel = rbf 
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GBM learning rate = 0.8, n_estimator = 150, 

max_depth = 2  

 

Table 4.4. Optimization of wear rate models for aluminum-graphene MMCs 

Model name Selected parameters 

ANN alpha = 0.04, activation function: relu, hidden 

layers = (10,10,10) 

KNN weights= 'uniform', n_neighbors=3  

RF max_features = 5, n_estimators= 30 

SVM gamma = 0.3, C = 100, kernel = rbf 

GBM learning rate = 0.01, n_estimator = 150, 

max_depth = 7  

 

4.7. Result and discussion 

ML analysis results and the analysis of the efficiency of the developed results with standard 

performance evaluation metrics have been presented in this section. The findings of the data-driven 

analysis on how different input parameters influence the wear and friction of aluminum-graphite 

and aluminum-graphene MMCs have also been discussed. 

4.7.1. Evaluation of model performance 

For evaluating the performance of ML models, different performance metrics are used. 

These metrics provide a numerical estimation of how well an ML model fits the actual data. The 

coefficient of determination (𝑅2 𝑣𝑎𝑙𝑢𝑒) is the most important among them and presents the 
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percentage of variation in data that can be explained by the model. 𝑅2 Can be defined as  𝑅2 =

1 −
𝑆𝑆𝑟

𝑆𝑆𝑡
, where 𝑆𝑆𝑟 is the residual sum of squares, and 𝑆𝑆𝑡 is the total sum of squares. 𝑅2 value 

ranges from 0 to 1. 𝑅2 = 1 means perfect fitting and the model can accurately predict the data 

which is unusual for any experimental dataset. 𝑅2 value over 0.9 refers to a very satisfactory model 

execution while a value ranging between 0.7-0.9 indicates fairly satisfactory performance. 𝑅2 

values below 0.5 indicate that the model is inadequate to predict the output of a dataset.  

Besides 𝑅2 values, mean squared error (MSE), root mean squared error (RMSE), and mean 

absolute error (MAE) are other metrics that can be used to evaluate the performance of an ML 

model. MSE is the average of the squared differences between the observed and predicted values. 

RMSE is obtained by performing the square root of the MSE value. MAE is the average of the 

absolute difference between the observed and predicted value of each data point of the dataset. A 

value of 0 of these errors means a perfect fitting of the model with the data set. The smaller the 

value the better the predictive performance of the ML model. 

4.7.2. Result for COF prediction 

The performance metrics of the ML models for predicting COF are presented in Table 4.5. 

With 𝑅2 values ranging from 0.7561 to 0.9636 and small error values, each model for COF 

prediction performed satisfactorily. 

Table 4.5. Performance of the ML methods for COF 

ML 

Model 

Reinforcement MSE RMSE MAE 𝑹𝟐 value  

ANN Graphite 0.0037 0.0611 0.0403 0.8630 
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ANN Graphene 0.0037 0.0613 0.0396 0.8936 

KNN Graphite 0.0066 0.0816 0.0460 0.7561 

KNN Graphene 0.0046 0.0682 0.0408 0.8683 

RF Graphite 0.0037 0.0612 0.0332 0.8626 

RF Graphene 0.0013 0.0362 0.0244 0.9628 

SVM Graphite 0.0064 0.0802 0.0547 0.7644 

SVM Graphene 0.0034 0.0583 0.0340 0.9037 

GBM Graphite 0.0028 0.0538 0.0360 0.8941 

GBM Graphene 0.0012 0.0358 0.0219 0.9636 

 

For aluminum-graphite MMCs, the GBM model exhibited the highest prediction capacity 

(𝑅2= 0.8941) among the ML models and it could predict the COF of the test set with 89.41% 

accuracy. However, the ML models developed for aluminum-graphene MMCs consistently 

outperformed those for aluminum-graphite MMCs. The decision tree based RF (𝑅2=0.9628, 

RMSE=0.0362, MAE=0.0244, and MSE=0.0013) and GBM (𝑅2=0.9636, RMSE=0.0358, 

MAE=0.0219, and MSE=0.0012) models produced the best prediction performances for 

aluminum-graphene MMCs. The boosting and bagging mechanisms of the GBM and the RF 

models were found efficient in handling the friction data with categorical variables [58-61]. For 

the GBM model, 150 boosting stages (n_estimators) with a maximum depth of 2 for each 

individual regression unit yielded the best prediction performance in COF prediction. With the 

COF data, a higher learning rate of 0.8 along with other optimized parameters was found efficient. 

The comparison between the actual COF (experimentally measured) and the predicted COF by the 
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best-performing GBM model is presented in Figure 4.9. Impressive agreement between the 

predicted and actual experimental COF values was observed. 

 

Figure 4.9. The comparison of the actual (experimentally measured) COF and the anticipated 

COF by GBM regression model for aluminum-graphene MMCs. 

For the RF model, 80 decision trees with 4 considered features during the best split 

(max_features) produced the best prediction performance with an 𝑅2value of 0.9628. With the 

presence of categorical variables in the dataset, the decision tree based GBM, and RF models 

performed notably well compared to other models. Among the developed models, the distance 

function based KNN was the simplest and was outperformed by all other models. 5 neighboring 

datapoints to make a prediction for a new datapoint with a uniform weight to each datapoint 

produced the best prediction performance in the KNN model. However, the model still struggled 

to address the complex COF dataset compared to other ML models. With an 𝑅2 value of 0.8936, 

the ANN model could predict the COF with an accuracy of about 89.36%. With small error terms, 

the prediction performance of the ANN model can be considered decent. 

4.7.3. Influence of input variables in COF prediction  
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The effect of each independent variable on predicting the output can be summarized by the 

“feature importance” attribute of decision tree-based ML models. The sum of the scores of each 

variable of such a feature importance analysis chart equals 1. A high individual score suggests a 

significant contribution in output prediction while a zero score suggests no contribution at all. The 

feature importance chart from the RF algorithm for predicting the COF for aluminum-graphite 

MMCs is presented in Figure 4.10.  A non-zero score for each input variable confirms that all the 

selected input variables impact the COF. All independent variables performed fairly and 

contributed to predicting the COF.  The graphite content and the hardness of the Al alloy matrix 

had the highest score and had the maximum contribution in the COF prediction. Graphite content, 

which is often considered as the most important material variable in the traditional analysis had 

almost equal contribution as the hardness. The formation of the graphite lubricating film reduces 

friction of Al/Gr composites. The effect of hardness on the COF can be explained by stronger 

resistance of harder materials to the deformation of asperities during sliding. Processing procedure 

had a higher contribution than heat treatment in predicting the COF. Among the tribological test 

parameters, sliding speed scored higher and played an important role in the COF prediction. 
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Figure 4.10. Relative significance of material and tribological test variables identified 

by the RF model for predicting the COF of aluminum-graphite MMCs 

For aluminum-graphene MMCs, the influence of each input variable in anticipating the 

COF is identified by the feature importance attribute of the RF model (Figure 4.11). The analysis 

result showed that the load, graphene content, and hardness were the most important parameters 

in COF prediction. Normal load is directly related to the asperity contact of the sliding surfaces 

and the formation and retention of the lubrication film between them. The weight percentage of 

graphene is also important to promote the self-lubrication effect for reducing friction as we 

discussed in section 3. Material hardness had also significant influence in COF prediction. The 

analysis also suggest that the type of graphene used in the aluminum-graphene metal matrix 

composites had a comparatively lesser impact on COF prediction.  
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Figure 4.11. The relative importance of input variables for predicting the COF (feature 

importance). 

4.7.4. Wear rate prediction 

The performance metrics of the ML models for predicting wear rate are presented in Table 

4.6. 𝑅2 values on test sets of different ML models range between 0.7395 to 0.8832, and the MSE, 

RMSE, and MAE are reasonably small. These numbers indicate satisfactory execution of the ML 

models for predicting the wear behavior of aluminum-graphite and aluminum-graphene 

composites.  

Table 4.6. Performance of the ML models for wear rate prediction 

ML 

Model 

Reinforcement MSE RMSE MAE 𝑹𝟐 value 

ANN Graphite 0.0031 0.0558 0.0181 0.7395 

ANN Graphene 0.0007 0.0259 0.0092 0.9325 
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KNN Graphite 0.0017 0.0422 0.0114 0.8512 

KNN Graphene 0.0026 0.0515 0.0137 0.7349 

RF Graphite 0.0014 0.0374 0.0093 0.8832 

RF Graphene 0.0009 0.0312 0.0086 0.9039 

SVM Graphite 0.002 0.041 0.010 0.8581 

SVM Graphene 0.0011 0.0331 0.0122 0.8897 

GBM Graphite 0.0016 0.0408 0.0123 0.8607 

GBM Graphene 0.0005 0.0230 0.0097 0.9467 

 

For aluminum-graphite MMCs, the RF model outperformed others in predicting the wear 

behavior. With an 𝑅2 value of 0.8832, it could predict the wear rate of the test dataset with 88.32% 

accuracy. The results show that the performances of different ML models were different in 

predicting COF and wear rate of aluminum-graphite MMCs for the same data sets. RF and GBM 

are decision tree-based, ensemble algorithms where several decision trees are developed to map 

the input data to output. However, there are differences in the decision tree development and the 

result generation processes in these two algorithms. RF uses the bagging mechanism where each 

tree is built independently with random samples from the dataset and generate the final result by 

averaging the individual results of each tree at the end of the tree building process. In contrast, 

GBM uses the boosting mechanism where each tree is built once at a time (each tree depends on 

the previous tree) with weighted samples from the dataset and generate the final result by 

combining the individual results of each tree along the tree building process. With proper 

parameter optimization, the boosting mechanism is more effective than the bagging mechanism 

in handling complex problems, while the bagging mechanism is more effective when a large 
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fluctuation or variability is present in the dataset. The variability in the wear rate data set 

(0.00055 mm3/m to 0.37 mm3/m) was more prevalent than that of the COF dataset (0.1 to 0.93). 

Consequently, GBM exhibited the best performance in the COF prediction, and RF outperformed 

GBM in wear rate prediction. 

For aluminum-graphene MMCs, the performance evaluation metrics of the ML models for 

wear rate anticipation are presented in Table 4.6. With 𝑅2 values ranging from 0.8897 to 0.9467, 

ANN, SVM, RF, and GBM models performed excellently. However, the KNN model 

underperformed in wear rate prediction as the distance function-based model was too simple to 

explain the complex correlations in wear data. For the complex dataset of wear rate, ANN 

exhibited excellent performance (𝑅2= 0.9325, RMSE = 0.0259, MAE = 0.0092, and MSE = 

0.0007) and as expected. The decision tree based GBM model produced the best prediction 

performance (𝑅2= 0.9467, RMSE = 0.0230, MAE = 0.0097, and MSE = 0.0005). The model could 

predict the wear rate with the maximum accuracy of 94.67%. The boosting mechanism of the GBM 

regression model produced consistent performance in presence of categorical variables in the wear 

rate data.  

The comparison between the actual wear rate (experimentally measured) and the predicted 

counterpart by the best performing GBM regression model is presented in Figure 4.12. Excellent 

correlation between the predicted and actual experimental wear rate values was observed. 
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Figure 4.12. The comparison of the actual (experimentally measured) and the anticipated wear 

rate by GBM regression model. 

RF, the other decision tree based model, also performed satisfactorily in wear prediction. 

An 𝑅2value above 0.9 and small error term values indicate satisfactory model execution. The ANN 

model exhibited excellent prediction performance for wear rate with an 𝑅2value of 0.9325 and 

extremely low values of MAE, RMSE, and MSE. With 3 hidden layers each having 10 neurons, 

“relu” activation function, and a small regularization term (alpha = 0.04), the ANN model 

satisfactorily handled the complex wear rate data. The distance function based KNN model was 

once again notably outperformed by other models in handling complex wear data. 

The selection of appropriate independent variables for ML analysis is important to get a 

better predictive performance (𝑅2 value) for the output. However, the selection of independent 

variables in predicting COF and wear rate is a complicated process as numerous material and 

tribological parameters affect them. In this study, we could not include more microstructural 

features (e.g., average grain size of microstructure, information about grain boundary, graphite 

particle size) due to the unavailability of those data which could potentially improve the 𝑅2 value 
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of those models. Another, inconvenience with tribological data is that the tribological and 

material properties affecting the tribological behavior are often correlated. Correlation among 

the independent variables affects the 𝑅2 value of prediction. Also increasing the number of data 

points might improve the 𝑅2 value of the developed ML models.  

4.7.5. Influence of the input variables on wear rate prediction 

The feature importance chart from the RF algorithm for predicting the wear rate of Al/Gr 

composites is presented in Figure 4.13. Graphite content had the highest score and contributed the 

most in predicting wear rate. The strong dependence of the wear rate on graphite content can be 

attributed to two contrasting factors. First, the diminution of several mechanical properties 

including hardness, ductility, and fracture toughness of the MMCs with graphite addition. With 

increasing graphite content, crack propagation and delamination of the graphite phase increase due 

to a weaker bonding with the aluminum matrix. On the other hand, the formation of a thin graphite 

film over the tribosurface provides lubrication and eliminates metal-to-metal contact during 

sliding. Due to these diverse effects, graphite content has a greater influence on the wear rate of 

the Al/Gr MMCs than any other material or tribological variables. 



125 

 

 

Figure 4.13. The relative importance of input variables for predicting the wear rate of aluminum-

graphite MMCs   

Among the tribological test variables, the effect of the sliding speed was the most 

significant. A brief initial decrease in wear rate was observed up to a critical sliding speed for 

Al/Gr MMCs. This initial dip in wear rate is due to the graphite film formation on the tribosurface. 

Once the sliding speed surpasses the critical speed, the effect of the graphite lubrication film is 

diminished, and more metal-metal contact occurs during sliding. This causes a drastic sudden 

increase in wear rate. Normal load also contributed fairly to wear rate prediction. An increase in 

the normal load deteriorates the graphite film and increases the frictional heat that softens the 

tribosurface. As a result, increased plastic deformation of the tribosurface is observed, and the 

COF and wear rate are increased.   

For aluminum-graphene MMCs, the influence of each input variable in anticipating the 

wear rate is identified by the feature importance attribute of the RF model (Figure 4.14.). A non-

zero score for each input variable confirms that all the selected input variables impact the wear 

rate. The feature importance analysis showed that graphene content, hardness, and normal load 
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were the most dominant variables in wear prediction. Graphene content is directly related to 

mechanical property enhancement and self-lubrication effect in aluminum-graphene MMCs and 

was identified as the most important parameter in the analysis. Hardness resisted material removal 

during tribological interactions and played an important role in wear prediction. Hardness was 

found having more influence on friction and wear than tensile strength probably because at the 

surface (unlike in the bulk material) hardness resist material removal more than the strength of the 

bulk material. Normal load was also important as it impacted the asperity contact between the 

surfaces, formation, and retention of the graphene film at the tribosurface and controlled the 

transition between mild and severe wear. The type of graphene used in the aluminum-graphene 

metal matrix composites had a larger impact on the wear rate unlike COF. Besides the 

incorporating self-lubricating effect, the type of graphene and the number of graphene layers 

modify the surface and mechanical properties including porosity, ductility, hardness, strength, and 

the bonding between aluminum and graphene. Different morphology of graphene can induce 

different levels of microcracking and brittle fracture during tribological interactions. All these 

aspects can significantly influence the wear rate in aluminum-graphene metal matrix composites.    



127 

 

 

Figure 4.14. The relative importance of input variables for predicting the wear rate of aluminum-

graphene MMCs. 

4.7.6. Prediction performance comparison 

We performed a comparative analysis of ML models for COF and wear rate anticipation 

of aluminum alloys, aluminum-graphite, and aluminum-graphene composites in dry conditions 

[58-61]. With categorical variables in input, the decision tree based ML models: GBM and RF 

consistently generated excellent prediction performance for friction and wear rate. Statistical 

performance metrics suggested that the ML models for aluminum-graphene and aluminum-

graphite composites notably outperformed those for aluminum base alloys. For aluminum-

graphene and aluminum-graphite composites, the friction and wear characteristics significantly 

depend on the self-lubricating effect caused by graphite and graphene incorporation in the 

aluminum matrix. Graphene content and graphite content were identified as the most influential 

variables in friction and wear prediction for these two composites, respectively. Consequently, the 
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prediction models performed excellently. For aluminum base alloys, without any liquid and solid 

lubricant, the COF and the wear rate heavily depended on material hardness and different 

tribological variables. The dataset represented a certain degree of randomness and a more 

complicated correlation among the input-output variables. Consequently, the ML models 

underperformed than those for aluminum-graphene and aluminum-graphite composites. 

The ML models we have developed are capable of predicting the COF and wear rate of 

aluminum-graphene MMCs with an accuracy up to 96%. We can predict the COF and wear for a 

wide range of loading conditions and material variables without running any experiments. 

Moreover, these models can identify the most crucial parameters affecting the friction and wear of 

aluminum-graphene MMCs analyzing a large data from more than 20 experimental studies. This 

information can be effectively utilized for improving the synthesizing process of aluminum-

graphene MMCs and finding optimum operating conditions for practical applications. 

