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ABSTRACT

The design process often begins with a graphical description of the proposed device or 
system and sketching is the physical expression of the design engineer’s thinking process. 
Computer Aided Design is a technique in which man and machine are blended into a 
problem solving team, intimately coupling the best characteristics of each. Solid modell-
ing is developed to act as the common medium between man and the computer. At 
present it is achieved mainly by designing with volumes and hence does not leave much 
room for sketching input, the traditional physical expression of the thinking process of 
the design engineer.

This thesis describes a method of accepting isometric free hand sketching as the input 
to a solid model. The design engineer is allowed to make a sketch on top of a digitizer 
indicating (i) visible lines (ii) hidden lines (iii) construction lines (iv) centre lines (v) 
erased lines and (vi) redundant lines as the input. The computer then process this sketch 
by identifying the line segments, fitting the best possible lines, removing the erased lines, 
ignoring the redundant lines and finally merging the hidden lines and visible lines to 
form the lines in the solid in an interactive manner. The program then uses these lines 
and the information about the three dimensional origin of the object and produces three 
dimensional information such as the faces, loops, holes, rings, edges and vertices which 
are sufficient to build a solid model. This is achieved in the following manner.

The points in the sketch is first written into a file. The computer then reads this file, 
breaks the group of points into sub-groups belonging to individual line segments, fits 
the best lines and identify the vertices in two dimensions. These improved lines in two 
dimensions are then merged to form the lines and vertices in the solid. These lines are 
then used together with the three dimensional origin (or any other point) to produce 
the wireframe model in three dimensions. The loops in the wireframe models are then 
identified and surface equations are fitted to these loops. Finally all the necessary inputs 
to build a B-rep solid model are produced.



CHAPTER 1 
INTRODUCTION

1.0 GENERAL

Computer-Aided Engineering is breaking barriers between the compartments into 
which the life of an engineering product is traditionally divided. Much of the routine 
work can now be taken over by computers, leaving the engineer to use his professional 
expertise in a wider arena, looking at many more if not all possible options, within 
the limited time and resources allocated for the design phase. This enables him to 
ensure that the product under development is properly conceived, developed, 
manufactured and used. To summarise the developments surrounding the computer 
it can be said that a powerful aid in the name of computer has been invented and 
methods to exploit its power are developed everyday.

Computer-aided techniques can be classified as follows:

i) Techniques which do not require the abandoning of existing thinking processes and 
or enhance the existing thinking processes. These are widely accepted and used. 
Typical examples of this category are drafting packages.

ii) Techniques which do require abandoning of the existing thinking processes and 
need new ones. These are not used widely when compared to the techniques 
described above in (i).

The techniques in category (ii) may have valuable aids built into them and all that 
may be needed is a proper interface between the traditional thinking and the newer 
thinking. Solid modelling requires ‘designing with primitive solids’ and abandoning 
traditional designing with sketches and thus falls within category (ii) above. This 
thesis describes a method of linking solid modelling with traditional sketching.

1.1 COMPUTER AIDED DESIGN

The following is an excerpt from Beasant and Lui [1] which describes well the use of 
computer as an aid in design. "Computer Aided Design (CAD) is a technique in which 
man and machine (computer) are blended into a problem solving team, intimately 
coupling the best characteristics of each. The result of this combination works better 
than either man or machine would work alone, and by using a multi-disciplinary 
approach it offers the advantage of integrated team work." Beasant and Lui [1] 
rightly argue that the characteristics of the team members, man and machine, affects 
the design of a CAD system.

The advent of computers in drafting and design started with the ‘sketchpad’ program
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developed by Ivan Sutherland [2] at MIT in the 60’s. It made it possible for a man and 
a computer to communicate through the medium of line drawings which was until 
then done through written statements which made the use of computers cumbersome. 
It enabled the user to (i) issue specific commands with a set of push buttons (ii) turn 
functions on and off with switches (iii) indicate position information through a light 
pen (iv) rotate and magnify picture parts by turning knobs and (v) observe the drawing 
on the display. The invention of the use of computer as a sophisticated drafting tool 
underwent many refinements and has given birth to many drafting packages, with 
many varieties of application area. More and more construction techniques are 
introduced everyday into drafting packages enhancing the ones already released for 
use. The use of computer aided drafting has also had a significant impact on the 
electronic design automation (EDA) process, where the connections to various 
components (topology) is the main consideration. Drafting packages provide enor-
mous power in terms of speedy production of drawings, facilities to make enlarged 
and scaled down drawings and editing a part of the drawing without redrawing the 
whole of it. Also the use of computer as a drafting tool has resulted in considerable 
savings in terms of time and cost.

Until the introduction of computers in the design office the role of communication 
and storage of information in the manufacturing environment has for many years 
been performed by drawings and nobody has seriously thought of a replacement. 
Engineers are trained to be competent in reading and understanding drawings. The 
process of design itself depended on the ability to make drawings. However these two 
dimensional drawings had their limitations in storing the full information about a 
three dimensional solid. They needed a human to interpret their three dimensional 
content. With the introduction of computers to do the job of producing drawings, the 
limitation imposed on the design process, by the resources required for the produc-
tion of drawings, is substantially reduced and researchers started to look for a better 
method of representing the designed artifacts, which would eliminate the shortcom-
ings of drawings. Also it was felt that complete 3D description of the product inside 
the computer would facilitate automation at various stages of the life cycle of the 
product.This lead to the use of computers as a symbolic modelling tool instead of its 
earlier use as sophisticated drafting tool. Methods of storing full 3D descriptions of 
complex solids were investigated.The need for a complete definition of shapes and 
the availability of increasingly cheap computing power lead to the birth of the new 
branch of computer graphics called ‘Solid Modelling’.

1.2 SO L ID  M O D E L L IN G

Requicha’s [3] description of solid modelling can be treated as a definition. It states 
"The term solid modelling encompasses an emerging body of theory, techniques and
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systems focussed on informationally complete representations of solids - repre-
sentations that permit (at least in principle) any well defined property of any 
represented object to be calculated automatically". These representations are meant 
to be understood by computer programs. The goal of the original developers of solid 
modelling systems was to use them to provide unified descriptions of parts and 
assemblies in an integrated design and manufacturing context. The data used or 
entered repeatedly at the synthesis, visualisation and analysis stages of design and 
also those used during manufacture and use, are identical and could be used in all 
stages if the information were captured in a suitable, general form at the start, thus 
saving time and money. The 3D modelling capability has become not only a powerful 
conceptual design tool and a potential communication medium between design and 
other functions, on which successful product creation increasingly depends, but also 
a very bread-and-butter talent for by-passing the need for much prototype making 
[4]. The first generation of solid modelling systems appeared in the mid 60’s to mid 
70’s. Of these the pioneering work was done by Braid [47] and Baumgart[64]. These 
systems varied in the range of shapes that they could handle, in the ways the 
constituent shapes were combined and in their methods of storing information. 
Chapter 2 describe a survey on these various representation schemes and their merits 
and demerits.

13 SKETCHING INPUT FOR COMPUTER AIDED ENGINEERING

From the time Sutherland [2] developed the program ‘sketchpad’ the methods of 
inputting details and commands have changed and become considerably sophisti-
cated. Presently inputs are accepted through the keyboard, mouse and digitizer or 
tablet driven menus. Drop-down menus and pop-up menus make the system very 
much user friendly. But none of them really enhanced ‘sketching’, the process with 
which the design engineer expands his thinking. Also with all the advantages of a 
single complete representation offered by the present solid modelling systems, 
computer is not used as a symbolic modelling tool as widely as a sophisticated drafting 
tool. This is because present day solid modelling demands reassessment of the 
current thinking process and needs a new thinking process, typically in terms of 
primitives and boolean operations. This newer process is essential only for inputting 
the solids, though the method may also be used in the final representations. The 
design engineer on the other hand starts his thinking with a pencil and paper and 
expands it by making sketches of his design. For him " the design process begins with 
a graphical description of a proposed device or system to satisfy a human need. He 
perceives his idea at first not in the perfection of a well-turned english word 
description, nor in the precision of a mathematical formula, but in some nebulous 
assembly of building blocks of structure, vaguely beheld. The sketch forms the 
natural bridge between these vague stirrings of the imagination and the subsequent
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precise statements of the refined detail of the concepts" [5]. His inputs are lines of 
approximate lengths and not solids. Thus there remains a need for a system that can 
build a solid model with the design engineer’s thinking process. Such a system will 
permit engineers to use solid modelling from design through manufacture and use.

GEOMETRIC MODEL BASED DESIGN

DRAWING BASED DESIGN

FIGURE 1.1
CURRENT DESIGN APPROACHES
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13.1 SKETCHING AND THE DESIGN PROCESS

Pictorial sketching is the process of making a three dimensional view of the system 
or component under consideration. The tools used to construct a sketch in the 
traditional way are a pencil, paper and a rubber. A good sketch will be (a) accurate 
in proportion (b) correct in representation and (c) adequate in size. Sketches used 
by designers can be grouped into two classes as follows:

(i) Incomplete rapidly drawn sketches used for communicating directly with them-
selves or someone else.

(ii) More complete carefully drawn sketches (including base lines, centre lines and 
construction lines) prepared for brain storming and further development.

In communicating and extending the thoughts and in the application of the iterative 
design process, sketching plays a very important part. Traditionally a fundamental 
gauge of a competent designer is the ease with which he makes a free hand sketch. 
As the design develops, sketches undergo constant changes due to the emergence 
of different ideas. An eraser may be in constant use and new starts may be made 
repeatedly. Sketching should be done as easily and as freely as writing so that the 
mind is always centred on the idea and not on the sketching.

The points described in the preceding paragraphs establish that sketches are part and 
parcel of the design process. Further a representation of the three dimensional object 
is necessary for the man machine team to work efficiently.

13.2 THE PROPOSED SYSTEM - WHY AND WHAT

The present practice of building a solid model is for the designer to make his 
preliminary sketch in paper, then break off and feed the details of the solid into the 
computer through the solid modelling system. Chiyokura [41] describes the drawing 
based and geometric model based design systems in the form of a flow chart which is 
given in figure 1.1. It is evident from this description, that solid modelling is brought 
to the scene only after the design is fixed. This does not make use of all the potential 
of the computer in the man machine team and expects a newer thinking from man.

The system described in this thesis attempts to rectify these shortcomings and enables 
the designer to draw a complete isometric sketch directly into a digitizer connected 
to a computer. This sketch is written into a file as co-ordinates of points, over which 
the stylus has passed, separately for the visible lines, hidden lines, centre-lines, 
construction lines and erased lines. The computer then reads this file of points (i) 
breaks it into line segments (ii) fits the best possible curve for the segments (iii) 
identify the loops in the sketch and (iv) interactively builds the solid model. Once this
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complete representation is established it could be used to compute geometric proper-
ties.

1.4 STRUCTURE OF THE THESIS

Chapter 2 describes a survey on solid modelling. In the process it explains what is 
solid modelling, the various representation schemes and the application of these 
schemes. It also extracts the basic features of solid modelling and analyses the various 
schemes in the light of sketching input. It draws inferences to be used in the 
development of the software ‘SKETCH-SOLID’.

Chapter 3 describes the background theory used to develop the sketching input 
concept. It broadly falls into three groups namely (a) fitting methods for 2-dimen- 
sional lines and curves (b) 2-dimensional and 3-dimensional geometry and (c) 
co-ordinate transformations from 2-dimensions to 3-dimensions. Also it describes 
isometric sketching.

Chapter 4 describes the requirement analysis and functional specification of the task 
set and performed. It destinguishes between the various requirements, needs and 
wants and finally produces the technical specification of the program ‘SKETCH- 
SOLID’. In the process it describes the data structures used in the program.

Chapter 5 is the explanation of the top level structure diagrams of the programs 
‘SKETCH-SOLID’ together with their associated data structures and functions. It 
explains the algorithms of these programs and how they are translated into data 
structures and functions.

Chapter 6 presents and discusses sample sessions explaining the actions of the 
program at various stages of execution.

Chapter 7 presents discussion, conclusion and highlights areas for future work.
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CHAPTER 2

A SURVEY ON SOLID MODELLING
2.0 GENERAL

Engineers build models to observe, analyse, understand and explain an object in an 
easy way. Physical models are expensive to produce and are limited in scope and 
traditionally engineering drawings, with rules and conventions for representing 
dimensions, tolerances, surface finishes, materials and the like played the role of a 
general purpose model. With one or several of the two dimensional views it conveyed 
the three dimensional information to a trained engineer. With the introduction of 
computer as a member of the design team, a model that could be understood by man 
and computer was needed. This computer model was expected to contain data stored 
in computer files, which can be used to perform the tasks which are traditionally 
performed by drawings and to contain additional facilities which make the best use 
of the computing power to facilitate the design process.

Thus the fundamental philosophy of ‘Solid Modelling’ is to provide unified descrip-
tion of parts and assemblies in an integrated, design, manufacture and use environ-
ment. These descriptions can then be accessed by programs, to read, interpret and 
compute other geometric properties. Research on ‘Solid Modelling’ originated from 
several stimuli. To quote from Jared [6] "One, following from graphics and descrip-
tion of complex surfaces, was the need for a means of describing complex objects in 
order to generate realistic images of solid objects for visualisation and simulation 
purposes. Another was the desire to develop an ‘aid to think in 3D’ using the 
approach of building up complex solids by the combination of simple ones such as 
the rectangular blocks and cylinders". Whatever the origin of the solid modelling 
system it has certain fundamental features. They transform the information about the 
solid they represent into data, store and retrieve them, perform operations on them 
and finally transform them back to processed information which could be understood 
by humans. Thus there are four requirements made on the solid modelling system. 
They are

1 An input system
2 A method of translating the input into representations
3 A set of algorithms to use these representations to compute properties
4 A set of algorithms to produce required outputs to aid man, the other 

member of the CAD team
Without these four elements the solid modelling system would be of little use.
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2.1 EXPLANATION OF REPRESENTATION SCHEMES

Requicha [3] organises representations using the theory of functions as illustrated in 
figure 2.1.

M o d e llin g  s p a c e R e p r e s e n ta t io n  s c h e m e  R e p r e s e n ta t io n  s p a c e

FIGURE 2.1
EXPLANATION OF REPRESENTATION

The modelling space ‘M’ contains all the solids that are representable and the 
transformed or mapped space ‘R ’ contains all the representations. The repre-
sentation ‘S’ is defined as the relation S:M-»R. The domain ‘D’ of ‘S’ is the set of 
elements of ‘M’ that may be represented via the representation scheme of ‘S’. The 
range ‘V’ of ‘S’ is the set of syntactically correct representations of the images of the 
elements of ‘D \ The members of ‘V’ are valid representations which is an important 
requirement of the representation scheme, if it is to be used in automation at various 
stages of the life cycle of the product. If the representation ‘r’ in ‘V’ corresponds to a 
single object in the domain ‘D’ the representation is unambiguous. The repre-
sentation is unique if the corresponding object does not admit representations other 
than ‘r’ in the scheme. Thus an unambiguous and unique representation scheme 
establishes a one-to-one correspondence between its domain and range. Also a 
representation is invalid if it does not correspond to any solid, a valid representation 
is ambiguous if it corresponds to several solids and a solid has non-unique repre-
sentations if it can be represented in several ways in the scheme. Thus it can be seen 
that representations which are unambiguous and unique are highly desirable because 
they are one-to-one mappings.

2.2 REPRESENTATION SCHEMES FOR CAE

Six representation schemes are identified by Requicha [3] as unambiguous and 
suitable for computer aided engineering. They are
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1 Pure primitive instancing
2 Spatial occupancy enumeration
3 Cell decomposition
4 Sweep representation
5 Constructive Solid Geometry or CSG

These six representation schemes will be described in the following sub-sections.

2.2.1 PURE PRIMITIVE INSTANCING

The ‘Group Technology’ concept in manufacturing identified objects with similar 
features as members of a family and each member is identified by specifying few 
parameters. In a similar fashion in pure primitive instancing objects are represented 
as families of solids containing common features and individual members are iden-
tified by specifying parameters. Each object family is called ‘generic primitive’ and 
the individual objects are called ‘primitive instances’. Each primitive instance is 
represented by a fixed length tuple and therefore is easy to use. Most of the informa-
tion is built into the system and thus the building is difficult and resource consuming 
and needs specialist knowledge of the family. A family of industrial blowers or gear 
wheels are typical examples of this scheme. These schemes are suitable for stand 
alone CAD packages such as, one for the design of gear wheels.

Pure primitive instancing schemes are unambiguous, unique and easy to use. Primi-
tive instancing is used as auxiliary representations in multiple representation 
schemes, in order to ease the description of often needed parts. This concept may be 
developed further and libraries of specialist components such as cams, gears, aerofoils 
and the like could be developed in association with other schemes.

2.2.2 SPATIAL OCCUPANCY ENUMERATION

In spatial occupancy enumeration schemes, three dimensional space is divided up 
on a regular grid pattern such as blocks, and those which fall inside the volume 
occupied by an object are marked [6]. Each cell may be represented by the coor-
dinates of a single point (a three tuple), such as the centroid or the body centre. A 
scanning order is imposed and the corresponding ordered sets of three tuples called 
‘spatial arrays’ are established for the objects represented in this scheme.

Spatial arrays are unambiguous and unique but are potentially bulky. A variation on 
this representation is the ‘Octree Decomposition’. In octree decomposition, the 
subdivision of the heterogeneous cells continue recursively into eight sub-cubes until 
a maximum resolution is reached while the decomposition of homogeneous cells 
cease. The testing of the cells for homogenity is called the leaf node criteria (since a 
homogeneous cell is a leaf in the tree) and this kind of decomposition is said to be 
structured in a hierarchical manner. Samet and Weber [7] illustrates this with a good
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example which is reproduced in figure 2.2. It illustrates (a) the example 3D object (b) 
its octree decomposition and (c) its tree representation. In an algebraic notation this 
could be expressed as (1 111 (1 1 1 1 0 0 0 0 ) 0 1  1) where ‘1’ represents a filled cell 
and ‘0’ represents an empty cell.

FIGURE 2.2
ILLUSTRATION OF OCTREE DECOMPOSITION

The advantages and disadvantages of the octree representations could be enumerated
as follows [8]:
(a) Any arbitrary shape objects, convex and concave with interior holes can be 

represented to the precision of the smallest cell
(b) Geometrical properties such as, surface area, centre of mass and interference 

are easily calculated at different levels of precision.
(c) Because of the spatial sorting and uniformity of the representation, operat-

ions on octree are efficient.
On the disadvantages it could be said that
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(a) The bounding surface is an approximation by square polygons
(b) Objects with complex details require a larger number of cells
(c) Regardless of the number of sub-divisions it is an approximation.
Octree is a widely used representation and has several algorithms and applications 
using it [9-11]. The ways and means of storing the tree structure (the data structures) 
and their use are described in many references [7,9,11,12].

The octree encoding while having its advantages and limitations is suitable only for 
a known solid. In the design by sketching situation the solid will be known only at the 
end of the design process. This means the participation of the computer can begin 
only at the end of the design process. Thus octree encoding is not an ideal candidate 
for the design by sketching situation. However it is a valuable auxiliary representation 
for B-rep and CSG representations.

2 .23  CELL DECOMPOSITION

Cell decomposition is similar in concept to spatial occupancy enumeration above, 
but, unlike the subdivision of the space in occupancy enumeration, in this method the 
solid itself is subdivided into disjoined polyhedra which may be of arbitrary size and 
shape.

FIGURE 2.3
ILLUSTRATION OF CELLULAR DECOMPOSITION

A solid is represented by decomposing it into cells and representing each cell in the
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decomposition. This object space representation is very useful in the identification 
of the visible subset of the object using the notion of bounding object. When 
determining whether or not an object is visible, it is easy to surround the object with 
a bounding box or sphere and say that the object is not visible if the surrounding box 
or sphere is not visible. Figure 2.3 illustrates the cellular decomposition.

2.2.4 SWEEP REPRESENTATION

Sweep representations are constituted with two kinds of entities namely ‘moving 
object’ and ‘trajectory’. For example the cylinder in figure 2.4 can be represented by 
the circle ‘A’ and the line ‘B’ where ‘A’ is the ‘moving object’ and ‘B’ is the ‘trajectory’. 
This representation is a translational sweep representation since the moving object 
translates along the trajectory. The same object could be formed by a rotational sweep 
representation as shown in figure 2.5.

FIGURE 2.4
TRANSLATIONAL SWEEP

The sweep representation method though is a good scheme in its own right is not used 
in contemporary solid modelling systems as a representation scheme. Instead it is
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used as a method of inputting solids, in particular solids with sculptured surfaces.

FIGURE 2.5 
ROTATIONAL SWEEP

2.2.5 CONSTRUCTIVE SOLID GEOMETRY

The philosophy of CSG is developed from the concept that a complicated solid can 
be represented as various ordered additions and subtractions of simpler solids by 
means of the boolean operations, union, intersection and difference. CSG represents 
solids as a collection of primitives such as blocks, cylinders, cones and spheres. The 
primitives are stored in a binary tree together with boolean set operations defining 
the way the primitives are combined. Each node represents an intermediate solid, 
which is a combination of primitive and intermediate solids lower in the tree. The 
root node represents the entire solid [7].

Consider the ‘L’ slider shown in figure 2.6 (a). This could be built by differencing the
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A

FIGURE 2.6
ILLUSTRATION OF CONSTRUCTIVE SOLID GEOMETRY
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cylinder from block B and adding it to block A as shown in figure 2.6 (b). Alternately 
it could be produced by subtracting the cylinder from block D and adding it to block 
C as shown in figure 2.6 (c). Thus it can be seen that the same object could be 
represented by more than one way in CSG. This means CSG representation is not 
unique. Its domain depends on the primitives the system can handle and on the 
operations available. When the primitives are valid, the CSG scheme guarantees the 
validity of the representation. CSG representaions are not efficient sources of 
geometric data for producing line drawings of objects. However CSG has many 
algorithms developed for different applications and there is a number of references 
explaining it [13 - 30]. Figure 2.6 (d) shows the CSG tree or the construction tree of 
the ‘ L’ slider. The CSG scheme is the most compact of all known class of commonly 
machined parts [31].

When some operation such as the calculation of mass has to be performed there 
should be an algorithm to evaluate the tree. Such an algorithm, called the geometry 
property function, solves a series of problems for the primitives and the intermediate 
solids until the problem is solved for the entire tree. This indicates that for each of 
the various applications there should be an algorithm traversing the tree. In CSG 
described so far there still remains the need for modelling the building blocks. 
Sometimes they are held in boundary representations. Alternately they may be 
defined as boolean combination of the directed surfaces in which their faces lie. The 
CSG description whilst compact and easily deduced from the user’s input, is not 
convenient, for producing pictures. It must first be transformed into a boundary 
model, a model that is logically equivalent to the surface 3D wireframe model. For 
this reason some solid modellers have both CSG and boundary representations.

In short CSG defines a few primitives and use their boolean combinations to build 
the complex solid, storing the history or path of building the final model in the form 
of the CSG tree. Special functions are then used to traverse the CSG tree and compute 
the properties. This method though has its advantages is not suitable for the sketching 
input.

2.2.6 BOUNDARY REPRESENTATION B-rep

The philosophy of boundary representation is developed from the concept that a body 
could be represented by a manifold which is a surface that divides the space into 
exactly two regions, inside and outside. The manifold could then be broken into pieces 
with boundaries and thus could be described as a union of bounded surfaces. Thus in 
boundary representation, solid boundaries are represented as union of faces, with 
each face represented in terms of its boundary (usually a union of edges) together 
with the data defining the surfaces in which the face lies. Boundary representation is 
akin to the wireframe model which represents an object by the edge curves and their
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end points on their surfaces. In B-rep method the ‘L’ slider of figure 2.6 could be 
represented by the faces shown in figure 2.7. Boolean operations are not part of the 
representation of B-rep model, but they are often employed as one of the means of 
creating or manipulating a model. The effect of a boolean operation on a CSG model 
is an addition to the CSG data structure. But since B-rep systems require explicit

FIGURE 2.7
ILLUSTRATION OF BOUNDARY REPRESENTATION

representations of the boundaries of the solid, they must calculate a new boundary 
that results from the operation. The information stored in a B-rep model is of two
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kinds [32]. They are (i) the links which store the topological information about the 
connection between faces, edges and vertices and (ii) the real numbers required to 
specify surface and curve equations and coordinates of the vertices. These informa-
tions are called ‘topological information’ and ‘geometrical information’ respectively.

An assembly in B-rep model could be represented in the following way. An assembly 
is constituted of instances. Instances are positioned bodies and hence have a trans-
formation matrix and a body associated with each of them. The body is constituted 
of shells and shells are constituted by faces. Faces contain one or more loops in each 
of them. The loops are made of edges and edges are defined by vertices. Figure 2.8 
shows Braid’s [32] boundary model indicating the topological and geometrical infor-
mation.

TOPOLOGY GEOMETRY

FIGURE 2.8
BRAID’S BOUNDARY MODEL

The B-rep model is more close to the line drawings than any other system. As a result 
there are many research works and references associated with it [31 - 50]. This method
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is more suitable for the sketching input than any one of the other models. It is easy 
to tailor this model to suit the thinking process of the engineer.

23  ANALYSIS OF SOLID MODELLING SCHEMES

STORED
INPUT

DEFIMDON

(a)

0»)

(c) (d)

FIGURE 2.9
ANALYSIS OF SOLID MODELLING SYSTEMS
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It is seen at the beginning of this chapter that there are four requirements on solid 
modelling systems namely (i) an input system (ii) a method of translating these inputs 
into representations (iii) a set of algorithms using these representations to compute 
geometric properties and (iv) a set of algorithms to produce outputs. As regard to 
requirement (ii) above six representation schemes were analysed and the B-rep 
method is found to be more suitable for sketching input. Requicha and Voelcker [51], 
Baer et al [45] and Braid [44] all looked at the contemporary solid modelling systems 
at various time points. Almost all of them used primitives and boolean operations as 
their input method. Thus it can now be said that a solid modeller as now is a 3D data 
structure synthesiser which transforms the user description of a complex solid into 
an internal representation with a set of geometrical algorithms, performing opera-
tions on simpler solids such as blocks, cylinders and cones. In their analysis in 1982 
Requicha and Voelcker [51] concluded that all system representations fell into two 
categories namely (i) B-rep and (ii) dual (B-rep and CSG). In a later evaluation in 
1983 the same authors [52] looked at the then contemporary systems and concluded 
that there are many auxiliary representations. This is due to the increasing demands 
of the geometric algorithms and the increasing availability of the memory of the 
computer. This lead to the analysis of the input and the system as a whole. They 
grouped this input definitions and representations into four classes. They are

(i) Stored input definitions
(ii) Volatile input definitions
(iii) Stored input definitions with approximate representations
(iv) Stored or volatile input definitions together with auxiliary 

representations
These methods are illustrated in a digram, which is reproduced here as figure 2.9. 

Figure (a) here is the simplest method which stores the inputs to be processed by the 
geometry property functions. Figure (b) represents the first version of a serious 
system where the inputs are translated into some useful representation and then the 
inputs are discarded. Figure (c) represents a particular application of approximate 
B-rep as the main model of representation and any fine details are obtained from the 
inputs which are stored. In figure (d) an exact or approximate representation together 
with an auxiliary representation enhancing the algorithms is represented. These lead 
to the generalised notion of a solid modelling system as illustrated by figure 2.10. This 
suggests two main developments. They are (i) the number of auxiliary representations 
increases as the number of applications increases and (ii) as computer technology 
advances more and more memory becomes available at relatively low cost and 
removes the necessity for compactness at the expense of runtime efficiency.

These suggest that the current trend can be described in the following way.
(a) The input is only to make the computer understand the solid in development.
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(b) Once the input is understood it can be stored as a representation or can be ig-
nored.
(c) Further representations are developed by the computer to store the solid in a 
way understandable and quickly accessible by some or all of the algorithms.
(d) It is common practice to have many representations for one solid to enhance 
the runtime efficiency.
These facts suggest that sketching input can coexist with any other input system and 
could form a representation in its own right. Additional representations such as the 
B-rep and the octree representation could be developed at a later stage and can form 
the main or auxiliary representation schemes. In this thesis the B-rep model is made 
as the only representation and thus makes the sketching a volatile input.

INPUT DEFINITION 
STORED OR VOLATILE

TO APPLICATIONS

o  o
o

EXTERNALLY ACCESSIBLE PROCEDURES

FIGURE 2.10
GENERALISED NOTION OF SOLID MODELLING SYSTEMS
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As mentioned earlier the major advantage of CSG is that it guarantees that valid 
models are always produced and ensuring validity is a serious issue for the B-rep 
model. However Mantyla [42] shows that the same type of guarantee could be 
provided for boundary representation modellers if the underlying modelling process 
is based on the use of Euler operators.

23 .1  EULER OPERATORS

An object can at most have six topological constituents namely shells (s), holes (h), 
faces (f), rings or internal loops (r), edges (e) and vertices (v). All physical objects 
obey the Euler-Poincare formula 

v-e + f = 2(s-h) + r.
The problem of creating a non-realizable or invalid object in boundary models is 
circumvented in the following way.

In an algebraic analysis solid modelling can be represented by a six dimensional space 
with v, e, f, h, r and s as the axes. In the development of a boundary model operations 
are performed to create or add one or more of these six coordinates and any solid is 
a point P (v,e,f,h,r,s) in this space. The Euler-Poincare formula represents a five 
dimensional hyper plane of this space and all points in this plane represents valid 
models. This hyper plane can be spanned by five, six-vectors Vi lying on the hyper-
plane and are linearly independent. Once these Vi’s are established all points of the 
hyperplane can be expressed as linear combinations of the Vi’s. This means that if a 
solid model is built with operations representing these Vi’s or base vectors, it will be 
valid. Operations denoting these base vectors are called Euler operations and 
operators performing them are called Euler operators. There can of course be an 
infinite number of such five, six-vectors but Mantyla [42] used the operators MVFS, 
MEV, MEF, KEMR and KFMRH which are described in the following sub-sections. 
Their names are coined using the historical convention using the names given below. 

Operations Entities
M - Make V - Vertex
K - Kill E - Edge
S - Split F - Face
J - Join S - Solid

H - Hole
R - Ring

Three basic type of manipulative operations are used in creating the five Euler 
operators mentioned above. They are (i) ‘Prototype’ primitives that create skeletal 
models (ii) Local topological operations that sub-divide the sequences of a face or a 
vertex and (iii) Global topological operations that implement a connected sum of two 
polygons.
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23.1.1 SKELETAL PRIMITIVES MVFS AND KVFS

The operator MVFS creates from scratch an instance of the data structure of a solid 
that has just one face and one vertex. Hence the new face has one empty loop with 
no edges at all. KVFS the inverse of MVFS destroys the skeletal instance of the data 
structure identical to that created by MVFS. These operators are called the skeletal 
operators because they deal with the basic solid from the scratch. Every time a solid 
is created or destroyed these operators are used.

23.1.2 LOCAL MANIPULATORS MEV, KEV MEF, KEF, KEMR AND  
MEKR

These operators are called local because they confine to a loop or edge rather than 
dealing with the solid as a whole. MEV subdivides the cycle of edges of a vertex into 
two cycles by ‘splitting’ a vertex into two vertices, joined with a new edge. The net 
effect of this is to add one vertex and one edge to the data structure, as suggested by 
the name of the operator.Mantyla [42] included the application of this operator to 
the cases of (i) ‘lone’ vertices, by considering the result of subdividing a vertex with 
no edges at all, as consisting of two vertices joined with an edge and (ii)a vertex joined 
with the old vertex by means of a new edge.

(°)

(b)
(c)

FIGURE 2.11
MEV OPERATOR AT DIFFERENT CONDITIONS
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Figure 2.11 shows the situations handled by this operator. The inverse operator KEV 
is capable of undoing any of the three cases of figure 2.11. Given an edge connecting 
two distinct vertices KEV can remove the edge, collapse the vertices into one and 
merge their edge cycles.

In a similar fashion the operator MEF subdivides a loop by joining two vertices with 
a new edge. Its net effect is to add one new face and edge to the data structure. Figure 
2.12 shows the three cases supported by the operator MEF.

(c)

FIGURE 2.12
MEF OPERATOR AT DIFFERENT CONDITIONS

The inverse operator KEF can destroy the effect of MEF in each of the cases in figure 
2.12. Given an edge adjacent to two distinct faces, KEF is capable of removing the 
edge and joining the two faces into one whose bounding loop is the result of merging 
the two original boundaries.

The operator KEMR splits a loop into two new ones by removing an edge that appears 
twice in it. It divides a connected bounding curve of a face into two bounding curves,
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and has the net effect of removing one edge and adding one ring to the data structure.

(c)

(b)

FIGURE 2.13
KEMR OPERATOR AT DIFFERENT CONDITIONS

Figure 2.13 illustrates the three cases of the operation by this operator. The inverse 
operator MEKR can merge two loops of a face by joining one vertex of each with a 
new edge.

2 3 .1 3  GLOBAL MANIPULATORS KFMRH AND MFKRH

This operator is meant to modify the global topological properties such as dividing a 
solid into two or adding a hole. Given two loops say fi and fc, KFMRH joins them 
into one face by transforming the bounding loop of f2 to a ring of fi. Hence its net 
effect is to remove one face f2, and add one ring instead. KFMRH has no effect on 
the local arrangement of edges and vertices of its arguments. It is truly a global 
manipulation. KFMRH creates a hole only when the argument faces belong to the 
same shell. When the faces belong to different shell it combines them into one shell. 
The inverse operator MFKRH is capable of reversing the effects of KFMRH. It 
modifies the ring of a face into the bounding loop of a new face.

23 .2  CONSEQUENCES OF EULER OPERATORS

As mentioned earlier the Euler operators are represented by the base vectors and
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the corresponding base vectors are as follows:
EULER OPERATOR BASE VECTOR

MEV
MEF
MVFS
KEMR
KFMRH

v e f h r s 
1 1 0 0 0 0  
0 1 1 0 0 0  
1 0 1 0 0 1  
0 -1 0 0 1 0  
0 0 - 1 1 1 0

The inverse operators are
KEV
KEF
KVFS
MEKR

-1 -1 0 0 0 0
0 -1 -1 0 0 0
-1 0 -1 0 0 -1
0 1 0 0 -1 0
0 0 1 -1 -1 0MFKRH

These base vectors indicate the addition (1) or deletion (-1) of the element repre-
senting the column. Mantyla created a matrix which is termed in this thesis an Euler 
matrix using these five vectors and the Euler-Poincare formula. The matrix has an 
inverse and it is used to calculate the number of each Euler operation represented 
by the rows, necessary to produce an object with the number of elements represented 
by the vector P(v,e,f,h,r,s), a point in the hyperplane. These numbers of operations 
required are called the Euler coordinates. Thus

-1 TP (Euler matrix)" = (Euler coordinate vector)

Thus for instance, an object with 16 vertices, 24 edges, 10 faces, 1 hole, 2 rings, and 
1 shell could be represented by a point P(16 24 10 1 2 1) in the hyperplane.

P (Euler matrix)"1 = (15 10 111  0)T

This means that to model this solid a total of 15 MEV’s, 10 MEF’s, 1 MVFS, 1 KEMR 
and 1 KFMRH are needed. The last component taking the value 0 ensures that the 
solid satisfies the Euler- Poincare equation. If the values are negative their inverse 
operation should be used.

This is a useful result of Euler operators. In this research, the sketch after perfection 
is transformed into a vertex model in three dimensions and the vertex model is then 
transformed into an edge based boundary model. Euler operators could then be used 
to perform this transformation so that validity is ensured. Consider now the example 
of the ‘L’ slider and let the labelling of the edges, faces and vertices be as shown in 
figure 2.14.
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FIGURE 2.14
LABELLING OF THE ‘L’ BLOCK

Applying the Euler formula depends on the way the cylinder is represented. The 
cylinder could be represented as two ellipses one connecting line and one curved 
surface as shown in figure 2.15(a). Alternately it could be represented as four elliptical 
arcs, two straight edges, two curved surfaces and four vertices as shown in figure 
2.15(b). For case (a) v = 14, e = 21, f = 9, h = 1, r = 2 and s = 1 which makes the 
Euler formula 14 - 21 + 9 = 2(1-1) + 2 which is true. For case (b) v = 16, e = 24, 
f = 10, h = 1, r = 2 and s = 1 which makes the Euler formula 16 - 24 + 10 = 2(1 
-1) + 2 which is also true. This leaves the representation of the cylinder to the choice 
of the application.
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Edge 1

FIGURE 2.15
REPRESENTATION OF CYLINDER

2.4 SOLID MODELLING REVISITED

The preceding sections described the historical development of solid modelling. 
There, solid modelling is seen as the branch of geometric modelling that emphasises 
the general applicability of models, and insists on creating ‘Complete’ repre-
sentations of physical solid objects. The representations should be adequate for 
answering arbitary geometric questions algorithmically. Also they revealed the fol-
lowing observations.

(i) Initially objects are described by the user using the description language available 
in the solid modeller. Once entered these object descriptions are translated to create 
the actual internal representations stored by the modeller.
(ii) The representation between the description language and the internal repre-
sentation need not be a direct one. Internal representations can employ modelling 
concepts different to the original description.
(iii) A solid modeller may well include several description languages intended for 
different kinds of users and applications.
(iv) None of the three major approaches to solid modelling namely (a) decomposi-
tion models (b) constructive solid geometry models and (c) boundary models is far 
superior to others in all respects.
(v) Decomposition models are superior to others as sources of data for numerical
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algorithms even when they are approximate. Constructive models are the most 
concise of the three major approaches. Boundary models are directly useful for 
graphical applications.
(vi) A hybrid modeller is capable of supporting several co-existing solid repre-
sentations and tries to pick the most suitable of them for each task. A hybrid model 
can well include several types of boundary models and conversion algorithms form a 
fundamental part of the hybrid modeller.

From these observations it could be said that though, most of the solid modelling 
systems have the primitives and their boolean combinations as the method of input, 
they can have ‘sketching input’ as an additional input method and there could be 
multiple representations. One of the representations may be the sketch after the 
improvements. This would facilitate reproduction of the graphic outputs.

2.4.1 SKETCHING INPUT - WHERE?

FIGURE 2.16
ILLUSTRATION OF SPECIAL EDGES

Having thus seen that sketching input could be used as one of the multiple repre-
sentations it is proper to look at the contemporary solid modelling systems to find out
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the state of the art with regard to sketching input. Several researchers [56-62] have 
contributed towards this direcion. The following paragraphs enumerate the salient 
points of these publications.

A wireframe model of a solid could be described as the lists of vertices and edges in 
the boundary of the solid without the surface description and the loop organisation. 
Laquette [56] describes three special edges namely (i) ghost edge (ii) tangency edge 
and (iii) silhouette edge. A ghost edge is an edge drawn on a surface with two adjacent 
faces lying on the same surface. The two faces can be merged into one by eliminating 
the ghost edge. Normally ghost edges are not allowed in wireframe models. A 
tangency edge separates two faces on two different surfaces, but the surfaces have a 
first order continuity along the tangency edge. Traditional drafting views do not draw 
these edges. A silhouette edge is a notion associated with a view of the solid. It is the 
locus on the surface, of points where the surface normal is perpendicular to the 
projection direction. The projection of the silhouette edge is the outline of the 
surface. Laquette [56] illustrates these edges with a figure which is reproduced here 
as figure 2.16.

