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Within the vast array of applications encompassed by viscoelastic fluids, some lack of knowledge seems to
affect the non-linear behavior of Marangoni convection when its typical initial unicellular and steady state
is taken over by more complex flow configurations. These still hide a not-fully-understood competition of
complex and diverse physical mechanisms that determine the prevailing macroscopic behavior. In the present
study, relevant insights are sought from consideration of the classical differentially heated rectangular layer
of liquid with adiabatic bottom and top free surface. It is shown that, for increasing values of the Marangoni
number and/or the elasticity parameter, this problem offers a multifaceted spectrum of different outcomes
depending on the non-trivial interplay established between two distinct categories of disturbances (transverse
and longitudinal). These are studied using a diversity of model types in which some processes are on or off
to discern selectively their effect in the laminar state and their contribution to the evolution of the system
towards chaos. The characteristic marks by which the ensuing elastic turbulence can be distinguished from
the companion Kolmogorov counterpart are highlighted through analysis of the emerging scaling laws in the
velocity spectrum and the sensitivity of these to the intensity of the driving force and the considered elasticity
level. It is shown that these two forms of turbulence can coexist in the considered problem.

I. INTRODUCTION

Thermocapillarity can be defined as the tendency or
ability of liquids to develop surface flow in the presence
of temperature gradients. It naturally stems from the
physical dependence of surface tension on temperature
for many known substances1. This dependence typically
leads to the existence of a surface stress imbalance, which
results in the emergence of surface flow and, eventually,
ensuing bulk fluid motion driven by viscosity2,3.

These effects are omnipresent in nature and technol-
ogy; inorganic and organic material solidification, crystal
growth from the melt, soldering, film processing are just
examples of the myriad technological processes where a
liquid is exposed to a gas in the presence of temperature
gradients with various orientations.

These systems have gained considerable momentum in
the recent years owing to the rising tide of new stud-
ies aiming to deeply investigate them after filtering out
the concurrent influence of gravitational effects (this be-
ing made possible by sounding rockets of various types
and the advent of space platforms4,5 such as the Interna-
tional Space Station). They have also been addressed ex-
tensively through numerical approaches of various kinds
(see Refs 6–8 just to cite some relatively recent contribu-
tions). Despite the remarkable efforts of research groups
with various backgrounds and objectives, and the differ-
ent directions from which the problem has been tackled,
however, as a comparative review of the literature would
confirm, the physical understanding of surface-tension-
driven convection is far less advanced than of buoyancy-
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driven convection9.

This realization requires a short excursus into what is
known, the “advances”, and the new questions, both gen-
eral and system-specific, that recent progresses in turn
suggest. The simplest way to enter such discussion, per-
haps, is to consider that different mechanisms can be
enabled in surface-tension driven flows depending on the
specific situation considered. A first set of influential fac-
tors is represented by the considered fluid Prandtl num-
ber (Pr defined as ratio of the fluid kinematic viscosity
and thermal diffusivity), the geometry of the physical
domain hosting the liquid and the relative direction of
the dominant temperature gradient with respect to the
interface. The last aspect has largely been used in the
literature to set a distinction between two main cate-
gories of flows, namely that of Marangoni-Bénard (MB)
convection (in which the temperature gradient is per-
fectly perpendicular to the surface) and that of classical
Marangoni convection, where the imposed temperature
difference is in the same direction as the interface.

This apparently innocuous detail has proven to lead to
remarkable differences in the mechanisms driving fluid
flow and the related hierarchy of bifurcations along the
path that leads to completely chaotic states. In the for-
mer case, fluid flow is typically produced from an initially
quiescent and thermally diffusive state as soon as the
temperature difference (or the related Marangoni num-
ber) exceeds a given threshold. The details of the effec-
tively emerging convective states depend on the consid-
ered fluid. In infinite layers or cavities with large (length-
to-depth) aspect ratio filled with a high-Pr liquid (e.g. an
oil), the pattern takes on a specific topology correspond-
ing to the honeycomb symmetry, i.e. the cells look like
perfect hexagons with fluid reaching the interface at the
center and sinking at the periphery. This morphology
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is retained if liquid metals (Pr << 1) are considered
in place of oils. In this case, however, the relative di-
rection of ascending and descending currents is inverted,
i.e. the fluid sinks at the center and moves towards the
interface along the sides of the hexagons. Moreover, ex-
tended horizontal rolls can also appear and coexist with
the inverted hexagons. It is only by a further increase
in the Marangoni number that these steady flows can be
taken over by oscillatory states or patterns with a differ-
ent structure10,11.

If the direction of the temperature gradient is rotated
by 90◦, the scenario changes completely. Exceeding a
threshold in order to induce convection from initially mo-
tionless conditions is no longer needed (pervasive fluid
motion is created as soon as a temperature gradient is
established, no matter how small). This typically leads
to perfectly parallel flow (aligned with the imposed tem-
perature gradient) in infinite layers or, similarly, a single
extended convective roll with axis perpendicular to the
imposed temperature difference in slender finite-size sys-
tems (cavities). On increasing the Marangoni number,
these initially steady convective states can support the
onset and propagation of travelling waves with orienta-
tion depending on the considered value of the Prandtl
number12; namely, the disturbances have a relatively
small or significant spanwise (in a direction perpendic-
ular to the temperature gradient) component according
to whether Pr > 1 (e.g. oils13) or Pr < 1 (liquid met-
als and semiconductor melts14). In the former situation,
the waves essentially behave as disturbances spreading
in the upstream direction, i.e. they propagate from the
cold to the hot side of the considered cavity, while the
liquid located in proximity to the free interface moves in
the opposite direction15–17.

Another influential factor is represented by the “elas-
ticity” of the fluid, i.e. the ability to retain stresses even
in the absence of velocity gradients. If present, this qual-
ity or property can enable a significant departure from
the scenario known for standard Newtonian fluids. For
MB convection, in particular, the typical “signature” of
the elastic effects is the occurrence of “overstability”, i.e.
the ability of these systems to transition directly from a
quiescent state to oscillatory convection without passing
through the intermediate stage of steady flow18. This
specific change in the observable behavior generally oc-
curs in conjunction with significant lowering of the re-
quired value of the Marangoni number in comparison to
the equivalent (in terms of viscosity and thermal diffusiv-
ity) Newtonian liquid. Moreover, the perfect symmetry
of hexagonal cells seen in the Newtonian case is lost in
favor of less regular (essentially more chaotic) pattern-
ing behavior and “multiple” solutions (i.e. states that
exist in parallel in the space of parameters, and can se-
lectively be accessed according to the considered initial
conditions19). Other works of relevance to the subject in-
clude those by Siddheshwar et al.20, Ramkissoon et al.21,
Hernández Hernández and Dávalos-Orozco22, and the re-
cent review by Lappa23, where buoyancy convection was

also considered.

Studies of such a kind are just the beginning. Looking
forward, viscoelasticity is currently being regarded as a
spark for finding exotic states or new branches of solution
or new mechanisms that, for now, remain undefined ideas
in physicists’ theories24–28.

Still fewer articles have been devoted to the case of
Marangoni viscoelastic flow (temperature gradient par-
allel to the interface). Some guidance on this matter is
provided by the investigations by Hu et al.29–31 where
it has been shown that for high-Pr fluids, elasticity can
cause a swap in the direction of propagation of the afore-
mentioned waves (enabled as a result of the primary Hopf
bifurcation of the flow). More precisely, the disturbances
start spreading in the downstream direction when the
elasticity overcomes a given level, and eventually they
are completely replaced by steady longitudinal modes of
convection if a second threshold is exceeded (in such cir-
cumstances rolls with their axes parallel to the imposed
temperature gradient are produced in place of the stan-
dard ones with perpendicular axes). More recently, Patne
et al.32,33 have extended this line of inquiry considering
layers subjected to both parallel and perpendicular verti-
cal temperature differences (inclined temperature gradi-
ent), thereby revealing a variety of stabilizing and desta-
bilizing effects depending on the dominant mechanism.

These studies have opened up a new perspective on the
subject by unvealing fundamental issues that are shared
among the two areas of surface-tension-driven flows with
vertical and parallel temperature gradients, which, there-
fore, can be said to unify their study. However, the sur-
face of these specific problems has been barely scratched.
The initially largely theoretical development of the sub-
ject, mostly based on the application of linear stabil-
ity analysis (LSA) to ideally infinite systems, has not
received yet a continuation with non-linear approaches.
In particular, an open question is whether the modes of
convection that have been specifically identified through
LSA can be excited at the same time and eventually re-
sult in multiple solutions and ensuing peculiar convective
states. The present study may be regarded as an attempt
along these lines. In short, it follows and integrates the
line of inquiry started by Lappa and Ferialdi19 about the
non-linear analysis of MB flow in viscoelastic fluids, by
considering the equivalent problem in a layer of liquid
with parallel temperature gradient.