4.8. Conclusion 

The effect of graphite and graphene addition on the material properties of self-lubricating 

aluminum-graphite and aluminum-graphene MMCs was investigated. The friction and wear 

mechanisms of these MMCs were analyzed and a phenomenological study of their dry friction and 

wear behavior in sliding interactions was presented. Additionally, the tribological characteristics 

of aluminum-graphene MMCs were compared with those of aluminum-graphite MMCs. 

• We observed an increase in hardness and tensile strength with graphene addition in aluminum-

graphene MMCs due to several strengthening mechanisms.  
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• A notable reduction in the COF and wear rate was observed with increasing graphene content 

in the aluminum-graphene MMCs which was attributed to the formation of graphene-rich film 

at the tribosurface.  

• Linear contrast analysis showed that a much lower wt.% of graphene in the aluminum matrix 

as the reinforcement phase can lead to similar decrease in COF which are obtained with a much 

higher amount of graphite in the aluminum MMCs under comparable tribological conditions. 

A similar trend was observed for wear rate as well for these MMCs. 

• The models to predict wear and friction of aluminum-graphite and aluminum-graphene MMCs 

performed extremely well. Also, the ML models for aluminum-graphene MMCs outperformed 

those for aluminum-graphite MMCs in COF and wear rate prediction. However, the decision 

tree based RF (𝑅2=0.9628, RMSE=0.0362, MAE=0.0244, and MSE=0.0013) and GBM 

(𝑅2=0.9636, RMSE=0.0358, MAE=0.0219, and MSE=0.0012) models exhibited superior 

predictive performance in COF prediction, while the GBM (𝑅2= 0.9467, RMSE = 0.0230, 

MAE = 0.0097, and MSE = 0.0005) and ANN (𝑅2= 0.9325, RMSE = 0.0259, MAE = 0.0092, 

and MSE = 0.0007) models provided the best prediction for wear.  

• ML analysis revealed that for predicting both the COF and wear rate of aluminum-graphite 

MMCs, the graphite content was the most significant parameter. For friction, the hardness of 

the Al matrix and played a role, while the sliding speed was a significant parameter for 

predicting wear rate. 

• For aluminum-graphene MMCs, ML study suggested that load, graphene content, and hardness 

were the most influential parameters in COF prediction. However, the graphene content, 

normal load, and hardness had the greatest influence on the wear behavior of aluminum-

graphene MMCs. 
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CHAPTER 5: TRIBOINFORMATICS MODELING OF THE TRANSITION 

FROM SOLID TO LIQUID LUBRICATED FRICTION AND WEAR IN 

ALUMINUM-GRAPHITE COMPOSITES 

In previous chapters, Triboinformatics modelling of dry friction and wear of aluminum 

alloys and aluminum-based MMCs had been presented. The friction and wear mechanisms in these 

alloys and MMCs change notably in liquid lubricated conditions. In this chapter, besides, the study 

of wear and friction of aluminum-graphite composites in different lubrication conditions, the effect 

of the transition between lubrication regimes will be studied using supervised and unsupervised 

ML models.  

5.1. Introduction 

Aluminum (Al) based alloys are prevailing engineering materials for low density combined 

with corrosion resistance, high stiffness, strength, and thermal conductivity [1]. However, Al 

alloys exhibit high friction and wear rates along with a tendency to seize under dry sliding or poor 

lubricating conditions [2,3]. Consequently, liquid or solid lubrication is required. Liquid 

lubrication is the process of controlling the wear and friction between sliding surfaces through 

films of oil-based liquids: petroleum-based mineral oil, synthetic oil, and other additives. SAE 

5W-30, SAE 10W-30, and SAE 20W-50 are some commercially available liquid lubricant grades 

for industrial applications. Reducing friction and wear by keeping the moving parts apart, 

controlling the temperature and contaminants, heat dissipation, and corrosion resistance are some 

desirable consequences of using liquid lubricants. Self-lubrication by solid graphite can be 

achieved using Al metal matrix composites (MMCs) with graphite particles incorporated into the 

Al alloy matrix [4]. The atoms in the layer share strong covalent bonds, while weak van der Waals 
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forces act between the layers, so they shear easily relative to each other. Consequently, graphite is 

strong in compression but weak in shear, making it a good solid lubricant [5].  

In graphite reinforced aluminum aluminum-graphite MMCs, graphite is continuously 

released at the sliding surface, acting as a self-replenishing solid lubricant, reducing friction and 

wear. Graphite forms a thin film on the surface of the composite material, in some cases possibly 

a monolayer. Note that while graphene (monolayer graphite) was discovered only in 2004, carbon 

monolayers on metallic surfaces were observed already in 1962 [6] and possibly, in tribological 

applications of aluminum-graphite MMCs where a thin graphite tribolayer is formed [7]. The 

graphite-on-graphite contact can also lead to the so-called superlubricity or significantly reduced 

friction [8,9] due to the incommensurate character of atomic-scale asperities. From the physics, 

the transition to superlubricity is an example of the commensurate-to-incommensurate phase 

transition.    

Tribological behaviors of self-lubricating aluminum-graphite MMCs have been studied 

actively since low-cost cast aluminum-graphite composites were first synthesized around 1965. 

Low friction and wear were reported, and graphite content was optimized along with other 

variables for best mechanical and tribological performance [10, 11]. The friction and wear of 

aluminum-graphite MMCs are influenced by material variables such as matrix characteristics, 

graphite content, size and shape of the graphite particles, and material processing procedure 

[12,13]. Tribological test variables like the sliding distance, speed, and load are also important 

factors. However, since such a large number of variables influence the mechanical and tribological 

properties of these composites, the effects of multiple-parameter variations have not been 

quantified, despite considerable investigation of two-parameter relationships. The multi-parameter 

study requires data-driven approaches, a common feature of materials tribology, with plentifully 
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available data on surface properties, friction, wear, and material behavior. Tribology remains a 

data-driven scientific discipline, especially for complex materials such as two-phase composites, 

whose surface characteristics change with time. Due to the emergence and rapid development of 

new methods of Machine Learning (ML) and Artificial Intelligence (AI), it became possible to 

obtain and study new correlations in data-driven areas of science. In particular, recently, the area 

of so-called Triboinformatics has been suggested [14,15] and applied to the study of Al base alloy 

and unlubricated aluminum-graphite composites [16,17]. Complex high-order correlations of the 

tribological properties of aluminum based materials with material and mechanical properties, 

manufacturing and processing procedure, and tribological test conditions were successfully 

modeled using data-driven ML approaches [16,17]. 

The tribological behavior of aluminum-graphite composites in unlubricated conditions has 

been studied in recent years to analyze the self-lubricating behavior. Analyzing their tribological 

and self-lubricating behavior in the presence of liquid lubrication and the transition from lubricated 

to unlubricated state as a result of drainage in lubricating liquid are of importance in situations 

where such sudden loss of lubricant can lead to instant seizures and catastrophic failures. For 

example, a liquid lubricating film separates the piston ring and the cylinder liner during the 

operation of an internal combustion engine. A sudden draining out of the lubricant causes extensive 

metal-to-metal contact that gives rise to heavy wear and an abrupt temperature increase. 

Consequently, piston elements undergo seizure, and an instant system failure occurs. The work in 

this paper shows that the presence of graphite particles in the matrix enables the aluminum alloys 

even after the lubricant is accidentally drained.  

In this study, a systematic analysis will be performed to understand the underlying 

mechanisms of wear and friction for liquid lubricated aluminum-graphite composites and the wear 
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behavior during the transition of different lubrication conditions. Different supervised and 

unsupervised ML models will be developed for tribological behavior prediction and finding wear 

and friction patterns in the presence of liquid lubrication. 

5.2. Liquid and solid lubricated wear and friction of aluminum-graphite 

In this section, the wear and friction mechanisms of aluminum-graphite composites in dry 

and lubricated conditions will be discussed. Also, different parameters used to characterize 

lubricated friction and wear regimes will be presented and their relations to the data parameters 

will be discussed. 

 

Figure 5.1. Schematic of sliding surfaces and lubricating film, lubrication regimes in 

Stribeck curve for standard alloys and graphite MMCs, dimensionality reduction 

technique in ML, and the schematic of a typical wear map  
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5.2.1. Friction behavior of Al/Gr MMCs in dry condition 

According to the classical theory of friction by Bowden and Tabor, the friction force (𝐹𝑓) 

has two independent components: adhesion (𝐹𝑎) and deformation (𝐹𝑑) [18]. The coefficient of 

friction (COF) [19] or 𝜇 quantifies the friction between interacting surfaces, which is presented as  

𝜇 =
𝐹𝑓

𝑁
=

𝐹𝑎+𝐹𝑑

𝑁
=

𝐹𝑎

𝑁
+

𝐹𝑑

𝑁
= 𝜇𝑎 + 𝜇𝑑       (1) 

where the COF for the adhesion and deformation is presented by 𝜇𝑎 and 𝜇𝑑, respectively.  

The adhesion component, 𝐹𝑎 depends on the real area of contact at the asperity level 

between interacting surfaces. During extend sliding under a normal load, the graphite particles are 

squeezed out from the embedded state from the metal matrix. The smearing of these particles 

occurs on the tribosurface and forms a lubricating film that reduces the surface-to-surface real area 

of contact. Wear of the MMC exposes new graphite particles which cause continual replenishment 

of the graphite film. 

If the graphite content in the aluminum-graphite composite is sufficient, a uniform and 

durable graphite-rich film is established on the tribosurface. It causes a significant reduction of the 

real area of contact and corresponding adhesion component. 

The COF of aluminum-graphite metal matrix composites can be presented by the following 

equation using the rule of mixture [20]. 

𝜇 = (1 − 𝐴𝑔)𝜇𝑚 + 𝐴𝑔𝜇𝑔         (2) 

where 𝜇𝑚 is the COF of the Al matrix, while 𝜇𝑔 and 𝐴𝑔 are the COF and area fraction of 

the tribosurface enveloped by the graphite film, respectively. The deformation component, 𝐹𝑑 
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depends on material and mechanical properties such as yield strength, hardness, elasticity, etc., 

which are subject to the graphite content in the Al matrix of the aluminum-graphite composites. 

 In a word, the friction behavior of aluminum-graphite MMCs in dry conditions largely 

depends on the presence of the secondary graphite phase in the aluminum matrix and the extent of 

the solid lubricating film formation on the tribosurface. 

5.2.2. Friction behavior of Al/Gr MMCs in liquid lubrication 

The effect of liquid lubrication on friction is usually analyzed with the so-called Stribeck 

curve, which summarizes different fluid lubrication regimes: the hydrodynamic (HDL), 

elastohydrodynamic (EDL), mixed, and boundary lubrication (Figure 5.1). The COF is plotted 

against the Hersey number= 
ηV

P
 [21], a dimensionless product of the dynamic viscosity (η) of the 

fluid and sliding speed (V) divided by the normal load (P). Large Hersey numbers correspond to 

the hydrodynamic lubrication regime when liquid viscosity is the main factor supporting the load. 

Small Hersey numbers correspond to the boundary lubrication with nanoscale or molecular layer 

of the lubricant exists. Hersey number equal to zero corresponds to dry friction.   

In the hydrodynamic lubrication regime, the lubricating films between sliding surfaces are 

stable and thicker than the height of the asperities or irregularities. The elastohydrodynamic 

lubrication regime is found for heavily loaded contacts where elastic deformation of the mating 

surfaces shapes the HDL process with a comparatively thinner film thickness [22].  No direct 

contact among the asperities of the mating surfaces occurs in these regimes, which are often 

considered ideal in sliding applications. Since the lubricating film supports almost the entire load, 

the wear and friction are low, and the graphite content does not affect the friction behavior of the 

Al/Gr MMCs much. In Al/Gr MMCs, the hydrodynamic effects become dominant at a lower 
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sliding velocity than aluminum base alloys. However, significant differences in the Stribeck curves 

are observed in aluminum alloys and Al/Gr MMCs during the transition from the EDL regime to 

the mixed and the boundary lubrication regime [7]. 

In the mixed lubrication regime, low sliding speed, high load, and increased lubricant 

temperature are observed with a notable reduction in the lubricant viscosity. Due to a high load, 

graphite particles are squeezed out of the Al matrix, but the liquid lubricant hinders the self-

lubricating graphite film formation and its retention on the tribosurface [10]. Consequently, the 

graphite content cannot influence the friction characteristics of the aluminum-graphite composites 

notably in the mixed lubrication regime. A low COF is observed mainly due to the presence of the 

liquid lubrication film on the tribosurface.  

With further increased normal load combined with lower sliding speed and reduced 

lubricant viscosity, boundary lubrication is observed. Due to the absence of a steady liquid 

lubrication film, the normal load is entirely supported by extensive asperity contact. Clean surfaces 

with no lubrication correspond to high surface energy and high friction. However, in aluminum-

graphite composites, graphite particles are freed from the matrix material at extensive sliding and 

form a solid-lubricating graphite film on the tribosurface. Consequently, the friction behavior of 

aluminum-graphite composites in this lubrication regime depends on the graphite content and the 

graphite film formation. 

In summary, for self-lubricating materials, such as the Al/Gr MMC, the Stribeck curve 

would be significantly different from the standard one because, in the limit of moderate and absent 

lubrication, the solid lubrication prevails over other mechanisms. 

5.2.3. Friction behavior of Al/Gr MMCs in the transition from liquid to dry condition 
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In the dry condition, the graphite content and the solid-lubricating graphite film formation 

are critical factors for the friction behavior of Al/Gr MMCs. However, in the fully lubricated 

condition, when a stable liquid lubrication film is present between the mating surfaces, the graphite 

content has little impact on the friction behavior. The COF of Al 6061 alloy and Al 6061/Gr MMCs 

with varied graphite content in the fully lubricated condition is compared with the COF of Al 6061 

alloy in the dry condition against the same counterface in Figure 5.2(a) [23]. A significant 

decrease in COF is observed in the Al 6061 alloy in the fully lubricated condition.  

 

Figure 5.2. (a) COF vs sliding distance in dry and fully lubricated conditions, (b) in situ COF 

data with time for Al-16Si-5Ni-5Graphite MMC in different lubrication conditions (Reprinted by 

permission from Springer, Ref. [24], Copyright (2016)), (c) Mean of COF vs Gr content plot 

from the Linear Contrast Analysis, (d) wear and seizure behavior of LM13 alloy and LM13/3% 

Gr MMC under different normal load at the same sling speed 
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In the fully lubricated condition, the alloy and MMCs with different graphite content 

exhibited similar COF values. We performed statistical analysis to find any statistically significant 

differences between the COF of Al 6061 alloys and the Al 6061/Gr MMCs with 2%, 4%, and 6% 

Gr in the fully lubricated condition. First, we performed the normality test to check if the COF 

data is normally distributed using the IBM SPSS Statistics software. During hypothesis testing in 

statistical analysis, the significance level (presented as α) denotes the possibility of the “Type 1” 

error (the probability of rejecting the null hypothesis when it is true).  The probability value (p-

value) in the normality test was 0.092> α (0.05). With a 95% confidence level, we failed to reject 

the null hypothesis that the data is normally distributed. Then, we performed the Linear Contrast 

Analysis (LCA) to find if there are statistically significant differences between the mean COF of 

Al 6061 alloys and Al 6061/Gr MMCs with 2%, 4%, and 6% Gr. The p-value in the LCA test was 

0.13, which is larger than α (0.05). Consequently, with a 95% confidence level, we failed to reject 

the null hypothesis, which states that there is no statistical difference between the paired 

combinations of the mean COF values (Figure 5.2(c)). The statistical analysis indicates that for 

Al 6061 and Al 6061/Gr MMCs in the fully lubricated condition and under similar tribological 

conditions, a variation in graphite content causes little variation in the friction behavior.    

Omrani et al. studied the friction behavior of Al-16Si-5Ni-5Gr MMC against a steel 

counterface where the lubrication condition is changed in four stages in an experiment [24]. The 

first stage was dry friction when the COF was reduced from 0.21 to 0.18 because of the graphite 

film formation (Figure 5.2(b)). The second stage was in a fully lubricated condition when a 

reduced constant value of COF (0.12) was observed. During the third stage, when the lubricant 

was gradually being drained out, a gradual increase in COF was observed. The final stage began 

in the absence of lubricant and continued till the end of the test when a stable COF (0.165) was 
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observed, which is less than the COF (0.18) of the first stage of dry friction just before the 

introduction of the lubrication. Besides the graphite self-lubricating film, nanoscale or molecular 

layer of the lubricant retention on the microporous surface can cause this transition in friction 

behavior of aluminum-graphite composites. 

In summary, the incorporation of the liquid lubrication causes a transition in friction 

behavior in aluminum-graphite composites by forming the liquid lubrication film, nanoscale, or 

molecular layer of lubricant retention on the microporous surface and influencing the graphite film 

formation process on the tribosurface.   

5.2.4. Wear behavior of Al/Gr MMCs in dry 

Wear regimes of various materials are often characterized by so-called wear maps, where 

the transition among different wear mechanisms is typically presented as a function of two 

variables: the normal load and sliding speed (Figure 5.1). Due to the extensive effect of normal 

load and sliding speed on wear mechanisms, wear maps provide an instantaneous and convenient 

approximation of general wear patterns in a wide range of tribological interactions.  