It is seen in section 2.3.2 that representing the cylinder as 2 vertices and 3 edges or 4 
vertces and 6 edges is a matter for the application. This is because of the varying 
number of silhouette edges introduced. As seen in the definitions by Laquette 
silhouette edges define the surfaces and hence are decided according to convenience, 
though they are important in the definition of the solid by sketching. In a similar 
analysis it could be seen that tangency edges are important in the definition of the 
solid by sketching input, since they form the boundary of a face. Thus it could be said 
that drawing tangency edges in sketching input must be made compulsory. Also the 
definition of the silhouette edges must be tailored and made compulsory to suit the 
sketching environment.

Fukui [57] proposed a sketching input system to a boundary solid with planar faces 
in the following way. The user draws projection lines of a 3D polyhedron on a 2D 
plane face by face. Then the system projects them inversely into 3D space immedi-
ately after each face is drawn and constructs a data structure with a planar face 
equation. The method connects these faces by the ‘adjacent edge’ principle and builds 
the solid model.

Hodes [58] describes a method of processing line drawings. Processing here means 
the identification of lines and vertices in a drawing. The input to the process is a line 
drawing represented by a pattern of marked points in a 100 x 100 square array. The 
actions performed in this method are as follows:
(i) Fit straight line of standard length.
(ii) Advance in the best direction and monitor for the number of points in the line.
(iii) Look for conditions of a vertex by looking at both sides for intersecting lines.
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(iv) Continue following a line until a vertex is hit.
(v) Repeat (i) to (iv) until all the lines are exhausted.

The paper does not explain in detail whether this is used for identifying polygons or 
curves. Also it was too brief to explain the underlying theory and methodology. 
However it brought to the surface the ‘change-in-slope’ concept to identify the vertex.

Guzman [59] explains how a two dimensional picture of a 3 dimensional scene could 
be transformed into solid representation. Murase and Wakahara [60] explains a 
matching method for the hand sketched figure recognition. This may be very useful 
where the figures to be processed are known in advance. However this is not suitable 
for sketching input for solid modelling. Richards and Onwubolu [61] describe a 
method of automatic interpretation of engineering drawings for 3D surface repre-
sentation. The steps in this program may be listed as follows:

(i) Establish the number of entities (lines, arcs) in each view
ii) Considering the reference line to lie along with the axis establish the x,y,z
coordinates of the vertices
(iii) Match the entities to identify the substructures.
(iv) Formulate Bezier net for the identified substructures.

Hwang and Ullman [62] describes a system where the sketch made on a digitizer tablet 
is accepted as an input to the solid model. In this system, the sketching action is 
considered as a sequence of strokes, where each stroke is from initial contact of the 
drawing device with the surface (tablet) until it is removed. These strokes are then 
matched to the primitives namely line, arc, circle, ellipse, segmented line or polyline. 
An expert system is then employed to build the solid model. This though is a positive 
step in sketching input, still restricts the user.

2.6 DATA STRUCTURES FOR BOUNDARY REPRESENTATION

There are three topological elements namely (i) vertex (ii) edge and (iii) face and for 
the geometric data any one type is sufficient to represent the solid and any others 
could be derived from the one stored. A boundary data structure could be thought of 
as a set of adjacency relationships among topological elements. Baer et al [45] points 
out there are nine such relationships possible and they showed these relationships 
with a figure which is given here as figure 2.17.

To connect three entities at least two relationships are necessary. Mathematically 
there are 9C2 = 36 ways of selecting these two relationships. But it is not necessary 
to select only two relationships. One can decide to store any number of relationships 
between three and nine to store the topology of the solid. Thus in general there should
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FIGURE 2.17
NINE TOPOLOGICAL RELATIONSHIPS
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be

9C2 + 9C3 + 9C4 + 9C5 + 9C6 + 9 C i  + 9Cs + 9C9 = 502

possible combinations of which some will be invalid due to disconnectedness. Woo 
[63] analysed these combinations and concludes that the symmetric structure is the 
best and the winged edge structure is the next best. Weiler [39] establishes four such 
data structures including the ‘Winged-Edge’ and ‘HalfEdge’ data structures, suitable 
for edge based representations. The oldest and complete of these representations is 
the ‘Winged Edge’ data structure by Baumgart [64].

2.6.1 VERTEX BASED BOUNDARY MODEL

In a vertex based boundary model the faces are expressed as a list of vertices in a 
consistent order (clockwise or anticlockwise). This consistency in order is useful in 
many algorithms and is used in the identification of all the loops in the solid sketched. 
In these representations most of the information is left implicit (to be computed 
whenever needed). For the ‘L’ block shown in figure 2.14 the vertex model has the 
following two lists.
Vertex list Face list
Vertex Co-ordinates Face Vertices
Vi xi yi zi Fi Vi V7 Vg V2

v2 X2 y2 Z2 F2 V2 V8 V9 V3

V3 X3 y3 Z3 f 3 V3 V9 V10 v 4
v4 X4y4Z4 f 4 V4 V10 V1 1 V5

V5 X5 y5 Z5 f 5 V6 V12 V n  v5

v6 X6y6Z6 f 6 V1 V7 V1 2 V6

Vv x7 y i  z i F7 V1 V2 V3 V4 V5 V6

Vs xs yszg Fs V7 V8 V9 V1 0 V1 1 V12

V9 X9 y9 Z9
V10 xio yio zio
V11 xii yn zìi
V12 X12 yi2 Z12

2.6.2 EDGE-BASED BOUNDARY MODELS

An edge based boundary model represents a face boundary in terms of a closing 
sequence of edges. The data structure imposes an orientation for each edge. Edge E i 
is considered to be oriented positively from vertex Vi to vertex V2 . Again faces are 
oriented i.e. their edges are listed clockwise as viewed from the outside of the block. 
Each edge occurs in exactly two faces once in the positive and once in the negative 
orientation. An edge based boundary model is given below for the ‘L’ block in figure 
2.14. It has three lists (a) Vertices and co-ordinates (b) edge details and (c) face
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details. In addition to this the equations of the surfaces could be given for each solid.
Vertex Co-ordinates Edge Vertices Face Vertices
Vi xi yi zi Ei Vi v2 Fi E i E7 E 13 Es

V2 X2 y2 Z2 E2 V2 V3 F2 E 2 Es E 14 E9

V3 X3 y3 Z3 E3 V3 V4 f 3 E3 E9 E 15 E io

V4 X4y4Z4 e 4 V4 V5 f 4 E4  Eio Ei6 E h

v5 X5 y5 Z5 E5 V5 V6 f 5 E5 E 12 E 17 E h

V6 X6y6Z6 E6 V6 Vi f 6 E6 E7  El8 E 12

V7 x i y i z i E7 V1 V7 F7 E6 E i  E2  E3 E4  Es
V8 X8 y8Z8 E8 V2 V8 Fs E 18 Vl3 E 14 E 15 El6 El7
V9 X9 y9 Z9 E9 V3 V9

Vio xio yio zio Eio V4 V10

E n V5 V11

El2 V6 Vl2
El3 V7 V8

El4 v8 v9

ElS V9 Vio
El6 V1 0 V11

El7 V1 1 V12

El8 V1 2 V7

These two models indicate that all the models have some relationships to all the three 
entities vertex, edge and face. Inclusion of explicit nodes for each of these connected 
entities gave birth to the winged-edge data structure.

2 .63  WINGED-EDGE DATA STRUCTURE

Winged edge data structure makes use of the following properties.
(i) Because an edge appears in exactly two faces there are two other edges after this 
edge, one in each of these faces which are called the next edges.
(ii) Because of the same reason as above in (i) there are two other edges before this 
edge, one in each of them which are called the previous edges.
(iii) Because of the consistent orientation of the faces, the edges occur once in positive 
and once in negative orientation.
(iv) Because the information included in the data structure, each face could be 
identified by any one edge in it which is called the first edge [42],
(v) Again because of the information included in the data structure, the vertices could 
be identified by any one of the three edges forming it.

The orientation and information coupled together gives (i) next clockwise edges ‘new’
(ii) previous clockwise edges ‘pew’ (iii) next counter clockwise edges ‘neew’ (iv) 
previous counterclockwise edges ‘peew’ (v) clockwise face ‘few’ (vi) counterclockwise
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face ‘fccw’ (vii) starting vertex ‘vstart’ and (viii) ending vertex ‘vend’ as the elements 
of the data structure. Each of these elements is represented by a node in the 
winged-edge data structure. Figure 2.18 illustrates the winged-edge data structure.

new

p eew

FIGURE 2.18
WINGED-EDGE DATA STRUCTURE

The complete winged edge data structure for the ‘L’ block of figure 2.14 is given 
below.
edge vstart vend few fccw new pew neew peew
1 1 2 7 1 2 6 7 8
2 2 3 7 2 3 1 8 9
3 3 4 7 3 4 2 9 10
4 4 5 7 4 5 3 10 11
5 5 6 7 5 6 4 11 12
6 6 1 7 6 1 5 12 7
7 1 7 1 6 13 1 6 18
8 2 8 2 1 14 2 1 13
9 3 9 3 2 15 3 2 14
10 4 10 4 3 16 4 3 15
11 5 11 5 4 17 5 4 16
12 6 12 6 5 18 6 5 17
13 7 8 1 8 8 7 18 14
14 8 9 2 8 9 8 13 15
15 9 10 3 8 10 9 14 16
16 10 11 4 8 11 10 15 17
17 11 12 5 8 12 11 16 18
18 12 7 6 8 7 12 17 13
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Vertex Co-ordinates first edge
Vi xi yi zi Ei
V2 X2 y2 Z2 E2
V3 X3 y3 Z3 E3
V4 X4y4Z4 e 4
V5 X5 y5 Z5 e 5
V6 X6 y6 Z6 E6
Vv X7 y i  Z7 E7
V8 X8 y8 Z8 Es
V9 X9 y9 Z9 e 9
VlO xio yio zio E io

V n xii yn zn En
Vl2 X12 yi2 Z12 E12

In addition to this there is a list of faces which are represented by their first edges. 
This winged-edge structure described above deals with faces that do not have rings 
resulting from holes. But almost all mechanical components have rings in some of 
their faces. Therefore it becomes necessary to incorporate them. Braid et al [32] 
suggests a method to incorporate them as explained in figure 2.8. They use winged- 
edge data structure to represent the loop and a list of loops to represent a face. A 
similar approach is taken up by Chiyokura [41] and Mantyla [42].

2.7 STORING GEOMETRIC INFORMATION

It has been seen earlier that the constituents of a boundary model are (i) the 
topological connections of the three constituents edge, vertex and face (ii) co-or-
dinates of the vertices and (iii) the analytic equations of the various edges and faces. 
This section describes the method of storing the analytic equations described in (iii) 
above.

The class of surfaces covered in this research includes planes, cylinders, cones and 
spheres which cover the majority of those encountered in manufactured products. 
The approach of storing these information following Mantyla [42] is described below. 
Every surface is represented by (i) a tuple of parameters that describe it in some 
orientation and (ii) a transformation matrix that positions it at its correct position. 
Thus for the plane the tuple is [a b c d] representing the plane equation

[abcd] [xyz  1]T = 0.

There is no necessity for a transformation matrix for the planes. Cylinders are 
represented as if their axes were the z-axis and their bottom faces lie on the ‘xy’ plane.
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Parameters needed are the radius and the height of the cylinder. Cones could be 
stored in a similar manner to the cylinder. However to include the situation where 
the cone has the bottom and top radii greater than zero an additional parameter, the 
top radius, is included. Spheres are represented as if they were centred at the origin 
and the only parameter required is the radius.

Two kinds of curves are accommodated in this research. They are the straight lines 
and circular arcs. The straight lines need not have an explicit representation as the 
co-ordinates at the end points could readily supply them. As for the arcs, the radius, 
centre, starting angle, finishing angle and the plane in which they are lying should be 
known. However the parameters are assumed to be in the xy plane and the plane 
normal is assumed to be coinciding with the z-axis. This information, though not 
necessary for sketching input, may be necessary for sweep inputs.

From the preceding analysis in this and the previous sections the survey converged 
into identifying a data structure which could accept ‘sketching input’ as one of the 
methods of input in addition to the others already built into it. The ‘half edge’ data 
structure is found to be a suitable one and is described in the following section.

2.8 MANTYLA’S HALFEDGE DATA STRUCTURE

Mantyla [40,42] developed the half edge data structure for the solid modeller GWB. 
Many of its features are similar to the winged-edge data structure. It has a five level 
hierarchical structure consisting of nodes of type Solid, Face, Loop, HalfEdge, Edge 
and Vertex. The entire solid is represented by doubly linked lists of these nodes.

The Solid node forms the root node and is a member of the assembly. Thus an 
assembly is a linked list of Solid nodes. It gives access to faces, edges and vertices of 
the model through pointers to the three nodes namely, Faces, Edges and Vertices.

The Face node represents the surface. In a surface one loop represents the outer 
boundary while others represent holes. The nodes that represent (i) the outer loop 
and (ii) the doubly linked list of all loops of the face are the important pointers in this 
node. In addition to this there are pointers to the (i) Solid node it belongs to (ii) Surf 
node describing the geometry and (iii) Face nodes describing the previous and next 
faces of the solid.

The Loop node describes one connected boundary. It has a pointer to its present face, 
a pointer to one of the half edges that form the boundary and pointers to the next and 
previous loops of the face.

The HalfEdge node describes one line segment of a loop. The half edge concept is 
derived from the fact that all the edges will be included in the loops twice, once in 
the positive orientation and once in the negative orientation, in a orderly (clockwise
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or anticlockwise) arranged list of loops. It consist of a pointer to its parent loop and 
a pointer to the starting vertex of the line segment in the direction of the loop. It has 
pointers to the previous and the next HalfEdge nodes of the loop and to the Edge 
node the HalfEdge belongs to.

The Edge node associates two half edges, which when combined form the full edge 
(i.e. in the positive and negative orientation), with each other. It consists of pointers 
to the left and the right half edges as shown in figure 2.19. The doubly linked list of 
edges is realised by means of pointers to the next and previous edges.

Edge node

HalfEdge node

edg edg
HalfEdge node

FIGURE 2.19
HALFEDGE DATA STRUCTURE

The Vertex node contains a vector of four floating point numbers representing the 
homogeneous coordinates of a vertex to pointers to the next and previous vertex 
realise a doubly linked list of vertices of a solid. Each Vertex node also includes the 
pointer to one of the half edges emanating from that particular vertex.

The structure is very much complicated and is explained by the figure 2.20. Figure
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FIGURE 2.20
LINKED LIST STRUCTURE OF SOLID REPRESENTATION
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2.21 explains the supporting lists. The ‘C  implementation of the halfedge data 
structure is given in appendix.

(a)

(b)

FIGURE 2.21
SUPPORTING LIST STRUCTURES

2.9 AN EXAMPLE REPRESENTATION

It was established in the previous section that there are three doubly linked lists which 
keep all the data representation of a solid model. They are (i) list of ‘Solid’ nodes (ii) 
list of ‘Edge’ nodes (iii) list of ‘Vertex’ nodes. Consider the ‘L’ slider of figure 2.14. 
Section 2.9.1 describes its representation assuming that the cylindrical hole is not 
present while section 2.9.2 indicates how the presence of the cylindrical hole is 
represented.

2.9.1 REPRESENTATION OF THE ‘L’ BLOCK

In this section the arrangement of data of the ‘L’ block is described with the 
assumption that the cylinder is not present. It has four parts namely (i) list of Solid’ 
nodes (ii) list of ‘Face’ nodes belonging to a solid (iii) list of ‘Edge’ nodes belonging 
to an assembly (iv) list of ‘Vertex’ nodes belonging to a solid.

2.9.1.1 LIST OF SOLID NODES

The ’L’ block is made of only one solid and since there is only one solid there can only 
be one ‘Solid’ node. Therefore the previous and next ‘Solid’ nodes should point to
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NULL.The solid identifier is ‘1’. Thus the three requirements to complete this node 
are

(i) pointer to the start of the list of ‘Face’ nodes
(ii) pointer to the start of the list of ‘Edge’ nodes
(iii) pointer to the start of the list of ‘3Vertex’ nodes

Figure 2.22 illustrates this node.

FIGURE 2.22
ILLUSTRATION OF THE SOLID NODE

51



13 14 15 16 17 18

FIGURE 2.23

EDGE LIST OF THE V  BLOCK



2.9.1.2 LIST OF EDGE NODES

There are 18 edges in the ‘L’ block of figure 2.14. This means there should be 36 half 
edges. They are
Half edge No Half edge Start edge Edge No Edge details

1 1 2 1 1 12
2 21 2 1 12
3 23 2 2 23
4 32 3 2 23
5 34 3 3 34
6 43 4 3 34
7 45 4 4 45
8 54 5 4 45
9 56 5 5 56
10 65 6 5 56
11 61 6 6 6 1
12 16 1 6 6 1
13 17 1 7 1 7
14 71 7 7 17
15 28 2 8 28
16 82 8 8 28
17 39 3 9 39
18 93 9 9 39
19 4 10 4 10 4 10
20 10 4 10 10 4 10
21 5 11 5 11 5 11
22 115 11 11 5 11
23 6 12 6 12 6 12
24 12 6 12 12 6 12
25 78 7 13 78
26 87 8 13 78
27 89 8 14 89
28 98 9 14 89
29 9 10 9 15 910
30 10 9 10 15 9 10
31 1011 10 16 10 11
32 1110 11 16 10 11
33 1112 11 17 11 12
34 12 11 12 17 1112
35 712 7 18 7 12
36 12 7 12 18 7 12
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In the case of the ‘L’ block all the edges are straight and hence no curve equation is 
presented. Also all the edges appear in exactly two faces or two times. Hence the 
curve information is a node of type ‘Line’ and will have ‘times_used’ = 2 and 
‘curve_type’ as a constant representing straight line (say 4). The list of ‘Edge’ nodes 
in the ‘L’ block is schematically shown in figure 2.23.
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2.9.13 LIST OF VERTEX NODES

There are 12 vertices in the ‘L’ block and hence there should be 12 nodes in the list. 
One half edge is given here in each node to identify other edges emanating from this 
node. The list is given in figure 2.24.

2.9.1.4 LIST OF FACE NODES

There are 8 faces in the ‘L’ block. In addition to this there is a cylindrical hole in the 
’L’ slider. This means that there should be 8 ‘Face’ nodes in the list of faces each node 
representing a face. For the 8 faces of the ‘L’ block assuming that there is no hole, 
there are no rings. This means that the outer loop and the list of loops, point to the 
boundary of the face. A plane node is present for each of the face representing the 
equation of the plane. The loops (faces in this case) arranged in the clockwise sense 
are as follows:

1 7 8 2
2 8 9 3
3 9 10 4
4 10115
5 1112 6
6 1217 
1 2 3 4 5 6  
7121110 9 8

Putting all the lists together in the ‘Solid’ node it gives the hierarchical structure.

2.9.2 REPRESENTATION OF THE ‘L’ SLIDER

The ‘L’ slider is formed by the inclusion of the cylindrical hole in the ‘L’ block. In 
effect it makes three changes. They are
(i) addition of a circular ring in face 7
(ii) addition of a circular ring in face 8 and
(iii) addition of a cylindrical face.
Changes (i) and (ii) adds an internal loop to the ‘Face’ nodes described in 2.9.1 above.

The cylindrical face is represented by the node cylinder. It is assumed to be created, 
with its axis parallel to the z axis and the face lying in the xy plane, and is rotated and 
translated to reach the present position. Thus there is a transformation matrix 
associated with it.
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2.10 INFERENCES

The following inferences could be drawn from this survey.
(i) ‘Sketching input’ can be accepted as an input method for ‘solid modelling’ with 
boundary representation
(ii) After the sketch is processed i.e. the descrepancies due to the imperfection of the 
hand drawing are corrected, it could have a data structure that could permit linking 
to a solid modeller.
(iii) Euler operators should be used for the building of the solid model
(iv) ‘Halfedge’ data structure is a suitable candidate for the B-rep solid modeller in 
the ‘sketching input’ environment.
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CHAPTER 3
BACKGROUND THEORY

3.0 GENERAL

Several special techniques are used in this thesis. They can be summarised as fitting 
methods for 2-dimensional lines and curves, 2-dimensional geometry and transfor-
mations. There is a statistical flavour to some of the material but any deeper statistical 
theory is omitted. The methods largely involve simple means and smoothing or least 
squares.

3.1 TW O-DIM ENSIONAL GEOMETRY

This section contains a discussion of 2-dimensional geometry. The vector notation is 
used when it is convenient. A generic vector being written as a column vector

* = [ ; ] = ^ > r
T — T —

The Euclidean distance between two points P: ( x \  y i ) = X ,  Q: ( X2 y 2 ) = Y is
PQ where

2 2 2
P Q  =  ( x  2 — x  \ )  +  ( y  2 — y i )  which is the two norm of ( X  — Y ).

A line in 2-dimensions is written

A  T X  =  a x  + b y  = c  (3.1)
and as c changes parallel lines are obtained. The special case when c = 0 gives a 
line through the origin O: (0  0 ) perpendicular to the vector

r\ r\
Indeed if V  ( a  +  b  ) -  Iso  thatzl is a unit vector, then | c | is the perpendicular

distance of the line from O. In general this distance is | ------ ~------T ~  I • ^ ie vector
V {  a  L + b  L)

formulation is convenient for a number of different computations. The distance of a

pointZ = (z  i z 2 ) from the line (3.1) can easilybe found in the following way. Since 
A  is perpendicular to the line, taking X  to be the foot of the perpendicular from Z 
to the line X  — Z  =  k A  for some k.
But then

A T X  - A T Z  =  k A  T A .

Giving

c - A T Z  =  k A T A  =  k ( a 2 +  b 2 ).

Thus k =

But the two norm o

c - A TZ

( a 2 +  b 2 )
-  — — -19 o 9
f ( X  -  Z ) is k  ( a  +  b  ). Thus the square of the perpendicular
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4 . [c — A  Z ]distance is -— ~----- 7r~.
( a 2 +  b 2 )

The distance between two parallel lines A  T X  =  c  1 and A  T X  =  c  2 is just 
C 1 - C 2

V" ( a 2 + b 2 )
The division of a line given by its end points, by a given point is handled in the following 
way. Consider the point P:(x,y) which divides the line connecting A:(xi,yi) and 
B:(x2,y2) at a ratio mi:m2 . Then it can be shown that

m i x 2  + m2JCi
x  = ---------- :----------m i + m i

_ m \ y i  +  m i y i

^ m i  +  m 2

If mi = 1 and m2 = A then
x i  +  A x i

X ~  1 +A
y i  + Ayi

y = ~T +T ~
From these equations

^ _  X2 ~  x  _  y i  -  y  

x - x i  y  -  y i
If A is positive P is between A and B. If A is negative P is outside AB.

3.2 REGRESSION OF Y ON X AND X ON Y

Regression in simple terms is the development of an equation connecting two 
variables say x and y. One of these variables is dependant while the other is indé-
pendant. The dependant variable is said to be regressed on the independant variable. 
The regression of the y co-ordinate on x co-ordinate of the points gives an equation 
y = ax + b. In the regression of y on x the values of the x co-ordinates are assumed 
to be correct and the error or deviation is associated with the y co-ordinate as shown 
in figure 3.1 (a). In a similar way the regression of x co-ordinate on y co-ordinate gives 
an equation x = cy + d. Here the errors are associated with the x co-ordinates and 
the y co-ordinates are assumed to be correct as shown in figure 3.1 (b). These two 
regression lines are different with different slopes and different intercepts. It is later 
shown in section 3.3 that one condition for the least squares solution of y on x is

-  2  y i  + a  'Z xi  +  n  b  = 0
i

— — X y i  +  a  xi  +  b  =  0 
_ n i _  n i

-Y + aX + b = 0
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REGRESSION OF Y ON X AND X ON Y

This means that both lines pass through the mean point.

In a situation where one variable is dependant on the other, the practice is to regress 
the dependant variable on the independant variable. However in a sketching situation 
both y and x co-ordinates are independent. This leaves the problem of choosing
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between the lines y on x and x on y. In this thesis the line y on x is used to identify the 
initial slope and wherever possible, the mean point is used to compute the intercept 
of the corrected line, thus minimising the confusion of the selection.

3 3  LEAST SQUARES FITTING OF STRAIGHT LINE

Consider the situation as shown in figure 3.1 (a). The equation of the fitted line would 
have satisfied (xi,yi) if the fitting was perfect. But because there is an error ei present 
in the fitting the point (xi,yi) is above the line as shown in figure 3.1 (a). Let there be 
such an error associated with each of the ‘n’ points to be fitted and let them be equal 
to ei, e2, —  en in quantity.

Also let

e l  +  e i + ------------ + e n  = e 2 =S
2

The method of least squares fits the line such that the value of e is a minimum. Francis 
[65] deals with this problem very well. In general if the equation of the line is y = ax 
+ b and the point is ( x i  , y i )  then the error e  / = y  i -  ( a x ; + b )

Let S = 2  e 'i = 2  ( y i  — a x i  — b  ) 2

The least squares solution for a and b is when S is a minimum and to obtain this
d S  d Sminimum, the equations —  = 0 and —  = 0 should be solved.
d a  db

n
Let 2  to represent 2  in this thesis.

i j=l

Now d S  d r v  ( i \ 2 1

ie. J f  = 2  i 2 * ( y i - a x i - b ) * ( - x i ) }

Thus —  = 0 gives -  2  Xiyi + a £  xf  + b 2 x i = 0 
d a  i i i

Similarly

i.e. | |  = 2  { 2 » 0 ; - a i i  —6 )*( — !)}

Thus d S—  = 0 gives - 2 y i  + a 2 x i + nb = 0 
db

Ifsumx = 2  x  i , sumy =  'Z y i , sumxsqrd = 2  x  t  and sumxy = ^  x i y i  then
i i i i

(su m x * su m x y  — su m x sq rd * su m y )

(su m x * su m x  -  n * su m x sq rd )
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_ ( su m y  -  n * b )  

su m x
Thus the least squares solution to a straight line could be obtained using all the points 
supposed to be on that straight line. However this solution will fail when the line is 
vertical. This is because the denominator becomes very small allowing the theoretical 
infinite intercept on the y axis. In these circumstances the equation to be fitted should

1
take the form x = c and c is given by — 2  xi

3.4 LEAST SQUARES FITTING OF ELLIPSE

Several research workers have investigated the problem of fitting ellipses, using 
different parameters for optimising. Numerous references deal with the fitting of 
circles and ellipses [66 - 76]. Angell and Barber [68] illustrate a method to fit an ellipse 
using the least squares algorithm.

Consider the general conic section F(xy) = x 2 +  hxy +  by2 + fx + gy +  c .

If M  = 2  F  (x  i , y  i ) — — [ 2  F (x  i , yi ) ]  is defined as the measure of goodness of 
i n i

fit, the method suggests that M will be a minimum when the fitness is good. 
Re-writing the equation for M

M = 2  (xf  + hxiy i + by } + fxi + g y  i + c) 2 -  
i

- ( 2  x }  + hxiyi  + by}  +fxi +gy i  + c ) 2 
n i

This when rearranged will result in the following :

M = [ 2 at f -  i  (2 JC I  f  ] + h 2 1 2 xf y}  -  l( 2 Xiyi f }
i n i i n i

+ b2 i 2  y f - k l  y ? ? ] + f  1 2  J - h i  * f ]
i n i i n i

+ g2 ['Z y i  ~ y i )2] + [X ¿ y i  -  ■*?2 vy i ]
i n  i i n  i i

+ 2b [ X xf y }  -  — ( 2  x  } 'Z y } ) ] + 2 / [ 2  x f  -  — 2  x} 2  xi ]
i n i i i n i i

+ 2g [ 'Lxiy i -  -7 (Z x } Yj y i ) ] + 2hb [ 2  xiyf -  - 2  xiyi 2  y i 2 ] 
i n / i i n i i

+ 2hf['2,xfyi  -  -  ( 2  Xiyi  2  xi ) ] + 2hg [ 2  xiyf -  -  2  xiyi 2  yi ]
i n i i i n i i

+ 26/[2*;y?-  “ (2 y i2 «)] + 26g[2 y/3 -  ^2  y?2 y/]
i n i i i n i i
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+ 2:fg [ ' Z x t y t  -  ^  ( 2  x  ¡ 2  y i  ) ] 
i n  i i

Angell and Barber rewrite this equation in the following way

M = C n  + C hhh  ̂+ Cbb + C f f f '  + C ggg  ̂+ C v t  -2h + C \b  .2b

+ C i/ .2/ + C ig  2 g  +  Chb -2hb + C h f 2 h f  +  Chg 2 h g  + C b f 2 b f  

+  Cbg .2b g  + Cfg  .2fg

Now they differentiate M with respect to h, b, f and g and equating each result to zero 
they get four equations. They are:

C ih  +  C h h h  +  Chb b  + C h f f  + Chg g  = 0 
C w  + Chb h  +  Cbb b  + C b f f  + Cbg g  = 0 
Ci/ + C h f h  + C b f b  + C f f f  +  Cfg g  = 0 
Ci# + C h g h  + C b g b  +  C f g f  +  C ggg  =  0

These four equations can be solved by Gaussian elimination or by another numerical 
technique and the solutions for h, b, f and g can be found. To find the value of c these 
values should be substituted in the following equation.

2  ( x  }  + h x ¡ y  i + b y  }  + f x i  + g y i  +  c )  =  0
i

Thus c -  — [ 2  x i  + h 2  X i y i  +  b 2  y i  + f 2  xi + g 2  y  i ]
n i i i i i

If these coefficients are computed and stored in a 4x5 matrix then this array could be 
passed as a parameter to a program which gives the Gaussian solution to the set of 
equations. In this research the coefficients are expressed by the following coefficient 
matrix.

Coefficient matrix =

Chh Chb C h f Chg C lh
Chb Cbb C b f Cbg C ib
C h f C b f C ff Cfg Cl/
Chg Cbg Cfg Cgg C ig

3 .5  M E E T IN G  P O IN T  O F  M O R E  T H A N  TW O  ST R A IG H T  L IN E S

When two straight lines meet at a point and if their equations are known then there 
is only a unique solution to those equations which is the point of intersection. However 
when more than two lines meet in a point and their equations have some error, finding 
a solution to the point becomes harder. This is the situation when more than 2 hand 
sketched lines meet at a vertex. A least squares method is described in this section to 
circumvent this problem. Let the equations of the line be
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ci i .e . a i x  +  b i y  -  ci = 0 

C2 i.e . a 2 x  + b 2 y  — C2  = 0

cn i.e . an x  +  bn y  — c« = 0 

2 2 *Let a t  + bi — 1 for all values of i. Then cj is the perpendicular distance of the line 
from the origin. If the point (xi,yi) has to lie on these equations it should satisfy them.
Let there be errors ei, e2, e3 .......... en when the point is substituted in these equations.
In general these errors could be written as follows:

jr —
At X  a  =  &i 

and

S  = e? + A  + — — + c« .

a \ x  =  

a I x =

a I x =

Referring the theory in section 3.1 it could be seen that | a  | is the perpendicular 

distance of X from the straight l in e a r X  = Q .

The least squares solution seeks to minimise this S by the choice of X .  These 

equations could be written in matrix form a s A j X  — C  = E .  Then S is the 2 norm of 

( A ?  X  -  C ) .  Minimising S is a standard least squares problem which has solution 

X *  = ( A T A  ) ~ XA  C.  Note that

A T A  =

A C  =

2  a }

2  a  i b  i 1 b }
and (a  J A  j  = 2  b f

— 2  a  i b  i

2  a i Ci 
X b i d

and D = 2  a f  2  b }  -  ( 2  a i b i Y

This gives the solution

x * ( 2  b f 'Z a  ic i -  2  a i b i ' Z  b  i c  i j

and y  * -  ~  ( -  2  a i b i Z  a i d  +  Z  a f Z  b i c Y j

An interesting special case is when Z  a i b  i =  0 when

Z  a i d*
X  =

Z  a i

Z b j C j  

2  b }

-  Z  a i  bi

1  a }
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3 .6  M E E T I N G  P O I N T  O F  M O R E  T H A N  T W O  C U R V E S  A N D  
ST R A IG H T  L IN E S

Consider the situation where there are ‘a’ number of arcs and ‘b’ number of straight 
lines meet. Then if an approximate solution (xi, yi) to these ‘a + b’ equations are 
known (similar to a terminal point to be introduced in chapter 4) then the following 
could be written.

xi +  h  ix  i y  i +  b  i y l  +  f  ix  i +  g i y  i +  c  i =  e  i 

xi  + h  2x i y  i  + b  2y \  + f i x  i  +  g 2y l  +  c  2 =  e  2

x i  +  h a X i y i  +  b  a y i + f a X  l + g a y i  +  C a =  e a 

p i y i  +  q i x i  + n =  E i  

P 2 y i  + q2Xi  + r2 = E 2

p  by  1 +  qbx  1 +  rb =  Eb

2 2where F ( x y )  = x  + h xy  +  b y  + f x + g y  +  c  =  0  denotes a curve and p y + q x + r 
= 0 denotes a straight line. The quantities ei, &2 —  ea, E i —  Eb denote errors. The 
task is then to find (xi, yi) such that the sum of the squares of the errors are minimum.

d S  s sThe standard method suggests that solution to the equations —  = 0 and —  = 0

where S  =  e i  +  e i +  -  -  +  e% + E i  H--------1- E%, yields the required xi and yi.
But the equations are complex and finding a solution is extremely difficult. The 
following method is suggested to overcome this problem.

Let s(xi) = and s(yi) BS_
d y i

In the first stage find ‘xi’such that s(xi) is zero, keeping yi as constant at the initial 
value. In the second stage find ‘yi’ such that s(yi) is zero keeping xi as constant at the 
value found in the first stage.

Let e 2 = 2  \ x i  + h x \ y  1 + b y  i  + f x  1 +  g y  1 + c

2 2  d dand E 2 = ^  jjpyi + q x i  + r  J for which and could be found easily. Then

S = e2 + E2 and hence ~  ~
d x i  dx 1 dx 1

, x , d S  de  d E  .= 5 (x i) and —  = —  + -T— = X (yi ) 
dy  1 dy  1 d y i
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andNow from  N ew to n -R ap h so n  m ethod  xi(n+1)= * in sUi„ )
>

5 O l n )

J  l(n+l) = y i n
K y i n ) . Thus starting with the approximate values for xi and yi values
* (y in )

for xi and yi to the required accuracy could be obtained iteratively.

3.7 DETECTING A STRAIGHT LINE

In the design by sketching situation, the designer should be left free to concentrate 
on the design, using his professional expertise to properly conceive and develop the 
product while the computer should take up the sketch and recognise it. In the process 
of recognising it should detect straight lines and arcs. The strategy of detecting a 
straight line is important in pattern recognition and several methods are employed 
by researchers to achieve this objective. In the sketching environment the following 
methods are explored.

(a) Perpendicular distance method
(b) Moving slope method
(c) Generalised conic method

3.7.1 PERPENDICULAR M ETHOD

ILLUSTRATION OF THE PERPENDICULAR M ETHOD
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This method is based on the fact that the points belonging to a sketched straight line 
will be within a specified small distance from the mean line fitted with these points.

Consider the situation in figure 3.2 describing the scatter of five consecutive points 
and the line connecting the first and the fifth point. This theory then says that P2N2, 
P3N3 and P4N4 should be within a specified tolerance (say 2mm). Thus the test 
constitute the following steps.

(a) Find the maximum perpendicular distance
(b) Check whether it is greater than the tolerance and if it is not then 

Pi, P2, P3 , P4  and P5 are in a straight line.

3.7.2 M OVING SLOPE M ETHOD

Consider the situation where the points Pi, P2, P3 , P4 and P5 are in a sketched straight 
line. Let PQ represent the average line as shown in figure 3.3. Because the length of 
P1P2  is small, small deviations of P2 from PQ (say 2 mm) could make the angle P2P 1Q 
big giving the impression that they do not belong to a straight line. Therefore some 
kind of smoothing becomes necessary. One such smoothing is the

FIGURE 3.3

ILLUSTARION OF M OVING SLOPE M ETHOD

moving average of the last two or three points. The slope of the line connecting the 
current point and the smoothed point is termed the ‘moving slope’ in this thesis. If 
P i = ( x i^ i )  P 2 — ( X 2 ^ 2 ) and P3 = (*3 ,y3 ) th e n  th e  m oving p o in t is
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and if P 4  =  ( x 4 , y 4 ) th e  m oving slope  is
x i + x 2 + X3 yi  +  y2 +  y3 

3 ’ 3
3 ^ 4 -  ( y i  + y i + y 3 )
?>X4 -  (*1  +X2+X3  ) ’

The condition for a straight line is that the moving slope should not vary outside a 
specified tolerance i.e. the change in moving slope should be very small.

3.73  GENERALISED CONIC M ETHOD

In this method the points Pi, P2 , P3 , P4  and P5 are used to fit an equation of the form
2 2

x  +  h xy  +  b y  +  Jx +  g y  +  c  =  0 using the method of least squares as described in
1 1 r

section 3.4. If c  >  > 0, — = 0, — = 0 and ̂  ^  0 or ^  *  0 then the points Pi, P2 , P3 , P4

and P5 lie in a straight line. Similar conditions could be developed when c is equal 
to zero.

3.8 DETECTING AN ELLIPSE

Detecting an ellipse is another area of importance and several researchers have 
worked in this area [68, 69, 74, 75,76]. In the sketching environment the following 
methods are explored.
(a) Moving slope method
(b) Generalised conic method
(c) Points scatter method

3.8.1 M OVING SLOPE M ETHOD

FIGURE 3.4

DETECTION OF ELLIPSE - M OVING SLOPE M ETHOD
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When an ellipse is sketched it is drawn as one whole ellipse in the clockwise or counter 
clockwise direction or as combination of arcs in the clockwise or counter clockwise 
direction. This means that the slope changes should be either positive or negative for 
any particular arc depending on the direction of drawing. Consider the situation 
described in figure 3.4. As described in section 3.7.2 a smoothing is applied on the 
past three points leaving Mi, M2  and M3 as the smoothed points. Then the moving 
slopes are ai, a2 and a3. The direction of this elliptical arc is clockwise and hence ‘a’ 
is positive (assuming clockwise is positive) and in general ‘a’ should be greater than 
0 for the point to be in the ellipse. This property is used to detect ellipses or elliptical 
arcs i.e. the points are taken to be in an ellipse as long as the slope change is always 
having the same sign.

3.8.2 GENERALISED CONIC M ETHOD

As described in section 3.4 this method employs the method of least squares to fit an
2 2  1 bequation of the form x  + h xy +  b y  +  f x  + g y  + c  =  0. If it is an ellipse — and — will

not be equal to 0. This is the criterion used in this method to identify the ellipse.

3.8.3 POINTS SCATTER M ETHOD

Consider an arc whose starting point and finishing point are connected by a straight 
line. The entire arc falls to one side of this line and this property could be used to 
identify whether the line under consideration is an arc or not. This is the criterion 
used in the scatter method.

3.9 DETECTING THE END OF A STRAIGHT LINE

This section describes the situation where the line is identified as a straight line but 
its end point is not known. Consider the situation described in figure 3.5 (a). The slope 
of AB could be found by a least squares fitting of the points falling within the first 10 
mm (the minimum length of the sketched line, or the diameter of the hole). Then the 
moving slope could be used to identify whether a point is in the line AB or not. The 
points upto C in figure 3.5(a) will be passing the test and therefore will be stored in 
the line segment. When the point P is taken up, the test fails indicating that P is not 
in line AB. If P belongs to another line as in figure 3.5 (a) then C becomes the first 
point in the new line. Thus C will be stored as the last point in ‘line 1’ and first point 
in ‘line 2’. Now consider the situation in figure 3.5 (b). Here again the points up to C 
will be falling into the line AB. But the difference is that the ‘line T  should start with 
point P and not point C. This necessitates a second test called the distance test. The 
distance test states that the distance between the last point and the current point 
should be less than 3 mm if they belong to the same line segment. This means CP 
should be less than 3 mm if they are in the same line meaning that ‘line 1’ and ‘line 2’ 
are two continuous lines. If CP is more than 3 mm, they are two distinct lines. This
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distance test also allows the identification of the lines shown in figure 3.5(c). Thus the 
test for a point to be in a straight line constitutes
(a) the moving slope should be constant
(b) the distance between the current point and the last point should be less than 3 
or 4 millimeters.

