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a b s t r a c t 

Objective: This review aims to collate the current knowledge in the field of antimicrobial surfaces on dental 
implant materials, focusing on microbial population and functional responses, predominantly from omics-based 
studies. 
Design: Extensive searching of Scopus and Pubmed databases informed a narrative review on the antimicrobial 
impact of implant surfaces on the complex oral microbiome. 
Results: The awareness of this issue has led to considerable research resources being directed towards the aug- 
mentation of implant surfaces to counteract microbial colonization. Whilst the implant material itself has a direct 
influence on bacterial adhesion and viability, the surface finish and putative antimicrobial coatings are critical to 
countering early biofilm formation. Multiple modes of surface modification have been developed to counteract 
early colonization, including direct physical contact effect, such as anti-adhesion strategies and extract effects, 
through antimicrobial release chemistry or material leaching. These concepts deploy different techniques, in- 
cluding nano-texturing, surface chemistry alteration and controlled release, each with a diverse set of benefits 
and drawbacks. Novel surface finishes and coatings require investigation with regards to their influence on oral 
biofilms, whether on individual bacterial species or against mature biofilms. 
Conclusion: The search for optimal implant surfaces is necessary for the reduction of the peri-implantitis burden 
and the longevity of dental implants. To date, next generation sequencing methodologies, enabling a greater 
depth of understanding of the complex interactions between oral microorganisms, host response, and implant 
surface coatings are under used in this area of research. 
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Implants are becoming increasingly common in today’s populace,
ith reports in some groups of ∼1,000% increase in prevalence since the

urn of the century [41] . Projections based on a US cohort indicate the
otential for up to 23% of the partially edentulous population to opt for
ental implants to improve oral aesthetics [ 10 , 57 ], mastication ability
 51 , 70 ] and overall quality of life [ 57 , 65 ]. Ensuring longevity of these
mplants is crucial to positive outcomes, fulfilling patients’ expectations
f a life-long solution [58] and minimizing the risks and disruption as-
ociated with secondary surgeries [ 68 , 105 ]. Dental implant failure gen-
rally refers to a lack of fulfilment of the desired function of an implant
146] , clinically defined to include any of the following: pain on use, mo-
ility, bone loss > half the length of the implant, uncontrolled exudate or
omplete loss [104] . Failure rates are reported in the range of 5-10%,
ependent on a multitude of factors, including implant position, age,
Abbreviations: PiRC, peri-implantitis-related complex; SFE, surface free energy; CF
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ral healthcare and lifestyle choices [ 1 , 27 , 54 , 60 , 84 , 117 , 129 , 133 , 146 ].
moking and co-morbidities such as diabetes mellitus are also often as-
ociated with an increased risk of implant failure [ 6 , 37 , 152 ]. Failures
an occur due to a lack of osseointegration or peri-implant infection re-
ulting in a host immune response leading to bone resorption and desta-
ilization of the implant. 

An influential review of peri-implantitis risk factors by a panel of in-
ernational experts indicated potential alternative, non-microbiological
etiologies for peri-implantitis, including host foreign body responses,
here cellular invasion of implant materials is considered a defensive
echanism to protect surrounding tissues, titanium particle release in-
ucing osteoclastic host responses, overloading with occlusal forces, and
ven genetic predisposition, with cytokine polymorphisms associated
ith the disease [20] . Furthermore, they concluded that implant ma-

erial, shape and surface characteristics could all be associated with
ncreased risk of peri-implantitis. These ethiopathologies have been
U, colony forming units. 
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omprehensively reviewed elsewhere [ 20 , 48 ] and may contribute ex-
ensively to the peri-implantitis burden. However, here we focus on the
omplex microbial influence on implant environment and the interac-
ions associated with different surface configurations. 

Infections are often polymicrobial in nature, caused by the invasion
f bacteria into surrounding tissues. In the case of the oral cavity, the
ccumulation of microorganisms on the surfaces of teeth and soft tissues
esults in the formation of plaque or biofilm, creating anoxic niches re-
uired by many dental pathogens. In periodontitis and peri-implantitis,
tudies have suggested that Gram-negative, red complex pathogens such
s Porphyromonas gingivalis, Tannerella forsythia and Treponema denti-

ola proliferate in these anaerobic pockets [ 13 , 77 , 78 , 80 , 97 ]. Through
 plethora of virulence factors P. gingivalis has been shown to both in-
rease and evade the host immune response [ 2 , 56 ], as well as promote
steoclastogenesis through lipopolysaccharide activation of toll-like re-
eptors, stimulating bone resorption [ 72 , 95 ]. Along with caries, alveolar
one loss associated with periodontal disease is one of the primary rea-
ons for native tooth loss [ 112 , 118 ]. Similarly, peri-implantitis can be
escribed as inflammation of the tissues surrounding an implant and the
ssociated loss of periodontal bone (Renvert et al., 2018). 

The prevalence of peri-implant disease has been widely reported
 22 , 96 , 103 ], with a comprehensive systematic review and meta-analysis
y Rakic et al. determining high levels of heterogeneity amongst study
rotocols and definitions confounding results [128] . The study, includ-
ng 29 clinical studies, determined patient prevalence of 18.5%, whilst
ccurrence at implant sites averaged 12.8%. Nonetheless, the ranges
aried extensively, between 1-46% and 0.2-63% for patient and implant
evels, respectively. This level of inconsistency was attributed to a lack
f consensus in the definition and application of strict clinical parame-
ers. Therefore, adherence to the definition refined by a clinical working
roup into peri-implant disease research and its clinical and radiological
arameters (e.g., bleeding on probing and marginal bone loss > 2mm), is
ssential for translation of future studies [136] . Interestingly, this meta-
nalysis highlighted the implant surface type as crucial to disease status,
eporting significant reductions in peri-implantitis associated with mod-
rately rough surfaces compared to others. This is likely due to improved
sseointegration over smoother finishes. 
2 
As one of the primary aetiologies of peri-implant disease, a strat-
gy to counteract bacterial accumulation and infection must be con-
idered. There is an array of antimicrobial mechanisms attributed to
he prevention of microorganism proliferation, whether through phys-
cal or chemical disruption of cell integrity, or through inhibition of
ucleic acid and protein synthesis, cell adherence or metabolic path-
ays [ 71 , 76 , 142 , 156 ]. Although dental hygiene compliance remains
aramount post-implant, if the surfaces themselves can offer a bar-
ier to biofilm formation by harnessing these antimicrobial properties,
hen their long-term success rate can be improved. Therefore, the ma-
erial and surface coating of an implant is crucial to its integration
ith the bone and soft tissues, as well as its antimicrobial capabilities

o repel infection, ultimately supporting longstanding retention of the
mplant. 

