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Abstract We relate the classes of unitary and calibrated representations of cyclotomic Hecke algebras,
and, in particular, we show that for the most important deformation parameters these two classes coincide.
We classify these representations in terms of both multipartition combinatorics and as the points in the
fundamental alcove under the action of an affine Weyl group. Finally, we cohomologically construct these
modules via BGG resolutions.

Introduction

Unitary representations play a fundamental role in the representation theory of real,

complex and p-adic reductive groups [4, 55, 23, 6]. Unitary representations are often the

most important representations appearing ‘in nature’ via quantum mechanics [56] and

harmonic analysis [42]. Furthermore, they tend to admit nice structural and homological
properties, such as explicit eigenbases and resolutions by Verma modules.

In this paper, we study unitary representations of a family of infinite discrete groups:

the affine braid groups. These are groups Bea
n of n braids on the cylinder (see [29]) and

project onto the usual Artin braid groups by “flattening” the cylinder. Of course, the

representation theory of the group Bea
n is extremely complicated and the problem would

be intractable without imposing certain conditions on our representations. The condition
we impose is that our representations factor through an affine Hecke quotient of the group

algebra CBea, that is, the following skeinlike relation is satisfied

(Ti− q)(Ti+1) = 0 (†)

for some q ∈ C× and every i = 1, . . . ,n− 1, where Ti is the overcrossing of the ith and

(i+1)-st strands. The algebra Haff
q (n) := CBea

n /(Ti − q)(Ti +1) is known as the affine

Hecke algebra. Besides being interesting in and of itself, the algebra Haff
q (n) appears in
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2 C. Bowman et al.

the theory of knot invariants, categorification and the representation theory of p-adic
reductive groups. Let us now discuss our methods and results in more detail.

First main result

First, we relate the unitary representations of Haff
q (n) to the class of calibrated repre-

sentations. These are a well-studied class of representations of Haff
q (n) that are defined

by the condition that the Jucys–Murphy subalgebra A ⊆ Haff
q (n) acts semisimply; see

[46, 45, 50, 40]. Calibrated representations exhibit many of the properties that make

unitary representations interesting (for example, by definition they come equipped with

an A-eigenbasis, which for simple calibrated representations is unique up to scalar
multiplication), and it easily follows that, in fact, every unitary representation is

calibrated. The converse is of course not true, but it turns out that if we restrict

to certain representations (in a sense, the most complicated ones), then the story

changes. To be more precise, every irreducible representation of Haff
q (n) factors through

a cyclotomic quotient, Hq,Q1,...,Qℓ
(n) which depends on several parameters q,Q1, . . . ,Qℓ.

The representation theory of Hq,Q1,...,Qℓ
(n) is most interesting when we specialise the

parameter q to be a root of unity and the parameters Qi = qsi for 1≤ i≤ ℓ.

Theorem A. Let e ≥ 2 and s1, . . . ,sℓ be integers. Let q = exp(2π
√
−1/e) and Qi = qsi .

A representation of the algebra Hq,Q1,...,Qℓ
is unitary if and only if it is calibrated.

Second main result

Next, we use Theorem A to combinatorially classify the unitary representations. Given

an integer e > 1 and s= (s1, . . . ,sℓ) ∈ Zℓ a charge, we denote the algebra Hq,Q1,...,Qℓ
(n) as

above simply byHs(n). The definition of the algebra Hs(n) depends only on the reduction

modulo e of the charge s, so we can assume that s1 ≤ s2 ≤ . . . ≤ sℓ < s1+ e. Our choice

of charge allows us to provide a particularly simple classification of unitary modules in
terms of multipartition combinatorics.

Theorem B. Let q = exp(2π
√
−1/e), and fix a charge s= (s1, . . . sℓ) such that s1 ≤ s2 ≤

. . . ≤ sℓ < s1+e. The simple Haff
q (n)-module Ds(λ) is unitary if and only if the following

equivalent conditions hold:

• λ is cylindric, its right border strip has period at most e and its reading word is
increasing;

• λ ∈ Fh the fundamental alcove under an s-shifted action of an affine Weyl group
of type A;

• Ds(λ) is calibrated.

Precise definitions for the terminology in the first two conditions are given in Sub-
sections 3.1 and 5.1.

Theorem B gives the first classification of calibrated representations for the algebra
Hs(n) in terms of Young diagrams of multipartitions. Note that other combinatorial

classifications in terms of weights and skew-Young diagrams are given in [45, 46]. Theorem

B can be seen as the analogue of [37, Theorem 4.1] for calibrated representations—both

https://doi.org/10.1017/S147474802200055X Published online by Cambridge University Press



Unitary representations of cyclotomic Hecke algebras 3

results provide the first closed-form description of the given family of irreducible modules
in terms of multipartitions.

Third main result

The combinatorial description of the unitary representations in Theorem B leads to our

third main result, a multiplicity-free character formula for these representations and their

cohomological construction by way of BGG, or Berstein-Gelfand-Gelfand, resolutions.
If we consider formal parameters q,Q1,Q2, . . . ,Qℓ and define the algebra Hq,Q1,...,Qℓ

(n)

over the field of rational functions C(q,Q1, . . . ,Qℓ), then the algebra Hq,Q1,...,Qℓ
(n) is

semisimple and the simple Specht modules S(µ) are indexed by the set of ℓ-multipartitions
µ of n, cf. [2, Proposition 3.10]. For e> 1 and s∈Zℓ, one can place a corresponding integral

lattice on each Specht module S(µ), obtaining a family of (nonsemisimple)Hs(n)-modules

Ss(µ) by specialisation of the parameters q = exp(2π
√
−1/e) and Qi = qsi . Our choice of

s ∈ Zℓ allows us to construct the unitary simple Ds(λ) as the head of the Specht module

Ss(λ) for λ as in Theorem B. A BGG resolution of Ds(λ) is a resolution of Ds(λ) by a

complex whose terms are direct sums of Specht modules Ss(µ).

Given a unitary simple module Ds(λ), we consider the set of multipartitions µ

dominating λ and having the same residue multiset as λ (with respect to the charge s).

For such µ, we write µ � λ; see Section 1. The affine symmetric group Ŝh, where h is

the number of rows of λ, acts naturally on this set of multipartitions, endowing it with
the structure of a graded poset in which λ is the unique element of length 0. We then

construct a BGG resolution of Ds(λ) as follows.

Theorem C. Associated to each unitary simple module, Ds(λ), we have a complex

C•(λ) =
⊕

µ�λSs(µ)〈ℓ(µ)〉 with differential given by an alternating sum over all
“imple reflection homomorphisms’. This complex is exact except in degree zero, where

H0(C•(λ)) =Ds(λ). The underlying graded character is as follows:

[Ds(λ)] =
∑

µ�λ

(−t)ℓ(µ)[Ss(µ)〈ℓ(µ)〉]. (††)

Moreover, the module Ds(λ) admits a characteristic-free basis {cS⊗Z k | S ∈ PathFh (λ)}
where PathFh (λ) ⊆ Pathh(λ) is the subset of paths which never leave the fundamental

alcove Fh.

In the case of the unitary representations of the Hecke algebra of the symmetric
group, the resolutions of Theorem C were the subject of the authors’ previous work [13]

and Theorem C reproves a conjecture of Berkesch–Griffeth–Sam [7]. Theorem C vastly

generalises this work to all unitary representations of all cyclotomic Hecke algebras. We
remark that we concentrate on the roots of unity case in this paper. When q is not a root

of unity, unitary simple representations admit BGG resolutions, which were constructed

by Cherednik in [19]. Our results and those of [17, 18, 31] intersect in a few special
cases.

Aspects of this story should be very familiar to the experts: We have an algebraic

object (in this case a cyclotomic or affine Hecke algebra) for which there exists a ‘nice
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4 C. Bowman et al.

family’ of irreducible representations (in this case, the unitary representations) which

can be combinatorially classified and constructed via explicit bases and BGG resolutions.

Analogous stories exist for ladder representations of p-adic groups [5], finite-dimensional
representations of (Kac–Moody) Lie algebras [8, 38] and homogeneous representations of

antispherical Hecke categories [12].

We remark that, while the definition of a unitary module depends crucially on the
ground field being C, the condition to be calibrated makes sense for arbitrary fields. In

this manner, Theorems B and C both admit characteristic-free generalisations which are

proven in this paper.

Regular p-Kazhdan–Lusztig theory. The coefficients in equation (††) are equal to

‘regular’ (or ‘nonsingular’) inverse (p-)Kazhdan–Lusztig polynomials. In fact, the proof
of Theorem B involves passing from the cyclotomic Hecke algebras to the setting of Elias–

Williamson’s diagrammatic category for ‘regular’ Soergel-bimodules. For the general

linear group, GLh, the ‘regular’ Soergel-bimodules control the representation theory
of the principal block (the block containing the trivial representation k = Δ(kh) for

n = kh) if and only if p > h. On the other side of Schur–Weyl duality, this means that

‘regular’ Soergel-bimodules control the representation theory of the Serre subcategory
of kSn-mod corresponding to the poset {λ | λ � (kh) for n = kh}, and we remark

that the simple kSn-module labelled by the partition (kh) is calibrated providing

p > h.

For higher levels ℓ > 1, one can ask ‘to what extent is the cyclotomic Hecke algebra
controlled by regular (p-)Kazhdan–Lusztig theory?’ Of course, the Schur–Weyl duality

with the general linear group no longer exists. However, one can speak of calibrated

representations of the cyclotomic Hecke algebra. In fact, the largest Serre subcategory of
(a block of) the cyclotomic Hecke algebra controlled by regular p-Kazhdan–Lusztig theory

is given by the poset {µ | µ� λ}, where Ds(λ) is the minimal calibrated simple module

in the block (under the order �). Thus, the Serre quotients carved out by calibrated
representations of cyclotomic Hecke algebras play the same role as that of principal blocks

of algebraic groups for p > h.

Structure of the paper. Section 1 introduces the combinatorics that will play an

important role in this paper. Then we study unitary representations in Section 2 where

we prove Theorem A; see Theorem 2.21. Sections 3 and 4 are devoted to the proof of
Theorem B, which involves intricate combinatorial constructions. In Section 5, we recall

previous work of the first author together with A. Cox and A. Hazi [10] that will allow

us to prove Theorem C. We do this in Section 6. In this section, we also discuss the
consequences of our work in the representation theory of rational Cherednik algebras;

see Remark 6.31. Finally, in Appendix A, we use our techniques to give a complete

classification of unitary representations of the Hecke algebra of the symmetric group.
While this has mostly appeared in the literature, see [52]. We believe it gives a good

feeling for the usage of calibrated representations in this setting and corrects an oversight

of [52].
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Unitary representations of cyclotomic Hecke algebras 5

1. Combinatorics

1.1. Charges, multipartitions and tableaux

Fix e ∈ Z≥2 throughout this paper.

Definition 1.1. We call an ℓ-tuple of integers s = (s1,s2, . . . ,sℓ) ∈ Zℓ an ℓ-charge or

simply a charge. Given e ∈ Z≥2, we say that s is cylindrical if s1 ≤ s2 ≤ . . . ≤ sℓ < s1+ e.

We define a composition λ of n to be a finite sequence of nonnegative integers (λ1,λ2, . . .)

whose sum |λ| = λ1 + λ2 + . . . equals n. We say that λ is a partition if, in addition,

this sequence is weakly decreasing. We let λt denote the transpose partition. An ℓ-
multicomposition (respectively ℓ-multipartition or simply ℓ-partition) λ = (λ1,λ2, . . . ,λℓ)

of n is an ℓ-tuple of compositions (respectively partitions) such that |λ| := |λ1|+ |λ2|+
. . .+ |λℓ|= n. We will denote the set of ℓ-multicompositions (respectively ℓ-partitions) of n
by Cℓ(n) (respectively by Pℓ(n)). Given λ= (λ1,λ2, . . . ,λℓ) ∈ Pℓ(n), the Young diagram

of λ is defined to be the set of boxes (or nodes),

{(r,c,m) | 1≤ c≤ λm
r , 1≤m≤ ℓ}.

We do not distinguish between the multipartition and its Young diagram. We draw

the Young diagram of a partition by letting c increase from left to right and r increase
from top to bottom. We refer to a box (r,c,m) as being in the rth row and cth column

of the mth component of λ. We draw the Young diagram of a multipartition by placing

the Young diagrams of λ1, . . . ,λℓ side by side from left to right as m runs from 1 to
ℓ. Finally, a tableau T on a multipartition λ is a bijection from the set of boxes of λ

to {1,2, . . . ,|λ|}. The tableau T is called standard if it is increasing along the rows and

columns of each component. We let Std(λ) denote the set of all standard tableaux on λ.
If T ∈ Std(λ) is a standard tableau, then Shape(T↓{1,...,k}) is the multipartition whose

Young diagram consists of all the boxes with labels ≤ k. Finally, we denote by ∅ the empty

multipartition.

Example 1.2. Let ℓ = 3 and λ = (λ1,λ2,λ3) = ((2,1),(4,2,1),(5)). We draw the Young

diagram of λ as follows:

.

Definition 1.3. A charged ℓ-partition is the data of an ℓ-partition λ together with

an ℓ-charge s ∈ Zℓ. Given a box b = (r,c,m) ∈ λ, we define its charged content to be
cos(b) = sm+ c−r and we define its residue to be ress(b) := cos(b)(mod e). We refer to a

box of residue i ∈ Z/eZ as an i -box (or i -node).

Note that the residue of a box in λ depends on the choice of the charge s ∈ Zℓ. For a

tableau T on λ, we let res(T) denote the residue sequence consisting of res(T−1(k)) for

k = 1, . . . ,n in order.
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6 C. Bowman et al.

Example 1.4. Let ℓ= 3 and λ= (λ1,λ2,λ3) = ((2,1),(4,2,1),(5)). Let s= (−1,2,0) ∈ Z3.

The Young diagram of λ with its boxes labelled by their charged contents looks as follows:

–1 0

–2

2 3 4 5

1 2

0

0 1 2 3 4 .

Now, take e= 4, then labelling the boxes of the Young diagram of λ their residues, we

have:

3 0

2

2 3 0 1

1 2

0

0 1 2 3 0

and we have that res(Tλ) = (0,2,1,0,3,2,1,3,2,0,2,0,3,1,0) ∈ (Z/eZ)15, where Tλ is the

reverse column-reading tableau on λ; see Example 1.10 below.

Definition 1.5. Given s ∈ Zℓ and two i -boxes (r,c,m),(r′,c′,m′) ∈ λ for some i ∈ Z/eZ,

we write (r,c,m)✄s (r
′,c′,m′) if cos(r,c,m)> cos(r′,c′,m′) or cos(r,c,m) = cos(r′,c′,m′) and

m<m′. For λ,µ ∈ Pℓ(n), we write µ � λ if there is a residue preserving bijective map

A : [λ]→ [µ] such that either A(r,c,m)⊳s (r,c,m) or A(r,c,m) = (r,c,m) for all (r,c,m)∈λ.

When s ∈ Zℓ is cylindrical, we often write ✄ instead of ✄s.

Remark 1.6. The ordering of Definition 1.5 is one of many possible cellular orderings

on the Hecke algebra. It is important (and useful for this paper) because it is the only
ordering for which we have a closed combinatorial description of the indexing set of simple

modules; see [27, 9] for more details.

Definition 1.7. Given a partition λ = (λ1, . . . ,λh) such that λh > 0, we set h(λ) to be

the height of the partition, that is h(λ) = h. Given a multipartition λ = (λ1,λ2, . . . ,λℓ),
we set h(λ) = (h1, . . . ,hℓ) to be the ℓ-composition formed of the heights of the component

partitions. Given λ= (λ1,λ2, . . . ,λℓ), we define the height of the multipartition to be the

integer hλ = h1+ · · ·+hℓ.

Definition 1.8. Fix s∈Zℓ. We say that a composition h= (h1, . . . ,hℓ) of h is s-admissible

if hm ≤ sm − sm−1 for 1 < m ≤ ℓ and h1 ≤ e+ s1 − sℓ and with at least one of these
inequalities being strict. We refer to any value 1≤m≤ ℓ for which the inequality is strict

as a step change. For an s-admissible h∈Nℓ, we let Ph(n) denote the set of all λ∈Pℓ(n)

such that h(λ) = h.

Definition 1.9. Let h ∈ Nℓ be s-admissible, and let 1 ≤ m ≤ ℓ. Given λ ∈ Ph(n), we

define the reverse column reading tableau, T(m,λ), to be the standard tableau obtained by
filling the first column of the (m−1)th component then the first column of the (m−2)th

component and so on until finally filling the first column of the mth component and then

repeating this procedure on the second columns, the third columns, and so on. Here, we
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Unitary representations of cyclotomic Hecke algebras 7

take the ‘cyclic’ convention that the (m− 1)th component for m = 1 is simply the ℓth

component.

Example 1.10. Definition 1.9 is best illustrated via an example. Let s = (0,3,4) with
e = 7. We have that λ = ((2,1),(4,2,1),(5)) ∈ P(2,3,1)(15) and that h1 = 2 < 7+0− 4 =

e+s1−sℓ and so m= 1 is a step change (one can check that this step change is unique).

The reverse reading column reading tableau T1,λ is given by filling the first columns of

the third component, second component, first component and then the second columns
of these components. . .hence obtaining

T(1,λ) =

⎛
⎝ 5 10

6
,

2 8 12 14

3 9

4

, 1 7 11 13 15

⎞
⎠ .