A transient process followed by the steady-state condition characterizes the wear behavior 

of aluminum-graphite composites in dry conditions [13,25]. The wear behavior depends on the 

formation and the retention of the solid lubricant graphite film over the tribo-interface and its 

physical properties [16]. The wear of the aluminum matrix phase and the graphite reinforcement 

phase both contribute to the overall wear. Adhesive, abrasive, and delamination are reported as the 

most dominant wear mechanisms in aluminum-graphite composites [25,26]. At the early stages of 

sliding or with a low graphite content, there are not enough graphite particles available at the 

tribosurface to form a stable graphite film. Consequently, extensive metal-to-metal contact is 
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observed between the sliding surfaces, and adhesive junctions are formed at the spots of the real 

area of contact. These adhesive junctions are sheared during sliding and cause adhesive wear. Due 

to the fracture and plastic deformation during extensive shearing, material transfer from the softer 

to the harder surface takes place. 

Once a stable graphite film is formed, and a critical thickness is exceeded, delamination 

becomes the dominant wear mechanism in aluminum-graphite composites. In delamination wear, 

the accumulation of dislocations causes subsurface cracking at a certain depth under the 

tribosurface as the soft graphite film is deformed [27]. Frictional and material properties and 

tribological parameters govern the crack initiation and propagation at the subsurface region. Under 

repeated loading, an unstable propagation of cracks occurs once it exceeds a critical length, and a 

thin laminate of the softer material is generated as wear debris. Besides these two forms of wear, 

abrasive wear is observed for aluminum-graphite composites while sliding against a harder 

counterface. Several forms of plastic deformation: cutting, plowing, and wedge formation of the 

asperities of the softer surface take place in abrasive wear.  

Wear mechanisms and wear behavior of aluminum-graphite composites are greatly 

dependent on the operating condition. Archard and Hirst suggested two distinct wear regimes: mild 

wear and severe wear in sliding contact depending upon the normal load [28]. The transition from 

mild to severe wear in aluminum-graphite composites occurs at the critical load beyond which the 

protective oxide and graphite layers are destroyed, and considerable metal-to-metal contact occurs. 

This wear regime is known as severe, which is characterized by a rough wear surface and a high 

wear rate. Significant material removal through adhesive and delamination wear is observed. For 

aluminum-graphite composites, wear regimes are also dependent on the sliding speed. Up to a 

critical sliding speed, the film on the tribosurface remains intact with little metal-to-metal contact. 
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Mild wear is observed at this stage with a low wear rate. Once the sliding speed surpasses the 

critical value, the effect of the lubricating film is diminished, and a sudden drastic increase of wear 

rate is observed. 

Das et al. compared the wear and seizure behavior of LM13 alloy and LM13/Gr MMC in 

different loading conditions at the same sliding speed [29]. They reported significant improvement 

in wear performance and seizure resistance with graphite addition (Figure 5.2(d)). The aluminum 

alloy exhibited high wear rates and seized at a low load and sliding distance. On the contrary, the 

aluminum-graphite composite exhibited low wear rates for an extended sliding distance and 

increased load before the seizure. Rohatgi and co-workers also reported similar findings where the 

seizure resistance of aluminum-graphite composites increased with the weight percentage of 

graphite in the aluminum matrix [30]. 

5.2.5. Wear mechanism of aluminum-graphite composites in liquid lubrication 

The lubrication regime, the nature of the liquid lubrication film, graphite film formation, and 

the mixing of graphite particles with the liquid lubricant dictate the wear mechanism and behavior 

of the aluminum-graphite composites. The reduction of surface-to-surface contact in liquid 

lubrication causes reduced wear. In the HDL regime, the liquid lubricating film is stable and thick 

enough to support almost the entire normal load. No direct contact between the sliding surfaces is 

observed, and the wear behavior is practically unaffected by the graphite content. However, 

adhesive wear at the beginning and the ending of sliding, corrosion, and fatigue are common forms 

of wear mechanism noticed in the EDL regime.  

For aluminum-graphite composites, adhesive, delamination, and abrasive wear mechanisms 

are dominant in the mixed lubrication regime. In this regime, graphite particles are freed from the 
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Al matrix at extended sliding but fail to form a stable graphite film on the tribosurface due to the 

presence of the liquid lubricant. Instead of forming a stable graphite film, graphite particles mix 

with the liquid lubricant. Prasad analyzed the influence of graphite particles in the lubricant 

mixture and the corresponding effect on the wear performance of composites. He reported the 

existence of an optimum graphite particle concentration in the liquid lubricant that leads to superior 

wear performance [31]. Higher graphite content and the disproportionate mixing with the liquid 

lubricant may cause protruding out of graphite particles from the tribosurface and an increased 

weight loss [10]. 

In the boundary or starved lubrication condition, the graphite content and the solid-

lubricating film formation on the tribosurface become dominant factors for the wear behavior. 

Adhesive, abrasive, and delamination are the governing wear mechanisms in boundary lubrication.   

In Machine Learning, presenting the friction and wear maps, which are dependent on a 

small number of parameters using the multi-parameter data (such as material properties and 

tribological test variables), is a typical problem of dimensionality reduction. Such problems are 

handled by the principal component analysis (PCA), topological data analysis, and similar. In the 

next section, we will develop unsupervised and supervised ML models to present and predict the 

tribological performance of aluminum-graphite composites in the presence of liquid lubrication. 

5.3. Materials and methods 

This section covers the collection and processing of data, measures for optimizing and 

improving the prediction capacity of the developed supervised and unsupervised ML models to 

predict and analyze the tribological behavior of aluminum-graphite composites.  

5.3.1. Collection of data 
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Relevant and representative data are a prerequisite for developing efficient ML models. 

The development of ML models requires a significant amount of data that can be highly time and 

resource-intensive to generate through experimentation. Additionally, experimental data from 

multiple sources are preferred in developing ML models from the data science’s point of view to 

avoid passing unsolicited trends from a particular source and improving generalization capacity. 

For these, we collected data of aluminum-graphite composites in lubricated and dry conditions 

from selected sources reported in the literature [10,22,24,29,30,32-38]. A total of 325 and 330 data 

points were considered in friction and wear modeling, respectively.    

A total of 14 material and tribological variables: graphite content, hardness, ductility, 

processing procedure, heat treatment, silicon carbide content, yield strength, normal load, sliding 

distance, sliding speed, counterface, tribo-test method, lubrication condition, and lubricant 

viscosity were considered as the input parameters for the ML analysis. Heat treatment, processing 

procedure, counterface, tribo-test method, and lubrication conditions were defined as categorical 

data, while the rest of the input variables were numerical. For the developed ML regression models, 

the output parameters were the COF and the wear rate. Lubricants used in different studies and 

their corresponding dynamic viscosities at room temperature are presented in Table 5.1.  

Table 5.1. Lubricant types, grades, and dynamic viscosities at room temperature 

Lubricant type Lubricant grade 

Dynamic viscosity, 

Ns/m2 

Engine oil SAE 10 0.079 

Synthetic motor oil SAE 5W-30 0.207 

Synthetic motor oil SAE 10W30 0.170 
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Mineral engine oil SAE 20W-50 0.521 

Crankcase oil SAE 15W 0.110 

Engine oil SAE 30 0.310 

Engine oil SAE 40 0.430 

Gear oil VG 46 (ISO 3848) 0.461 

 

5.3.2. Machine Learning models 

Unsupervised and Supervised data-driven ML models were developed for dimensionality 

reduction and tribological behavior prediction of Al/Gr MMCs. Unsupervised Principal 

Component Analysis (PCA) was used for dimensionality reduction and data visualization. 

Supervised standalone ML regression models: Gradient Boosting Machine (GBM), Random 

Forest (RF), Artificial Neural Network (ANN), Support Vector Machine (SVM), K Nearest 

Neighbor (KNN), and hybrid ensemble regression model: RF-GBM (hybrid model combining RF 

and GBM) were developed for this. Python, its standard libraries, and toolkits were used to perform 

the ML analysis. The ML models used in this study have been discussed at length in Chapter 2 of 

this dissertation. 

5.3.3. Data preprocessing 

Data preprocessing techniques for the ML models included data cleaning, correcting 

unusual and missing values, data normalization or feature scaling, data shuffling, and data splitting 

for the training and testing. We used the Python programing language and its standard libraries for 

this purpose. Any unusual and missing values in the dataset were handled accordingly. Data 

normalization or feature scaling was performed, which brought the input variables in the same 
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numerical range and improved the sensitivity of the ML models for different variables. To scale 

the features, we used the “RobustScaler” due to its effectiveness in handling outliers. We 

considered the classical data splitting scheme for ML regression models: 75% data for training and 

25% for testing. 25% of the total training data were used to validate and improve the model 

performance. Data shuffling was done before data splitting to avoid undesired biases passing to 

the training and test sets. 

5.3.4. Optimization of parameters for regression models 

The optimization of parameters of regression models is required to maximize the predictive 

performance for different data types. We found the parameter values for the optimized 

performance of different ML models through grid search and five-fold cross-validation methods. 

These are optimization techniques additive to the developed ML models. In these techniques, ML 

models are executed numerous times with different ranges of parameters, and the best parameters 

are recommended through performance evaluation. The optimized parameters for different ML 

regression models are documented in Table 5.2 and Table 5.3. 

Table 5.2. Optimized parameters for COF prediction  

ML model Optimized parameters 

GBM n_estimators = 300, learning rate = 0.4 

RF n_estimators= 80, max_features = 4 

ANN activation function: tanh, alpha = 0.012, hidden 

layer sizes = (10,10,10) 

SVM C = 100, gamma = 0.08, kernel = rbf 

KNN n_neighbors=3, weights = distance 
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RF-GBM 

hybrid 

n_estimators= 50, max_features = 4, learning 

rate = 0.4, max_depth = 3 

 

Table 5.3. Optimized parameters for wear rate prediction 

ML model Optimized parameters 

RF n_estimators= 100, max_features = 4 

GBM n_estimators = 100, learning rate = 0.015 

KNN n_neighbors=3, weights = uniform 

ANN Activation function: tanh, alpha = 0.07, hidden 

layer sizes = (10,10,10) 

SVM C = 100, gamma = 0.25, kernel = rbf, 

RF-GBM 

hybrid 

n_estimators= 100, max_features = 3, learning 

rate = 0.015, max_depth = 2 

 

5.4. Result and discussion 

Here we document the results of the unsupervised and supervised ML models to analyze 

the tribological performance of aluminum-graphite composites in the presence of liquid 

lubrication. Model performance evaluation with standard performance evaluation metrics and 

insights on friction and wear behavior from the ML analysis are also presented.  

5.4.1. Friction and wear patterns through dimensionality reduction using PCA 

The wear rate of Al/Gr MMCs is plotted in a 2-dimensional PCA plot against the first two 

principal components in Figure 5.3. The principal components are mutually uncorrelated new 
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variables derived from the linear combinations of the actual input variables. The cumulative 

variance plot (Figure 5.3) shows that for wear rate data, the first two principal components can 

explain about 60% variance of the actual data represented by the total 14 input variables. Increasing 

the number of principal components improves the cumulative explained variance in the dataset but 

makes the presentation of the dataset impossible in a plot. In the PCA plot for wear rate, 5 clusters 

of data with differential wear rates are observed. This indicates the possibility of having five 

distinct wear zones in a traditional wear map.       

 

Figure 5.3. Cumulative explained variance and PCA plot for wear rate 

Figure 5.4 presents the cumulative explained variance plot and the 2-dimensional PCA plot for 

COF. The first two principal components can explain about 65% variance of the actual COF data 

represented by 14 input variables. Though the PCA plot for COF cannot present clear segregation 

of data like the wear rate data with just two principal components, it exhibits several clusters of 

data for COF, which might be due to different lubrication regimes and applied loading conditions.   
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Figure 5.4. Cumulative explained variance and PCA plot for COF 

Finally, we used PCA for feature extraction to develop ML regression models in wear and 

friction prediction. The cumulative explained variance plot of both wear rate and COF indicates 

that the first five principal components preserve more than 90% variance in the data. To find the 

presence of redundant input variables for ML models, we extracted the first five principal 

components (PCA descriptors) for wear rate and COF and used them as input variables for the best 

performing ML regression models. The regression model performance with PCA descriptors 

comparing with the performance with all 14 input variables will provide an idea about the 

soundness of the feature selection process for the ML study.    

5.4.2. ML regression model performance analysis 

The performance of ML regression models is studied with standard measures: the 

coefficient of determination (𝑅2), mean squared error (MSE), root mean squared error (RMSE), 

and mean absolute error (MAE). Values of 0.7 < 𝑅2 < 0.9 are viewed as a satisfactory fit, while 

𝑅2 > 0.9 is excellent ML regression model execution [16]. Small values of MSE, RMSE, and MAE 

are sought for a good fit. 
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5.4.2.1. Model performance for COF prediction 

The prediction performance of the developed regression models for COF is presented in 

Table 5.4. For the five standalone ML models, the 𝑅2 value ranged between 0.8777 – 0.9546 with 

significantly low values of MSE, RMSE, and MAE. Statistically, the ML models performed “very 

satisfactorily” in COF prediction using the 14 material and tribological variables. With 𝑅2 = 

0.9546, MAE = 0.0226, MSE = 0.0015, and RMSE = 0.0391, decision tree based GBM displayed 

the best prediction model execution among the standalone ML models by explaining about 95.5% 

variation in the dataset.  

Table 5.4. Prediction performance metrics for COF 

Model name MSE  RMSE MAE R2 value 

GBM 0.0015 0.0391 0.0226 0.9546 

RF 0.0016 0.0410 0.0216 0.9503 

ANN 0.0018 0.0431 0.0252 0.9450 

SVM 0.0023 0.0483 0.0216 0.9311 

KNN 0.0041 0.0643 0.0286 0.8777 

RF-GBM hybrid 0.0012 0.0356 0.0201 0.9626 

RF-GBM hybrid with 

PCA descriptors 

0.0057 0.0755 0.0356 0.8315 

 

The actual vs. predicted COF using GBM presented in Figure 5.5 demonstrates an 

excellent agreement between observed and predicted outputs. RF, the other decision tree-based 

ML model also performed very satisfactorily with 𝑅2 = 0.9503, MAE = 0.0216, MSE = 0.0016, 
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and RMSE = 0.0410. The hybrid RF-GBM model was developed by integrating the two best 

standalone models. The performance metrics: 𝑅2 = 0.9626, MAE = 0.0201, MSE = 0.0012, and 

RMSE = 0.0356, indicate that the hybrid model has improved prediction capacity as it could 

explain about 96.26% variation in the data. Figure 5.6 shows an excellent agreement between the 

actual and the predicted data using the hybrid RF-GBM model. Again, the RF-GBM hybrid model 

with PCA descriptors performed “satisfactorily” with 𝑅2 = 0.8315, MSE = 0.0057, RMSE = 

0.0755, and MAE = 0.0356. However, the predictive performance is weaker compared with other 

hybrid and standalone ML models. This indicates that the actual 14 variables considered in the 

study are significant in COF prediction and the 5 PCA descriptors (preserves about 90% variance 

of the actual variable set) derived through dimensionality reduction from the actual 14 variables 

has suffered information loss which is directly related to the COF prediction. 
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Figure 5.5. Plot of predicted vs. actual COF using GBM, feature importance chart for predicting 

COF 
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Figure 5.6. Plot of actual vs. predicted COF and wear rate using RF-GBM hybrid model 

5.4.2.2. Feature importance for COF prediction 

The relative importance of each of the 14 independent material and tribological variables 

for COF prediction is presented in the feature importance chart of Figure 5.5. Lubrication 

condition and lubricant viscosity have the highest contribution in COF prediction of the Al/Gr 

MMCs. Sliding speed and load also have significant contributions in COF prediction. In the 

presence of liquid lubrication, stable graphite films that provide the self-lubrication effect cannot 

form on the tribosurface as effectively as the dry condition [10]. Consequently, the effect of 
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graphite content is no longer significant comparing to the result of the previous study of Al/Gr 

MMCs in the dry condition [16]. A non-zero contribution of the independent variables indicates 

that none of the selected variables is redundant for the regression models and contributes to COF 

prediction. For this reason, the developed RF-GBM hybrid model with 5 PCA descriptors 

exhibited lower predictive performance compared to other ML models. 

5.4.2.3. Model performance in wear rate prediction 

The prediction performance of the developed machine learning regression models for wear 

rate is presented in Table 5.5. For the 5 standalone ML models, the 𝑅2 value ranged between 

0.7924 – 0.9283 with significantly low values of MSE, RMSE, and MAE. Statistically, the ML 

models performed “satisfactorily” and “very satisfactorily” in wear rate prediction with the 14 

material and tribological variables. Among the standalone models, the decision tree-based RF 

outperformed others with 𝑅2= 0.9283, MSE = 1.02 × 10−7, RMSE = 0.0003, and MAE = 0.0001 

by accounting for about 93% variation in the dataset.  