The current breadth of material and surface modifications employ
 series of antimicrobial mechanisms, which can be divided into four
ain categories ( Fig. 1 ). These include the intrinsic properties of the

mplant material, surface contact effect, inhibition of surface adhesion
nd release of antimicrobial agents. Testing of these material properties
as often been reported through antibacterial effects on individual or-
anisms [ 21 , 38 , 93 , 151 , 157 ]. However, to closely imitate the complex
nteractions between microbial plaque and implant material in vivo , we
ust consider the polymicrobial nature of dental biofilms. 

While the presence and abundance of organisms is important, the
ontributions each make to metabolic pathways and environmental con-
itions is crucial to microbiome homeostasis or dysbiosis. The term mi-
robiome was originally coined by Joshua Lederberg and was defined
s “the ecological community of commensal, symbiotic, and pathogenic mi-

roorganisms that literally share our body ” [82] . Since the emergence of
ext generation sequencing and the development of more cost-effective
echnologies, the molecular analysis of the microorganisms and their ge-
etic material present in our body has expanded exponentially [66] . By
nabling detailed access to the complex interactions between microor-
anism and host, there is now a greater understanding of the synergistic
r antagonistic effects on the system in both health and disease. Fur-
hermore, distinctions can be made between the microbiomes of spe-
ific sites of the body, particularly divergent in the gut, skin, vagina
Fig. 1. Diagrammatic representation of dental 
implant material and surface effects on bacte- 
rial challenge in the oral cavity and their ad- 
vantages and disadvantages. Bottom left: In- 
trinsic contact effects of pure materials and 
their alloys can persist throughout the entire 
material for the implant’s lifetime. Top left: Ex- 
tract effect of implant material can impact the 
local environment through leaching of poten- 
tially bactericidal and immune response stim- 
ulating components. Bacterial exposure can re- 
sult in surface degradation and ion release. Ti- 
tanium ions have also demonstrated correla- 
tions with enriched peri-implantitis-associated 
pathogens. Bottom right: Differing nanostruc- 
tures can impact both the adhesion of bacte- 
ria and the cell wall through direct disrup- 
tion and lysis. Top right: Antimicrobial surface 
coatings can act upon contact with bacteria or 
release compound into the local environment 
through gradual degradation of bonds or active 
release through enzymatic cleavage or temper- 
ature/pH control. Ti – titanium, Ag – silver, CN 

– carbon nitride, N – nitride, Mn – manganese, 
Zn - zinc. 
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nd oral cavity, with each exhibiting discrete microbiota and metabolic
athways for health maintenance and immunological homeostasis [26] .
herefore, the location of an implant within the human body, even the
pecific position in the oral cavity, is of high importance when consid-
ring its colonization (or absence of), with the multitude of symbiotic
acteria, fungi, viruses, archaea and protozoa inhabiting the host pan-
icrobiome. This notion is further complicated by the intra-host diver-

ity and the variation in microbiota between diseased and healthy states.
or instance, in the oral cavity a healthy microbiome is generally com-
osed of the following genera: Streptococci, Actinomyces, Lactobacillus,

othia, Neisseria, Veillonella, Fusobacterium , to name a few [31] . How-
ver, when the environment becomes dysbiotic, due to dietary, oral hy-
iene or systemic host factors, a shift occurs in the microbe diversity and
bundance. For example, in periodontal disease, keystone pathogens in-
luding the red complex bacteria P. gingivalis, T. forsythia and T. denticola

ontribute to an altered microbial population [ 4 , 59 , 144 ]. Due to this
ide variation in organisms, implant surfaces with broad antimicrobial

ffects are likely to offer greater translational potential. Nonetheless,
he paradoxical nature of treating dysbiosis, often caused by antibiotics
n the first place, with further antimicrobial effects, must not be over-
ooked. 

In this review we discuss the available literature reporting the mi-
robiological response to the array of available implant materials and
urface characteristics, with a particular focus on oral biofilms and the
omplex network of interactions of the microbiome ( Table 1 ). 

icrobiological differences between periodontitis and 

eri-implantitis 

If we are to consider the potential microbial populations and antimi-
robial properties of new surface types, understanding the complexity of
n vivo oral biofilms is essential. Therefore, we must first delineate the
arget organisms relevant to implant disease. As a widely studied dis-
ase, periodontitis has well defined aetiological associations with oral
athogens [ 4 , 24 , 67 , 91 , 143 , 144 ] and is often used as a disease model
or peri-implant infection. However, the differences between the micro-
iota associated with periodontal disease and peri-implantitis is an area
or debate. There does not appear to be a consensus into whether the pe-
iodontal disease-associated organisms are the same as those in implant
nfections, with some studies reporting distinct taxa, [ 13 , 77 , 78 , 80 , 97 ]
hilst others report no significant differences [ 132 , 138 , 162 ]. Further-
ore, the high failure rates of periodontal disease-based treatments in
eri-implantitis cases suggests that there are major differences in their
esponses to treatment regimen. During a five-year follow up study,
eonhardt et al. identified only 6/26 subjects demonstrated bone mass
ncreases, post-targeted antibiotic therapy. However, therapeutic tar-
ets were periodontal disease-associated pathogens, which may be less
rucial in peri-implantitis, emphasizing the necessity for the use of dif-
erent targets with this disease [83] . Further exhibiting the potential
ifferences between the two diseases, this highlighted that for in vitro

isease modelling, careful selection of peri-implantitis specific organ-
sms is necessary, as opposed to assuming existing periodontal disease
odels/organisms will suffice. 