C

C

FIGURE 3.5
(c)

DETECTION OF ENDPO INT OF A STRAIGHT LINE

If these two conditions are met the point is in the straight line under consideration. 
When a point fails to meet one of these conditions the last point is identified as the 
end point of the line. If the distance is less than 3 mm then the lines are continuous 
and they are distinct otherwise. The starting point of the next line (line 2) is chosen 
to be C or P in accordance with whether the lines are distinct or continuous.

3.10 DETECTING THE END OF AN ELLIPSE OR ARC

This section describes the situation where the line is identified as an elliptical arc but 
its end point is not known. Consider the situation described in figure 3.6 (a). The 
moving slope change will always be less than 0  until i = 6  where the point Pô is in line 
2. Thus the point P5 is identified as the end point by the slope test. In fact this is the
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only instance when the slope test could be used satisfactorily to identify the end point 
in a continuous line situation. Consider the arc combination shown in figure 3.6 (b). 
Though line 1 and line 2 meets at point P5 the slope change continues to be negative 
and hence the slope test fails to identify line 2. Consider now the combination of an 
arc and straight line as shown in figure 3.6 (c). Here the slope test could indicate at 
some point that it has entered a straight line. But it will not precisely identify the 
merging point. In these circumstances the distance test comes to the aid. If the ‘line 
2’ in figure 3.6 (b) and 3.6 (c) could be started from the other ends they could be 
identified as different lines by the distance test and their end point could be identified 
by the slope test. This imposes a constraint on the user.

Thus the end point of a distinct elliptical arc could be identified by the combination 
of (a) slope test and (b) distance test.

P6

(a)

P3

FIGURE 3.6

FINDING  THE END POINT OF AN ELLIPSE

3.11 ISOM ETRIC SKETCHING

Consider a unit cube ABCDEFGH with the axis system as shown in figure 3.7. The 
Z axis is perpendicular to the plane of the paper and in the positive direction coming 
out of the paper as shown.Now first give a rotation of 45 degrees to the cube about 
the Y axis and then give a rotation about the X axis until AG coincides with the Z 
axis. This rotation about the X axis is 35.264 degrees. At this stage the cube when
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viewed in a direction parallel to the Z axis will look like what is shown in figure 3.8.

Y

C

B

D

A

FIGURE 3.7

ILLUSTRATION OF ISOM ETRIC CUBE

E
FIGURE 3.8

ISOM ETRIC VIEW OF THE CUBE
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This view from a point along the Z axis is called the isometric view of the cube [77]. 
Thus isometric view can be considered as a special case of rotation. An edge ( in this 
case AE) is chosen to be directly in the line of sight and also this edge is drawn 
vertically, it is in fact tilted towards the viewer. This means the lines are foreshortened. 
All the lateral lines are at 30 degrees to the horizontal and these too are foreshortened 
in the same way as the vertical lines. Because isometric projection gives the same 
foreshortening to all the lines any figure can be drawn to its true size or to a suitable 
linear scale. Because of this property design engineers favour isometric projection to 
any other pictorial projection when dealing with three dimensional work. It is for this 
reason isometric sketching is chosen as the first stage to be implemented in the 
sketching input system proposed in this thesis.

The lines GC, GH and GD are taken to represent the Y, X and Z axes of the cube 
and in the isometric view they are called the isometric axes. Any line parallel to the 
axes are called the isometric lines and any planes parallel to these axes are called the 
isometric planes.

FIGURE 3.9

CONSTRUCTION OF ISOM ETRIC ELLIPSE

Isometric sketching starts with the positioning of the three isometric axes and the 
origin representing the three mutually perpendicular axes and their meeting point in 
the object. One as seen earlier is vertical and the other two are inclined at 30 degrees 
to the horizontal. Luzador [78] explains how isometric sketching is performed. If the
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object is of simple rectangular form it may be sketched by drawing an enclosing 
isometric box on the surface of which the orthographic views may be sketched. 
Projecting cylindrical features are enclosed in isometric prisms and circles are 
sketched within isometric squares. In sketching an ellipse to represent a circle 
pictorially, an enclosing rhombus, which is the isometric square, is drawn with sides 
equal to the diameter of the circle. The ellipse is constructed as a combination of four 
arcs. Figure 3.9 shows the construction of such an ellipse. Consider the isometric view 
of a cylinder as shown in figure 3.10. The isometric view will not show lines 1,2,3 and 
4 but will show a curve inside the ellipse. However in a sketching situation it is 
customary to indicate a cylinder by the silhouette edges (refer section 2.4.1 and figure 
2.16) which are indicated by line 1 and line 2. However line 3 and line 4 are easy to 
locate and sketch and also are much more precise than line 1 and line 2. Since it is a 
matter of convention to include the silhouette edges and the tangency edges (refer 
section 2.4.1) it is decided in this research to include line 3 and line 4 to indicate the 
cylinder and tangency edges wherever necessary.

ILLUSTRATION OF ISOM ETRIC CYLINDER

3.12 TWELVE CLASSES OF LINES IN AN ISOM ETRIC SKETCH

In an isometric body made up of straight edges and cylindrical surfaces the following 
twelve classes of lines can be present. They are

1 Vertical isometric lines
2 30 degrees isometric lines
3 330 degrees isometric lines
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4 Non-isometric straight lines
5 Isometric ellipses in XY plane
6 Isometric ellipses in YZ plane
7 Isometric ellipses in ZX plane
8 Non isometric ellipses
9 Isometric elliptical arcs in XY plane
10 Isometric elliptical arcs in YZ plane
11 Isometric elliptical arcs in ZX plane
12 Non isometric elliptical arcs

Consider the co-ordinate system shown in figure 3.11 representing the co-ordinate 
system used in this research, where x, y and z are the three dimensional axes of the 
isometric sketch while DX and DY are the horizontal and vertical axes of the sketch 
paper. Then by considering the slopes of the straight lines one can decide upon one 
of the four classes, each line fall into. For the ellipses and elliptical arcs the slopes of 
the major axis will indicate in which plane they are situated and the start and finish 
angle will indicate whether they are complete ellipses or arcs.

COORDINATE SYSTEM
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Thus by analysing the slopes of the major axes and start and finish angles of ellipses 
it can be decided to which of the eight classes each curve falls into.

3.13 TRANSFORM ATION TO 3D  CO-ORDINATE SYSTEM

Consider the point P in isometric and digitizer axes as shown in figure 3.11. Its 
co-ordinates in 3D are (x y z) and in 2D are (DX, DY).

DX = x Cos 30 + y Cos 30 
DY = -x Sin 30 -I- y Sin 30 + z

Since only DX and DY are known and there are three unknowns x, y and z another 
equation is required to get a unique solution for x, y and z. Here the information on 
the line class is used. Now consider the straight line connecting two points say Pi: (xi 
yi zi) and P2 : (x2  y2  2.2). Then

DXi = xi Cos 30 -I- yi Cos 30 
DX2 = x2 Cos 30 + y2 Cos 30 
DY1 = -xi Sin 30 + yi Sin 30 + zi 
DY2 = -X2 Sin 30 + y2 Sin 30 + Z2

This means another two equations are needed for a unique solution. If the line is (a) 
of type 1 then it is a vertical line and hence xi = X2 (b) of type 2 then it is a 30 degrees 
isometric line and zi = Z2  and (c) of type 3 it is a 330 degrees isometric line and yi = 
y2. Thus isometric lines get one extra equation. If now Pi is known then there are three 
equations connecting X2 y2 and Z2  and hence would result in a unique solution. This 
point Pi is the origin obtained during the sketching initialisation. Isometric lines 
emanating from this point terminates in vertices which could now be obtained in 3 
dimensions using the method above. Continuing in this manner all connected lines 
and their corresponding vertices could be calculated. In the case of non-isometric 
lines it is customary to construct them from isometric lines and the construction lines 
could be used to identify the 3D co-ordinates. Whenever there is a loop unconnected 
it forms a hole and the 3-dimensional transformation needs an extra point in 3-dimen-
sion. Thus it could be seen that a vertex model could be formed from, the sketch and 
one point per hole in 3-dimensions.

3.14 TRANSFORM ATION OF A CUBE - AN EXAMPLE

Figure 3.12 shows the isometric sketch of a cube with 100 units long edges. From a 
scaled drawing with each edge having a length of 100 units the following co-ordinates 
were obtained in two dimensions. Table below shows the co-ordinates in two dimen-
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sions and three dimensions.

EXAMPLE CUBE

CO-ORDINATES IN THREE DIMENSIONS
EX X CO-ORD Y CO-ORD Z CO-ORD
A 0 0 0
B 100 0 100
C 100 0 0
O 0 0 0
D 100 100 0
E 100 100 100
F 0 100 100
G 0 100 0
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CO-ORDINATES IN TWO DIMENSIONS 
VERTEX X CO-ORD Y CO-ORD

A 0 100
B 87 50
C 87 -50
O 0 0
D 172 0
E 172 100
F 85 150
G 85 50

EDGE OA

Consider points O and A. Writing down the transformation equations for the point 
A will give

DXa = xa Cos 30 + ya Cos 30 
DYa = -xa Sin30 + ya Sin30 + za 

Since the line is of type 1 i.e. vertical isometric
Xo = xa 
Butxo = 0 
Then xa = 0

Since DXa = 0 and xa = 0, ya = 0. Substituting these in DYa gives za = 100.

EDGE AB

Considering points A and B the transformation equations could be written as 
DXb = xb Cos 30 + yb Cos 30 
DYb = -xb Sin 30 + yb Sin 30 + zb 

Since the line is of type 3 ya = yb 
Butya = 0

Hence from the transformation equations xb = 100 and zb = 100.

EDGE BC

Considering points B and C the transformation equations could be written as 
DXC = xc Cos 30 + yc Cos 30 
DYC = -xc Sin 30 + yc Sin 30 + zc 

But since the line is of type 1 
xb = xc
But xb = 100 and hence xc = 100.

Now solving the transformation equations give yc = 0 and zc = 0.
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EDGE CD

Considering points C and D the transformation equations could be written as 
DXd = xd Cos 30 + yd Cos 30 
DYd = -xd Sin 30 + yd Sin 30 + zd 

But since the line is of type 2 zc = zd.
But zc = 0 and hence zd = 0.

Now solving the transformation equations give xd = 100 and yd = 100.

EDGE DE
Considering the points D and E the transformation equations could be written as 

DXe = xe Cos 30 + ye Cos 30 
DYe = -xe Sin 30 + ye Sin 30 + ze 

But since the line is of type 1 xe = xd
But xd = 100 and hence xe = 100.

Now solving the transformation equations give ye = 100 and ze = 100.

EDGE EF
Considering the points E and F the transformation equations could be written as 

DXf = xf Cos 30 + yf Cos 30 
DYf = -xfSin30 + yfSin30 + zf 

Since the line is of type 3 ye = yf.
But ye = 100 and hence yf = 100.

Now solving the transformation equations give xf = 0 and zf = 100

EDGE FG
Considering the points F and G the transformation equations could be written as 

DXg = xg Cos 30 + yg Cos 30 
DYg = -xgSin30 + ygSin30 + zg 

Since the line is of type 1 xf = xg.
But xf = 0 and hence xg = 0.

Now solving the transformation equations give yg = 100 and zg = 0.

3.15 CIRCLES AND CIRCULAR ARCS IN ISOM ETRIC PLANES

Circles in isometric planes of the actual object are depicted as ellipses in the isometric 
sketch. Therefore isometric ellipses should be transformed into circles and isometric 
arcs should be transformed into circular arcs. Consider figure 3.13 illustrating a cube 
with circles on its face. The bounding squares of the circles which are faces of the cube 
become rhombuses in the isometric representation, while the circles become ellipses.
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However the points Pi, P2  —  Ps remain to be the meeting points of the tangents.
Thus if Pi, P2 ------- Ps could be transformed into 3D representation, they will
correspond to the meeting points of the tangents and the edges of the cube. Also the 
mid points of P 1P3 , P3P6 and P4P8 will give the centres of the circles. Thus dealing 
with the isometric ellipses becomes transformation of the meeting points and using 
these values to fix the diameter of the circle. These tangents are actually some 
construction lines. Still the transformation requires the finding of the 3D co-ordinates 
of these critical points Pi to Ps in figure 3.13. The slope of the major axis will indicate 
whether the circle is in the ‘xy’, ‘yz’ or ‘zx’ plane. The major axis is horizontal in the 
‘xy’ plane, inclined at 45 degrees in the ‘yz’ plane and inclined at 135 degrees in the 
‘zx’ plane. Section 3.15.1 explains how to find the slope of the major axis.

CUBE WITH CIRCLES IN THE ISOM ETRIC PLANES

Dealing with isometric circular arcs is not as easy as the full ellipses. But it is made 
easier by the fact that it would be connected to some other edge and hence the three 
dimensional coordinate of the starting point and the ending point would be known. 
This therefore means that only the radius of the arc need to be found. To find this a 
generalised ellipse is fitted for the set of points as discussed earlier in section 3.4 and
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the values for the semi major and minor axes are obtained. It could be shown that the 
radius of the circle is V2 times the semi minor axis in the following sub-section.

3.15.1 RADIUS OF THE CIRCLE IN XY PLANE

The circle in the xy plane is represented as an ellipse with horizontal major axis. In a
similar way circles in the other isometric planes are also represented as ellipses. It
could be shown that these ellipses have the same eccentricity. Hence it would be
enough to find the relationship between the semi-major or semi-minor axis of the
ellipse and the parent circle. Consider figure 3.14 where ABCD is a rhombus of unit

2 2 
x  ysize. Let the equation of the ellipse be -y +  ̂ = 1- Then the tangent at Pi(xi yi) is
r  rn

„ x x i  , y y l given by —z~  + y
l 2 b 2

= 1.

ELLIPSE ON XY PLANE
If  Pi is th e  m id p o in t of AB th en  co n sid e rin g  tr ia n g le  AOB gives 

O B  A B  C o s  30 V 3  „. ., , O A  A B  S in  30 1
4'xi = A B  C o s  30 V 3  _. , O A------------- = — . Similarly y i  = — = Therefore tan-

gent AB is V 3 x  

4 17

y  lH— -  1. Since A(0 - )  (ABC is isosceles) lies on this line 
4 rn ^
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1 1  V3---- 2  = 1 and hence m = ^  . Similarly it can be shown that / =
8 rn I S  2. 2 V2

V3 l
In general the semi-major and semi-minor axes would be ^ ^  times and ~j ^ / 2  ^ mes 

the diameter of the circle respectively.

The equation of the fitted ellipse with its axis system parallel to the reference axis
2 2system would be x  +  b y  + f x  + g y  + c  = 0. It could be reduced to the standard form

as ( x  +  l ^ 2  ( K ...\ 2 _  f 2 b + g 2 - 4 b cas (*  + 2 ) + { y  + 2 y r b ) -  Ab

4 b 1'5

. The cen tre  th e re fo re  is

( ~2 2  V b  ) anc* t îe rat^u s 's 2 2f ^ b + g ^ - A b c

3.15.2 IDENTIFICATION OF THE SLOPE OF THE M AJOR AXIS

FIGURE 3.15

THE COORDINATE SYSTEMS
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Identification of the slope of the major axis is achieved by considering the equation 
of the ellipse fitted, with respect to a system which is rotated and translated. This is 
well explained by Askwith [79] and Grieve [80]. Consider figure 3.15 indicating the 
xy and x’y’ axis systems. If 9  is the angle x’ox then 

x  = x ’C o s  9  —y ’ S in  6  

y  =  x ’ S in  9  +  y ’ C o s  9  
Now consider the equation

x 2 +  h xy  + b y 2 +  f x + g y  +  c  =  0
If x and y are now replaced by the corresponding terms in x’ and y’ 

x 2 =   ̂x ’C o s  9  — y  S in  9^j 2

b y 2 =  b  jY  Sin  9  +  /  C o s 9 ^  2
h xy  = h  ^ x ’ S in  9  + y ’ C o s  9 J  ̂x ' C o s  9  —y ’ S in  9  ^
g x  =  g  ( x ’ C o s  9  — y ’ S in  9  )
f y  =  f  ( x ’ C o s  9  +  y ’S in  9 )
c = c

2 2If now the new equation is written asx’ + h’x’y ’ + b ' ÿ  + f x ’ +  g ’ÿ  +  c ’ =  0 then the 
coefficients should be as follows:

1 = C o s  2 9  +  b 2 S in  2 9  +  h  C o s  9  S in  9

b ’ = b 2 C o s  2 9  — h  S in  9  C o s  9  +  S in  2 9  

h ’ = ( b  — 1 ) S in  2 9  +  h  C o s  2 9  

g ’ = g  C o s  9  +  f S i n  9  

f  = — g  Sin 9  + f C o s  9  

c’ = c

If the axis system x’y’ and the axes of the ellipse are parallel then the x’y’ term should

vanish i.e. h’ = 0. This means C o t  2 9  = ^ ^ . This 9  is the angle, the major axis of

the ellipse makes with the original x axis and thus forms the slope of the major axis of 
the ellipse. The centre of the ellipse could now be found by reducing the new equation

x ’ 2 y’ 2to the form —~  +  ’“ y = 1. From this the following could be said about the isometric 
a  o

ellipses.
(a) xy ellipses will have ‘h’ = 0

2 2(b) yz and zx ellipses will have ‘b’ = 1 i.e. x and y terms will have the same co-ef-
ficients.
Once 9  is known the co-efficients could be found for b’, g’, f  and c’. Now the equation 

of the ellipse reduces to the familiar x ’2 + b ’y ’2 + f x ’ + g ’y ’ + c’ = 0 .
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CHAPTER 4
REQUIREMENT ANALYSIS AND FUNCTIONAL

SPECIFICATION
4 .0  G E N E R A L

Chapter 2 established the requirements of a solid modelling system suitable for 
sketching input while chapter 3 discussed the necessary background theory. This 
chapter analyses the requirements made on the software, its implementation details 
and functional specification. Requirement analysis looks at the desirable features of 
the sketching input system from the point of view of the user, the design engineer. 
These requirements are then analysed in stages together with hardware and theoreti-
cal considerations by defining the problem. In the process of establishing the state-
ment of the problem, activities and milestones are esablished. Finally the functional 
specification is drawn. Functional specification here means the requirements set and 
met in the production of the sketching input system.

4.1 R E Q U IR E M E N T  A N A L Y SIS

In this section the requirements of the software is analysed from the point of view of 
the user, the design engineer. Sketching is the fundamental part of design and 
subsequent drafting and as a result almost all books in engineering graphics describe 
how sketching should be done [81-85], The degree of perfection required in a given 
sketch depends upon its use. Sketches hurriedly made to supplement oral description 
may be rough and incomplete. On the other hand if sketch is the medium of conveying 
important and precise information to engineers, it should be created as carefully as 
possible. The term ‘free-hand sketch’ is too often understood to mean a crude or 
sloppy free hand drawing in which no particular effort has been made. On the contrary, 
a free hand sketch should be made with care. The sketches considered here are those 
made with lot of care. The following subsection 4.1.1 summarises the method of 
sketching to facilitate the decision on the requirements of a sketching input system.

4 .1 .1  S K E T C H IN G  P R O C E S S

The basic components of a sketch are straight lines, circles and arcs, and ellipses. 
Experience in making the sketch provide the following tips in drawing different types 
of lines[77].

To make the straight lines well
(a) Hold pencil naturally about 1.5 inches back from the point and approximately at 
right angles to the line to be drawn.
(b) Draw horizontal lines from left to right with a free and easy wrist and arm 
movement.
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(c) Draw vertical lines downward with finger and wrist movement.
(d) Inclined lines may be made to conform in direction to horizontal or vertical lines 
by shifting position with respect to the paper or turning the paper slightly.
(e) In sketching long lines mark the ends of the lines with light dots and move the 
pencil back and forth between the dots in long sweeps, keeping the eye always on the 
point towards which the pencil is moving.
(f) An easy method of blocking in horizontal or vertical lines is to hold the hand and 
pencil rigidly and glide the finger tips along the edge of the pad or board. Another 
method is to mark the distance on the edge of a card or a strip of paper and transfer 
this distance at intervals, and then draw the finals through these points.

To sketch circles and arcs well
(a) First sketch lightly the enclosing square.
(b) Mark the mid-points of the sides, draw light arcs tangents to the sides of the square.
(c) Draw the final circle or arc overlapping the light arcs in (b).
(d) An excellent method, particularly for large circles is to mark the estimated radius 
on the edge of a card (trammel) or scrap paper to set off from the centre as many 
points as desired and to sketch the final circles through these points.
(e) In sketching tangent arcs, always ensure that the point of tangency is well 
approximated.

To sketch ellipses and elliptical arcs well
(a) Sketch lightly the enclosing rectangle
(b) Mark the mid-points to the rectangle
(c) Draw light tangent arcs
(d) Complete the ellipse or arc
(e) An alternate trammel method may be useful in sketching large ellipses.

The most important rule in free-hand sketching is to keep the sketch in proportion. 
To ensure this first the relative proportions of the height to the width must be carefully 
established. Then as progress is made towards the medium sized areas comparison 
must be made constantly. A useful tip in this connection is blocking where the paper 
is divided into rectangular blocks to accomodate sections of the actual sketch.

4 .1 .2  IS O M E T R IC  S K E T C H IN G

Isometric sketching as described in section 3.11 relies on the fact that the x and y axes 
are inclined at 30° to the horizontal while the z axis remains vertical. Straight lines 
parallel to the axes called the isometric lines are easy to sketch. However lines on an 
object, located by angles called non-isometric lines are difficult to sketch. This is 
because angles cannot be laid off directly on an isometric drawing as they do not 
appear in their true sizes. Lines positioned by angles are drawn by fixing their ends 
by ordinates, which are isometric lines[81]. Blocking or boxing is a standard technique
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used in isometric sketching.

When objects having cylindrical or conical shapes, are placed in the isometric or other 
oblique positions, the circles will be viewed at an angle and will appear as ellipses. 
The most important rule in sketching isometric ellipses is: The major axis of the ellipse 
is always at right angles to the centre line of the cylinder and the minor axis is at right 
angles to the major axis and coincides with the centre line. To sketch a good ellipse 
follow the steps detailed in section 4.1.1. An isometric paper is a paper with lines at 
equal spacing parallel to the x, y, and z axes in an isometric projection. This is very 
useful to keep the sketch in proportion.

4 .1 3  A N A L Y S IS

From the preceding sections the following conclusions could be drawn.
(a) Even though a free-hand drawing is not laid out to an exact size or scale, the 
finished drawing must show the relative proportions of the illustrated material. This 
can be achieved first by visualizing a drawing of correct proportions of the illustrated 
material to fit the available working space of the drawing paper.
(b) Proportions of the details of any sketch can be controlled by the construction of 
skeleton boxes whose dimensions are equal to the overall dimensions of the proposed 
view. The basic outlines of the drawing are constructed within the boxes and are 
checked for proper proportion and position before adding smaller details. This means 
there will be some redundant lines used only for proportioning.
(c) When constructing ellipses and long straight lines curves and points are drawn 
which are overdrawn in the finished sketch thus making them redundant. This and 
the redundant lines in (b) above indicate the need for a kind of data which need not 
be stored in the computer in the proposed sketching input system.
(d) With free-hand sketching, pencils with different hardness gradings are used to 
create different types of lines. Strong, bold, free-hand lines are used to indicate the 
edges in the object while faint lines are used to indicate the centre lines and construc-
tion lines.

4 .1 .4  T H E  R E Q U IR E M E N T S  O F  A  S K E T C H IN G  IN P U T  S Y S T E M

(i) For the sketching input system proposed the inputs are free-hand isometric 
sketches made up of four classes of lines namely

(a) centre lines
(b) visible lines
(c) hidden lines
(d) construction lines

Therefore the first requirement is the provision for the entry of these lines. It is 
however is not necessary to have all these lines in all the outputs, and often the visible 
lines alone are sufficient to illustrate the sketch. Therefore it is necessary to store
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these lines separately in the computer memory so that they could be accessed 
separately and independantly.

(ii) In a traditional sketching environment the visible lines and hidden lines are 
sketched with pencils of differing hardness. Selecting from the menu should resemble 
this and must be simple like this.

(iii) As seen earlier sketching is the physical expression of the design activity and the 
designer should be left free to carry on with the design process. This means there 
should be minimum of interaction (or distraction). To effect this requirement

(a) The menus must be kept to a minimum

(b) No input should be needed once the sketching commences i.e. there should be no 
necessity to indicate the start and end of a line segment.

(iv) One of the main requirement of sketching is the ability to erase whole or part of 
a line. This process of erasing a line should be simple and easy.

(v) When a sketch is made it is often made to rough sizes and hence subsequent 
extension is an essential feature for the sketching input system.

(vi) Free hand sketching invariably has overstriking of lines and provision should be 
made to accommodate them.

(vii) The user may at times start the sketch from both ends of a straight line or circle 
to meet at an interim point. There should be provision to accept them.

(viii) The program should identify the line segments automatically whether the 
sketching incorporates two consecutive or discrete lines.

(ix) It should automatically identify the vertices.

(x) The program should automatically recognise the straight lines, ellipses and arcs 
and process them accordingly.

4 .2  SY S T E M

The system in which the sketching input software was developed, comprised the 
following.

(a) An IBM PS/2 model 60 computer
(b) MS DOS Version 3.3 Operating system
(c) CALCOMP 2000 series digitizer

4 .2 .1  O P E R A T IO N  O F  T H E  D IG IT IZ E R

The ‘CALCOMP’ 2000 series digitizer converts graphic information into a digital
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form that is suitable for entry into the computer. By simply actuating the transducer 
over any position on a map, diagram, menu or other graphic presentation the co-
ordinates of that position are transformed into their digital equivalent. The digitizer 
has a tablet and a stylus. The tablet contains a grid of wires positioned in the horizontal 
(x) and vertical (y) directions. These are used to locate and identify co-ordinate points 
relative to the tablet origin, at the lower left corner of the tablet. The stylus contains 
a switch and a replaceable ballpoint cartridge. The stylus is used to select points to be 
digitized. Pressing the stylus down lightly against the tablet surface initiates the 
digitizing of data. The stylus is similar to a pen and the action of actuating is similar 
to sketching. The data transmission parameters are set by the three switch banks at 
the back of the tablet. They set the baud rate, data bits, stop bits, parity, mode of 
operation, and the number of points transmitted per second. The operating mode 
could be selected on a permanant basis by the switches or alternately it could be 
controlled by the program. To digitize selected points
(a) Select the operating mode (may be preselected by the switches)
(b) Place material to be digitized on the active surface of the tablet
(c) Position the stylus on the point and
(d) press the stylus down.
The digitizer will locate and identify the digital x,y co- ordinates of the point relative 
to the origin at the lower left corner of the tablet.

In the point mode, actuating the transducer by depressing the stylus on the tablet while 
in the active area of the tablet causes one x,y co-ordinate pair to be output in the 
appropriate format. In the track mode, x,y co-ordinate pairs will be output continuous-
ly at the selected sampling rate as long as, and only when, the transducer is activated 
while in the active area of the tablet surface. This is the opearting mode suitable for 
sketching input. The output from digitizer to the computer is (x y 1) with a carriage 
return. It is connected to the RS 232 communication port 1 in the PS/2 computer.

4 3  S T A T E M E N T  O F  T H E  P R O B L E M

It is evident from section 4.2, the sketched lines whether they are straight lines or 
curves or, object lines or other lines they all would be transmitted to the computer as 
series of points, each point being represented by its x and y co-ordinates. It therefore 
becomes necessary to have a menu to differentiate them. This menu could be 
displayed in the screen requiring an interaction through the keyboard or one in the 
digitizer itself requiring the activation of a point in the specified menu area. Choosing 
an item from the digitizer menu resembled the picking of a pencil and hence it was 
decided to have the menu in the digitizer. Erasing a line wholly or partly is the 
important requirement in sketching. The first option considered was cris cross cutting 
which was found to be inefficient and computationally expensive. To indicate a line 
or a portion of a line there are no recognised lines, during the early stages of sketching.
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After careful consideration it was decided to include erased lines as a line type such 
as centre lines for subsequent processing. This enables the designer to select the ‘erase 
line’ option from the menu and run the stylus over the part of the line to be erased. 
The points transmitted then are stored as erased points, fitted as erased lines and are 
removed from the final list of lines. In the analysis of requirements in section 4.1 it 
was found that the certain amount of redundant lines which need not to be stored 
could be present in a sketching situation. The menu therefore was designed to 
accomodate this facility. Thus it was decided that the menu should have

(1) V isible lines

(2) H idden  lines

(3) C en tre  lines

(4) C onstruction  lines

(5) E rase  a line

(6) R ed u n d an t line

(7) E nd
Figure 4.1 shows the digitizer menu used in this implementation.

SKETCH AREA MENU AREA

F IG U R E  4.1  

D IG IT IZ E R  M E N U

The requirements of facilities to accomodate overstriking, subsequent extensions and 
starting from both ends are essential features for a good sketching input system. Since
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the lines are transmitted as series of points, subsequent addition of points to a segment 
proved difficult. An acceptable solution to this problem is to fit these points as two 
or more different lines and do a "zero distance merging". In the zero distance merging, 
the equations of two lines are checked and if it is found to be same the end points are 
compared. If one end point in both the lines overlapped then the overlapping vertex 
is removed together with those two edges and a new edge, with the other two ends of 
the original edges, is introduced. The difficulty with this approach was the overlapping 
of different edges in an isometric view. To accommodate this an interactive merge 
becomes necessary. A similar approach could be used for dealing with the erased 
lines.

The purpose of this research is to develop a module which could be "bolted on" to 
some existing solid modelling system. Most of these are implemented in workstations 
running under different operating systems. System dependent or device dependent 
portions of the software should therefore be kept separate and to a minimum. The 
communication part between the digitizer and the computer are system and device 
dependent and often device drivers are used to facilitate communication between the 
digitizer and the computer. It was therefore decided to separate the process of 
inputting the sketch from the processing of the sketch. The points transmitted are 
written into an ASCII file, which could be read for the subsequent processing. This 
processing part consists of the following:
(a) Breaking the conglomerate of points in each of the five classes of line, into groups 
belonging to individual line segments
(b) Fitting the best possible curves for each of these line segments
(c) Identify the end points of these line segments, called terminal points, which are 
close enough to be considered as vertices
(d) Establishing the vertices
(e) Establishing the edges after, performing zero edge merging and erased line 
merging
(g) Using the origin in 3D, establishing the 3D co-ordinates of the connected graph
(h) Establishing the presence of holes and obtain the connection between the holes 
and the bodies from the designer
(i) Identifying all clockwise loops in the body
(j) Establishing the solid model

The backround theory for these steps listed above is given in chapter 3. The software 
developed, "SKETCH-SOLID", could be conveniently divided into three phases. In 
the first phase the sketch made on the digitizer is transformed into a series of points 
in the five classes of lines and written into a file. In the second phase the sketch is 
processed in two dimensions to establish the vertices and edges in two dimensions. 
In phase 3 this processed sketch and the information about the three dimensional 
origin is used to transform it first into a vertex model and finally into a solid model.
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4 .4  F U N C T IO N A L  SP E C IF IC A T IO N

Whatever activity a software is expected to perform the software will have two basic 
constituents. They are the data structures to store them in the RAM and in the back 
up memory and the instructions which make the computer to carry out operations in 
these data structures. This section describes the data structures and the operations to 
be performed on them in the software "sketch solid".

(a) The points transmitted in the sketching stage are stored in five different arrays for 
the five different classes of lines together with the number of points in each array. 
Once the sketching is completed they are written into a file with an extension ".pnt" 
where the first entry is the co-ordinates in three dimensions and the next five entries 
give the number of points in each of the class which are followed by the x and y 
coordinates of the points. Each point occupies a separate line.

(b) The processing in two dimensions part asks for the name of the file and checks 
whether a file in that name exist otherwise it warns the designer about it. It then 
allocates memory for the arrays to accommodate the specified number of points in 
each of the five classes and reads the points into these dynamic arrays.

(c) In the processing in two dimensions stage five linked lists are established in the 
following way, for each of the five line types:

(i) Lineseg - a linked list having (ideally) "the number of edges" nodes, each having 
the details of one particular line segment. The details included are the row number 
of the starting point in the particular array (described in (b) above) the number of 
points in that line segment, the co-ordinates of the starting point and the finishing 
point of that line segment and an indicator to say whether it is a straight line or curve 
in the + ve or -ve direction.

(ii) Geom_edge2d - a linked list having the "number of edges" nodes, each correspond-
ing to the nodes in (i) above and having the details of the equation of the curve fitted.

(iii) Edge2d - a linked list having the "number of edges" nodes, each corresponding 
to the nodes in (i) and (ii) above and having the starting vertex number, the finishing 
vertex number and the line type, one out of the twelve types described earlier in 
chapter 3.

(iv) Termpoints - a linked list having (ideally) "the number of vertices" nodes each 
having the coordinates of an end point in Lineseg nodes ((i) above) and the numbers 
of the Linesegs which have one end point in the vicinity of this point.

(v) Vert2d - a linked list having corresponding nodes to the list 'Termpoint" having 
the finalised co-ordinates of the vertices.

90



These lists of the five classes of lines are then merged to form the final two dimen-
sional model. The five nodes are schematicallyshown in figure 4.2.

N u m b e r  o f  p o in ts  

S t a r t —p o in t  

T y p e  

S t p t [ 2 ]  

f i n p t [ 2 ]  

♦ n e x t lin e s e g

Lineseg Node

(a)

p o in t [ 2 ] p o in t [ 2 ]

♦ lin e lis t ♦ lin e lis t

♦ n e x t te r m  p o in t * n e x t v e r t 2 d

Termpoint Node Vert2d Node
( b ) (d )

v e c to r v e r t l

T y p e v e r t 2

m e a n x , m e a n y e d g e ty p e

♦ n e x t—g e o m e d g e 2 d ♦ n e x te d g e 2 d

Geom_edge2d
Node

Edge 2d Node

F IG U R E  4.2

N O D E S  U S E D  IN  TW O  D IM E N S IO N A L  P R O C E S S IN G

(d) These linked lists should then go through an interactive merge facility which 
merges the linesegments belonging to the same line in an interactive manner.

(e) The output linked lists are then passed through the erase merge system to remove 
the lines that are erased.

(f) The final set of visible lines and the hidden lines are then merged together to form 
the list of lines in the solid.

(g) In the processing in 3 dimensions stage again five linked lists are established. In 
this process, first the 3 dimensional co-ordinates of the vertices are established as 
described in chapter 3. During this process details of holes are also established.
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(h) Using these 3 dimensional co-ordinates and the connectivity details given in the 
linked list edge2d, all clockwise loops are established.

(i) Using the details of holes and the loop details equation of faces are established, 

(h) The details of the five linked lists established are as follows:
(i) List of vertices
(ii) List of edges
(iii) List of faces
(iv) List of loops
(V) List of rings

The details of the constituent nodes are given in figure 4.3.

E d g e 3 d  N o d e

(a)

p o in t [ 4 ] * l in e lis t

» lin e lis t * n e x t f a c e 3 d

* n e x t v e r t 3 d ♦ r in g lis t

V e r t3 d  N o d e

(b)
F a c e 3 d  N o d e

(c)

* v f a c e _ n u m b e r

♦ lin e lis t ♦ lïn e lis t

*n e x t lo o p 3 d * n e x t r in g 3 d

L o o p 3 d  N o d e

( d )

R in g 3 d  N o d e

(e)

F IG U R E  43

FIV E  N O D E S  F O R  T H R E E  D IM E N S IO N A L  P R O C E S S IN G
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CHAPTER 5 

THE PROGRAM
5 .0  IN T R O D U C T IO N

The program meeting the functional specification established in chapter 4 could have 
a menu having the following items:

(a) Sketching
(b) Processing in two dimensions
(c) Merging of the processed lines in (b) above to obtain lines in solid
(d) Processing in three dimensions and
(e) Building the solid model

In the sketch part the program accepts the sketch as a series of points and classifies 
and stores them in a file. In the ‘processing in two dimensions’ stage this file is read 
and the points are broken into subgroups belonging to individual line segments. These 
individual group of points belonging to the line segments are then fitted with analytic 
equations and the vertices are identified. In the merging part the lines fitted are first 
checked and merged into one line wherever appropriate. The erased lines which are 
stored separately are then removed. Finally the lines belonging to the solid are 
established by combining the visible lines and hidden lines. In the ‘processing in three 
dimensions’ stage the three dimensional origin in the solid (or any other point in the 
solid) is used to find the three dimensional co-ordinates of the vertices and other 
important points. These three dimensional co-ordinates and the first clockwise loop 
obtained from the user are then used to obtain all clockwise loops in the solid. If there 
are holes in the body they will be identified at this stage and extra information would 
be needed to process them. In this implementation for isometric sketching input, this 
is achieved through construction lines. These information about the loops would then 
be used to fit the equations of faces and rings. At this stage it will be possible to check 
whether the solid under development is satisfying the Euler-Poincare formula. If it is 
not satisfying the user should go to the sketching stage and add or delete edges. In the 
final part of the program the solid model could be built in such a manner that could 
be used by some existing solid modeller. The structure diagram of the program is 
given in figure 5.1. The structure allows the user to go backwards and forwards 
between the five stages namely

(a) Sketching
(b) Processing in two dimensions
(c) Merging
(d) Processing in three dimensions and
(e) Building the solid model

until he is satisfied of the model he has built. He could then exit the system by selecting 
exit. A solid model is complete when it passes all the five stages mentioned above.
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At the end of each stage a file is created and items are written onto it. In the sketch 
stage the name of the sketch is obtained and an extension ‘.pnt’ is catenated to it and 
a file in this name (with the extension .pnt) is opened to write the points in the sketch. 
At the end of processing in two dimensions a file with the same filename and an 
extension of ‘.one’ is created to contain the details of the findings. Similarly at the end 
of merging a file with the extension ‘.two’ and at the end of three dimensional 
processing a file with the extension ‘.thr’ are created.

5.1 S K E T C H  ST A G E

The sketch part of the program is written to accept and store the sketching input from 
the user. Once the input is complete, the stored sketch is accessed by the ‘processing 
in two dimensions’ stage. If at a later stage the user realises that he needs to add more 
lines or remove some lines he could come back to this stage and the old sketch could 
be appended. As seen earlier the sketch made on the paper placed on the digitizer is 
transmitted to the computer as co-ordinates of points in the line segment sketched. 
The program accepts these points in six different classes in accordance with the 
digitizer menu (see figure 4.1). They are

(a) Points in visible lines
(b) Points in hidden lines
(c) Points in centre lines
(d) Points in construction lines
(e) Points in erased lines
(f) Points in redundant lines

Whatever the class of line the point belongs to, when a point is received it is first 
checked to find out whether it comes from the menu area or sketch area as shown in 
figure 4.1. When a point comes from the menu area it sets the current value of the 
menu selection which remains the same for all the processing that takes place until it 
is changed by another point coming from the menu area. Thus if the menu selection 
is set as visible lines and 200 points are sent after that, all those 200 points would be 
stored in the visible line class.