Table 5.5. Prediction performance metrics for wear rate 

Model name MSE  RMSE  MAE R2 value 

RF 1.02 × 10−7 0.0003 0.0001 0.9283 

GBM 1.59 × 10−7 0.0004 0.0002 0.8879 

KNN 2.03 × 10−7 0.0005 0.0002 0.8566 

ANN 2.10 × 10−7 0.0004 0.0003 0.8518 

SVM 2.94 × 10−7 0.0005 0.0003 0.7924 

RF-GBM hybrid 6.79 × 10−8 0.0002 0.0001 0.9521 
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RF-GBM hybrid with 

PCA descriptors 

1.76 × 10−7 0.0004 0.0002 0.8755 

 

An excellent agreement between the actual and predicted wear rate for the RF model is 

observed in Figure 5.7. Decision tree based GBM displayed the second-best prediction model 

execution for wear rate with 𝑅2 = 0.8879, MAE = 0.0002, MSE = 1.59 × 10−7, and RMSE = 

0.0004. A hybrid RF-GBM model for wear rate prediction was developed through the 

hybridization process of the two best standalone models. The performance metrics (𝑅2 = 0.9521, 

MSE = 6.79 × 10−8, RMSE = 0.0002, and MAE = 0.0001) indicate that the hybrid RF-GBM 

model improved the prediction capacity and could explain about 95.21% variation in the wear rate 

data. Figure 5.6 shows an excellent agreement between the actual and the predicted wear rate for 

the hybrid RF-GBM model. The RF-GBM hybrid model with 5 PCA descriptors performed 

“satisfactorily” with 𝑅2 = 0.8755, MSE = 1.76 × 10−7, RMSE = 0.0004, and MAE = 0.0002. 

Also, the predictive performance with dimensionality reduction (5 PCA descriptors) is better than 

the 3 standalone ML models (ANN, KNN, AND SVM) with the complete set of 14 variables. 

These results indicate that one or more variables considered in this study for wear rate prediction 

may be weakly related to the wear rate, and the dimensionality reduction did not cause too much 

information loss for a satisfactory prediction of the wear rate of Al/Gr MMCs.  
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Figure 5.7. Plot of predicted vs. actual wear rate using RF, feature importance chart for 

predicting wear rate 

5.4.2.4. Feature importance for predicting wear rate 

The importance comparison of each of the 14 independent material and tribological 

variables for wear rate prediction is presented in the feature importance chart of Figure 5.7. 

Among the considered variables, lubricant viscosity, load, hardness, lubricating condition, and 

sliding speed have the biggest contribution. ML analysis suggests that, unlike the COF, the wear 

rate of the aluminum-graphite composites has a notable dependency on graphite content in the 
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presence of liquid lubrication. A disproportionate mixing of loose graphite particles with the 

lubricant and protruding out of graphite particles from the tribosurface directly impact the wear 

rate. Among the considered variables in the wear rate prediction, the counterface and the 

processing procedure have negligible contributions. The presence of the liquid lubricating film 

separates the two sliding materials and carries almost the entire load, especially in the 

hydrodynamic lubrication regime. This could be a probable reason that the variation in the 

collected wear rate data for these two variables was not significant. Due to this, the RF-GBM 

hybrid model with 5 PCA descriptors exhibited better predictive performance than some of the 

standalone ML models.   

5.4.3. Selection of ML models in tribological behavior prediction 

In this section, insights into the tribological performance of aluminum-graphite MMCs in 

the presence of liquid lubrication will be presented from the ML analysis. Also, ML models will 

be recommended for different aluminum alloys, aluminum-graphite, and aluminum-graphene 

MMCs in different lubrication conditions.   

The statistical performance metrics of the developed standalone and hybrid machine 

learning models for wear and friction prediction of aluminum-graphite composites in the lubricated 

condition were compared with those in our previous study at the dry condition [16]. The statistical 

evidence indicates that the ML models performed significantly better in tribological behavior 

prediction in the presence of liquid lubrication despite having a smaller dataset than in the dry 

condition. In other words, the wear and friction behavior of aluminum-graphite composites are 

more predictable in the presence of liquid lubrication than in the dry condition. In the dry condition, 

graphite content was the key parameter in tribological behavior prediction. The complexity 
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associated with the formation of a stable graphite film on the tribosurface was one of the primary 

reasons for the low predictive performance of the ML models in dry conditions.  

In presence of the liquid lubrication, the lubrication condition and the lubricant viscosity 

were identified as the most influential parameter. In a fully lubricated hydrodynamic lubrication 

condition, the stable and thick lubricating film separates the sliding surfaces, and there is no or 

minimal contact between the Al/Gr samples and the counterface materials during the tribological 

test. In the wear rate study with ML, the influence of counterface was negligible in the feature 

importance chart. The effect of graphite content is also found less important than the dry condition 

for both COF and wear rate prediction. Consequently, the tribological behavior of aluminum-

graphite composites was more predictable for liquid lubrication conditions. 

Finally, we tried to find and recommend the best ML regression models for the tribological 

behavior prediction of aluminum alloys and aluminum-graphite and aluminum-graphene 

composites from the findings of different studies [16,17,41]. The decision tree-based models (RF 

and GBM) outperformed other standalone machine learning models consistently in the presence 

of categorical variables and fluctuations in the dataset. Both models use ensemble algorithms that 

involve developing decision trees with the data for mapping the output. However, there are 

significant differences in the decision tree-building processes of these two models. RF uses the 

bagging mechanism where trees are built independently using random samples from the dataset, 

and once the tree-building process is completed, the average of the individual results of each tree 

yields the final result. The bagging mechanism makes RF efficient in solving overfitting problems 

and handling large fluctuations and outliers in the dataset. GBM uses the boosting mechanism, 

which may be affected by fluctuations and outliers but is effective for handling complex datasets. 

As variations and outliers are less prevalent in the friction data than wear, RF often displays the 
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best prediction model execution for wear rate, while GBM excels in COF prediction [16,17,41]. 

In this study, it was found that hybrid ensemble models integrating the standalone RF and GBM 

model can maximize the predictive performance.   

5.5. Conclusion 

A systematic analysis was performed to understand the mechanisms of friction and wear 

of aluminum-graphite composites in dry, partially lubricated, and lubricated conditions and 

investigated the transition of different lubricating regimes. Supervised and unsupervised ML 

models were developed to predict the wear and friction behavior and patterns of aluminum-

graphite composites in the presence of liquid lubrication. Using PCA, dimensionality reduction 

was performed, the higher dimensional data in 2-D plots were presented, and possible clusters in 

the tribological data were identified. Five standalone regression models, one hybrid regression 

model combining the best two standalone models, and one hybrid regression model with the PCA 

descriptors for both COF and wear rate prediction were developed. Decision tree based machine 

learning models displayed the best predictive model execution with tribological data, which is 

consistent with previous studies [16,17].  The decision tree based GBM (𝑅2 = 0.9546, MAE = 

0.0226, MSE = 0.0015, and RMSE = 0.0391,) and RF (𝑅2= 0.9283, MAE = 0.0001, MSE = 

1.02 × 10−7, and RMSE = 0.0003) models outperformed others in predicting COF and wear rate, 

respectively among the standalone ML models. The hybrid RF-GBM models developed by 

integrating the best two standalone models displayed the best predictive model execution for COF 

(𝑅2 = 0.9626, MAE = 0.0201, MSE = 0.0012, and RMSE = 0.0356) and wear rate (𝑅2 = 0.9521, 

MAE = 0.0001, MSE = 6.79 × 10−8, and RMSE = 0.0002). 
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ML analysis revealed that the lubrication condition and lubricant viscosity are the most 

important variables, along with applied load and sliding speed in predicting wear rate and COF. 

Graphite content, which was the most crucial parameter in the dry condition [16], has reduced 

impact in the presence of liquid lubricants. Variations and outliers in wear and friction data were 

less prevalent in liquid lubricated conditions. Consequently, the ML models exhibited better 

predictive performance in the presence of liquid lubrication than in the dry condition. Overall, the 

tribological characteristics of aluminum-graphite composites are more consistent and predictable 

in the liquid lubricated condition than the dry. The presence of graphite particles in the matrix of 

aluminum alloys enables them to run longer at lower friction even after the lubricant is drained 

out. 
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CHAPTER 6: DATA TOPOLOGY APPROACHES FOR ROUGHNESS 

CHARACTERIZATION AND FRICTION MODELING 

Rough surfaces possess complex topography, which cannot be characterized by a single 

parameter. Similarly, proper identification of relevant degrees of freedom is crucial for the 

development of adequate frictional models, such as the state-and-rate models. Topological data 

analysis (TDA) is a data-driven mathematical method that can generate novel insights in 

dimensionality reduction for datasets characterizing surface roughness, contact of rough surfaces, 

and frictional sliding. In this chapter, data topology approaches in roughness characterization and 

friction modeling will be discussed. 

6.1. Introduction 

Surface roughness affects various properties of materials including adhesion of solids and 

liquids to rough surfaces, wetting, friction, wear, as well as bio-adhesion and biocide properties of 

some surfaces. While it is common to evaluate surface roughness and characterize it quantitatively, 

there is no one single parameter, which could thoroughly describe the roughness [1-4]. Most 

nominally flat surfaces are not absolutely smooth because they have asperities. The height of 

asperities is usually measured above the center-line, which is defined for a 2D roughness profile 

z(x) as the mean 𝑚 =
1

𝐿
∫ 𝑧𝑑𝑥

𝐿

0
, where L is the length of the profile or the sampling interval for a 

particular measurement. Surface roughness is then defined by averaging the absolute value of the 

vertical deviation from the mean line  

𝑅𝑎 =
1

𝐿
∫ |𝑧 − 𝑚|𝑑𝑥

𝐿

0
                   (1) 
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   While Ra provides a general insight on the height of the asperities, this parameter is 

insufficient for many purposes. This is because very different rough surfaces can have the same 

value of Ra. Moreover, it does not contain any information about horizontal size of typical 

asperities [5-7]. Note that the definition of asperity is tricky. This is because roughness is often 

multiscale, and there are smaller asperities imposed over larger ones, which makes it difficult to 

define which element of the rough profile constitutes the true asperity. One approach is that the 

concept of asperity is only relevant to the mechanical contact, so that “an asperity is what makes 

a contact” [8]. An alternative description of roughness is based on treating it as a random signal. 

Many rough surfaces possess the Gaussian or normal distribution of roughness height  

𝑝(𝑧) =
1

√2𝜋
𝑒

−
(𝑧−𝑚)2

2𝜎2                    (2) 

where 𝑝(𝑧) is the probability density function and 𝜎2 =
1

𝐿
∫ (𝑧 − 𝑚)2𝑑𝑥

𝐿

0
 is the squared standard 

deviation of profile height. The latter is related to the surface roughness as 𝜎 = 𝑅𝑎√𝜋/2.  

      The autocorrelation function (ACF) is often used for characterizing the horizontal size of 

roughness details by averaging correlation between two profile points separated by the distance  

𝐶(𝜏) = lim
𝐿→∞

1

𝐿𝜎2 ∫ (𝑧(𝑥) − 𝑚)(𝑧(𝑥 + 𝜏) − 𝑚)𝑑𝑥
𝐿

0
          (3) 

In the absence of statistical correlation, C() approaches zero. Many real surfaces have an 

exponentially decaying ACF 

𝐶(𝜏) = 𝑒
−

𝜏

𝛽                    (4) 
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where  is the correlation length [7]. An alternative value *= 2.3 is often used to characterize 

the drop of the ACF by ten times from its original value. For the Gaussian roughness distribution 

and exponential ACF,  and * characterize typical height and length of roughness.  

 More sophisticated parameters can be used to characterize surface roughness for different 

advanced purposes [1]. Modern Artificial Intelligence (AI) method allow obtaining correlations in 

large databases built of tensors, a multidimensional generalization of the spreadsheet table. One 

method to obtain correlations in these large datasets is the topological data analysis (TDA). The 

TDA reduces the dimension of datasets in order to find low-dimensional structures with 

reproducible topology. Such structures may be low-dimensional surfaces in spaces of higher 

dimension. The topological data analysis includes such concepts as the persistent homology, 

barcodes and topological invariants [10-12]. While topological methods are used in surface science 

to characterize the complexity of 2D patterns with the Voronoi entropy [9] and with the continuous 

measures of symmetry [13], and to study of faceted liquid droplets [14-15], topological data 

analysis is still rarely used in surface science and tribology. The new area of triboinformatics has 

been proposed to include AI methods of study of surface effects [10, 16-18].   

 

Figure. 6.1 (a) Statistics of 3×3 pixel patches from natural images involves the primary circle (due 

to isotropic brightness gradients) and two secondary circles due to the prevalence of vertical and 
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horizontal over inclined features in the images. Each secondary circle intersects twice with the 

primary circle. (b) Such configuration topologically fits the Klein bottle surface [19-20]. 

A well-known TDA result in the image processing is related to 3×3 black-and-white pixel 

patches of regular black-and-white photo images [19-20]. Each pixel is characterized by one value 

of brightness, and thus any 3×3 patch can be viewed as a point Aij (i, j =1,2,3) in a 9D dataspace. 

The data is normalized so that in any patch the brightest pixel has value “1” and the darkest has 

value “-1”.  Many patches represent gradual changes of brightness with isotropic probability 

distribution of the direction of the gradient, . In the 9D dataspace this corresponds to a 

parametrically specified circle referred to as the “primary circle”: 

      𝐴𝑖,𝑗 =
1

|cos 𝜃|+|sin 𝜃|
(

−cos 𝜃 + sin 𝜃 sin 𝜃 cos 𝜃 + sin 𝜃
−cos 𝜃 0 cos 𝜃

−cos 𝜃 − sin 𝜃 − sin 𝜃 cos 𝜃 − sin 𝜃
)   (5) 

In addition, there are patches corresponding to the vertical and horizontal features forming 

a secondary circle in the parametric form 

𝐴𝑖,𝑗 = (
−1 sin 𝛼 1
−1 sin 𝛼 1
−1 sin 𝛼 1

), 𝐴𝑖,𝑗 = (
1 sin 𝛼 −1
1 sin 𝛼 −1
1 sin 𝛼 −1

)     (6) 

𝐴𝑖,𝑗 = (
1 1 1

cos 𝛼 cos 𝛼 cos 𝛼
−1 −1 −1

), 𝐴𝑖,𝑗 = (
−1 −1 −1

cos 𝛼 cos 𝛼 cos 𝛼
1 1 1

)   (7) 

Eq. 5 describes the primary circles, while Eqs 6-7 describe two secondary circles. The 

primary and secondary circles intersect at  𝛼 = 𝜃 = 0 and at 𝛼 = 𝜃 = 𝜋 (Eq. 6) and at 𝛼 = 𝜃 =

±𝜋/2 (Eq. 6). The secondary circles do not intersect with each other.  Since isotropic gradients, 

vertical, and horizontal features are common in images, data points tend to attain these three circles 

(one primary and two secondary circles) in the 9D dataspace. It has been shown by Carlsson and 
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co-workers [19-20] that such a construction with three circles involves one primary circle and two 

non-intersecting secondary circles (Figure 6.1a) is topologically equivalent to the Klein bottle 

(Figure 6.1b).  

The persistence barcode diagrams study of datasets such as 𝐴𝑖,𝑗, implies that a sphere of a 

certain proximity radius r is formed around any data point (Figure 6.2). When spheres connect, 

they form an n-dimensional void, and the number of voids constitute the feature Hn, which is 

present within a certain range of values of the proximity radius r. The TDA methods have been 

applied successfully in materials science for various purposes including the analysis of soft 

materials. However, their application in surface science and tribology has not been wide so far.  

Since visual black-and-white images have a structure very similar to the surface roughness 

topography map z(x,y), it is anticipated that the TDA methods would be beneficial for surface 

roughness characterization. Roughness parameters tend out to be scale-dependent, with nanoscale 

roughness values being different from that measured at the micro- and macroscale. It is therefore 

important to understand how roughness parameters behave at the nanoscale. It is believed that the 

reduction of the number of degrees of freedom from the nanoscale to the macroscale is the central 

inherent characteristic of friction [1, 21-23].  

Novel metallic materials including alloys and composites are particularly challenging due 

to the difficulty of predicting their tribological properties [24]. We study brass surfaces in 

particular due to their relevance to bactericide and anti-viral action [25-27]. While it is believed 

that Cu+ and Zn+ ions are responsible for the bactericide action, there are indication that surface 

roughness may be involved as well [28-29]. The objective of the present paper is to seek similar 

persistent data structures in roughness data obtained with Atomic Force Microscopy (AFM) and 

to compare them with relevant more traditional microscale and nanoscale roughness parameters. 
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Figure 6.2. Schematics of the persistence barcodes concept. With increasing the proximity radius 

(horizontal axis), connected structures (red bars) are formed and disappear, as well as 1D voids 

(holes, blue). 

Dry sliding friction is a complex phenomenon, which involves several mechanisms acting 

simultaneously, such as adhesion (including covalent, electrostatic, van der Waals, and capillary 

forces) and surface roughness-dominated effects (including elastic and plastic deformation of 

asperities, and their fracture). Due to this complexity of friction, it is extremely difficult to predict 

frictional properties from the first principles of molecular or microscopic interactions [30,31]. 