A seminal systematic review by Rakic et al. reported notable separa-
ion between the microorganisms associated with periodontal and peri-
mplant diseases, identifying 21 eligible studies describing the microbi-
logical content of supra- and subgingival plaque samples in healthy,
eriodontitis and peri-implant disease cohorts [127] . Of these studies,
5 targeted specific pathogens through culture, PCR, fluorescent prob-
ng, and DNA hybridization checkerboard methodologies. Whilst these
re valid approaches, they rely on pre-existing expectations of microbial
ontent, potentially missing crucial elements of the microbiome rele-
ant to disease. The six remaining studies utilised sequencing techniques
o harness a greater understanding of the incumbent microorganisms.
owever, only two featured > 10 peri-implantitis subjects, indicative of
n understudied area. Furthermore, extensive inter-study heterogeneity
3 
revented meta-analysis, whilst only one study indicated the implant
ype and material. Nonetheless, the review highlighted a distinction be-
ween periodontal disease and peri-implantitis, indicating the presence
f more anaerobic Gram-negative pathogens, such as P. gingivalis , and
 more complex population of bacterial species in implant associated
nfections. Whilst many studies of the peri-implant microbiome rely on
6S rRNA sequencing [ 5 , 7 , 43 , 79 , 149 ], this technique cannot outline the
etailed functional properties of the biofilms. Recently, Ghensi et al.
eported an extensive clinical study where shotgun metagenomics of
13 plaque microbiomes from healthy, mucositis and peri-implantitis
ites was performed, with contralateral controls [49] . Here they identi-
ed significant differences between peri-implantitis and healthy cohorts
oth in taxonomic composition and functionality. Seventy-one species
ere differentially abundant between the groups, with 10 of these con-

ributing to > 73% of peri-implantitis plaque composition. From these
ata the authors defined a signature set of species markers for disease
ersus health, termed the peri-implantitis-related complex (PiRC). The
ed complex pathogens, P. gingivalis, T. forsythia and T. denticola , along
ith common oral bacteria Prevotella intermedia, Fusobacterium nuclea-

um, Porphyromonas endodontalis and Fretibacterium fastidiosum encom-
assed the seven species PiRC. Through machine learning techniques
his study was able to identify that the functional contribution of the
iRC to the peri-implantitis biofilms was up to 64% of the total path-
ays identified. 

One direct comparison of periodontitis and peri-implantitis mi-
robiomes using pyrosequencing highlighted significant decreases in
pecies richness in implant-associated populations, with principal com-
onent analysis demonstrating clear distinctions between groups [80] .
nterestingly, peri-implantitis microbiomes were dominated by three
enera, Treponema, Streptococcus and Butyrivibrio , contributing 75% of
opulations. Conversely, periodontal disease communities consisted of
n average of ten genera for the same proportion. These different abun-
ances potentially reflect the smaller proportion of bacteria suited to
ulture on (or in the presence of) inorganic surfaces. Furthermore, the
mportance of the higher proportions of Streptococcus mutans in peri-
mplant versus periodontitis samples reported by Kumar et al., [80] is
upported by the findings of reductions in this bacterium post-treatment
122] . Additionally, the authors identified butyrate fermenting organ-
sms; Butyrivibrio, Burkholderia, Anaerococcus and Anaerovorax , solely in
eri-implant communities, suggesting this as a future area of research
s a potential therapeutic target. Nonetheless, substantial inter-subject
ariability was apparent, highlighting the heterogenous nature of mi-
robiome analyses. 

If we accept that there are likely differences between peri-implantitis
nd periodontal disease, we next must consider the reasoning behind
his. Since the origin of biofilms in both circumstances is likely to be
rom the same source as in health or periodontitis, the obvious differ-
ntial factor is the composition of material surfaces, whether mineral,
rganic or inorganic in nature. 

mplant material interactions 

The major differences to consider between implant materials and
ative teeth are their composition and structural influence on the to-
ography of the external surface. Human teeth are primarily composed
f the biomineral hydroxyapatite and organic collagen [14] . The sur-
ace is comprised of a network of misaligned crystals that produce
ard, smooth enamel surfaces, accommodating to microbial plaque
ormation. 

The inherent constituents of an implant material can be biologi-
ally inert, in the case of titanium, or exhibit fundamental antimicrobial
roperties. Therefore, the selection of primary implant material may be
rucial to the prevention of biofilm accumulation and subsequent peri-
mplant disease, promoting longevity. Whilst inert substances may ben-
fit from an absence of cytotoxic effect on host cells, neither will they
mpact on exogeneous cells, such as bacteria. 
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Table 1 

List of studies using molecular and omics methods for the comparison of dental implant materials. Publications were identified via extensive searching of Scopus and 
Pubmed databases, with studies included that compared complex microbiome data between multiple implant surface types/finishes 

Authors 
Material/Surfaces 
Tested Methodologies Research/Clinical Observations Molecular Microbiological Observations Citation 

Liu et al. [92] Ti vs Ti-Cu implants Canine ligature model and 
sucrose supplementation (3 
month follow up). 16S rRNA gene 
sequencing (V4 region), Illumina 
HiSeq 2500 platform. Sequences 
aligned to KEGG database by 
Diamond. 

Histopathological and clinical 
observations indicated healthy 
tissues in Ti-Cu subjects vs 
peri-implantitis associated with 
Ti implants. 

Ti-Cu displayed enriched 
health-associated genera: Prevotella, 

Filifactor, Catonella and Bergeyella . Ti-Cu 
also harboured increased proportions of 
Proteobacteria and Verrucomicrobia , 
capable of methane removal. Ti 
demonstrated greater abundance of 
Sphaerochaeta and Synergistaceae , able to 
utilize sucrose and galactose. 

[92] 

Shokeen et al. [141] Ti-CN vs Ti-N disks In vitro disk model, human saliva 
+ /-0.5% sucrose or mannose 
(Days 1, 3 & 7). Crystal violet 
assay. 16S rRNA gene sequencing 
(V4 region). QIIME2 analysis. 

Biofilm biomass on Ti-CN was 
significantly reduced vs Ti-N 

Comparable species-level abundance 
observed between surfaces. Carbohydrate 
supplementation reduced diversity in both 
surfaces, Streptococci and Lactobacillus 

fermentum proliferated. Ti-CN 
demonstrated greater biofilm biomass 
with increased hydrophilicity or surface 
free energy suggested as mechanism. 

[141] 

Sun et al. [147] Mechanically 
polished Ti vs TiO 2 

nanotubes 

Canine model (8 week follow 

up). Supra- and sub-mucosal 
plaque collected. Multi-omics 
approach. 16S rRNA sequencing 
(V3-V4 region), Illumina MiSeq 
with Mothur and Qiime OTU 
analysis. Comparative 
metatransciptomics: RNA 
sequencing, Illumina HiSeq2000. 
GO and KEGG analysis. 