When the point received is from the sketch area the program first checks whether it 
is a redundant line or not. If it is a redundant line the point is ignored. All the points 
following this are also ignored until the menu selection is changed. When the menu 
selection is not redundant line the point is checked to ensure whether it is at least 15 
units (1.5mm) away from the last point received in the sketch area. If it is, then the 
point is stored in its respective class.

This part of the program is written in IBM BASIC language in this implementation. 
This allowed an easy way of creating a sketching input without any device driver or 
other system dependant software involvement. The points are stored in five different
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arrays namely VISLINES, HIDLINES, CENTLINES, CONSTLINES and ERAS- 
LINES. The array VISLINES can accommodate 5000 points while all other arrays 
could accommodate 1000 points each. At the begining of the stage the computer will 
ask the user for the filename and whether it is a new sketch or old. If it is old the file 
would be read into the arrays before accepting any new points. New lines could then 
be added to the sketch. If it is a new sketch the program asks the user to indicate the 
three dimensional origin in the sketch which is assumed to be the two dimensional 
origin as well (see section 3.13) during the three dimensional transformation. All 
these steps are collectively called initialisation in this thesis.

5 .1 .1  S K E T C H IN G  IN T O  T H E  SY S T E M

Once the initialisation is complete a message will appear asking the user to start or 
proceed sketching using the digitizer menu. Touch one of the seven items on the menu 
(similar to picking a pencil) and proceed with sketching. A message will appear on 
the screen telling the class of the line being sketched. Each time a point is received, 
distance checked and found acceptable, the point count in that class is incremented 
and the point is stored in the respective array. The process of receiving a point, 
checking the distance and storing the point if found suitable, continues until a point 
from the menu area is received. This could mean the selection of a new class of line 
or ending the sketching process. If a new class of line is selected the process described 
above would be repeated and the points would be stored in a different appropriate 
array. When ‘END’ is selected the points in the five different arrays and the three 
dimensional origin are written into the file with the extension ‘.pnt’. Figure 5.2 shows 
the structure diagram of the sketching process.

5 .2  P R O C E S S IN G  T H E  S K E T C H  IN  TW O  D IM E N S IO N S

The processing in two dimensions involves the generation of the five linked lists of 
nodes discussed in figure 4.2 for each class of line. A function (sub-program) in ‘C’ is 
written to implement this process. Figure 5.3 shows the structure diagram of this 
function. It has five algorithms implemented inside it. They are

(i) Finding the line segments
(ii) Finding the terminal points
(iii) Finding the geometry
(iv) Finding the vertices and
(v) Finding the edges

In the implementation of these algorithms several other functions are written and 
used.

5.2 .1  F IN D IN G  T H E  L IN E  S E G M E N T S

This algorithm takes an array of points and break them into groups belonging to 
individual line segments. The basic assumptions are that there is no line with a length
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less than 150 untis or 1.5 cm in length or no circle or ellipse with diameter less than 
1.5 cm. It forms a linked list of ‘Lineseg’ nodes (see figure 4.2) and functions 
‘get_lineseg’ to allocate memory for a ‘Lineseg’ node and ‘back_of_lineseg’ to put a 
new node at the end of a list, are written to support this algorithm. The steps in the 
algorithm are as follows:
(a) Set the processed points called ‘parsed_points’ to be = 0
(b) Set the variable ‘finished’ to be 0
(c) Read the file of points
(d) Repeat the following steps as long as ‘finished’ is 0
(i) Take the number of points in the first 150 units starting from the point 
‘parsed_points’
(ii) Connect the first and last point in the group found in (i) above and find whether 
all points in the group fall to one or both side of the line
(iii) If they fall to both side then it is a straight line
(iv) If it falls to one side do confirmatory test to ensure that it is a curve
(v) After ensuring that the line is either a curve or straight line find the end point of 
the curve or straight line
(vi) If the end point is equal to the number of points in the array then set finished = 1
(vii) If finished is not equal to 1 and if the distance from the end point and the next 
point is greater than 150 units, the minimum length of a line, then the next line starts 
from the next point (two non continuous lines) and CONTINUITY is set at 0. If not, 
they are two continuous lines and CONTINUITY is set at 1 with the starting point of 
the next line being the end point of the last line
(viii) Set the ‘parsed__points’ to be equal to the endpoint or endpoint +1 according to 
the value of continuity
(ix) Allocate memory to a new Lineseg node and store the values of the fields
(x) Put the new node at the back of the list
(e) The algorithm at the end returns a linked list of Lineseg nodes each node 
representing a line segment. Figure 5.4 shows its structure diagram.

5.2.2 FINDING  THE TERMINAL POINTS

The points representing any line in the sketch are only selected ones and do not form 
an exhaustive list of points in the line. This means that the end point of a represented 
line need not to be a vertex in the sketched solid. It could instead be a point close to 
it. Such a point close to the vertex and representing an end point of a line is called a 
terminal point in this thesis. A terminal point is characterised by the following:
(i) It lies in the close vicinity of a vertex
(ii) It lies in the close vicinity of the end points of lines emanating from that vertex
(iii) There is only one vertex for which the terminal point is very close and
(iv) Every terminal point could be approximated to one and only one vertex and 
there can only be the same number of vertices and terminal points in a sketch
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This algorithm finds all terminal points in the given linked list of ‘Lineseg’ nodes. It 
forms a linked list of Termpoint’ nodes (see figure 4.2) and functions ‘get_termpoint’ 
and ‘back_of_termpoint’ are written in support of this algorithm.The steps in the 
algorithm are as follows:

(a) Set a list of Termpoint’ node
(b) Take the first line segment from the list and its starting point and finishing point. 
Get a new Termpoint’ node and fill the fields with details of the starting point. Put 
this node at the back of the list created in (a) above. Get a new Termpoint’ node and 
fill the fields with details of the finishing point. Put this node at the back of the list 
created in (a) above.
(c) Repeat the following to all nodes in the linked list of ‘Lineseg’ nodes.
(i) Get the correct line number.
(ii) Set starting and finishing points of the ‘Lineseg’ node as trial point 1 and trial point
2.

(iii) Check whether trial point 1 is already represented in the list of terminal points.
(iv) If it is already represented add the line number to the linelist.
(v) If it is not represented create a new Termpoint’ node and fill the fields. Put the 
new node at the back of the list of Termpoint’ nodes created at (a) above.
(vi) Repeat steps (iii), (iv) and (v) for trial point 2.
(d) The algorithm at the end returns a linked list of Termpoint’ nodes. Figure 5.5 
shows the structure diagram of this algorithm.

5 .2 3  FIND ING  THE ANALYTICAL EQUATION OF LINES

This algorithm fits analytical equations to the line segments given by a linked list of 
‘Lineseg’ nodes and the array of points which is referenced by each of these nodes. 
For each of the node in the list of ‘Lineseg’ nodes an equation has to be fitted. The 
steps in the algorithm are as follows:

(a) Set a list of ‘Geom_edge2d’ node
(b) Repeat the following for each node in the list of ‘Lineseg’ nodes
(i) Depending on the linetype in the Lineseg node invoke the straight line fitting or 
ellipse fitting function.
(ii) If it is a straight line then depending on the slope whether it is a vertical line or 
not, invoke the appropriate fitting algorithm.
(iii) Get a new ‘Geom-Edge’ node and assign the newly fitted vector to the node. Put 
this new node at the back of the list created in (a) above.
(c) The end product at the end of this algorithm is a list of ‘Geom_edge2d’ nodes. 
Figure 5.6 shows the structure diagram of this algorithm.
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5.2.4 FINDING  VERTICES

This algorithm finds out a solution to all the equations representing the lines emanat-
ing from a vertex or its corresponding terminal point. It is generally an overdeter-
mined system of equations and the lines involved may be all straight lines or a mixture 
of straight lines and ellipses. The theory of finding solutions is discussed in detail in 
sections 3.5 and 3.6. The algorithm is consisted of the following steps:
(a) Set a list of ‘Vert2d’ nodes.
(b) Repeat the following steps for each node in the list of ‘Termpoint’ nodes.
(i) Check whether there are any curves in the linelist of the ‘Termpoint’ node.
(ii) If there are no curves solve the set of equations according to the least squares 
algorithm described in section 3.5.
(iii) If there is at least one curve use the Newton-Raphson algorithm described in 
section 3.6.
(iv) Get a new ‘Vert2d’ node and assign the fields with the co- ordinates found in (ii) 
or (iii) and the corresponding linelist. Put the new node at the back of the list in (a) 
above.
(e) The algorithm will yield a linked list of ‘Vert2d’ nodes. The structure diagram of 
the algorithm is given in figure 5.7.

5.2.5 FINDING  THE EDGES

This algorithm finds the starting vertex number and the finishing vertex number and 
the line type in accordance to the 12 classes described in section 3.12. This has a one 
to one relationship with the nodes in the linked lists of ‘Lineseg’ and ‘Geom_edge2d’ 
nodes. The algorithm has the following steps:
(a) Set a list of ‘Vert2d’ nodes.
(b) Repeat the following steps with each node in the linked list of ‘Lineseg’ nodes.
(i) Assign the end points as trial point 1 and trial point 2.
(ii) Get the vertex 1 to correspond to trial point 1.
(iii) Get a ‘Vert2d’ node and assign vertex 1.
(iv) Get the vertex 2 corresponding to trial point 2 and assign vertex 2.
(v) Decide the linetype and assign the linetype.
(c) This algorithm will return a linked list of ‘Edge2d’ nodes. Figure 5.8 shows its 
structure diagram.

53  THE M ERGING PROCESS

This is the process which allows for the merging of lines started from both ends to 
meet at an intermediate point and overstruck lines, the merging of visible and hidden 
lines, removal of the erased lines and the formation of the lines in the solid. A function 
called ‘merge2d’ is written to perform all these functions. It has three major con-
stituent algorithms.
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MERGE

FIGURE 5.9

STRUCTURE OF M ERGE FUNCTION

They are
(a) Zero distance merging
(b) Erase merging and
(c) Solid merging
The structure diagram of this function is shown in figure 5.9.

5 3 .1  ZERO DISTANCE M ERGING

In a sketching situation the user sometimes starts the drawing of a line from both ends 
to meet at an intermediate point. In these circumstances the computer in this program 
will identify them as two lines, each starting from the end point and finishing at the 
intermediate point. To rectify this shortcoming ‘zero distance merging’ algorithm was 
developed. The steps in this algorithm are as follows:

(a) Set the second list of ‘Geom_edge2d’ node which starts from the next node of the 
first list of ‘Geom_edge2d’ nodes.
(b) For all nodes in the first list of ‘Geom_edge2d’ nodes repeat the following:
(i) Check whether the equation of the first list is the same with the equation of the 
second node and if same return its position (rank) in the list.
(ii) Inform the user that two edges are conformable for merging and obtain his consent 
for merging.
(iii) Obtain the edge to be removed, the vertices to be removed and the type of merge. 
The types of merging are (1) Removal of overstruck straight line (2) Accommodation 
of extended line (3) Removal of overstruck curve and (4) Accommodation of ex-
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tended curve.
(iv) Perform the merging according to the type.
(v) Update the second list and the first list.
(c) The algorithm will result in a new set of linked lists of three out of the five nodes, 
representing the solid.

FIGURE 5.10

ZERO DISTANCE M ERGING
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In the process of implementing this algorithm functions to kill the five types of nodes 
are developed. They are ‘kill_lineseg’, ‘kill_geomedge’, ‘kill_termpoint\ ‘kill_vert2d’ 
and ‘kill_edge2d’. Figure 5.10 illustrates the structure of the algorithm.

53.2 ERASE M ERGING

This algorithm is developed to find the corresponding edge for each edge in the erased 
list, in any one of the other four lists representing the visible lines, hidden lines, centre 
lines and construction lines. The algorithm then removes the identified edge. The 
process is repeated until the entire list of erased edges is exhausted. The steps in the 
algorithm are as follows:

(a) Set four lists of ‘Geom_edge2d’ nodes representing those of the visible, hidden, 
centre and construction lines. Also set four integers which represent the position 
(rank) of nodes in each of these four lists. Set these integers to take the initial value 
of zero. This process in step (a) is called initialisation in the following step (b).

(b) For each node in the list of ‘Geom_edge2d’ nodes representing the erased lines 
do the following:

(i) Check the lists representing the visible, hidden, centre and construction lines in 
order, to find an edge with the same equation and is overlapping with the erased edge 
under consideration.
(ii) Set the position of the overlapping node in the variable set in initialisation for the 
particular class of line.
(iii) Depending on the value of the variable set in (ii) and on which variable is set 
perform the erasure.
(iv) Set the erased list and re-initialise.
(c) The algorithm will produce the final list of edges and vertices in the visible, hidden 
and construction classes which are in the sketched solid. Figure 5.11 shows the 
structure diagram of this algorithm.

5 3 3  SOLID M ERGING

This algorithm is developed to establish the final lists of edges and vertices present 
in the sketched solid. It is achieved by combining the hidden edges and visible edges 
together. The steps in the algorithm are as follows:

(a) Set a list of ‘Vert2d’ nodes to represent the edges in the solid and copy all visible 
edges onto it.
(b) Set a list of ‘Edge2d’ nodes to represent the edges in the solid and copy all visible 
vertices onto it.
(c) Get the number of edges and number of vertices.
(d) For each edge in the list of ‘Edge2d’ nodes representing the hidden lines repeat 
the following:
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(i) Get an ‘Edge2d’ node.
(ii) Get the vertex 1 and vertex 2 from the ‘Edge2d’ node from the hidden line list.
(iii) Get the co-ordinates of vertex 1 and vertex 2.
(iv) Check whether vertex 1 is present in the vertex list of the solid.
(v) If present add the integer (number of edges + 1) to the line list of that vertex.
(vi) Set that vertex number in the edge node obtained in (a) above.
(vii) If absent add a new vertex node to the list of vertices in the solid.
(viii) Set the vertex number in the edge node obtained in (a) above.
(ix) Repeat steps (iv) to (viii) for vertex 2.
(e) Perform a zero distance merge to merge the edges which are partially hidden and 
partially visible.
(f) The algorithm produces the list of edges and vertices in the solid sketched ready 
for three dimensional transformation. Figure 5.12 shows the structure diagram of this 
program.

5.4 PRO CESSING  IN  THREE DIM ENSIO NS

The processing in three dimensions involves the generation of the five linked lists 
namely (i) list of Edge3d nodes (ii) list of Vert3d nodes (iii) list of Loop3d nodes (iv) 
list of Face3d nodes and (v) list of Ring3d nodes. These nodes are shown in figure 4.3. 
These lists together, give all the details necessary to build the solid model. The details 
obtained here are as follows:
(i) Co-ordinates of all the vertices in three dimensions
(ii) Co-ordinates of the centres of circular elliptical holes in three dimensions
(iii) Details of edges
(iv) Details of loops
(v) Details of faces
(vi) Details of rings

A function called ‘process3d’ is written to implement this process. Figure 5.13 shows 
the structure diagram of this function. In the first stage it converts the isometric lines 
and curves to three dimensions. Then it converts the construction lines to three 
dimensions. It now runs through the vertex list in two dimensions and extracts the 
unprocessed vertices. These unprocessed vertices are then processed using the con-
struction lines. At the end of this, the co-ordinates of all vertices in three dimensions 
would be known. The function now runs through the lists of edges to ensure that all 
edges in the solid drawn are processed. Once everything is transformed to three 
dimensions, the function extracts all clockwise loops in the solid. In order to do this 
it obtains the first clockwise loop from the user for each connected set of edges. It 
uses the fact that each edge appears in exactly two loops once in the positive and once 
in the negative direction (see section 2.6.3). Once the loops are obtained and the 
tangency edges and silhouette edges are established, the surface equations of the
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planar faces could be fitted and the rings could be established.

At this stage all elements in the Euler-Poincare formula for the solid sketched would 
be known and the solid could be checked for validity. Any addition or deletion could 
then be made to make the solid valid. Once the solid’s validity is assured then the 
Euler co-ordinates could be calculated by using the Euler matrix (see section 2.3.2). 
The solid model could then be built with the appropriate Euler operators.

5.4.1 EXTRACTING THE INITIAL THREE DIM ENSIONAL DETAILS

In this process the reference point (normally the three dimensional origin) and the 
isometric lines are used to extract the three dimensional co-ordinates of all the 
possible vertices. It processes the line types 1,2, 3 (see section 3.12). The algorithm 
has the following steps.
(i) Create a ‘Vert3d’ list and ‘Edge3d’ list with the same number of vertices and edges 
in the sketch.
(ii) Allocate memory for two vectors ‘processed edges’ and ‘processed vertices’ to 
accommodate integer elements which are the vertex numbers and edge numbers.
(iii) The number of elements in each vector elements in each vector is the number of 
edges and number of vertices respectively.
(iv) Set the number of processed edges PROCEDGE and processed vertices PROC- 
VERT as zero.
(v) Initialise the reference point and obtain the number of lines emanating from the 
reference point.
(vi) Repeat the following for each edge emanating from the reference vertex.
(a) Get the other vertex and line type.
(b) Process for the straight line, if the line type is 1, 2 or 3.
(c) Go to the next edge emanating from the vertex.
(d) Include the vertex processed in the ‘processed vertex’ vector and increment the 
count PROCVERT.
(e) Include the edge processed in the ‘processed edge’ vector and increment the count
(vii) Now go to the second element in the vector representing the processed vertices 
and repeat steps (i) to (vii).

The end result of this initial extraction are a partially filled ‘ Vert3d’ and ‘Edge3d’ lists 
and the two vectors representing their numbers. If the number of processed vertices 
is equal to the number of vertices in the edge then the transformation is complete. 
The structure diagram of this function is given in figure 5.15.

5.4.2 PROCESS CONSTRUCTION LINES

There are two occasions in which construction lines are drawn in an isometric sketch. 
In the first instance it is drawn to locate a point with respect to an isometric point.
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FIGURE 5.15

ILLUSTRATION OF CONSTRUCTION LINES OF TYPE 1

This is illustrated in figure 5.15. In (a) the point A is fixed by a construction line and 
this is adequate since all the lines involved are isometric lines. The situation is 
different in (b) where all the points A, B, C and D need a construction line since all 
the lines involved are non-isometric. The construction lines involved in this case are 
all isometric straight lines. This is due to the fact that only isometric lines retain the 
true length.

In the second occassion construction lines are drawn to ‘box’ the ellipses and arcs as 
illustrated in figure 5.16. Here again the construction lines are all isometric straight 
lines. Thus processing of construction lines in these cases is essentially the processing 
of lines of types 1, 2, and 3. But when non-isometric ellipses are boxed there can be 
non-isometric construction lines. In any case processing construction lines involves 
with the extraction of the three dimensional co-ordinates of the ends of the construc-
tion lines. When dealing with isometric construction lines if one end point is known 
the other end point could be calculated while non-isometric lines would need extra 
construction lines for each end.

The algorithm has the following steps:

(i) Create the two lists CONSEDGE3D and CONSVERT3D of nodes Edge3d and 
Vert3d.
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FIGURE 5.16

ILLUSTRATION OF CONSTRUCTION LINES OF TYPE 2

(ii) Initialise the lists consedge2dl, consvert2dl and consgeoml representing the 
edge, vertex and edge geometry lists with pointers pointing to the first line.
(iii) Repeat the following until consedgel = NULL.
(a) if the linetype is 4 go to the next line through step (i)
(b) If the line type is 1,2 or 3 do the following
(c) Check whether the 3D co-ordinates of one end is known. If known process the 
other point.
(d) If both ends are not known check which end is very close to an isometric visible 
line
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(e) Obtain the intersecting 2D point (normally one end of the construction line) and 
convert it to 3D.
(f) Use this point to obtain the other point.
(g) If (e) and (f) are not possible continue.
(h) Store the values and go to the next edge
(iv) At the end of the processing, the end vertices of all the construction lines, whether 
isometric or not, will be available. Use them to fill the unfilled node fields in the lists 
CONSEDGE3D AND CONSVERT3D.

FIGURE 5.17

STRUCTURE OF PROCESSING CONSTRUCTION LINES
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5.43  PRO CESSING  OF VERTICES

In this process all the vertices in the vector containing the ‘processed vertices’ 
(vertices which are transformed to 3D) are taken one by one and the lines emanating 
from them are checked. If the lines emanating are of types 1,2 or 3 and have the other 
end not transformed to 3D, the transformation is performed. In this implementation 
this will not produce any extra information but this could be used to process smaller 
arcs. The algorithm consists of the following steps:

(i) Set the vertex count vc = 1
(ii) Repeat the following until vc becomes equal to PROCVERT (the number of 
processed vertices in the vector)
(a) Get the list of lines emanating from the vertex vc
(b) Get the number of lines emanating
(c) Repeat for each line the following
(d) Get the other vertex
(e) Check whether it is in the processed list
(f) Process it if the line type is 1,2 or 3 and the vertex is not already processed
(g) Go to the next vertex

Figure 5.18 illustrates this algorithm.

5.4.4 PRO CESSING  WITH CONSTRUCTION LINES

Construction lines fall into two kinds with respect to processing. They are (i) Con-
struction lines to assist the construction of the lines in the body (ii) Construction lines 
to assist the construction of non-isometric construction lines. In this algorithm lines 
of type 1, 2 or 3 only, are processed in the first pass. Once the isometric lines are 
processed the non-isometric lines could be transformed by checking each individual 
edge as described in section 5.4.5 below.

Each line in the list of construction lines is taken individually and is first checked 
whether it is isometric or not. If they are isometric then it is processed in the following 
way. The end points in two dimensions are compared with the vertices of the solid in 
two dimensions. The matching vertex is given the three dimensional co-ordinates of 
the construction line, if the vertex is not already transformed into three dimensions. 
This is followed by the processing of all connected lines in the solid, with direct or 
indirect connections to that vertex. At the end of this process all the vertices in the 
solid will be known in three dimensions. Figure 5.19 illustrates this algorithm.

5.4.5 PRO CESSING  FOR EACH EDGE

At the end of processing with construction lines all vertices in three dimensions would 
be known. This algorithm uses these details to (i) fill the fields of non-isometric edges
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B

ILLUSTRATION OF NON-ISOM ETRIC LINES WITH  
ISOM ETRIC PROCESSING

in the edge list in three dimensions and (ii) to process arcs and ellipses. Consider 
figure 5.20. The line NQ is a non-isometric line connecting vertices which would have 
been transformed to three dimensions by the isometric lines emanating from them. 
This is a typical circumstance of type (i) described above.

In the case of arcs meeting straight lines their end points would have been transformed 
to three dimensions by now and only their centres should be transformed. In a similar 
way for full ellipses their boxes made of construction lines together with the tangential 
and silhoutte edges of the emerging solid would be known in three dimensions. These 
are examples of situation described in type(ii) above. This algorithm is written to look 
after these requirements.
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This algorithm uses the fact that in a consistently ordered setup of faces each edge 
would appear in exactly two faces, once in the positive and once in the negative 
orientation (See section 2.6.2). Thus if there are ‘e’ number of edges there would be 
‘2e’ number of appearances of these edges in the complete list of faces. The algorithm 
has the following steps:

(i) Make a vector of integers with twice the number of edges, elements.
(ii) Initilise the list of ‘Loop3d’ nodes and obtain the first clockwise loop from the 
user
(iii) Store this loop as the first loop in the list and set it as the trial loop.
(iv) Repeat the following until the trial loop is NULL.
(a) Store the first edge in the loop.
(b) Compute the normal vector of the plane consisting the first edge and the next edge 
in the negative sense of the first edge.
(c) Go to the vertex of the next edge referred in (b) above and obtain the list of edges 
emanating from it.
(d) Perform a test on the cross products and obtain the next clockwise edge.
(e) Store this edge in the line list of the loop
(f) Continue (c) to (e) until first edge reappears.

Figure 5.21 illustrates this algorithm.

5.4.7 FITTING 3D  GEOMETRY

In this implementation holes on curved surfaces are not accommodated. Therefore 
fitting 3D geometry part consists of only two activities (i) identifying the planar loops 
and fit their equations and (ii) identifying their inner loops or rings. A loop with no 
arcs and only straight lines always form a plane. An arc with a tangency edge or 
silhoutte edge form only a curved surface. These facts are used to decide whether a 
surface is a plane or not. Plane equations are fitted using the least squares algorithm. 
Once the equations are fitted inner loops are identified by first comparing the 
equations and then the enclosed area. Loops with the same equation and smaller area 
are identified as rings.

5.5 PROGRAM STRATEGY

The program has two parts one written in IBM BASIC and the other written in ‘C \ 
The part written in BASIC accepts the sketch and write it to a file. The part written 
in ‘C’ reads this file and process the sketch. Two header files are created for inclusion 
in this part. They are (i) sketstr.h which defines all the data structures and (ii) 
globsket.h which declares all the global variables. The program is written in seven 
files. They are (i) proc2d.c (ii) merge.c (iii) proc3d.c (iv) allocates (v) filehand.c (vi) 
graphout.c and (vii) ss.c. The program in file ss.c is the main driver and all other files 
contains functions called by other functions. Proc2d.c contains functions in the
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processing in two dimensions, merge.c contains functions used during merging and 
so on. The interim files xxxx.one, xxxx.two and xxxx.thr contain information in ASCII 
so that they could be accessed by the user or other programs. Samples of these files 
are given in appendix A.
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CHAPTER 6
SAMPLES SESSIONS

6.0 INTRODUCTION

The preceding chapters explained the background, the drawing up of the functional 
specifications and the development of the program modules to realise the sketching 
input system. This chapter presents three samples explaining how the processing takes 
place at various conditions.

6.1 SAMPLE ‘L’ BLOCK

11

SIM PLE ‘L’ BLOCK

Consider figure 6.1 showing the simple ‘L’ block. The lines are labelled in the order 
in which they are drawn. Thus line 1 is the first one to draw and line 2 followed it and 
so on. Lines 1, 2,3,4, 5 are drawn as continuous lines. Line 6 is drawn from vertex 1 
to vertex 6. The hidden lines and the visible lines in this example are drawn as visible 
lines. This example is chosen to explain the first working system that was developed 
during this research. The results referred here are given in the appendix. In the first 
stage i.e. the sketching part the points in the 18 edges are written to a file called 
‘lblock.pnt’. The first entry in the file is the three dimensional origin of the block which 
is vertex 1. It is followed by the number of points in the visible lines which in this case 
is 389. The next three entries give the points in the hidden lines (zero in this case),
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FIGURE 6.2

PHOTOGRAPH OF THE DISPLAYED SKETCH

FIGURE 6.3

PHOTOGRAPH OF THE DISPLAYED FITTED SKETCH
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centre lines(zero in this case), construction lines(zero in this case) and erased 
lines(zero in this case). From the seventh entry the 389 points in the visible line are 
written into the file. Had there been any points from hidden lines they would have 
followed these visible lines and in a similar fashion the centre lines would have 
followed the hidden lines, the construction lines would have followed the centre lines 
and the erased lines would have followed the construction lines. Thus when the 
"processing in two-dimensions part" access these files it will know whether there are 
hidden lines, centre lines, construction lines and erased lines in the sketch and the 
number of points in each category. The entries in this file ‘lblock.pnt’ is given in 
appendix C.

6.1.1 PRO CESSING  IN TWO DIM ENSIO NS

The first part of this function breaks the 389 points into eighteen groups belonging to 
the eighteen lines drawn. The details of these groups are stored in eighteen Line_seg 
nodes which form the linked list ‘VISLINESEG’. Once the points belonging to the 
different line segments are established the sketch could be reproduced. The copies 
of the screen display of the sketch is given in figure 6.2. The next task is to find the 
terminal points. These terminal points are points which mark the end of a line segment 
in the linked list and is close to other terminal points of line segments, which emanate 
from the vertex, represented by the particular terminal point. Thus for the twelve 
vertices in the sketch twelve terminal points are established. Looking at the sketch 
one can clearly see the difference between the terminal points and the vertex. For 
example look at Vertex 7 in figure 6.2. The edges here are not meeting in the vertex 
but are terminating at points in the vicinity of vertex 7. The next task is to fit the 
geometry for the analytic equations of the different line segments.

Eighteen equations are fitted to the eighteen line segments and the details of these 
equations are kept in the linked list eighteen ‘Geom_edge2d’ nodes. The next stage 
of two dimensional processing is to identify the vertices. These are identified by 
solving the equations fitted to each line segment meeting at any particular vertex. For 
example vertex 7 is obtained by the least squares solution of 7, 8 and 18. Once these 
are established the edges in the sketch could be precisely defined and the improved 
sketch could be drawn. Figure 6.3 shows the copy of the display of the improved ‘L’ 
block. The details extracted in these two dimensional processing is written to the file 
‘lblock.one’.

6.1.2 M ERGING

Since there are no hidden lines or erased lines this part of the program does not do 
any work in this example. However it reads the file lblock.pnt and creates the file 
containing the details of the vertices, edges and their geometry. These informations 
are containd in the file ‘lblock.two’ (see appendix C).
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6.13  PRO CESSING  IN  THREE DIM ENSIO NS

In the processing in three dimensions the first part is to identify the 6 loops. Once 
these are identified equations are fitted to them. The loops then undergo a test to find 
out whether any two or more of them have the same equation. In this case there are 
no such faces and therefore no rings are in the solid. If there were rings they would 
have been identified by comparing their areas. Once the presence or absence of the 
rings are established then the faces are established. At this stage all the elements of 
the Euler-Poincare formula are known and validity check is effected. The details upto 
this point are written in file ‘lblock.thr’ given in appendix.

To build the solid model from this data the following could be done.
(i) Use the Euler matrix and obtain the Euler co-ordinates (chapter 2)
(ii) Perform the operations as specified by the Euler co-ordinates using the operations 
available in the solid modeller used

This is the simplest example which is similar to the model that would be developed 
after merging.

6.2 THE STOPPER BLOCK

This is a hypothetical example of medium complexity chosen to explain the merging 
facility necessary. In this example there are hidden lines, partially hidden lines and 
non-isometric lines together with the visible lines. As in the case of the ‘L’ block the 
points were accepted by the program and are stored in two arrays namely the 
VISPOINTS and HIDPOINTS. They are then written to the file. This time the 
number of hidden points would not be zero. The processing program then read this 
file of points and breaks it into 21 line segments in the visible line class and 7 line 
segments in the hidden line class as illustrated in figure 6.4 (b). Fitting the equations 
and obtaining the co-ordinates of the vertices is a straight forward matter. At this stage 
the merge function takes over. In the first part no two lines are to be merged because 
of drawing from both ends or subsequent extensions (i.e. no zero distance merging). 
In the next stage the hidden lines and visible lines are merged together to form the 
lines and vertices in the solid. This need the creation of the vertices C and H. The 
lines MQ and KG, would be identified as lines having the same equation. In a similar 
fashion the line pairs ER and RH, and HS and SJ also would be identified as lines 
with same equations. The line pairsER and RH, and HS and SJ should undergo a zero 
distance merging after the merging of the hidden and visible lines. The lines QM and 
GK are distinct lines and should not merge even though they have the same equation. 
This means it is necessary to obtain some input from the user. This of course is done 
after the user has finished his sketching input. The merging facility in this program is 
capable of handling similar situations.
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63  WALL FIXTURE

This is again a hypothetical example chosen to explain the use of construction lines 
in three dimensional processing. Figure 6.5 (a) shows the ‘wall fixture’. In the first 
stage the base is sketched as shown in figure 6.5 (b). Then the rectangular block is 
sketched as shown in figure 6.5 (c). Here the first type of construction line comes into 
the scene. Vertex H is fixed by this construction line. Figure 6.5 (d) shows the inclusion 
of the cylindrical hole and the use of construction lines to construct the ellipses. The 
lines QR and ST together with the ellipses represent the cylinder (see section 2.3.2). 
The program uses the construction line x and y to fix the construction lines surround-
ing the ellipses and the co-ordinates of the points Q, R, S and T. These points are then 
used to fix the centre and radius.
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FIGURE 6.5

ILLUSTRATION OF WALL FIXTURE
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CHAPTER 7
DISCUSSION AND CONCLUSION

7.0 DISC USSIO N

The preceding chapters described the development of a sketching input system, where 
chapter 1 set the scene by telling why such a system is needed, what is actually needed 
and how it could be achieved, in a summary form. Chapter 2 described a survey on 
solid modelling and extracted features of solid modelling that have major influence 
on the sketching input system. During this process examples are worked and 
presented by the author to demonstrate the important features. For instance the edge 
based boundary models in section 2.6.2, the winged-edge structure in section 2.6.3, 
figure 2.23 representing the full edge list of the ‘L’ block, list of edge nodes in section 
2.9.1.2 illustrating the exactly two representations of each edge and the full list of 
vertex nodes in figure 2.24 are examples worked out by the author. These examples 
are all worked out for the same ‘L’ block to make the understanding easier. The 
literature on complete examples were limited and therefore it was decided to present 
these examples in complete form. Chapter 3 described all the theory needed to 
understand the work described in this thesis. It consists of classical theory as well as 
the methods developed by the author to solve specific problems using these classical 
theory. For instance the meeting point of more than two straight lines described in 
section 3.5, the meeting point of more than two curves and straight lines described 
in section 3.6 and the twelve classes of isometric lines described on section 3.12 are 
applications developed by the author. Chapter 4 describes the drawing up of the 
functional specification in the light of the survey and the theory described earlier. 
Chapter 5 describes the program in detail. It clearly demonstrates the three stages of 
processing of the sketch namely

(i) Processing in three dimensions

(ii) Merging of lines in two dimensions and

(iii) Processing in three dimensions

In the ‘processing in two dimensions’ part the sketch is broken into line segments and 
lines are fitted to the various sections. In the ‘merging in two dimensions’ part the 
lines in the solid are extracted after (i) merging the different segments of the same 
line (ii) removing the erased lines and (iii) finally by merging the visible and hidden 
lines together. In the ‘processing in three dimensions part’ the vertices are first 
transformed into three dimensions. This is done according to the method described 
in section 3.13. It is well known that sketching straight lines is much easier than curves 
and this is why isometric sketching uses straight construction lines heavily (the method 
of boxing). In the same way processing straight lines is much easier than dealing with
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curves. It is because of this reason the use of straight lines to do the transformation is 
advocated wherever possible in this thesis.

There are two other areas which are necessary to make the sketching input system 
complete. They are (i) the device dependant sketching part with the involvement of 
the digitizer and the communication port and (ii) the solid modeller which is going 
to use this sketching input system. The software was developed using an IBM PS/2 
and a CALCOMP 2000 series digitizer. The digitizer area is very small and making a 
complicated sketch is difficult. The program originally was intended for coupling with 
Mantyla’s [43] ‘GWB’ solid modeller. Because of the shortcomings in the part of these 
decisions it was decided to keep the sketching part separately and minimum effort 
was spent on it. Coupling to an existing solid modeller depends very much on the solid 
modeller and therefore was not included as part of this work. However the stepwise 
construction of the solid model by the use of the Euler operators by Mantyla [43] is 
very much close to this work.

The work was carried out in stages dived along the lines described earlier. First part 
was to give a simple core structure for the sketching input system which could accept 
the sketch with minimum of interaction from the user. This needed the automatic 
identification of different line segments and their class (straight line or curve). Though 
this appears to be a pattern recognition problem, it is very much different to it. When 
a line is sketched two kinds of data are generated (i) the explicit co-ordinates of the 
points and (ii) the implicit order of points (i.e. the points in a line are transmitted in 
an order from one end to the other). These explicit and implicit data are used in the 
processing. The first system was very much restrictive without the merge facility (i.e. 
facilities to erase, facilities to draw a line from both ends etc). The centre lines are 
not used to any transformation of the sketch. However it was included to accom-
modate the needs of the solid modelling system (for sweep constructions at a later 
stage). The processing in three dimensions part is a work in progress and would be 
complete only after coupling the sketching input system to a solid modeller.

7.2 CONCLUSIONS

A core system for Sketching Input for Computer Aided Engineering, which could 
accept isometric sketching inputs and develop them as three dimensional models, is 
developed. It has all the data structures that could accommodate further additions 
without demanding major re-structuring.

7.3 AREAS FOR FUTURE WORK

(i) The immediate necessity is to couple this to an existing solid modeller.

(ii) It is necessary to go for bigger digitizer and a device driver if necessary.

(iii) It will be for the advantage of the user to see his sketch as he makes it. A
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concurrent processing approach in a multitasking environment is another area that 
needs attention.