At the molecular scale, intermolecular and interatomic bonds are dominant leading to 

atomic and molecular motion. The effects of molecular motion are usually observed in the form of 

temperature and other averaged thermodynamic parameters. At the mesoscale, material non-

idealities and defects, as well as roughness asperities, are dominant. Their motion contributes to 

the macroscale dissipation of energy. A typical mesoscale description would model every asperity 

contact as an elastic deformable spring so that the number of degrees of freedom is related to the 

number of asperity contacts. Macroscale parameters can be viewed as a result of neglecting many 
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unessential degrees of freedom in the frictional system. Computationally, different methods of 

modeling frictional processes are used at different scale lengths, from the Molecular Dynamics 

(MD) simulation at the atomic scale to Monte Carlo, Cellular Automata, and other similar methods 

at the mesoscale, whereas standard macroscale methods involve Finite Element Analysis (FEA) 

and computational fluid dynamics.  

Conventional methods of statistical and thermodynamic analysis and averaging do not 

always capture the complex frictional interactions, because thermodynamically friction is a non-

equilibrium process, while at the same time it is a multi-scale phenomenon [7, 31-32]. Besides 

being a non-equilibrium and multi-scale phenomenon, friction is a non-linear phenomenon. 

According to the Coulomb-Amontons law, the frictional force is always collinear with the sliding 

velocity [30] 

�⃗� = 𝜇𝑊
�⃗⃗⃗�

|𝑉|
                     (8) 

where W is the normal load and 𝜇 is the coefficient of friction (COF). The discontinuity of the 

function sign(𝑉) =
𝑉

|𝑉|
 (or 

�⃗⃗⃗�

|𝑉|
) at V=0 makes the Coulomb-Amontons law non-linear. Friction 

leads to a number of non-linear and hysteretic effects, such as the memory of the past states of the 

system in the static “stick” states. The sliding velocity is zero in these states; however, the friction 

force can have any value in the range F<𝜇|W| depending on the past history of the system. 

Transitions between the stick and slip states are associated with dynamic sliding instabilities, and 

stick-slip is a common frictional phenomenon. 

While friction is often viewed as a non-linear phenomenon related to the reduction of the 

degrees of freedom, there is no simple way of reducing a molecular-scale model with many degrees 

of freedom to the minimalistic models involving internal state variables with only a small number 
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of most relevant degrees of freedom characterizing motion [31]. Since traditional statistical 

mechanics and thermodynamics methods do not always work well for this task (thus, there are 

difficulties in deriving the dry friction laws from the Second Law of thermodynamics, [33]), more 

advanced computational methods, such as the topological data analysis, Machine Learning (ML) 

and Artificial Neural Networks (ANN) could provide new insights on establishing correlations 

leading to the reduction of degrees of freedom [34]. 

Multidimensional data analysis methods represent data as cubes or “tensors,” a 

multidimensional generalization of the spreadsheet table. To obtain correlations in these large 

datasets, the topological data analysis is often employed to reduce the dimension of datasets by 

using the so-called persistent homology in order to find low-dimensional structures with 

reproducible topology. Such structures may be low-dimensional surfaces in spaces of higher 

dimensions. The topological data analysis includes such concepts as the persistent homology, 

barcodes, and Betti numbers, which will be discussed later. While topological methods are used in 

surface science to characterize the complexity of 2D patterns with the Voronoi entropy [9] and 

with the continuous measures of symmetry [13], for clustering analysis [35] and to study of faceted 

liquid droplets [14-15], topological data analysis is still rarely used in surface science and 

tribology. 

In this study, nanoscale surface roughness of brass (Cu Zn alloy) samples roughened by a 

sonochemical treatment will be analyzed using 3×3, 4×4, and 5×5-pixel patches obtained from 

AFM images. Roughness parameters, correlation length will be calculated, and extremum point 

distribution, persistence diagrams, and barcodes will be discussed and compared. Additionally, 

TDA and data-driven approaches will be applied to seek patterns and persistence in friction-related 

datasets. 
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6.2. Persistence analysis of data topology 

Data points in the data space often tend to attain certain surfaces. These surfaces may form 

topological features such as holes and voids. Persistence analysis shows how these topological 

features depend on the spatial resolution.  

For the analysis of surface roughness data, persistence diagrams and barcodes can be used. 

Both represent the same data: how topological invariants depend on the resolution over varying 

length scales. Topological invariants are connected components (𝐻0), 1D holes (𝐻1), and higher 

dimensional voids (𝐻2, 𝐻3, etc).  The intervals of the feature appearance and disappearance are 

plotted as bars in the barcode diagram or as a point characterizing their appearance and 

disappearance in the persistence diagram.  The longer bars present more persistent invariants 

relative to noise (Figure 6.2).  

In order to analyze the proximity of data point to each other, a certain proximity radius can 

be chosen, and connection of circles (or spheres) with the center at the data points is observed. The 

proximity radius is gradually increased from zero. This causes the appearance and disappearance 

of the topological invariants which is shown at the barcode diagram as a function of the proximity 

radius. At the persistence diagram each barcode line is presented as a function of the point of its 

appearance and disappearance. Different colors at the diagram usually represent different features 

or invariants. Thus, the topological invariant H0 represents the entire structure without holes. The 

topological invariant H1 represents a 1D hole (i.e., a cylindrical type of structure). The topological 

invariant H2 represents a 2D empty void (enclosed by a surface) and higher order topological 

invariants, Hn, represent n-dimensional voids. Long lines at barcode diagrams or points away from 

the diagonal at persistence diagrams represent stable features with exists at a significant range of 

the proximity radii, so that presumable they more objectively characterize the data set. As opposed 
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to that, short barcode lines or points close to the diagonal at the persistence diagram represent 

features with only exist for a short range of the proximity radii and they are likely caused by noise.  

Barcodes and persistence diagrams for roughness data are generated using the Python 

interface with the required TDA and other standard libraries. Surface profile data as a square matrix 

(256 × 256) is used as the input for generating the barcodes. The original matrix is divided into 

3×3 patches which were used to generate the filtered simplicial complex. We used the Vietoris-

Rips filtration to generate the simplicial complex. In Rips complex, the filtration value is the 

proximity parameter (radius) that we varied over the sampling length for different samples. In a 

simplicial complex, a topological space is formed with the data points. The topological space can 

be characterized by the topological invariants. The optimization of the Euclidian distance matrix 

was performed with a maximum dimension of 3 in calculation of the persistent homology of the 

simplicial complex. So, our developed persistence diagram and barcodes can present up to three 

distinct topological invariants that we can compare for different surface profile data.  The barcodes 

diagram presents the topological invariants in a single homology dimension. The horizontal axis 

presents the homology dimension in terms of the proximity radius which is the main output from 

a barcode diagram and the vertical axis just presents an arbitrary ordering of topological invariants. 

It is expected that anisotropic surfaces would form secondary circles in the data space. 

6.3. Experimental Procedure 

 Surface roughness profiles of brass (Cu-Zn alloy) surfaces obtained by atomic force 

microscopy (AFM) were used in this study (Figure 6.3). Two untreated samples were used with 

different scanning sizes of 5×5 m and 10×10 m in order to isolate the effect of scan size on the 

roughness parameters.  
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Figure. 6.3. AFM surface roughness profiles of the (a) 5×5 m and (b)10×10 m untreated brass 

samples and roughened samples sonicated at amplitudes of (c) 30%, (d) 50%, (e) 70%, and (f) 

90% of the maximum power. 
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Following that, four 5×5 m surfaces treated sonochemically in 100 mL 5M NaOH 

solution and sonicated at various amplitudes (30%, 50%, 70%, and 90% of the maximum power) 

of the acoustic ultrasound source were studied. Note that the treated surfaces were also ground 

manually by sandpaper and polished, which led to some oriented roughness features (scratches) at 

the surface making them anisotropic. Moreover, the sample treated at 70% showed some features 

(white spots in Figure 6.3e) possibly caused by oxidation, oxidation and fraction separation is not 

uncommon effect of the sonochemical treatment of brass [29]. 

Advances in sonochemical treatment of the surface allow for “surface” capsules [36] which 

are interesting for biomedical applications, membrane materials, lab-on-chip, organ-on-chip, and 

for template synthesis. Moreover, the treatment provide attractive self-healing anticorrosion [37] 

and antifouling prospects [38,39]. Previously, analysis of atomic force microscopy (AFM) allow 

to find the effect of oscillation of crystal size vs. time of treatment for medical implant materials. 

Here, we aim for the analysis of biocide brass [29]. 

A scanning probe microscope Ntagra Aura (NT-MDT, Russia) and HA_NC series 

cantilever probes (NT-MDT, Russia) with the tip diameter of 20 nm were used to study the surface 

of the samples. The topography of the sample surface was studied using the semi-contact and 

contact scanning modes by means of AFM. The semi-contact mode was chosen as the primary 

mode to reduce the invasive impact of the probe on the structures. The frequency was at about 140 

kHz and the average probe spring force constant was about 3.5 N/m. The resolution of the images 

was 256 × 256 points, which corresponded to a step between the points of about 19.5 nm for a 

scanning area of 5×5 µm2 and about 39.1 nm for a scanning area of 10×10 µm2. The scanning 

speed was about 8 µm/s for the scanning area of 5×5 µm2 and about 16 µm/s for the scanning area 

of 10×10 µm2. The samples were studied in the air at an average temperature of 21-23°C and 
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relative humidity within 30-40%. Both passive and active vibration isolation methods were used 

for the measurements to reduce the vibrational noise. The Optem optical registration system with 

a camera and zoom was used for aligning the probe and select the area for AFM measurements.  

For untreated samples, the following values of surface roughness were obtained by the 

AFM software (Gwyddion): Ra=10.30 nm (5×5 m sample) and Ra=12.05 nm (10×10 m sample), 

average height above the reference plane m=56.4 nm (5×5 m sample) and m=73.2 nm (10×10 

m sample), =13.31 nm (5×5 m sample) and =15.77 nm (10×10 m sample). To modify 

surface roughness, a plate of Cu-Zn alloy was mixed with 100 mL of (0.5, 0.1, 5, M) NaOH. The 

5M NaOH concentration was selected for consequent measurements. The solution was sonicated 

by the ultrasonic processor UIP1000hd (Hielscher Ultrasonics, Germany) for 30 min at different 

amplitudes (30%, 50%, 70%, 80%, 90% of the maximum power). The apparatus was equipped 

with the sonotrode BS2d18 with a head area of 2.5 cm2. After the treatment, the Cu-Zn alloy was 

washed up with distilled water and dried at 120 ˚C for 24 h. Plates were cut from a single sheet, 

ground by sandpaper, and polished by progressively smaller diamond powders with the ending 

step of 0.5 µm. 

6.4. Data analysis for roughness characterization 

 The focus of the present study is data topology parameters (persistence barcodes. However, 

for comparison purposes, several surface roughness-related parameters were calculated using the 

AFM roughness profile data.  First, the ACF was obtained and the value of the correlation length 

* was calculated. These values represent the surface roughness at the microscale with the 

characteristic length of roughness features of several microns. The ACF was calculated separately 

in the x- and the y-direction. For that end, a square submatrix of 256 x 256 dimension from the 
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AFM dataset was obtained. Using Python programming language and its standard statistical 

libraries, we plotted the values of the ACF vs. the sampling length along the x- and the y-direction 

(Figure 6.4) for the 5×5 m and 10×10 m samples. In the AFC plots, we observe both positive 

and negative correlations before the ACF eventually decays to zero.  

The following values of the correlation length were found for Dataset 1, 1the value of  

* = 0.31 µm and * = 0.55 µm in the x- and y-directions (untreated 5×5 m sample) and * = 

0.96 µm and * = 1.25 µm in the x- and y-directions (untreated 10×10 m sample).  For all 

samples, the values of *, which is a horizontal roughness parameter, exceed the values of , 

which is a vertical roughness parameter, by almost two orders of magnitude. As expected, for the 

sample with larger scan region, the values of the correlation length are larger. One can estimate 

the slope of the profile as /* in the range between 13.3/310=0.043 and 13.3/550=0.024 (5×5 m 

sample) and 15.77/960=0.016 and 15.77/1250=0.013 (10×10 m sample).  
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Figure 6.4. ACFs for the roughness profile extracted from the AFM images (a) untreated 5×5 

m surface, (b) untreated 10×10 m surface, and treated surfaces sonicated at amplitudes (c) 

30%, (d) 50%, (e) 70% and (f) 90% of the maximum power. 

The surface roughness properties of all samples are presented in Table 6.1. For untreated 

samples, the surface roughness is larger for the larger sample due to increased scan size. The 

roughness parameters of treated samples were smaller than for untreated ones likely due to 
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polishing. Higher power of the sonochemical treatment resulted in higher roughness. The 

difference of values on the x- and y-directions as well as different ACF, suggest that the samples 

were anisotropic, and the anisotropy was much more pronounced for the treated samples with 

scratches.  

Table 6.1. Surface roughness properties of the samples 

Sample 

Average 

roughness, 
Vertical 

roughness 

parameter, 

 (nm) 

Correlation length, * Slope of the profile, /* 

Ra (nm) 

Along x-

direction, 

nm 

Along y-

direction, 

nm 

Along x-

direction 

Along y-direction 

Cu-Zn (5×5 m) 10.03 13.31 310.00 550.00 0.043 0.024 

Cu-Zn (10×10 m) 12.05 15.77 960.00 1250.00 0.016 0.013 

Cu-Zn-5M NaOH- 

30% 

4.44±0.86 5.97±1.22 290±80 160±20 0.021±0.010 0.037±0.012 

Cu-Zn-5M NaOH- 

50% 

4.02±0.26 5.03±0.36 1007±150 320±40 0.005±0.001 0.016±0.003 

Cu-Zn-5M NaOH- 

70% 

5.15±0.17 6.7±0.47 230±105 580±165 0.029±.015 0.012±0.004 

Cu-Zn-5M NaOH- 

90% 

5.82±0.21 7.63±1.64 265±55 570±90 0.029±0.011 0.013±0.005 
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For the study of the anisotropy, 3×3, 4×4, and 5×5 sub-matrices or patches of the roughness 

profiles for untreated Cu-Zn samples were obtained, and statistics of the location of the minimum 

and maximum values were studied (Figure 6.5). The larger patches (4×4 and 5×5) were studied 

in order to validate the results obtained from the 3×3 patches. The size of the patches was between 

58 nm× 58 nm for the 3×3 submatrices of small (5×5 m) samples to (432 nm× 432 nm) for the 

5×5 submatrices of small (10×10 m) samples. Therefore, this data provides information about 

the surface roughness at the nanoscale; however, its resolution scale is in dozens of nanometers 

by the order of magnitude.   

In general, when the resolution is smaller than a typical roughness detail, it is expected that 

the extreme (maximum and minimum) values of profile height are located at the border layer of 

the pixels rather than at the central pixels, with most extreme values at the corners.  The statistical 

data shows that indeed, only a small number of extreme values were located at the inside pixels, 

ranging from 3%-5% for the 3×3 patches to 9%-18% for the 5×5 patches. The majority of extreme 

values are indeed located at the corners, ranging from 63%-67% for the 3×3 patches to 33%-43% 

for the 5×5 patches. However, some extreme values are located at the border layers but not at the 

corners, indicating anisotropic behavior in the x- and y-direction. Thus, for the 3×3 patches   16%-

18% for the x-direction vs. 12%-15% for the y-direction, for the 4×4 patches   23% for the x-

direction vs. 16%-21% for the y-direction, and for the 5×5 patches 24%-26% for the x-direction 

vs. 19%-24% for the y-direction. 
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Figure 6.5. Position of the min and max values for 3×3, 4×4, and 5×5 pixel sub-matrices 

for (a, c, e) Dataset 1 (5×5 m), (b, d, f) Dataset 2 (10×10 m) 
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Similar patterns were observed for NaOH and ultrasound-treated Cu-Zn alloy surfaces sonicated 

at amplitudes corresponding to 30%, 50%, 70% and 90% of the maximum power for 3x3 

submatrices (Figure 6.6). 

 

Figure 6.6. Position of the min and max values in 3×3 pixel sub matrices subject to NaOH 

sonicated at amplitudes (a) 30%, (b) 50%, (c) 70% and (d) 90% of the maximum power 

Persistence analysis of data topology has been conducted as well. The original 256×256 

matrices were divided into 3×3 submatrices or patches (58 nm× 58 nm and 116 nm ×116 nm) and 

persistence diagrams and barcodes were generated (Figure 6.7). Barcodes with varying proximity 

radius are presented in Figure 6.7(a) and Figure 6.7(c), respectively. For both datasets, the first 

topological invariant, H0 is persistent over the entire proximity radius range indicating to the 

connected component.  
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The second topological invariant, H1, corresponds to 2D holes in data and in can be 

interpreted as corresponding to the primary circle parametrically given in a generic form by Eq. 5. 

This invariant is significant at the resolution length corresponding to the size scale of the profile 

approximately in the range of 5 nm – 15 nm. 

The third topological invariant, H2, corresponds to 3D voids in the datasets and can be 

interpreted as the trace of the anisotropy of the profile. Its typical size is above 10 nm. This is 

consistent with the data from Figure 6.5, which showed anisotropy at the scale of dozens of 

nanometers.   