No significant differences in 
clinical evaluation. 

In vitro testing revealed reduced bacterial 
numbers. However, genomics approaches 
indicated no significant differences in 
microbial composition at phylum or genus 
level between surfaces. Gene expression 
showed down regulation of pathogen 
invasion and bacterial migration 
pathways with TiO 2 nanotubes. 

[147] 

Daubert et al. [29] Human Ti implants Ten-year clinical follow up study 
of 36 patients with 61 implants. 
16S rRNA sequencing analysis. 
Dissolved Ti analysis via ICP-MS. 

High Ti levels in plaque are 
associated with peri-implantitis. 

Significant correlation between the 
presence of dissolved Ti in the oral cavity 
and peri-implantitis, observed in 40% of 
peri-implantitis sites. Ti enriches 
peri-implantitis taxa. Veillonella spp. 
prevalence directly correlated with Ti 
quantity. 

[29] 

de Avila [30] Machined pure Ti vs 
zirconia abutments 

In vitro biofilm disk model. 48 hr 
incubation of a cultivable 
microbial saliva community. 
Denaturing gradient gel 
electrophoresis of 16S DNA. 

Ti demonstrated a 6.1-fold 
reduction in bacteria vs zirconia. 

Similar distributions of microbes were 
observed between materials, both in early 
and mature biofilms. Authors suggest that 
comparable low surface polarities 
between Ti and zirconia might explain the 
findings. 

[30] 

Nascimento et al. 
[109] 

Zirconia vs 
machined Ti vs cast 
Ti abutments 

Randomized clinical cross-over 
with test materials in intra-oral 
splints for 24 hrs. 38 species DNA 
checkerboard hybridization 

Cast Ti (2.21 × 10 5 ) 
demonstrated significantly 
greater bacterial numbers than 
mechanically polished Ti 
(1.13 × 10 5 ) or zirconia 
(0.74 × 10 5 ). Cast Ti showed 
greater incidence of species vs 
polished Ti or zirconia. 

Only Fusobacterium nucleatum, Tannerella 

forsythia, Staphylococcus aureus, 

Streptococcus gordonii, Streptococcus 

parasanguinis, Neisseria mucosa, 

Pseudomonas aeruginosa and 
Peptostreptococcus anaerobios 

demonstrated non-significant differences 
between zirconia and both machined and 
cast Ti. Dominant species differed: 
Streptococcus mitis - zirconia, 
Porphyromonas endodontalis - machined-Ti 
and Actinomyces actinomycetemcomitans 

for cast-Ti. 

[109] 

Van Brakel [154] Zirconia vs Ti 
abutments 

Two-week and 3-month follow up 
of 20 patients with 2 dental 
implants each. Real time PCR of 
16S rDNA for 7 oral pathogens. 

Healthy tissue observed with 
both abutment types. Mean 
probing depth slightly higher for 
Ti (2.2 mm) vs zirconia (1.7 mm). 

Minimal difference observed between 
materials regarding the abundance of key 
periodontal pathogens P. gingivalis, A. 

actinomycetemcomitans, Prevotella 

intermedia, Treponema denticola and T. 

forsythia . 

[154] 

Abbreviations: Ti - titanium, Cu - copper, N - nitride, CN - carbon nitride, KEGG - Kyoto Encyclopedia of Genes and Genomes, OTU - operational taxonomic units, 
GO - Gene Ontology, ICP-MS - Inductively coupled plasma mass spectrometry. 
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itanium alloys 

Titanium is one of the most widely used medical implant materi-
ls, [ 94 , 164 ] with the grade V alloy Ti-6Al-4V most commonly used in
entistry [148] . Due to favourable mechanical properties, such as high
ensile strength and a corrosion-resistant layer of inert titanium oxide,
itanium offers strong biocompatibility and a robust structure. Further-
ore, titanium alloy assembly can be altered due to the ability to shift
4 
rom 𝛼 or 𝛽-phase dependent on the manufacturing conditions [153] .
y changing the structural arrangement, the properties of the alloy can
e optimized for a given purpose. 

Identifiable differences between titanium dioxide layers and or-
anic tooth surfaces suggest that compositional variance between
eri-implantitis and periodontal disease biofilms likely originates
rom adhesion disparities, despite both being coated in a salivary
ellicle [78] . 
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Much like cytotoxic effects, antimicrobial properties can be delin-
ated into the direct impact on microorganisms upon contact and the
nfluence on the surrounding environment (extract effect). 

itanium alloy contact effect 

When considering the propensity for microbial adhesion and growth
n titanium implants, the focus is the direct contact effect. Particularly
n dental implants where they will be constantly challenged by the pres-
nce of bacteria from the oral cavity. Therefore, substantial research
fforts have focused on this effect in titanium and its alloys, although
ften restricted to selected bacteria. 

Supplementation of titanium with additional metals demonstrat-
ng antibacterial properties, such as Ag, [ 25 , 69 ] Cu, [ 11 , 93 , 120 , 130 ,
59 , 165 ] manganese [18] and Zn, [90] add persistent antimicrobial
otential to the core implant material. Compared with surface release
hemistry, which suffer from a limited life span, antimicrobial alloys
ave no loss of efficacy through degradation as the effect can be im-
arted through the entire material. 

There is a plethora of research focusing on the antimicrobial
ffects of Cu supplementation into titanium implants [ 11 , 93 , 120 ,
30 , 159 , 165 ]. Zhaung and colleagues developed a copper Ti-6Al-4V al-
oy demonstrating a sustained release of Cu 2 + ions [165] . Here they
ocused on medical implants, inserting rods into rat femurs in an in vivo

mplant-associated infection model. Although not representing a dental
etting, the alloy demonstrated significant reductions in biofilm biomass
nd down regulation of biofilm-associated genes. Liu et al. investigated
he antimicrobial properties of a combination of Cu and pure titanium
gainst known oral pathogens, S. mutans and P. gingivalis , observing only
3.37% and 26.9% of glucosyltransferase gene expression versus Ti, re-
ponsible for extracellular polysaccharide contribution to biofilm for-
ation [93] . The aforementioned study utilized transmission electron
icroscopy to highlight morphological changes in both pathogens, with

bservations of compromised cell walls, suggesting a mechanism where
u 2 + effects the membrane, resulting in leakage and DNA synthesis in-
ibition. 