(iv) Sketching on its own does not meet the requirements of the applications. The 
designer should have the facility to sketch a device or system he is developing while 
having access to libraries of solid models of standard parts such as the gear wheels. 
This will enable him to use the standard parts wherever appropriate while using his 
ingenuity or professional skill to develop the product. Thus developing of libraries of 
primitives is another area that needs researching.
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APPENDIX A

MANTYLA’S DATA STRUCTURES
TYPE DEFINITIONS

typedef float vector [4];
typedef float matrix[4][4];
typedef short Id;
typedef struct solid Solid;
typedef struct face Face;
typedef struct loop Loop;
typedef struct halfedge HalfEdge;
typedef struct vertex Vertex;
typedef struct edge Edge;
typedef struct line Line;
typedef struct arc Arc;
typedef struct plane Plane;
typedef struct cylinder Cylinder;
typedef union curve Curve;
typedef union surf Surf;

‘C’ STRUCTURES
(i) struct solid

Id solidno; /* solid identifier */
Face *sfaces; /* pointer to list of faces */
Edge *sedges; /* pointer to outer loop */
Vertex *sverts; /* pointer to list of vertices */
Solid *nexts; /* pointer to next solid */
Solid *prevs; /* pointer to previous solid 7

};
(ii) struct face

{
Id faceno; /* face identifier 7
Solid *fsolid; /* back pointer to solid 7
Loop *flout; /* pointer to outer loop 7
Loop *Hoops /*  pointer to list of loops */

Surf *fsurf; /*  pointer to the surface information
Face *nextf; /* pointer to the next face 7
Face *prevf; /* pointer to previous face */
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(iii) struct loop
{
HalfEdge
Face
Loop
Loop
V

*ledg; /* pointer to ring of halfedges */ 
*lface; /* back pointer to face V 
*nextl; /* pointer to next loop V 
*prevl; /* pointer to previous loop 7

(iv) struct plane 
{
short
short
real
i.

surf_type; /* surface type */
times_used;
a, b, c, d;

/>
(v) struct cylinder 

{
short
short
matrix
real
real
i.

surf_type;
times_used;
cy_transf;
cy_rad;
cy_h;

h
(vi) struct cone

{
short
short
matrix
real
real
real

surf_type;
times_used;
cotransf;
co_top_rad;
co_bottom_rad;
co_h;

/ »
(vii) struct sphere 

{
short
short
matrix
real

surf_type;
times_used;
sphtransf;
sph_rad;
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(viii) struct line
{
short curve_type;
short times_used;
};

(ix) struct arc

{
short curve_type;
short times_used;
real arc_rad;
real arc_cx, arc_cy;
real arc_phil;
real arc_phi2;
plane
i-

*arc_plane;

/>
(x) struct edge

{
HalfEdge *hel;
HalfEdge *he2;
Curve *ecurve;
Edge *nexte;
Edge *preve;
h

(xi) struct halfedge
{
Edge *edg;
Vertex *vtx;
Loop *wloop;
HalfEdge *nxt;
HalfEdge
V

*prv;
h

(xii) struct ^vertex
{
Id vertexno;
HalfEdge *vedge;
vector vcoord;
Vertex *nextv;
Vertex *prew;

/* centre 7  
/* start angle 7  
/* end angle */
/*plane of the arc 7

/* pointer to right half edge 7  
/*  pointer to left half edge 7  
/*  curve information 7  
/* pointer to next edge 7  
I* pointer to previous edge 7

/* pointer to parent edge 7  
/* pointer to a starting vertex 7  
/*  back pointer to the loop 7  
/* pointer to next half edge 7  
/* pointer to previous half edge 7

/* vertex identifier */
/* pointer to a half edge 7  
/* vertex coordinates */
/* pointer to next vertex */

/*  pointer to previous vertex */
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(xiii) union surf
{
Plane p;
Cylinder cy;
Cone co;
sphere sph;
};

(xiv) union curve

{
Line 1;
Arc a;
};
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APPENDIX B

LISTINGS OF PROGRAMS

SK E T C H .B A S PR O G R A M

1000 REM SKETCH.BAS
1010 REM 
1020 REM
1030 R E M ..................... DECLARATIONS................................
1040 REM
1050 SCREEN 9
1060 COLOR 15,1
1070 DIM VISLINES % (5000,2)
1080 DIM HIDLINES%(1000,2)
1090 DIM CENTLINES%(1000,2)
1100 DIM CONSTLINES %(1000,2)
1110 DIM ERASEDLINES%( 1000,2)
1120 VISPOINTS = 0 
1130 CENTREPOINTS = 0 
1140 HIDDENPOINTS = 0 
1150 CONSTPOINTS = 0 
1160 ERASEPOINTS = 0 
1170 REM
1180 R E M .......................... FILE DETAILS..............................
1190 REM 
1200 CLS
1210 PR IN T: PRIN T: PRINT 
1220 PR IN T: PRINT : PRINT 
1230 PRINT 
1240 PRINT
1250 PRINT TAB(15) "ENTER THE NAME OF THE SKETCH"
1260 PRINT 
1270 PRINT
1280 INPUT FILENAMES
1290 FILENAMES = FILENAMES + ".POT"
1300 PRINT : PRINT :PRIOT
1310 PRINT TAB( 15) "ENTER WHETHER THE FILE IS OLD OR NEW"
1320 PRIN T: PRINT
1330 INPUT OLDORNEWS
1340 IF NOT ((OLDORNEWS "OLD") XOR (OLDORNEW$"NEW")) GOTO
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1310
1350 REM
1360 R E M ................... OPEN FILE FOR WRITING.....................
1370 REM
1380 IF (OLDORNEW$ = "OLD") GOTO 1410
1390 OPEN FILENAMES FOR OUTPUT ACCESS WRITE AS #2
1400 GOTO 1710
1410 OPEN FILENAMES FOR INPUT ACCESS READ AS #2  
1420 INPUT #2,THREEX%, THREEY%
1430 PRINT THREEX%
1440 INPUT #2, VISPOINTS %
1450 INPUT #2,HIDDENPOINTS%
1460 INPUT #2,CENTREPOINTS%
1470 INPUT #2,CONSTPOINTS%
1480 INPUT #2,ERASEDPOINTS %
1490 IF (VISPOINTS % = 0) GOTO 1530
1500 FOR 1% = 1 TO VISPOINTS % STEP 1
1510 INPUT #2,VISLINES%(I%,1),VISLINES%(I%,2)
1520 NEXT
1530 IF (HIDDENPOINTS% = 0) GOTO 1570
1540 FOR 1% = 1 TO HIDDENPOINTS % STEP 1
1550 INPUT #2,HIDLINES%(I%,1),HIDLINES%(I%,2)
1560 NEXT
1570 IF (CENTREPOINTS% = 0) GOTO 1610
1580 FOR 1% = 1 TO CENTREPOINTS % STEP 1
1590 INPUT #2,CENTLINES%(I%, 1 ),CENTLINES%(I%,2)
1600 NEXT
1610 IF (CENTREPOINTS% = 0) GOTO 1650
1620 FOR 1% = 1 TO CONSTPOINTS % STEP 1
1630 INPUT #2,CONSTLINES %(I%,l),CONSTLINES%(I%,2)
1640 NEXT
1650 IF(ERASEDPOINTS = 0) GOTO 1710
1660 FOR 1 %  =  1 TO ERASEDPOINTS% STEP 1
1670 INPUT #2,ERASEDLINES%(I%,1),ERASEDLINES%(I%,2)
1680 NEXT
1690 CLOSE #2
1700 OPEN FILENAMES FOR OUTPUT ACCESS WRITE AS #2
1710 R E M ......................OPEN COMI PORT............................
1720 REM
1730 OPEN "COM1:4800,E,7,1,CS,DS,CD" AS #1 
1740 CLS
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1750 PRINT : PRINT : PRINT : PRINT :PRINT 
1760 REM
1770 R E M ......................OBTAIN ORIGIN...........................
1780 REM
1790 DIGMENU% = 0
1800 PRINT TAB(15) "INDICATE YOUR 3D ORIGIN IN THE DIGITIZER" 
1810 REM
1820 INPUT #  1,THREEX%,THREEY %,N %
1830 REM
1840 R E M ......................START SKETCHING.........................
1850 BEEP 
1860 CLS
1870 PRINT : PRINT : PRINT : PRINT :PRINT :PRINT
1880 PRINT TAB(19) "YOU CAN START/PROCEED YOUR SKETCH BY
USING THE"
1890 PRINT: PRINT
1900 PRINT TAB(30) "DIGITIZER MENU"
1910 INPUT #1,X%,Y%,N%
1920 IF (X% 1700) GOTO 1860 
1930 INPUT #1,X%,Y%,N%
1940 IF ((Y% 320) AND (Y% )) THEN DIGMENU% = 1 
1950 IF (CY %  520) AND (Y% Ò)) THEN DIGMENU% = 2 
1960 IF ((Y% 720) AND (Y% y)) THEN DIGMENU% = 3 
1970 IF ((Y% 920) AND (Y% ‘)) THEN DIGMENU% = 4 
1980 IF ((Y% 1120) AND (Y% ()) THEN DIGMENU% = 5 
1990 IF ((Y% 1520) AND (Y% Ò)) THEN DIGMENU% = 6 
2000 ON (DIGMENU%)GOSUB 2050, 2290,2530, 2770,2930,3150 
2010 END 
2020 REM
2030 R E M ......................- VISIBLE LINE PROCESSING..................
2040 REM 
2050 CLS
2060 PRINT : PRINT : PRINT : PRINT : PRINT 
2070 PRINT TAB(25) "VISIBLE LINE PROCESSING ! "
2080 BEEP 
2090X1% = 0 
2100 Y1% = 0
2110 INPUT #1,X%,Y%,N%
2120 IF(X% 1700) AND (Y% ) GOTO 2110 
2130 INPUT #1,X%,Y%,N%
2140 IF (X% 1700) THEN GOTO 2250
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2150 DELTAX = X%-X1%
2160 DELTAY = Y%-Y1%
2170 DIST = SQR(DELTAX*DELTAX + DELTAY*DELTAY) 
2180 IF (DIST !) GOTO 2130 
2190 VISPOINTS% = VISPOINTS% +1 
2200 VISLINES%(VISPOINTS%,l) = X%
2210 VISLINES%(VISPOINTS%,2) = Y%
2220 X l%  = X%
2230 Y l%  = Y%
2240 GOTO 2130 
2250 RETURN 1860 
2260 REM
2270 R E M ....................HIDDEN LINE PROCESSING....................
2280 REM 
2290 CLS
2300 PRINT : PRINT : PRINT : PRINT : PRINT 
2310 PRINT TAB(25) "HIDDEN LINE PROCESSING ! "
2320 BEEP 
2330 X1% = 0 
2340 Y2% = 0
2350 INPUT #1,X%,Y%,N%
2360 IF(X% 1700) AND (Y% Ò) GOTO 2350 
2370 INPUT #1,X%,Y%,N%
2380 IF ( X %  1700) THEN GOTO 2490 
2390 DELTAX = X%-X1%
2400 DELTAY = Y%-Y1%
2410 DIST = SQR(DELTAX*DELTAX + DELTAY* DELTAY) 
2420 IF (DIST 15!) GOTO 2370 
2430 HIDDENPOINTS % = HIDDENPOINTS %  +1 
2440 HIDLINES %(HIDDENPOINTS %, 1 ) = X %

2450 HIDLINES%(HIDDENPOINTS%,2) = Y%
2460 X1% = X%
2470 Y l%  = Y%
2480 GOTO 2370 
2490 RETURN 1860 
2500 REM
2510 R E M ....................CENTRE LINE PROCESSING....................
2520 REM 
2530 CLS
2540 PRINT : PRINT : PRINT : PRINT : PRINT 
2550 PRINT TAB(25) "CENTRE LINE PROCESSING ! "
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2560 BEEP 
2570X1% = 0 
2580 Y1% = 0
2590 INPUT #1,X%,Y%,N%
2600 IF(X% 1700) AND (Y% y) GOTO 2590 
2610 INPUT #1,X%,Y%,N%
2620 IF ( X %  1700) THEN GOTO 2730 
2630 DELTAX = X%-X1%
2640 DELTAY = Y%-Y1%
2650 DIST = SQR(DELTAX* DELTAX + DELTAY* DELTAY) 
2660 IF(DIST 15!) GOTO 2610 
2670 CENTREPOINTS% = CENTREPOINTS% +1 
2680 CENTLINES%(CENTREPOINTS%, 1) = X%
2690 CENTLINES%(CENTREPOINTS%,2) = Y%
2700 X1% = X%
2710 Y l%  = Y%
2720 GOTO 2610 
2730 RETURN 1860 
2740 REM
2750 R E M ................... CONSTRUCTION LINE PROCESSING -
2760 REM 
2770 CLS
2780 PRINT : PRINT : PRINT : PRINT : PRINT
2790 PRINT TAB(25) "CONSTRUCTION LINE PROCESSING !"
2800 BEEP
2810 INPUT #1,X%,Y%,N%
2820 IF(X% 1700) AND (Y% y) GOTO 2810 
2830 INPUT #1,X%,Y%,N%
2840 IF (X% 1700) THEN GOTO 2890
2850 CON STPOINTS %  =  CONSTPOINTS% +1
2860 CONSTLINES%(CONSTPOINTS%,l) = X%
2870 CONSTLINES%(CONSTPOINTS%,2) = Y%
2880 GOTO 2830 
2890 RETURN 1860 
2900 REM
2910 R E M .................ERASED LINES.....................................
2920 REM 
2930 CLS
2940 PRINT : PRINT : PRINT : PRINT : PRINT 
2950 PRINT TAB(25) "ERASED LINE PROCESSING !"
2960 BEEP
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2970 X l %  =  0 
2980 Y l%  = 0 
2990 INPUT #1,X%,Y%,N%
3000 IF(X% 1700) AND (Y% ÿ) GOTO 2990 
3010 INPUT #1,X%,Y%,N%
3020 IF ( X %  1700) THEN GOTO 3110 
3030 DELTAX = X%-X1%
3040 DELTAY = Y%-Y1%
3050 DIST = SQR(DELTAX%*DELTAX% + DELTAY %* DELTAY %)
3060 IF(DIST !) GOTO 3010
3070 ER ASEDPOINTS % = ER ASEDPOINTS % + 1
3080 ERASEDLINES%(ERASEDPOINTS%, 1) = X %

3090 ERASEDLINES%(ERASEDPOINTS%,2) = Y%
3100 GOTO 3010 
3110 RETURN 1860 
3120 REM
3130 R E M .................END................................................
3140 REM
3150 WRITE #2, THREEX%, THREEY%
3160 WRITE #2, VISPOINTS%
3170 WRITE #2, HIDDENPOINTS %
3180 WRITE #2,CENTREPOINTS %
3190 WRITE #2,CONSTPOINTS%
3200 WRITE #2,ER ASEDPOINTS %
3210 IF (VISPOINTS% 0) THEN GOSUB 3270 
3220 IF (HIDDENPOINTS% 0) THEN GOSUB 3310 
3230 IF (CENTREPOINTS % 0) THEN GOSUB 3350 
3240 IF (CONSTPOINTS% 0) THEN GOSUB 3390 
3250 IF (ER ASEDPOINTS % 0) THEN GOSUB 3430 
3260 RETURN 2010
3270 FOR 1% = 1 TO VISPOINTS% STEP 1
3280 WRITE #2,VISLINES%(I%,1),VISLINES%(I%,2)
3290 NEXT 
3300 RETURN
3310 FOR 1% = 1 TO HIDDENPOINTS% STEP 1 
3320 WRITE #2,HIDLINES%(I%,l),fflDLINES%(I%,2)
3330 NEXT 
3340 RETURN
3350 FOR 1% = 1 TO CENTREPOINTS% STEP 1
3360 WRITE #2,CENTLINES%(I%,1),CENTLINES%(I%,2)
3370 NEXT
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3380 RETURN
3390 FOR 1% = 1 TO CONSTPOINTS% STEP 1
3400 WRITE #2,CONSTLINES%(I%,l),CONSTLINES %(I%,2)
3410 NEXT
3420 RETURN
3430 FOR 1% = 1 TO ERASEDPOINTS% STEP 1
3440 WRITE #2,ERASEDLINES%(I%,1),ERASEDLINES%(I%,2)
3450 NEXT
3460 RETURN
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SKETCH SOLID - DATA STRUCTURES

typedef struct intnode Intnode;
typedef struct lineseg Lineseg;
typedef struct termpoint Termpoint;
typedef struct geom_edge2d Geom_edge2d;
typedef struct vert2d Vert2d;
typedef struct edge2d Edge2d;
typedef struct loop3d Loop3d;
typedef struct edge3d Edge3d;
typedef struct vert3d Vert3d;
typedef struct ring3d Ring3d;
typedef struct face3d Face3d;
struct intnode

{
int
Intnode
};

struct lineseg

{
int 
int 
int 
float 
Lineseg 
};

struct termpoint

{
float point[2] 
Intnode 
Termpoint 

};
struct geom_edge2d

’ { 
float 
int 
float 
Geom 

};

a;
*nextintnode;

num_points;
start_point;
type;
stpt[2], finpt[2]; 
*nextlineseg;

*linelist;
*nexttermpoint;

*v; 
type;
meanx, meany; 

edge2d *nextgeom_edge2d;
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struct vert2d

struct edge2d

struct edge3d

struct loop3d

struct vert3d

struct face3d

{
float ‘point;
Vert2d *nextvert2d;
Intnode
};

‘linelist;

{
int vertí, vert2;
int edgetype;
Edge2d
};

*nextedge2d;

{
int vertí, vert2;
int line type;
float ‘centre;
Edge3d

};

‘nextedge3d;

{
float *v;
Intnode ‘linelist;
Loop3d
};

*nextloop3d;

{
float point[4];
Intnode ‘linelist;
Vert3d

};

*nextvert3d;

{
Ring3d ‘ringlist;
Intnode ‘linelist;
Face3d *nextface3d;
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struct ring3d

{
int
Intnode
Ring3d

};

face_number;
*linelist;
*nextring3d;
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GLOBAL VARIABLES - SKETCH SOLID

/*
V
char

GLOBSKET.H

FILENAME[9];
int NUMVISPOINTS = 0;
int NUMHIDPOINTS;
int NUMCENTPOINTS;
int NUMCONSPOINTS;
int NUMERASPOINTS;
float **VISPOINTS;
float **HIDPOINTS;
float * *CENTPOINTS;
float * *CONSPOINTS;
float * *ERASPOINTS;
float THREEX, THREE Y;
r ............... FILE xxxx.one VARIABLES-----
Lineseg *VISLINESEG;
Lineseg *HIDLINESEG;
Lineseg * CENLINESEG;
Lineseg * CONSLINESEG;
Lineseg * ER ASLINESEG ;
Geom_edge2d *VISGEOM; 
Geom_edge2d *HIDGEOM; 
Geom_edge2d *CENGEOM; 
Geom_edge2d *CONSGEOM; 
Geom_edge2d *ERASGEOM;
Edge2d *VISEDGE2D;
Edge2d »HIDEDGE2D;
Edge2d *CENEDGE2D;
Edge2d * CONSEDGE2D ;
Edge2d *ERASEDGE2D;
Termpoint * VISTERMPOINT ;
Termpoint * HIDTERMPOINT ;
Termpoint * CENTERMPOINT ;
Termpoint * CONSTERMPOINT;
Termpoint * ER ASTERMPOINT;
Vert2d *VISVERT2D;
Vert2d *HIDVERT2D;
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Vert2d
Vert2d
Vert2d
int
int
int
r ..........
/*

*/

*CENVERT2D;
* CONS VERT2D;
* ER AS VERT2D; 
NUMVISEDGE; 
NUMHIDEDGE; 
NUMCENEDGE;

FILExxxx.two VARIABLES

Geom_edge2d *SOLVISGEOM; 
Geom_edge2d *SOLCONSGEOM; 
Geom_edge2d *SOLHIDGEOM; 
Geom_edge2d »SOLCENGEOM; 
Geom_edge2d »SOLGEOM;
Edge2d •SOLVISEDGE2D;
Edge2d *SOLCONSEDGE2D;
Edge2d * SOLHIDEDGE2D;
Edge2d *SOLCENEDGE2D;
Edge2d »SOLEDG2D;
Vert2d * SOLVIS VERT2D;
Vert2d *SOLHIDVERT2D;
Vert2d *SOLCONSVERT2D;
Vert2d *SOLCENVERT2D;
Vert2d *SOLVERT2D;
int NUMSOLVERTS;
int NUMSOLEDGES;
int NUMVISEDGE;
int NUMVISVERT;
int NUMCONSEDGES;
int NUMCONSVERTS;
r ............... ....................................................7
/*

*/

Loop3d

FILE xxxx.thr VARI/

*LOOPLIST;
Face3d *FACELIST;
Edge3d *EDGELIST;
Ring3d * RINGLIST;
Vert3d * VERTUST;
int NUM LOOP;
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int NUM FACE;
int N U M ED G E;
int NUM VERT;
int N U M RIN G ;
int NUM HOLES;
r ............ •........................................................ V
r

VARIABLES FOR PROC3D.C
7
int *PROCEDGES;
int *PROC VERTS;
int * PROCCON SEDGE;
int * PROCCON S VERT;
float REFPOINT[4];
1*............ .........................................................V
r

VARIABLES FOR PROC2D.C
*i

float MINDIST = 100.0;
float MEANX, MEANY;
float STRAIGHTTOLDEG = 15.0;
float STRAIGHTS LOPE;
int SAMPLE;
int CONTINUITY;
int TOLDIST = 20;
int LINE TYPE;
r ............ ........................................................ 7
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MEMORY ALLOCATION TO VECTORS AND MATRICES

(From Press et al. [86])

r ............................................ v
r
Allocates a float vector with range ’nl’ to ’nh’
7
float *vector(nl,nh) 
int nl,nh;

{
float *v;
int success = 0;
while (success = = 0)
{

v = (float *) malloc((unsigned)(nh-nl + l)*sizeof(float)); 
success = 1; 
if (!v) success = 0;

}
return v-nl;

}
r ........................................ */
r

Allocates an int vector with range ’nl’ to ’nh’
7
int *ivector(nl,nh) 
int nl, nh;

{
int *v;
int success = 0; 
while (success = = 0)

{
v = (int *) malloc((unsigned)(nh-nl + l)*sizeof(int)); 
success = 1; 
if (!v) success =0;

}
return v-nl;

}
/* -............................................................. V
/*
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Allocates a double vector with range ’nl’ to ’nh’
7
double *dvector(nl,nh) 
int nl,nh;

{
double *v; 
int success = 0; 
while (success = = 0)
{

v = (double *) malloc((unsigned)(nh-nl+ l)*sizeof(int)); 
success = 1; 
if(!v) success = 0;

}
return v-nl;

}
/*.................................................................... 7
/*
Allocates a float matrix with range ’nrl’ to ’nrh’ rows and ’ncl’ 
to ’nch’ columns 
7
float * *fmatrix(nrl,nrh,ncl,nch) 
int nrl,nrh,ncl,nch;

{
int i;
float **m; 
int success = 0;
/* Allocating pointers to rows 7
while(success = = 0)

{
m = (float **) malloc((unsigned) (nrh-nrl + l)*sizeof(float *)); 
success = 1; 
if (!m) success = 0;

}
m - = nrl;
/* Allocating rows and set pointers to them 7  
for (i = nrl; i < = nrh; i + + )

{
m[i] = (float *) malloc ((unsigned) (nch-ncl + l)*sizeof(float)); 
m[i] - = ncl;

}
return m;
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7
}
/*
/*
Allocates an int matrix with range ’nrl’ to ’nrh’ rows and ’ncl’ 
to ’nch’ columns
7
int **imatrix(nrl,nrh,ncl,nch) 
int nrl,nrh,ncl,nch;

{
int i;
int **m;
int success = 0;
/* Allocating pointers to rows 7
while(success = = 0)

{
m = (int **) malloc((unsigned) (nrh-nrl + l)*sizeof(int *)); 
success = 1; 
if (!m) success = 0;

}
m - = nrl;
/* Allocating rows and set pointers to them */ 
for (i = nrl; i < = nrh; i + + )

{
m[i] = (int *) malloc ((unsigned) (nch-ncl + l)*sizeof(int)); 
m[i] - = ncl;

}
return m;
}
I * __________________________________________________________________________ *j

/*
Allocates a double matrix with range ’mT to ’nrh’ rows and ’ncl’ 
to ’nch’ columns 
7
double **dmatrix(nrl,nrh,ncl,nch) 
int nrl,nrh,ncl,nch;

{
int i;
double **m; 
int success = 0;
/* Allocating pointers to rows V
while(success = = 0)

160



m  =  (double  **) m alloc((unsigned) (n rh-nrl +  l)*sizeo f(doub le  *)); 
success =  1; 
if (!m ) success =  0;

}
m  - =  nrl;
/* A llocating rows and set po in ters to  them  7  
fo r (i =  nrl; i <  =  nrh; i +  + )

{
m[i] =  (double *) m alloc ((unsigned) (nch-ncl +  l)*sizeo f(doub le)); 
m[i] - =  ncl;

}
re tu rn  m;

}
/*..................................................................7
/*
F rees  a float vector allocated  by vector()

7
void free_vector(v,nl,nh) 
float *v; 
in t nl, nh;

{
free  ((char *) (v +  nl));

}
/* ............................................................................ 7

/*
F rees an  in t vector a llocated  by ivector()

7
void free_ivector(v,nl,nh) 
in t *v; 
in t nl,nh;

{
free  ((char *) (v +  nl));

}
r ............................................................................ 7
/*
F rees a double  vector a llocated  by dvector()

7
void free_dvector(v ,n l,nh) 
in t *v; 
in t nl,nh;

{
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free  ((char *) (v +  nl));

}
/* ......................................................................... 7
/*
F rees  a float m atrix  allocated  w ith m atrix

7
void free_m atrix(m ,nrl,m h,ncl,nch)
float * *m;
in t nrl,nrh,ncl,nch;

{
in t i;
for (i =  n rh ; i =  nrl; i--)

{
free ((char *) (m[i] +  ncl));

}
free ((ch ar *) (m  +  nrl));

}
/*................................................................7
/*
F rees an  in t m atrix allocated  w ith im atrix

7
void free_im atrix(m ,nrl,nrh,ncl,nch) 
in t **m;
in t nrl,nrh,ncl,nch;

{
in t i;
for(i =  m h ; i =  nrl; i—)

{
free  ((char *) (m[i] + n c l));

}
free ((ch ar *)(m  +  nrl));

}
/* ......................................................................... 7
/*
F rees a double  m atrix allocated  w ith dm atrix

7
void free_dm atrix(m ,nrl,nrh ,ncl,nch)
double **m;
in t nrl,nrh,ncl,nch;

{

{
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in t i ;
for(i =  nrh; i =  nrl; i—)

{
free  ((char *) (m[i] + n c l));

}
free  ((char *) (m  +  nrl));

}
/*................................................................................- 7
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SCREEN MANAGEMENT FUNCTIONS

/* DOSSCRN.C function definitions*/
void setblue();
void setgreen();
void setwhite();
void setred();
void setorange();
void setcyan();
void putcursor (int row, int col); 
void clears(); 
void clearlineQ;
/* .................................................................................7
void setblue()

{
printf("\033[44m"); 
printf ("\033[37m"); 
printf("\033[2J");
}

j * _____________________________________________________________* j

void setgreen()

{
printf ("\033 [42m"); 
printf ("\033 [3 lm"); 
printf("\033[2J");

}
/*...................................................................... 7
void setred()

{
printf("\033[4 lm"); 
printf("\033[37m"); 
printf("\033[2J");

}
J * ______________________________________ % J
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void setwhite()

{
printf("\033 [47m"); 
printf("\033[30m"); 
printf("\033[2J");
}

/*.......................................................................7
void setorange()

{
printf("\033[43m"); 
printf("\033[37m"); 
printf("\033[2J");
}

/* ............................................................................ - 7
void setcyan()

{
printf("\033[46m"); 
printf("\033[3 lm"); 
printf("\33[2J");

}
/* .............................................................................. 7
void putcursor(int row,int col)

{
printf("%c[%d;%dH",27,row,col);
}

/* ...............................................................................7
void clears()

{
printf("\033[2J");
}

r ...................................... - ........................... 7
void clearline()

{
printf("\033[K");

}
/*............................................ - .............. 7
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MEMORY ALLOCATION FUNCTIONS

/* allocate.c
7
/* ............................................................................ 7
Lineseg *get_lineseg()

{
Lineseg *item;
item = (Lineseg *) malloc(sizeof(Lineseg)); 
if(item ! = NULL)

{
item -> nextlineseg = NULL;

}
else

{
printf("No memory to allocate"); 
return(O);
}

return(item);

}
/* ......................................................................... 7
Lineseg *back_of_lineseg(Lineseg *new, Lineseg *linesegs)
{
if(linesegs = = NULL)

{
linesegs = new; 
return(linesegs);

}
else
{
linesegs- > nextlineseg = back_of_lineseg(new, linesegs- > nextlineseg); 
return(linesegs);
}

}
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7/*......................................................................
Lineseg *kill_lineseg(Lineseg *linesegment)
{
char ‘ buffer;
buffer = (char *) linesegment; 
free(buffer); 
linesegment = NULL; 
return(linesegment);
}
/* .................................................................................... 7
Termpoint *get_termpoint()

{
Termpoint ‘item;
item = (Termpoint *) malloc(sizeof(Termpoint)); 
if (item !=  NULL)

{
item- > nexttermpoint = NULL; 
return(item);

}
else

{
printf("No memory to allocate"); 
return(O);
}

}
/* ...............................................................................7
Termpoint *back_of_termpoint(Termpoint ‘new, Termpoint ‘ termpoints)

{
if (termpoints = = NULL)

{
termpoints = new; 
return(termpoints);
}

else
{
termpoints- > nexttermpoint =

back_of_termpoint(new, termpoints- > nexttermpoint); 
return(termpoints);

}
}
/* ...............................................................................7
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Termpoint * kill_termpoin t(Termpoint * termnode)

{
char * buffer;
buffer = (char *) termnode-> linelist; 
free(buffer);
buffer = (char *) termnode; 
free (buffer); 
termnode = NULL; 
return(termnode);
}
/* 7
void show_termpoints(Termpoint *termpoints)
{
Termpoint * termpoint 1;
Intnode * linelist 1;
termpoint 1 = termpoints;
termpoints = termpoints-> nexttermpoint;
while (termpoints ! = NULL)

{
printf("The point is %3.2f%s%3.2f\n",

termpoints- > point[0]," ", termpoints- > point[l]); 
linelist 1 = termpoints-> linelist; 
linelistl = linelistl->nextintnode; 
printf("The lines emanate are \n"); 
while (linelistl! = NULL)

{
printf("%4d",linelist 1-a); 
linelistl = linelistl- > nextintnode;
}

printf("\n");
termpoints = termpoints-> nexttermpoint;
}

/* 7
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{
Intnode *item;
item = (Intnode *) malloc(sizeof(Intnode)); 
if (item ! = NULL)

{
item -> nextintnode = NULL; 
return(item);

}
else

{
printf("No memory to allocate"); 
return(O);
}

}

Intnode *get_intnode()

/*..................................................................7
Intnode *back_of_intnode(Intnode *new, Intnode *intlist)
{
if (intlist = = NULL)

{
intlist = new; 
return(intlist);
}

else
{
intlist- > nextintnode = 
back_of_intnode(new, intlist- > nextintnode); 

return(intlist);
}

}
/* ................................................................................... 7
Intnode *kill_intnode(Intnode *intnodetokill)
{
char * buffer;
buffer = (char *) intnodetokill; 
free(buffer); 
intnodetokill = NULL; 
return(intnodetokill);
}
/* ....................................................................................7
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{
Geom_edge2d *item;
item = (Geom_edge2d *) malloc(sizeof(Geom_edge2d)); 
if (item !=  NULL)

{
item -> nextgeom_edge2d = NULL; 
return(item);
}

else
{
printf("No memory to allocate"); 
return(O);

}
}
r .......................................................................7
Geom_edge2d *back_of_geom2d(Geom_edge2d *newgeom, Geom_edge2d 
*geomlist)
{
if (geomlist = = NULL)

{
geomlist = newgeom; 
return(geomlist);
}

else
{
geomlist- > nextgeom_edge2d = 

back_of_geom2d(newgeom, geomlist- > nextgeom_edge2d); 
return(geomlist);
}

}
r .......................................................... 7
Geom_edge2d *kill_geomedge2d(Geom_edge2d *geomnode)
{
char ^buffer;
buffer = (char *) geomnode->v; 
free(buffer);
buffer = (char *) geomnode; 
free(buffer); 
geomnode = NULL; 
return(geomnode);

Geom_edge2d *get_geom_edge2d()
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}
/*.................................................................... 7
show_geom_edge2d(Geom_edge2d *geomlist)
{
int i, j;
Geom_edge2d 'geomlistl;
geomlistl = geomlist;
geomlist = geomlist- > nextgeom_edge2d;
while (geomlist! = NULL)

{
j = 3 ;

if (geomlist- > type = = 3) j = 6;
{
for (i = 0; i; i 4- + ) printf ("%2.4f%s", 

geomlist- >v[i]," ");
printf("\n");

}
geomlist = geomlist-> nextgeom_edge2d;
}

geomlist = geomlistl;
}
/* .................................................................................... 7
Vert2d *get_vert2d()
{
Vert2d 'item;
item = (Vert2d *) malloc(sizeof(Vert2d)); 
if (item != NULL)

{
item -> nextvert2d = NULL; 
return(item);
}

else
{
printf("No memory to allocate"); 
return(O);
}

}
/* .......................................................................................7
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{
if (vert2dlist = = NULL)

{
vert2dlist = newvert2d; 
return(vert2dlist);

}
else

{
vert2dlist- > nextvert2d =

back_of_vert2d(newvert2d, vert2dlist- > nextvert2d); 
return(vert2dlist);
}

}
/*........................................................................... 7
Vert2d *kill_vert2d(Vert2d *vertnode)
{
char *buffer;
buffer = (char *) vertnode-> point; 
free(buffer);
buffer = (char *) vertnode-> linelist; 
free(buffer);
buffer = (char *) vertnode; 
free(buffer); 
vertnode = NULL; 
return(vertnode);
}
r ........................................................................... 7

void show_vert2d(Vert2d *vertlist)
{
Vert2d *vertlistl;
Intnode *intlistl;
vertlistl = vertlist;
vertlist = vertlist->nextvert2d;
while (vertlist! = NULL)

{
printf("The point is %4.2f%s%4.2f\n", vertlist- > point[0],

" ", vertlist- > pointf 1 ]);
intlistl = vertlist-> linelist; 
intlistl = intlistl- > nextintnode; 
printf("The lines emanating are \n");

Vert2d *back_of_vert2d(Vert2d *newvert2d, Vert2d *vert2dlist)

172



while (in tlistl! = NULL)

{
printf("%4d", intlistl- > a); 
intlistl = intlistl- >nextintnode;
}

printf("\n");
vertlist = vertlist- > nextvert2d;

}
vertlist = vertlist 1;
}
/* .................................................................................... 7
Edge2d *get_edge2d()
{
Edge2d *item;
item = (Edge2d *) malloc(sizeof(Edge2d)); 
if (item != NULL)

{
item -> nextedge2d = NULL; 
return(item);

}
else

{
printf("No memory to allocate"); 
return(O);
}

}
/*.........................................................................7
Edge2d *back_of_edge2d(Edge2d *newedge, Edge2d *edge2dlist)
{
if (edge2dlist = = NULL)

{
edge2dlist = newedge; 
return(edge2dlist);
}

else
{
edge2dlist- > nextedge2d =

back_of_edge2d(newedge, edge2dlist- > nextedge2d); 
return(edge2dlist);

}
}
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7/*....................................................................
Edge2d *kill_edge2d(Edge2d ‘edgenode)

{
char ‘buffer;
buffer = (char *) edgenode; 
free (buffer); 
edgenode = NULL; 
return(edgenode);
}
/* .................................................................................... 7
void show_edge2d(Edge2d ‘edgelist)

{
Edge2d ‘edgelistl;
edgelistl = edgelist;
edgelistl = edgelistl->nextedge2d;
while (edgelistl! = NULL)

{
printf("The end vertices of this edge are\n"); 
printf("%4d%4d\n", edgelistl- > vert 1, edgelistl- >vert2); 
printf("The edge type is %d\n", edgelistl- > edgetype); 
edgelistl = edgelistl->nextedge2d;
}

}
/* ................................................................................. 7
Vert3d *get_vert3d()
{
Vert3d ‘item;
item = ((Vert3d *) malloc (sizeof (Vert3d)));
if (item ! = NULL) return (item);
else

{
printf("No memory to allocate\n"); 
return(O);
}

}
I*___________________________________ *I
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{
if (vertlist = = NULL)

{
vertlist = newvert; 
return(vertlist);
}

else

{
vertlist-> nextvert3d = back_of_vert3d(newvert,

vertlist- > nextvert3d);
return(vertlist);
}

}
/*.........................................................................7
Vert3d *kill_vert3d(Vert3d ‘vertnode)

{
char ‘buffer;
buffer = (char *) vertnode- > linelist; 
free(buffer);
buffer = (char *) vertnode; 
free (buffer); 
vertnode = NULL; 
return(vertnode);

}
I*_________________________________________ t  j

Loop3d *get_loop3d()

{
Loop3d ‘item;
item = ((Loop3d *) malloc (sizeof(Loop3d))); 
if (item ! = NULL)

{
item -> nextloop3d = NULL; 
return(item);

}
else

{
printf("No memory to allocate\n"); 
return(O);

Vert3d *back_of_vert3d(Vert3d *newvert, Vert3d ‘vertlist)

}
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7
}
r

Loop3d *back_of_loop3d(Loop3d *newloop, Loop3d *looplist)

{
if (looplist = = NULL)

{
looplist = newloop; 
return(looplist);
}

else

{
looplist- > nextloop3d = back_of_loop3d(newloop,

looplist- > nextloop3d);
return(looplist);
}

}
/* .......................................................................................7
Face3d *get_face3d()

{
Face3d *item;
item = (Face3d *) malloc(sizeof(Face3d)); 
if(item ! = NULL)

{
item -> nextface3d = NULL;
}

else
{
printf("No memory to allocate"); 
return(O);
}

return(item);

}
/* ......................................................................... 7
Face3d *back_of_face3d(Face3d *new, Face3d *facelist)

{
if(facelist = = NULL)

{

}
else

facelist =  new;
return(facelist);
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}
}
/*.........................................................................v
Face3d *kill_face3d(Face3d ‘facelist)
{
char ‘buffer;
buffer = (char *) facelist-> linelist; 
free(buffer);
buffer = (char *) facelist; 
free(buffer); 
facelist = NULL; 
return(facelist);
}
/*.........................................................................7
Ring3d *get_ring3d()
{
Ring3d ‘ item;
item = (Ring3d ‘ ) malloc(sizeof(Ring3d)); 
if (item !=  NULL)

{
item- > nextring3d = NULL; 
return(item);

}
else

{
printf("No memory to allocate"); 
return(O);
}

}
/*.................................................................... 7
Ring3d ‘back_of_ring3d(Ring3d ‘new, Ring3d ‘ ringlist)
{
if (ringlist = = NULL)

{

else

{
facelist- > nextface3d = back_of_face3d(new, facelist- >  nextface3d);
return(facelist);

ringlist = new;
return(ringlist);

}
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}
}
r .................................................................... v
Ring3d *kill_ringnode(Ring3d ‘ringnode)
{
char ‘buffer;
buffer = (char *) ringnode-> linelist; 
free(buffer);
buffer = (char *) ringnode; 
free (buffer); 
ringnode = NULL; 
return(ringnode);
}
/*.................................................................... 7
Edge3d *get_edge3d()

{
Edge3d ‘ item;
item = (Edge3d *) malloc(sizeof(Edge3d)); 
if (item ! = NULL)

{
item -> nextedge3d = NULL; 
return(item);

}
else

{
printf("No memory to allocate"); 
return(O);

}
}
I*____________________________________ *j

Edge3d *back_of_edge3d(Edge3d ‘newedge, Edge3d *edge3dlist)
{
if (edge3dlist = = NULL)

{

{
ringlist- >  nextring3d =

back_of_ring3d(new, ringlist- > nextring3d);
return(ringlist);

edge3dlist =  newedge;
return(edge3dlist);

}
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else

}
}
/* ................................................................................... 7
Edge3d *kill_edge3d(Edge3d *edgenode)
{
char *buffer;
buffer = (char *) edgenode; 
free(buffer); 
edgenode = NULL; 
return(edgenode);
}
r ........................................................................ 7

void show_edge3d(Edge3d *edgelist)
{
Edge3d *edgelistl;
edgelistl = edgelist;
edgelistl = edgelistl->nextedge3d;
while (edgelistl! = NULL)

{
printf("The end vertices of this edge are\n"); 
printf("%4d%4d\n", edgelistl->vertl, edgelistl->vert2); 
printf("The edge type is %d\n", edgelistl- > linetype); 
edgelistl = edgelistl->nextedge3d;

}
}
r ............................................................ 7

{
edge3dlist- > nextedge3d =

back_of_edge3d(newedge, edge3dlist- >nextedge3d);
return(edge3dlist);
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FILE HANDLING FUNCTIONS

/* filehand.c
/* ................................................................................. 7
void copy_string (stringi, string2) 

char * stringi; 
char *string2;

{
while (*string2 + + = * string 1+ + )

5
}

/* ................................................................................. 7
/* append_string (stringl, string2)
*

* This function appends the contents of stringl to string2.
7
void append_string (stringl, string2) 

char * string 1; 
char *string2;
{

while (*string2) 
string2 + + ;
while (*string2++ = * string l+ + )

}
/* ................................................................................. 7
float *read_coord(char line[])

{
int i, j;
char c, xcoord[6], ycoord[6]; 
float v[2]; 
i = 0;
c = line[i]; 
while (c ! = 7 )

{
xcoord[i] = c; 
i+  + ; 
c = line[i];
}

xcoord[i] = ’\0 ’;
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i+  + ; 
j = 0;
c = line[i]; 
while (c ! = ’\0 ’)

{
ycoord[j] = c;
i+  + ; 
j + + ;
c = line[i];
}

ycoord[j] = ’\0 ’; 
v[0] = atof(xcoord); 
v[l] = atof(ycoord); 
return(v);