Given λ ∈Ph(n), we let Addh(λ) (respectively Remh(λ)) denote the set of all addable

(respectively removable) boxes of the Young diagram so that the resulting Young diagram

is the Young diagram of a multipartition belonging to Ph(n+1) (respectively Ph(n−1)).
We let Addih(λ) (respectively Remi

h(λ)) denote the subset of nodes of residue equal to

i ∈ Z/eZ. Dropping the subscript h, we obtain the usual sets of addable and removable

i -nodes of a multipartition.

Definition 1.11. Given 1≤ k≤ n and a standard tableau T on a multipartition λ, we let
AT(k) (respectively RT(k)) denote the set of all addable res(T−1(k))-boxes (respectively

all removable res(T−1(k))-boxes) of the multipartition Shape(T↓{1,...,k}) which are more

dominant than T−1(k). We define the degree of T ∈ Std(λ) for λ ∈ P(n) as follows:

deg
s
(T) =

n∑

k=1

(|AT(k)|− |RT(k)|) .

Remark 1.12. Let h∈Nℓ be s-admissible and 1≤m≤ ℓ be a step change. We have that
deg

s
(T(m,λ)) = 0 for λ ∈ Ph(n).

1.2. The ŝle-crystal

Ariki proved that the ŝle-crystal explicitly realises the modular branching rule of the
cyclotomic Hecke algebra [3]. We now recall the combinatorics of this construction. Fix

e≥ 2 and a charge s ∈ Zℓ. The ŝle-crystal is a simply directed graph on the set of vertices

consisting of all ℓ-partitions. Its arrows are given by a rule for adding at most one box

of each residue i ∈ Z/eZ to a given ℓ-partition. We define the crystal operators ẽi and f̃i,
which remove and add (respectively) at most one box of residue i.

Definition 1.13 [27, Theorem 2.8]. Fix i ∈ Z/eZ, s ∈ Zℓ and an ℓ-partition λ.

• Form the i -word of λ by listing all addable and removable i -boxes of λ in increasing
order from left to right (according to ✄s) and then replacing each addable box in
the list by the symbol + and each removable box by the symbol −.

https://doi.org/10.1017/S147474802200055X Published online by Cambridge University Press



8 C. Bowman et al.

• Next, find the reduced i -word of λ by recursively canceling all adjacent pairs
(−+) in the i -word of λ. The reduced i -word is of the form (+)a(−)b for some
a,b ∈ Z≥0.

• Define f̃i as the operator that adds the addable i -box to λ corresponding to the
rightmost + in the reduced i -word of λ. If the reduced i -word of λ contains no +,
then we declare that f̃iλ= 0. Likewise, define ẽi as the operator that removes the
removable i -box from λ corresponding to the leftmost − in the reduced i -word of
λ. If the reduced i -word of λ contains no −, then we declare that ẽiλ= 0.

The directed graph with vertices all ℓ-partitions and arrows λ
i→µ if and only if µ= f̃iλ,

i ∈ Z/eZ, is called the ŝle-crystal. We have f̃iµ= λ if and only if ẽiλ= µ.

Definition 1.14. The i -box that is added by f̃i, if it exists, is called a good addable

i -box of λ. Similarly, the box that is removed by ẽi is called a good removable i -box of λ.

Remark 1.15. Given i ∈ Z/eZ, if λ has only one removable i -box b and no addable

i -box of charged content greater than or equal to cos(b), then ẽi(λ) = λ\{b}. We will use

this observation without further mention.

The ŝle-crystal is in general disconnected, and we will be interested in its connected

component containing the empty multipartition ∅. The vertices in this connected

component of the ŝle-crystal do not, in general, admit closed formulas (one must instead
search for a sequence of good nodes by repeated use of Definition 1.13). However, for our

choice of cylindric charge s∈Zℓ (as in Definition 1.1), we have the following combinatorial

description from [27].

Definition 1.16. An ℓ-partition λ with charge s ∈ Zℓ is named FLOTW, after Foda,

Leclerc, Okado, Thibon and Welsh, if the following conditions hold:

(1) The charge s is cylindrical,

(2) The multipartition λ is cylindrical, that is:

(a) λj
k ≥ λj+1

k+sj+1−sj
for all j ∈ {1, . . . ,ℓ−1} and for all k ≥ 1,

(b) λℓ
k ≥ λ1

k+e+s1−sℓ
for all k ≥ 1,

(3) For all α > 0, the residues modulo e of the rightmost boxes of the rows of size α do

not cover {0, . . . ,e−1}.

2. Unitary representations

2.1. The affine Hecke algebra

Let us recall that the (extended) affine braid group, Bea
n has generators T1, . . . ,Tn−1,

x1, . . . ,xn subject to the following relations:

(a) TiTi+1Ti = Ti+1TiTi+1 and TiTj = TjTi if |i− j|> 1.

(b) xixj = xjxi for every i,j = 1, . . . ,n.

(c) TixiTi = xi+1, Tixj = xjTi if j �= i,i+1.

https://doi.org/10.1017/S147474802200055X Published online by Cambridge University Press



Unitary representations of cyclotomic Hecke algebras 9

xi = Ti =

Figure 1. The braid generators xi and Ti. We remark that these are braids on a cylinder, so the left and

right sides of the rectangles are to be identified.

We may think of Bea
n as the braid group on the cylinder. The element Ti corresponds

to the usual braid generator that crosses two adjacent strands, and the element xi

corresponds to looping the ith strand around the cylinder so that it comes back to the

ith position; see Figure 1 below.

The affine Hecke algebra is the quotient of the group algebra of Bea
n by a skein-type

relation.

Definition 2.1. Let R be a domain and q ∈ R×, q �= ±1. The (extended) affine Hecke
algebra Haff

q (n,R) is the quotient of the group algebra RBea
n by the relations

(Ti+1)(Ti− q) = 0

for i = 1, . . . ,n− 1. When the domain R is clear from the outset, we will simply denote

the affine Hecke algebra by Haff
q (n).

Remark 2.2. It is customary to define the elements Xi := q1−ixi so that in Haff
q (n) we

have the relation TiXiTi = qXi+1.

Remark 2.3. The finite Hecke algebra Hq(n) can be realized as a subalgebra of Haff
q (n)

generated by T1, . . . ,Tn−1. It can also be realized as the quotient Haff
q (n)/(X1−1). This

is akin to the finite braid group Bn being both a subgroup and a quotient group of Bea
n .

Remark 2.4. We remark that we are working with the so-called Bernstein presentation
of the affine Hecke algebra; see, for example, [20, Chapter 7]. We will refer to X1, . . . ,Xn

as the Jucys–Murphy elements of Haff
q (n)1. Accordingly, we will call the algebra A :=

R[X±1
1 , . . . ,X±1

n ]⊆Haff
q (n) the Jucys–Murphy subalgebra. It is isomorphic to the algebra

of Laurent polynomials in n variables, and we have a vector space decompositionHaff
q (n)=

Hq(n)⊗RA.

When R is a domain of characteristic zero it is known (see, for example, [20, Proposition
7.1.14]) that the center of Haff

q (n) is Z(Haff
q (n)) =ASn , the algebra of symmetric Laurent

polynomials in the Jucys–Murphy elements. Thus, Haff
q (n) is finite over its center, and,

when R is a field F of characteristic zero, every irreducible representation of Haff
q (n)

is finite-dimensional. If moreover F is algebraically closed it follows, looking at the

1The reason for this terminology is that, under any cyclotomic specialization, the elements
X1, . . . ,Xn are mapped to the Jucys–Murphy elements of the corresponding cyclotomic Hecke
algebra; see [44]
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10 C. Bowman et al.

eigenvalues of X1, that every irreducible representation of Haff
q (n) factors through an

algebra of the form

Hq,Q1,...,Qℓ
(n) :=

Haff
q (n)(∏ℓ

i(X1−Qi)
)
.

This is known as the cyclotomic Hecke algebra, or the Ariki–Koike algebra. It is a finite-

dimensional F-algebra, of dimension precisely n!ℓn, [1].

2.2. Unitary representations

For this subsection, we let R = C, the complex field. We make the convention that a

Hermitian form on a finite-dimensional complex vector space is linear on the first variable
and conjugate-linear on the second. Recall that we have defined the affine Hecke algebra

Haff
q (n) as a quotient of the group algebra CBea

n , so the following notion makes sense.

Definition 2.5. We say that a finite-dimensional Haff
q (n)-representation is unitary if it

admits a positive-definite Bea
n -invariant Hermitian form.

Note that all affine Hecke algebras admit a one-dimensional unitary representation,

where all elements Ti act by −1. However, unless q is a root of unity this may be the only

unitary representation, as the following result shows.

Lemma 2.6. Assume that Haff
q (n) admits a unitary representation M, such that there

exist i= 1, . . . ,n−1 and m ∈M with Tim= qm. Then, q ∈ C× lies in the unit circle.

Proof. Let m ∈M and i be as in the statement of the lemma. Then,

0 �= q〈m,m〉= 〈Tim,m〉= 〈m,T−1
i m〉= q−1〈m,m〉

so that q = q−1. Thus, q is in the unit circle.

Remark 2.7. We remark that Lemma 2.6 follows from the following more general result.

Let G be any group, and let M be a finite-dimensional unitary representation of G. Then,
every eigenvalue of g on M lies in the unit circle, for any g ∈G. Note that this statement

is obvious when G is a finite group as in this case every eigenvalue of g is, in fact, a root

of unity. The proof in the general case is just as that of Lemma 2.6.

Since every cyclotomic Hecke algebra Hq,Q1,...,Qℓ
(n) is a quotient of the affine Hecke

algebra, it makes sense to speak about unitary representations of Hq,Q1,...,Qℓ
(n). Just as

in Lemma 2.6, we have that if Hq,Q1,...,Qℓ
(n) admits a unitary representation, then all

complex numbers q,Q1, . . . ,Qℓ ∈ C× must lie in the unit circle.

Let us remark that the cyclotomic Hecke algebra Hq,Q1,...,Qℓ
(n) is a quotient of the

group algebra of a different braid group: the braid group B(ℓ,1,n), which is defined as

follows. Let G(ℓ,1,n) := Sn⋉ (Z/ℓZ)n be the cyclotomic group. If we think of this group

as the group of n×n permutation matrices whose nonzero entries are ℓ-roots of unity, we
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get an action of G(ℓ,1,n) on h := Cn. Let hreg be the locus where this action is free. It

can be shown that this is the complement of a hyperplane arrangement in Cn. Then,

B(ℓ,1,n) := π1(h
reg/G(ℓ,1,n)).

For example, when ℓ = 1, the group B(1,1,n) is the usual Artin braid group on n

strands. It is clear from the definitions (see, e.g., [16]) that a Hq,Q1,...,Qℓ
(n)-representation

is unitary if and only if it admits a positive-definite B(ℓ,1,n)-invariant Hermitian form. On

the other hand, Rouquier has shown using the representation theory of rational Cherednik
algebras, [51, Proposition 4.5.4], that every irreducible Hq,Q1,...,Qℓ

(n)-representation

admits a (unique up to R×-scalars) nondegenerate B(ℓ,1,n)-invariant Hermitian form.

Thus, the question of unitarity is that of positive-definiteness of this form.

2.3. Unitary representations via ∗-operations
In [6], Barbasch and Ciubotaru define a class of representations that are closely related

to the unitary representations we study in this paper. The goal of this section is to
explore this relation. In order to do so, throughout this subsection R = C[q,q−1] and

Haff
q (n) :=Haff

q (n,R).

Definition 2.8. A ∗-operation on Haff
q (n) is a conjugate-linear, involutive antiautomor-

phism of Haff
q (n). Given a ∗-operation on Haff

q (n), a representation M of Haff
q (n) is called

∗-unitary if it admits a positive-definite Hermitian form which is Haff
q (n)-invariant in the

sense that

〈am,m′〉= 〈m,a∗m′〉

for every m,m′ ∈M , a ∈Haff
q (n).

In [6], the authors define ∗-operations on Haff
q (n) and study the notion of unitary

representations for these ∗-operations. These are the first two ∗-operations of the following
proposition.

Proposition 2.9. The following formulas define ∗-operations on Haff
q (n).

(1) T •
i = Ti, X

•
i =Xi, q

• = q.

(2) T ⋆
i = Ti, X⋆

i = Tw0
X−1

n−i+1T
−1
w0

,q⋆ = q, where Tw0
= T1T2 · · ·Tn−1T1T2 · · ·Tn−2 · · ·

T1T2T1.

(3) T †
i = T−1

i , X†
i =X−1

i , q† = q−1.

Proof. For • and ⋆, see [6, Definition 2.3.1]. For †, note that the relation (Ti+1)(Ti−q) =

0 is equivalent to (T−1
i +1)(T−1

i −q−1) = 0, so this is preserved under †. It is also clear

that † preserves the relations among the Xi, as well as the braid relations among the Ti.
Finally, we have

(TiXiTi)
† = T †

i X
†
i T

†
i = T−1

i X−1
i T−1

i = (TiXiTi)
−1 = q−1X−1

i+1 = (qXi+1)
†

which finishes the proof.
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Remark 2.10. In [6, Definition 2.4.1], the authors term an ∗-operation admissible if

q∗ = q and T ∗
i = Ti for i = 1, . . . ,n− 1. So the ∗-operations • and ⋆ of Proposition 2.9

are admissible, while † is not. It is conjectured, [6, Conjecture 2.4.2] that • and ⋆ are
essentially the only admissible ∗-operations on Haff

q (n).

It is clear that a representation M of Haff
q (n) is unitary in the sense of Definition 2.5

if and only if it is †-unitary in the sense of [6]. Representations that are ⋆-unitary and

•-unitary have been studied in loc. cit., where they are shown to be related to unitary

representations of general linear groups over p-adic fields. Note that both • and ⋆ commute

with the action of q, while † does not. Nevertheless, the ∗-operations • and † are closely
related, as witnessed by the following result.

Proposition 2.11. The map ι defined on generators by ι(Ti) = T−1
i ,ι(Xi) = X−1

i and
ι(q) = q−1 extends to a C-linear involutive algebra automorphism of Haff

q (n). Moreover,

ι◦†= •= †◦ ι.

Remark 2.12. From the formulas, it may seem that ι and † coincide. Note, however,
that ι is an automorphism while † is an anti -automorphism. Also, ι is C-linear while † is

conjugate-linear.

Proof. That ι defines a C-linear involutive algebra automorphism is easy to check from

the relations on Haff
q (n). Since ι is C-linear while † is conjugate linear, both compositions

ι ◦ † and † ◦ ι are conjugate linear. Also, since ι is an automorphism while † is an

antiautomorphism, both ι ◦ † and † ◦ ι are antiautomorphisms. Thus, it suffices to check
the equality ι◦†= •= †◦ ι on generators Ti,Xi and q.

ι(T †
i ) = ι(T−1

i ) = Ti = T •
i ,ι(X

†
i ) = ι(X−1

i ) =Xi =X•
i ,ι(q

†) = ι(q−1) = q= q•

ι(Ti)
† = (T−1

i )† = Ti = T •
i ,ι(Xi)

† = (X−1
i )† =Xi =X•

i ,ι(q)
† = (q−1)† = q= q•,

and the result follows.

We remark, however, that we do not obtain an equivalence between categories of

†-unitary and •-unitary representations. To do this, we must find an automorphism ϕ

of Haff
q (n) satisfying ϕ ◦ † ◦ϕ−1 = •. It is unlikely that such an automorphism exists,

at least in the algebraic setting. Roughly speaking, if an irreducible representation is

†-unitary, then we must have that q acts by a complex number of norm 1 while, if a

representation is •-unitary then q must act by a real number. It is possible that one may
obtain equivalences between †-unitary and •-unitary representations by working with

representations of the formal affine Hecke algebra [35] so that we can take exponential

and logarithms of the variable � (that should be thought of as log(q)), but we do not do
it here.

2.4. Unitary representations are calibrated

We go back to the setting of R= C. Moreover, throughout this section, we let q ∈ C× be

in the unit circle. Let us recall the following important notion from the representation

theory of affine Hecke algebras [46].
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Unitary representations of cyclotomic Hecke algebras 13

Definition 2.13. A Haff
q (n)-representation M is called calibrated if the Jucys–Murphy

subalgebra A acts semisimply on M.

Lemma 2.14. Let M be a unitary and finite-dimensional Haff
q (n)-module. Then M is

semisimple and calibrated.

Proof. Let N ⊆M be an Haff
q -submodule of M. It is immediate to see that the Hermitian

orthogonal N⊥ is a complement to N in M. Thus, every submodule of M splits. The

proof of semisimplicity for the A-action is the same, after observing that † preserves the

Jucys–Murphy subalgebra.

For a Haff
q (n)-module and a vector a= (a1, . . . ,an)∈ (C×)n, we define the a-weight space

to be

Ma := {m ∈M |Xim= aim for every i= 1, . . . ,n}.

Thus, every unitary Haff
q (n)-module is the direct sum of its weight spaces.

Lemma 2.15. Let M be unitary, with invariant Hermitian form 〈·,·〉. Then,

(1) Ma = 0 unless |a1|= · · ·= |an|= 1.

(2) Ma is orthogonal to Mb whenever b �= a.

Proof. Statement (1) is clear; see, for example, Remark 2.7. To prove (2), assume that

both Ma and Mb are both nonzero; let m1 ∈Ma, m2 ∈Mb and i such that ai �= bi. Then,

ai〈m1,m2〉= 〈Xim1,m2〉= 〈m1,X
−1
i m2〉= b−1

i 〈m1,m2〉.