A recent study from Liu and colleagues reported 16S rRNA gene se-
uencing data for comparisons of titanium and Ti-Cu, implanted into a
og ligature model [92] . The study determined that Ti-Cu reduced bac-
erial populations in polymicrobial infections versus Ti, with significant
nrichment of health-associated genera; Prevotella, Filifactor, Catonella

nd Bergeyella . Furthermore, detailed metabolic pathway analysis re-
ealed significant differences in carbohydrate metabolism between the
wo implant materials. The authors proposed that homeostasis was
aintained through carbohydrate adherence to the implant surface, pro-

iding metabolic targets for the tricarboxylic acid cycle, in turn reducing
cidification of the local milieu. The findings also revealed that Ti-Cu
arboured increased proportions of Proteobacteria and Verrucomicro-
ia, capable of methane removal, reducing its availability to anaerobic
athogens, suggesting that these organisms were enriched due to copper
on release from the implant surface. Conversely, titanium implants had
reater abundance of acidogenic and anaerobic genera, such as Sphae-

ochaeta and Synergistaceae , capable of utilizing sucrose and galactose,
hilst further contributing to oral acidification and pathogen enrich-
ent. 

Whilst there is a consensus for the antibacterial properties of Cu,
s well as an observed lower toxicity compared to Ag, [130] both the
oncentration and manufacturing process can alter the efficacy. Tao
t al. reported 100% killing of S. aureus and Escherichia coli with Ti-
Cu, [151] whilst others have reported optimum antibacterial effect at
0% Cu [ 11 , 47 ]. However, the desired mechanical properties start to
eteriorate at these concentrations, so Fowler and colleagues have sug-
ested the use of Ti-3Cu for dental implants [47] . Post-manufacturing
reatments can also influence the material properties, with Peng et al.
bserving the effects of annealing temperature on microstructure, me-
hanical properties and antimicrobial ability [120] . They determined
5 
hat Ti 2 Cu alloys treated at higher temperatures (860-910°C) exhibited
inimal antibacterial effects against S. aureus . However, those treated at
40°C displayed in vitro biofilms only 40-55% the thicknesses of Ti-6Al-
V comparators. Manufacturing conditions can contribute extensively to
aterial characteristics, with the predominance of 𝛼-phase Ti 2 Cu gener-

ted by lower annealing temperatures potentially leading to preferential
acterial adherence. 

Enhanced tribological surface coatings, such as titanium nitride (Ti-
) or titanium carbon nitride (Ti-CN) [139] have demonstrated the po-

ential for biomass reductions on implant materials [ 52 , 141 ]. Further-
ore, Shokeen et al. identified significant decreases in biofilm biomass

n Ti-CN disks versus Ti-N via crystal violet assay [141] . However,
ore detailed investigations using 16S rRNA analysis showed compa-

able species-level abundance for both materials, increasing in diver-
ity over time. Interestingly, the addition of the carbohydrates, glucose
nd mannose reduced diversity indices and allowed Gram-positive or-
anisms, such as Streptococci and Lactobacillus fermentum to proliferate.
onetheless, whilst the biomasses differed, the microbial compositions
etween the two materials remained very similar, suggesting that the
ydrophilic nature of the rougher Ti-CN surface, or even the surface
ree energy (SFE) may have impacted the strength of bacterial adher-
nce [141] . 

Whilst there are copious studies investigating the anti-adhesive
bilities of nano-texturing implant surfaces with various structures,
uch as nanotubes, [ 42 , 61 , 88 , 108 , 121 ] pillars [ 21 , 64 , 160 ] and grooves,
44] these tend to report findings for individual bacteria as opposed to
 more clinically reflective complex community. It is not completely un-
erstood why nanostructures produce anti-adhesive properties, but it is
otentially related to the hydrophilicity and negative charge associated
ith the surface [88] . Cao et al. reported interesting findings where

pear-like structures were more effective at reduced Staphylococcus epi-

ermidis biofilms than pocket-based architecture, likely due to the phys-
cal disruption caused to bacterial cells [21] . However, they discovered
hat killing efficacy was not sustained, as dead cells began to block the
anostructures and allow substantial biofilm accumulation, highlighting
hat no single modification may suffice. 

One recent study used a canine model to investigate the differen-
ial gene expression in plaque samples from mechanically polished tita-
ium implants and a TiO 2 nanotube coated surface [147] . Interestingly,
hilst in vitro testing demonstrated a promising antimicrobial effect as-

ociated with the nanotube surface, the multi-omics approach revealed
o significant impact on microbial composition. However, gene expres-
ion analysis identified inhibition of bacterial migration and pathogen
nvasion pathways, whilst a mechanical impact on cell membranes were
bserved with the TiO 2 nanotubes. Although only three replicates were
ested, this further highlights the requirement for implant material test-
ng against complex, polymicrobial biofilms to observe a more accurate
ssessment of novel surfaces. Unfortunately, notwithstanding the afore-
entioned study, there is a distinct absence of reports assessing nanos-

ructure influence on complex bacterial communities, as found in the
ral cavity. Whilst there are endless parameters associated with nan-
texturing, such as nanotube diameter, spacing and groove depth, that
an impact adhesion and biofilm formation on implants, [ 42 , 108 , 121 ]
etailed microbial population studies would provide great insight into
hese types of surface enhancements. 

itanium extract effect 

Implant materials subjected to continually shifting environmental
onditions and microbial exposures are at risk of degradation and the
ndesirable detrimental release of particles, unfortunately titanium is
o different. 