The problem is tackled in the framework of direct nu-
merical solution of the governing non-linear equations
and results are provided for different levels of elasticity
and distance from the critical conditions. In addition,
relevant theoretical links are also explored with respect
to recent literature (not necessarily related to surface-
tension-driven flows) where the general interconnections
between ordinary (inertial) and elastic turbulence have
been considered.
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FIG. 1. Schematization of the problem and locations
where numerical probes have been placed to study the time-
dependent behavior of the flow

II. MATHEMATICAL MODEL

A finite 3D layer of viscoelastic fluid is considered. The
layer is delimited at the sides and at the bottom by no-
slip walls, while the top boundary is modelled as an adia-
batic and non-deformable free surface. Such a geometry
can be characterized synthetically through its (dimen-
sional) depth h and the aspect ratios Ax = �/h = 20 and
Az = w/h = 10 for the x and z directions respectively.
Obviously, the associated dimensional problem also re-
quires that the fluid type and the applied temperature
gradient (∇T ) are specified.

In the present work, the considered viscoelastic fluid
is a mixture of a Newtonian solvent and a polymeric (or
elastic material) solute having dynamic viscosity ηs and
ηp respectively. The resulting fluid has therefore a total
viscosity η0 = ηs + ηp.
Accordingly, the dimensional balance equations for

mass, momentum and energy in their non-linear and
time-dependent form can be cast in compact form as:

∇ · u∗ = 0 (1)

ρ
∂u∗

∂t∗
+ ρ∇ · (u∗u∗) = −∇p∗ + ηs∇2u∗ +∇ · τ̃ ∗ (2)

∂T ∗

∂t∗
= −∇ · (u∗T ∗) + α∇2T ∗ (3)

where t∗ is the time, u∗ is the velocity, T ∗ is the tem-
perature, p∗ is the pressure, ρ is the density of the fluid,

and τ̃ ∗ is the extra-stress tensor accounting for the vis-
coelastic effects (the asterisk (∗) is used to highlight the
fact that those unknowns are in dimensional form; more-
over, α is the fluid thermal diffusivity).

As this system of equations is typically solved to de-
termine the three primitive variables u∗, p∗ and T ∗, this
automatically results in an important issue (which needs
to be pinpointed suitably here), i.e., it implicitly makes
evident that an additional equation is needed to link τ̃ ∗
to the other unknowns (known as “constitutive relation-
ship”). In practice, existing models essentially implement
such a coupling between τ̃ ∗ and the fluid velocity u∗ (the
reader being referred, e.g. to Refs 34–36 and Refs 37–40
for the Maxwell and Walter’s liquid B paradigms, re-
spectively). In the present work, in particular, we use
the so-called Oldroyd-B constitutive model41,42.

From a historical point of view, the first solid theoreti-
cal underpinnings for such a paradigm emerged naturally
out of the mathematics behind the theory of dumbbell
molecules developed by Bird et al.43 for polymer solu-
tion rheology. Since then, it has enjoyed a widespread
use for the mathematical closure of the aforementioned
set of balance equations. In particular, broad consensus
exists in the literature that this model can adequately
represent a wide spectrum of elastic solutions known as
‘Boger fluids’ (a relevant example being represented by
a polyacrylamide solution in a maltose syrup/water mix-
ture; the reader being also referred to the additional ex-
amples provided at the beginning of section IV). The
hallmark of these liquids is their ability to exhibit an
essentially constant viscosity over a wide range of shear
rates44. Suffice it to say that for a variety of flows, this
model has been successfully employed for the character-
ization of the novel instabilities that arise in viscoelastic
fluids due to elasticity alone, or due to a combination
of elastic and inertial effects (and which, therefore, have
no counterparts in Newtonian fluids). Relevant examples
include (but are not limited to) parallel plates flows, the
lid-driven cavity, Taylor–Couette flows, Dean and Tay-
lor–Dean Flows and cone-and-plate flows (the interested
reader being referred, e.g., to Castillo Sánchez et al.45

and Li and Khayat44 for an exhaustive treatment).

Here we limit ourselves to mentioning that such lines
of inquiry have demonstrated that, in the limit as the
Reynolds number tends to zero (creeping flow regime),
viscoelastic shear flows with curved streamlines undergo
purely elastic instabilities and that these are essentially
driven by normal stress differences. Although, the spatio-
temporal properties of the emerging flow depend on the
considered flow topology, the Oldroyd-B paradigm has
proven to represent properly the physics of these purely
elastic instabilities and led to a reasonable qualitative
prediction of the conditions required for their onset. The
Oldroyd-B is also at the basis of the various studies de-
scribed to a certain extent in the introduction where
surface-tension driven flows and related instabilities were
considered19,29–33. It has also been used for other types
of thermal convection (see e.g. Refs 23, 46–48 and refer-
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ence therein).
From a practical standpoint, with the Oldroyd-B, the

aforementioned link between τ̃ ∗ and the fluid velocity u∗
is formalized as a transport equation for the viscoelastic
stress tensor, namely:

λ

(
∂τ̃ ∗

∂t∗
+ u∗ · ∇τ̃ ∗

)
+ τ̃ ∗ = ηp

(
∇u∗ + (∇u∗)ᵀ

)

+ λ
(
τ̃ ∗ · ∇u∗ + (∇u∗)ᵀ · τ̃ ∗

)
(4)

where λ is the relaxation time, ηp is the aforementioned
dynamic viscosity of the polymer solute and (·)ᵀ is the
transpose operator of the quantity inside the parenthesis.
The integration in time of this equation can therefore
provide the required values of τ̃ ∗.
Given the problem being addressed in the present

work, however, additional modeling is required to ac-
count for the presence of another category of stresses
present in the fluid, i.e. the extra thermocapillary
(Marangoni) stresses produced (at the interface separat-
ing the liquid layer from the external gaseous environ-
ment) as a result of temperature inhomogeneities.

Unlike the other balance equations, which can be re-
garded all as transport equations, the balance of these
extra stresses reduces to a simple equality, namely

τ ∗ · n̂ = −σT (I− n̂n̂) · ∇T ∗ (5)

where τ ∗ = ηs

(
∇u∗+(∇u∗)ᵀ

)
+ τ̃ ∗ is the total stress

tensor, I is the unit tensor, n̂ in the unit vector orthog-
onal to the free surface and σT = −dσ/dT |T=T0

> 0
accounts for the decreasing behavior of the surface ten-
sion vs temperature in the linear relationship σ(T ) =
σ0 − σT (T − T0)

49–52, where T0 is the reference temper-
ature and σ0 = σ(T0).
Although it introduces an important (vital) coupling

between momentum and temperature (the latter would
otherwise behave as a passively transported scalar quan-
tity), this equation formally plays the role of boundary
condition in the considered problem. It must therefore
be considered together with the other relevant boundary
conditions (namely no slip conditions along solid walls,
constant temperature along the walls delimiting the layer
along the x axis and adiabatic behavior for all the other
boundaries).

Putting the problem in a “practical” shape finally re-
quires some extra effort to replace the dimensional gov-
erning transport equations and the related boundary con-
ditions with an equivalent set of non-dimensional (gen-
eral) mathematical entities.

These can be obtained by re-scaling all the lengths
with the depth of the layer h, the velocity with α/h,
time with h2/α, pressure with ρα2/h2, temperature
with ΔT = Th − Tc and the viscoelastic stress with
η0α/h

2. Additional benefits stemming from this prac-
tice relate to the possibility to obtain relevant inde-
pendent non-dimensional groups (characteristic numbers

governing the considered problem) directly as coeffi-
cients, which appear in the equations as a result of the
non-dimensionalization process itself:

∇ · u = 0 (6)

∂u

∂t
= −∇p−∇ · (uu) + Prξ∇2u+ Pr∇ · τ̃

∂T

∂t
= −∇ · (uT ) +∇2T (7)

ϑ

(
∂τ̃

∂t
+ u · ∇τ̃

)
+ τ̃ = ζξ

(
∇u+ (∇u)ᵀ

)

+ ϑ
(
τ̃ · ∇u+ (∇u)ᵀ · τ̃

)
(8)

τ · n̂ = −Ma(I− n̂n̂) · ∇T (9)

These non-dimensional numbers are the Prandtl num-
ber Pr = ν0/α (ν0 = η0/ρ), the elasticity number
ϑ = λα/h2, the solvent-to-total viscosity ratio ξ = ηs/η0,
the viscosity ratio ζ = ηp/ηs (= (1 − ξ)/ξ), and the
Marangoni number Ma = σTΔTh/η0α.

III. NUMERICAL METHOD

Experimental struggles with understanding the ba-
sic mechanism of viscoelastic flows make the empirical
works on these problems extremely difficult/case depen-
dent, which provides an indirect justification for the
widespread habit of using numerical simulations to get
relevant insights. The present study should be regarded
just as another effort along these lines. As suitably
pointed out in the present section, however, the effec-
tive implementation of a relevant numerical method is
not as straightforward as one would imagine.

Although, it is primarily the physical relevance of the
Oldroyd-B model to real elastic liquids (i.e polymer solu-
tions) which has made it a model of choice here, special
care must be put on the implementation of relevant coun-
termeasures to keep the time-marching algorithm stable
and prevent it from developing unphysical solutions.