Since ai �= bi and, by (1), |ai|= |bi|= 1, we obtain ai �= b−1
i . Thus, we have 〈m1,m2〉= 0,

as required.

2.5. When are calibrated representations unitary?

The purpose of this section is to obtain necessary and sufficient conditions for a calibrated

representation to be unitary. We have seen one condition a calibrated representation must

satisfy in order to be unitary: All the weights appearing in it must have values in the unit
circle. This necessary condition is, however, not sufficient. To obtain a complete answer,

we must first recall the classification of irreducible calibrated representations in terms of

the weights that appear in them. This is from [46], and we follow loc. cit closely.

Definition 2.16 [46]. We say that a weight a = (a1, . . . ,an) ∈ (C×)n is calibrated if the

following condition holds:

For every i < j such that ai = aj,qai,q
−1ai ∈ {ai+1, . . . ,aj−1}.

Since we are assuming that q �= ±1 note, in particular, that if a is a calibrated weight,

then ai �= ai+1, ai �= ai+2 for every i. We denote by Caff ⊆ (C×)n the set of all calibrated

weights.
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14 C. Bowman et al.

For a calibrated weight a ∈ Caff , we say that si = (i,i+ 1) ∈ Sn is an admissible
transposition if ai+1 �= q±1ai. Note that, if si is an admissible transposition, then sia∈Caff .

Definition 2.17. Define the equivalence relation ∼ on Caff by saying that a∼ b if a can

be reached from b by applying a sequence of admissible transpositions.

The following result is due to Ram, [46]. It can be thought of as asserting the existence

of a Young seminormal form for calibrated representations.

Theorem 2.18. Let [a]∈Caff/∼ be an equivalence class. Then, there exists an irreducible

calibrated module M[a] whose weights are precisely [a]. More precisely, M has a basis wb,
b ∈ [a], and the action of Haff

q (n) is given as follows:

Xiwb = biwb, Tiwb =
bi+1(q−1)

bi+1− bi
wb

+(1− δqbi,bi+1
)(1− δq−1bi,bi+1

)

[
−q+

bi+1(q−1)

bi+1− bi

]
wsib,

where we define wsib = 0 if si is not an admissible transposition for b. Moreover, every

irreducible calibrated module is of the form M[a] for a unique equivalence class [a] ∈
Caff/∼.

We will characterize the calibrated weights a for which M[a] is indeed unitary.

Since every unitary representation is semisimple, this would give us all the unitary
representations of Haff

q (n). First, we have seen in Lemma 2.15 that a necessary condition

is that a ∈ (S1)n, where S1 ⊆ C is the unit circle. Note that Theorem 2.18 tells us that

every weight space in M[a] is one-dimensional and, as we have seen in Lemma 2.15,

different weight spaces must be orthogonal under an invariant, positive-definite Hermitian
form.

So let 〈·,·〉 be an invariant, nondegenerate Hermitian form on M[a], and assume that

a∈ (S1)n. By [51, Proposition 4.5.4], such a form exists. By our discussion in the previous
paragraph, there exist numbers Ab ∈ R, b ∈ [a] such that

〈wb,wb′〉=Abδb,b′, (2.19)

and our job is to find conditions on [a] guaranteeing that all numbers Ab can be chosen

to have the same sign. We separate in several cases, and we make heavy use of the Young
seminormal form of Theorem 2.18.

Case 1. b′ �= b,sib. In this case, we have 〈Tiwb,wb′〉= 〈wb,T
−1
i wb′〉= 0.

Case 2. b′ = b. In which case,

〈Tiwb,wb〉=Ab

bi+1(q−1)
bi+1−bi

.

On the other hand, since T−1
i = q−1(Ti+1− q) then, using the fact that q = q−1, bi+1 =

b−1
i+1 and bi = b−1

i , we have that
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〈wb,T
−1
i wbb〉= q〈wb,(Ti+1− q)wb〉

= qAb

[
bi+1(q−1)
bi+1−bi

+(1− q)
]

= qAb

[
bi(q−1)
bi+1−bi

]

=Ab

bi+1(1−q)
bi−bi+1

= 〈Tiwb,wb〉.

Case 3. b′ = sib. Since in this case sib is defined, we have that bi+1 �= q±1bi, so

〈Tiwb,wsib〉=Asib

(
−q+ bi+1(q−1)

bi+1−bi

)
=Asib

(
qbi−bi+1

bi+1−bi

)
.

On the other hand,

〈wb,T
−1
i wsib〉= q〈wb,Tiwsib〉

= qAb

[
−q+

(
bi(q−1)
bi−bi+1

)]

= qAb

[
qbi+1−bi
bi−bi+1

]

=Ab

[
bi+1−qbi
bi−bi+1

]

=Ab

(
bi−qbi+1

bi+1−bi

)
.

And we see that, if the form 〈·,·〉 is to be Haff
q (n)-invariant, we must have

Asib

Ab

=
bi− qbi+1

qbi− qbi+1
=

q− (bi/bi+1)

1− q(bi/bi+1)
, (2.20)

and, if the form 〈·,·〉 is to be positive-definite, we must have Asib/Ab > 0 (note that

manifestly Asib/Ab ∈ R, as needed). Set x= bi/bi+1. Now,

q−x

1− qx
=

(q−x)(1− qx)

|1− qx|2 = 2
ℜ(q)−ℜ(x)
|1− qx|2 ,

so Asib/Ab > 0 if and only if ℜ(bi/bi+1)<ℜ(q), where ℜ(z) denotes the real part of z ∈C.
So, assume that every b ∈ [a] satisfies that ℜ(bi+1/bi) < ℜ(q) for every pair bi,bi+1

with bi/bi+1 �= 1,q±1. Start with any b ∈ [a]. Any other b′ ∈ [a] is reachable from b by a

sequence of admissible transpositions. We declare 〈wb,wb〉=1. By [51, Proposition 4.5.4],

there is an invariant Hermitian form on M[a] satisfying this, and we can see that we have:

〈wsit...si1b
,wsit...si1b

〉= q(sit−1
. . . si1b)it+1− (sit−1

. . . si1b)it
(sit−1

. . . si1b)it+1− q(sit−1
. . . si1b)it

〈wsit−1
...si1b

,wsit−1
...si1b

〉.

We have arrived at the following result.

Theorem 2.21. An irreducible Haff
q (n)-module M is unitary if and only if there exists a

calibrated weight a= (a1, . . . ,an) ∈ Caff satisfying the following conditions.
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(1) a ∈ (S1)n, i.e., |ai|= 1 for every i= 1, . . . ,n.

(2) For every b ∈ [a] and every i,i+1, ℜ(bi/bi+1)≤ℜ(q).
(3) M =M[a].

The following easy lemma will be useful in the future.

Lemma 2.22. Let a= (a1, . . . ,an)∈ Caff be a calibrated weight such that |ai|=1 for every

i and ℜ(ai/aj)≤ℜ(q) whenever ai �= aj. Then M[a] is unitary.

Proof. We need to check that the class [a] satisfies (2) of Theorem 2.21. Since every

weight in [a] can be obtained by applying transpositions to a, this is immediate.

We now focus on representations that factor through a fixed cyclotomic quotient of

Haff
q (n).

2.6. Unitary modules for the cyclotomic Hecke algebra

Now, we seek to classify unitary representations of the cyclotomic Hecke algebra:

Hq,Q1,...,Qℓ
(n) =

Haff
q (n)

(
∏ℓ

i=1X1−Qi)
.

We may and will assume that all complex numbers q,Q1, . . . ,Qℓ live in the unit circle.
Similarly to the case of the finite Hecke algebra Hq(n), we can see that if M is a calibrated

representation of Hq,Q1,...,Qℓ
(n) and a is a weight of M, then, for every i= 1, . . . ,n there

exist j ∈ 1, . . . ,ℓ and mi ∈Z such that ai =Qjq
mi . This implies the following result, which

is Theorem A from the introduction.

Lemma 2.23. Assume that q = exp(2π
√
−1/e) for some e ≥ 2 and that there exist

s1, . . . ,sℓ ∈Z such that Qi = qsi for every i=1, . . . ,ℓ. Then, a Hq,Q1,...,Qℓ
(n)-representation

is unitary if and only if it is calibrated.

Proof. Under the assumptions of the lemma, if a is a weight of a calibrated representation,

then every coordinate of a is a power of q. Since ℜ(qi) ≤ ℜ(q) unless qi = 1, the result

follows from Lemma 2.22.

The parameters q,Q1, . . . ,Qℓ of the form appearing in Lemma 2.23 are the most

interesting ones from a representation-theoretic point of view. They are those for which

the representation theory of the algebra Hq,Q1,...,Qℓ
(n) cannot be broken up into smaller

pieces. More precisely, let us define an equivalence relation on the set of parameters
Q1, . . . ,Qℓ by declaring Qi ∼ Qj if Qi/Qj is an integral power of q. Let E1, . . . ,Ek be the

different equivalence classes. Thanks to work of Dipper and Mathas (see, e.g., [2, Theorem

13.30]), we have a category equivalence

Hq,Q1,...,Qℓ
(n) -mod∼=

⊕

n1+···+nk=n

k⊗

i=1

Hq,Ei
(ni) -mod, (2.24)
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Unitary representations of cyclotomic Hecke algebras 17

where Hq,Ei
=Hq,Qa1

,...,Qaj
if Ei = {Qa1

, . . . ,Qaj
}. Since we are interested in irreducible,

unitary representations, it is enough to restrict to a single direct summand on the right-

hand side of equation (2.24).
It follows from the crystal-theoretic characterization of calibrated representations (see

Theorem 4.4 below) that a representation
⊗k

i=1Mi of
⊗k

i=1Hq,Ei
(ni) is calibrated if

and only if each tensor factor Mi is a calibrated representation of Hq,Ei
(ni). Similarly,

if
⊗k

i=1Mi is unitary, then Mi is a unitary representation of Hq,Ei
(ni) for every i.

The converse, however, is not true. For example, in the most generic case when each

equivalence class Ei consists of a single element, a representation

k⊗

i=1

D(λi) ∈
k⊗

i=1

Hq,Qi
(ni) -mod

is unitary if and only if D(λi) is a unitary representation of Hq,Qi
(ni)∼=Hq(ni) and, for

i �= j, ℜ(QiQ
−1
j qa−b)≤ℜ(q), where a ranges over the contents of all boxes in the partition

λi, and b ranges over the contents of all boxes in the partition λj .

Remark 2.25. More generally, in the notation of [45], the partition of {Q1, . . . ,Qℓ} into

different equivalence classes induces a partition on a weight of a calibrated representation

into pages. Different pages do not interact, so a representation
⊗

Mi of Hq,Q1,...,Qℓ
(n)

is unitary if and only if each Mi is a unitary for every i and ℜ(ai/aj)≤ ℜ(q), whenever
ai,aj are components of the weight a corresponding to different pages.

Since checking the condition on Remark 2.25 quickly becomes unwieldy when there

are many pages, we will restrict our attention to cyclotomic Hecke algebras of the form

stated in Lemma 2.23. We remark, however, that, thanks to the decomposition (2.24),
many of the results we prove for unitary representations, including the construction

of BGG resolutions, can be extended to the general setting. For a fixed parameter

q,Q1, . . . ,Qℓ of the cyclotomic Hecke algebra, we will find all the ℓ-partitions labelling

unitary representations. We define this set in Section 3 and prove that it indeed labels
the unitary representations in Section 4.

3. The set of multipartitions Calis(ℓ)

3.1. The right border multiset of an ℓ-partition with respect to an ℓ-charge

We define the right border multiset Bs(λ) of λ with respect to the charge s to be the

collection of integers cos(b) for each b the last box of a row of λ, with multiplicities. As

in writing partitions, we will record right border multisets using exponential notation,
that is, if λ has m rows whose last boxes b satisfy cos(b) = a, then we will write Bs(λ) =

{. . . ,am, . . .}.

Example 3.1. Let ℓ= 3, λ= ((22),(2),(3,2)), and s= (0,1,4). Then Bs(λ) = {6,4,2,1,0}
(see Figure 2 for a visualisation). In this example, Bs(λ) is multiplicity-free.

If ℓ=1 so that λ is a single partition λ and s∈Z, then Bs(λ) is always multiplicity-free.

However, for ℓ-partitions with ℓ > 1 this need not be the case as the next example shows.
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Figure 2. The 3-partitions from Examples 3.1 and 3.2 together with their contents. We have highlighted

the boxes at the end of each row in the Young diagram of λ.

Example 3.2. Let ℓ = 3, λ = ((22),(22,1),(3,2,1)), and s = (0,1,4). Then Bs(λ) =
{6,4,22,12,0,-1}.

We define the reading word of Bs(λ) to be the sequence of integers given by listing the

elements of Bs1(λ1) in increasing order, then the elements of Bs2(λ2) in increasing order
and so on. Thus, the reading word is a preferred order of listing the elements of Bs(λ).

Let w= (a1,a2, . . . ,ah) be the reading word of Bs(λ) (here, h is the number of rows of λ).

We say that w is increasing if a1 < a2 < .. . < ah. In Example 3.1, the reading word is
(0,1,2,4,6) and is increasing. In Example 3.2, the reading word is (0,1,−1,1,2,2,4,6) and

is not increasing.

3.2. The set Calis(ℓ)

We now define a set of multipartitions that, as we will see below in Theorem 4.5, provides

a combinatorial description of the calibrated irreducible representations of an appropriate

cyclotomic Hecke algebra.

Definition 3.3. Fix e ≥ 2. Let s ∈ Zℓ be a cylindrical charge. Define Calis(ℓ) to be the

set of all ℓ-partitions λ satisfying the following conditions:

(1) (a) Bs(λ)⊂ [z,z+e−1] for some z ∈ Z (in which case we say that it has period at

most e);

(b) The reading word of Bs(λ) is increasing;

(2) λ is cylindrical in the sense of Definition 1.16 (2).

It is immediate that λ ∈ Calis(ℓ) implies that λ is FLOTW; see Definition 1.16.

In the case that λ satisfies Definition 3.3(1), it is easy to check whether λ is cylindrical.
Given λ = (λ1,λ2, . . . ,λℓ), if λj �= ∅, then define bjmin to be the box of smallest content

in λj . That is, bjmin is the leftmost box of the bottom row of λj . For each j = 1, . . . ,ℓ

such that λj �= ∅, let hj be the number of nonzero rows of λj . For λj �= ∅, we have
cos(bjmin) =−hj +1+sj .

Lemma 3.4. Suppose s ∈ Zℓ is cylindrical and λ satisfies Definition 3.3(1). Then λ is

cylindrical, and thus λ ∈ Calis(ℓ), if and only if the following two conditions hold:

(1) For each j = 2, . . . ,ℓ, if λj �= ∅, then we have sj−1 < cos(bjmin).

(2) Let j ∈ {1,2, . . . ,ℓ} be minimal such that λj �= ∅. Then sℓ < cos(bjmin)+ e.

Proof. First, we show that any λ satisfying (1) and (2) is cylindrical. We have that (1)

holds if and only if −sj >−cos(bj+1
min) = hj+1−1−sj+1, if and only if sj+1−sj >hj+1−1.
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Thus, (1) holds if and only if for all k ≥ 1 we have λj+1
k+sj+1−sj

= 0, which is 1.16(2)(a). If

λ1 = ∅, then it automatically holds that λℓ
k ≥ λ1

k+e+s1−sℓ
for all k ≥ 1, that is, 1.16(2)(b)

holds. So assume λ1 �= ∅. Then (2) holds if and only if sℓ <−h1+1+s1+e if and only if

h1 < e+s1−sℓ, implying that λ1
k+e+s1−sℓ

= 0 for all k ≥ 1. Thus, 1.16(2)(b) holds.
For the converse, suppose that λ is cylindrical. Suppose j ∈ {1, . . . ,ℓ− 1} such that

λj+1 �= ∅. To verify condition (1), we need to show that hj+1 ≤ sj+1− sj . Suppose not,

then there exists k ≥ 1 such that hj+1 = sj+1−sj +k. Definition 1.16(2)(a) tells us that

λj+1
hj+1

= λsj+1−sj+k ≤ λj
k ≤ λj

1.

Since Bs(λ) is increasing, the charged content of the rightmost box of the bottom row of
λj+1 is greater than the charged content of the rightmost box of the top row of λj . This

yields the inequality:

λj
1+sj −1< λj+1

hj+1
+sj+1−hj+1 = λj+1

hj+1
+sj+1− (sj+1−sj +k)≤ λj+1

hj+1
+sj −1

giving λj
1 < λj+1

hj+1
, a contradiction.

Next, we verify condition (2) by a similar argument. If λ1 = ∅, then using that s is
cylindrical together with condition (1) that was just proved, we have sℓ < s1+e≤ sj−1+

e < cos(bjmin)+e, where j ≥ 2 is minimal such that λj �= ∅. So we can assume j = 1, that

is, λ1 �= ∅. We want to show that sℓ < cos(b1min). We have cos(b1min) =−h1+1+s1+e, so
we need to show that h1 ≤ s1−sℓ+e. Suppose not, then we can write h1 = s1−sℓ+e+k

for some k≥ 1. By the assumption that λ is FLOTW, we have λℓ
1 ≥ λ1

1+e+s1−sℓ
≥ λ1

h1
> 0.