 

Figure 6.7. Persistence diagram and barcodes showing topological invariants for untreated 

sample (a-b) 5×5 m surface, (c-d) 10×10 m surface. 
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Barcodes with the varying proximity radius for 3×3 patches (58 nm× 58 nm) of Cu-Zn 

alloys mixed with 100 mL 5M NaOH sonicated at different amplitudes are presented in Figure 

6.8. The persistence presence of the first, second and third topological invariants suggest 

anisotropic nature of the surface profile at the nanoscale, which is consistent with the results in 

Figure 6.6 and Table 6.1.  Note that the 70%-amplitude treated sample (Figure 6.8c) has more 

pronounced H1 roughness features. This is likely due to the inhomogeneous spots observed in 

Figure 6.3(e). This feature characterizing this sample is not captured by other roughness measures. 

 

Figure 6.8. Persistence barcodes showing topological invariants for 3×3 patches subject to 

NaOH solution sonicated at amplitudes corresponding to (a) 30%, (b) 50%, (c) 70% and (d) 90% 

of the maximum power 
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6.5. Contact parameters for friction 

Both statistical and fractal models of rough surfaces, for elastic and plastic contacts, result 

in an almost linear dependency of the friction force upon the normal load. The classical model of 

Bowden and Tabor [30] suggested that the friction force F is directly proportional to the real area 

of contact 𝐴𝑟 and adhesive shear strength at the interface 𝜏𝑓 

 F =𝜏𝑓𝐴𝑟                      (9) 

Statistical models of rough surfaces contact show that for small and moderate loads, Ar is 

almost directly proportional to the applied normal load W. This applies to both elastic and plastic 

surfaces and it explains the empirically observed linear proportionality of F and W (i. e., the 

Coulomb-Amontons law) with the assumption of constant 𝜏𝑓 being a material constant for a given 

combination of two materials in contact. 

For elastic contact, in most cases, only the highest asperities participate in the contact 

yielding a linear dependency of the real area of contact on the normal load 

𝐴𝑟 ∝
𝑊𝛽∗

𝜎𝐸
                                                                         (10) 

where W is the normal load force and E is the composite elastic modulus. For plastic contacts, the 

contact area is related to the normal load through the material hardness.   

The kinetic friction may involve more complex dependencies of the real area of contact on 

the normal load. Tolstoi was the first who paid attention to the importance of the normal degree of 

freedom (the vertical coordinate) during dry sliding [40]. The separation distance between the 

sliding bodies decreases with decreasing velocity. More time for the asperity contact means more 

time for asperities to deform, so the separation distance decreases. This results in an increase of 
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the real area of contact and of the friction force (Figure 6.9(a)-(c)). Recent models emphasize the 

importance of the coupling of the normal and tangential motion during friction [41-42]. Dynamic 

models based on such physical effects as time-dependent creep-like relaxation and viscosity 

predict that increasing velocity would typically result in a decrease of friction.  

While the linear Coulomb-Amontons law is widely applied, there are numerous problems 

with characterizing a bi-material interface with only one parameter, such as the COF. Experiments 

demonstrate that for the same combination of materials, the COF may vary significantly [43]. 

Moreover, for dynamic friction, the COF is also not constant as a function of time. To overcome 

these difficulties, phenomenological rate-and-state models of friction introduce internal degrees of 

freedom to model the dependency of friction on the age of contact [44,45]. The coefficient of 

friction be a sum of a reference value 𝜇0 and the terms dependent on the sliding velocity V (the 

“rate” parameter) and on an internal “state” parameter 𝜃 with the dimension of time (thus often 

interpreted as an averaged age of contact) 

𝜇(𝑉, 𝜃) = 𝜇0 + 𝑎ln (
𝑉

𝑉0
) + 𝑏ln (

𝜃𝑉0

𝐷𝑐
)                  (11) 

d𝜃

d𝑡
= 1 −

𝜃𝑉

𝐷𝑐
                     (12) 

where a and b are non-dimensional constants, 𝑉0 is a reference velocity and 𝐷𝑐 is a constant with 

the dimension of length. Note that the second term is often omitted (by setting a=0) to avoid 

infinities in the static limit of V→0.    

Following a change in the sliding velocity, friction decreases, due to creep relaxation, to a 

velocity-dependent steady-state value 

𝜇(𝑉) = 𝜇0 + (𝑎 − 𝑏)ln
𝑉

𝑉0
                 (13) 
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For constant sliding velocity, 𝜃 is inverse proportional to the sliding velocity yielding the 

dependency of the real area of contact on the sliding velocity 

𝐴𝑟 = 𝐴𝑟0 (1 − 𝐶ln
𝑉

𝑉0
)                 (14) 

where C and 𝑉0 are parameters of the model (Figure 6.9(a-c)). 

 

Figure 6.9. (a) 3D plot for state-and-rate model, (b) the dependency of the real area of contact 

with sliding velocity, (c) the increase of the real area of contact with the age of contact, (d) the 

plots of the number of slips vs. slip size for different threshold heights, ℎ𝑇 

While rate-and-state models of dynamic friction are common in geophysics, similar models 

gained popularity in the areas of control engineering and robotics [46-47]. Note that the models 

with internal variables are pure phenomenological since their parameters are not deduced from 
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atomic-scale models or from the contact of individual asperities. In the next section, the data 

topology approaches which may be used to reduce the number of degrees of freedom in the models 

will be discussed. 

6.6. Contact of rough surfaces 

6.6.1. Static contact 

The contact between two rough surfaces may be characterized in a similar manner. A 

Boolean variable is introduced with the value 𝑏(𝑥, 𝑦) = 0 when there is no contact between the 

two surfaces at the point (x, y), and 𝑏(𝑥, 𝑦) = 1 when there is a contact. The total number of 3×3 

combinations defining the following matrix is 29=512. 

{

𝑏(𝑥 − 𝑑, 𝑦 − 𝑑) 𝑏(𝑥 − 𝑑, 𝑦) 𝑏(𝑥 − 𝑑, 𝑦 + 𝑑)
𝑏(𝑥, 𝑦 − 𝑑) 𝑏(𝑥, 𝑦) 𝑏(𝑥, 𝑦 + 𝑑)

𝑏(𝑥 + 𝑑, 𝑦 − 𝑑) 𝑏(𝑥 + 𝑑, 𝑦) 𝑏(𝑥 + 𝑑, 𝑦 + 𝑑)
}      (15) 

However, not all of these combinations will appear with equal probability. It is likely that many 

will represent the complete separation or complete contact states. Many others will likely represent 

the transition between the contact and separation zones. On the other hand, patterns representing 

vertical, horizontal, or random features, would be rare. The approach could be easily generalized 

for 5×5 patterns leading to 225=33,554,432 combinations.  

      Asperity is often defined as a feature that makes a contact, so the persistent homology 

barcode approach is very significant in defining asperity. 

6.6.2. Stick-slip 

The contact analysis can be generalized for the stick-slip motion by introducing a variable 

with three values value 𝑏(𝑥, 𝑦) = 0 when there is no contact between the two surfaces at the point 



200 

 

(x, y), 𝑏(𝑥, 𝑦) = 1 when there is a static stick contact, and 𝑏(𝑥, 𝑦) = 2  when there is slip. Now 

the space of possible combinations is 39=19,683 for the 3×3 patterns and 325=847,288,609,443 

for the 5×5 patterns. 

Fleurquin and co-workers [48] analyzed the distribution of slip of the tip of an atomic force 

microscope scanning over the Robin Hood landscape and reported three different types of 

distributions of the number of slips depending on the slip size. Figure 6.9(d) presents the plots of 

the number of slips vs slip size for different threshold heights, ℎ𝑇. The histograms of the number 

of slips vs size approximate the Gaussian distribution for small values of ℎ𝑇 (ℎ𝑇 = 0.05), the 

exponential distribution for 0.08 < ℎ𝑇 < 0.1, and the lognormal distribution for ℎ𝑇 > 0.1. 

Correlations between the size of stick and slip and the spatial resolution revealed by the 

barcode persistence analysis are expected to indicate meaningful data regarding the physical 

mechanisms generating the statistics of the distribution of the stick and slip zones. For example, it 

has been suggested that so-called self-organized criticality is responsible for the one-over-

frequency statistical distributions [7]. 

For the analysis of the stick-slip motion, the contact analysis can be generalized by 

introducing a variable with three values value 𝑏(𝑥, 𝑡) = 0 when there is no contact between the 

two surfaces at the point (x, t), 𝑏(𝑥, 𝑡) = 1 when there is a static stick contact, and 𝑏(𝑥, 𝑡) = 2 

when there is slip.  

Correlations should be sought between the age of contact and the size of contact. It is 

expected that these correlations would lead to dependencies similar to the empirical state-and-rate 

laws such as Eqs. 11-14. It has been also suggested that the Poincaré–Brouwer theorem [49] may 

be applicable to the stick-slip situations. 
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6.7. Conclusions 

Microscale and nanoscale roughness of metallic sample surfaces made of brass were 

studied applying different approaches to the evaluation of roughness parameters including the 

standard deviation of the rough profile height, correlation length, analyzing the extreme point 

location and persistence diagrams in the data space. These parameters provided valuable insights 

on roughness properties beyond the traditional quantitative characteristics of surface roughness. 

The autocorrelation function provides information about the horizontal (tangential) size of 

roughness details at the microscale. The analysis of the 3×3, 4×4, and 5×5 sub-matrices or patches 

provides information about the anisotropic features of the profile at the nanoscale, which are not 

captured by more traditional surface roughness parameters. The persistence diagrams provide 

more detailed information about the scale dependency of the roughness features. 

Proper reduction of the number of degrees of freedom is the key to the development of 

adequate models of friction. Methods of topological data analyses provide a mathematical tool for 

dimensionality reduction for datasets characterizing surface roughness, contact of rough surfaces, 

and frictional sliding. It is anticipated that the development and application of software for 

automated tribological data analysis may provide new insights on the models of dynamic friction 

with internal parameters. 
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CHAPTER 7: ROUGHNESS, WETTING, AND TRIBOLOGICAL 

ANALYSIS OF ANTIMICROBIAL AND ANTICORROSIVE COATINGS 

USING TRADITIONAL AND DATA TOPOLOGY APPROACHES  

TiO2/ZnO based multilayer hydrophobic coatings have been developed to confer self-

cleaning, water repellence, anticorrosive, photocatalytic, and antimicrobial properties to different 

substrates. Due to the diverse applications of the coated substrates, characterization of the 

roughness, wetting, and tribological behavior and understanding their interrelation are important. 

For example, to combat water and ice-induced damage of roadways and pavements, the coated 

surface should be water-repellant and anti-corrosive while retaining enough friction for the tires. 

Similarly, for many application, water-repellant and antimicrobial properties of the substrate 

materials are desired without a notable change in the friction behavior. In this chapter, data 

topology approaches have been applied besides traditional analysis to understand the roughness, 

wetting, and tribological behavior and their interrelation. 

7.1. Introduction 

Like many other infections, Covid-19 caused by the SARS-CoV-2 coronavirus primarily 

spreads through airborne respiratory micro-droplets and aerosols [1-3]. Due to the prolonged 

survival period of the SARS-CoV-2 and its new strains, contaminated surfaces holding virus 

bearing droplets are common sources of infection [4]. Available evidence suggests that a direct 

contact with such contaminated surfaces and subsequent touching of mouth, nose, and eye causes 

the risk of Covid-19 infection [5]. The World Health Organization (WHO), Centers for Disease 

Control and Prevention (CDC), and other regulatory bodies in healthcare recommend regular 

cleaning and disinfecting of commonly touched surfaces to limit the transmission [6,7]. 
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Consequently, the synthesis of surface nanocoatings with effective antimicrobial properties can 

limit the surface-to-human transmission of the SARS-CoV-2. Antibacterial [8-11] and antiviral 

[12-14] coatings for surfaces have been explored over the years for different applications. Most of 

the commercially available antimicrobial coatings, for example, silver-based coatings used in 

medical applications, incorporate complex synthesis and application processes, which make them 

expensive. Toxic chemicals and poor durability in applications involving surface interactions are 

other constraints often limiting the application of the existing antimicrobial coatings.  

An ideal antimicrobial coating should possess effective photocatalytic properties to 

deactivate harmful pathogens through catalytic decomposition, sustainable hydrophobic properties 

to repeal the respiratory droplets, and durability to withstand a wide range of surface interactions 

without exhibiting toxicity. Antimicrobial treatment based on the photocatalytic property of TiO2 

has been studied for different applications including sanitation and sterilization [15-18]. TiO2 

nanoparticles embedded on a surface can oxidize and deactivate organic matters and pollutants 

deposited on it in presence of sunlight [15]. The antimicrobial and photocatalytic properties of 

ZnO nanoparticles are also well-studied [19-21]. The TiO2/ZnO-phosphate (TP/ZP) based surface 

coatings developed in this study incorporate hydrophobic and photocatalytic properties to limit the 

transmission of pathogens. Hydrophobic properties resist the sustenance of respiratory droplets on 

the surface and the TiO2 and ZnO nanoparticles work in pathogen deactivation through the release 

of hydroxyl radicals during photocatalytic reactions.     

To combat water and ice-induced damage of roadways and pavements, novel ideas and 

approaches are coming forward for developing superhydrophobic pavements required for modern 

transportation system. However, it is a challenging task to synthesize the superhydrophobic 

concrete or asphalt surface. Concrete is a composite material similar to ceramics, which is also 
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typically porous and hydrophilic. Despite that, a certain progress has been made recently in this 

area [22-24] of producing hydrophobic, “overhydrophobic” (i.e., with the contact angle > 120º but 

less than 150º), and, in some cases, superhydrophobic concrete using polyethyl hydrogen siloxane 

(PESHO) or polymethyl hydrogen siloxane (PMHS) admixture, combined with sub-micron or 

nanosized particles [23, 25].  

Tire traction and the coefficient of friction (COF) are highly dependent on rubber friction 

and applied load [26]. It has been observed that the presence of water can affect the rubber friction 

and tire traction with paved surfaces significantly. Tire hydroplaning on wet pavement surfaces is 

the most common reason for vehicle and aircraft skidding, which is often a reason for the accident 

[26-28]. In countries with snowfall, the effect of the presence of water on roads and pavements is 

even a more critical issue. The deposition of ice can reduce the COF between the tire and the 

surface and make the roads accident-prone. As a result, billions of dollars are spent for snow and 

ice removal as well as on the maintenance of the roadways and pavements [29]. 

When water solidifies into ice, its volume increases by about 9%. Consequently, the ice 

transformation of water in the small pores of concrete causes the formation of cracks, severe 

damage, and significant reduction of service life [30]. To avoid unwanted consequences, it is 

highly desirable that the pavement surface itself is water repulsing. There are two wetting states 

which can exist when a liquid droplet is placed on a rough solid surface: the Wenzel state (complete 

or homogeneous wetting) and the Cassie state, when tiny air pockets are trapped under the water 

droplets, which eventually reduce the solid-liquid contact area and make the surface 

superhydrophobic [31]. As water cannot wet the surface, water droplets can easily be rolled off by 

a small mechanical work or by tilting the surface. It is difficult to realize a durable 

superhydrophobic surface on a conventional concrete; however, engineered concrete and fiber 
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reinforced composites were reported to reach (120o – 150o) and superhydrophobic (>150o) states 

[23]. 

Multi-layer TiO2 based coatings have been explored for synthesizing hydrophobic and 

superhydrophobic concrete for transportation applications. The porous and hydrophilic nature of 

concrete makes the synthesis of superhydrophobic asphalt or concrete surface a challenging task. 

However, the combination of micro- or nanosized particles with PESHO or PMHS admixture has 

been used to successfully synthesize hydrophobic, overhydrophobic, and superhydrophobic 

concrete and ceramic tile surfaces [22,23,25]. However, it is commonly expected that the 

application of “non-sticky” coatings, such as PTFE, PESCO, PMHS, and similar, would reduce 

the coefficient of friction (COF) between the tire and the concrete surface because friction tends 

to depend on adhesive forces between the coating surfaces. This makes it questionable, whether 

the hydrophobic and superhydrophobic coatings can be used for applications, where strong traction 

is needed, such as roads or runway pavements. Friction also depends on the presence of a liquid at 

the interface, so wetting properties affect the friction. Therefore, the correlation between the 

wetting and frictional properties of superhydrophobic concrete pavements is needed. 

Tribological characterization is required to understand the behavior of the surface coatings 

during interactions with external stimuli in relative motion. The coefficient of friction (COF) 

between interacting surfaces [32] is the ratio of friction force (𝐹𝑓) to the normal load (N) that 

presses the surfaces together, 𝜇 =
𝐹𝑓

𝑁
. The tribological characterization reveals how the developed 

coatings are altering the friction behavior of the surfaces. It also provides important information 

about the durability of the coatings in tribological applications. 



212 

 

 The sample preparation for the antimicrobial coatings has been discussed at length in the 

study of Hasan et al. [33]. Two grades of steel, 1018 grade cold finished carbon steel (CS) and 304 

grade and annealed stainless steel (SS) were supplied from Speedy Metals were used as substrates 

further referred to as the base material (BM) for the coatings. The BM samples were machined to 

1”×1” size coupons, sandblasted and ultrasonically cleaned in an acetone bath. Some of the carbon 

steel BM samples were then phosphated in a room temperature bath (composed of ZnO 5g/L; 85% 

H3PO4 11.3mL/L; NaNO2 1g/L dissolved in H2Odi – all these precursors were purchased from 

MilliporeSigma) and referred to as RTP CS. After immersing in the bath for 30 minutes, the RTP 

CS samples were rinsed thoroughly with water and dried in air.  All three substrates: CS, SS, and 

RTP CS were further used for coating application and performance analysis. The TiO2/ZnO-

phosphate based first layer was hydrophilic in nature which is followed by a second layer of PMHS 

based hydrophobic layer [33]. The combination of these two layers induced the desired water-

repellence and antimicrobial properties to the substrates. The PMHS based hydrophobic layer was 

also applied on the BM samples directly (without the 1st layer) to synthesize 1-layer hydrophobic 

samples. The schematic diagram of the coating layers on the base material surface is presented in 

Figure 7.1. 