For the present study, in particular, the OpenFOAM
computational platform has been used to solve the over-
all set of governing equations (presented in section II).
More specifically, the equations have been discretised
in space and integrated in time using a control volume
method and a segregated numerical procedure, respec-
tively. The latter is a well-known numerical realization of
the PISO algorithm originally elaborated by Issa53 (see
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also Refs 54 and 55), with a collocated disposition for
the primitive variables and the Rhie and Chow56 inter-
polation scheme used to avoid pressure checherboarding.
The reader specifically interested in this approach and
the related underlying rationale may consider Lappa and
Boaro46. For the sake of brevity, in the present section
we limit ourselves to describing the specific strategies put
in place to avoid the divergence of the simulations while
retaining physical consistency.

For what concerns the viscoelastic model implementa-
tion, we have relied on rheoTool57, a versatile computa-
tional OpenFOAM toolbox, known for its ability24,58–60

to keep the numerical integration process of the vis-
coelastic stress transport equation more stable (thereby
allowing exploration of a wider region of the space of
parameters). The underlying method relies on the log-
conformation tensor approach58,61. The related “princi-
ples” can be briefly illustrated by simply recalling that
the viscoelastic stress tensor τ̃ can be expressed as

τ̃ ∗ =
ηp
λ
(A− I) (10)

where A is the conformation tensor and I is the unit
tensor. In general, the conformation tensor is positive
definite, however, in proximity to a critical point (a “sin-
gularity” due to the hyperbolic nature of the viscoelastic
stress transport equation, see Refs62–66) the positiveness
of A can drop thereby leading to divergence of the nu-
merical procedure. If instead of considering A, its nat-
ural logarithm is used, Θ = ln(A) can remain definite
positive and, accordingly, the aforementioned singularity-
related problem can be strongly mitigated. Put simply,
to solve eq. (4), rheoTool re-writes it in terms of Θ and
then, using an exponential transformation and eq. (10),
it calculates the value of the stress tensor to be used in
the momentum equation (Ref 58 and references therein).

In addition, to ensure high quality of the results, we
have used a second order accurate backward scheme to
discretize the equations in time, a second order accurate
central difference scheme for the spatial discretization of
the diffusive terms and a third order Cubista scheme
for the analogous treatment of the convective terms. To
avoid nonphysical oscillations, theCubista scheme is im-
plemented though a deferred correction approach and the
non scalar quantities are handled in a component-wise
way58.
Last but not least, attention has also been paid to the

intrinsic singularities of Marangoni flow in finite-size ge-
ometries. These can manifest regardless of the elastic
or non elastic nature of the considered liquid (i.e. also
in Newtonian fluids67,68) as they are not associated to
specific equations, rather stem from the inconsistency of
the velocity boundary conditions used for the free in-
terface and the isothermal walls in the “corners” of the
cavity (which explains why they are generally referred to
as “viscous singularities”). For the convenience of the
reader who is not an expert in Marangoni flow, a heuris-
tic interpretation for their origin can be briefly provided

as follows. On the solid boundary where the no-slip con-
dition is applied, the viscous stress is 0, while, on the
free surface, in general, it is not zero as the Marangoni
stress condition is effective there (right hand side of eq.
(5)). Due to such unphysical imbalance, a singularity
is produced in the computational cell located between
the interface and the perpendicular wall. While for low
Prandtl number fluids (Pr << 1) the singularity can be
implicitly bypassed by the finite precision associated with
the local approximation used for the discretization of the
derivatives, for high-Prandtl number fluids it typically
manifests itself causing an unlimited growth of the ve-
locity in this cell as the cell size is reduced. As a result,
a need arises for the physical consistency to be recov-
ered, and, from a mathematical point of view, this can
be achieved if the Marangoni stress is forced to vanish at
the solid walls while keeping a continuous behavior. This
is typically obtained by using a “regularization function”.

In the present work, in particular, to “regularize” the
flow (Refs 67 and 68), eq. (5) has been modified as fol-
lows:

ηs

[
∇u∗ + (∇u∗)ᵀ

]
· n̂ =

R(x)
[
−τ̃ ∗ · n̂− σT (I− n̂n̂) · ∇T ∗

]
(11)

where, following Refs 67 and 68, the regularization
function R(x) reads:

R(x) =

⎧⎪⎨
⎪⎩
− 1

(χ�)2x
2 + 2

(χ�)x, if 0 ≤ x ≤ χ�

1, if χ� < x < �(1− χ)

− 1
(χ�)2 (�− x)2 + 2

(χ�) (�− x), if �(1− χ) ≤ x ≤ �

(12)
where 0 ≤ χ ≤ 1 accounts for the percentage of regu-

larized surface. For all the simulations presented in sec-
tion IV, χ = 0.02.

The function R modifies the stress on a small percent-
age of cells located along the free surface, bringing its
value on the first cell of the series (that in contact with
the solid wall) to ≈ 0. In this way it filters out the
viscous singularity of Marangoni flow. This artifice also
guarantees the aforementioned continuity of the stress
along the free surface. The validity of this approach has
already been shown in a number of studies appearing in
the literature69.

A. Validation

In order to demonstrate the reliability of the numerical
algorithm described in the preceding section, a two-stage
validation hierarchy has been implemented. To test the
validity of the regularization strategy, we have considered
a classical benchmark, i.e. the Hopf bifurcation of stan-
dard Marangoni flow in a Newtonian fluid. In particular,
the results obtained with the present approach have been
assessed against those provided by a repeatedly validated
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TABLE I. Supercritical Marangoni convection in a 2D layer
of Newtonian fluid with adiabatic free surface. Value of the
angular frequency of the velocity signal ω for a) Ax = 20,
Pr = 7, Ma = 104 and b) Ax = 20, Pr = 15, Ma = 3× 104.

In-house code Present
a) 36.2 35.3
b) 47.1 46.1

FIG. 2. Supercritical thermocapillary convection in a 2D layer
of Newtonian fluid with Ax = 20, Pr = 15, Ma = 3 × 104.
Four snapshots evenly spaced along the oscillation period.
The red arrows follow the travelling rolls. The cavity is cooled
from the left and heated from the right side. For visualization
purposes, the height of the layer is not to scale (magnified by
2x).

in-house code, conceived to investigate similar fluid dy-
namics phenomena23,68–71.

The results of such an exercise (reported in TABLE I)
show a good agreement between the flow-field frequen-
cies. As extensively discussed in section I, hydrothermal
waves (HTWs) originating from Marangoni instabilities
propagate upstream. In FIG. 2 we report the temporal
evolution of the HTW for a two-dimensional (2D) case
with Ax = 20, Pr = 15, Ma = 3 × 104 (to be directly
compared with those reported by Lappa70 for the same
values of the governing parameters).

As a second stage of such modus operandi (to verify
separately the coherence of the viscoelastic kernel), we
have considered the Hopf bifurcation corresponding to
the overstable behavior of Marangoni-Bénard convection
in an infinite layer.

In particular for an Oldroyd-B liquid with Pr = 200,
ξ = 0.1 and ϑ = 0.2 the bifurcation occurs for a value of
the Marangoni number Macr ≈ 61 if the Biot number at
the free surface is 172. Here the Biot number is defined in
the classical way as Bi = hL/k, where h is the convective
heat transfer coefficient at the free surface, k is the ther-
mal conductivity of the fluid and L is the characteristic
length of the problem (here it indicates the depth of the
layer).

To determine the disturbance growth rate, we have
monitored the amplitude of the velocity signal provided
by a numerical probe located in the centre of a 2D fluid
domain having aspect ratio 7.5 (with cyclic conditions as-

TABLE II. Validation for Marangoni-Bénard convection in an
infinite layer of Oldroyd-B fluid having Pr = 200, ξ = 0.1,
ϑ = 0.2, Bi = 1

Ma A
59a 0
62.5 1.40
65 2.21
67.5 2.75
70 3.23

a extrapolated

sumed at the lateral boundaries in order to mimic a sys-
tem infinitely extended along one direction). The critical
Marangoni number for the onset of oscillatory convec-
tion has been obtained by extrapolating the amplitude
reported in TABLE II to A = 0. The resulting critical
value has been found to be Macr ≈ 59, which is in a
good quantitative agreement with the data available in
the work by Lebon et al.72.

B. Mesh refinement study

Selecting a relevant mesh is a non-trivial task
stemming from the opposite needs to achieve grid-
independent results and minimize the computational cost
as much as possible. This is generally achieved with ab-
initio coarse-grained numerical simulations for a repre-
sentative case, followed by a progressive increase in the
used numerical resolution (typically achieved by using
more computational points) until the sensitivity of the
results on the grid drops below a given (pre-fixed) thresh-
old. There are therefore two levels of difficulties intrinsi-
cally embedded in such an exercise, one being the intrin-
sic computational ‘overheads’ of the considered problem
(which determine the effective computational cost), an-
other one being the issue of discerning what can really
be considered “representative” in terms of convergence.