Thus, λℓ �= ∅. On the other hand, by the assumption that λ satisfies Definition 3.3(1), it
holds that the largest element of Bs(λ) is less than the smallest element of Bs(λ) plus e.

Thus, λℓ
1+sℓ−1<λ1

h1
−h1+s1+e. But λ1

h1
−h1+s1+e= λ1

h1
−(s1−sℓ+e+k)+s1+e=

λ1
h1

+sℓ−k≤ λ1
h1

+sℓ−1. So we get λℓ
1 <λ1

h1
, a contradiction with λℓ

1 ≥ λ1
h1

that followed

above from λ being FLOTW. This concludes the proof.

Corollary 3.5. If λ ∈ Calis(ℓ), then h(λ) is s-admissible.

Proof. Conditions (1) and (2) of 3.4 together with the condition that Bs(λ)⊂ [z,z+e−1]

implies that h(λ) is s-admissible.

Example 3.6. Let ℓ = 3 and λ = ((22),(2),(3,2)) and s = (0,1,4) as in Example 3.1.

Suppose e≥ 7. Then s= (0,1,4) is FLOTW. We have Bs(λ) = {0,1,2,4,6} ⊂ [0,e−1], and
the reading word is (0,1,2,4,6), which is increasing. Thus, Definition 3.3(1) is satisfied.

To check that λ is cylindrical we apply Lemma 3.4. We have s1 = 0 < 1 = cos(b2min)

and s2 = 1 < 3 = cos(b3min), verifying Condition (1) of Lemma 3.4. Also, s3 = 4 < 6 ≤
−1+e= cos(b1min)+e, verifying Condition (2) of Lemma 3.4. Therefore, λ is cylindrical,

and λ ∈ Calis(3).

3.3. Multiplicity-free right border sets and semi-infinite Young diagrams

Let I ⊂ Z be a finite subset of the integers. Write I = {ih < ih−1 < .. . < i2 < i1}. We

define the semi-infinite Young diagram with right border set I to be the set of boxes

b= (x,y), 1≤ x≤ h and y ≤ ix+x, and we denote it by Ỹ (I). We will think of x as the
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Figure 3. The diagram Ỹ (I) as in Example 3.7 and its truncation at the column whose topmost box has

content 0 to obtain the Young diagram of λ= (7,6,53).

Figure 4. Illustration of the first step of producing a calibrated multipartition from a semi-infinite Young

diagram.

row and y as the column and will draw the rows as descending as in our convention for

ordinary Young diagrams. The content of a box b= (x,y) ∈ Ỹ (I) is coI(b) := y−x.

Example 3.7. Suppose I = {0,1,2,4,6}. This determines Ỹ (I) as in the leftmost diagram
in Figure 3. Truncating at the column whose topmost box has content 0, we obtain the

Young diagram of λ = (7,6,53) with charge 0 as depicted in the rightmost diagram in

Figure 3.

Fix I = {i1, . . . ,ih} ⊂ Z and some e ∈N such that e > i1− ih and e > h. In Example 3.7,
we may take any e ≥ 7. For any ℓ ≥ 1, we will construct a particular set of charged ℓ-

partitions λ with cylindrical charge s and such that Bs(λ) = I. First, we choose s1 ∈ Z

such that s1 ≤ ih. Then, we choose a box b1 = (x1,y1)∈ Ỹ (I) such that coI(b) = s1. Thus,
b1 lies on or to the left of the northwest-southeast diagonal ending at the bottom-right

box of the diagram Ỹ (I). The box b1 will be the top left corner of λ1. We then take λ1

to be the partition consisting of all boxes in Ỹ (I) below and to the right of b1. That is:

λ1 = {b= (x,y) ∈ Ỹ (I) | x≥ x1, y ≥ y1}.

We then mark the boxes in Ỹ (I) of content α, where α = cos1(b1min). Here, b1min is the

bottom-leftmost box of λ1, its box of smallest content. A choice of s1 and b1 is illustrated

schematically in Figure 4 below, with ih and α also indicated.
If b1 is in the top row of Ỹ (I), then we stop here: We have constructed a charged

1-partition with right border I as above. Otherwise, we go to the next step. We choose

some s2 such that s1 < s2 < α+ e. Observe that since Ỹ (I) has less than e rows, this
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Figure 5. Constructing a charged 4-partition in Calis(4) with a given border set {i1,i2,i3, . . . ,ih}.

is always possible. On the diagonal of boxes with content s2, we pick a box b2 = (x2,y2)

such that co(b2) = s2, x2 < x1, and y2 ≥ y1. If s2 = α+e−1, then we require that x2 = 1,
that is, that b2 is in the top row. We then take the partition λ2 to consist of those boxes

of Ỹ (I) lying below and right of b2 and strictly above λ1:

λ2 = {b= (x,y) ∈ Ỹ (I) | x2 ≤ x < x1, y ≥ y2}.

If x2 �= 1, that is, if b2 is not in the top row of the diagram, then we continue the

process with step 3 choosing s3 and λ3. . .At step i of this process, which occurs if bi−1

is not in the top row of Ỹ (I), we choose si such that si−1 < si < α+ e, and we choose

bi = (xi,yi) ∈ Ỹ (I) satisfying co(bi) = si, xi < xi−1, and yi ≥ yi−1. We require that xi = 1
if si = α+ e−1. We then define λi as

λi = {b= (x,y) ∈ Ỹ (I) | xi ≤ x < xi−1, y ≥ yi}.

The process terminates after ℓ ≤ h steps since Ỹ (I) has h rows, and each step chooses

a box bi in a row above the row containing bi−1. We take λ = (λ1,λ2, . . . ,λℓ) and s =
(s1,s2, . . . ,sℓ). Then s satisfies s1 < s2 < .. . < sℓ < α+ e≤ s1+ e so is cylindric, and each

λj is nonempty, 1≤ j ≤ ℓ.

The result of constructing (λ1,λ2,λ3, . . . ,λℓ),(s1,s2,s3, . . . ,sℓ) for ℓ = 4 from the semi-
infinite Young diagram of some I = {i1, . . . ,ih} ⊂ Z is depicted schematically in Figure 5

below. The partitions must be stacked in such a way that they make a staircase shape.

For λ ∈ Calis(ℓ), removing all empty components λj = ∅ yields a charged m-partition

obtained from Ỹ (I) by the procedure of Section 3.3 with I = Bs(λ) and where
m = ℓ−#{λj = ∅}. Conversely, for a given I ⊂ Z such that I ⊂ [z,z+ e− 1] for some z

and |I|< e, we can start from some λ ∈ Calis(ℓ) produced from Ỹ (I), then insert empty

components to obtain some µ ∈ Calis
′

(ℓ′), ℓ′ > ℓ, with cylindrical charge s′ ∈ Zℓ′ such

that {s1, . . . ,sℓ} ⊂ {s1′, . . . ,sℓ′′}. The components of the charge for the empty components
must be chosen so that the ℓ′-partition remains cylindrical, that is, by respecting the

conditions in Lemma 3.4.

Example 3.8. Let ℓ= 3, s= (0,1,4) and λ= ((22),(2),(3,2)) as in Example 3.1. Suppose

e≥ 7. Then λ ∈ Calis(3), as was shown in Example 3.6. We can construct λ with charge
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-1 0 1 2 3 4 5 6

-1 0 1 2 3 4

-1 0 1 2

-1 0 1

-1 0

Figure 6. Realizing λ= ((22),(2),(3,2)) ∈ Cali(0,1,4)(3) inside the semi-infinite Young diagram associated

to its border set {0,1,2,4,6}.

4 5 6

3 4

1 2

0 1

-1 0

4 5 6

3 4

1 2

0 1

-1 0

Figure 7. The diagram for λ= ((22),(2),(3,2)) for s= (0,1,4) and the skew-shape obtained by ‘forgetting

components’.

s from Ỹ ({0,1,2,4,6}) as depicted in Figure 6. Then by inserting empty components
following the conditions of Lemma 3.4 on their charges, we can, for example, obtain a

6-partition µ∈ Calis
′

(6) having three nonempty components by taking s′ = (−2,0,1,2,2,4)

and µ= (∅,(22),(2),∅,∅,(3,2)).
More generally, suppose that, upon removing all empty components from a

charged ℓ-partition λ with some ℓ-charge s for some ℓ ≥ 3, we get the 3-partition

((22),(2),(3,2)) with charge (0,1,4) as pictured above. Then λ ∈ Calis(ℓ) if and only if

λ = (∅a−2,(22),∅a0,(2),∅a1+a2,(3,2),∅a4,∅a5) and s = (−2a−2,01+a0,11+a1,2a2,41+a4,5a5)
for some a−2,a0,a1,a2,a4,a5 ∈ Z≥0, where a5 and a−2 cannot both be nonzero. Here,

we have used exponential notation. For example, taking a0 = a1 = a2 = 1, a5 = 2, and

a4 = a−2 = 0 we get that λ= ((22),∅,(2),∅,∅,(3,2),∅,∅) ∈ Calis(8) for s= (0,0,1,1,2,4,5,5).

3.4. Skew shapes

From now on, when we talk about the Young diagram of λ ∈ Calis(ℓ), we will mean the

embedding of the Young diagram of λ in Ỹ (Bs(λ)) given by stacking the λj ’s so that their

right borders make up the right border of Ỹ (Bs(λ)). We now jettison the semi-infinite
blank region to the left of the λj ’s to obtain a diagram as in the leftmost depicted in

Figure 7.

Convention 3.9. We will write Ys(λ) for the Young diagram of λ ∈ Calis(ℓ) stacked as

in the leftmost diagram in Figure 7.

Suppose λ ∈ Calis(ℓ). If we ‘forget components’ in its Young diagram Ys(λ), we get a

skew partition. In the picture of the Young diagram of the charged 3-partition above,

simply forget the different colors. In Example 3.8, the skew partition associated to Ys(λ)
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Figure 8. The eight possible ways of breaking a fixed skew shape into charged multipartitions with

cylindric charge. The first two are λ = ((23),(3,2)) for s = (1,4) and λ = ((22),(2),(3,2)) for s = (0,1,4).

The rest are left for the reader. Notice that the multipartitions all have 2≤ ℓ≤ 5 components.

has a Young diagram given by the region shown in the rightmost diagram in Figure 7

(remembering the contents of the boxes).

Suppose that every component λj of λ is nonempty. Then we may interpret Defini-

tion 3.3 as saying that when we express Ys(λ) as μ \ ν for some partitions μ and ν,
then μ and ν both belong to Cali(1). By [50], μ ∈ Cali(1) if and only if the irreducible

representation Sμ of the finite Hecke algebra Hq(Sn) for q = exp(2πi/e) is calibrated. By

[45], the calibrated representations of the affine Hecke algebra H̃q(Sn) for generic values
of q are labelled by skew Young diagrams μ \ ν. The condition for an ℓ-partition to be

in λ ∈ Calis(ℓ) thus arises as the intersection of two combinatorial conditions: on the one

hand, the skew shape condition identifying calibrated representations of the affine type A
Hecke algebra for q not a root of unity; and on the other hand, the condition identifying

calibrated representations of the finite type A Hecke algebra for q=exp(2πi/e), applied to

the left and right borders of the skew shape. Now, if we further allow λ to contain empty

components λj = ∅, then we just need to fine tune this description by the conditions on
the charges of these empty components given by Definition 1.16 and Lemma 3.4. These

extra conditions on where the empty components may occur and with what charge make

sure that the resulting charge s and ℓ-partition λ remain cylindrical.

Remark 3.10. We remark that a single skew diagram can often be broken into many

different charged multipartitions in an intuitive fashion. This is illustrated in Figure 8.

To finish this section, we relate our constructions to the crystal operators ẽi
of Section 1.2.

Lemma 3.11. Fix e ≥ 2 and a cylindrical charge s ∈ Zℓ. The ŝle-crystal operators ẽi,

i ∈ Z/eZ, preserve the set of ℓ-partitions satisfying Definition 3.3(1).

Proof. Let λ be an ℓ-partition and s ∈ Zℓ such that λ satisfies Definition 3.3(1). Then

Bs(λ) contains at most one element of residue i for each i ∈ Z/eZ. The set {cos(b) |
b is a removable box of λ} is a subset of Bs(λ). Thus λ has at most one removable
i -box for each i ∈ Z/eZ. Suppose i ∈ Z/eZ such that ẽi(λ) �= 0. Then λ has exactly one

removable i -box, call it b. We have cos(b) ∈ Bs(λ).

We claim that cos(b)−1 /∈ Bs(λ). Observe that Bs(λ) =
ℓ⋃

j=1

Bsj (λj). Let us check that

cos(b)− 1 /∈ Bsj (λj) for each j = 1, . . . ,ℓ. Let j(b) ∈ {1, . . . ,ℓ} be the integer such that

b ∈ λj(b), that is, j(b) is the component of λ containing the box b. Since b is a removable

box of λj(b), cos(b)−1 /∈ Bsj(b)(λj). If j(b)< j < ℓ, then x ∈ Bsj (λj) implies x > cos(b) by
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Definition 3.3(1)(b), so cos(b)−1 /∈ Bsj (λj) for all j > j(b). Suppose there exists j < j(b)

such that cos(b)−1 ∈ Bsj (λj). Then cos(b)−1 must be the maximal element of Bsj (λj)

and cos(b) the minimal element of Bsj(b)(λj(b)) (and for any j < k < j(b) we must have
λk = ∅) in order that Definition 3.3(1)(b) be satisfied. Thus, cos(b)− 1 is the charged

content of the last box in the top row of λj . The top row of any partition always has an

addable box. Therefore, λj has an addable box of charged content cos(b)∼= imod e. Since

b is the only removable i -box in λ and j(b) > j, the i -word of λ contains the subword
−+. It follows that b is not good removable, contradicting the assumption that ẽi(λ) �= 0.

Since cos(b)− 1 /∈ Bs(λ), it follows that the reading word of Bs(ẽi(λ)) = (Bs(λ) \
{cos(b)})∪{cos(b)−1} is increasing. This verifies Definition 3.3(1)(b) for ẽi(λ). Definition
3.3(1)(a) holds automatically for ẽi(λ) unless co

s(b)+e−1∈Bs(λ). But if cos(b)+e−1∈
Bs(λ), then it follows from Definition 3.3(1)(a),(b) that cos(b) + e− 1 is the charged

content of the last box in the top row of λj for j ≥ j(b) such that λk = ∅ for all j < k ≤ ℓ.
Then λj has an addable box of content cos(b)+ e ∼= imod e, and so (as in the previous

paragraph) b is not a good removable i -box, contradicting the assumption that ẽi(λ) �= 0.

We conclude that Definition 3.3(1) holds for ẽi(λ).

4. Calibrated representations of cyclotomic Hecke algebras at roots of unity

4.1. Irreducible representations of cyclotomic Hecke algebras at roots of unity

Recall that the cyclotomic Hecke algebra (or Ariki–Koike algebra) is the following quotient
of the affine Hecke algebra:

Hq,Q1,...,Qℓ
(n) =

Haff
q (n)

(
∏ℓ

i=1X1−Qi)
.

Fix e ≥ 2, ℓ ≥ 1, and s ∈ Zℓ. Set q = exp(2πi/e) and Qi = qsi . For such a choice of

parameters (sometimes called ‘integral parameters’ in the literature), we will denote
Hq,Q1,...,Qℓ

(n) by He,s(n).

Theorem 4.1. Fix e ≥ 2 and s ∈ Zℓ. The irreducible representations of He,s(n) are

labelled by the ℓ-partitions of the form λ= f̃in f̃in−1
. . . f̃i2 f̃i1∅ for some i1, . . . in ∈ Z/eZ.

In the case that s is a cylindrical charge (see Definition 1.1), Foda, Leclerc, Okado, Thibon

and Welsh gave a closed-form description of these ℓ-partitions. Recall the definition of

the set of FLOTW ℓ-partitions (Definition 1.16).

Theorem 4.2 [27]. Let e≥ 2, and let s ∈ Zℓ be a cylindrical charge. Then the irreducible

representations of He,s(n) are labelled by the FLOTW ℓ-partitions of size n.

The goal of this section is to give the analogous closed-form description of the
ℓ-partitions labelling the irreducible calibrated representations of He,s(n) by the set of

ℓ-partitions Calis(ℓ) (see Definition 3.3). First, we will need the following lemma, which

uses Theorem 4.2.

Lemma 4.3. The ŝle-crystal operators ẽi that remove boxes, i ∈ Z/eZ, preserve the set

Calis(ℓ).
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Proof. Let λ ∈ Calis(ℓ). By Lemma 3.11, it holds that ẽi(λ) satisfies Definition 3.3(1)

for all i ∈ Z/eZ such that ẽi(λ) �= 0. Any λ ∈ Calis(ℓ) is FLOTW. By Theorems 4.2 and

4.1, then ẽi(λ) is also FLOTW for all i ∈ Z/eZ such that ẽi(λ) �= 0. In particular, ẽi(λ)
is cylindrical, and Definition 3.3(2) holds for ẽi(λ). Therefore ẽi(λ) ∈ Calis(ℓ).

The analogue of Theorem 4.1 for the irreducible calibrated representations of He,s(n)

identifies the ℓ-partitions labelling them in terms of certain paths in the ŝle-crystal.