}
/*.................................................................... 7
void read_point_file()
{
int i, j;
char c, line[12], line 1 [6], count, xcoord[6], ycoord[6]; 
char filename[13];
FILE ‘notes; 
float *v; 
v = vector(0,l);
copy_stnng(FILENAME, filename); 
append_string(".pnt", filename); 
notes = fopen(filename, "r"); 
fgets(line, 12, notes); 
v = read_coord(line);
THREEX = v[0];
THREE Y = v[l]; 
fgets (line, 12, notes);
NUM_VISPOINTS = atoi(line); 
fgets(line, 12, notes);
NUM HIDPOINTS = atoi(line); 
fgets(line, 12, notes);
NUMCENTPOINTS = atoi(line); 
fgets(line, 12, notes);
N U M C O N  SPOINTS = atoi(line); 
fgets(line, 12, notes);
NUMERASPOINTS = atoi(line);
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VISPOINTS = fmatrix(0,(NUM_VISPOINTS-1), 0,1); 
for (i = 0; i < NUM_ VISPOINTS; i + + )

{
fgets(line, 12, notes); 
v = read_coord(line);
VISPOINTS [i][0] =v[0];
VISPOINTS[i][l] =v[l];
}

HIDPOINTS = fmatrix(0,(NUMHIDPOINTS-1), 0,1); 
for (i = 0; i < NUM HIDPOINTS; i + + )

{
fgets(line, 12, notes); 
v = read_coord(line);
HIDPOINTS [i] [0] = v[0];
HIDPOINTS[i][l] = v[l];
}

CENTPOINTS = fmatrix(0,(NUM_CENTPOINTS-l),0,l); 
for (i = 0; i < NUM CENTPOINTS; i + + )

{
fgets(line, 12, notes); 
v = read_coord(line);
CENTPOINTS [i] [0] = v[0];
CENTPOINTS[i] [1] = v[l];
}

CONSPOINTS = fmatrix(0, (NUM_CONSPOINTS-l), 0,1); 
for (i = 0; i < NUM CONSPOINTS; i + + ) 

fgets(line, 12, notes); 
v = read_coord(line);
CONSPOINTS[i] [0] = v[0]; 
CONSPOINTS[i][l] = v[l];
}

ERASPOINTS = fmatrix(0, (NUM_ERASPOINTS-l), 0,1); 
for (i = 0; i < NUM_ERASPOINTS; i + + )

{
fgets(line, 12, notes); 
v = read_coord(line);
ERASPOINTS[i][0] = v[0]; 
ERASPOINTS[i][l] = v[l];
}

}
/*
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void write_file_onel(Lineseg * linesegs, Geom_edge2d *geomlist,
Edge2d *edgelist, Termpoint *termpoints,
Vert2d *vertlist, FILE *notes)

{
Lineseg *linesegl;
Geom_edge2d *geomlistl;
Intnode *linelistl;
Edge2d *edgelistl;
Termpoint *termpointsl;
Vert2d *vertlistl; 
char filename[13]; 
int i = 0,j = 0; 
char str =
linesegl = linesegs- > nextlineseg; 
vertlistl = vertlist- > nextvert2d; 
while (linesegl! = NULL)

{
i+  + ;
linesegl = linesegl-> nextlineseg;
}

while (vertlistl! = NULL)
{
j+  + ;
vertlistl = vertlistl-> nextvert2d;
}

fprintf(notes,"%d\n",i); 
fprintf(notes,"%d\n",j); 
linesegl = linesegs- > nextlineseg; 
vertlistl = vertlist- > nextvert2d; 
while (linesegl! = NULL)

{
fprintf(notes,"%d%s%d%s%d%s%4.2f%s%4.2f%s%4.2f%s%4.2f\n", 

linesegl- > num_points, str, 
linesegl- > start_point, str, 
linesegl-> type, str,
linesegl- > stpt[0], str, linesegl- > stpt[l],str, 
linesegl- > finpt[0], str, linesegl- > finpt[l]); 

linesegl = linesegl- > nextlineseg;
}

linesegl = linesegs- > nextlineseg; 
while (geom listl! = NULL)
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if (linesegl->type = = 1)
{
fprintf(notes, "%4.2f%s%4.2f%s%4.2f%s%4.2f%s%4,2f\n", 

geomlistl- > v[0], str, 
geomlistl- > v[l], str, 
geomlistl- >v[2], str, 
geomlistl- > meanx, str, 
geomlistl- > meany); 

linesegl = linesegl- > nextlineseg; 
geomlistl = geomlistl- > nextgeom_edge2d;
}

else
{
fprintf(notes, "%4.2f%s%4.2f%s%f%s%f%s%f%s 

%f %s %f %s %f\n", 
geomlistl- >v[0],str, 
geomlistl- >v[l],str, 
geomlistl- >v[2],str, 
geomlistl- >v[3],str, 
geomlistl- >v[4],str, 
geomlistl- >v[5],str, 
geomlistl- > meanx,str, 
geomlistl - > meany); 
linesegl = linesegl- > nextlineseg; 
geomlistl = geomlistl- > nextgeom_edge2d;

}
}

edgelistl = edgelist-> nextedge2d; 
while (edgelistl! = NULL)

{
fprintf(notes," %4.2f %s%4.2f %s %4.2f\n", 

edgelistl->vertl, str, 
edgelistl- >vert2, str, 
edgelistl- > edgetype);

edgelistl = edgelistl->nextedge2d;
}

termpointsl = termpoints- > nexttermpoint; 
while (term pointsl! = NULL)

{
fprintf( notes,"%4.2f%s%4.2f%s", termpointsl->point[0], str,

{
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term pointsl->point[l], str); 
linelistl = termpointsl- > linelist- > nextintnode; 
while (linelistl! = NULL)

{
fprintf(notes,"%d%s",linelistl- > a, str); 
linelistl = linelistl-> nextintnode;
}

fprintf(notes,"\n");
termpointsl = termpointsl- > nexttermpoint;
}

vertlistl = vertlist- > nextvert2d; 
while (vertlistl! = NULL)

{
fprintf(notes,"%4.2f%s%4.2f%s", vertlistl- >point[0], 

vertlistl- > point[l]);
linelistl = vertlistl-> linelist-> nextintnode; 
while (linelistl! = NULL)

{
fprintf(notes,"%d%s", linelistl-> a, str); 
linelistl = linelistl-> nextintnode;
}

fprintf(notes,"\n");
vertlistl = vertlistl->nextvert2d;
}

}
/*........................................................................7
void write_file_one()

{
FILE *notes; 
char filename [13]; 
char str = ’ ’;
copy_string(FILENAME, filename); 
append_string(".one",filename); 
notes = fopen(filename,"w");
fprintf(notes,"%d%s%d\n", THREEX, str, THREEY);
fprintf(notes,"%d\n",NUM_VISPOINTS);
fprintf(notes,"%d\n",NUM_HIDPOINTS);
fprintf(notes,"%d\n",NUM_CENTPOINTS);
fprintf (notes,"%d\n",NUM_CON SPOINTS);
fprintf(notes,"%d\n",NUM_ERASPOINTS);
write_file_onel(VISLINESEG, VISGEOM, VISEDGE2D, VISTERMPOINT,
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VISVERT2D,notes);
if (NUM HIDPOINTS 0)
write_file_one 1 (HIDLINESEG, HIDGEOM, HIDEDGE2D, HIDTERMPOINT,

HIDVERT2D, notes);
if (NUMCENTPOINTS 0)
write_file_one 1 (CENLINESEG, CENGEOM, CENEDGE2D, 
CENTERMPOINT, CENVERT2D, notes); 
if (NUMCONSPOINTS 0)
write_file_one 1 (CONSLINESEG, CONSGEOM, CONSEDGE2D, CON- 
STERMPOINT, CONSVERT2D, notes); 
if (NUM_ERASPOINTS 0)
write file one 1 (ERASLINESEG, ERASGEOM, ERASEDGE2D,
ERASTERMPOINT, ERASVERT2D, notes);
fclose(notes);
}
/*........................................................................7
void write_file_twol( Geom_edge2d *geomlist, Edge2d *edgelist,

Vert2d *vertlist, FILE * notes)
{
Geom_edge2d *geomlistl;
Intnode *linelistl;
Edge2d *edgelistl;
Vert2d *vertlistl; 
int i = 0,j = 0; 
char str = ” ;
edgelistl = edgelist- > nextedge2d; 
vertlistl = vertlist- > nextvert2d; 
while (edgelistl ! = NULL)

{
i+  + ;
edgelistl = edgelistl- >nextedge2d;

}
while (vertlistl! = NULL)

{
j+  + ;
vertlistl = vertlistl->nextvert2d;
}

fprintf( notes,"%d\n",i); 
fprintf(notes,"%d\n",j); 
edgelistl = edgelist- > nextedge2d; 
vertlistl = vertlist- > nextvert2d;
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geomlistl = geomlist- > nextgeom_edge2d; 
while (edgelistl! = NULL)

{
fprintf(notes,"%d%s%d%s%d\n", 

edgelistl- >vertl,str, 
edgelistl- >vert2,str, 
edgelistl- > edgetype); 

edgelistl = edgelistl-> nextedge2d;

}
edgelistl = edgelist- > nextedge2d; 
while (geom listl! = NULL)

{
if (abs(edgelistl- > edgetype) 5)

{
fprintf(notes, "%f%s%f%s%f%s%f%s%f\n", 

geomlistl- >v[0], str, 
geomlistl->v[l], str, 
geomlistl->v[2], str, 
geomlistl- > meanx, str, 
geomlistl- > meany); 

edgelistl = edgelistl- > nextedge2d; 
geomlistl = geomlistl- > nextgeom_edge2d;

}
else

{
fprintf(notes, "%f%s%f%s%f%s%f%s%f%s%f
%s%f%s%f\n",
geomlistl- > v[0], str,
geomlistl- >v[l],str,
geomlistl- > v[2],str,
geomlistl- >v[3],str,
geomlistl- >v[4],str,
geomlistl- >v[5],str,
geomlistl- > meanx,str,
geomlistl- > meany);
edgelistl = edgelistl- > nextedge2d;
geomlistl = geomlistl- > nextgeom_edge2d;
}

}
vertlistl = vertlist->nextvert2d; 
while (vertlistl! = NULL)
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fprintf(notes,"%f%s%f%s", vertlistl->point[0], str, 
vertlistl- > point[l]);

linelistl = vertlistl- > linelist-> nextintnode; 
while (linelistl! = NULL)

{
fprintf( notes,"%d%s", linelistl-> a, str); 
linelistl = linelistl-> nextintnode;
}

fprintf(notes,''\n");
vertlistl = vertlistl->nextvert2d;
}

}
/*........................................................................7
void write_file_two()
{
FILE * notes; 
char filename[13]; 
char str = ” ;
c°py_string(FILENAME, filename); 
append_string(". two", filename); 
notes = fopen(filename,"w");
fprintf(notes,"%d%s%d\n", THREEX, str, THREEY);
fprintf( notes," %d\n",NUM_VISPOINTS);
fprintf(notes,"%d\n",NUM_HIDPOINTS);
fprintf(notes,"%d\n",NUM_CENTPOINTS);
fprintf(notes,"%d\n",NUM_CONSPOINTS);
fprintf(notes,"%d\n",NUM_ERASPOINTS);
write file two 1 (SOLVISGEOM, SOLVISEDGE2D, SOLVISVERT2D, notes); 
if (NUM HIDPOINTS 0)
write_file_twol(SOLHIDGEOM, SOLHIDEDGE2D, SOLHIDVERT2D, notes); 
if (NUM CENTPOINTS 0)
write file two 1 (SOLCENGEOM, SOLCENEDGE2D, SOLCEN- 
VERT2D,notes); 
if (NUM CONSPOINTS 0)
write file two 1 (SOLCONSGEOM, SOLCONSEDGE2D, SOLCONSVERT2D, 
notes);
write file two 1 (SOLGEOM, SOLEDG2D, SOLVERT2D, notes); 
fclose(notes);
}

{

/*............................................................... 7
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void write_file_thr( Loop3d *looplist, Face3d *facelist,
Edge3d *edgelist, Ring3d *ringlist, 
Vert3d *vertlist)

{
Intnode *linelistl;
Edge3d * edgelistl;
Loop3d * looplistl;
Face3d ‘facelistl;
Ring3d ‘ ringlistl;
Vert3d ‘vertlistl;
char filename [13], str =
int i = 0,j = 0, k = 0,1 = 0, m = -1;
FILE * notes;
copy_string(FILENAME,filename); 
append_string(".thr", filename); 
notes = fopen(filename, "w"); 
edgelistl = edgelist- > nextedge3d; 
vertlistl = vertlist- > nextvert3d; 
facelistl = facelist-> nextface3d; 
looplistl = looplist; 
ringlistl = ringlist; 
while (edgelistl! = NULL)

{
i+  + ;
edgelistl = edgelistl-> nextedge3d;
}

while (vertlistl ! = NULL)
{
j + + ;
vertlistl = vertlistl->nextvert3d;

}
while (facelistl! = NULL)

{
k+  + ;
facelistl = facelistl->nextface3d;
}

while (looplistl! = NULL)
{
looplistl = looplist-> nextloop3d;
1 + +;
}
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while (ringlistl! = NULL)
{
ringlistl = ringlistl->nextring3d; 
m + + ;

}
if (m = = -1) m = 0; 
fprintf(notes,"%d\n",i); 
fprintf(notes,"%d\n",j); 
fprintf(notes, "%d\n",k); 
fprintf(notes,"%d\n",l); 
fprintf(notes,"%d\n",m); 
edgelistl = edgelist- > nextedge3d; 
vertlistl = vertlist- > nextvert3d; 
while (edgelistl! = NULL)

{
fprintf(notes,"%d%s%d%s%d",

edgelistl- > vert l,str, 
edgelistl- >vert2,str, 
edgelistl- > linetype); 

if (edgelistl->linetype < 4)

{
fprintf(notes,"%s%f%s%f%s%f',str,edgelistl- > centre[0], 
edgelistl- > centre[l],str, edgelistl- > centre[2]);
}

fprintf (notes,"\n");
edgelistl = edgelistl->nextedge3d;
}

edgelistl = edgelist-> nextedge3d; 
while (vertlistl! = NULL)

{
fprintf(notes,1"%f%s%f%s%f%s", vertlistl- >point[0], str,

vertlistl- > point[l],str, 
vertlistl- > point[2],str); 

linelistl = vertlistl->linelist->nextintnode; 
while (linelistl ! = NULL)

{
fprintf(notes,"%d%s", linelistl- > a, str); 
linelistl = linelistl- > nextintnode;
}

fprintf( notes,"\n");
vertlistl = vertlistl->nextvert3d;
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}
while(facelistl! = NULL)

{
linelistl = facelistl->linelist->nextintnode; 

while (linelistl! = NULL)
{
fprintf(notes, "%d%s", linelistl-> a, str); 
linelistl = linelistl- > nextintnode;
}

fprintf( notes,"\n");
facelistl = facelistl->nextface3d;
}

while(looplistl ! = NULL)
{
linelistl = looplistl->linelist-> nextintnode; 
while (linelistl! = NULL)

{
fprintf(notes, "%d%s", linelistl-> a, str); 
linelistl = linelistl-> nextintnode;
}

fprintf(notes,"\n");
looplistl = looplistl- > nextloop3d;
}

while(ringlistl! = NULL)
{
linelistl = looplistl- > linelist- > nextintnode; 
while (linelistl! = NULL)

{
fprintf(notes, "%d%s", linelistl- > a, str); 
linelistl = linelistl-> nextintnode;
}

fprintf(notes, "%\n");
looplistl = looplistl->nextloop3d;
}

fclose(notes);
}
/* .....................................................................................*/
Lineseg *read_lineseg(char line[])

{
Lineseg *new; 
char c, str[6];
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int i = 0,j,k = 0; 
new = get_lineseg(); 
c = line[k]; 
for (j = 0; j; j + + )

{
while (c ! = ” )

{
str[i] = c;
i+  + ;
c = line[k]; 
k +  + ;

}
strp] = ’\0 ’;
if O' = = 0) new- > num_points = atoi(str); 
if 0 = = 1) new- > start_point = atoi(str); 
if 0 = = 2) new-> type = atoi(str); 
if (j = = 3) new- > stpt[0] = atof(str); 
if (j = = 4) new- >stpt[l] = atof(str); 
if O' = = 5) new-> finpt[0] = atof(str); 
if (j = = 6) new->finpt[l] = atof(str); 
i = 0;
}

return(new);
}
r .......................................................................7
Geom_edge2d *read_geomedge(char line[], int type)
{
Geom_edge2d *new; 
char c, str[6];
int i = 0,j,k = 0, num_entry; 
num_entry = 6; 
if(abs(type) 4) num entry = 9; 
new = get_geom_edge2d(); 
c = line[k];
for 0 = 0; j < num_entry; j + + )

{
while (c ! = ” )

{
str[i] = c; 
i+  + ; 
c = line[k];
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k+  + ;

}

if 0

}

str[i] = ’\0 ’; 
if(abs(type) 5)

{
if (j = = 0)new->v[0] = atof(str); 
if (j = = l)new -> v[l] = atof(str); 
if (j = = 2)new->v[2] = atof(str);

= 3) new- > type = atoi(str);
if (j = = 4) new- > meanx = atof(str); 
if (j = = 5) new->meany = atof(str); 
i = 0;
}
else

{
if (j = = 0) new->v[0] = atof(str); 
if (j = = l)new -> v[l] = atof(str); 
if (j = = 2)new->v[2] = atof(str); 
if (j = = 3)new->v[3] = atof(str); 
if (j = = 4)new->v[4] = atof(str); 
if (j = = 5)new->v[5] = atof(str); 
if (j = = 6) new-> type = atoi(str); 
if (j = = 7) new-> meanx = atof(str); 
if (j = = 8) new->meany = atof(str);

}
return(new);

}
/* 7
Intnode *read_linelist(char line[], int stpt)
{
Intnode *linelist, *new;
int i, j, k;
char str[6], c;
linelist = get_intnode();
i = stpt-1;
k = 0;
c = line[i]; 
while (c ! = ’\0 ’)

{
while (c ! = ’ ’)
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{
str[k] = c; 
k+  + ;

i+  + ;
c = linefi];

}
str[i] = ’\0 ’;
new = get_intnode();
new ->a = atoi(str);
linelist = back_of_intnode(new, linelist); 
i+  + ; 
c = line[i];

}
return(linelist);

}
! *__________________________________________ *!

Termpoint *read_termpoint(char line[])

{
Termpoint *new;
Intnode * linelist;
int i = 0,j,k = 0;
char c, str[6];
new = get_termpoint();
c = linefk];
for O' = 0; j; j + +)

{
while (c ! = ’ ’)

{
str[i] = c;
i+  +;
k+  + ; 
c = line[k];

}
str[i] = ’\0 ’;
if (j = = 0) new-> point[0] = atof(str); 
if (j = = 1) new->point[l] = atof(str);
i = 0;
k + + ;

}
linelist = read_linelist(line, k-1); 
new-> linelist = linelist;
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return(new);
}
j%________________________________________ %j

Edge2d *read_edge2d(char line[])
{
Edge2d *new; 
char c, str[6]; 
int i = 0, j, k = 0; 
for (j = 0; j; j + + )

{
while(c ! = ’ ’)

{
str[i] = c; 
i+  +; 
k + + j 
c = line[k];

}
str[i] = ’\0 ’;
if (j = = 0)new ->vertl = atoi(str); 
if (j = = 1) new->vert2 = atoi(str); 
if (j = = 2) new- > edgetype = atoi(str);
i = 0;
k + + 1

}
return(new);

}
r .............................................. v
Vert2d *read_vertex2d(char line[])
{
Vert2d *new;
Intnode *linelist; 
int i = 0,j,k = 0; 
char c, str[6]; 
new = get_vert2d(); 
c = line[k]; 
for(j = 0; j ; j  + + )

{
while (c ! = ” )

{
str[i] = c; 
i+  + ;
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k + + ; 
c = line[k];

}
str[i] = ’\0 ’;
if (j = = 0) new- > point[0] = atof(str); 
if (j = = 1) new-> point[1] = atof(str);
i = 0;
k + + ;

}
linelist = read_linelist(line, k-1); 
new-> linelist = linelist; 
return(new);

}
r ...................................................................... V
void initialise_nodes()

{
VISLINESEG = get_lineseg();
HIDLINESEG = get_lineseg();
CENLINESEG = get_lineseg();
CONSLINESEG = get_lineseg();
ERASLINESEG = get_lineseg();
VISGEOM = get_geom_edge2d();
HIDGEOM = get_geom_edge2d();
CENGEOM = get_geom_edge2d();
CONSGEOM = get_geom_edge2d();
ERASGEOM = get_geom_edge2d();
VISEDGE2D = get_edge2d();
HIDEDGE2D = get_edge2d();
CENEDGE2D = get_edge2d();
CONSEDGE2D = get_edge2d();
ERASEDGE2D = get_edge2d();
VISTERMPOINT = get_termpoint(); 
HIDTERMPOINT = get_termpoint(); 
CENTERMPOINT = get_termpoint(); 
CONSTERMPOINT = get_termpoint(); 
ERASTERMPOINT = get_termpoint(); 
VISVERT2D = get_vert2d();
HIDVERT2D = get_vert2d();
CENVERT2D = get_vert2d();
CONSVERT2D = get_vert2d();
ERASVERT2D = get_vert2d();
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7
}
/*...............................
void read_file_one()
{
int i, j, type;
char c, line[63], line 1 [6], count, xcoord[6], ycoord[6]; 
char filename[13]; 
int numedge, numvert;
Geom_edge2d *newgeom;
Lineseg *newlineseg, *linesegl;
Vert2d *newvert;
Edge2d *newedge;
Termpoint *newtermpoint;
FILE *notes; 
float *v;
initialise_nodes(); 
v = vector(0,l);
copy_string(FILENAME, filename); 
append_string(".one", filename); 
notes = fopen(filename, "r"); 
fgets(line, 63, notes); 
v = read_coord(line);
THREEX = v[0];
THREE Y = v[l]; 
fgets (line, 63, notes);
NUMVISPOINTS = atoi(line); 
fgets(line, 63, notes);
NUM HIDPOINTS = atoi(line); 
fgets(line, 63, notes);
NUMCENTPOINTS = atoi(line); 
fgets(line, 63, notes);
NUMCONSPOINTS = atoi(line); 
fgets(line, 63, notes);
NUMERASPOINTS = atoi(line);
fgets(line,63,notes);
numedge = atoi(line);
fgets(line,63,notes);
numvert = atoi(line);
for (i = 0; i < numedge; i + + )

{
fgets(line, 63, notes);
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}
linesegl = VISLINESEG-> nextlineseg; 
for (i = 0; i < numedge; i + + )

{
fgets(line, 63, notes);
type = linesegl-> type;
if(type ! = 1) type = 5;
linesegl = linesegl-> nextlineseg;
newgeom = read_geomedge(line, type);
VISGEOM = back_of_geom2d(newgeom, VISGEOM);
}

for (i = 0; i < numedge; i + + )
{
fgets(line, 63, notes); 
newedge = read_edge2d(line);
VISEDGE2D = back_of_edge2d(newedge, VISEDGE2D);

}
for (i = 0; i < numverts; i + + )

{
fgets(line, 63, notes); 
newtermpoint = read_termpoint(line);
VISTERMPOINT = back_of_termpoint(newtermpoint, 
VISTERMPOINT);

}
for (i = 0; i < numverts; i + + )

{
fgets(line, 63, notes); 
newvert = read_vertex2d(line);
VISVERT2D = back_of_vert2d(newvert, VISVERT2D);
}

if (NUM HIDPOINTS > 0)
{

fgets(line,63,notes); 
numedge = atoi(line); 
fgets(line,63,notes); 
numvert = atoi(line); 
for (i = 0; i < numedge; i + + )

{
fgets(line, 63, notes);

newlineseg = read_lineseg(line);
VISLINESEG = back_of_lineseg(newlineseg, VISLINESEG);
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}
linesegl = HIDLINESEG-> nextlineseg; 
for (i = 0; i < numedge; i + + )

{
fgets(line, 63, notes);
type = linesegl-> type;
if(type ! = 1) type = 5;
linesegl = linesegl-> nextlineseg;
newgeom = read_geomedge(line, type);
HIDGEOM = back_of_geom2d(newgeom, HIDGEOM);
}

for (i = 0; i < numedge; i + + )

{
fgets(line, 63, notes); 
newedge = read_edge2d(line);
HIDEDGE2D = back_of_edge2d(newedge, HIDEDGE2D);
}

for (i = 0; i < numvert; i + + )
{
fgets(line, 63, notes); 
newtermpoint = readtermpoint(line);
HIDTERMPOINT = back_of_termpoint(newtermpoint, 
HIDTERMPOINT);
}

for (i = 0; i < numvert; i + + )
{
fgets(line, 63, notes); 
newvert = read_vertex2d(line);
HIDVERT2D = back_of_vert2d(newvert, HIDVERT2D);

}
}

if(NUM_CENTPOINTS > 0)
{

fgets(line,63,notes); 
numedge = atoi(line); 
fgets(line,63,notes); 
numvert = atoi(line); 
for (i = 0; i < numedge; i + + )

newlineseg = read_lineseg(line);
HIDLINESEG = back_of_lineseg(newlineseg, HIDLINESEG);

{
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}
linesegl = CENLINESEG-> nextlineseg; 
for (i = 0; i < numedge; i + + )

{
fgets(line, 63, notes);
type = linesegl-> type;
if(type ! = 1) type = 5;
linesegl = linesegl-> nextlineseg;
newgeom = read_geomedge(line, type);
CENGEOM = back_of_geom2d(newgeom, CENGEOM);
}

for (i = 0; i < numedge; i + + )
{
fgets(line, 63, notes); 
newedge = read_edge2d(line);
CENEDGE2D = back_of_edge2d(newedge, CENEDGE2D);
}

for (i = 0; i < numvert; i + + )

{
fgets(line, 63, notes); 
newtermpoint = readtermpoint(line);
CENTERMPOINT = back_of_termpoint(newtermpoint, CENTERMPOIN
}

for (i = 0; i < numvert; i + + )
{
fgets(line, 63, notes); 
newvert = read_vertex2d(line);
CENVERT2D = back_of_vert2d(newvert, CENVERT2D);

}
}

if (NUM CONSPOINTS 0)
{

fgets(line,63,notes); 
numedge = atoi(line); 
fgets(line,63,notes); 
numvert = atoi(line); 
for (i = 0; i < numedge; i + + )

fgets(line, 63, notes);
newlineseg = read_lineseg(line);
CENLINESEG = back_of_lineseg(newlineseg, CENLINESEG);

{
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}
linesegl = CONSLINESEG- > nextlineseg; 
for (i = 0; i < numedge; i + + )

{
fgets(line, 63, notes);
type = linesegl-> type;
if(type ! = 1) type = 5;
linesegl = linesegl-> nextlineseg;
newgeom = read_geomedge(line, type);
CONSGEOM = back_of_geom2d(newgeom, CONSGEOM);
}

for (i = 0; i < numedge; i + + )
{
fgets(line, 63, notes); 
newedge = read_edge2d(line);
CONSEDGE2D = back_of_edge2d(newedge, CONSEDGE2D) ;
}

for (i = 0; i < numvert; i + + )
{
fgets(line, 63, notes); 
newtermpoint = read_termpoint(line);
CONSTERMPOINT = back_of_termpoint(newtermpoint, CONSTERMPO
}

for (i = 0; i < numvert; i + + )

{
fgets(line, 63, notes); 
newvert = read_vertex2d(line);
CONSVERT2D = back_of_vert2d(newvert, CONSVERT2D);

}
}

if (NUM ERASPOINTS > 0)
{

fgets(line,63,notes); 
numedge = atoi(line); 
fgets(line,63,notes); 
numvert = atoi(line); 
for (i = 0; i < numedge; i + + )

fgets(line, 63, notes);
newlineseg = read_lineseg(line);
CONSLINESEG = back_of_lineseg(newlineseg, CONSLINESEG);

{
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}
linesegl = ERASLINESEG-> nextlineseg; 
for (i = 0; i < numedge; i + + )

{
fgets(line, 63, notes);
type = linesegl-> type;
if(type ! = 1) type = 5;
linesegl = linesegl-> nextlineseg;
newgeom = read_geomedge(line, type);
ERASGEOM = back_of_geom2d(newgeom, ERASGEOM);
}

for (i = 0; i < numedge; i + + )
{
fgets(line, 63, notes); 
newedge = read_edge2d(line);
ERASEDGE2D = back_of_edge2d(newedge,ERASEDGE2D);

}
for (i = 0; i < numvert; i + + )

{
fgets(line, 63, notes); 
newtermpoint = read_termpoint(line);
ERASTERMPOINT = back_of_termpoint(newtermpoint, ERASTERMPO
}

for (i = 0; i < numvert; i + + )
{
fgets(line, 63, notes); 
newvert = read_vertex2d(line);
ERASVERT2D = back_of_vert2d(newvert, ERASVERT2D);
}
}

}
/*........................................................................... 7
void initialise_solidnodes()
{
SOLVISGEOM = get_geom_edge2d();
SOLHIDGEOM = get_geom_edge2d();
SOLCONSGEOM = get_geom_edge2d();
SOLVISEDGE2D = get_edge2d();

fgets(line, 63, notes);
newlineseg = readlineseg(line);
ERASLINESEG = back_of_lineseg(newlineseg, ERASLINESEG);
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SOLHIDEDGE2D = get_edge2d();
SOLCON SEDGE2D = get_edge2d(); 
SOLVISVERT2D = get_vert2d(); 
SOLHIDVERT2D = get_vert2d(); 
SOLCONSVERT2D = get_vert2d();
}
/*.......................................................................7
void read_file_two()

{
int i, j, type;
char c, line[63], line 1 [6], count, xcoord[6], ycoord[6]; 
char filename[13]; 
int numedge, numvert;
Geom_edge2d *newgeom;
Vert2d *newvert;
Edge2d *newedge, *edgelist;
Termpoint *newtermpoint;
FILE * notes; 
float *v;
initialise_nodes(); 
v = vector(0,l);
copy_string(FILENAME, filename); 
append_string(".one", filename); 
notes = fopen(filename, "r"); 
fgets(line, 63, notes); 
v = read_coord(line);
THREEX = v[0];
THREEY = v[l]; 
fgets (line, 63, notes);
NUMVISPOINTS = atoi(line); 
fgets(line, 63, notes);
NUM HIDPOINTS = atoi(line); 
fgets(line, 63, notes);
NUMCENTPOINTS = atoi(line); 
fgets(line, 63, notes);
N U M C O N  SPOINTS = atoi(line); 
fgets(line, 63, notes);
NUMERASPOINTS = atoi(line); 
fgets(line,63,notes); 
numedge = atoi(line); 
fgets(line,63,notes);
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numvert = atoi(line); 
for(i = 0; i < numedge; i + + )

{
fgets(line, 63, notes); 
newedge = read_edge2d(line);
SOLVISEDGE2D = back_of_edge2d(newedge, SOLVISEDGE2D) ;

}
edgelist = SOLVISEDGE2D-> nextedge2d; 
for (i = 0; i < numedge; i + + )

{
fgets(line, 63, notes); 
type = edgelist-> edgetype; 
edgelist = edgelist- > nextedge2d; 
newgeom = read_geomedge(line, type);
SOLVISGEOM = back_of_geom2d(newgeom, SOLVISGEOM);

}
for (i = 0; i < numvert; i + + )

{
fgets(line, 63, notes); 
newvert = read_vertex2d(line);
SOLVISVERT2D = back_of_vert2d(newvert, SOLVISVERT2D);
}

if (NUM HIDPOINTS 0)
{

fgets(line,63,notes); 
numedge = atoi(line); 
fgets(line,63,notes); 
numvert = atoi(line); 
for(i = 0; i < numedge; i + + )

{
fgets(line, 63, notes); 
newedge = read_edge2d(line);
SOLHIDEDGE2D = back_of_edge2d(newedge, SOLHIDEDGE2D);

}
edgelist = HIDEDGE2D-nextedge2d; 
for (i = 0; i < numedge; i + + )

{
fgets(line, 63, notes); 
type = edgelist-> edgetype; 
edgelist = edgelist-> nextedge2d; 
newgeom = read_geomedge(line, type);
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SOLHIDGEOM = back_of_geom2d(newgeom, SOLHIDGEOM);

}
for (i = 0; i < numvert; i + + )

{
fgets(line, 63, notes); 
newvert = read_vertex2d(line);
SOLHIDVERT2D = back_of_vert2d(newvert, SOLHIDVERT2D) ;

}
}

if(NUM_CENTPOINTS > 0)
{

fgets(line,63,notes); 
numedge = atoi(line); 
fgets(line,63,notes); 
numvert = atoi(line); 
for (i = 0; i < numedge; i + + )

{
fgets(line, 63, notes); 
newedge = read_edge2d(line);
SOLCENEDGE2D = back_of_edge2d(newedge, SOLCENEDGE2D) ;
}

edgelist = SOLCENEDGE2D-> nextedge2d; 
for (i = 0; i < numedge; i + + )

{
fgets(line, 63, notes); 
type = edgelist-> edgetype; 
edgelist = edgelist-> nextedge2d; 
newgeom = read_geomedge(line, type);
SOLCENGEOM = back_of_geom2d(newgeom, SOLCENGEOM);
}

for (i = 0; i < numvert; i + + )
{
fgets(line, 63, notes); 
newvert = read_vertex2d(line);
SOLCENVERT2D = back_of_vert2d(newvert, SOLCENVERT2D);

}
}

if (NUM CONSPOINTS > 0)
{

fgets(line,63,notes); 
numedge = atoi(line);

205



fgets(line, 63, notes);
numvert = atoi(line);
for (i = 0; i < numedge; i + + )

{
fgets(line, 63, notes); 
newedge = read_edge2d(line);
SOLCONSEDGE2D = back_of_edge2d(newedge,
SOLCON SEDGE2D) ;

}
edgelist = SOLCONSEDGE2D-nextedge2d; 
for (i = 0; i < numedge; i + + )

{
fgets(line, 63, notes); 
type = edgelist-> edgetype; 
edgelist = edgelist-> nextedge2d; 
newgeom = read_geomedge(line, type);
SOLCONSGEOM = back_of_geom2d(newgeom, SOLCONSGEOM);

}
for (i = 0; i < numvert; i + + )

{
fgets(line, 63, notes); 
newvert = read_vertex2d(line);
SOLCONSVERT2D = back_of_vert2d(newvert, SOLCONSVERT2D);
}
}

fgets(line,63,notes); 
numedge = atoi(line); 
fgets(line,63,notes); 
numvert = atoi(line); 
for (i = 0; i < numedge; i + + )

{
fgets(line, 63, notes); 
newedge = read_edge2d(line);
SOLEDG2D = back_of_edge2d(newedge, SOLEDG2D);
}

edgelist = SOLEDG2D-> nextedge2d; 
for (i = 0; i < numedge; i + + )

{
fgets(line, 63, notes);
type = edgelist-> edgetype;
edgelist = edgelist->nextedge2d;

206



newgeom = read_geomedge(line, type);
SOLGEOM = back_of_geom2d(newgeom, SOLGEOM);

}
for (i = 0; i < numvert; i + + )

{
fgets(line, 63, notes); 
newvert = read_vertex2d(line);
SOLVERT2D = back_of_vert2d(newvert, SOLVERT2D);

}
}
r ........................................................................... */
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GRAPHIC OUTPUT FUNCTIONS

/* GRAPHOUT.C
*

This program contains functions to output the sketch
7
/* ......................................................................... 7
set_video_mode()

{
setvideomode (_ VRES16COLOR); 
remappalette (1 ,_BRIGHTWHITE); 

_setbkcolor(_BLUE); 
_setwindow(l,0,0,639,479);
_setcolor(l);

}
/* .......................................................................7
set_dashed_line()

{
_setlinestyle(0xF0F0);
}

r .......................................................................... 7
set_centre_line()

{
_setlinestyle(OxF 18F);

}
/* .......................................................................... 7
set_solid_line()

{
_setlinestyle(OxFFFF);
}

/* ................................................................. - - - - * /
write_linenumber()

{ "
static unsigned char list[20]; 
strcpy(list,"t’courier’");
_registerfonts(" * .FON"); 

setfont(list);
}

I*......................................................................... - 7
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draw_VISLINES(Lineseg *VISLINESEG, int linattr, float *VISPOINTS[2],
Termpoint *VISTERMPOINT)

{
int numpts, startpt,i,j;
float xl, yl, x2, y2, sumx, sumy, meanx, meany;
Lineseg *linesegmentl;
Termpoint * termpoint 1; 
char linenumber[3]; 
termpoint 1 = VISTERMPOINT; 
linesegmentl = VISLINESEG; 
if (linattr = = 1) set_solid_line(); 
if (linattr = =2) set_dashed_line(); 
if (linattr = =3) set_centre_line(); 
write_linenumber(); 
j = 0;
linesegmentl = linesegmentl- > nextlineseg; 
while (linesegm entl! = NULL)

{
j + + ;
numpts = linesegmentl- >num_points; 
startpt = linesegmentl->start_point; 
xl = VISPOINTS[startpt-l][0]*.2; 
yl = VISPOINTS[startpt-l][l]*.2; 
sumx = xl; 
sumy = yl;
_moveto_w(x 1 ,y 1);
for(i = 1; i < numpoints; i + + )

{
x2 = VISPOINTS[startpt-l + i][0]*.2; 
y2 = VISPOINTS[startpt-l + i][l]*.2; 
sumx = sumx+ x2; 
sumy — sumy + y2;
_lineto_w(x2,y2);

}
meanx = sumx/numpts; 
meany = sumy/numpts;
_moveto_w(meanx, meany); 
ultoa(j, linenumber, 10);
_outgtext(linenumber);
linesegmentl = linesegmentl- > nextlineseg;
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}
j = 0;
linesegmentl = VISLINESEG- > nextlineseg; 
while (linesegm entl! = NULL)

{
j + + ;
numpts = linesegmentl->num_points; 
startpt = linesegmentl- > start_point; 
xl = VISPOINTS[startpt-1] [0] * .2 + 300.0; 
yl = VISPOINTS[startpt-l][l]*.2;
_moveto_w(x l,y 1);
for(i = 1; i < numpoints; i + + )

{
x2 = VISPOINTS [startpt-1 + i] [0] * .2 + 300.0; 
y2 = VISPOINTS [startpt-1 +i][l] *.2; 
_lineto_w(x2,y2);

}
linesegmentl = linesegmentl- > nextlineseg;
}

j = 0;
while(termpointl ! = NULL)

{
j+  + ;
termpointl = termpointl->nexttermpoint; 
meanx = termpointl- > point[0]*.2 + 300; 
meany = termpointl- >point[l]*.2;
_moveto_w(meanx, meany); 
ultoa(j, linenumber, 10);
_outgtext(linenumber);
}

}
r ........................................... v
draw_VISEDGE2D(Edge2d *VISEDGE2D, int linattr, Vert2d *VISVERT2D)

{
int n l, n2, i, j, k;
float xl, yl, x2, y2, meanx, meany;
Edge2d *edgelistl;
Vert2d *vertlistl; 
char linenumber[3]; 
edgelistl = VISEDGE2D; 
if (linattr = = 1) set_solid_line();
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if (linattr = =2) set_dashed_line(); 
if (linattr = =3) set_centre_line(); 
write_linenumber ();
j= 0 ;
edgelistl = edgelistl->nextedge2d; 
while (edgelistl! = NULL)

{
j+  + ;
k = 0;
vertlistl = VISVERT2D-> nextvert2d; 
while (vertlistl! = NULL)