For what concerns the first aspect, we have already il-
lustrated some of the typical computational drawbacks of
this category of flows in the preceding two sections, where
we have discussed the relevant countermeasures (to be
typically implemented together with a choice of the time
integration step much smaller than that required in the
equivalent Newtonian fluid situation). The second aspect
(the selection of a relevant case for the mesh sensitivity
assessment) brings problems of its own, these being the
problem “dimensionality” (i.e. two dimensions or three
dimensions?), the flow regime (steady, oscillatory or tur-
bulent) and, last but not least, the quantity or process
to be monitored to draw some relevant conclusions.

As in the present work (as it will be illustrated in de-
tail in section IV), the flow displays a marked tendency
to produce three-dimensional (3D) states that differ sig-
nificantly from the equivalent 2D counterparts, a quite
obvious choice should be a fully 3D case. Since, as it will
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(a)

(b)

FIG. 3. 3D viscoelastic thermocapillary flow, spectra of the
y component of the velocity signal probed in (a) the centre
of the layer (probe 11) and (b) closer to the wall (probe 12).
Mesh refinement study with Ma = 500 and ϑ = 0.2.

be yet illustrated in detail in section IV, the flow is also
able to produce turbulent states for relatively small val-
ues of the Marangoni and elasticity numbers (and these
states constitute integral part of our study), a represen-
tative case should therefore contain these elements too,
i.e. be chaotic. This specific aspect, in turn, connects to
the last of the issues mentioned above, i.e. the identifi-
cation of relevant local or global parameters or trends to
be checked as the numerical resolution is increased.

In order to satisfy the requirement about a flow that
is at the same time 3D and chaotic, we have selected
the case Pr = 7, Ma = 500 and ϑ = 0.2. Accordingly
(with the objective in mind of making the properties of
the emerging solution somehow ”quantifiable”), we have
determined for each solution the related velocity power
spectral density (PSD).

In particular, the spectra have been calculated for two
different velocity (uy) signals, one located in the center
of the layer (probe 11 in FIG. 1) and one closer to the
solid boundary (probe 12). FIG. 3 shows such spectra
for four different meshes. The related legend displays
the used number of points along x, y and z, respectively.
In order to assess the overall level of convergence, we
have also calculated a “global measure”, i.e. the integral
I of the PSD in the sub-range that follows the elastic
turbulence decay law. This quantity is related to the
total power carried in such a sub-range. These values are
summarized in TABLE III.

As the Reader will realize by inspecting these data,
moving from a mesh having 300 × 30 × 150 elements to
one having 350× 30× 175 has a negligible effect on both
the scaling law (we will be more precise about the im-

TABLE III. Integral of the PSD over the sub-range of elastic
turbulence (I) for four different meshes.

mesh
I

probe 11 probe 12
200× 20× 100 4.43 3.25
250× 25× 125 3.18 1.5
300× 30× 150 2 1.58
350× 30× 175 2 1.54

plications of this observation later), the PSD amplitude,
and the overall power carried in the spectra. For these
reasons,a mesh with 300 × 30 × 150 elements has been
adopted for the present analysis (able to guarantee rea-
sonable grid-independence while limiting the otherwise
excessive computational time).

IV. RESULTS

All the cases presented hereafter relate to an Oldroyd-
B fluid having Pr = 7 and ξ = 0.1 while the Marangoni
(Ma) and the elasticity (ϑ) numbers are allowed to span
relatively wide ranges ( Ma = 500, ϑ ∈ [0.03, 0.4] and
Ma = 2500, ϑ ∈ [0.01, 0.065]). As already explained
before, by using this constitutive model, we implicitly
refer to a specific category of liquids known as ”Boger
fluids”44, relevant examples being represented by water-
based polymer dilute solutions with a relatively small
amount of a polymer such a PAM, PEG, PEO, PVP or
Xanthan Gum. Notably, at relatively high temperatures,
e.g., water between 50◦ C and 80◦ C, the Prandtl number
of such mixtures would be similar to that considered in
the present work (which is also the value used by Li and
Khayat44). As studying the progression of the system
from initial laminar conditions towards chaos is one of
the main objectives here, the interval for the ϑ parame-
ter for each value of Ma has been defined accordingly, i.e.
we have increased ϑ until a turbulent state has been pro-
duced. For largerMa this has been achieved for a smaller
ϑ, which explains why the two selected ranges reported
above for Ma = 500 and Ma = 2500 are different.

Prior to expanding on the results, we wish also to high-
light that, following a common practice in the study of
Marangoni flows (as also witnessed by the existing litera-
ture on this subject in the case of Newtonian fluids), the
free surface of the layer has been considered adiabatic.
This assumption has often been used in past studies to
mimic the situation where the two side walls are heated
and cooled ‘symmetrically’ with respect to the ambient
temperature, i.e. their temperatures are Ta +ΔT/2 and
Ta − ΔT/2, respectively, where Ta is the ambient tem-
perature. In such circumstances, the temperature of the
free surface (it is almost uniform with the exception of the
changes that occur in proximity to the walls) is almost
identical to that of the gas ambient (thereby minimizing
the interfacial heat exchange). As a next step of the mod-
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eling hierarchy undertaken in the present work, future ef-
forts shall obviously be devoted to assessing whether the
heat exchange due to asymmetrical heating can exert a
stabilizing or destabilizing influence on such dynamics (as
an example, for the case of Newtonian fluids, it is known
that heat loss can induce complex, often non-monotonic,
behaviors in the flow instability threshold73,74).

Similarly, not to make the objective of the present
study (and the corresponding space of parameters to be
investigated) too wide or complex, as mentioned at the
beginning of section II, the liquid layer aspect ratio is
kept fixed (the investigation of this specific aspect, see,
e.g., Refs75,76 for the case of Newtonian fluids, being de-
layed to a future study).

Given this premise, the determination of the other
dimensional quantities corresponding to the above-
mentioned non-dimensional parameters simply requires
fixing relevant values for λ and α. By assuming λ =
10−3 s and α = 1.4 × 10−7 m2/s (typical realistic val-
ues for small polymer concentrations), in practice, the
values given above for ϑ and Ma can be used to ob-
tain the required depth of the layer and temperature
difference, respectively. By means of this approach, it
is easy to verify that the above range of ϑ related to
Ma = 500 could be obtained with liquid layers having
depth varying between 0.07mm and 0.019mm. Assum-
ing as typical value for the derivative of the surface ten-
sion σT = 10−4 Nm−1K−1, the related temperature dif-
ference would span the interval from 10.3◦ C to 37.6◦ C.
In an analogous way, taking into account that the set of
ϑ values considered here for Ma = 2500 would produce
a maximum and a minimum depth of the liquid layer
equal to 0.18mm and 0.046mm, respectively, the related
temperature difference would vary between 29.6◦ C and
76◦ C.

Given the well-known ability of Marangoni flow to pro-
duce transverse or longitudinal modes of convection in
Newtonian fluids depending on the value of the Prandtl
number12–14, as well as in viscoelastic fluids29–31, a pre-
cise analysis hierarchy is implemented in the remainder of
this work, by which these two categories of disturbances
are partially separated.

In this regard, we wish to recall that, unlike the LSA
approach, where the spatial structure of disturbances can
be fixed “a priori”, this is not possible when an approach
like that implemented in the present study is used. In-
deed, when the problem is solved in its nonlinear form,
the disturbances are naturally produced and selected
out of the full possible spectrum of allowed perturba-
tions according to their growth rate, i.e. on a “most-
dangerous disturbance” basis. A possible way to con-
centrate on a specific category of disturbances, therefore,
simply consists of preventing the system from develop-
ing certain perturbations by forcing it to retain certain
symmetries in space, e.g. by obliging it to maintain a
two-dimensional behavior (2D simulations).

This approach is intentionally used here to distinguish
2D (transverse) disturbances from the more complex

spectrum potentially excited when the flow is allowed to
develop along all the spatial dimensions (3D simulations).

A. 2D disturbances

Although, as we will clearly show in section IVB,
the modes of convection that spontaneously arise in vis-
coelastic thermocapillary convection are essentially 3D,
in line with the theoretical predictions of available LSA
studies29–31, disturbances that are essentially 2D in na-
ture can also be expected for high-Pr fluids if Ma and ϑ
are located in a certain subregion of the space of parame-
ters. As outlined before, these can be captured and stud-
ied in great detail if the problem is investigated numer-
ically under the constraint of two-dimensionality. Obvi-
ously, with 2D simulations, 3D perturbations are natu-
rally filtered out thereby leaving the ground to transverse
waves or other effects which develop along the direction
of the interface.

Given such premises, it is also worth recalling (see
again the arguments provided in the introduction) that,
in general, no threshold in terms Ma must be exceeded
in order to produce fluid motion. This is a typical feature
of thermocapillary convection. For Newtonian fluids, if a
temperature gradient is applied along the free surface, no
matter how small, a single stationary circulation system
is established inside the cavity in the form of a horizon-
tally elongated roll.

This is still true in a viscoelastic fluid provided both
the Marangoni number and the elasticity number are suf-
ficiently small. In particular, according to the present
results, for the Marangoni number in the range 500 ≤
Ma ≤ 2500, a steady state is attained only if the elastic-
ity number is smaller than a given ϑcr (which depends on
the considered value of the Marangoni number), whereas
more complex phenomena are enabled as soon ϑ is in-
creased beyond this limit.