Theorem 4.4 [34]. Let e ≥ 2, and let s ∈ Zℓ. The irreducible calibrated representations
of He,s(n) are labelled by the ℓ-partitions of the form λ = f̃in f̃in−1

. . . f̃i2 f̃i1∅ such that

ij �= ij +1 for all j = 1, . . . ,n−1 in any such expression for λ.

That is, we consider all possible ways to build up a FLOTW ℓ-partition λ from the
empty ℓ-partition ∅ by adding one box at a time such that, at each step, the box we add

is the good addable box for its residue. The theorem says that if λ labels an irreducible

calibrated representation, then in all such sequences building up λ one box at a time, we
never add an i -box immediately followed by another i -box.

We now arrive at the main result of this section, which is the analog of Theorem 4.2

for calibrated representations.

Theorem 4.5. Let e ≥ 2, and let s ∈ Zℓ be a cylindrical charge. Then the irreducible

calibrated representations of He,s(n) are labelled by the ℓ-partitions in Calis(ℓ) of size n.

Proof. We will prove the statement by induction on n. The base case is n = 1. By

Theorem 4.4, if |λ|= 1, then λ labels an irreducible calibrated representation if and only

if λ is FLOTW. By Definition 1.16 and Lemma 3.4, if |λ| = 1, then λ ∈ Calis(ℓ) if and

only if λ is FLOTW.
Now, suppose by induction that, for all FLOTW ℓ-partitions λ of n, it holds that λ

labels an irreducible calibrated representation of He,s(n) if and only if λ ∈ Calis(ℓ).

First, we will show that any ℓ-partition of size n+1 in Calis(ℓ) labels an irreducible
calibrated representation of He,s(n+1). Suppose that µ ∈ Calis(ℓ) and |µ|= n+1. Then

µ is FLOTW, so by Theorems 4.1 and 4.2, µ= f̃in+1
f̃in . . . f̃i2 f̃i1∅ for some i1, . . . ,in+1 ∈

Z/eZ. We must show that every such expression satisfies ik �= ik+1 for each k = 1, . . . ,n.
Let i ∈ Z/eZ such that ẽi(µ) �= 0. By Lemma 4.3, ẽiµ ∈ Calis(ℓ). By induction, every

expression ẽiµ = f̃in . . . f̃i2 f̃i1∅ satisfies ik �= ik+1 for all k = 1, . . . ,n− 1. It thus suffices

to check that in �= i. The charged contents of removable boxes of µ belong to Bs(µ). By

Definition 3.3, Bs(µ) contains at most one element of residue i mod e, so µ has at most
one removable i -box. It follows that ẽiµ has no removable i -box. Therefore, ẽiẽiµ = 0,

implying in �= i. We conclude using Theorem 4.4 that µ labels an irreducible calibrated

representation of He,s(n+1).
The remainder of the proof is dedicated to showing that if λ is a FLOTW ℓ-partition

of size n+ 1 that labels an irreducible calibrated representation of He,s(n+ 1), then

λ∈Calis(ℓ). Suppose that µ is FLOTW, |µ|=n+1, and µ labels an irreducible calibrated
representation. By Theorem 4.4, for every expression µ= f̃in+1

f̃in . . . f̃i2 f̃i1∅ it holds that

ik+1 �= ik for all k = 1, . . . ,n. We need to show that µ satisfies Definition 3.3(1). By

induction, µ = f̃iλ for some λ ∈ Calis(ℓ) and some i ∈ Z/eZ. Either f̃i adds a box to
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a nonzero row of λ, or f̃i creates a new row. In the case that f̃i adds a box to an

already existing row, the result is forced by the induction hypothesis that λ ∈ Calis(ℓ)

using arguments similar to those in the proof of Lemma 3.11. This is straightforward
to check. The work consists in dealing with the case that f̃i adds the good i -box in a

new row of λ. Thus, we suppose from now on that f̃i adds a new row to λ, that is, that

|Bs(µ)|= |Bs(λ)|+1. We will show that if Definition 3.3(1)(a) or Definition 3.3(1)(b) fails

for f̃iλ= µ, then there exists an expression f̃in+1
f̃in . . . f̃i2 f̃i1∅= µ with ik = i= ik+1 for

some k ∈ {1, . . . ,n}.
First, suppose Definition 3.3(1)(a) fails, so suppose Bs(µ) �⊂ [z,z+ e− 1] for all z ∈ Z.

Let b be the i -box added by f̃i to λ, that is, µ = f̃iλ∪{b}, and let j(b) ∈ {1, . . . ,ℓ} be
such that b is a box in μj(b). First, we show that cos(b) must be the smallest element of

Bs(µ). Suppose that cos(b) is neither the smallest nor the largest element of Bs(µ). Since

Bs(λ)⊂ [z,z+e−1] for some z ∈ Z, this implies that Bs(µ) = [z,z+e−1] for some z ∈ Z,
and thus cos(b)−1 ∈ Bs(λ). Then cos(b)−1 is the content of the box of largest content

in μk for some k < j(b). But then μk has an addable box of content cos(b). It follows

that the good addable box of λ is then in μk, not in μj(b), contradicting the assumption.

Next, since λ ∈ Calis(ℓ), then by Lemma 3.4 we have sj(b)− cos(bmin) < e, where bmin is
the box of smallest charged content in λ. Thus, if cos(b) is the largest element of Bs(µ),

then Bs(µ)⊆ [z,z+ e−1] and we repeat the argument above to get a contradiction. We

conclude that cos(b) the smallest element of Bs(µ), and moreover (again by the same
argument), cos(b) �= cos(bmax)− e+1.

It follows that there exists a unique w ∈ Z such that w = cos(b)+ qe for some positive

integer q, w−e<x<w+e for all x∈Bs(λ) =Bs(µ)\{cos(b)}, and there is some x∈Bs(λ)
with x ≥ w. We observe that λ cannot have an addable box of content w in one of its

nonzero rows, for if it did, then ẽi would have added this box rather than b. Thus, if

w−1 ∈ Bs(µ), it must also hold that w ∈ Bs(µ).

Step 1. Case (i). Suppose w− 1 /∈ Bs(µ). Consider Bs(µ)∩Z≥w, and the corresponding
boxes in the right border of µ that are of charged content at least w. Let r= |Bs(µ)∩Z≥w|.
Since the reading word of Bs(λ) is increasing, these boxes belong to the top r rows of

Ys(λ). We have 0< r≤ e−1. If Bs(µ)∩Z≥w = [w,w+r−1], proceed to step 2. Otherwise,
let y be the minimal element of Bs(µ)∩Z≥w. Apply ẽ := ẽi+1ẽi+2 . . . ẽy−1ẽy to µ. This

removes a horizontal strip of y−w+1 boxes from the r ’th row of Ys(µ) because µ =

λ∪{b} has no addable boxes of these residues with charged content w or greater nor does

it have any (other) removable boxes of these residues. Applying ẽiẽi to ẽµ now removes
b and the removable i -box in row r yielding ν such that µ = f̃y f̃y−1 . . . f̃i+2f̃i+1f̃if̃iν, a

contradiction. This step of the proof is illustrated in Figure 9.

Step 1. Case (ii). Suppose w− 1 ∈ Bs(µ). Let w− e < xt < .. . < x2 < x1 < w be the
elements of Bs(λ)∩Z<w. If x1 < w− 1, proceed to step 2. Otherwise, let h ∈ {1, . . . ,t}
be minimal such that xh− 1 /∈ Bs(λ). If xh− 1+ e /∈ Bs(λ), then set ν = ẽi−1 . . . ẽi−hµ.

In Ys(λ), this corresponds to removing a vertical strip consisting of the boxes lying in

the same column and strictly below the box in row r of content w. If xh−1+ e ∈ Bs(λ)
(which can only happen if xh is the minimal element of Bs(λ) and xh − 1+ e is the

maximal element of Bs(λ)), apply the procedure in case (i) to obtain ν1 from µ such that

https://doi.org/10.1017/S147474802200055X Published online by Cambridge University Press



Unitary representations of cyclotomic Hecke algebras 27

Figure 9. Illustration of the proof of Theorem 4.5, induction step verifying that failure of Definition

3.3(1)(a) implies failure to be calibrated. Step 1, case (i).

Bs(ν1)∩Z≥w = [w,w+r−1], and then set ν = ẽi−1 . . . ẽi−hν1. Since w−1 ∈ Bs(µ) forced

w ∈ Bs(µ) as well, we obtain ν with w ∈ Bs(ν) and w−1 /∈ Bs(ν).

Step 2. Recall that w ∼= cos(b) ∼= imod e. The ℓ-partition ν has no addable i -box in any

of its nonzero rows. It has two removable i -boxes: b and the box of content w in its
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border. Since f̃i added the box cos(b) to λ, ν has no addable i -box bigger than b in an

empty row. The i -word for ν is thus some number of plusses followed by −−. It follows

that ẽiẽi removes the boxes of charged contents w and cos(b) from ν. This shows that
µ = f̃if̃i(ẽiẽiν), a contradiction with the assumption that µ = f̃iλ labels a calibrated

representation. Therefore, Definition 3.3(1)(a) must hold if f̃iλ satisfies the condition of

Theorem 4.4.

Finally, we suppose that f̃iλ �= 0 satisfies the condition of Theorem 4.4 but that
Definition 3.3(1)(b) fails for f̃iλ. The argument by contradiction is similar to the one

checking Definition 3.3(1)(a). Define b and j(b) be as above. By assumption, the reading

word of Bs(µ) is not increasing, but the reading word of Bs(λ) is. By the previous step
of the proof, we know that the elements of Bs(µ) all belong to an interval [z,z+e−1] for

some z ∈ Z. Since we are in the case that adding b creates a new row in component j(b)

and h(λ) is s-admissible by Lemma 3.5, we have cos(b)< cos(b′) for all cos(b′) ∈ Bsk(μk),
k ≥ j(b). Thus, there must exist a box b′ ∈ μm = λm for some m < j(b) such that b′ is
the last box in its row and cos(b)≤ cos(b′), and we take m to be minimal such that this

happens. Now, we remove either a horizontal strip, a vertical strip or a combination of

such from λm by crystal operators in order to arrive at a situation where ẽi can be applied
twice in a row to get a nonzero ℓ-partition, as in the previous part of the proof. We arrive

at that situation in the following ways depending on how the diagonal of charged content

cos(b) intersects the Young diagram of λm in Ys(λ).
First, if cos(b) ≤ cos(b′) for all boxes b′ the last in their rows in λm, then we remove

all boxes of content larger than cos(b) from the bottom row of λm. We then have two

removable boxes of residue i. These are successively good removable unless the largest
element of Bs(λ) has residue i−1. If the latter is the case, then we remove the topmost

vertical strip in the border of Ys(λ). Then we may remove the two boxes of residue i by

applying ẽi twice in a row.

Otherwise, i is the residue of a box in the right border ribbon of λm. We consider
whether it occurs in an arm, a leg or a corner of this ribbon. We then remove, respectively,

the arm to its right, the leg below it or the arm and the leg below it and to its right.

In case the bottom box of the leg below it is the minimal element z of Bs(λ) and both
z,z+e−1 ∈ Bs(λ), then again we have to remove the topmost vertical strip in the border

of Ys(λ) before we can remove that leg via crystal operators ẽj . We then arrive again

at the situation that we may apply ẽi twice in a row to remove two boxes of residue i.
Therefore, the irreducible representation labelled by µ is not calibrated.

5. Alcove geometries and path combinatorics

We now set about providing a homological construction of the calibrated representations
via BGG resolutions. This means understanding these simple modules in terms of the

Specht theory of the cyclotomic Hecke algebra. The homological and representation

theoretic structure of the cyclotomic Hecke algebra is governed by strong unitriangularity
properties—thus, we can understand a given calibrated simple Ds(λ) in terms of the Serre

subcategory arising from the poset Λ = {µ | µ � λ} ⊆ Pℓ(n). We will cast each µ ∈ Λ

as a point in an h-dimensional alcove geometry under the action of the affine symmetric
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group Ŝh; the calibrated simple Ds(λ) will belong to the fundamental alcove under this

action. We regard Ŝh as a Coxeter group, we let ℓ : Ŝh → N denote the corresponding

length function and we let ≤ denote the strong Bruhat order on Ŝh.

5.1. The alcove geometry

Set h = h1+ · · ·+hℓ. For each 1 ≤m ≤ ℓ and 1 ≤ i ≤ hm, we let εi,m := ε(hℓ+···+hm+1)+i

denote a formal symbol and define an h-dimensional real vector space

Eh =
⊕

1≤m≤ℓ
1≤i≤hm

Rεi,m

and Eh to be the quotient of this space by the one-dimensional subspace spanned by
∑

1≤m≤ℓ
1≤i≤hm

εi,m.

We have an inner product 〈 , 〉 on Eh given by extending linearly the relations

〈εi,p,εj,q〉= δi,jδp,q

for all 1≤ p,q≤ ℓ, 1≤ i≤ hp and 1≤ j ≤ hq, where δi,j is the Kronecker delta. We identify

λ ∈ Ph(n) with an element of the integer lattice inside Eh via the map

λ �−→
∑

1≤m≤ℓ
1≤i≤hm

λm
i εi,m.

We let Φ denote the root system of type Ah−1 consisting of the roots

{εi,p− εj,q : 0≤ p,q < ℓ, 1≤ i≤ hp,1≤ j ≤ hq,with (i,p) �= (j,q)}
and Φ0 denote the root system of type Ah1−1×·· ·×Ahℓ−1 consisting of the roots

{εi,m− εj,m : 1≤m≤ ℓ,1≤ i �= j ≤ hm}.
We choose Δ (respectively Δ0) to be the set of simple roots inside Φ (respectively Φ0) of
the form εt−εt+1 for some t. Given r ∈ Z and α ∈ Φ, we define sα,re to be the reflection

which acts on Eh by

sα,rex= x− (〈x,α〉− re)α.

The group generated by the sα,0 with α ∈ Φ (respectively α ∈ Φ0) is isomorphic to the
symmetric group Sh (respectively to Sh :=Sh1

×·· ·×Shℓ
), while the group generated

by the sα,re with α ∈ Φ and r ∈ Z is isomorphic to Ŝh, the affine Weyl group of type

Ah−1. We set α0 = εh−ε1 and Π =Δ∪{α0}. The elements S = {sα,0 : α ∈Δ}∪{sα0,−e}
generate Ŝh.

Notation 5.1. We shall frequently find it convenient to refer to the generators in S in

terms of the elements of Π and will abuse notation in two different ways. First, we will

write sα for sα,0 when α ∈ Δ and sα0
for sα0,−e. This is unambiguous except in the
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case of the affine reflection sα0,−e, where this notation has previously been used for the
element sα,0. As the element sα0,0 will not be referred to hereafter this should not cause

confusion. Second, we will write α= εi−εi+1 in all cases; if i= h, then all occurrences of

i+1 should be interpreted modulo h to refer to the index 1.

We shall consider a shifted action of the affine Weyl group Ŝh on Eh by the element

ρ := (ρℓ, . . . ,ρ2,ρ1) ∈ Zh where ρm := (sm,sm−1, . . . ,sm−hm+1) ∈ Zhm,

that is, given an element w ∈ Ŝh, we set w ·x=w(x+ρ)−ρ. This shifted action induces a

well-defined action on Eh; we will define various geometric objects in Eh in terms of this

action and denote the corresponding objects in the quotient with a bar without further
comment. We let E(α,re) denote the affine hyperplane consisting of the points

E(α,re) = {x ∈ Eh | sα,re ·x= x}.
Note that our assumption that e > h1+ · · ·+hℓ implies that the origin does not lie on any

hyperplane. Given a hyperplane E(α,re), we remove the hyperplane from Eh to obtain two
distinct subsets E>(α,re) and E<(α,re) where the origin lies in E<(α,re). The connected

components of

Eh \ (∪α∈Φ0
E(α,0))

are called chambers. The dominant chamber, denoted E
+

h , is defined to be

E
+

h =
⋂

α∈Φ0

E
<
(α,0).

The connected components of

Eh \ (∪α∈Φ,r∈ZE(α,re))

are called alcoves, and any such alcove is a fundamental domain for the action of the
group Ŝh on the set Alc of all such alcoves. We define the fundamental alcove, which we

denote by Fh ⊆ Eh, to be the alcove containing the origin (which is inside the dominant

chamber) and we set

Fh(n) = Fh∩{λ ∈ Eh |∑1≤m≤ℓ

∑
i≥1λ

m
i = n}.

We have a bijection from Ŝh to Alc given by w �−→ wFh. Under this identification, Alc

inherits a right action from the right action of Ŝh on itself. Consider the subgroup

Sh :=Sh1
×·· ·×Shℓ

≤ Ŝh.

The dominant chamber is a fundamental domain for the action of Sh on the set of

chambers in Eh. We let Sh denote the set of minimal length representatives for right

cosets Sh\Ŝh. So multiplication gives a bijection Sh×Sh → Ŝh. This induces a bijection
between right cosets and the alcoves in our dominant chamber.

If the intersection of a hyperplane E(α,re) with the closure of an alcove A is generically

of codimension one in Eh, then we call this intersection a wall of A. The fundamental
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alcove Fh has walls corresponding to E(α,0) with α ∈ Δ together with an affine wall

E(α0,−e). We will usually just write E(α) for the walls E(α,0) (when α∈Δ) and E(α,−e)
(when α= α0). We regard each of these walls as being labelled by a distinct colour (and

assign the same colour to the corresponding element of S ). Under the action of Ŝh each

wall of a given alcove A is in the orbit of a unique wall of Fh and thus inherits a colour

from that wall. We will sometimes use the right action of Ŝh on Alc. Given an alcove

A and an element s ∈ S, the alcove As is obtained by reflecting A in the wall of A with
colour corresponding to the colour of s. With this observation, it is now easy to see that if

w= s1 . . . st where the si are in S, then wFh is the alcove obtained from Fh by successively

reflecting through the walls corresponding to s1 up to st.