Titanium surfaces may be considered to leach ions into solution,
 19 , 74 , 75 , 119 , 155 ] even though the formation of a titanium oxide layer
ffers some protection against this. Sridhar et al. demonstrated the ca-
ability of S. mutans to corrode titanium surfaces, identifying a potential
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ource of particle release [145] . A recent ten-year follow up study of ti-
anium implants focused on the relevance of dissolved titanium in the
ral milieu and indicated a significant association with peri-implantitis
roups and its presence in 40% of peri-implantitis sites [29] . Further-
ore, direct correlations were observed between titanium quantities

nd microbiome composition, with Veillonella spp. demonstrating an el-
vated prevalence in its presence. Moreover, studies have shown that ti-
anium particles can elicit proinflammatory responses [ 123 , 155 ]. Petter-
on et al. revealed IL-1 𝛽 activation in an in vitro macrophage model stim-
lated by titanium particles, but interestingly, not from cobalt-chrome.
hese findings reveal potential differences in the host immune response
o non-biological implants and teeth, with dysbiosis proving to exac-
rbate this. The combination of this divergent immunological environ-
ent and the impact of implant material’s properties on the early col-

nizer’s ecosystem serves to shape the peri-implantitis microbiome dif-
erently to one of periodontal disease. 

irconia 

Zirconium dioxide (zirconia) is a bioceramic alternative to titanium,
sed widely in dental implants due to its non-cytotoxicity, strong bio-
ompatibility, and provision of good aesthetics [ 28 , 140 ]. Modern im-
lants are often composed of aluminium oxide toughened or yttria-
tabilized zirconia, combining the temperature resistant properties of
eramic and fracture-proofing of metal [53] . 

itanium vs zirconia antimicrobial comparisons 

The research is not clear as to whether zirconia exhibits comparable,
r even greater antibacterial effects than titanium, with contrasting find-
ngs reported in the literature. [ 30 , 109 , 134 , 154 ] Here we outline sev-
ral studies investigating the microbial population differences on these
urfaces, although complex microbiome comparison studies are lacking.

In a complex human saliva-seeded model, de Avila and colleagues
bserved 6.1-fold reductions in bacterial adherence on pure titanium
ersus zirconia disks, as well as decreases in biofilm mass and density
ia confocal laser scanning microscopy and crystal violet assay. [30] In-
erestingly, they reported no differences in taxonomic profiles, only re-
uced numbers with Ti. Whilst roughness characteristics were matched
etween variables, the authors suggested that increased hydrophobic-
ty and surface tension due to differing chemical compositions led to an
mproved electrical conductivity and greater bacterial adherence with
irconia. The importance of surface characteristics, such as SFE should
e considered, particularly as pre-incubation with saliva to form a pel-
icle may impact on SFE and any differences between implant materials
ould be masked due to comparable cell wall interactions with the pel-
icle. [ 81 , 131 ] Nonetheless, to replicate in vivo scenarios in vitro , this
ellicle is essential, so the pellicle-implant interaction should always be
onsidered. 

Conversely, Roehling et al. determined significant reductions in both
-species and complex human plaque-derived biofilm thicknesses on zir-
onia compared with Ti, 8.41 μm vs 13.12 μm and 9.04 μm vs 13.42
m; respectively. [134] Unfortunately, no species analysis was per-
ormed, and the short incubation period of 72 hours may not be suf-
cient to establish the differences generated by the slow growing anaer-
bic pathogens, such as P. gingivalis . Nascimento et al. implemented a
andomized cross-over clinical investigation using abutment material
isks on splints, inserted into six participants’ mouths. [109] Notwith-
tanding the limited number of participants, the findings indicated wide
arying effects between zirconia and both machined and cast Ti, with
nly F. nucleatum, T. forsythia, S. aureus, Streptococcus gordonii, Strep-

ococcus parasanguinis, Neisseria mucosa, Pseudomonas aeruginosa and
eptostreptococcus anaerobios demonstrating non-significant differences
etween materials out of 38 species tested by DNA checkerboard hy-
ridization. While zirconia exhibited the lowest total colony forming
nits (CFU) 0.74 × 10 5 , machine titanium performed better than cast
6 
itanium (1.13 × 10 5 vs 2.21 × 10 5 CFU). Interestingly, each of the ma-
erials harboured a different dominant species, reported as Streptococ-

us mitis, P. endodontalis and Actinomyces actinomycetemcomitans for zir-
onia, machined-Ti and cast-Ti respectively. Nonetheless, only selected
rganisms were tested, and the methodology was limited to a detection
evel of greater than 10 4 CFU, indicating that some key contributors
ay have been neglected. 

However, one study reporting two week and three month follow-ups
f 20 patients with either zirconia or titanium implants identified very
ittle difference between materials regarding the abundance of key peri-
dontal pathogens P. gingivalis, A. actinomycetemcomitans, P. intermedia,

. denticola and T. forsythia [154] . Nevertheless, mean probing depths
ere higher with titanium implants (2.2 mm vs 1.7 mm for zirconia),

uggesting alternative contributors to gingival inflammation. Further-
ore, a study incubating materials in intra-oral splint devices for 60
ours reported reduced bacterial counts on Ti-N (1 × 10 9 CFU) and Zr-
 (1.2 × 10 7 CFU) versus titanium alone (9.8 × 10 10 CFU) [52] . 

Whilst investigating pellicle formation using radio-labelled S. mu-

ans and A. naeslundii , Lima et al. indicated differences in the early colo-
izer proportions between hydroxyapatite and titanium or zirconia sur-
aces [89] . They demonstrated that hydroxyapatite surfaces followed
he well-defined early colonization progression of Streptococci and Acti-

omyces co-aggregation, however, inorganic implant surfaces showed
ess reliance on the former and more of a co-relationship with Veillonella

pp. 

ntimicrobial agent release 

Developing implants with antimicrobial release functionality offers
rotection from planktonic microbes before they can adhere. The deliv-
ry system of this antimicrobial compound is crucial to the longevity
f effect. By functionalizing a surface with a degradable, rapid release
hemistry, an implant can secrete a considerable antimicrobial dose in
he early stages, post implantation, thus providing protection against
urgical site infection. However, since peri-implantitis is associated with
ate-failure, these methods may result in early depletion of the active
ompound, exposing an implant to unimpeded biofilm growth and sub-
equent infection. Whilst a burst-release system has its advantages, com-
ining this with other antimicrobial coating methods for longitudinal
mplant protection is preferable. Unfortunately, there is a paucity of re-
earch studies utilizing metagenomic approaches for the investigation of
ntimicrobial agents from dental implant surfaces. This is an area of re-
earch requiring further attention to report the efficacy of these coatings
gainst complex biofilms. 

Nonetheless, research using less complex microbial models remains
nformative to a certain extent. Wu and colleagues assessed an N-
alamine polymeric coating of titanium implants with antimicrobial ef-
cacy in both release into the proximal milieu and direct contact ef-

ect [157] . This coating demonstrated reductions of planktonic S. aureus

nd P. gingivalis populations by 64% and 42%, respectively. By deplet-
ng populations prior to contact, the potential for adhesion to implant
urfaces is reduced before contact is made. Indicating a surface persis-
ence of up to 16 weeks, the N-halamine coating eliminated a further
6% and 91% of S. aureus and P. gingivalis , respectively. Two-pronged
ntimicrobial approaches, such as this, show promise for the control of
ral biofilms, however, since peri-implantitis is often responsible for late
mplant failure, a lifespan of beyond 16 weeks would be preferable. 