Following a logical approach where situations of in-
creasing complexity are presented as the discussion pro-
gresses, most conveniently, we start from the descrip-
tion of the results obtained for the branch of solutions
corresponding to Ma = 500. In this case, according
to the numerical simulations the value of the threshold
corresponds to ϑcr = 0.15 (as a low frequency distur-
bance arises and a wave becomes visible for this value
of the elasticity parameter). This may be regarded as a
metastable condition because the wave survives only for
a limited period of time (after this time, an asymptotic
state with the classical elongated single cell is recovered).
For slightly larger values of the elasticity number, how-
ever, this disturbance is turned into a permanent wave
traveling in the downstream direction and manifesting
as a weak corrugation in the shape of the streamlines
(FIG. 4c). This perturbation has clearly an elastic na-
ture as witnessed by its connection to the elasticity num-
ber and its direction of propagation (as opposed to the
classical hydrothermal wave in Marangoni flow, which, as
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(a) (b)

(c) (d)

FIG. 4. 2D viscoelastic thermocapillary flow, Streamlines for the case of Ma = 500, (a) ϑ = 0.1, (b) ϑ = 0.15, (c) ϑ = 0.2, (d)
ϑ = 0.4. The cavity is cooled from the left and heated from the right side. For visualisation purposes, the height of the layer
is magnified 5x. (a)-(c) depict the final stationary state, (d) reports the streamlines distribution at t = 64.13.

shown in section IIIA) propagates upstream).

Notably, and in a quite unexpected way, a further in-
crease in ϑ leads to a completely different situation. As
the elasticity number exceeds a second critical thresh-
old (ϑcr2 ≈ 0.23), the original single-roll circulation sys-
tem is taken over by a multicellular structure consist-
ing of a train of cells, which spread continuously in the
downstream direction. On further increasing this param-
eter, the behavior becomes chaotic as witnessed by the
tendency of cells to merge randomly each other or, vice
versa, split into smaller eddies (see FIG. 4d at t = 46.88
for ϑ = 0.4).

This remarkable change in the patterning behavior is
reflected by an analogous modification visible in the ve-
locity PSD (power spectral density P) distribution ob-
tained for a signal probed in the centre of the layer (see
FIG. 5). As qualitatively and quantitatively substanti-
ated by this plot, the spectrum displays the typical prop-
erties of a turbulent flow, namely, a broad continuous
power-law-decay region spanning more than two orders
of magnitude in terms of frequency.

Another key observation concerns the tide displayed by
such a distribution of amplitudes for ω > 10. Notably,
it does not follow the classical Kolmogorov scaling law,
i.e. P(ω) ∝ ω−5/3, where ω is the angular frequency.
Rather the exponent is ≈ −3.2 in the intermediate range
of frequencies and −6.4 in the high-frequency interval,
which indicates that the considered chaotic state is not
inertial in nature (we will return to this very important
concept later).

A larger Marangoni number (Ma = 2500) increases the
range of values of the elasticity number in which a stable
elastic wave can be obtained. The elastic disturbance
still travels downstream, however, it can be obtained for
a value of ϑ as low as 3.6 × 10−2, basically one order
of magnitude smaller than that found for Ma = 500,
which, in line with the information reported in section II
about the genesis of elastic waves, we ascribe to the larger

FIG. 5. Power spectral density as a function of the angu-
lar frequency for the case of Ma = 500 and ϑ = 0.4 in a
logarithmic plane. The dashed red lines indicate the overall
descending law of the spectrum.

curvature of the streamlines of Marangoni flow for higher
Ma.

As soon as ϑ exceeds the second threshold ϑcr2 ≈ 4.5×
10−2, distinct rolls become visible also for this Marangoni
number.

The different stages of evolution taken by the flow in
one period of oscillation for this value of ϑ can be seen
in FIG. 6. Comparing this figure with the chaotic state
reported in FIG. 4d, it becomes evident that the mor-
phology and the number of the rolls is different. The
angular frequency is ω = 91.6 and, interestingly, a small
increase in the elasticity number has the effect of causing
a decrease in such a value. Moreover, at ϑ = 4.575×10−2

new frequencies start to populate the spectrum, thereby
making the identification of a predominant frequency in
the flow relatively difficult or meaningless.

The significance of the next two figures of the sequence
(FIG. 7 and Figure 8) resides in their ability to reveal the
progressive transitions undergone by the signals and the
related spectrum, respectively, as the elasticity parame-
ter is increased.

For ϑ = 4.5 × 10−2 the signal exhibits a relatively
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FIG. 6. Elastic wave traveling downstream for the case of
Ma = 2500 and ϑ = 4.5×10−2. Four snapshots evenly spaced
along the oscillation period. The red arrow follows one of the
travelling rolls. The cavity is cooled from the left and heated
from the right side. For visualization purposes, the height of
the layer is not to scale (magnified by 2x).

regular behavior, and this is reflected by its spectrum
(plotted on a logarithmic plane in FIG. 8a) where the
aforementioned dominant frequency can be clearly recog-
nized (ω = 91.6 together with its harmonics, i.e. higher
order multiples). A small increase in ϑ leads to a more
involved flow. Indeed, for ϑ = 4.575×10−2 the signal dis-
plays in some intervals a regular and periodic behavior,
alternated to small periods of chaotic busts. Finally, for
ϑ = 6.5×10−2, a completely turbulent signal is produced
and the same scaling already identified for Ma = 500 and
ϑ = 0.4 can be recognized, namely, the “−3.2/−6.4” law.

To complement this scenario with additional relevant
data, we have reported in FIG. 9 the frequency corre-
sponding to the highest amplitude in the spectrum as a
function of ϑ. The graph is terminated at ϑ � 0.064
as beyond this point distinguishing clearly such a fre-
quency is no longer possible. Such a plot is useful as
the non-monotonic behavior evident there indicates that
disturbances with different wavenumber (and therefore
frequency) can be excited for the considered value of the
Marangoni number and therefore compete to become the
most energetic mode of convection in the flow. There is
a continuous switch from one dominant mode to another
and back to the original mode as the elasticity parameter
is increased, which indicates that a discrete set of modes
exist which are in competition. In this regard an anal-
ogy might be drawn with other viscoelastic phenomena
where multiple solutions are known to be the rule rather
than an exception19,46.

Interestingly, in FIG. 9 the curves seem to tend to
an asymptotic state with ω ≈ 52, which indicates that
the energy tends to reside on a smaller frequency as
a completely chaotic state is approached. An explana-
tion/justification for this trend can be elaborated in its
simplest form on the basis of the two-fold argument that
1) the total energy of the system is fixed (let us recall
that all these transitions are produced as a result of an
increase in ϑ, not Ma, which is fixed to 2500) and 2)

the system can take advantage of a larger set of scales to
distribute its energy as the number of coexisting modes
is increased (rather than requiring an increase in the fre-
quency of the disturbances as one should expect for tran-
sitions produced by an increase in the Marangoni num-
ber).

B. 3D disturbances

After considering the problem in the simplified frame-
work represented by a two-dimensional (2D) configura-
tion, we now turn to interpreting the equivalent dynam-
ics emerging when such a constraint is removed. This
specific modus operandi obeys the logic illustrated at
the beginning of section IV, i.e. the precise intention to
discern intrinsically 3D effects through critical compar-
ison of the results provided by 3D simulations with the
“equivalent” 2D ones (i.e. conducted for the same set of
parameters). As we will illustrate in detail in this sec-
tion, a strategy based on the progression from 2D to 3D
simulations is indeed instrumental in revealing the role
played by the dimensionality of the problem (that is the
number of space dimensions involved) and the different
level of “criticality” of disturbances that break or do not
break certain symmetries of the considered system.

For consistency with the 2D results presented earlier,
such analysis is implemented starting from the lower end
of the considered interval of Ma, namely, Ma = 500. The
main outcomes of the related 3D explorative simulations
are shown in FIG. 10, FIG. 12 and FIG. 11 for values of
the elasticity number which decrease from a ϑ larger than
that needed to produce time-dependence in 2D (ϑcr2D =
0.15) to a value as small as 0.03 (namely, ϑ = 0.2, 0.15,
0.05, and 0.03 are considered).

The most striking outcome of these simulations is the
evidence they provide about the ability of the effective
problem dimensionality to cause a departure from ide-
alized solutions (such as the elongated single transverse
roll typical of stable Marangoni flow) even if relatively
small values of ϑ are considered.

As a fleeting glimpse into FIG. 10 for ϑ = 0.03 would
immediately confirm, if the processes that depend on the
details of the third direction are not excluded, longitu-
dinal rolls are formed, i.e. a new class of disturbances
is enabled. Besides their different spatial structure (the
axes of the rolls being essentially aligned with the x direc-
tion), these modes of convection also differ significantly
from the waves typical of 2D flow due to their tempo-
ral behavior. A good impression of the overall unsteady
three-dimensional motion associated with this kind of
disturbances can be inferred from the different snapshots
reported in this figure (FIG. 10) at different times.