5.2. Paths in the geometry

We now develop a path combinatorics inside our geometry. Given a map p : {1, . . . ,n} →
{1, . . . ,h}, we define points P(k) ∈ Eh by

P(k) =
∑

1≤i≤k

εp(i)

for 1≤ i≤ n. We define the associated path by

P= (∅= P(0),P(1),P(2), . . . ,P(n)),

and we say that the path has shape π = P(n) ∈ Eh. We also denote this path by P =

(εp(1), . . . ,εp(n)). Given λ ∈ Eh, we let Path(λ) denote the set of paths of shape λ. We

define Pathh(λ) to be the subset of Path(λ) consisting of those paths lying entirely inside

the dominant chamber, that is, those P such that P(i) is dominant for all 0≤ i≤ n. We
let Pathh(n) = ∪λ∈Ph(n)Pathh(λ).

Given paths P = (εp(1), . . . ,εp(n)) and Q = (εq(1), . . . ,εq(n)), we say that P ∼ Q if there

exists an α ∈ Φ and r ∈ Z and s≤ n such that

P(s) ∈ E(α,re) and εq(t) =

{
εp(t) for 1≤ t≤ s

sαεp(t) for s+1≤ t≤ n.

In other words, the paths P and Q agree up to some point P(s) = Q(s) which lies on

E(α,re), after which each Q(t) is obtained from P(t) by reflection in E(α,re). We extend
∼ by transitivity to give an equivalence relation on paths and say that two paths in

the same equivalence class are related by a series of wall reflections of paths and given

S ∈ Pathh(n) we set [S] = {T ∈ Pathh(n) | S∼ T}. Given a path P we define

res(P) = (resP(1), . . . ,resP(n))

where resP(i) denotes the residue of the box labelled by i in the tableau corresponding

to P. We have that res(P) = res(Q) is and only if P∼ Q.

Definition 5.2. Given a path S = (S(0),S(1),S(2), . . . ,S(n)), we set deg
s
(S(0)) = 0 and

define

deg
s
(S) =

∑

1≤k≤n

d(S(k),S(k−1)),
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where d(S(k),S(k−1)) is defined as follows. For α ∈Φ, we set dα(S(k),S(k−1)) to be

• +1 if S(k−1) ∈ E(α,re) and S(k) ∈ E<(α,re);
• −1 if S(k−1) ∈ E>(α,re) and S(k) ∈ E(α,re);
• 0 otherwise.

We let

deg(S) =
∑

1≤k≤n

∑

α∈Φ

dα(S(k−1),S(k)).

Definition 5.3. Given two paths

P= (εi1,εi2, . . . ,εip) ∈ Path(μ) and Q= (εj1,εj2, . . . ,εjq ) ∈ Path(ν),

we define the naive concatenated path

P⊠Q= (εi1,εi2, . . . ,εip,εj1,εj2, . . . ,εjq ) ∈ Path(μ+ν).

For λ ∈ Ph(n), we identify Pathh(λ) with the set of standard λ-tableaux in the

obvious manner (see [10] for more details). This identification preserves the grading.
This identification is best illustrated via an example.

Example 5.4. The tableau T1,λ in Example 1.10 corresponds to the path

T1,λ = (ε1,ε2,ε3,ε4,ε5,ε6,ε1,ε2,ε3,ε5,ε1,ε2,ε1,ε2,ε1).

5.3. The Bott–Samelson truncation and Soergel diagrammatics

We now recall the construction of an idempotent subalgebra of Hh(n,s) which is

isomorphic to Elias–Williamson’s diagrammatic Hecke categories. In order to do this,

we must restrict our attention to paths labelled by (enhanced) words in the affine Weyl
group.

Definition 5.5. We will associate alcove paths to certain words in the alphabet

S∪{1}= {sα | α ∈Π∪{∅}},
where s∅ = 1. That is, we will consider words in the generators of the affine Weyl group

but enriched with explicit occurrences of the identity in these expressions. We refer to the
number of elements in such an expression (including the occurrences of the identity) as

the enhanced length of this expression. We say that an enriched word is reduced if, upon

forgetting occurrences of the identity in the expression, the resulting word is reduced.

Given a path P between points in the principal linkage class, the end point lies in
the interior of an alcove of the form wFh for some w ∈ Ŝh. If we write w as a word in

our alphabet and then replace each element sα by the corresponding nonaffine reflection

sα in Sh to form the element w ∈ Sh, then the basis vectors εi are permuted by the
corresponding action of w to give εw(i), and there is an isomorphism from Eh to itself

which maps Fh to wFh such that 0 maps to w · 0, coloured walls map to walls of the

same colour and each basis element εi map to εw(i). Under this map, we can transform
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a path Q starting at the origin to a path starting at w ·0 which passes through the same
sequence of coloured walls as Q does.

Definition 5.6. Given two paths P=(εi1,εi2, . . . ,εip)∈Path(μ) and Q=(εj1,εj2, . . . ,εjq )∈
Path(ν) with the endpoint of P lying in some alcove wFh, we define the contextualised
concatenated path

P⊗wQ= (εi1,εi2, . . . ,εip)⊠ (εw(j1),εw(j2), . . . ,εw(jq)) ∈ Path(μ+(w ·ν)).
If w = sα, we will simply write P⊗αQ.

We now define the building blocks from which all of our distinguished paths will be
constructed. We first define certain integers that describe the position of the origin in our

fundamental alcove.

Definition 5.7. Given α ∈ Π, we define bα to be the distance from the origin to the

wall corresponding to α and let b∅ = 1. Given our earlier conventions, this corresponds to

setting

bεhℓ+···+hm+i−εhℓ+···+hm+i+1
= 1

for m> 1 and 1≤ i < hm−1 and that

bεhℓ+···+hm−εhℓ+···+hm+1
= sm+1−sm−hm+1 bεh−ε1 = e+s1−sℓ−hℓ+1

for m> 1. Given α,β ∈Π, we set bαβ = bα+ bβ .

We let δk = ((kh1),(kh2), . . . ,(khℓ)), and we note that these multipartitions always lie

in the principal linkage class. We sometimes write δα for the element δbα . We can now
define our basic building blocks for paths.

Definition 5.8. Given α = εi− εi+1 ∈ Π, we consider the multicomposition sα · δα with
all columns of length bα, with the exception of the ith and (i+1)st columns, which are

of length 0 and 2bα, respectively. We set

Mi = (ε1, . . . ,εi−1,ε̂i,εi+1, . . . ,εh) and Pi = (+εi),

where .̂ denotes omission of a coordinate. Then our distinguished path corresponding to

sα is given by

Pα =Mibα⊠Pbα
i+1 ∈ Path(sα · δα).

The distinguished path corresponding to ∅ is labelled by P∅ ∈ Path(δ) and is fixed to be

any choice of tableau Tm,δ for which 1≤m≤ ℓ is a step change. We set P∅ = (P∅)
bα . See

Figure 10.

Remark 5.9. If ℓ is a step change, then we can take P∅ = (ε1,ε2, . . . ,εh), and indeed this

is the path used in [10] (where it is implicitly assumed that ℓ is a step change). We further

remark that one can always reorder the charge s ∈ Zℓ to obtain some ŝ ∈ Zℓ for which ℓ
is a step change (using the trivial algebra isomorphism Hn(s)∼=Hn(ŝ)).

We are now ready to define our distinguished paths for general words in our alphabet.
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Figure 10. The first two diagrams are a path Pα walking through an α-hyperplane and a path P♭
α

obtained by reflecting Pα through this α-hyperplane. The final diagram is the path P∅.

Definition 5.10. We now define a distinguished path Pw for each word w in our alphabet
S ∪{1} by induction on the enhanced length of w. If w is s∅ or a simple reflection sα,

we have already defined the distinguished path in Definition 5.8. Otherwise, if w = sαw
′,

then we define

Pw := Pα ⊗α Pw′ .

If the enriched word w is reduced, then the corresponding path Pw is said to be a reduced

path.

Definition 5.11. Given α ∈Π, we set

P♭
α =Mibα⊠Pibα =Mibα⊗αPi+1bα = (+ε1, . . . ,+ εi−1,+̂εi,+ εi+1, . . . ,+ εh)

bα ⊠ (εi)
bα

to be the path obtained by reflecting the second part of Pα in the wall through which it

passes.

Given w = w′sα for α ∈ Π∪{∅}, we inductively define the subset of alcove-tableaux,
Pathalc(λ,Pw)⊆ Pathh(λ), to be those of the form

P⊗Pα or P⊗P♭
α

for some P ∈ Pathalc(µ,Pw′). For λ ∈ xFh, we often write Pathalc(x,Pw) = Pathalc(λ,Pw)
if λ is from the principal linkage class. We let Path+alc(λ,P

w) ⊆ Pathalc(λ,P
w) (and

Path+alc(x,P
w) ⊆ Pathalc(x,P

w)) denote the subset of strict alcove-tableaux for which

all instances of s∅ occur as a prefix to the enhanced word w. We write Pathalc(x) =
∪wPathalc(x,Pw) and Pathalc(λ) = ∪wPathalc(λ,Pw), where the union is over all expres-

sions w for some w ∈ Sh (and similarly for strict alcove-tableaux). We let Ph(n,s) =

{λ ∈ Ph(n) | Pathalc(λ) �= ∅}. We set

Λh(n,s) := {w | Pw ∈ Path+alc(λ) for some λ ∈ Ph(n,s)},
and we formally set Λh(∞,s) =Sh.

6. Categorification and BGG resolutions

We now introduce the graded diagrammatic algebras which provide the necessary context

for constructing our BGG resolutions. For the remainder of the paper, we assume that

e > 2.
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Remark 6.1. Let e = 2 and s = (s1,s2, . . . ,sℓ) ∈ Zℓ be cylindrical so that s = (0a,1b)
for a+ b = ℓ. Theorem 4.5 implies that there are either one or two unitary/calibrated

representations; these are labelled by λ= ((n),∅a+b−1) and λ= (∅a,(n),∅b−1). For such

a λ, we have that Ss(λ)∼=Ds(λ) is one-dimensional and so will not be of interest in what

follows. (In this section, we provide resolutions of simple modules by Specht modules;
this is vacuous for simple Specht modules.)

6.1. The cyclotomic quiver Hecke algebras

Given i= (i1, . . . ,in)∈ (Z/eZ)n and sr = (r,r+1)∈Sn, we set sr(i) = (i1, . . . ,ir−1,ir+1,ir,

ir+2, . . . ,in).

Definition 6.2 [15, 39, 47]. Fix k an integral domain, e > 2, and let s ∈ Zℓ. The

cyclotomic quiver Hecke algebra, Hn(s), is defined to be the unital, associative k-algebra
with generators

{ei | i= (i1, . . . ,in) ∈ (Z/eZ)n}∪{y1, . . . ,yn}∪{ψ1, . . . ,ψn−1},

subject to the relations

eiej = δi,jei
∑

i∈(Z/eZ)n ei = 1Hn
yrei = eiyr ψrei = esr(i)ψr yrys = ysyr

(R1)

ψrys = ysψr for s �= r,r+1 ψrψs = ψsψr for |r−s|> 1 (R2)

yrψrei = (ψryr+1− δir,ir+1
)ei yr+1ψrei = (ψryr+ δir,ir+1

)ei (R3)

ψrψrei =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if ir = ir+1,

ei if ir+1 �= ir,ir±1,

(yr+1−yr)ei if ir+1 = ir+1,

(yr−yr+1)ei if ir+1 = ir−1

(R4)

ψrψr+1ψrei =

⎧
⎪⎨
⎪⎩

(ψr+1ψrψr+1−1)ei if ir = ir+2 = ir+1+1,

(ψr+1ψrψr+1+1)ei if ir = ir+2 = ir+1−1

ψr+1ψrψr+1ei otherwise

(R5)

for all permitted r,s,i,j and finally, we set

y
♯{sm|sm=i1,1≤m≤ℓ}
1 ei = 0 for i ∈ (Z/eZ)n. (R6)

We let ∗ denote the anti-involution which fixes the generators.

Theorem 6.3 [15, Main Theorem]. Let k be a field, and let ξ ∈ k be a primitive eth root of

unity. Set q = ξ, and set Qm = ξsm for 1≤m≤ ℓ. The algebras Hn(s) and Hq,Q1,...,Qℓ
(n)

are isomorphic as k-algebras.
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We set eT := eres(T) ∈Hn(s). For λ ∈ Pℓ
n, we set

yλ =

n∏

k=1

y
|AT(m,λ)

(k)|
k eT(m,λ)

. (6.4)

We remark that yλ = eT(m,λ)
for λ ∈ Ph(n). Given h ∈ Nℓ, we define

yh =
∑

1≤m≤ℓ

y(∅,...,∅,(1hm+1),∅,...,∅)⊠1Hn−hm−1(s). (6.5)

Given S,T∈Path(λ) and w any fixed reduced word for wS
T, we let ψ

S
T := eSψweT. We have

already seen that if λ is a calibrated ℓ-partition, then h(λ) is s-admissible.

Definition 6.6. Given s ∈ Zℓ, we let h = (h1, . . . ,hℓ) ∈ Nℓ be s-admissible. We define
Hh(n,s) :=Hn(s)/Hn(s)yhHn(s).

Theorem 6.7 [11, Theorem A]. For k an integral domain, the algebra Hh(n,s) is free

as a k-module and has graded cellular basis {ψST := ψS
Pλ

ψPλ

T | S,T∈Pathh(λ),λ∈Ph(n)}
with respect to the order ✄ and the anti-involution ∗. That is, we have that

(1) Each ψST is homogeneous of degree deg(ψST) = deg(S)+deg(T), for λ∈Ph(n) and

S,T ∈ Pathh(λ).

(2) The set {ψST | S,T ∈ Pathh(λ),λ ∈ Ph(n)} is a k-basis of Hh(n,s).

(3) If S,T ∈ Pathh(λ), for some λ ∈ Ph(n) and a ∈ Hh(n,s), then there exist scalars

rSU(a), which do not depend on T, such that

aψST =
∑

U∈Pathh(λ)

rSU(a)ψUT (mod H
⊲λ),

where H ⊲λ is the k-submodule of Hh(n,s) spanned by {ψQR | µ ⊲ λ and Q,R ∈
Pathh(µ)}.

(4) The k-linear map ∗ : Hh(n,s)→ Hh(n,s) determined by (ψST)
∗ = ψTS, for all λ ∈

Ph(n) and all S,T ∈ Pathh(λ), is an anti-isomorphism of Hh(n,s).

Definition 6.8. Given λ ∈ Ph(n), the Specht module Ss(λ) is the graded left

Hh(n,s)-module with basis {ψS | S ∈ Pathh(λ)}. The action of Hh(n,s) on Ss(λ) is

given by

aψS =
∑

U∈Pathh(λ) rSU(a)ψU,

where the scalars rSU(a) are the scalars appearing in (3) of Theorem 6.7.

Theorem 6.9 [11, Theorem 3.12]. For k a field, the algebra Hh(n,s) is quasi-hereditary

with simple modules

Ds(λ) = Ss(λ)/rad(Ss(λ))

for λ ∈ Ph(n).
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Remark 6.10. The modules Ss(λ) are obtained (via specialisation) from the usual

semisimple modules over C[q,Q1, . . . ,Qℓ] with the same multipartition labels. We remark

that the integral form (in the modular system by which we specialise) is constructed from
the cylindric charge in [9, 11] and can be seen as coming the quiver Cherednik algebra

associated to s ∈ Zℓ.

Theorem 6.11. Let λ ∈ Pℓ(n) with h(λ) = h ∈ Nℓ. Then λ ∈ Calis(ℓ) if and only if
λ ∈ Fh(n) the fundamental alcove of Eh.

Proof. Any λ ∈ Calis(ℓ) must satisfy that h(λ) = h is s-admissible (by Corollary 3.5),

and so it is enough to restrict our attention to λ ∈ Eh for some s-admissible h ∈ Nℓ. For
λ ∈ Eh, the condition that the border strip is increasing is equivalent to the condition

that λ ∈ E<(εi−εi+1,e) for 1≤ i < ℓ. Similarly, the condition that λ has period at most

e is equivalent to the condition that λ ∈ E<(ε1− εh,− e). The result follows.

6.2. Diagrammatic Bott–Samelson algebras

These algebras were first defined in [25].

Definition 6.12. Given α ∈ Π, we define the corresponding Soergel idempotent, 1α, to

be a frame of width 1 unit, containing a single vertical strand coloured with α ∈ Π. We

define 1∅ to be an empty frame of width 1 unit. For w = sα(1) . . . sα(p) with α(i) ∈ S∪{1}
for 1≤ i≤ p, we set

1w = 1α(1) ⊗1α(2) ⊗·· ·⊗1α(p)

to be the diagram obtained by horizontal concatenation.

Definition 6.13. Let α,β,γ ∈ S with m(α,β) = 3 and m(β,γ) = 2. We define a Soergel

diagram D is defined to be any diagram obtained by horizontal and vertical concatenation

(denoted ⊗ and ◦, respectively) of the following diagrams

.