{
k+  + ;
if (edgelistl->vertl = = k)

{
xl = vertlistl- >point[0] *0.2; 
yl = vertlistl- >point[l]*0.2; 
n l = k;

}
if (edgelistl-vert2 = = k)

{
x2 = vertlistl- >point[0] *0.2; 
y2 = vertlistl- >point[l]*0.2; 
n2 = k;

}
vertlistl = vertlistl->nextvert2d;
}
_moveto_w(xl, yl);
_lineto_w(x2,y2); 
meanx = ((xl +x2)/2); 
meany = ((yl+y2)/2);
_moveto_w(meanx, meany); 
ultoa(j, linenumber, 10); 
_outgtext(linenumber); 
vertlistl = vertlistl->nextvert2d; 
_moveto_w(xl + 300, yl);
_lineto_w(x2 + 300,y2); 
ultoa(nl, linenumber, 10);
_moveto_w(xl + 300, yl); 
_outgtext(linenumber); 
ultoa(n2, linenumber, 10);
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_moveto_w(x2 + 300, y2);
_outgtext(line number); 

edgelistl = edgelistl->nextedge2d;
}
}
/*..................................................................7
draw_HIDLINES(Lineseg *HIDLINESEG, int linattr, float *HIDPOINTS[2],

Termpoint * HIDTERMPOINT)
{
int numpts, startpt,i,j;
float xl, yl, x2, y2, sumx, sumy, meanx, meany;
Lineseg * linesegmentl;
Termpoint * termpoint 1; 
char linenumber[3]; 
termpoint 1 = HIDTERMPOINT; 
linesegmentl = HIDLINESEG; 
if (linattr = =1) set_solid_line(); 
if (linattr = =2) set_dashed_line(); 
if (linattr = =3) set_centre_line(); 
write_linenumber();
j = 0 ;

linesegmentl = linesegmentl- > nextlineseg; 
while (linesegm entl! = NULL)

{
j + + ;
numpts = linesegmentl-> num_points; 
startpt = linesegmentl->start_point; 
xl = HIDPOINTS[startpt-l][0]*.2; 
yl =HIDPOINTS[startpt-l][l]*.2; 
sumx=xl; 
sumy=yl;
_moveto_w(xl,yl);
for(i = 1; i < numpoints; i + + )

{
x2 = HIDPOINTS[startpt-l + i][0]72; 
y2 = HIDPOINTS[startpt-l + i][l]*.2; 
sumx = sumx + x2; 
sumy = sumy + y2;
_lineto_w(x2,y2);

}
meanx = sumx/numpts;
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meany = sumy/numpts;
_moveto_w(meanx, meany); 
ultoa(j, linenumber, 10);
_outgtext(line number);
linesegmentl = linesegmentl- > nextlineseg;
}

j= 0 ;
linesegmentl = HIDLINESEG- > nextlineseg; 
while (linesegm entl! = NULL)

{
j+  + ;
numpts = linesegmentl- >num_points; 
startpt = linesegmentl- > start_point; 
xl = HIDPOINTS[startpt-l][0]*.2 + 300.0; 
yl =HIDPOINTS[startpt-l][l]*.2;
_moveto_w(x 1 ,y 1);
for(i = 1; i < numpoints; i + + )

{
x2 = HIDPOINTS[startpt-l + i][0]*.2 + 300.0; 
y2 = HIDPOINTS [startpt-1 -I- i] [ 1] * .2;
_lineto_w(x2,y2);

}
linesegmentl = linesegmentl- > nextlineseg;

}
j = 0;
while(termpointl ! = NULL)

{
j+  + ;
termpointl = termpointl-nexttermpoint; 
meanx = termpointl-point[0]*.2 + 300; 
meany = termpointl-point[l]*.2;
_moveto_w(meanx, meany); 
ultoa(j, linenumber, 10);
_outgtext(linenumber);

}
}

/*..................................................................7
draw_HIDEDGE2D(Edge2d *HIDEDGE2D, int linattr, Vert2d *HIDVERT2D) 

{ ”
int n l, n2, i, j, k;
float xl, yl, x2, y2, meanx, meany;
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Edge2d * edgelistl;
Vert2d *vertlistl; 
char linenumber[3]; 
edgelistl = HIDEDGE2D; 
if (linattr = = 1) set_solid_line(); 
if (linattr = =2) set_dashed_line(); 
if (linattr = =3) set_centre_line(); 
write_linenumber (); 
j = 0;
edgelistl = edgelistl-nextedge2d; 
while (edgelistl! = NULL)

{
j+  + ;
k = 0;
vertlistl = HIDVERT2D-nextvert2d; 
while (vertlistl! = NULL)

{
k+  + ;
if (edgelistl-vertl = = k)

{
xl = vertlistl-point[0]*0.2; 
yl = vertlistl-point[l]*0.2; 
n l = k;

}
if (edgelistl-vert2 = = k)

{
x2 = vertlistl-point[0]*0.2; 
y2 = vertlistl-point[l]*0.2; 
n2 = k;

}
vertlistl = vertlistl-nextvert2d;
}
_moveto_w(xl, yl);
_lineto_w(x2,y2); 
meanx = ((xl +x2)/2); 
meany = ((yl + y2)/2);
_moveto_w(meanx, meany); 
ultoa(j, linenumber, 10); 
_outgtext(linenumber); 
vertlistl = vertlistl-nextvert2d; 
_moveto_w(xl + 300, yl);
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A

_lineto_w(x2 + 300,y2); 
ultoa(nl, linenumber, 10); 
_moveto_w(xl + 300, yl); 
_outgtext(linenumber) ; 
ultoa(n2, linenumber, 10); 
_moveto_w(x2 + 300, y2); 
_outgtext(linenumber ) ; 

edgelistl = edgelistl->nextedge2d;
}
}
r ..................................................................V
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PROCESSING IN TWO DIMENSIONS FUNCTIONS

/* PROC2D.C
7
/ * ...................................................................... 7
float *gauss(float *m[5])

{
float *v, temp[5], mult, s;
int i, j, k, 1, t;
for (k = 0; k < 3; k + + )

{
for (i = k + 1; i < 4; i + + )

{
t = k + 1;
while (fabs(m[k][k]) 0.01)

{
for (1 = 0; 1; 1 + + )

{
temp[l] = m[k][l]; 
m[k][l] = m[t][l]; 
m[t][l] = temp[l];

}
t + + ;

}
mult = m[i][k]/m[k][k]; 
m[i][k] = 0;
for(j = k + l ; j < 5 ; j +  +)

{
m[i][j] = m[i][j] - mult*m[k][j];
}

}
}

v = vector(0,3); 
v[3] = m[3][4]/m[3][3]; 
i = 2;
while(!(i < 0))

{
s = 0;
for (j = i +1; j <4; j 4- +)

{
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s = s + m[i][j]*v£j];

}
v[i] = (m[i][4] - s)/m[i][i];
i--;
}

return(v);
}
/* ...............................................................................7
float perp_distance(float xl, float yl, float x2, float y2,

float x, float y)
{
float r,deltax,deltay,d; 
deltax = x2-xl; 
deltay = y2-yl;
r = sqrt ((deltax*deltax) + (deltay*deltay)); 
d = (-x*deltay + y*deltax-(x2*yl-xl*y2))/r; 
return(d);
}
J*________________________________________ % j

/* findslope(float xl, float yl, float x2, float y2)
*

This function finds the slope of the line connecting the points (xl,yl)
and (x2,y2) in degrees ranging from -180 to 180. The return value is
the angle.
*

7
float findslope(float xl, float yl, float x2, float y2)

{
float angle; 
if(fabs(x2-xl))

{
angle = 90.0; 
if((y2-yl)) angle = -90;
}

else

{
angle = atan2((y2-yl),(x2-xl));

angle = 180*7*angle/22;
}

return(angle);
}
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/* ............................................................................ 7
float *line_equation(float xl, float yl, float x2, float y2)
{
float *v;
v = vector (0,2);
if (fabs(x2 - xl) 25.0)

{
v[0] = 0;
v[l] = l;
v[2] = -(xl + x2)/2; 
return(v);

}
else

{
v[0] = 1;
v[l] = (y2-yl)/(xl-x2); 
v[2] = (x2*yl - xl*y2)/(xl-x2); 
re turn (v);

}
}
/*...................................................................... 7
int side_of_line(float v[3], float x, float y)
{
int side = 1; 
float value;
value = v[0]*y + v[l]*x + v[2]; 
if (value < 0) side = -1; 
return(side);
}
J%_____________________________________ % j

/* distance(float xl, float yl, float x2, float y2)
*

This function finds the distance between points (xl,yl) and (x2,y2)
The return value is the distance.
*

7
float distance(float xl, float yl, float x2, float y2)
{
float d;
d = sqrt((x2-xl)*(x2-xl) + (y2-yl)*(y2-yl)); 
return(d);
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/*.........................................................................*/
/* test_line_end(int stpt, float *points[2])
*

}

This function returns the row number of the end point of the test line
(of length less than 10 mm).
*

7
int test_line_end(int stpt, float *points[2])
{
int i;
float d, xl, yl, x2, y2; 
xl = points [stpt-1][0]; 
yl =points[stpt-l][l]; 
d = 0; 
i = 0;
while (d MINDIST)

{
i+  + ;
x2 = points[stpt + i-l][0]; 
y2 = points[stpt + i-l][l]; 
d = distance(xl, yl, x2, y2);
}

return(stpt + i-l);

}
I*____________________________________ * j

float find_max_testdistance(int stpt, float *points[2])
{
float d, xl ,yl, x2, y2, x, y, temp; 
int n, i;
xl = points[stpt-l][0]; 
yl = points[stpt-l][l]; 
n = test_line_end(stpt,points); 
x2 = points[n-l][0]; 
y2 = points[n-l][l]; 
d = 0;
for (i = 0; i < (n-stpt-2); i + + )

{
temp = perp_distance(xl,yl,x2,y2, points [stpt-i][0],

points[stpt-i][l]); 
if (d fabs(temp)) d = fabs(temp);
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}
return(d);
}
/*
r

...............................7
find_straight_end(int r, float *points[2])

This is a function finds the row number of the end point of a straight 
line segment in the array points. The return value is the row number.
It also sets the value of the variable CONTINUITY as 0 or 1 according 
to whether the next line starts fresh or continues from this line.

7
int find_straight_end(int r, float *points[2])
{
int pointcount;
float d, cur_slope, sum_slope, mean_slope; 
float stpt[2], cur_pt[2], meanx, meany; 
int found = 0;
SAMPLE = 6;
pointcount = r + SAMPLE;
stpt[0] =points[r-l][0];
stpt[l] =points[r-l][l];
cur_pt[0] = pointsfr + SAMPLE-1][0];
cur_pt[l] = points[r + SAMPLE-1][1];
cur_slope = findslope(stpt[0], stpt[l], cur_pt[0], cur_pt[l]);
sum_slope = cur_slope* (SAMPLE-1);
while (found = = 0)

{
cur_pt[0] = p°ints[pointcount][0]; 
cur_pt[l] = points[pointcount][l];
meanx = 0.5*(points[pointcount-l][0]+points[pointcount-2][0]); 
meany = 0.5*(points[pointcount-l][l] + points[pointcount-2][l]); 
cur_slope = findslope(meanx, meany, cur_pt[0], cur_pt[l]); 
sum_slope = sum_slope + cur_slope; 
mean_slope = sum_slope/(pointcount - r); 
if(fabs(cur_slope - mean_slope) STRAIGH1 ‘ 1OLDEG)

{
found = 1;

d = distance(points[pointcount-l][0],
points[pointcount-l][l], cur_pt[0],

cur_pt[l]);
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if(d > MINDIST) CONTINUITY = 0; 
if(d < = MINDIST) CONTINUITY = 1;
}

else pointcount + + ;
}

LINE TYPE = 1; 
return(pointcount);
}
r ........................................................................... 7
I* find_curve_end(int r, float ‘points[2])
*

This function finds the row number of the end point of a curve in the
array points. The return value is the row number. It also sets the
value of the variable CONTINUITY.
*

7
int find_curve_end(int r, float *points[2])
{
int pointcount, change_count, sense = 1; 
float stpt[2], finpt[2], cur_pt[2]; 
int found = 0;
float meanx, meany, d, cur_slope, slope_change, sum_change,mean_change;
float last_slope;
pointcount = r + 2;
cur_pt[0] = points[r+1][0];
cur_p t[l] =  poin ts[r +  1][1];

m eanx =  0.5*(points[r-l][0] +  points[r][0]);
m eany =  0 .5* (po in ts[r-l][l] +  po in ts[r][l]);
last_slope = findslope(meanx, meany, cur_pt[0],cur_pt[l]);
change_count = 0;
sum_change= 0;
while (found = = 0)

{
cur_pt[0] =  points[pointcount][0]; 

cu r_p t[l] =  po in ts[po in tcount][l];
meanx = 0.5*(points[pointcount-l][0] + points [pointcount-2] [0]); 
meany = 0.5*(points[pointcount-l][l]+points[pointcount-2][l]); 
cur_slope = findslope(meanx, meany, cur_pt[0], cur_pt[l]); 
slope_change = cur slope - last_slope; 
last_slope = cur_slope; 
change_count + + ;
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if(change_count = = 1)
{
if(slope_change < 0) sense = -1; 
if(slope_change > 0) sense = 1;
}

else

{
if ((sense * slope_change) < 0) found 
if (fabs(slope_change) < 0.10) found 
}

if (found = = 1)
{
d = distance(points[pointcount-l][0], 

points [pointcount-1 ] [ 1 ],
cur_pt[0], cur_pt[l]); 

if (d MINDIST) CONTINUITY = 0; 
if (d MINDIST) CONTINUITY = 1;
}

pointcount + + ;
}

LIN ETY PE = 2* sense; 
return(pointcount -1);
}
/* .......................................................................................... */
int decide_lineclass_side(int stpt, float *points[2])
{
int i, lineclass = 1, side, oneside = 1, n,sidel,nl; 
float maxdist,*v, xl,yl,x2,y2,x,y; 
n = test_line_end(stpt, points);
SAMPLE = 6;
if ((n-stpt) < 6) SAMPLE = n-stpt; 
xl = pointsfstpt-1] [0]; 
yl = points[stpt-l][l]; 
x2 = points [stpt + S AMPLE-1][0]; 
y2 = points[stpt + SAMPLE-l][l]; 
v = line_equation(xl,yl,x2,y2);

x = points[stpt][0]; 
y = points[stpt][l]; 
sidel = side_of_line(v,x,y); 

for(i = 1; i < SAMPLE-2; i + + )

{
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x = points[stpt + i][0]; 
y = points[stpt + i][l]; 
side = side_of_line(v,x,y); 
if (side 1* side 0) oneside = 0;

}
if (oneside = = 1)

{
n l = find_curve_end(stpt, points);

if(*Ul
{
maxdist = distance(points[nl-l][0], points[nl-l][l],

points[n-l][0], points[n-l][l]); 
if(maxdist MINDIST) lineclass = LINETYPE;
}

}
return(lineclass);
}
r ...................................................................... */
/* decide_lineclass_slope(int r, float *points)
*

This function decides whether a line starting from the rth point in
the array points is a curve or a straight line or a curve. It returns
1 if it is a straight line, -2 if it is a clockwise curve and + 2 if
it is an anti-clockwise curve. It uses the slope change method.
*

7
int decide_lineclass_slope(int r, float *points[2])
{
int i, line_class, slopecount; 
float **sample_points, *sample_slopes; 
float meanx, meany, mean_slope_change, ssc; 
float *sample_slope_changes, ss = 0; 
i = test_line_end(r, points);
SAMPLE = 6; 
if ((i-r) 6) SAMPLE = (i-r); 
sample_points = fmatrix(0, (SAMPLE-1), 0,1); 
sample_slopes = vector(0, (SAMPLE-2)); 
sample_slope_changes = vector(0,(SAMPLE-3)); 
for(i = 0; i < SAMPLE; i + + )

{
sample_points[i][0] = points[r-l][0];

223



sample_points[i][l] = points[r-l][l]; 
r + + ;

}
for(i = 0; i < (SAMPLE-1); i + + )

{
if (0

{
meanx = sample_points[i][0]; 
meany = sample_points[i][l]; 

}
else

{
meanx = (sample_points[i][0] + sample_points[i-l][0] 

+ sample_points[i-2][0])/3; 
meany = (sample_points[i][l] + sample_points[i-l][l] 

+ sample_points[i-2][l])/3;

}
sample_slopes[i] = findslope(meanx, meany,

sample_points[i + 1][0], sample_points[i+1][1]);
ss = ss + sample_slopes[i];
}

ssc = 0.0; 
slopecount = 0;
for(i = 0; i < (SAMPLE-2); i + + )

{
sample_slope_changes[i] = sample_slopes[i + 1]-sample_slopes[i]; 
if(fabs(sample_slope_changes[i])œ)

{
ssc = ssc + fabs(sample_slope_changes[i]); 
slopecount + + ;

} '

}
mean_slope_change = ssc/slopecount; 
if (fabs(mean_slope_change) < STRAIGHT lOLDEG)

{
line_class = 1;
STRAIGHTSLOPE = ss/(SAMPLE-l);
}

else
{

if (mean_slope_change < 0) line_class = -2;
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if (mean_slope_change > 0) line_class = 2;
}

LINE_TYPE = lineclass;
SAMPLE = 6; 
return(line_class) ;
}
/ * .......................................................................V
/*  parse(float *points[2], int num_points)
*

This function breaks the array of points into line segments. The 
details of each segment are stored in a Lineseg node and all the nodes 
are connected into a linked list. The function returns this linked list.

7
Lineseg *parse(float *points[2], int num_points)
{
int parsed_points, pts, line_class, finished = 0, i;
Lineseg *new, *linelist; 
linelist = get_lineseg(); 
parsed_points = 1; 
i = 0;
while (finished = = 0)

{
lineclass = decide_lineclass_side(parsed_points, points); 
if (line_class = — 1)

else
pts = find_straight_end(parsed_points, points);

pts = find_curve_end(parsed_points, points);
new = get_lineseg(); 
i+  + ;
new-start_point = parsed_points;
new-stpt[0] = points[parsed_points-l][0];
new-stpt[l] = points[parsed_points-l][l];
new-finpt[0] = points[pts-l][0];
new-finpt[l] = points[pts-l][l];
new-num_points = pts - parsed_points;
new-type = LINETYPE;
linelist = back_of_lineseg(new, linelist);
if (CONTINUITY = = 0) parsed_points = pts + 1;
if (CONTINUITY = = 1) parsed_points = pts;
if (parsed_points = num__points) finished = 1;
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return(linelist);
}

}
/* ........................................................................... 7
/* termpoint_member
♦

This function decides whether a point given by the vector pt is a 
member of the list of termpoints. Returns 1 if it is a member and
0 if not.Adds the line number to the list of lines if a member.
*

7
int termpoint_member(Termpoint * termpoints, int linenumber, float pt[2])
{
int found; 
float tp[2];
Termpoint *termpointl;
Intnode *linelist, *newintnode; 
found = 0;
termpointl = termpoints;
while ((termpoints ! = NULL) && (found ! = 1))

{
termpoints = termpoints- > nexttermpoint; 
tp[0] = termpoints- > point[0]; 
tp[l] = termpoints->point[l]; 
if(distance(pt[0], pt[l], tp[0], tp[l]) < 25.0)

{
found = 1;
linelist = termpoints- > linelist;
newintnode = get_intnode();
newintnode- > a = linenumber;
linelist = back_of_intnode(newintnode, linelist);
termpoints- > linelist = linelist;
}

}
termpoints = termpointl; 
return(found);
}
r ........................................... v
/* find_termpoint(Lineseg *linesegs)
*

This function finds the terminal points of all the line segments in
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the list of Lineseg nodes, linesegs. It returns a list of Termpoint
nodes, with one node for each Lineseg node.
*

7
Termpoint *find_termpoint(Lineseg * linesegs)
{
float tp[2], trialptl[2], trialpt2[2]; 
int i, found, linenumber;
Intnode *linelist, *newintnode;
Lineseg * lineseg 1;
Termpoint * termpoints, * newtermpoint; 
linenumber = 1; 
linesegl = linesegs; 
linesegs = linesegs- > nextlineseg; 
termpoints = get_termpoint(); 
linelist = get_intnode(); 
newintnode = get_intnode(); 
newintnode-> a = 1;
linelist = back_of_intnode(newintnode, linelist); 
newtermpoint = get_termpoint(); 
newtermpoint- > point[0] = linesegs- > stpt[0]; 
newtermpoint- > point[l] = linesegs- > stpt[l]; 
newtermpoint- > linelist = linelist;
termpoints = back_of_termpoint(newtermpoint, termpoints);
newtermpoint = get_termpoint();
linelist = get_intnode();
newintnode = get_intnode();
newintnode-> a = 1;
linelist = back_of_intnode(newintnode, linelist); 
newtermpoint- > point[0] = linesegs->finpt[0]; 
newtermpoint->point[l] = linesegs->finpt[l]; 
newtermpoint-> linelist = linelist;
termpoints = back_of_termpoint(newtermpoint, termpoints); 
linesegs = linesegs- > nextlineseg; 
while (linesegs ! = NULL)

{
linenumber + +; 
for (i = 0; i < 2; i + + )

{
trialptl[i] = linesegs->stpt[i]; 
trialpt2[i] = linesegs- >finpt[i];
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found = termpoint_member(termpoints, linenumber, trialptl); 
if (found = = 0)

{ *
linelist = get_intnode();
newintnode = get_intnode();
newintnode-> a = linenumber;
linelist = back_of_intnode(newintnode, linelist);
newtermpoint = get_termpoint();
newtermpoint- > point[0] = trialptl [0];
newtermpoint- > point[l] = trialptlfl];
newtermpoint- > linelist = linelist;
termpoints = back_of_termpoint(newtermpoint,

}

termp
}

found = termpoint_member(termpoints, linenumber, trialpt2); 
if (found = = 0)

{
linelist = get_intnode();
newintnode = get_intnode();
newintnode- > a = linenumber;
linelist = back_of_intnode(newintnode, linelist);
newtermpoint = get_termpoint();
newtermpoint- > point[0] = trialpt2[0];
newtermpoint- > point[l] = trialpt2[l];
newtermpoint- > linelist = linelist;
termpoints = back_of_termpoint(newtermpoint, termpoints);
}

linesegs = linesegs- > nextlineseg;
}

return(termpoints);
}
/* ...............................................................................7
/* leastsqr_straight(int np, int sp, float *points[2])
*

This function fits a straight line for the np points starting from
the spth row in the array points. The return value is a vector whose
elements are the co-efficients of the equation -y + ax + b = 0.
*

7
float *leastsqr_straight(int np, int sp, float *points[2])
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{
int i,j, n; 
float *v; 
float a, b;
float sumx = 0, sumy = 0, sumxsqrd = 0, sumxy = 0; 
float angle;
for (i = 0; i < np; i + + )

{
sumx = points[sp-l+ i][0] + sumx; 
sumy = points[sp-l+ i][l] + sumy;
sumxsqrd = points[sp-l + i][0]*points[sp-l+ i][0] + sumxsqrd; 
sumxy = points[sp-l+ i][0]*points[sp-l+ i][l] + sumxy;
}

b = ((sumx * sumxy - sumxsqrd * sumy)/(sumx*sumx - np*sumxsqrd));
a = (sumy - np*b)/sumx;
angle = atan(a)* 180*7/22;
if (fabs(30-angle)) angle = 30.0;
if (fabs(30 + angle)) angle = -30.0;
a = tan((angle*22)/(180*7));
b = sumy/np - a*sumx/np;
v = vector (0,2);
v[0] = -1;
v[l] = a;
v[2] = b;
return(v);
}
/*................................................ 7
/* fit_vertical(int np, int sp, float *points[2])
*

This function fits a vertical line. It returns a vector with three
elements whose first element is 0, second element is -1 and third elemen
element is the value b in the equation -x + b = 0.
*

7
float *fit_vertical (int np, int sp, float *points[2])
{
int i, j;
float sumx = 0.0; 
float *v;
for (i = 0; i < np; i + + )

{
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sumx = sumx + points [sp-1+ i][0];
}

v = vector(0,2); 
v[0] = 0; 
v[l] = -1; 
v[2] = sumx/np; 
return(v);

}
/*........................................................................... V
float *least_square_ellipse(int np,int sp, float *points[2])
{
int i, j;
float **m, *v;
float sumx = 0, sumxsqrd = 0, sumxcubed = 0;
float sumy = 0, sumysqrd = 0, sumycubed = 0, sumyto4 = 0;
float sumxy = 0, sumxsqrdy = 0, sumxcubedy = 0;
float sumxsqrdysqrd = 0, sumxysqrd = 0, sumxycubed = 0;
for (i = 0; i < np; i + + )

{
sumx = sumx + points[sp-l+i][0];
sumxsqrd = sumxsqrd + points[sp-l+ i][0]*points[sp-l+i][0]; 
sumxcubed = sumxcubed + points[sp-l+ i][0]*points[sp-l+ i][0]*

points[sp-l + i][0];
sumy = sumy + points[sp-l + i][l];
sumysqrd = sumysqrd + points[sp-l+i][l]*points[sp-l+ i][l];

*sumycubed = sumycubed + points[sp-l+i][l]*points[sp-l+ i][l]*
points[sp-l + i][l];

sumyto4 = sumyto4 + points[sp-l+ i][l]*points[sp-l+i][l]* 
points[sp-l + i][l]*points[sp-l + i][l]; 

sumxy = sumxy + points[sp-l+ i][0]*points[sp-l+ i][l]; 
sumxsqrdy = sumxsqrdy + points[sp-l + i][0]*points[sp-l + i][0]*

points [sp-1 + i][l];
sumxcubedy = sumxcubedy + points[sp-l+ i][0]*points[sp-l + i][0]*

points[sp-l + i][0]*points[sp-l+i] 
sumxsqrdysqrd = sumxsqrdysqrd + points [sp-1+ i][0]*

points[sp-l + i][0]*points[sp-l + i][l]*points[sp-l + i][l]; 
sumxysqrd = sumxysqrd + points[sp-l+ i][0]*points[sp-l+ i][l]*

points[sp-l + i][l];
sumxycubed = sumxycubed + points[sp-l +i][0]*points[sp-l + i][l]*

points[sp-l + i][l]*points[sp-l + i]
}
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m = fmatrix(0,3,0,4);
ni[0][4] = -(sumxcubedy - sumxsqrd*sumxy/np); 
m[0][0] = sumxsqrdysqrd - sumxy*sumxy/np; 
m[0][l] = sumxycubed - su mxy * su mysqrd/np ; 
m[0][2] = sumxsqrdy-sumxy*sumx/np; 
m[0][3] = sumxysqrd - sumxy*sumy/np; 
m[l][4] = -(sumxsqrdysqrd - sumxsqrd*sumysqrd); 
m[l][0] = m[0][l];
m[l][0] = sumxsqrdysqrd - sumxsqrd*sumysqrd/np; 
m[l][l] = sumyto4 - sumysqrd*sumysqrd/np; 
m[l][2] = sumxysqrd -sumysqrd*sumx/np; 
m[l][3] = sumycubed - sumysqrd*sumy/np; 
m[2][4] = -(sumxcubed - sumxsqrd*sumx/np); 
m[2][0] = m[0][2]; 
m[2][l] = m[l][2];
m[2][2] = sumxsqrd - sumx*sumx/np; 
m[2][3] = sumxy - sumx*sumy/np; 
m[3][4] = -(sumxsqrdy - sumxy*sumx/np); 
m[3][0] = m[0][3]; 
m[3][l] = m[l][3]; 
m[3][2] = m[2][3];
m[3][3] = sumysqrd - sumy*sumy/np;
v = gauss(m);
return(v);

}
I * _____________________________________________ * j

/* find_geom_edge2d(Lineseg *linelist, float *points[2])
*

This function fits the appropriate curves for each of the line
segment in linelist. It returns a list of the nodes ’Geom_edge2d\
*

7
Geom_edge2d *find_geom_edge2d(Lineseg *linelist, float *points[2])
{
Lineseg * linelist 1; 
int i, j; 
float *m;
Geom_edge2d *geomlist, *newgeom; 
geomlist = get_geom_edge2d(); 
linelistl = linelist; 
linelist = linelist-> nextlineseg;
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while (linelist ! = NULL)
{
j = 0;
if(linelist- > type = = 1)

{
if (fabs(linelist- > stpt[0] - linelist- > finpt[0]) < 20)

{
m = fit_vertical(linelist-> num_points, 

linelist- > start_point, points);
j = i;
}

else

{
m = leastsqr_straight(linelist- > num_points, 

linelist- > start_point, points);
j = i;
}

}
else

{
m = least_square_ellipse(linelist- > num_points, 

linelist- > start_point, points);
j = 2 ;

}
newgeom = get_geom_edge2d(); 
newgeom- > v = m; 
newgeom-> type = j;
geomlist = back_of_geom2d(newgeom, geomlist); 
linelist = linelist-nextlineseg;
}

linelist = linelist 1; 
return(geomlist);
}
/*.........................................................................7
I* solve_straight(Geom_edge2d * geomlist, Intnode *intlist)
*

This function finds the least square solution of the meeting point 
of lines in the geomlist indicated by the intlist. The return value is
a vector whose elements are the co-ordinates of the meeting point. 
*

7

232



float *solve_straight(Geom_edge2d *geomlist, Intnode *intlist)

{
int *vl;
int al, i = 0, j, k;
Intnode * intlistl; 
float **m, *v;
float 11 = 0, m l = 0, n l = 0,12 = 0, m2 = 0, n2 = 0;
Geom_edge2d *geomlistl; 
geomlistl = geomlist; 
intlist = intlist-> nextintnode; 
intlistl = intlist; 
while (intlist! = NULL)

{
i+ +;
intlist = intlist-> nextintnode;
}

intlist = intlistl; 
v l = ivector(0,(i-l)); 
m = fmatrix(0,(i-l),0,2); 
a l = i; 
i = 0;
while (in tlistl! = NULL)

{
vl[i] = intlistl-> a; 
i+  + ;
intlistl = intlistl-> nextintnode;
}

for (i = 0; i <a l ;  i +  +)
{

for (j = 0; j < v[i]; j + + ) geomlistl = geomlistl- > nextgeom_edge2d; 
for (k = 0; k; k + + )

{
m[i][k] = geomlistl->v[k];
}

geomlistl = geomlist;
}

for (i = 0; ial; i+  + )
{
11 = ll + m[i][l]*m[i][l];
12 = 12 + m[i][l]*m[i][0]; 
m2 = m2 + m[i][0]*m[i][0];
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n l = nl+m[i][l]*m[i][2]; 
n2 = n2 + m[i][0]*m[i][2];

}
m l = 12; 
v = vector(0,l);
v[0] = ((ml*n2)-(m2*nl))/((ll*m2)-(12*ml)); 
v[l] = ((12*nl)-(ll*n2))/((ll*m2)-(12*ml)); 
return(v);

}
/* .................................................................................... 7
/* find_vert2d(Termpoint *termpoints, Geom_edge2d *geomlist)
*

This function finds the vertices corresponding to each of the 
terminal points in the list termpoints using the analytical equations
representing the edges given by the list geomlist.
*

7
/*
Vert2d *find_vert2d(Termpoint *termpoints, Geom_edge2d *geomlist)

{
Termpoint * termpoints 1; 
int i, j;
Intnode *linelist; 
float *v;
Vert2d *vertlist, *newvert;
termpoints 1 = termpoints;
termpoints 1 = termpoints 1-nexttermpoint;
vertlist = get_vert2d();
while (termpoints 1! = NULL)

{
linelist = termpointsl->linelist;
v = solve_straight(geomlist, linelist);
newvert = get_vert2d();
newvert- > point = v;
newvert-linelist = termpointsl-> linelist;
vertlist = back_of_vert2d(newvert, vertlist);
termpointsl = termpointsl- > nexttermpoint;
}

return(vertlist);
}
/*.........................................................7
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void show_lineseg(Lineseg *linesegs)
{
Lineseg *linesegl;
linesegl = linesegs;
linesegs = linesegs- > nextlineseg;
while (linesegs ! = NULL)

{
printf("Number of points : %d\n", linesegs- > num_points); 
printf("Starting point : %d\n", linesegs-> start_point); 
switch (linesegs- > type)

{
case 1 :

printf("It is a straight line\n"); 
break;

case 2 :
printf ("It is a closed curve\n"); 
break;

case 3 :
printf("It is an arc\n"); 
break;

}
printf("The starting point is : %3.2f%s%3.2f\n",

linesegs- > stpt[0], " ",linesegs- > stptfl]); 
printf("The finishing point is: %3.2f%s%3.2f\n",

linesegs- > finpt[0], " ",linesegs- > finpt[l]);
linesegs = linesegs- > nextlineseg;
}

linesegs = linesegl;
}
/* - .........................................................................7
Vert2d *find_vert2d(Termpoint *termpoints, Geom_edge2d *geomlist)
{
Termpoint *termpointsl; 
int i, j;
Intnode *linelist; 
float *v;
Vert2d *vertlist, *newvert;
termpointsl = termpoints;
termpointsl = termpointsl-> nexttermpoint;
vertlist = get_vert2d();
while (termpointsl ! = NULL)
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{
linelist = term pointsl-> linelist; 
v = solve_straight(geomlist, linelist); 
newvert = get_vert2d(); 
newvert-> point = v;
newvert-> linelist = termpointsl-> linelist; 
vertlist = back_of_vert2d(newvert, vertlist); 
termpointsl = termpointsl- > nexttermpoint;
}

return(vertlist);
}
/*........................................................................... 7
float slope_of_major(float v[6])
{
float angle;
angle = atan2(v[2],(v[0]-v[l])); 
angle = 180*7*angle/22; 
return(angle);
}
/* .................................................................................... 7
int decide_linetype(Lineseg *lineseg, Geom_edge2d *geomlist)
{
int i, j, k, linetype = 0, sense = 1, complete = 0; 
float angle, tpl[2],tp2[2],d; 
if (lineseg- > type = = 1)

{
if (geomlist- > v[0] = = 0) linetype = 1; 
else

{
angle = atan(geomlist- >v[l])* 180*7/22; 
if ((fabs(angle-30)) 1.0) linetype = 2; 
if ((fabs(angle + 30)) 1.0) linetype = 3; 
if (linetype = = 0) linetype = 4;
}

}
else

{
if (lineseg-> type = = -2) sense = -1; 
tpl[0] = lineseg- >stpt[0]; 
tp l[l] = lineseg->stpt[l]; 
tp2[0] = lineseg- > finpt[0];
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tp2[l] = lineseg->finpt[l];
d = distance(tpl[0 ],tpl[l],tp2 [0 ],tp2 [l]);

if (d 50) complete = 1; 
angle = slope_of_major(geomlist-v); 
if ((fabs(angle)-7) < 0) angle = 0; 
if (fabs(angle-30) < 7) angle = 30; 
if (fabs(angle -150) < 7) angle = 150; 
if (complete = = 1)

{
if (angle = = 0) linetype = sense*5; 
if (angle = = 30) linetype = sense*6; 
if (angle = = 150) linetype = sense*7; 
if (linetype = = 0) linetype = sense*8;
}

else
{
if (angle = = 0) linetype = sense*9; 
if (angle = = 30) linetype = sense* 10; 
if (angle = = 150) linetype = sense*ll; 
if (linetype = = 0) linetype = sense *12; 
}

}
return(linetype);
}
/* .........................................................................7
/* find_edge2d(Lineseg *linesegs, Vert2d *vertlist

Geom_edge2d *geomlist)
*

This function returns the list of nodes edge2d corresponding to each
in the list linesegs using the vertlist.
*

7
Edge2d *find_edge2d(Lineseg *linesegs, Vert2d *vertlist,

Geom_edge2d *geomlist)
{
float tpl[2], tp2[2], tp[2], d; 
int i = 0, j, found = 0;
Edge2d *edgelist, *newedge;
Geom_edge2d *geomlistl;
Lineseg *linesegl;
Vert2d *vertlistl;
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linesegl = linesegs; 
edgelist = get_edge2d(); 
vertlistl = vertlist- > nextvert2d; 
linesegl = linesegl- > nextlineseg; 
geomlistl = geomlist-> nextgeom_edge2d; 
while (linesegl! = NULL)

{
tpl[0] = linesegl- >stpt[0];
tp l[l] = linesegl->stpt[l];
tp2[0] = linesegl- >finpt[0];
tp2[l] = linesegl->finpt[l];
while ((vertlistl! = NULL) && (found ! = 1))

{
i+  + ;
tp[0] = vertlistl->point[0];
tp[l] = vertlistl->point[l];
d = distance(tp[0], tp[l], tpl[0], tpl[l]);
if (d 50.0) found = 1;
vertlistl = vertlistl->nextvert2d;
}

newedge = get_edge2d(); 
newedge->vertl = i;
newedge- > edgetype = decide_linetype(linesegl, geomlistl); 
found = 0; 
i = 0;
vertlistl = vertlist->nextvert2d;
while ((vertlistl! = NULL) && (found ! = 1))

{
i+  + ;
tp[0] = vertlistl->point[0];
tp[l] = vertlistl->point[l];
d = distance(tp[0], tp[l], tp2[0], tp2[l]);
if (d 50) found = 1;
vertlistl = vertlistl->nextvert2d;
}

newedge->vert2 = i; 
found =0; 
i = 0;
vertlistl = vertlist-> nextvert2d;
edgelist = back_of_edge2d(newedge, edgelist);
linesegl = linesegl-> nextlineseg;
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geomlistl = geomlistl->nextgeom_edge2d;
}

return(edgelist);
}
r .........................................................V
process2d()
{
read_point_füe();
VISLINESEG = parse(VISPOINTS, NUM VISPOINTS);
VISTERMPOINT = find_termpoint( VISLINESEG);
VISGEOM = find_geom_edge2d(VISLINESEG, VISPOINTS);
VISVERT2D = find_vert2d(VISTERMPOINT, VISGEOM);
VISEDGE2D = find_edge2d(VISLINESEG, VISVERT2D, VISGEOM); 
if (NUM_HIDPOINTS 0)

{
HIDLINESEG = parse(HIDPOINTS, NUM HIDPOINTS); 
HIDTERMPOINT = find_termpoint(HIDLINESEG);
HIDGEOM = find_geom_edge2d(HIDLINESEG, HIDPOINTS); 
HIDVERT2D = find_vert2d(HIDTERMPOINT, HIDGEOM); 
HIDEDGE2D = find_edge2d(HIDLINESEG, HIDVERT2D, HIDGEOM);
}

if (NUM CENTPOINTS 0)
{
CENLINESEG = parse(CENTPOINTS, NUM_CENTPOINTS); 
CENTERMPOINT = find_termpoint(CENLINESEG);
CENGEOM = find_geom_edge2d(CENLINESEG, CENTPOINTS); 
CENVERT2D = find_vert2d(CENTERMPOINT, CENGEOM); 
CENEDGE2D = find_edge2d(CENLINESEG, CENVERT2D, CENGEOM); 
}

if (NUM_CONSPOINTS 0)
{
CONSLINESEG = parse(CONSPOINTS, NUM_CONSPOINTS); 
CONSTERMPOINT = find_termpoint(CONSLINESEG);
CONSGEOM = find_geom_edge2d(CONSLINESEG, CONSPOINTS); 
CONSVERT2D = find_vert2d(CONSTERMPOINT, CONSGEOM); 
CONSEDGE2D = find_edge2d (CONSLINESEG, CONSVERT2D, CON-