Four initial parallel rolls can be spotted in FIG. 10a.
These rolls maintain their position until a variation in
their topology is produced in proximity to the heated
boundary (FIG. 10b). Warmer fluid starts to rise inside
the region initially occupied by colder and descending
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(a) (b)

(c) (d)

FIG. 7. 2D viscoelastic thermocapillary flow, y component of the velocity signal probed in the centre of the layer for Ma = 2500,
(a) ϑ = 4.5× 10−2, (b) ϑ = 4.575× 10−2, (c) ϑ = 5× 10−2, (d) ϑ = 6.5× 10−2.

liquid. As a result of this effect, the colder region is split
in two parts, thereby giving rise to a fork-like shape in
the roll distribution (with a central jet of hot fluid sur-
rounded by two parallel ’strips’ of cold fluid, (FIG. 10c).

Interestingly, this variation in the topological configu-
ration of the rolls is not stationary, rather, in an initial
stage this “defect” travels in the downstream direction
(i.e. from the hot side towards the cold one, from left to
right in the figure), thus taking a behavior formally sim-
ilar to that observed for the elastic waves in the 2D case.
The dislocation travels along the whole length of the cav-
ity until it reaches the cold boundary (FIG. 10d). Here,
as a result of its interaction with this wall, a new fork-like
localized feature is created that is mirror symmetric with
respect to the original one (this time a central jet of cold
fluid surrounded by two parallel strips of hot fluid can
be distinguished, FIG. 10e). At this stage, the feature
carrying the colder fluid starts to travel in the upstream
direction (thereby formally resembling the behavior of a
classical hydro-thermal wave, FIG. 10f).

These findings are naturally complemented by those re-
ported in FIG. 11a where the spatio-temporal map of the
vertical component of the velocity (uy) along a fixed line
in the spanwise direction passing through the centre of
the layer is shown (i.e. x = 10, y = 0.5, and 0 ≤ z ≤ 10).
This map is particularly useful as it allows the deriva-
tion of additional properties of the pattern which would
otherwise be hidden or less evident47,77. In particular,
it reveals that the propagation in the upstream motion

is faster than the downstream counterpart. The phe-
nomenon repeats itself periodically over time with an
angular frequency ω = 0.35 (FIG. 12a).

A variation of the elasticty number can produce inter-
esting changes. While, a decrease in ϑ to 0.02 leads to a
simple steady solution with a single transverse roll (that
for the sake of brevity we omit from the discussion), vice
versa, increasing it to 0.05 has just the opposite effect.
A first sign of this increased complexity can be gathered
from the spatio-temporal map (FIG. 11b). As a distin-
guishing mark with respect to earlier behavior seen in
FIG. 11a, the mirror symmetry with respect to the mid-
plane z = 5 is broken. The same information can also be
inferred from the spectra reported in FIG. 12b. These
relate to the velocity signals provided by probes located
at different positions along the spanwise direction (points
10, 11, and 12 shown in FIG. 1, i.e. three points located
in the centre of the layer and evenly spaced along z). The
related frequencies are clearly different; while ω10 = 0.28,
ω11 = ω12 = 0.556.

A further increase in ϑ has the remarkable effect of pro-
ducing smaller scale details in the spatio-temporal pat-
tern (FIG. 11c and FIG. 11d), i.e. features that cor-
respond to higher values of the wavenumber in space
and, accordingly, higher frequencies in time (FIG. 12c
and FIG. 12d).

As a final look at FIG. 12d would indicate, moreover,
signals probed at different locations follow slightly differ-
ent laws, indeed, while the signal related to probe 10
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(a)

(b)

FIG. 8. 2D viscoelastic thermocapillary flow, spectra of the y
component of the velocity signal probed in the centre of the
layer for Ma = 2500, (a) ϑ = 4.5× 10−2, (b) ϑ = 6.5× 10−2.

FIG. 9. 2D viscoelastic thermocapillary flow at Ma = 2500.
Angular frequency (ω) with the higher PSD as a function of
the elasticity number ϑ. The × simply marks the points in
the (ϑ, ω) plane, ◦ marks the cases that display a spectrum
that is more chaotic than the majority of the other points and
� denotes a case where two frequencies have the same PSD.

scales as the 2D cases analyzed in the preceding sec-
tion (−3.2/ − 6.4 law), the other two signals (11 and
12) do not change the inclination (they obey a ω−3.2

scaling). Most importantly, the corresponding spatio-
temporal map (FIG. 12d) also illustrates that in this
case the 3D disturbances have a predominant tendency
to travel in the downstream direction (we will consider
the important implications of this apparently cursory ob-
servation in section V).

The remainder of this section is finally devoted to the
analysis of the other branch of solutions, i.e. the cases
with Ma = 2500. In particular, three values of ϑ are

considered, namely 0.01, 0.02 and 0.05 (in this regard, we
wish to recall that the companion 2D simulations carried
out for ϑ = 0.01 and 0.02 revealed the trivial steady
solution with a single cell occupying the entire length of
the cavity, while the elastic wave traveling downstream
was found for ϑ = 0.05).

Once again, as witnessed by the outcomes of the 3D
simulations, consideration of the spanwise direction can
cause a dramatic departure from the dynamics obtained
under the constraint of 2D flow. In particular, unlike the
corresponding stationary or periodic 2D counterparts, all
these cases exhibit a chaotic behavior (not shown for the
sake of brevity).

V. DISCUSSION

As made evident by the descriptions reported in the
earlier section, the problem of transition in a viscoelas-
tic fluid layer supporting Marangoni stresses is rich, and
several issues contribute to make it more involved. In
the present section an attempt is made to shed some ad-
ditional light on these dynamics through an interesting
analogy with ’other phenomena’ and adequate consider-
ation of the dominant theories available in the literature
for the interpretation of fluid phenomena with elasticity.

In particular, in our endeavor to meet these objectives,
the discussion is articulated along two different threads,
namely, first, we consider the interconnections between
the dimensionality of the disturbances and the observed
sequence of bifurcations and, second, we analyze how
their specific nature also contributes to determine the
progression towards chaos.

A. Spatial and Physical Nature of the observed
disturbances

In this subsection, the details of ’how’ and ’when’ dis-
turbances which are intrinsically 2D or 3D in nature are
excited, compete and eventually cause the onset of turbu-
lence, are the main subject of discussion. In order to do
so, we initially transcend the specific nature of the mech-
anisms causing instability and focus on purely spatial
aspects, i.e. the different orientation of the recognizable
multi-cellular structures produced in both 2D and 3D as
the elasticity parameter is increased. In this regard, we
rely on a ’similarity approach’, that is, some arguments
are developed in the light of the similar dynamics which
have been observed in a companion category of phenom-
ena, namely, the instabilities of buoyancy (gravitational
convection) in differentially heated (along the horizontal
direction) liquid metals. This subject, also known as the
Hadley flow problem, has attracted much attention over
the last decades, resulting in a variety of well-established
results.

For relatively small values of the temperature differ-
ence, the Hadley flow displays a basic state that is very
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(a) (b) (c)

(d) (e) (f)

FIG. 10. Thermocapillary convection in viscoelastic fluid, Ma = 500 and ϑ = 0.03. Isosurfaces of the y component of the
velocity. The red and blue isosurfaces represent positive and negative value of uy respectively. The layer is cooled from the left
and heated from the right. (a) t = 4.59, (b) t = 5.5, (c) t = 11.22, (d) t = 19.13, (e) t = 20.28, and (f) t = 21.30.

similar to that of Marangoni convection, i.e. a horizon-
tally elongated single circulation extending between the
hot and cold sides of the fluid container. As the control
parameter is increased, it can support disturbances with
transverse and/or longitudinal orientation just like those
described in section IV.

In other words, an effort is made here towards the iden-
tification of classes of “universality” that do not depend
on the inertial or viscoelastic nature of the considered
problem, which however may help to explain the present
findings or provide useful hints or clues. This is the rea-
son why in the following some relevant historical details
about this specific category of buoyant flow are briefly
recalled.

In this regard it is certainly worth starting from the
simple remark that Hart78 was the first to assess the
response of differentially heated liquid metals to fluid-
dynamic disturbances having a transverse or longitudinal
orientation. Later, Gill79 examined in more detail the
second category of disturbances. Taken together, these
initial investigations provided relevant information about
the expected patterning behavior and the mechanisms
responsible for the excitation of these perturbations. It
was shown that while in the first case (transverse dis-
turbances) 2D circulations appear close to the inflection
point of the basic velocity profile (such perturbation rolls
therefore develop in a direction perpendicular to the ba-
sic flow), in the latter case, the axes of the rolls emerging
as a result of the instability are parallel to the basic flow.

Put simply, the longitudinal rolls emerging in liquid
metals combine with the basic unicellular flow typical of
the Hadley convection thereby forcing the fluid parcels to
describe helical paths in space. For the sake of complete-
ness, it is also worth mentioning that, as yet shown by
these landmark studies, while the instability leading to

transverse rolls is driven by the mean shear stress (this
is the reason why it is often referred to as “shear insta-
bility” and the related disturbances as hydrodynamic),
the longitudinal rolls are made possible by the dynami-
cal coupling between the mean shear stress and the buoy-
ancy force, i.e. thermal effects directly contribute to the
instability mechanism, from which the denomination of
“hydrothermal disturbances”.