(6.14)

We often denote these diagrams by

1∅ 1α spot∅α forkααα braid
αβα
βαβ braid

βγ
γβ

respectively along with their flips through the horizontal axis and their isotypic

deformations such that the north and south edges of the graph are given by the

idempotents 1w and 1w′ respectively. Here, the vertical concatenation of a (w,w′)-Soergel
diagram on top of a (v,v′)-Soergel diagram is zero if v �=w′. We define the degree of these

generators (and their flips) to be 0,1,−1,0 and 0, respectively. We let ∗ denote the map

which flips a diagram through its horizontal axis.

Suppose that w and w′ are both words with the same underlying permutation and that

they can be obtained from one another by a sequence of applications of the braid relations

of Ŝh (i.e., without applying the quadratic relation); we let braid
w
w′ (or braid

Pw

Pw′
if we wish
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to emphasise the corresponding paths) denote the product of the corresponding sequence

of the braid generator Soergel diagrams (the final two pictures in equation (6.14)).

Definition 6.15. Let k be an integral domain. We define the diagrammatic Bott–

Samelson endomorphism algebra, Sh to be the locally unital associative k-algebra
spanned by all Soergel diagrams with multiplication given by vertical concatenation of

diagrams modulo the following local relations and their duals. We have the idempotent

relations

1α1β = δα,β1α 1∅1α = 0 12∅ = 1∅ 1∅spot
∅
α1α = spot∅α

1αfork
α
αα1αα = forkααα 1βαβbraid

βαβ
αβα1αβα = braid

βαβ
αβα 1βγbraid

βγ
γβ1βγ = braid

βγ
γβ .

For each α ∈ S, we have monochrome relations

(spot∅α⊗1α)fork
αα
α = 1α (1α⊗ forkααα)(fork

αα
α ⊗1α) = forkααα forkααα

forkαααfork
αα
α = 0 (spot∅αspot

α
∅ )⊗1α+1α⊗ (spot∅αspot

α
∅ ) = 2(spotα∅ spot

∅
α).

For m(α,β) = 3 and m(β,γ) = 2, we have the barbell relations

(spot∅βspot
β
∅ )⊗1α−1α⊗ (spot∅βspot

β
∅ ) = (1+ δh,2)((spot

α
∅ spot

∅
α)−1α⊗ (spot∅αspot

α
∅ ))

(spot∅βspot
β
∅ )⊗1γ −1γ ⊗ (spot∅βspot

β
∅ ) = 0

and the fork-braid relations

braid
βαβ
αβα(fork

α
αα⊗1βα)(1α⊗braid

αβα
βαβ ) = (1βα⊗ fork

β
ββ)(braid

βαβ
αβα⊗1β)

braid
βγ
γβ(fork

γ
γγ ⊗1β)(1γ ⊗braid

γβ
βγ) = (1β ⊗ forkγγγ)(braid

βγ
γβ ⊗1γ)

and the cyclicity relation

(1βαβ ⊗ (spot∅αfork
α
αα))(1β ⊗braid

αβα
βαβ ⊗1α)((fork

ββ
β spot

β
∅ )⊗1αβα) = braid

βαβ
αβα

and the Jones–Wenzl relations

(spot∅β ⊗1αβ)braid
αβα
βαβ = (forkααα⊗ spot

β
∅ )(1α⊗ spot∅β ⊗1α)

(1β ⊗ spot∅γ)braid
βγ
γβ = (spot∅γ ⊗1β).

For mαγ =mγβ =mβδ = 2 and mαβ = 3, we have the braid-commutativity relations

(braidβαβαβα⊗1γ)braid
αβαγ
γαβα = braid

βαβγ
γβαβ(1γ ⊗braid

βαβ
αβα)

(braidβγγβ ⊗1δ)braid
γβδ
δβγ = braid

βγδ
δβγ(1δ ⊗braid

βγ
γβ).

For mαβ = 3 =mαγ and mαγ = 2, we have the Zamolodchikov relation

braid
γαγβαγ
αγαβαγbraid

αγαβαγ
αγβαβγbraid

αγβαβγ
αβγαγβbraid

αβγαγβ
αβαγαβbraid

αβαγαβ
βαβγαβbraid

βαβγαβ
βαγβαβ

= braid
γαγβαγ
γαβγαγbraid

γαβγαγ
γαβαγαbraid

γαβαγα
γβαβγαbraid

γβαβγα
βγαγβαbraid

βγαγβα
βαγαβαbraid

βαγαβα
βαγβαβ .
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For all diagrams D1,D2,D3,D4 and all enhanced words x,y, we require the bifunctoriality
relation

(
(D1 ◦1x)⊗ (D2 ◦1y)

)(
(1x ◦D3)⊗ (1y ◦D4)

)
= (D1 ◦1x ◦D3)⊗ (D2 ◦1y ◦D4)

and the monoidal unit relation

1∅⊗D1 = D1 = D1⊗1∅.

Finally, we require the (nonlocal) cyclotomic relation

spot∅αspot
α
∅ ⊗1w = 0 for all w ∈ exp(w),w ∈ Ŝh, and all sα ∈Sh.

We can extend an alcove-tableau Q′ ∈ Pathalc(w) to obtain a new alcove-tableau Q in

one of three possible ways

Q= Q′⊗Pα Q= Q′⊗P♭
α Q= Q′⊗P∅

for some α ∈ Π. Suppose that w is such that ℓ(wsα) = ℓ(w)+1. Let Q′ ∈ Pathalc(w). If
Q= Q′⊗Pα, then we set deg(Q) = deg(Q′) and we define

cPQ = braidPP′⊗Pα
(cP

′

Q′ ⊗ 1α).

If Q= Q′⊗P♭
α, then we set deg(Q) = deg(Q′)+1 and we define

cPQ = braidPP′⊗P∅
(cP

′

Q′ ⊗ spot∅α).

Now, suppose that w is such that ℓ(wsα) = ℓ(w)−1, and set v=wsα. Thus, we can choose
Pv ⊗Pα = P′ ∈ Pathalc(w). For Q= Q′⊗Pα, we set deg(Q) = deg(Q′) and define

cPQ =braidPPv∅∅

(
1v ⊗ (spot∅α ◦ forkααα)

)(
cP

′

Q′ ⊗1α
)
,

and if Q= Q′⊗P♭
α, then then we set deg(Q) = deg(Q′)−1 and we define

cPQ =braidPPvα∅

(
1v ⊗ forkααα

)(
cP

′

Q′ ⊗1α
)
.

Theorem 6.16 [25, Section 6.4]. For each w ∈Λh(∞,s), we fix an arbitrary reduced path
Pw. The algebra Sh is quasi-hereditary with graded integral cellular basis

{cSPw
c
Pw

T | S,T ∈ Path+alc(w),w ∈ Λh(∞,s)}
with respect to the Bruhat ordering, ≤, and the anti-involution ∗. That is, we have that

(1) Each cST is homogeneous of degree deg(cST) = deg(S)+deg(T), for w ∈ Λh(∞,s)
and S,T ∈ Path+alc(w).

(2) The set {cST | S,T ∈ Path+alc(w), w ∈ Λh(∞,s)} is a k-basis of Sh.

(3) If S,T ∈ Path+alc(w), for some w ∈ Ph(n), and a ∈ Sh(n,s), then there exist scalars

rSU(a), which do not depend on T, such that

acST =
∑

U∈Path+
alc(w)

rSU(a)cUT (mod S
<w
h ),
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where S
<w
h is the k-submodule of Sh spanned by {cQR | Q,R ∈ Path+alc(x) for

x < w}.
(4) The k-linear map ∗ :Sh →Sh determined by (cST)

∗ = cTS, for all w ∈Λh(∞,s) and

all S,T ∈ Path+alc(w), is an anti-isomorphism of Sh.

Definition 6.17. Given w ∈ Λh(∞,s), the standard module Δ(w) is the graded left

Sh-module with basis {cS | S ∈ Path+alc(w)}. The action of Sh on Δ(w) is given by

acS =
∑

U∈Path+
alc(w) rSU(a)cU,

where the scalars rSU(a) are the scalars appearing in (3) of Theorem 6.16.

Theorem 6.18 [25, Section 6.4] and [41, Theorem 5.3]. For k a field, the algebra Sh is

quasi-hereditary with simple modules

L(w) = Δ(w)/rad(Δ(w))

for w ∈ Λh(∞,s).

6.3. The isomorphism and BGG resolutions

We are now ready to restrict our attention to regular blocks of Hh(n,s). Given α a simple

reflection or α= ∅, we have an associated path Pα, a trivial bijection wPα

Pα
= 1 ∈Sbαh and

an idempotent element of the quiver Hecke algebra

ePα
:= eres(Pα) ∈ Hh(bαh,s).

More generally, given any w = sα(1)sα(2) . . . sα(k) with λ ∈ wFh, we have an associated

path Pw, and elements

ePw
:= eres(Pw) = eP

α(1)
⊗ eP

α(2)
⊗·· ·⊗ eP

α(k)
1Pw

:= 1α(1) ⊗1α(2) ⊗·· ·⊗1α(k),

and we define

f+n,s =
∑

S∈Path+
alc(λ)

λ∈Ph(n,s)

eS F+
n,s =

∑

S∈Path+
alc(w)

w∈Λh(n,s)

1S. (6.19)

Definition 6.20. We define the algebra Sh(n,s) by truncation as follows

Sh(n,s) = F+
n,sShF

+
n,s.

Theorem 6.21 [10, Theorems A and B]. Let s∈Zℓ and k be an arbitrary integral domain.

Let e > h, and suppose that h ∈ Nℓ is s-admissible. We have an isomorphism of graded
k-algebras,

f+n,s
(
Hn(s)/Hn(s)yhHn(s)

)
f+n,s

∼= F+
n,sSh(n,s)F

+
n,s.

Moreover, the isomorphism preserves the graded cellular structures of these algebras, that

is, f+alcSs(λ)∼= F+
n,sΔn(w) for λ ∈ wFh(n).
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We now recall the construction of the BGG resolutions for certain Sh-modules. In

what follows, we let λ ∈ wFh(n), µ ∈ xFh(n), ν ∈ yFh(n), and ξ ∈ zFh(n) for w,x,y,z ∈
Λh(∞,s).

Definition 6.22. Given w,y ∈ Λh(∞,s), we say that (w,y) is a Carter–Payne pair if

y ≤ w and ℓ(y) = ℓ(w)− 1. Let (w,x) and (x,z) be Carter–Payne pairs. If there exists a

(necessarily unique) y ∈Sh such that w ≥ y ≥ z, then we refer to the quadruple w,x,y,z
as a diamond. If no such y exists, we refer to the triple w,x,z as a strand.

Theorem 6.23 [12, Theorem B]. We suppose that (w,x) is a Carter–Payne pair. Pick an

arbitrary w = σ1 . . . σℓ, and suppose that x = σ1 . . . σp−1σ̂pσp+1 . . . σℓ is the subexpression

for x obtained by deleting precisely one element σp ∈ S. We have that

HomSh
(Δ(w),Δ(x))

is t1-dimensional and spanned by the map

ϕw
x (cT) = cT(1σ1···σp−1

⊗ spot
σp

∅ ⊗1σp+1···σℓ
) (6.24)

for T ∈ Path+alc(w).

We recall from [12, Section 2] that there exists a complex of graded Sh-modules · · · −→
Δ2

δ2−→Δ1
δ1−→Δ0

δ0−→ 0, where

Δℓ :=
⊕

ℓ(w)=ℓ

Δ(w)〈ℓ(w)〉. (6.25)

For w,x,y,z a diamond we have homomorphisms of Sh-modules

Δ(x)

Δ(y)

Δ(w) Δ(z)

ϕ
w
x

ϕ
w
y

ϕ
x
z

ϕ
y
z

given by our Carter–Payne homomorphisms of equation (6.24). By an easy variation on

[8, Lemma 10.4], it is possible to pick a sign ǫ(α,β) for each of the four Carter–Payne

pairs such that for every diamond the product of the signs associated to its four arrows
is equal to −1. For every strand, w,x,z have homomorphisms

Δ(x)Δ(w) Δ(z).
ϕ
w
x ϕ

x
z
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We can now define the Sh-differential δℓ : Δℓ → Δℓ−1 for ℓ ≥ 1 to be the sum of the

maps

ǫ(α,β)ϕ
α
β : Δ(α)〈ℓ〉 →Δ(β)〈ℓ−1〉.

We set C•(1Sh) =
⊕

ℓ≥0Δℓ〈ℓ〉 together with the differential (δℓ)ℓ≥0.

Theorem 6.26 [12, Theorem B]. The complex C•(1Sh) is exact except in degree zero,
where

H0(C•(1Sh)) = L(1Sh).

The underlying graded character is as follows:

[L(1Sh)] =
∑

w∈Λh(∞,s)

(−t)ℓ(w)[Δ(w)].

We set the length of μ ∈ xFh(n) to be given by ℓ(μ) := ℓ(x).

Theorem 6.27. Given h ∈ Nℓ and λ ∈ Fh(n), we have an associated complex

C•(λ) =
⊕

µ�λ

Ss(µ)〈ℓ(µ)〉.

This complex is exact except in degree zero, where H0(C•(λ)) = Ds(λ). The underlying

graded character is as follows:

[Ds(λ)] =
∑

µ�λ

(−t)ℓ(μ)[Ss(µ)〈ℓ(µ)〉].

Proof. We first note that Theorem 6.26 provides BGG resolutions whose underlying

poset is Λh(∞,s). We note that Λh(n,s) ⊂ Λh(∞,s) is a cosaturated subset (namely, if

x∈Λh(n,s) and y ∈Λh(∞,s) with y <x in the Bruhat order, then y ∈Λh(n,s)). Therefore,
we have a functor

F+
n,s : Sh−mod→ Sh(n,s)−mod

and F+
n,sΔ(w) and F+

n,sL(w) for w ∈ Λh(n,s) are a complete set of standard and simple

Sh(n,s)-modules and F+
n,sΔ(w) = 0 and F+

n,sL(w) = 0 for w �∈ Λh(n,s) [22, Proposition
A3.12]. Moreover, we have that

Exti(Δ(w),M))∼= Exti(F+
n,s(Δ(w)),F+

n,s(M)))

for all i ≥ 0 and for all M ∈ Sh−mod by [22, Proposition A3.13]. Thus, the complex
F+
n,s(C•(1Sh)) is exact except in degree zero, where

H0(F
+
n,s(C•(1Sh))) = F+

n,s(L(1Sh)).

Now, we note that the identity coset, 1Sh , labels the fundamental alcove in our
alcove geometry. Thus, the simple module F+

n,sL(1Sh) is isomorphic to Ds(δk) for

δk = ((kh1),(kh2), . . . ,(khℓ)) ∈ Pℓ(n) under the isomorphism of Theorem 6.21. We thus

obtain the required resolution of the calibrated simple Ds(δk). We obtain the result for
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general calibrated simples (labelled by any λ ∈ Fh) by the translation principle of [10,

Proposition 7.4].

Corollary 6.28. Let λ ∈ Fh(n) and µ� λ. We have that

dimk(Ext
i
Hh(n,s)

(Ss(µ),Ds(λ))) =

{
1 i= ℓ(µ)− ℓ(λ)

0 otherwise.

Proof. This follows from Theorems 6.27 and 6.9 and application of [21, Theorem 5.3].

Finally, we now use our BGG resolutions to construct the characteristic-free bases of

Theorem C.

Definition 6.29. Given λ ∈ Fh(n), we define PathFh (λ) to be the set of all paths

T= (∅= T(0),T(1), . . . ,T(n) = λ)

for which T(k) ∈ Fh(k) for 0≤ k ≤ n.

Theorem 6.30. Let k be a field. Given λ ∈ Fh(n), the calibrated simple module Ds(λ)

has basis {ψS⊗Z k | S ∈ PathFh (λ)}. The action of Hn(s) is as follows:

yk(cS) = 0 ei(cS) = δi,res(S) ψk(cS) =

{
cSk↔k+1

if |res(S−1(k))− res−1(S(k+1))|> 1

0 otherwise ,

where Sk↔k+1 is the tableau obtained from S by swapping the entries k and k+1.

Proof. Since each µ � λ lies in an alcove, |Remr(µ)| ≤ 1 for each r ∈ Z/eZ. By the

branching rule [11, Proposition 1.26], each Ss(µ) restricts to be a direct sum of Specht

modules, and thus by Theorem 6.27, we have that

resHn−1(s)(C•(λ)) =
⊕

r∈Z/eZ
�r∈Remr(λ)

C•(λ−�r)

and therefore

resHn−1(s)(Ds(λ)) =
⊕

r∈Z/eZ
�r∈Remr(λ)

Ds(λ−�r),

where every simple on the right-hand side is labelled by some λ−�r ∈Fh(n−1). Thus, the

basis result follows by restriction. The action of the idempotents on this basis is obvious.