 

Figure 7.1. Schematic diagram of different coating layers on the base material surface [33] 

Sample preparation for the anticorrosive coatings has been discussed in the study of Lanka 

et al. [34]. Unglazed clay ceramic tile (supplied by Blick) flat samples were cut to 50 mm x 30 
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mm size and tested for friction against a nitrile rubber pin. Three types of ceramic tile samples 

were prepared and tested in this study: (i) uncoated, (ii) coated with TiO2-phosphate (hydrophilic), 

and (iii) coated using TiO2-phosphate + PMHS two-stage process (+PMHS, hydrophobic). 

In this chapter, the roughness, wetting, and friction behavior of the developed coatings will 

be analyzed using the traditional and data topology approaches. The durability of the developed 

coatings for tribological applications will also be investigated. Finally, correlations between 

surface roughness, wetting, and friction properties will be investigated. 

7.2. Materials and procedures 

7.2.1. Surface roughness characterization 

Surface characterization of the antimicrobial and anticorrosive coatings was performed using 

a scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM). To 

characterize surface roughness and patterns of the sample surfaces, an Olympus LEXT OSL 

model-4100 CLSM was used. The samples were placed on the sample stage of the microscope and 

using the joystick eight spots on different locations of each sample were selected randomly for 

characterization. The average roughness, 𝑅𝑎 of each sample was reported by averaging the 𝑅𝑎 of 

each measurement for a sample surface. Using the LEXT software, 3D images of the surface at 

20× magnification were captured by laser scanning. With the resolution of 0.625 µm, the sampling 

profile length of 80 µm was selected in both the x- and y-direction. For the antimicrobial coated 

samples, besides the image profiles, the surface roughness profiles were recorded in numeric 

datasets as 128×128 matrices and stored in csv files. From each scan, 16384 data points of the 

roughness height were received.  

To characterize the overall surface appearance, JEOL JSM-6460L Scanning Electron 

Microscope was used. Prior to characterization, the specimens coated with antimicrobial coatings 
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were gold/palladium sputtered to improve sample conductivity, reduce surface charging, and 

increase the overall micrographs quality using Denton Desk II Sputter Coater. Secondary electrons 

accelerated to 15 kV were used as a source. Every image was taken on a 45 mm spot size and a 

working distance of 12 mm.  

7.2.2. Tribological test procedure 

For tribological characterization, the COF between the samples and the pins of carefully 

selected materials was measured using the universal mechanical tester (CETR UMT 2) under dry 

conditions. The pin-on-flat regime of the tribometer with the reciprocating (oscillatory) motion of 

the flat substrate was used for the measurement of the COF between the samples and the pins. 

 For the samples coated with the antimicrobial coatings, high-density polyethylene (HDPE) 

pins having a diameter of 6.35mm were used. Using a metallic pin caused significant removal of 

materials from the uncoated and coated samples and no longer presented the friction behavior of 

the surfaces (rather presented that of the bulk material). On the other hand, the HDPE pin helped 

to characterize the friction behavior of the uncoated and coated surfaces consistently as no notable 

material removal was involved. The sample was placed in a sample holder specially designed for 

holding the 1”×1” samples. Then it was mounted on the reciprocating base of the tribometer which 

is designed to move along the x-axis (horizontally) with the help of a DC motor. The HDPE pin 

was attached to the upper frame of the suspension of the tribometer which is connected to the 

sensor (DFH-50-0767). Using the UMT software, the motion of the sample holder and the 

suspension was controlled. During the experiment, a constant normal load was maintained by the 

control unit through a continuous adjustment of the Z carriage movement in the vertical direction. 

The command script of the tribological test included a preload sequence: 15 N normal load with a 

slider velocity of 2 mm/s for 30 seconds and a reciprocating sequence: 15 N normal load with a 
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slider velocity of 0.2 m/s for 120 seconds. The normal load of 15 N was selected (which is in the 

recommended range of the DFH-50-0767 sensor) after running the friction tests of the tribo-pairs 

for different normal loads (5N, 15N, 20N, 25N, and 30N) and visually observing the scratch marks 

on the surface. A stroke length of 10 mm and the corresponding 0.2 m/s sliding velocity which is 

in the recommended range were used in the pin-on-flat reciprocating test. The run-time of the tests 

was selected fulfilling the requirement of the pin-on-flat reciprocating test.  

To study the effect of tire-concrete friction in the laboratory setup, the “model” nitrile 

rubber, and ceramic tiles (uncoated and coated with anticorrosive coatings) as material model were 

used, the properties of which are similar to those of tires and concrete pavements, respectively. 

The rubber pin holder was clamped to the suspension while the tile sample was attached to the 

reciprocating stage. The tile sample was attached to the sample holder, which included a mold, an 

L-shaped supporting base, and clamps. The sample holder was then affixed to the fixture of the 

reciprocating base. The preload step was set for a duration of 30 s and had input velocity of 0 Hz 

in a counterclockwise direction and slider velocity of 2 mm/s, while the reciprocating step set for 

90 s and had input velocity of 5 Hz also in a counterclockwise direction with slider velocity at 

1000 mm/s. During the entire experiment, a normal load was maintained at 25 N, which 

corresponded to the actual field loading. 

7.2.3. Wetting test procedure     

To characterize wetting, we measured the water contact angles of the samples using the Rame-

Hart 250 goniometer. The device is comprised of several components: micro-syringe assembly, 

sample holder base, a high-speed camera, and a light source (Figure 7.2).  



216 

 

 

Figure 7.2. Measurement of contact angles in Rame-Hart goniometer 

Using the micro-syringe assembly, we placed 4 μl distilled water (DI) droplets at five 

different locations on the samples. The images of the droplets were captured by the high-speed 

camera and were then analyzed by the “DROPimage” software for the CA characterization. 

“DROPimage” software provided the CA values at each location which were then averaged and 

reported as the CA of the samples. 

7.3. Result and discussion 

7.3.1. Surface roughness characterization 

For the antimicrobial coatings, the average roughness, 𝑅𝑎of the base substrate materials, 

and the coated samples were presented in Table 7.1 and Table 7.2. The 𝑅𝑎 values of the BM 

samples of CS, RTP CS, and SS were 3.705 µm, 2.805 µm, and 2.907 µm, respectively. In the 

microstructure of the BM surfaces, both the CS and the SS surfaces were observed to be similarly 

roughened as a similar surface treatment was used. In the micrograph of the prephosphated carbon 

steel (RTP CS), due to the phosphating reaction, structures composed of fine zinc and iron 

phosphate crystals were developed that emerge from the surface. 
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Table 7.1 shows that the application of the single layer of PMHS on the BM decreased the 

𝑅𝑎. In contrast, the single layer of TP/ZP coatings on the BM increased the 𝑅𝑎 notably. A further 

increase in 𝑅𝑎 was observed when an additional layer of PMHS was applied over the TP/ZP layer. 

The 𝑅𝑎values observed for the 2-layer coating on the CS, RTP CS, and SS BM samples were 8.805 

µm, 5.016 µm, and 6.161 µm, respectively. Among the BM samples, the carbon steel exhibited 

the maximum 𝑅𝑎 of 8.805 µm when the 2-layer coatings were applied on the sample.  

In the X-ray diffraction analysis (XRD), for all three substrates coated with the S1 coating 

material, the presence of crystalline zinc phosphate on the surfaces was confirmed. In case of the 

coated carbon steel (S1 CS) and prephosphated carbon steel (S1 RTP CS) samples, the crystal 

structures were dense and highly developed. In contrast, the coated stainless steel (S1 SS) sample 

demonstrated lesser attachment of crystals to the surface, thus forming microstructure of lower 

density compared to S1 CS and S1 RTP CS products. The micrograph of the CS BM coated with 

the S2 coating material exhibited a distinct surface morphology. Crystal structures of zinc 

phosphate (platelets) protruding through a nano-titania layer were observed. 

The confocal 3D microscopic view for the uncoated ceramic tile and TiO2 – phosphate 

coated samples (anticorrosive coatings) R2, R5, R7, R9, O2 were done to understand the 

tendencies related to the roughness on the sample surface and to understand the length of crack 

and depth of cracks on coated samples after the thermal treatment. 

  

7.3.2. Topological data analysis and surface characterization 

Surface roughness data involves many parameters which are usually organized in 

multidimensional space [35]. The reduction of the dimensionality of the data (i.e., the organization 

of data in subspaces along the surface) is achieved through topological analysis. Topological data 
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analysis helps to identify persistent features over different resolution scales which represents the 

true features of the underlying space, unlike random noise and artifacts. Persistent homology 

involves the computation of topological features: topological invariants, n-dimensional simplicial 

complex, Betti numbers, etc. at different spatial resolutions. Connected components (𝐻0), 1-D 

holes (𝐻1), and higher dimensional voids (𝐻2, 𝐻3, etc.) are the major topological invariants 

observed over varying length scales. The appearance and disappearance of homological invariants 

or features in different sampling lengths are presented in the persistence diagram. The most 

persistent topological features are presented by the data points that are located far away from the 

diagonal. In barcodes, each horizontal bar presents the interval of the feature appearance and 

disappearance. While shorter bars are representative of random noises, the longer bars present the 

more persistent topological invariants.   

To analyze the surface topology, we considered the surface profile (roughness height) data 

of the CS BM, CS BM-PMHS, S1 CS, and the 2-layer S1 CS-PMHS coated samples. We presented 

the persistence homology with persistence diagrams and barcodes in Figure 7.3 where the 

homological invariants were expressed as a function of the resolution length. A sampling length 

of 80 µm with a resolution of 0.625 µm in both x- and y- directions was considered. For generating 

the diagrams for surface profile data, we used the standard libraries of Python. The datasets in the 

form of 128×128 matrices were subdivided into 3×3 submatrices for generating the barcodes 

[35,36]. First, we generated a filtered simplicial complex from the data points. We considered 

Vietoris-Rips filtration in the analysis and the maximum dimension of 4 to calculate the persistent 

homology for the Euclidean distance matrix.  

Each of the samples exhibited a distinct topology for the surface profile data at different 

length scales in Figure 7.3. For the uncoated CS BM sample, 𝐻0, 𝐻1, and 𝐻2 were the major 
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persistent topological invariants. The first topological invariant, 𝐻0, which indicated the connected 

components in topological space was found persistent over the entire sampling length range. The 

other persistent invariant, 𝐻1 corresponding to 1-D holes was significant at the resolution length 

corresponding to the size scale of the profile, approximately in the range of 35−45 µm. Application 

of the hydrophobic PMHS layer on the CS BM caused a decrease in average roughness (Table 

7.1). From the persistence diagram and barcodes, it was seen that the higher dimensional void (𝐻2) 

is no longer persistent for the CS BM-PMHS sample as the surface is smoothened. For the S1 CS 

sample, well-developed crystalline structures of ZP were observed on the surface and the average 

roughness increased notably (Table 7.2). Due to more complex surface morphology, an additional 

higher dimensional void (𝐻3) invariant was found persistent besides 𝐻0, 𝐻1, and 𝐻2 from the 

persistence diagram and barcodes. Longer bars for 𝐻3 in the barcode diagram for the S1 CS sample 

(Figure 7.3(e-f)) indicated that higher dimensional voids were more prevalent than those observed 

in the BM sample. Moreover, this invariant was significant at the resolution length corresponding 

to the size scale of the profile, approximately in the range of 45−52 µm. For the 2-layer S1 CS-

PMHS samples, the average roughness increased further. However, the second layer of PMHS 

covered the ZnO-phosphate crystal structures and made the surface profile more uniform. 

Consequently, in the persistence diagram and barcodes, the 1-D holes (𝐻1) and the higher 

dimensional voids (𝐻2, 𝐻3) were found less persistent than those of the CS BM and the S1 CS 

samples.   
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Figure 7.3. Persistence diagram and persistence barcodes for the surface roughness of (a-

b) CS BM, (c-d) CS BM-PMHS, (e-f) S1 CS, and (g-h) 2-layer S1 CS-PMHS samples. 
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To analyze the roughness data and visualize the patterns in roughness profiles for CS BM, 

CS BM-PMHS, S1 CS, and the 2-layer S1 CS-PMHS hydrophobic samples, we divided the 

128×128 matrix of each representative sample’s roughness profile into 3×3 square sub-matrices 

(3698 units) using a Python program. The average roughness values of these samples were 3.705 

µm, 2.611 µm, 6.473 µm, and 8.805 µm, respectively. To compare the roughness profiles, we 

considered the sampling length of 80 µm with the resolution of 0.625 µm in both the horizontal 

and vertical direction (x- and y-direction) for each sample. The autocorrelation function (ACF) 

and the distribution of the maximum and minimum roughness heights in cell positions for the sub-

matrices for the abovementioned samples are presented in Figure 7.4. Among the samples, the CS 

BM had the largest correlation length, β* (the smallest sampling length at which the ACF dropped 

to 10% of its original value) along the x (20.9 µm) and the y (17.5 µm) direction. The minimum 

value of β* was found for the hydrophobic CS BM-PMHS sample (8.5 µm along the x direction 

and 15.4 µm along the y direction). The β* values for the S1 CS (11.9 µm and 11.0 µm along the 

x and y direction), and the 2-layer S1 CS-PMHS sample (18.1 µm and 12.5 µm along the x and y 

direction) were also notably smaller than the those of the CS BM. These β* values indicated that 

surface profile and patterns in the coated samples were changing more rapidly along the sampling 

length than observed for the uncoated BM. 

For the 2-layer S1 CS-PMHS hydrophobic sample, the diagonal cell positions of the 4×4 

sub-matrix: (0,0), (0,2), (2,0), and (2,2) held the most maximum and minimum values of the 

roughness heights, Figure 7.4(g). The correlation length for the roughness profile was notably 

greater than the size of the patch of 1.875 µm, and the greatest number of maxima and minima 

were observed at the diagonal positions. Moreover, the total percentage of the number of maxima 

and minima in the positions (0,1), (2,1) was 12% (for maxima) and 12% (for minima), while the 
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total percentage in the positions (1,0), (1,2) was 20% (for maxima) and 20% (for minima). This 

suggested that the distribution was anisotropic, Figure 7.4(g) where the surface gradients for 

surface roughness in the x-direction were more prevalent than in the y-direction. The distribution 

of the maxima and minima varied among the other samples. However, we observed the anisotropic 

distribution of roughness in each case in vertical and horizontal directions. 
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Figure 7.4. Position of the maximum and minimum values in 3×3 sub-matrices and 

corresponding autocorrelation function for surface profile data for (a-b) CS BM, (c-d) CS BM-

PMHS, (e-f) S1 CS (BM-ZP), (g-h) S1 CS-PMHS  

Besides characterizing the surface roughness of the samples using traditional measurement 

techniques, we studied correlation lengths, analysis of the extreme point location, and persistence 

diagrams in the data space. Novel insights into the roughness properties were generated by these 

parameters which were beyond the scope of the traditional quantitative surface roughness 

characterizations. From the autocorrelation functions, information of the horizontal size of the 

microscale roughness details was received. Details about anisotropic microscale features that are 

not identified by the more traditional roughness parameters were presented by the analysis of the 

3×3 submatrices. The persistence diagrams and barcodes presented the details of the scale-

dependency of the roughness features. 

7.3. Wetting test 

The wetting test results of the samples coated with the antimicrobial coatings are presented 

in Table 7.1 and Table 7.2. The uncoated BM samples after sandblasting and the BM samples 

coated with S1 and S2 coating materials were hydrophilic in nature without a stable wetting profile. 

We didn’t report the CA of those hydrophilic samples. BM samples with the single layer of the 

PMHS coating exhibited stable wetting profiles with average CAs between 95.65o -98.37o. In 

contrast, the samples coated with the 2-layer coatings (S1 or S2 coating material + PMHS) 

exhibited impressive hydrophobic behavior where the average CA varied between 111.93o - 

124.33o. We plotted CAs of the hydrophobic samples against average roughness in Figure 7.5.  
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The wetting test results of the samples coated with the anticorrosive coatings are presented 

in Table 7.3. The resulting CA of the samples before the tribological test ranges from 96.2˚ to 

112.6˚. We also presented the CAs of ceramic tiles coated with TP and PMHS layers against the 

average roughness in Figure 7.5. In each case, the CA increased with an increasing average 

roughness of the samples, which is consistent with other studies [33,34,37].  