If prolonging the lifespan of implant coatings is the ultimate objec-
ive, then utilizing response release chemistry to coordinate antimicro-
ial dosing offers value. By harnessing alterations in the local milieu,
uch as temperature [86] and pH changes, [38] to trigger compound
elease, the antimicrobial properties of a surface may be preserved until
equired. Dong and colleagues developed a silver nanoparticle release
ystem, connected with a pH-sensitive acetal linker molecule, which
leaved upon environmental reductions to pH 5.5, akin to bacterial acid-
fication in caries-associated organisms [38] . Whilst the authors’ have
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emonstrated effective killing of both S. aureus and E. coli , evidence of
he antimicrobial effect of this coating against dental caries-specific or-
anisms would be invaluable in its evaluation for use in oral implants.
hilst this concept demonstrates promise, when considering potential

ental applications, it is conceivable that unintentional release may oc-
ur due to ingestion of acidic foods or those with high temperature,
hich could reduce the longevity of coating. Therefore, more specific

elease strategies have been proposed. Yuan et al. linked vancomycin to
mplant surfaces using a combination of chitosan and hyaluronic acid
163] . By exploiting the release of bacterial-specific hyaluronidase en-
ymes to free the antimicrobial, this study demonstrated substantial re-
uctions in S. aureus both in vitro and through in vivo rat models. Again,
here is minimal data reporting the efficacy of these coatings for complex
iofilms, where detailed metagenomic data could enlighten the mecha-
isms further. 

linical trial evidence 

Several clinical trials have investigated the accumulation of plaque
n different implant surfaces. However, there is no clear consensus as
o the influence of the biomass on bone resorption and implant fail-
re. The findings of Quirynen et al. support the in vitro correlations of
oughness and bacterial load, reporting 25 times more microorganisms
n roughened surfaces compared to standard abutments, with a reduced
occoid population, indicative of a more mature biofilm [125] . Nonethe-
ess, surface roughness does not always correlate with clinical impact, as
utlined by two longitudinal follow ups of randomized clinical trial co-
orts [ 32 , 98 ]. Higher plaque indices were reported for dual acid-etched
urfaces, but these did not correlate with deleterious impact on oral tis-
ue health, and even demonstrated reduced bone resorption in some
nstances. Alternatively, a five-year randomized clinical trial reporting
n 48 minimally or moderately rough implants in 18 patients identi-
ed no significant differences in bacterial populations determined by
PCR [126] . Interestingly, they described greater bone loss in rougher
mplants in the partially edentulous group, indicating the complex in-
uence of a combination of factors in the onset of peri-implant disease.

Importantly, Bollen et al. tested the hypothesis that a surface rough-
ess threshold of 0.2 μm was sufficient to minimise bacterial adhesion
17] . Here, the authors observed minimal differences in bacterial load
etween machine titanium (Ra = 0.2 μm) and a highly polished ceramic
Ra = 0.06 μm). They reported slightly elevated populations of Gram-
egative organisms, but none of these were the common oral pathogens.
herefore, ultra-smoothness of surfaces may not be a necessary charac-
eristic for anti-biofilm properties. 

dditional factors for consideration 

Microbiological factors are not the only key elements to implant suc-
ess. There is a recent trend identifying the role of epigenetic mecha-
isms, such as methylation and microRNA influence on osseointegra-
ion, with evidence of titanium surface functionalization with microR-
As increasing osteogenic gene expression [ 34 , 99 ]. 

Also, whilst we might naturally consider the degree of inflamma-
ory response induced by the contrasting bacterial accumulations on
ifferent materials, the potential pro-inflammatory responses associated
ith the actual implant surface may be vital to implant survival. Menini
nd colleagues highlighted the differing macrophage responses associ-
ted with four titanium and one zirconia implant [100] . Although min-
mal pro-inflammatory responses were observed, one titanium implant
nduced significantly increased IL-1 𝛽 and IL-6 expression, potentially
ue to different surface microstructures on this implant type. A recent
tudy also demonstrated divergent pro-inflammatory responses between
leven titanium implant variants, both in vitro and in vivo , highlighting
he multifaceted influence of not just hydrophilicity, but surface topog-
aphy and composition [3] . These differences could be compounded by
7 
acterial activation of immune responses. Furthermore, Morra et al. re-
orted varying bacterial endotoxin (e.g. lipopolysaccharide, lipoteichoic
cid, peptidoglycan) adherence across machined, sandblasted and acid-
tched titanium surfaces [106] . Machined surfaces stimulated increases
n macrophage expression of pro-inflammatory cytokines, IL-6 and IL-
, by up to 30- and 100-fold, respectively. These material differences
ust be considered, alongside the direct bacterial stimulation as to the

uitability of an implant. 

eri-implantitis modelling 

Whilst in vitro modelling will never reflect the entire complexity of
he in vivo situation, the movement away from the ethical issues of an-
mal studies, and the requirement for extensive medical device testing
rior to implantation, indicates the necessity for laboratory simulations.
o offer insight into how different surface finishes interact with both
ost and microbial cells, in vitro modelling of responses has substantial
alue in both health and disease. Here we outline the models reported
n the literature. 

By facilitating reproducibility, control of variables and environment,
ultiple hypotheses can be tested in the absence of any potential bias

rom cohort characteristics. Whilst clinical trial samples directly from
he human oral cavity are invaluable in the investigations of oral mi-
robiota and the interactions with the host, there are many instances
here this is not achievable, whether due to safety, ethics or logistics.
urthermore, whilst animal models may proffer an alternative, they too
re hindered by ethical issues, the lack of direct translatability with hu-
an response, high-expense, intensity of labour and the specialist skills

nd facilities required [114] . Thus, the value of in vitro models is further
ighlighted. To ensure that modelling reflects the environment in vivo ,
omplex multi-species biofilms must be used. 