The other zero-relations all follow because the product has nonzero degree (whereas
the module Dn(λ) is concentrated in degree 0). Finally, assume |res(S−1(k))− res−1

(S(k+1))|> 1. The strands terminating at the kth and (k+1)th positions on the northern

edge either do or do not cross. In the former case, we can resolve the double crossing
in ψkcS without cost by our assumption on the residues and the result follows. The

latter case is trivial. Finally, notice that Sk↔k+1 ∈ PathFh (λ) under the assumption that

|res(S−1(k))− res−1(S(k+1))|> 1.
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Remark 6.31. One can lift all our results to the Cherednik algebra of G(ℓ,1,n). This

Cherednik algebra depends on ℓ parameters (c1, . . . ,cℓ) determined from the cylindric

charge s ∈ Zℓ. See [49, Section 6.2.1] for the formula for the parameter (c1, . . . ,cℓ) given s.
This setting is of interest because it allows one to deduce geometric applications of our

results, following the machinery of [33] and [13, Section 9] (but we do not explore this

here).
The category Os(n) of the cyclotomic rational Cherednik algebra of G(ℓ,1,n) (with

parameter as above) is a highest weight cover of Hs(n)-mod. The corresponding functor

KZ :Os(n)→Hs(n)-mod takes standard modules to the s-cell modules and sends simples
to simples or 0, and all simples in Hs(n)-mod are obtained this way [30]. Moreover,

assuming that si �≡ sj mod e for i �= j, the KZ functor is fully faithful on standard objects

[30, Proposition 5.9]. Therefore, we can lift our BGG resolution of Ds(λ) = KZ(L(λ)) to

a complex of standard modules, whose homology in nonzero degrees has proper support.
However, since the poset Λ = {µ | µ� λ} is saturated, all the simple constituents of all

the standard modules appearing in this complex have full support. This yields a BGG

resolution of L(λ), as well as all numerical consequences of geometric interest, such as
the Betti numbers of subspace arrangements, which may be deduced from having a BGG

resolution of a unitary Cherednik algebra representation of geometric origin. It would

be interesting to find explicit formulas, in the spirit of [26], for the maps in the BGG
resolution.

Moreover, in this setting the Ext-groups calculated in Corollary 6.28 can also be

computed using a cyclotomic version of Littlewood–Richardson coefficients; see [26,

Theorem 1.1]. As the authors of [26] observe, ‘for small values of ℓ and n, there is a
certain tendency for the dimensions of the relevant Ext groups are always 0 or 1’. It

is not at all evident from their formula that a multiplicity one result should hold for a

wide class of representations, such as those of full support. Our Corollary 6.28 provides
evidence for their postulation (which they posit in the context of arbitrary charges s∈Zℓ)

for representations with full support.

Finally, for level ℓ = 2 with a noncylindric charge s ∈ Zℓ, it is shown in [43] that all
unitary representations of Cherednik algebras with full support can be reduced to the

level ℓ = 1 case. Thus, for level 2, every unitary representation with full support of a

Cherednik algebra (regardless of the charge) admits a BGG resolution.

Appendix A. Unitary representations of the Hecke algebra of the symmetric

group

A.1. Preliminaries

Recall that the type A finite Hecke algebra Hq(n) is the subalgebra of Haff
q (n) generated

by T1, . . . ,Tn−1. For our purposes, it is better to realize Hq(n) as a quotient of Haff
q (n).

Indeed,

Hq(n)∼=Haff
q (n)/(X1−1),

and thanks to this, we have notions of calibrated and unitary Hq(n)-representations. Note

that in this setting the charge s consists of a single number s that we may assume to
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be 0, and the irreducible representations of Hq(n) are labelled by partitions obtained by

applying crystal operators f̃i to the empty partition.

A.2. Calibrated representations of Hq(n).

Let a ∈ Caff be a calibrated weight. It is clear that M[a] ∈Hq(n)-mod if and only if b1 = 1
for every b ∈ [a]. This means that, a1 = 1 and for i > 1 {qai,q−1ai}∩{a1, . . . ,ai−1} �= ∅.
Indeed, otherwise we would be able to find a sequence of admissible transpositions from

a to some weight b ∈ [a] with b1 = ai and ai �= 1, a contradiction. Inductively, we can see

that if M[a] ∈Hq(n)-mod, then for every i there exists mi ∈ Z such that ai = qmi .
Let e= 0 if q is not a root of unity or e > 0 minimal such that qe = 1. Let I =Z/eZ. We

will identify the weight a= (qm1, . . . ,qmn) with m= (m1, . . . ,mn) ∈ In. Then, similarly to

[50, Lemma 4.5]2 we can see the following.

Lemma A.1. Let m = (m1, . . . ,mn) ∈ In. Then, m is a weight of a calibrated Hq(n)-

module if and only if the following conditions are satisfied

• For every i < j, if mi =mj, then mi+1,mi−1 ∈ {mi+1, . . . ,mj−1} (that is, m is
calibrated)

• m1 = 0.
• For every i > 1, {mi−1,mi+1}∩{m1, . . . ,mi−1} �= ∅.

We let C⊆ Im be the set of weights satisfying the conditions of Lemma A.1. Note that if

m∈ C and si is an admissible transposition of m (that is, mi−mi+1 �=±1) then sim∈ C.
Thus, the set of irreducible calibrated Hq(n)-modules is parametrized by C/∼.

Now, let U ⊆ C be the set of weights appearing in unitary Hq(n)-modules. In general,

U is only a proper subset of C. For certain values of q, we do have U= C, as the following

result shows.

Proposition A.2. Let e > 0, and let q = exp(2π
√
−1/e). Then, U = C and an Hq(n)-

module is calibrated if and only if it is unitary.

Proof. By our choice of q, the only power of q whose real part is greater than that of

q is qe = 1. Now, let m ∈ C and i < j such that mi �= mj . Since qmi−mj �= 1, we get
ℜ(qmi−mj )≤ℜ(q). The result now follows from Lemma 2.22

Remark A.3. If we take another primitve eth root of unity, we may find calibrated

representations which are not unitary. For example, if e is odd and q = exp((e−
1)π

√
−1/e), then ℜ(qk) ≥ ℜ(q) for every k ∈ Z, so any unitary Hq(n)-module is one-

dimensional.

Calibrated modules for Hq(n) have been classified in previous work [40, 50] (as well as

being a special case of Theorem B).

Lemma A.4. If q is not a root of unity, then D(λ) is calibrated for any partition λ. If

q is a primitive eth root of unity, then D(λ) is calibrated if and only if |Bs(λ)|< e.

2Note that Ruff uses the terminology ‘completely splittable’, while we use ‘calibrated’.
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Our goal is now to use Lemma A.4 to completely classify of unitary representations of
Hq(n).

A.3. Admissible tableaux

Note that for k ≤ n we have a natural inclusion Hq(k) ⊆ Hq(n), and thus we have an
exact restriction functor Resnk :Hq(n)-mod→Hq(k)-mod. We will say that T ∈ Std(λ) is

q-admissible if, for every k, the representation D(Shape(T↓{1,...,k})) of Hq(k) is nonzero

and a subrepresentation of Resnk (D(λ)). Equivalently, this means that D(λ) is nonzero
and the box labelled by k is a good removable box of Shape(T↓{1,...,k}) for every k. If q

is not a root of unity, then every tableau on λ is q-admissible, but this is not the case if

q is a root of unity.
If D(λ) is calibrated, admissible tableaux correspond to weights as follows. Let T be

an admissible tableau of λ. Then, mT = (−ct(T−1(1)), . . . ,− ct(T−1(n))) is a weight of

D(λ). This defines a bijection between weights of D(λ) and admissible tableaux on λ.

Now, let us denote by C the column-reading tableau on λ, that is the tableau obtained
by placing {1,2, . . . ,λt

1} on the boxes in the first column, {λt
1+1, . . . ,λt

1+λt
2} on the boxes

in the second column, and so on; see Definition 1.9. The following result will be very

important in our arguments.

Lemma A.5. Assume that D(λ) is a calibrated Hq(n)-module. Then, the column-reading

tableau C on λ is admissible.

Proof. If q is not a root of unity, there is nothing to show. Let us assume that q is

a primitive eth root of unity so that |Bs(λ)|+1 < e. We claim that C−1(n) is a good
removable box of λ. To see this, note that, since |Bs(λ)|+1 < e, λ has at most one

removable box of each residue, so the claim will follow if we check that there is no addable

box of the same residue as C−1(n) to the left of C−1(n). But this is clear since the last
column of λ has at most (e−1)-boxes.

Now, D(λ \ {C−1(n)}) is a calibrated Hq(n− 1)-module. The column-reading tableau

of λ\{C−1(n)} is simply the restriction of the column-reading tableau of λ. So the result

follows by an inductive argument.

A.4. Unitary loci

In this section, we classify the unitary representations of Hq(n) for any q ∈ C×, n > 0.
Recall that it only makes sense to speak about unitary representations when q lies in the

unit circle, so the following definition is sensible.

Definition A.6 [53, 52]. Let λ ⊢ n be a partition. We define the unitary locus of λ to be

U(λ) := {c ∈ (−1/2,1/2] :D(λ) �= 0 is a unitary representation ofHexp(2π
√−1c)(n)}.

We will classify unitary representations via a complete, explicit description of the

unitary locus of every partition. To state our result, we first fix some notation. For
λ ∈ P1(n) with h(λ) = h ∈ N, we define the hook length of a node (i,j) ∈ λ as follows:

H(i,j)(λ) = λi+λt
j +1− i− i,
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and we note that |Bs(λ)| = H1,λh
. In what follows, we will set ℓ := H(1,1)(λ) and m :=

|Bs(λ)|.

Theorem A.7. Let λ be a partition. The unitary locus of λ is described as follows.

(1) If λ consists of a single row, then U(λ) = (−1/2,1/2].

(2) If λ consists of a single column, say λ= (1n), then U(λ) = (−1/2,1/2]\{±a/e : 1<

e≤ n, gcd(a;e) = 1}.
(3) Assume that λ is an almost rectangle, that is, λ has the form λ= (ax,(a−1)y) for

some a > 1,x > 0,y ≥ 0. Then

U(λ) = [−1/ℓ,1/ℓ]
⋃

{±1/L :m≤ L≤ ℓ}
⋃

{±d/m : gcd(d;m) = 1}.

Note that, in this case, m= x+y+1.

(4) Else, U(λ) = [−1/ℓ,1/ℓ]∪{±1/L :m≤ L≤ ℓ}.

Remark A.8. We remark that Theorem A.7 has appeared in work of Stoica [52] with
two differences. First, our conventions are dual to those of Stoica, so the statements differ

by taking the transpose of λ. Second, and most importantly, there is an oversight in [52,

Theorem 4.2], which does not consider elements of the form d/m in case (3) above. But

in this case, the representation D(λ) is one-dimensional, a fortiori unitary. The oversight
in [52] seems to stem from the computation of the branching rule for the Hecke algebra in

[52, Proposition 4.3]. Finally, we remark that Venkateswaran computed the unitary loci

under the assumption that q is not a root of unity in [54].

The proof of Theorem A.7 is contained in the next several lemmas. To start, we have
the following easy result, which covers cases (1) and (2).

Lemma A.9. The unitary locus of the trivial partition is U(n) = (−1/2,1/2]. The unitary

locus of the sign partition is U(1n) = (−1/2,1/2]\{a
d : e≤ n, gcd(a;e) = 1}.

Proof. The representation D(n) is always one-dimensional, while the representation

D(1n) is one-dimensional whenever it is defined, and it is defined if and only if q is

not an eth root of unity with e≤ n. The result follows.

From now on, we will assume that λ is neither the trivial nor the sign partition. Let us

start with the case when q is not a root of unity, equivalently, c is irrational.

Lemma A.10. Let λ be a partition of n, λ �= (n),(1n). Let c ∈ (−1/2,1/2] be irrational.

Then, c ∈ U(λ) if and only if c ∈ (−1/ℓ,1/ℓ) where, recall, ℓ is the length of the longest
hook of λ.

Proof. From the column-reading tableau of λ, we can see from Lemma 2.22 that D(λ)

is Hq(n)-unitary if and only if ℜ(qi)≤ℜ(q) for every i= 1, . . . ,ℓ. The result follows.

Remark A.11. Lemma A.10 also follows from the main result of [54], where the signature

of the form 〈·,·〉 on D(λ) is computed under the assumption that q is not a root of unity.
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Now, we need to consider the case of rational c, that is, when q is a root of unity. First,
we consider the case where |c| ≤ 1/ℓ.

Lemma A.12. Let λ �= (1n),(n) and c ∈ [−1/ℓ,1/ℓ]. Then, c ∈ U(λ).

Proof. In view of Lemma A.10, we only need to consider the case where q := exp(2π
√
−1c)

is a root of unity. Let e > 0 be minimal such that qe = 1. Since c ∈ [−1/ℓ,1/ℓ], we have

that e≥ ℓ. If either λt
1 < ℓ or ℓ < e, it follows from Lemma A.4 that Dλ is calibrated and

then, by Lemma A.5, that the column-reading tableau of λ is e-admissible. The result

now follows just as in the proof of Lemma A.10. If λ1 = ℓ = e, then the partition is the
one-row partition (e). But this is not e-restricted, and we are done.

As corollary, we note that [−1/ℓ,1/ℓ] ⊆ U(λ). Now, we take care of rational numbers

c ∈ (−1/2,1/2]\ [−1/ℓ,1/ℓ]. We separate in two cases, according to the denominator of c.

Lemma A.13. Let λ �= (1n),(n) and c= a
e ∈ (−1/2,1/2] with gcd(a;e) = 1. Assume that

e > ℓ. Then, c ∈ U(λ) if and only if c ∈ [−1/ℓ,1/ℓ].

Proof. Again, we have that the column-reading tableau is admissible and D(λ) is unitary

if and only if ℜ(qi)≤ℜ(q) for every i= 1, . . . ,H(1,1)(λ). The result follows.

Lemma A.14. Let λ �= (1n),(n) and c = a
e ∈ (−1/2,1/2] with gcd(a;e) = 1. If e < m,

c �∈ U(λ).

Proof. By Lemma A.4, D(λ) is not a calibrated representation of Hq(n), so it cannot be
unitary, either.

Lemma A.15. Let λ �= (1n),(n) and c= a
e ∈ (−1/2,1/2], with m≤ e≤ ℓ and gcd(a;e) = 1.

Assume also that λ is not an almost rectangle, as defined in the statement of Theorem A.7.

Then, c ∈ U(λ) if and only if a=±1.

Proof. Let q= exp(2π
√
−1c). Note that m= λt

1+#{i : 0<λt
i <λ1}. By our assumptions

on λ, the cardinality of the set {i : 0< λi < λ1} is at least 2. So we have e≥m> λ1+1.

In particular, λ is e-restricted, and, moreover, the column-reading tableaux is admissible.
Also note that, for every i, q−λt

i+iq−i = q−λt
i �= q±1. In other words, the permutation

sλt
1+···+λt

i
is admissible for the weight given by the column-reading tableau. Using

admissible permutations now, it is straightforward to see that λ is unitary if and only if
ℜ(qi)≤ℜ(q) for every i= 2, . . . ,e−2, and the result follows.

Finally, we deal with the case of an almost rectangle.

Lemma A.16. Let λ = (ax,(a− 1)y) for some a > 0,x > 0,y > 0, and let c = d
e ∈

(−1/2,1/2] with m≤ e≤ ℓ. Then, c ∈ U(λ) if and only if e=m or d=±1.

Proof. If e > m = x+ y+1, then we can proceed just as in Lemma A.15 to conclude

that c ∈ U(λ) if and only if a=±1. If e=m, note that D(λ) is the one-dimensional sign

representation of Hq(|λ|), so c ∈ U(λ), regardless of the value of the numerator a.

Theorem A.7 now follows from Lemmas A.9–A.16. Together with results from [24,

32], this implies the following result, that has been proven using different techniques by

Shelley–Abrahamson in [51], in the more general case of real reflection groups.
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Corollary A.17. Let c ∈ R, and let Lc(λ) be an unitary representation of the rational

Cherednik algebra Hc(n). Then, KZ(Lc(λ)) is either zero or unitary.

Remark A.18. We remark that if D is a unitary representation of Hq(n), it is, in

general, not possible to find a parameter c ∈ R with q = exp(2π
√
−1c) and a unitary

representation L of the rational Cherednik algebra Hc(n) such that KZ(L) =D. Indeed,

if q = exp(2aπ
√
−1/n) with gcd(a;n) = 1 and a > 1, it is not in general possible to find

a unitary representation of the Cherednik algebra whose image under KZ is the one-
dimensional trivial representation of Hq(n); see [32]. (We remark that our conventions

are transposed from those of [32].)

More generally, let W be a complex reflection group and c : S →C a parameter for the
rational Cherednik algebra, where S ⊆ W is the set of reflections. We assume that the

parameter c is real in the sense that c(s−1) = c(s) for every s ∈ S. Under this condition

on c, there is a notion of unitary representations of Hc(W ), as well as of Hq(W ), where

q is related to c via a precise exponential formula; see [30]. Let L be an irreducible
representation of Hc(W ) with full support. Let us say that L is quasi-unitary if KZ(L)

is unitary. This coincides with the notion of quasi-unitarity presented in [51, Definition

3.5.3] in the case when W is a real reflection group, and it is expected to coincide always.
It is easy to see that the socle of the polynomial representation is always quasi-unitary.

We expect, however, that for most parameters it is not unitary. See [28, 32, 33] for related

work.
Finally, this shows that the problems of determining unitary representations of the

Hecke algebra and unitary representations with full support of the rational Cherednik

algebra, while closely related, are not equivalent, and moreover none implies the other:

The set of unitary representations of the Hecke algebra is larger than that of fully
supported unitary representations of the Cherednik algebra, and there is not, to the

best of our knowledge, an explicit criterion to find which unitary representations of the

Hecke algebra indeed give unitary representations of the Cherednik algebra.
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