 

Figure 7.5. Contact angle vs. average roughness plot of hydrophobic samples coated with 

antimicrobial and anticorrosive coatings 

BMs coated with a single layer of PMHS had smaller average roughness values among the 

hydrophobic samples and exhibited smaller CAs. Samples coated with the S1 and S2 coating 

materials (TP/ZP layer) followed by the PMHS layer had larger average roughness and exhibited 

larger CAs. The 2-layer coating of TP/ZP and the PMHS layers induced the maximum average 

roughness on the carbon steel BMs. The maximum CA (124.40o) was observed for the CS sample 

coated with the 2-layer coating. The micrographs demonstrated that the crystal structures were 

well-covered by the PMHS layer which made their appearance more blurred in the micrographs. 
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Among the samples, the surface of the S1h CS sample was less blurred by the PMHS layer which 

was distributed more evenly as the crystal structures on this substrate were more developed. 

7.3.4. Tribological tests 

We present the tribological test results for the base materials and the coated samples with 

the antimicrobial coatings in Table 7.1 and Table 7.2. We used the COF of the BM samples as 

references to compare the friction performance of the developed coatings. For the BM samples, 

the COF ranged between 0.221+0.063 to 0.269+0.081. For BM samples coated with the single 

layer of PMHS, a notable reduction in COF was observed (ranging between 0.155+0.041 to 

0.178+0.045). As the BM surfaces were modified with the low surface energy coating, the surfaces 

were smoothened, and the average roughness was reduced. Consequently, lower COF values were 

observed for the samples. 

Table 7.1. Properties of base materials before and after hydrophobic treatment (antimicrobial 

coatings) 

BM 

Average roughness 

(µm) 

Coefficient of friction Contact angle (Degree) 

BM 

+ PMHS 

coating 

BM 

+ PMHS 

coating 

BM 

+ PMHS 

coating 

CS 3.705 2.611 0.256+0.077 0.174+0.055 - 98.37o±0.21o 

RTP CS 2.805 2.039 0.269+0.081 0.155+0.041 - 95.65o±1.55o 

SS 2.907 2.071 0.221+0.063 0.178+0.045 - 97.30o±1.21o 
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BM samples coated with the single layer S1 (ZP) and S2 (TP-ZP) coating materials also 

exhibited lower COF than the uncoated BM samples. Ceramic debris generated in a powder form 

during the tribological testing provided a lubrication effect which caused the reduction in COF. 

However, the COF was slightly higher than the PMHS coated samples. BM samples coated with 

the 2-layer hydrophobic coatings (first layer of the S1 or the S2 coating material followed by a 

second layer of PMHS) exhibited COF values ranging from 0.234 to 0.273, which were similar to 

the reference uncoated base materials. 

Table 7.2. Properties of the coated hydrophilic and hydrophobic samples (antimicrobial) 

Coating 

material 

BM 

Average roughness 

(µm) 

Coefficient of friction Contact angle (Degree) 

Phosphate 

coating 

 + PMHS 

Phosphate 

coating 

+ PMHS 

Phosphate 

coating 

+ PMHS 

S1 

CS 6.473 8.805 0.193+0.074 0.273+0.081 - 124.33o±0.78o 

RTP CS 4.96 5.016 0.207+0.055 0.245+0.069 - 111.93o±3.26o  

SS 5.722 6.161 0.194+0.076 0.263+0.075 - 112.68o±4.01o  

S2 CS 4.004 7.522 0.233+0.072 0.234+0.076 - 121.97o±0.86o  
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Figure 7.6. COF vs. average roughness plot for uncoated steel BMs and BMs coated with 

TP/ZP+PMHS and comparison with COF vs average roughness for ceramic tile samples coated 

with TP and TP+PMHS.   

The friction between the uncoated ceramic tile vs. rubber was measured as a reference, and 

the value of the coefficient of friction (COF) was found to be 0.45+0.24. Table 7.3 summarizes 

the roughness, COF and contact angle for TiO2-phosphate coated hydrophilic samples R2, R5, R7, 

R9 and O2 and R2, R5, R7, R9 and O2(TiO2-phosphate + PMHS coated hydrophobic samples). 

According to the American National Standards Institute (ANSI), tiles appropriate for ramp 

applications require a dynamic coefficient of friction (DCOF) greater than 0.42. Our tribological 

tests provided the average coefficient of friction (Fx/Fz) which is the ratio of frictional force (Fx) 

to normal load (Fz) as 0.45 for uncoated reference ceramic tiles, which is close to the standard 

value. The COF for the TiO2-phosphate coated samples varied from 0.59 to 0.67, which is higher 

than that of the standard value due to the strong bond and induced roughness. The application of 

the developed hydrophobic coatings on R2, R5, R7, R9, and O2 samples resulted in COF from 

0.31 to 0.45. For optimal composition R2, even though the reduction of COF due to hydrophobic 
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coating and reduced roughness, a slight enhancement of COF was observed (0.46 vs 0.45 of the 

reference). This suggests that developed hydrophobic coatings do not necessarily reduce the dry 

frictional traction. As the properties of the tile samples used in the experiments were similar to 

concrete, it can be concluded that the hydrophobic coating developed in this study would not make 

the concrete surface slippery. 

Table 7.3. The properties of anticorrosive TiO2-phosphate coated (hydrophilic) and 

TiO2-phospate + PMHS coated (hydrophobic) samples 

 

Type of 

sample 

Roughness (µm) Coefficient of friction  Contact angle 

(Degrees) 

TiO2-

phosphate 

coating 

TiO2-

phosphate 

+ PMHS 

coating 

TiO2-

phoshate 

coating 

TiO2-

phoshate + 

PMHS 

coating 

TiO2-

phosphate 

coating 

TiO2-

phosphate 

+ PMHS 

coating 

R2 5.43 3.32 0.66+0.28 0.46+0.32 0o 107.15 o 

R5 4.29 3.83 0.60+0.31 0.37+0.29 0o 107.49 o 

R7 4.63 2.98 0.67+0.26 0.31+0.15 0o 96.18 o 

R9 4.25 3.33 0.63+0.31 0.42+0.32 0o 112.62 o 

O2 4.57 3.61 0.59+0.32 0.39+0.24 0o 107.66 o 

 

We plotted the COF values of the uncoated and coated BM with the developed coatings 

against the average roughness in Figure 7.6. Besides visualizing the COF of different types of 

samples, we observed a linear increasing trend of COF with increasing average roughness. This 

increasing trend was consistent with ceramic substrates coated the anticorrosive coatings with TP 
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and PMHS though the relationship between average roughness (which is a surface property) and 

the COF (which is a tribological response) can be more complex [38]. The tribological 

characterization indicated that the 2-layer hydrophobic coatings can be tuned to retain the friction 

behavior of the base materials while imparting desired hydrophobic properties to the substrate 

materials. 

 

Figure 7.7. COF vs CA plot for the coated hydrophobic samples 

The COF values of PMHS coated BM samples and 2-layer coated samples are plotted 

against the corresponding CAs in Figure 7.7. We observed a linear trend where the COF increased 

with an increasing CA. This observation was consistent with the ceramic tile samples coated with 

TP and PMHS. 

We analyzed the SEM micrographs of the scratched 2-layer coated surfaces with 

antimicrobial coatings during the tribological tests. The intensive sliding of the tribometer pin on 

the coated samples caused visible detaching of the crystalline structures of TP/ZP from the 

substrates. However, the presence of a thin coating layer on the scratched substrate was clearly 
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visible unlike observed for the base metals. In a preliminary observation, the presence of 

microcracks on the micrographs also suggested the retention of the coating layer and abrasion 

resistance despite the severe sliding.  

 

Figure 7.8. Confocal microscope images of the coated tile surfaces with the (a) R2 and (b) 

optimal (O2) anticorrosive hydrophobic coatings observed after the tribological test. 

In order to evaluate the mechanical durability of the anticorrosive hydrophobic TiO2-

phosphate + PMHS coating, after the tribological tests, the tile samples were examined under the 

confocal microscope under 20X magnification. Figure 7.8. is an image of the surface of the O2 

sample with hydrophobic coating observed under 20X magnification after the tribological test. 

From the magnified view, it is evident that rubber residue remained on the surface (black particles 

in the image) after the tribological test. The hydrophobic coating component (white particles in the 

image) remained intact on the tile surface. This image proved that like TiO2-phosphate coated 

hydrophilic samples, the TiO2-phosphate + PMHS coated hydrophobic samples had a high 

adhesion with the surface and good abrasion resistance. The results of the conducted tribological 

tests demonstrated that the anticorrosive coatings have the adequate abrasion resistance and 
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adhesion to the substrate, and, therefore, will potentially demonstrate an excellent wear resistance 

and overall durability in the field condition. A detailed study involving the wear rate can reveal 

more about the durability and abrasion resistance of the coatings. 

7.4. Conclusions 

In this study, the wetting, frictional, and roughness properties of hydrophobic antimicrobial 

and anticorrosive coatings were analyzed. The average roughness of the uncoated BM samples 

ranged between 2.805 µm to 3.705 µm. The single antimicrobial coating layer (S1 and S2) notably 

increased the roughness of the BM samples to the values ranging from 4.004 µm to 6.473 µm. The 

samples coated with the 2-layer hydrophobic coatings (ZnO/TiO2-phosphate layer followed by 

PMHS) exhibited the maximum average roughness values (ranging between 5.016 µm to 8.805 

µm). Here PMHS effectively amplified the roughness of single-coated substrates. The topological 

data analysis indicated anisotropic roughness distribution in the coated samples.  

The BM samples coated with the 2-layer coatings had excellent and stable hydrophobic 

behavior with CA ranging between 111.93° to 124.33°. The 2-layer S1 CS-PMHS sample had the 

maximum average roughness and the highest CA. From the tribological characterization, the 

average COF of the BM samples was found between 0.221-0.256. The application of a single layer 

of hydrophobic PMHS or hydrophilic S1 or S2 coating material reduced the average COF. 

However, the COF values ranging between 0.234 to 0.273 for the 2-layer coated hydrophobic 

samples reached the levels of the uncoated BM samples. This observation indicated that the 

developed 2-layer hydrophobic coating did not alter the friction behavior of the base materials. 

In the study of the anticorrosive coatings, the uncoated reference tile has a roughness value 

of 7.69 µm, the hydrophilic coated tiles roughness values lying in the range between 4.25 µm to 

5.43 µm having a best roughness measurement as 5.43 µm and the hydrophobic coated tiles 



233 

 

roughness values lying in the range between 2.98 µm to 3.83 µm having a best roughness 

measurement as 3.83 µm with respect to reference tile. It is also observed that the coating material 

remains unharmed on the tile samples after rubber-tile friction of the tribological test. Moreover, 

rubber traces were observed in the CLSM images of the coated surfaces. While a detailed 

quantitative study of wear rates is required, it can be preliminary concluded that the coated surfaces 

have good wear and abrasion resistance, which is highly desirable for application on a pavement 

surface. 

The reference tile has a COF of 0.45 compared to hydrophilic TiO2-phosphate coated tiles 

having COF lying in the range between 0.59 to 0.67 and the COF of hydrophobic TiO2-phosphate 

+ PMHS coated tiles having COF in the range between 0.31 to 0.46. The results prove that the 

values of the COF between the rubber and ceramic tile samples having hydrophilic coating 

properties were enhanced and for some hydrophobic coatings, a reduction in COF in comparison 

to the uncoated tiles was observed. However, optimized hydrophobic coating R2 produced at TiO2 

to Phosphoric acid ratio of 4 and enhanced by PMHS had a COF of 0.46 which was better than 

that of reference. 
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CHAPTER 8: CONCLUSIONS 

First, artificial neural network, k-nearest neighbor, support vector machine, gradient 

boosting machine, and random forest algorithm-based ML regression models geared towards 

establishing correlations in structure and tribological properties of aluminum alloys and particle 

reinforced aluminum MMCs (aluminum-graphite and aluminum-graphene) in dry conditions were 

developed by employing a Python language-based computational procedure have been developed. 

Statistical performance metrics suggested that the ML models could satisfactorily predict the 

friction and wear of these alloys and MMCs. ML models for aluminum-graphene and aluminum-

graphite MMCs notably outperformed those for aluminum alloys in COF and wear rate prediction. 

In the presence of categorical variables as inputs, and the prevalent variability in the friction and 

wear data sets, the decision tree based standalone GBM and RF regression models and their hybrid 

ensemble models provided the best performance for the friction and wear prediction of aluminum 

alloys, aluminum-graphite, and aluminum-graphene MMCs. 

Second, structure-property relationships between the material properties, composition of 

the alloys and MMCs, test conditions, and tribological properties of aluminum alloys and 

aluminum-based MMCs were analyzed. Traditional analysis showed that the presence of 

reinforcement particles (graphite/graphene) and the loading conditions notably affected the 

tribological properties. Additionally, the linear contrast analysis suggested that a much lower wt.% 

of graphene in the aluminum matrix as the reinforcement phase can lead to similar decrease in 

COF which are obtained with a much higher amount of graphite in the aluminum MMCs under 

comparable tribological conditions. This finding can be useful in choosing between these two 

aluminum MMCs for specific tribological applications. The most influential material properties 
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and tribological parameters in predicting the friction and wear behavior of these alloys and MMCs 

were identified using feature importance attribute of the decision tree-based RF models. The 

hardness, sliding distance, and tensile strength of the alloys influenced the COF most significantly. 

On the other hand, normal load, sliding speed, and hardness were the most influential parameters 

in predicting wear rate. Graphite content was identified as the most significant parameter in friction 

and wear prediction in Al-graphite MMCs. For aluminum-graphene MMCs, load, graphene 

content, and hardness have been identified as the most influential parameters in COF prediction 

while graphene content, load, and hardness have the greatest influence in the wear rate prediction. 

These findings suggested that the optimization of these small number of parameters can generate 

desired friction and wear performance in these aluminum alloys and MMCs.  

Third, principal component analysis based unsupervised ML models and random forest 

and gradient boosting machine algorithm-based hybrid ensemble ML models for dimensionality 

reduction in structure-property relationships data and predicting the friction and wear behavior of 

aluminum-graphite MMCs in during the transition of lubrication regimes by employing a Python 

language-based computational method have been developed. The hybrid ensemble RF-GBM 

models performed the best than the other models for COF and wear rate prediction in aluminum-

graphite MMCs in lubricated conditions. However, the predictive performance of the hybrid RF-

GBM model with 5 PCA descriptors (variables derived though dimensionality reduction from the 

actual 14 input variables) was weaker compared to other hybrid and standalone ML models in 

COF prediction. This indicated that the actual 14 variables considered in the study are significant 

in COF prediction and the dimensionality reduction using PCA caused significant information 

loss. Lubrication condition, lubricant viscosity, and applied load have been identified as the most 

important variables in predicting wear rate and COF. Graphite content, which was the most crucial 
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parameter in the dry condition had reduced impact in friction and wear prediction of aluminum-

graphite MMCs in the presence of liquid lubricants. The Linear Contrast analysis suggested that 

for the fully lubricated conditions, graphite content had little effect on the friction behavior of 

aluminum-graphite MMCs. In another word, the self-lubrication property of these MMCs in 

liquid-lubricated conditions are not as effective as those in the dry condition. This finding can be 

helpful in selecting the material between aluminum alloys and aluminum-graphite MMCs for 

applications in fully lubricated conditions. 

Fourth, a new methodology of data-driven surface roughness analysis consisting of the 

calculation of roughness parameters, correlation lengths, extremum point distribution, persistence 

diagrams, and barcodes was developed and used for studying the roughness patterns, functional 

designs, and anisotropic distributions inherent in steel substrates coated with TiO2/ZnO phosphate 

and PMHS based 2-layer antimicrobial and anticorrosive coatings, and sonochemically treated 

brass (Cu Zn alloy) samples. The autocorrelation function provided information about the 

horizontal (tangential) size of roughness details at the microscale. The analysis of the 3×3, 4×4, 

and 5×5 sub-matrices or patches provided information about the anisotropic features of the profile 

at the nanoscale, which are not captured by more traditional surface roughness parameters. In the 

anisotropic distribution of surface roughness in steel samples coated with antimicrobial coatings, 

the surface gradients in the horizontal direction were more prevalent than in the vertical direction. 

Additionally, the scale dependency of the roughness features was explained by the persistence 

diagrams and barcodes. These results can be helpful in optimizing the surface coatings for desired 

surface properties. 

Fifth, comprehensive correlations between surface roughness, COF, and water contact 

angle were established for steel substrates coated with TiO2/ZnO phosphate and PMHS based 
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antimicrobial and ceramic substrates coated with TiO2 phosphate and PMHS based anticorrosive 

coating materials. The CA and COF of samples coated with both antimicrobial and anticorrosive 

coatings increased with increasing surface roughness. An overall linear increasing trend of COF 

with increasing average roughness was observed. A positive linear correlation between the COF 

and CA of the coated surface was also observed. The combined wetting and tribological 

characterization also revealed that the hydrophobic modification didn’t make the coated surfaces 

slippery and retained adequate friction for transportation application. This refuted the general 

conception that non-sticky means slippery. Moreover, the results of the tribological tests 

demonstrated adequate abrasion resistance and adhesion to the substrate, and, therefore, 

potentially, excellent wear resistance and overall durability of the anticorrosive coatings in the 

field condition. 

This dissertation demonstrates that data-driven Triboinformatics approaches can be 

successfully implemented in surface science, wetting, and tribology. These approaches can not 

only add value to the existing traditional characterizations but also can generate novel insights 

which are beyond the scope of the traditional quantitative analysis. 
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