Subsequent instructive efforts appearing in the litera-
ture have clarified that these modes of convection are not
mutually exclusive, nor are they progressive and that the
development of turbulence via a hierarchy of instabilities
can involve a rich variety of concurrent paths or lines
of evolution. Although a plethora of studies have been
conducted on these specific aspects (we apologize to all
whose work is not included in this account), here we re-
fer to the works by Lappa and Ferialdi, because in those
analyses the dynamics for a small value of the Prandtl
number (Pr = 0.01) were investigated with and with-
out the constraint of 2D flow, Refs. 80 and81 respectively
(thereby following an approach similar to that under-
taken in the present work).

Given these premises, the sought similitude with the
phenomena presented in section IV can therefore be
introduced as follows: 1) in Ref. 80 2D disturbances
were manifesting as waves traveling in the fluid from
the hot side towards the cold one, 2) 3D disturbances
spontaneously produced by the numerical simulations81

were causing a sudden transition to relatively chaotic
fully three-dimensional states for values of the con-
trolling parameter (the Rayleigh number) smaller than
those needed to excite regular (time-periodic) stream-
wise waves in the 2D case. The latter perturbations were
clearly displaying a 3D nature as witnessed by the pres-
ence of recognizable velocity peaks along the third direc-
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(a)

(b)

(c)

(d)

FIG. 11. Color field of y component of u as a function of the
time and z component in the centre of the layer, with x = 10,
y = 0.5, and 0 ≤ z ≤ 10 the for Ma = 500, (a) ϑ = 0.03, (b)
ϑ = 0.05, (c) ϑ = 0.15, (d) ϑ = 0.2.

tion and spatially extended vortices along the spanwise
direction. Through numerical experiments based on the
use of different initial conditions, it was concluded that in
3D the spatially pervasive presence of one mode of con-
vection does not prevent the system from developing in
parallel disturbances pertaining to the other category and
vice versa, thereby leading to“hybrid states”, which can
deeply influence the path of progression towards chaos81.

Using this knowledge as an interpretation key, it is
easy to recognize that the phenomena described in sec-
tion IV obey very similar dynamics. In facts, critical
comparison of FIG. 10 with the equivalent 2D findings
clearly indicates that the longitudinal modes enabled in
the viscoelastic Marangoni flow have a critical threshold
much smaller than the companion 2D elastic waves (as
witnessed by the lack of these in FIG. 10 and the stable
unicellular flow obtained for similar conditions in 2D). A
critical analysis of FIG. 11 is also extremely instructive
as it leads to the remarkable conclusion that as soon as a

(a) (b)

(c)

(d)

FIG. 12. 3D viscoelastic thermocapillary flow, spectra of the
y component of the velocity signal probed in the centre of
the layer(x = 10, y = 0.5) at z = 2.5 (uy,10), 5 (uy,11) and
7.5 (uy,12) for Ma = 500, (a) ϑ = 0.03, (b) ϑ = 0.05, (c)
ϑ = 0.15, (d) ϑ = 0.2.

value of the elasticity number close to the ϑcr predicted
through the 2D analysis is exceeded, a sudden variation
can be noticed in the 3D results. This change is qualita-
tively and quantitatively substantiated by the increased
number of recognizable features along the streamwise di-
rection in FIG. 11c and 11d. These can be ascribed to the
emergence of a train of corrugations or transverse rolls
like those visible in FIG. 4c and 4d, respectively (which
means that 2D disturbances have been excited and they
coexist with the longitudinal ones). The increased spatial
complexity of the pattern obviously stems from the heli-
cal paths that result from the superposition of transverse
and longitudinal convective features.

The increasing role played by the transverse (elastic)
waves as the elasticity parameter grows, however, can
also be inferred from the temporal behavior of the dom-
inant disturbance, which (as explained at the end of sec-
tion IV) displays an increased tendency to travel in the
downstream (streamwise) direction for larger values of ϑ
(FIG. 11d).
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As one may infer yet by building on the companion
buoyant phenomena in liquid metals, the coexistence of
the two classes of disturbances in viscoelastic Marangoni
flow is not limited to purely spatial effects. It has also a
remarkable impact on the mechanisms that lead to tur-
bulence; this is clearly witnessed by the smaller value of
the elasticity number required in 3D to get an involved
frequency spectrum (like those shown in FIG. 12c and
12d). Using arguments analogous to those elaborated by
Lappa and Ferialdi81, a simple way to think about this
trend lies in considering the non-linear interplay between
perturbations that pertain to different categories.

In other words, just like the collision of two or more
limit cycles can lead to the emergence of a strange at-
tractor for the dynamics of buoyant liquid metal flow,
independent disturbances (multiple solutions), having
frequencies that are not commensurate, can produce a
chaotic frequency spectrum in viscoelastic Marangoni
flow for relatively small values of the Marangoni and elas-
ticity numbers19 (refer to section VB for additional ar-
guments about the turbulence observed in the present
study).

Remarkably, the classes of universality identifiable
through this analogy can be pursued even further. Ad-
ditional comparison of the dynamics investigated in
Refs. 80 and 81 and the present ones, indeed, indicates
that in both cases the 2D disturbances do not depend
on the properties of the temperature field. The latter
serves only as a driver to produce the physical effect re-
quired to put the fluid in motion (the buoyancy force for
the liquid metals and the thermocapillary stresses in the
present case). In other words, thermal effects do not play
an active role in the instability mechanism.

As witnessed by the distribution of elastic energy in
FIG. 13, the main physical process underpinning the in-
stability in the present case is the interaction between
the streamline curvature and the elastic stresses due to
the stretching of polymer molecules.

The purely elastic nature of the hierarchy of bifurca-
tions responsible for the onset of chaos in these cases is
also indirectly demonstrated by the additional results ob-
tained by repeating the 2D simulations after freezing the
temperature field in a configuration corresponding to the
basic steady state. In this regard, FIG. 14 clearly shows,
that although thermal disturbances are filtered out, in-
stabilities can still occur and produce a chaotic state with
properties similar to those obtained in the fully coupled
case. Remarkably, this may be regarded as an additional
feature supporting the parallelism between the 2D hy-
drodynamic and elastic disturbances developed here.

Additional insights into the affinity between the two
distinct categories of flows stem naturally from a com-
parison of FIG. 13 and FIG. 15.

Unlike the two-dimensional ones, the longitudinal dis-
turbances emerging in viscoelastic Marangoni flow draw
energy from thermal effects, as made evident by the spa-
tial correlation of the elastic energy with the temperature
field in the xz-plane (and with the surface stresses in the

(a)

(b)

(c)

(d)

FIG. 13. 2D viscoelastic thermocapillary flow, trace of the
viscoelastic stress tensor tr(τ̃ ) for the case of Ma = 500, (a)
ϑ = 0.1, (b) ϑ = 0.15, (c) ϑ = 0.2, (d) ϑ = 0.4. The layer
is cooled from the left and heated from the right side. For
visualisation purposes, the height of the layer is magnified
5x. (a)-(c) depict the final stationary state, (d) reports tr(τ̃ )
at t = 64.13.

xy-plane). A more rigorous verification of this physical
connection can be gained once again by decoupling the
velocity and temperature fields, the reader being referred
to the outcomes of the related 3D simulations shown in
FIG. 16. The two-dimensional nature of the emerging
flow and its structure (a single slightly corrugated cell) is
instrumental in proving that, like the longitudinal modes
of buoyancy convection in liquid metals require a dynami-
cal coupling between the mean shear stress and the buoy-
ancy force (a dynamical balance between the inertial and
gravitational forces that makes the role played the ther-
mal effects significant in the instability mechanism), the
equivalent longitudinal modes in viscoelastic Marangoni
flow rely on a similar coupling between the elastic and
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(a)

(b)

(c)

FIG. 14. 2D viscoelastic thermocapillary flow forming for a
frozen (decoupled) temperature field. Viscoelastic fluid with
Ma = 500 and ϑ = 0.4. (a) Streamlines and (b) trace of the
viscoelastic stress tensor tr(τ̃ ) at t = 38.26, and (c) spectrum
of the y component of the velocity signal probed in the centre
of the layer. The layer is cooled from the left and heated from
the right side. For visualisation purposes, the height of the
layer is not to scale (magnified by 2x).

the thermocapillary forces.

B. Elastic turbulence

Still pursuing the parallelism introduced in sec-
tion VA, we now concentrate on the differences, i.e on
those aspects which set elastic turbulence apart from the
corresponding phenomena obtained when the fluid has
no elastic properties.

In particular, in order to clarify the distinguishing
marks, first we consider again the case of turbulence in
buoyant liquid metals (Newtonian fluids for which the
concepts related to the so-called inertial turbulence ap-
ply), and then move to the viscoelastic case, still invoking
the relevant literature and introducing additional levels
of complexity as required.