The multiple cell types and immunological response of the oral
ucosa, as well as the wide heterogeneity in microorganism popula-

ions across individuals [ 87 , 110 , 111 ] ensures that in vitro modelling
f oral disease is extremely challenging [50] . Selection of the right
odel for the experimental requirement is essential, with simulations

arying in complexity from simple two-dimensional oral biofilm mod-
ls, [ 46 , 102 , 161 ] to complex three-dimensional organotypic co-culture
eplicas, [ 39 , 63 , 101 , 113 ] often more reflective of true mucosal response
158] . Simple, single species co-culture models will not represent the
omplexity of interactions in vivo , however, can be a useful screening
est to assess the interactions between individual bacteria and epithelial
ells, for instance. Three-dimensional models have been used to inves-
igate oral disease through fibroblast and oral keratinocyte cell lines
t the liquid surface interface [ 15 , 16 , 39 , 137 ]. Whichever the model of
hoice, the use of saliva is essential to reflect the environment in vivo ,
ither through provision of a cocktail of proteins, mucins, enzymes and
mmunoglobulins to allow for early colonizer adherence, or to enable
he establishment of complex communities representative of the oral
icrobiota at the time of sampling [62] . 

Bodet and colleagues used both macrophages and epithelial cells to
easure inflammatory responses to periodontal pathogens P. gingivalis,

. denticola and T. forsythia [ 15 , 16 ]. This work highlighted the impor-
ance of balancing of the eukaryotic cell lines, as differing ratios pro-
uced different strengths of immune response. Differing responses to
odel types have also been observed when testing similar variables. Pin-
ock et al. embedded fibroblasts in a collagen matrix, adding a surface
ayer of epithelial cells to form an organotypic model to test response to
. gingivalis exposure [124] . Here, they demonstrated three-times cellu-
ar survival rates and reduced cytokine degradation compared to mono-
ayer culture. Furthermore, Gursoy et al. observed divergent responses
f a similar epithelial model to F. nucleatum influence versus a two-
imensional setup [55] . A further consideration for these oral co-culture
odels is the balancing of the cell line growth conditions and the anaer-

bic environment, essential for many periodontal pathogens. Although
nce part of a complex biofilm, anoxic niches will form, the oxygen re-
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uired for Eukaryotic cell line growth will impact on the behavior of
rganisms such as P. gingivalis , which has been demonstrated to alter its
ene expression in the presence of low levels of oxygen [ 35 , 85 ]. 

Choice of cell line will also impact on the results from in vitro

odelling experiments. Primary cells are closely reflective of in vivo

esponses; however, it can be difficult to maintain their consistency
nd can quickly alter phenotype after several passages [ 8 , 116 ]. There-
ore, immortalized cell lines can offer easily culturable alternatives, de-
ivering consistent behaviours. However, there have been demonstra-
ions of morphological and genetic differentiation from primary lines
 36 , 73 , 116 ]. Nonetheless, others have demonstrated expected in vivo

ehavior in immortalized lines of Human gingival fibroblasts and Hu-
an gingival keratinocytes, [12] suggesting a promising compromise. 

Co-culture models for oral disease have recently been comprehen-
ively reviewed, [107] so these are not covered in detail here. Instead,
e focus on the literature featuring models specifically of peri-implant
isease, adding further complexities to assess. Roffel and colleagues
eveloped a three-dimensional oral mucosa model with a fibroblast-
ontaining hydrogel covered with gingival epithelial cells, which they
nserted two types of abutment in a space created with a tissue punch
135] . Soft tissue attachment was assessed through immunohistochem-
cal characterization, via observations of gingival attachment length,
ulcus depth and gingival expansion at the abutment surface. With ad-
itional protein expression analysis, the reconstructed gingiva enabled
he authors to demonstrate no discernible differences between two tita-
ium alloy abutment surfaces, one machined and one anodized. Unfortu-
ately, the microbiological impact was not considered in this study and
s critical to modelling in vivo host response with greater accuracy. By
odelling host, implant and biofilm simultaneously, using a collagen-

ased hydrogel laden with human gingival fibroblasts and a layer of oral
eratinocytes, Ingendoh-Tsakmakidis and colleagues reported upregula-
ion of initial epithelial stress responses and a down regulation of IL6 and
XCL8 by Streptococcus oralis [63] . This was indicative of a balanced,
rotective immune response, incited by this commensal organism. The
ddition of A. actinomycetemcomitans , an opportunistic oral pathogen,
ed to further reductions in host immune response, potentially offering a
olonization advantage prior to pathogenic effect. Although the biofilm
as not cultured in situ , it was grown prior to inverting on top of the
ucosal model, by introducing the microbial element this model, it pro-

ides findings more reflective of true physiological behaviours. Building
pon this model, Mikolia et al. were able to observe the early immune
esponses to initial bacterial colonisers, S. oralis, A. naeslundii, Veillonella

ispar and P. gingivalis [101] . Through biofilm analysis and immunolog-
cal ELISA targets they demonstrated reductions in biofilm mass asso-
iated with the first 24 hours contact with the mucosal model and a
eak early inflammatory response, indicative of the constant, primed

mmunological state, protecting against pathogen invasion. Live/Dead
taining showed increased bacterial viability by 48 hours, whilst cy-
okine secretion also increased, potentially reflecting the impact of a
. gingivalis -induced reaction. By having all the necessary elements in
ne model, histological analysis was able to highlight visible mucosal
etachment beyond 48 hours and offer confidence in the findings. 

Just as next generation sequencing technologies have progressed mi-
robiome analyses, advancements in bioprinting methodologies can be
sed to harness magnetic nanoparticle labelling of cells for 3-D structure
ssembly, [ 23 , 45 ] or scaffold-based structures created through printing
n hydrogels encapsulating specific cell lines [ 9 , 33 , 40 , 115 , 150 ]. This
echnology could be adapted for the generation of oral mucosa replicas,
mplanted with abutment materials to simultaneously assess bacterial
esponse to the foreign material and the eukaryotic response to both. 

oncluding remarks 

Here we have discussed the breadth of literature examining implants
aterials, surface alterations, antimicrobial coating and the availability

f in vitro models for assessing oral bacterial colonization, biofilm for-
8 
ation and the host immune response. Whilst there are many promising
echniques for adapting implant surfaces, employing a combination of
ethods may be the answer. Detailed analyses of the microbiota and its

nteractions with oral tissues through next generation sequencing will
ontinue to provide a greater depth of knowledge to inform the ma-
erial science. Unfortunately, information on the complexity of biofilm
nteractions with multiple implant surface types is limited in the current
iterature, highlighting the need for further metagenomic studies in this
eld. 
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