As developed in the following, the interpretations for
these two types of turbulence involve two types of rela-
tions, namely that between inertial and dissipation effects
in Newtonian fluids and that between polymer molecule
deformation and fluid flow in viscoelastic fluids. The for-
mer is well-known and, indeed, the underlying theory
dates back to the seminal works by Kolmogorov, who the-
orized the existence of a hierarchy of scales through which
the kinetic energy flowing in the system per unit time is
balanced precisely by the amount of energy dissipated per

unit time (while energy cascades at a constant dissipa-
tion rate from macroscopic phenomena towards smaller
scales82,83).

Using these concepts, this author elaborated a very
interesting picture of turbulence by arguing that in the
chaotic scale-reduction mechanism, at a certain distance
from the largest scale, the macroscopic directional bi-
ases are lost allowing therefore turbulence to become
homogeneous and isotropic, i.e. direction-independent.
This is equivalent to stating that in the chaotic scale-
reduction mechanism, at a certain stage the flux of the
cascading quantity across any scale becomes a function
only of dynamic variables on that scale, which allows
the energy spectrum to take a universal behavior (this
being E(ω) ∝ ω−5/3 in the case of inertial turbulence,
where the fixed exponent −5/3 accounts for the univer-
sal dependence of the energy on the “local”, i.e. scale-
dependent, wavenumber or frequency,84).

Although these concepts have been found to describe
properly the known properties of turbulence on relatively
small scales (in the so-called “inertial range”) for several
Newtonian flows (including the liquid metals discussed
before and examined by Ref 81 for the case of compet-
ing transverse and longitudinal disturbances), however,
they cannot be used to describe elastic turbulence in vis-
coelastic fluids (see, e.g., Refs. 28, 85, and 86).

As also confirmed by the present results for Marangoni
flow, elastic turbulence does not depend on the Reynolds
number or on equivalent non-dimensional groups. Rather
chaos is enabled on increasing the elasticity (non-
dimensional) parameter, which in turn is directly pro-
portional to the relaxation time λ. The latter accounts
for the ability of viscoelastic stresses to survive (unlike
viscous stresses) in the limit as the fluid approaches a mo-
tionless state. This is actually the mechanism by which
initial disturbances can lead to the onset of turbulence.
These can produce polymer molecules stretching, the de-
formation of the molecules can cause secondary flows
which further stretch the molecules, thereby allowing the
amplification of an initial small disturbance through an
iterative cause-and-effect coupling mechanism85,87.

As implicitly revealed by these arguments, one should
therefore expect the evolution of turbulence not to be
determined by the assumption of local balance between
small scale (in the inertial range) energy production and
dissipation, rather to be somehow controlled by the alter-
nate equilibrium between kinetic energy and elastic en-
ergy (the energy cascading from the injection scale and
dissipating due to polymer relaxation). This is indeed
the rationale of various theories elaborated more recently,
where using these arguments it has been found (see, e.g.
Ref 88 and 89) that the velocity spectrum E(ω) should
decay faster than ω−3 (which is in agreement with avail-
able experiments87 and the present results).

In order to put the present results for viscoelastic
flow in perspective, it is therefore worth referring to this
category of studies and, in particular, the very recent
work by Gupta et al.60, where although the analysis was
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FIG. 15. Thermocapillary convection in viscoelastic fluid, Ma = 500 and ϑ = 0.03. Contour plot of trace of the viscoelastic
stress tensor tr(τ̃ ) at y = 0.5 for the xz-plane (vertical color-bar) and z = 5 for the xy-plane (horizontal color-bar). For
visualisation purposes, the height of the layer (y direction) is not to scale (magnified 5x). The layer is cooled from the left and
heated from the right. (a) t = 4.59, (b) t = 5.5, (c) t = 11.22, (d) t = 19.13, (e) t = 20.28, and (f) t = 21.30.

FIG. 16. 3D single cell in viscoelastic thermocapillary flow
forming for a frozen (decoupled) temperature field. Viscoelas-
tic fluid with Ma = 500 and ϑ = 0.2. The streamlines are
colored with the magnitude of the velocity field. The layer is
cooled from the left and heated from the right.

conducted under the constraint of two-dimensionality,
a kind of flow that displays a remarkable affinity with
Marangoni convection was considered, i.e. fluid motion
inside a lid driven cavity.

For a fluid Prandtl number equal to that considered in
the present work, Gupta et al.60 observed an interesting
dependence of the fitted values of the power-law exponent
on the considered Reynolds number. Indeed, the expo-
nent was found to be −3.18 in many situations. We wish
also to recall that the so-called elasto-inertial turbulence
is expected to display a −14/3 scaling, which is far from
the Kolmogorov scaling of −5/3 typical of inertial tur-
bulence, but relatively close to the −3.5 scaling observed
for purely elastic turbulence (see, e.g., Refs. 90–92).

Although in the frame of the present study we have

not observed turbulence satisfying the −14/3 scaling, as
a concluding remark, we would like to highlight that, ap-
parently, regions exist in the considered fluid layer where
the typical behavior of inertial turbulence is recovered. In
particular, as evident in FIG. 17, this happens in proxim-
ity to the free surface where the driving force is located
and velocity attains its highest magnitude.

As one may expect on the basis of simple (“heuristic”)
considerations, the interval of frequencies over which
the behavior is well described by the Kolmogorov ex-
ponent grows in the situation with the larger value of
the Marangoni number. In both cases, however, the Kol-
mogorov scaling shows up only over a distance (starting
from the free surface) corresponding to approximately
one quarter of the total fluid layer depth. More pre-
cisely, while for Ma = 500 the change in the exponent
(from the ≈ −3.2 typical of the bulk to −5/3) occurs
at 20%, for Ma = 2500 a more complex behavior is ob-
tained with the exponent taking the values ≈ −3.2 for
y ≤ 0.75, ≈ −2.5 for y = 0.8, ≈ −5/3 for y = 0.85 and
≈ −1.1 for y = 1.

VI. CONCLUSIONS

The emerging properties of Marangoni convection in a
layer of viscoelastic fluid have been investigated numeri-
cally to draw some general conclusions about the behav-
ior of this category of flows in the non-linear regime (i.e.
after the disturbances have saturated their amplitude).
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(a) (b)

FIG. 17. 2D viscoelastic thermocapillary flow, spectra of the y component of the velocity signal probed in the proximity to the
free surface for (a) Ma = 500 and ϑ = 0.4, (b) Ma = 2500 and ϑ = 6.5× 10−2.

It has been found that the elasticity of the fluid causes a
remarkable decrease in the value of the Marangoni num-
ber required to excite oscillatory flow (i.e. a Hopf bi-
furcation) regardless of the problem dimensionality (i.e.
regardless of whether the flow is constrained to retain a
two-dimensional behavior or not). This is reminiscent of
the corresponding “overstable” phenomena in the com-
panion category of Marangoni-Bénard flows.

The patterning behavior in the fully 3D case is driven
by the interplay of two distinct categories of perturba-
tions, which can be distinguished according to the space
orientation of the emerging convective structures and the
nature of the mechanisms feeding them. These can be
classified accordingly as transverse or longitudinal modes
of convection. The former show up as transverse waves
that travel in the same direction of the imposed tempera-
ture difference (in the downstream direction, as opposed
to the upstream propagation sense of classical hydrother-
mal waves) and owe their existence to a purely elastic in-
stability induced by the curvature of the streamlines. By
contrast, the latter rely on the coupling between the tem-
perature field and elastic effects established through the
balance of stresses at the free interface. These manifest
themselves as longitudinal rolls that combine with the
basic unicellular flow typical of the Marangoni convec-
tion, thereby forcing the fluid parcels to describe helical
paths in space.

Building on an interesting parallelism between the typ-
ical hierarchy of bifurcations of buoyant convection (the
Hadley flow) in liquid metals and that of Marangoni
flow in viscoelastic liquids, it has been shown that in
both cases, on increasing the magnitude of the driv-
ing force, longitudinal disturbances are selected first and
then transverse perturbations are excited and coexist
with the longitudinal ones. This results in a set of inde-
pendent convective modes that can produced turbulence
through non-linear interaction.

Entering the turbulent regime, however, does not re-
quire necessarily an increase in the intensity of the driv-
ing force (the Marangoni number). For a fixed magni-
tude of the driving force, chaos can also be excited by in-
creasing the level of elasticity. Accordingly, the emerging
non-linear states display the typical properties of elas-

tic turbulence as witnessed by the scaling laws and the
related exponent ≈ −3.2 recognizable in the frequency
spectrum (as opposed to the −5/3 exponent typical of
inertial turbulence).

As shown by the present simulations, however, these
two forms of turbulence are not mutually exclusive.
These can coexists and cause a gradual transition in the
aforementioned exponent along a direction perpendicular
to the free interface, which indicates that the dichotomy
often drawn between the related physical mechanisms
should not be taken in a strict sense when dealing with
viscoelastic Marangoni flow in non creeping conditions.

An exciting prospect for the future is the generaliza-
tion of these findings to other configurations, which have
enjoyed a widespread use in the literature for the investi-
gation of the fundamental properties of Marangoni con-
vection, such the liquid bridge or the classical annular
pool used to mimic the CZ crystal growth process.
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