SGEOM);
}

if (NUMERASPOINTS 0)
{
ERASLINESEG = parse(ERASPOINTS, NUM ERASPOINTS);
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ERASTERMPOINT = findtermpoint(ERASLINESEG);
ERASGEOM = find_geom_edge2d(ERASLINESEG, ERASPOINTS); 
ERASVERT2D = find_vert2d(ERASTERMPOINT, ERASGEOM); 
ERASEDGE2D = find_edge2d(ERASLINESEG, ERASVERT2D, ERAS-

GEOM);

}
write_file_one();

}
r ...................................................................V
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M ERGE FACILITIES FUNCTIONS

/* merge2d.c
................................................................... 7
/* parallel_dist_lines(float vl[3], float v2[3])
*

This function calclates the perpendicular distance between two 
parallel lines given by the equations vl[3] and v2[3]. The return
value is the distance.
*

7
float parallel_dist_lines(float vl[3], float v2[3])

{
float dist;
dist = fabs((-vl[2]+v2[2])/(sqrt(vl[0]*vl[0] + vl[l]*vl[l]))); 
return(dist);
}
/* ...............................................................................7
/ * div_in_or_out (x 1 ,y 1 ,x2,y2,x,y)
*

This function returns a value 1 if the point (x,y) lies between
(xl,yl) and (x2,y2) and returns 0 if it is outside.
*

7
int div_in_or_out(xl,yl,x2,y2,x,y) 
float xl,yl,x2,y2,x,y;

{
float lambda;
int result = 0;
lambda = (x2-x)/(x-xl);
if (lambda > 0) result = 1;
return(result);
}
I*___________________________________

/*  div_in_or_out_arc(order, geomlist, edgelist, vertlist, xl, yl)
*

This function tells whether point (xl,yl) is inside or outside the 
arc represented by the orderth node in the list. The result returned 
is ’0’ if it is outside and T  if it is inside.
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int div_in_or_out_arc(int order, Geom_edge2d *geomlist,
Edge2d *edgelist, Vert2d *vertlist, float xl, float yl)

{
float xc, yc, x2, y2, x3, y3; 
float *vl, *v2;
int i, n l, n2, sidel, side2, ans = 0, side3, side4;
Edge2d * edgelistl;
Vert2d * vertlistl;
Geom_edge2d *geomlistl; 
for(i = 0; i = order; i + + )

{
geomlistl = geomlistl-> nextgeom_edge2d; 
edgelistl = edgelistl->nextedge2d;

}
xc = geomlist-> meanx; 
yc = geomlist-> meany; 
n l = edgelistl->vertl; 
n2 = edgelistl-vert2; 
vertlistl = vertlist;
for (i = 0; i = nl; i + + ) vertlistl = vertlistl- > nextvert2d; 
x2 = vertlistl->point[0]; 
y2 = vertlistl->point[l]; 
vertlistl = vertlist;
for (i = 0; i = n2; i + + ) vertlistl = vertlistl- > nextvert2d;
x3 = vertlistl->point[0];
y3 = vertlistl->point[l];
v l = line_equation(xc, yc, x2, y2);
v2 = line_equation(xc, yc, x3, y3);
sidel = side_of_line(vl,xl,yl);
side2 = side_of_line(vl,x3,y3);
side3 = side_of_line(v2,xl,yl);
side4 = side_of_line(v2,x2,y2);
if ((sidel*side2 0) && (side3*side4 0)) ans = 1;
return(ans);

7

}
I * ______________________________________________________________________ *J
/* same_equation(geomlist, numedges, lastchecked)
This function checks whether the (lastchecked + l)th node in the 
list has any nodes behind it with the same equation. If there are 
none avector with all elements 0 would be returned. If there are

242



any the first element of the vector would be the number and the 
following elements would give their ranks in geomlist.
7
int *same_equation(Geom_edge2d ‘geomlist, int numedges,

int lastchecked)
{
int ans = 0, order, typel, type2, i, *v, *v3, geomrank, numsame;
Geom_edge2d ‘geomlistl, *geomlist2;
float dl,d2,d3,d4,d5,d6,*vl,‘v2;
geomlistl = geomlist-> nextgeom_edge2d;
v = ivector(0,numedges-l);
for(i = 0; i < numedges; i + + ) v[i] = 0;
for(i = 0; iastchecked; i + + )
geomlistl = geomlist- > nextgeom_edge2d;
order = lastchecked;
geomlist2 = geomlistl- >nextgeom_edge2d; 
order + + ;
geomrank = order +1; 
while (geomlist2 ! = NULL)

{
typel = geomlistl-> type; 
type2 = geomlist2-> type; 
if ((abs(typel)) = = (abs(type2)))

{
vl = geomlistl->v; 
v2 = geomlist2- > v; 
if ((abs(typel)) < 5)

{
d l = fabs(vl[0] - v2[0]); 
d2 = fabs(vl[l]-v2[l]); 
d3 = fabs(vl[2] - v2[0]); 
if(((dl) && (d2)) && (d3)) ans 
}

if(abs(typel) 4)
{
d l = fabs(vl[0] - v2[0]); 
d2 = fabs(vl[l] - v2[l]); 
d3 = fabs(vl[2] - v2[2]); 
d4 = fabs(vl[3] - v2[3]); 
d5 = fabs(vl[4] - v2[4]); 
d6 = fabs(vl[5] - v2[5]);
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if((dl) && (d2) && (d3) && 
(d4) && (d5) && (d6)) ans = 1
}

}
if (ans = = 1)

{
v[numsame] = geomrank; 
numsame + + ;
}

geomlist2 = geomlist2-> nextgeom_edge2d; 
geomrank + + ;

}
if(numsame 0)

{
v3 ivector(0,numsame);

else

v3[0] = numsame;
for (i = 0; i < numsame; i + + )

{
v3[i + 1] = v[i];
}

free_ivector(v,0,numedges);
return(v3);
}

{
return(v);

}
}
/*
r

v
merge_type_test_straight(order, orderl,

edgelist, vertlist)
This function tests two edges with the same equations and find 
what kind of merging is possible. The result is given in a vector 
of five elements. The first element tells what kind of merging is 
possible. A ’0’ represents no merging possible, a T  represents 
the removal of an overstruck edge and a ’2’ represents a later 
extension or drawing from both ends. Other elements represent
2 Edge to be retained
3 Edge to be removed
4 First vertex to be removed
5 Second vertex to be removed
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int *merge_type_test_straight(int order, Edge2d *edgelist,
Vert2d *vertlist, int order 1)

{
float xl,yl,x2,y2,x3,y3,x4,y4,dl,d2,d3,d4,ll,12;
Edge2d * edgel, *edge2;
Vert2d *vertl;
int ans, i, nl, n2, n3, n4, testl, test2, test3, test4, *v; 
edgel = edgelist-> nextedge2d; 
edge2 = edgelist-> nextedge2d;
for (i = 0; i < order; i + + ) edgel = edgel- > nextedge2d;
for (i = 0; i < order; i + + ) edge2 = edge2- > nextedge2d;
n l = edgel->vertl;
n2 = edgel->vert2;
vertl = vertlist-> nextvert2d;
for (i = 0; i < n l; i + + ) vertl = vertl- > nextvert2d;
xl = vertl->point[0];
yl = vertl->point[l];
vertl = vertlist-> nextvert2d;
for (i = 0; i < n2; i + + ) vertl = vertl- > nextvert2d;
x2 = vertl->point[0];
y2 = vertl->point[l];
n3 = edge2-> vertl;
n4 = edge2-> vert2;
vertl = vertlist-> nextvert2d;
for (i = 0; i < n3; i + + ) vertl = vertl- > nextvert2d;
x3 = vertl->point[0];
y3 = vertl->point[l];
vertl = vertlist- >nextvert2d;
for (i = 0; i 4; i + + ) vertl = vertl- > nextvert2d;
x4 = vertl- >point[0];
y4 = vertl->point[l];
testl = div_in_or_out(xl,yl,x2,y2,x3,y3);
test2 = div_in_or_out(xl,yl,x2,y2,x4,y4);
v = ivector(0,4);
11 = distance(xl,yl,x2,y2);
12 = distance(x3,y3,x4,y4); 
for (i = 0; i < 5; i + + ) v[i] = 0;
if ((testl = = 0) && (test2 = = 0) && (11 12))

{
d l = distance(xl,yl,x3,y3);

7
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d2 = distance(x2,y2,x3,y3); 
d3 = distance(xl,yl,x4,y4); 
d4 = distance(x2,y2,x4,y4);
if ((fabs(dl) MINDIST) && (fabs(d2) MINDIST) && 

(fabs(d3) MINDIST) && (fabs(d4) MINDIST)) return (v);
}

if ((11 12) && (testl = = 1) && (test2 = = 1))
{
v[0] = 1; /* type 1 merge remove an overstruck edge */
v[l] = order; /* edge to be retained */
v[2] = orderl; /* edge to be removed */
v[3] = n3; /* vertex to be removed */
v[4] = n4; /* vertex to be removed */
return (v);

}
if (((testl = = 1) && (test2 = = 0)) | | ((testl = = 0) && (test2 = = 1)))

{
v[0] = 2; /* type 2 merging later extension or drawing

from both ends */

v[l] = order; 
v[2] = orderl; 
if (testl = = 1)

{
v[3] = n3;
test3 = div_in_or_out(xl,yl,x4,y4,x3,y3); 
if (test3 = = 1) v[4] = n2; 
if (test3 = = 0) v[4] = nl;
}

if (test2 = = 1)
{
v[3] = n4;
test4 = div_in_or_out(xl,yl,x3,y3,x4,y4); 
if (test4 = = 1) v[4] = n2; 
if (test4 = = 0) v[4] = nl;

}
return(v);

}
if ((11 12) && (testl = = 0) && (test2 = = 0))

{
v[0] = 1; 
v[l] = orderl;
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v[2] = order; 
v[3] = nl; 
v[4] = n2; 
re turn (v);

}
}
/*.........................................................................7
/* int *merge_type_test_arc(order, order 1, geomlist, edgelist,

vertlist)
This function tests whether two arcs with the same equation and 
finds out the kind of merging possible. The result is given in a 
five element vector. The first element tells the kind of merging 
possible. A ’0’ represents no possible merging, a T  represents 
an overstruck edge and a ’2’ represents drawing from both ends.
7
int *merge_type_test_arc(int order, int order 1, Edge2d * edgelist,

Geom_edge2d*geomlist, Vert2d *vertlist)
{
int endl, end2, end3, end4;
int i, nl, n2, n3, n4, *v, sidel, side2;
float xl, yl, x2, y2, x3, y3, x4, y4, xc, yc, dl, d2, d3, d4;
float *linel;
Edge2d * edgelist 1;
Vert2d * vertlist 1;
Geom_edge2d *geomlistl; 
edgelist 1 = edgelist; 
vertlist 1 = vertlist 1; 
geomlist 1 = geomlist; 
v = ivector(0,4); 
for (i = 0; i < 5; i + + ) v[i] = 0; 
for (i = 0; i = orderl; i + + )

{
edgelist 1 = edgelistl->nextedge2d; 
geomlistl = geomlistl-nextgeom_edge2d;
}

n l = edgelistl->vertl; 
n2 = edgelistl->vert2; 
xc = geomlist-> meanx; 
yc = geomlist-> meany;
for (i = 0; i = nl; i + + ) vertlistl = vertlistl- > nextvert2d; 
xl = vertlistl->point[0];
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yl = vertlistl->point[l]; 
vertlistl = vertlist;
for (i = 0; i = n2; i + + ) vertlistl = vertlistl- > nextvert2d;
x2 = vertlistl->point[0];
y2 = vertlistl- > pointfl];
edgelistl = edgelist;
vertlistl = vertlist;
for (i = 0; i = order; i + + ) edgelistl = edgelistl- > nextedge2d; 
n3 = edgelistl-> vertí; 
n4 = edgelistl->vert2;
for (i = 0; i = n3; i + + ) vertlistl = vertlistl- > nextvert2d; 
x3 = vertlistl->point[0]; 
y3 = vertlistl->point[l]; 
vertlistl = vertlist;
for (i = 0; i = n4; i + + ) vertlistl = vertlistl- > nextvert2d;
x4 = vertlist- >point[0];
y4 = vertlist-> pointfl];
d l = distance(xl, yl, x3, y3);
d2 = distance(xl, yl, x4, y4);
d3 = distance(x2, y2, x3, y3);
d4 = distance(x2, y2, x4, y4);
if ((dl2) I I (d22) I I (d32) 11 (d42))

{
v[0] = 2; 
v[l] = order; 
v[2] = orderl; 
if ((dl 50) I I (d2 50))

{
v[3] = nl;
if (dl 50) v[4] = n3;
if (d2 50) v[4] = n4;
}

if ((d3 50) I I (d4 50))
{
v[3] = n2;
if (d3 50) v[4] = n3;
if (d4 50) v[4] = n4;
}

return(v);

}
endl = div_in_or_out_arc(order, geomlist, edgelist, vertlist, xl, yl);
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end2 = div_in_or_out_arc(order, geomlist, edgelist, vertlist, x2, y2); 
if ((endl = = 1) && (end2 = = 1))

{
v[0] = 1; 
v[l] = order; 
v[2] = order1; 
v[3] = nl; 
v[4] = n2; 
return(v);
}

if ((endl = = 1) && (end2 = = 0))

{
v[0] = 2; 
v[l] = order; 
v[2] = orderl; 
v[3] = nl;
linei = line_equation(xc, yc, xl, yl); 
sidel = side_of_line(linel, x2, y2); 
side2 = side_of_line(linel, x3, y3); 
v[4] = n4;
if (sidel *side2 <0)v[4] = n3; 
return(v);

}
if ((endl = = 0) && (end2 = = 1))

{
v[0] = 2; 
v[l] = order; 
v[2] = orderl; 
v[3] = n2;
linei = line_equation(xc, yc, x2, y2); 
sidel = side_of_line(linel, xl, yl); 
side2 = side_of_line(linel, x3, y3); 
v[4] = n4;
if (sidel*side2< 0)v[4] = n3; 
return(v);
}

end3 = div_in_or_out_arc(orderl, geomlist, edgelist, vertlist, x3, y3); 
end4 = div_in_or_out_arc(orderl, geomlist, edgelist, vertlist, x4, y4); 
if (((endl = = 0) && (end2 = = 0)) && ((end3 = = 1) && (end4 = = 1))) 

{
v[0] = 1;
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v[l] = orderl; 
v[2] = order; 
v[3] = n3; 
v[4] = n4; 
return(v);
}

}
r .........................................................................v
int members_in_intlist(Intnode *intlist)

{
int n;
Intnode *intlistl;
intlistl = intlistl->nextintnode;
while (in tlistl! = NULL)

{
intlistl = intlistl-> nextintnode; 
n +  + ;

}
return(n);

}
r ...................................................................... */
Intnode *remove_node_intlist(Intnode *intlist, int n)
{
Intnode *intlistl, *intlist2; 
int i = 0, j;
intlistl = intlist-nextintnode; 
while (intlistl- > a ! = n)

{
intlistl = intlistl-> nextintnode;
i+  + ;
}

intlistl = intlist-nextintnode;
for(j = 1; j < (i-1); j + + ) intlistl = intlistl- > nextintnode;
intlist2 = intlistl- > nextintnode;
intlistl-> nextintnode = intlist2- > nextintnode;
kill_intnode(intlist2);
return(intlist);
}
I*___________________________________ * i

/* zero_dist_merge(geomlist, edgelist, vertlist, numedges)
This function merges the lines which are having the same equations

250



and are given permission by the user.
7
void zero_dist_merge(Geom_edge2d *geomlist, Edge2d * edgelist,

Vert2d *vertlist, int numedges)
{
int *v, nl, n2,i,*vl, order = 1; 
char ch;
Intnode *intlist;
Vert2d *vertl, *vert2;
Edge2d * edgel, *edge2;
Geom_edge2d *geomlistl, *geomedgel, *geomedge2; 
geomlistl = geomlist->nextgeom_edge2d; 
while (geom listl! = NULL)

{
vl = same_equation(geomlistl, order, numedges); 
if(vl[0]! = 0)
{
for (i = 0; i < vl[0j; i + + )

{
v = merge_type_test_straight 
(order, edgelist, vertlist,vl[(i +1)]); 
edgel = edgelist; 
geomedgel = geomlist;
printf("%s%d%s%d%s\n",'The edges",order, "and",

vl[(i +1)], "are conformable for merging"); 
printf("Do you want them to merge? Type y or n\n"); 

ch = getch();
if ((v[0]! = 0) && (ch = = ’y’))

{
for(i = 0; i < v[2]; i + + )

{
edgel = edgel->nextedge2d; 

geomedgel = geomedgel- > nextgeom_edge2d;
}

geomedge2 = geomedgel->nextgeom_edge2d; 
geomedgel->nextgeom_edge2d = geomedge2-> nextgeom_edge2d; 

edge2 = edgel->nextedge2d;
edgel->nextedge2d = edgel- > nextedge2d-> nextedge2d;
kill_geomedge2d(geomedge2);
kill_edge2d(edge2);
vertl = vertlist- > nextvert2d;
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for (i = 0; i < v[3]; i + + ) vertí = vertí- > nextvert2d;
intlist = vertí- > linelist;
n2 = members_in_intlist(intlist);
vertí = vertlist- > nextvert2d;
if (n2 = = 1)

{
for (i = 0; i < v[3]-l; i + + ) vertí = vert- > nextvert2d;

vert2 = vertí- > nextvert2d; 
vertí->nextvert2d = vertí- > nextvert2d-> nextvert2d 

kill_vert2d(vert2) ;

}
else

{
intlist = remove_node_intlist(intlist, v[2]);

}
vertí = vertlist-> nextvert2d;
for (i = 0; i < v[4]-l; i + + ) vertí = vertí- > nextvert2d; 
intlist = v ertí-> linelist; 
n2 = members_in_intlist(intlist); 
if (n2 = = 1)

{
for (i = 0; i < v[4]-l; i + + ) vertí = vertlist- > nextvert2d; 

vert2 = vertí->nextvert2d; 
vertí->nextvert2d = vertí->nextvert2d-

nextvert2d;
kill_vert2d(vert2);

}
else

{
intlist = remove_node_intlist(intlist, v[2]);

}
}
}

}
geomlistl = geomlistl-> nextgeom_edge2d; 
free_ivector(vl,0,vl[0]);
}

}
/*........................................................................... 7
void comb_zero_dist_merge()

{
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zero_dist_merge(VISGEOM, VISEDGE2D, VISVERT2D, NUMVISEDGE); 
if(NUM_HIDPOINTS 0)
zero_dist_merge(HIDGEOM, HIDEDGE2D, HIDVERT2D, NUMHIDEDGE); 
if(NUM_CENTPOINTS 0)
zero_dist_merge (CENGEOM, CENEDGE2D, CENVERT2D, NUM- 
CENEDGE);
if (NUMCONSPOINTS 0)
zero_dist_merge(CONSGEOM, CONSEDGE2D, CONSVERT2D, NUMCON- 
SEDGES);

}
/*............................................................................. V
/* same_equation_toerase(geomlist,

erasgeomlist, lastchecked)
This function checks whether the (lastchecked + l)th node in the 
erasgeomlist has any nodes in the list geomlist with same equation. If 
none are present a vector with all elements 0 would be returned. If 
any are present the first element of the vector would be the number, 
the second give the type with the following elements would give their 
ranks in geomlist.
7
int *same_equation_toerase(Geom_edge2d * geomlist,

Geom_edge2d * erasgeomlist, 
int lastchecked)

{
int numsame = 0, ans = 0, order, typel, i, geomrank, type2, *v, *v3, numedges = 0;
Geom_edge2d *geomlistl, * erasgeomlist 1, geomlist2;
float dl,d2,d3,d4,d5,d6,*vl,*v2;
geomlistl = geomlist- > nextgeom_edge2d;
while(geomlistl! = NULL)

{
numedges + +;
geomlistl = geomlistl-> nextgeom_edge2d;

}
geomlistl = geomlist->nextgeom_edge2d;
erasgeomlistl = erasgeomlist-> nextgeom_edge2d;
v = ivector(0,numedges-l);
for(i = 0; i < numedges; i + + ) v[i] = 0;
for(i = 0; i = lastchecked; i + + )
erasgeomlistl = erasgeomlistl->nextgeom_edge2d;
geomrank = 1;
while (geom listl! = NULL)
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{
typel = geomlistl-> type; 
type2 = erasgeomlist->type; 
if ((abs(typel)) = = (abs(type2)))

{
vl = geomlistl->v; 
v2 = erasgeomlist->v; 
if ((abs(typel)) 5)

{
d l = fabs(vl[0] - v2[0]); 
d2 = fabs(vl[l] - v2[l]); 
d3 = fabs(vl[2] - v2[0]); 
if(((dl) && (d2)) && (d3)) ans 
}

if(abs(typel) 4)
{
d l = fabs(vl[0] - v2[0]); 
d2 = fabs(vl[l] - v2[l]); 
d3 = fabs(vl[2] - v2[2]); 
d4 = fabs(vl[3] - v2[3]); 
d5 = fabs(vl[4] - v2[4]); 
d6 = fabs(vl[5] - v2[5]); 
if((dl) && (d2) && (d3) && 
(d4) && (d5) && (d6)) ans = 1; 
}

}
if(ans = = 1)

{
v[numsame] = geomrank; 
numsame + + ;

}
geomlistl = geomlistl- > nextgeom_edge2d; 
geomrank 4- + ;
}

if(numsame 0)
{
v3 = ivector(0, numsame);
v3[0] = numsame;
for (i = 0; i < numsame; i + + )

v3[i + 1] = v[i];
{
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}
free_ivector(v,0,numedges);
return(v3);

}
else

{
return(v);
}

}
r .................................................................... v

int overlap_test_erase(int order, Edge2d *edgetoerase, Edge2d
*edgelist, Vert2d *vertlist, Geom_edge2d *geomlist)

{
float xl,yl,x2,y2,x3,y3,x4,y4; 
int d l, d2, d3, d4, ans = 0, al, a2;
Edge2d *edgel, *edge2, *edge3, *edgelistl;
Intnode *intlist; 
char c;
Geom_edge2d *geomedgel, *geomedge2;
Vert2d *vertl,*vert2, *vertlistl; 
int i, nl, n2, n3, n4, testl; 
edgel = edgetoerase; 
edge2 = edgelist-> nextedge2d;
for(i = 0; i < order; i + + ) edge2 = edge2- > nextedge2d;
n l = edgel->vertl;
n2 = edgel->vert2;
vertl = ERASVERT2D-nextvert2d;
for (i = 0; i < nl; i + + ) vertl = vertl- > nextvert2d;
xl = vertl->point[0];
yl = vertl->point[l];
vertl = ERAS VERT2D-> nextvert2d;
for (i = 0; i < n2; i + + ) vertl = vertl- > nextvert2d;
x2 = vertl->point[0];
y2 = vertl->point[l];
n3 = edge2-> vertl;
n4 = edge2->vert2;
vertl = vertlist-> nextvert2d;
for (i = 0; i < n3; i + + ) vertl = vertl- > nextvert2d;
x3 = vertl->point[0];
y3 = vertl- >point[l];
vertl = vertlist- > nextvert2d;
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for (i = 0; i < n4; i + + ) vertl = vertl- > nextvert2d; 
x4 = vertl- >point[0]; 
y4 = vertl->point[l];
if((fabs(xl-x3) < 20) && (fabs(yl-y3) 20)) d l = 1;
if((fabs(xl-x4) < 20) && (fabs(yl-y4) 20)) d2 = 1;
if((fabs(x2-x3) < 20) && (fabs(y2-y3) 20)) d3 = 1;
if((fabs(x2-x4) < 20) && (fabs(y2-y3) 20)) d4 = 1;
if((dl = = 1) && (d4 = = 1)) testl = 1; 
if((d2 = = 1) && (d3 = = 1)) testl = 1; 
if(testl = = 1)

{
printf("The line % d " ,order," is conformable for eraseing!\n"); 
printf("Can it be erased? Y or N\n"); 
c = getch();
if (c = = y)

{
edge2 = edgelist-> nextedge2d; 
geomedgel = geomlist- > nextgeom_edge2d; 
for(i = 0; i = order-1; i + + )

{
edge2 = edge2-> nextedge2d; 

geomedgel = geomedgel->nextgeom_edge2d;

}
edge3 = edge2-> nextedge2d; 
geomedge2 = geomedge2-> nextgeom_edge2d; 
edge2-> nextedge2d = edge3-> nextedge2d; 

geomedgel->nextgeom_edge2d = geomedge2- > nextgeom_edge2d; 
a l = edge3-vertl; 
a2 = edge3-vert2; 
vertlistl = vertlist;
for(i = 0; i = al; i + + ) vertlistl = vertlistl- > nextvert2d; 
intlist = vertlistl- > linelist; 
if(members_in_intlist(intlist) = = 1)

{
vertlistl = vertlist;

for(i = 0; i = al; i + + ) vertlistl = 
vertlistl- > nextvert2d; 
kill_vert2d(vertlist 1);
}

else

{
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intlist = remove_node_intlist(intlist, al);

}
vertlistl = vertlist;
for(i = 0; i = a2; i + + ) vertlistl = vertlistl-nextvert2d; 
intlist = vertlistl- > linelist; 
if(members_in_intlist(intlist) = = 1)

{
vertlistl = vertlist; 
for(i = 0; i = a2; i + + ) vertlistl = 
vertlistl = vertlistl->nextvert2d; 
kill_vert2d (vertlist 1 ) ;

}
else

{
intlist = remove_node_intlist(intlist, a2);

}
kill_edge2d(edge3); 
kill_geomedge2d(geomedge2) ; 
ans = 0;
}

}
return(ans);
}
/*...................................................................... 7
void erase_merge()
{
int ans = 0, *v, i, j, numerased = 0;
Edge2d * erasedge;
Geom_edge2d *erasgeom;
erasedge = ERASEDGE2D-nextedge2d;
while(erasedge ! = NULL)

{
numerased + + ;
erasedge = erasedge-> nextedge2d;
}

erasedge = ERASEDGE2D-nextedge2d; 
for (i = 1; i = numerased; i + + )

{
V = same_equation_toerase(VISGEOM, ERASGEOM, i); 
if(v[0] ! = 0)

{
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for(j = 0 ;j< v [0 ];j+  + )
{

ans = overlap_test_erase(v[j +1], erasedge, 
VISEDGE2D, VISVERT2D, VISGEOM); 
if(ans = = 1) break;
}
if(ans = = 1) break;
}

V = same_equation_toerase(HIDGEOM, ERASGEOM, i); 
if(v[0] ! = 0)

{
for(j = 0; j[0];j+ +)

{
ans = overlap_test_erase(v[j +1], erasedge, 
HIDEDGE2D, HIDVERT2D, HIDGEOM); 
if(ans = = 1) break;

}
if(ans = = 1) break;
}

V = same_equation_toerase(CENGEOM, ERASGEOM, i); 
if(v[0] ! = 0)
{
for(j = 0; j[0]; j + +)

{
ans = overlap_test_erase(v[j +1], erasedge, 
CENEDGE2D, CENVERT2D, CENGEOM); 
if(ans = = 1) break;
}
if (ans = = 1) break;
}

V  = same_equation_toerase(CONSGEOM, ERASGEOM, i); 
if(v[0] ! = 0)

{
for(j = 0; j < v[0] ; j + + )

{
ans = overlap_test_erase(v[j +1], erasedge, 
CONSEDGE2D, CONSVERT2D, CONSGEOM); 
if(ans = = 1) break;
}
if(ans = = 1) break;

}
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erasedge = erasedge-nextedge2d; 
ans = 0;

}
}
r .........................................................................7

copy_s°iid()
{
int i, numedge = 0, numvert = 0;
Edge2d *newedge, *visedge2d;
Vert2d *newvert, *visvert2d;
Geom_edge2d *newgeom, * visgeom; 
visgeom = VISGEOM->nextgeom_edge2d; 
while (visgeom ! = NULL)

{
numedge + +;
visgeom = visgeom- > nextgeom_edge2d;

}
while(visvert2d ! = NULL)
{

numvert + + ;
visvert2d = visvert2d-> nextvert2d;

}
SOLVERT2D = get_vert2d(); 
visvert2d = VISVERT2D-> nextvert2d; 
for(i = 0; i < numvert; i + + )

{
newvert = get_vert2d(); 
newvert-> point = visvert2d-> point; 
newvert- > linelist = visvert2d- > linelist; 
back_of_vert2d(newvert, SOLVERT2D); 
visvert2d = visvert2d- > nextvert2d;
}

visgeom = VISGEOM- > nextgeom_edge2d; 
visedge2d = VISEDGE2D > -nextedge2d;
SOLEDG2D = get_edge2d();
SOLGEOM = get_geom_edge2d(); 
newedge = get_edge2d(); 
newgeom = get_geom_edge2d(); 
newedge-> vert 1 = visedge2d->vertl; 
newedge->vert2 = visedge2d- > vert2; 
newedge-> edgetype = visedge2d-> edgetype;
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visedge2d = visedge2d-> nextedge2d;
SOLEDG2D = back_of_edge2d(newedge, S0LEDG2D);
newgeom->v = visgeom->v;
newgeom-> type = visgeom->type;
newgeom- > meanx = visgeom- > meanx;
newgeom-> meany = visgeom- > meany;
visgeom = visgeom-> nextgeom_edge2d;
SOLGEOM = back_of_geom2d(newgeom, SOLGEOM); 
NUMVISEDGE = numedge;
NUMVISVERT = numvert;

}
I* ................................. - ................................ 7
int member_vertlist(Vert2d *vertlist, float x, float y)

{
int ans = 0; 
float dl, d2;
Vert2d *vertlistl;
vertlistl = vertlist- > nextvert2d;
while(vertlistl! = NULL)

{
d l = fabs(x- vertlistl- >point[0]); 
d2 = fabs(y-vertlistl->point[l]); 
if((dl 20) && (d2 20)) ans = 1; 
vertlistl = vertlistl- >nextvert2d;

}
}
/* ...............................................................................7
solid_merge()
{
Edge2d *hidedge2d, *newedge2d;
Vert2d *hidvert2d, *newvert2d, *solvert2d;
Geom_edge2d *hidgeom, * newgeom;
Intnode *linelist, *newintnode;
int hidedge = 0, hidvert = 0, nl, n2, n, i, j;
float xl, yl, x2, y2, *v;
hidedge2d = HIDEDGE2D-> nextedge2d; 
hidvert2d = HIDVERT2D-> nextvert2d; 
while(hidedge2d ! = NULL)

{
hidedge + + ;
hidedge2d = hidedge2d->nextedge2d;
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}
while(hidvert2d ! = NULL)

{
hidvert + + ;
hidvert2d = hidvert2d- > nextvert2d;
}

hidedge2d = HIDEDGE2D-> nextedge2d; 
hidvert2d = HIDVERT2D-> nextvert2d; 
hidgeom = HIDGEOM-nextgeom_edge2d; 
for(i = 0; ihidedge; i + + )

{
newedge2d = get_edge2d(); 
n l = hidedge2d-vertl; 
n2 = hidedge2d-> vert2;
for(j = 0; j 1; j + + ) hidvert2d = hidvert2d- > nextvert2d;
xl = hidvert2d->point[0];
yl = hidvert2d->point[l];
hidvert2d = HIDVERT2D-> nextvert2d;
for(j = 0; j < 2; j + + ) hidvert2d = hidvert2d- > nextvert2d;
x2 = hidvert2d->point[0];
y2 = hidvert2d->point[l];
n = member_vertlist(SOLVERT2D, xl, yl);
if(n= =0)

{
newvert2d = get_vert2d();
V = vector(0,l); 
v[0] = xl; 
v[l] = yl;
newvert2d- > point = v; 
linelist = get_intnode(); 
newintnode = get_intnode(); 
newintnode-> a = NUMVISEDGE + i; 
back_of_intnode(newintnode, linelist); 
ne wvert2d-> linelist = linelist; 
back_of_vert2d(newvert2d, SOLVERT2D); 
NUMSOLVERTS + + ;

}
else

{
solvert2d = SOLVERT2D->nextvert2d;
for(j = 0; j < n j + + ) solvert2d = solvert2d-nextvert2d;
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linelist = solvert2d-linelist; 
newintnode = get_intnode(); 
newintnode-> a = NUMVISEDGE + i; 
back_of_intnode(newintnode, linelist);

}
newedge2d = get_edge2d(); 
newedge2d-> vertí = NUMSOLVERTS; 
if(nO) newedge2d->vertí = n; 
n = member_vertlist(SOLVERT2D, x2, y2); 
if(n= =0)

{
newvert2d = get_vert2d();
V = vector(0,l); 
v[0] = xl; 
v[l] = yl;
newvert2d- > point = v; 
linelist = get_intnode(); 
newintnode = get_intnode(); 
newintnode-> a = NUMVISEDGE-I-i; 
back_of_intnode(newintnode, linelist); 
newvert2d-linelist = linelist; 
back_of_vert2d(newvert2d, SOLVERT2D); 
NUMSOLVERTS + + ;
}

else
{
solvert2d = SOLVERT2D-> nextvert2d;
for(j = 0; j < n; j + + ) solvert2d = solvert2d- > nextvert2d;
linelist = solvert2d-> linelist;
newintnode = get_intnode();
newintnode-> a = NUMVISEDGE -I- i;
back_of_intnode(newintnode, linelist);
}

newedge2d- >vert2 = NUMSOLVERTS;
if(n0) newedge2d-> vert2 = n;
newedge2d-> edgetype = hidedge2d-> edgetype;
back_of_edge2d(newedge2d, SOLEDG2D);
newgeom = get_geom_edge2d();
newgeom-> type = hidgeom->type;
newgeom->v = hidgeom-v;
newgeom-> meanx = hidgeom- > meanx;
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newgeom-> meany = hidgeom-> meany; 
back_of_geom2d(newgeom, SOLGEOM); 
hidedge2d = hidedge2d-> nextedge2d; 
hidvert2d = hidvert2d > -nextvert2d; 
hidgeom = hidgeom-nextgeom_edge2d;
}
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/* proc3d.c
7
/*.................................................................... 7
/* This function extracts x2, y2, z2, and returns the homogeneous 
co-ordinates in v when the line type is 1,2, or 3. Given are 
xl, yl, z l and dxl and dyl, the digitizer co-ordinates together 
with the line type 7
float *solve_simultaneous(type, dx2, dy2, xl, yl, zl) 
float dx2, dy2, xl, yl, zl; 
int type;
{
float x2,y2,z2,*v; 
v = vector(0,3); 
v[3] = 1; 
if (type = = 1)

{
v[0] = xl;
v[l] = (dx2 - xl*cos(22/21))/(cos(22/21));
v[2] = dy2 + (xl - v[l])/2;
return(v);

}
if (type = = 2 )

{
v[2] = zl;
v[l] = 0.5*(2*(dy2-zl) + 2*dx2/(sqrt(3))); 
v[0] = v[l]-2*(dy2-zl); 
re turn (v);

}
if (type = =3)

{
v[l] = yl;
v[0] = dx2*2/(sqrt(3))-yl; 
v[2] = dy2 + (v[0]-v[l])/2; 
return(v);

}
}
j%______________________________________ % j

/* This function extracts the 3D co-ordinates of the node 
vertnode using solve_simultaneous and the rhe co-ordinates of the 
other point of the straight line refpoint[3]. The assumption is 
that the line is of type 1,2 or 3. 7
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float *process_iso_straight(int type, float refpoint[3],
Vert2d *vertnode)

{
float xl, yl, zl, dx2, dy2, *v;
xl = refpoint[0];
yl = refpoint[l];
z l = refpoint[2];
dx2 = vertnode->point[0];
dy2 = vertnode->point[l];
v = solve_simultaneous(type, dx2, dy2, xl, yl, zl);
return(v);
}
I*______________________________ %J
int intmember(int v[], int c, int length)

{
int i, result; 
result = 0; 
i — 0; 
do

{
if (v[i] = = c) result = 1; 
i+  + ;

}
while((result = =0) && (i gth)); 
return(result);

}
/*.................................................................... 7
/* extract_initial_3d(edgelist, refpoint[4], ref,

vertlist)
This function establishes the three dimensional co-ordinates 
of all the vertices connected to the origin and the isometric 
lines emanating from it. This will establish many of the 
co-ordinates in the sketch. It first establishes the three 
dimensional lists of vertices of edges and vertices. The origin 
is first used to establish the 3D co-ordinates of the connected 
vertices. Then the edgelist in 2D is taken in order and checked 
with the vector PROCEDGES and any not in that are processed 
wherever possible V
extract_initial_3d(Edge2d *edgelist, float refpoint[4], int ref,

Vert2d Vertlist)
{
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int nl, n2, n3, n4, n5, n6, i, j, finvert, 1,11,12; 
int e l = 0, e2 = 0; 
float *v, *vl;
Intnode * lines, * lines 1;
Edge2d *edgelistl;
Vert2d *vertlistl, *finvert2d;
Vert3d *vert3dl, *newvert3d;
Edge3d *edge3dl, *newedge3d;
VERTLIST = get_vert3d();
EDGELIST = get_edge3d();
vert3dl = VERTLIST;
edge3dl = EDGELIST;
for(i = 0; i < NUMSOLVERTS; i + + )

{
newvert3d = get_vert3d();
VERTLIST = back_of_vert3d(newvert3d, VERTLIST);
}

for(i = 0; i < NUMSOLEDGES; i + + )
{
newedge3d = get_edge3d();
EDGELIST = back_of_edge3d(newedge3d, EDGELIST);
}

edgelistl = edgelist-nextedge2d; 
vertlistl = vertlist-nextvert2d;
PROCEDGES = ivector (0, (NUMSOLEDGES-1));
PROCVERTS = ivector(0,(NUMSOLVERTS-l)); 
for (i = 0; i < NUMSOLEDGES; i + + ) PROCEDGES[i] = 0; 
for (i = 0; i < NUMSOLVERTS; i + + ) PROCVERTS[i] = 0; 
PROCVERTS[e2] = ref;
REFPOINT[0] = 0;
REFPOINT[l] = 0;
REFPOINT[2] = 0;
REFPOINT[3] = 1; 
e2 + + ;
for(i = 0; i < ref; i + + ) vertlistl = vertlistl-nextvert2d;
lines = vertlistl-linelist;
vert3dl = VERTLIST-nextvert3d;
vert3dl->point[0] = 0;
vert3dl->point[l] = 0;
vert3dl->point[2] = 0;
vert3dl->point[3] = 1;
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vert3dl- > linelist = lines; 
lines 1 = lines-> nextintnode; 
vert3dl = VERTLIST; 
while (lines 1! = NULL)

{
j+  + ;
lines 1 = lines l ->  nextintnode;
}

lines 1 = lines; 
n5 = j;
for (i = 0; i < 5; i+  + )

{
lines 1 = lines 1-> nextintnode; 
n6 = linesl->a;
PROCEDGES[el] = n6; 
e l H—h;
for (i = 0; i 6; i + + ) edgelistl = edgelistl- > nextedge2d; 
n l = edgelistl->vertl; 
n2 = edgelistl->vert2; 
n3 = edgelistl- > edgetype; 
finvert = nl;
if (nl = = ref) finvert = n2; 
for (i = 0; i < finvert; i + + )

{
vertlistl = vertlistl-> nextvert2d;

}
finvert2d = vertlistl; 
vertlistl = vertlist-> nextvert2d; 
if(abs(n3) < 4)

{
v = process_iso_straight(n3, REFPOINT, finvert2d);
for (i = 0; i < n3; i + + ) vert3dl = vert3dl-nextvert3d;
vert3dl->point[0] = v[0];
vert3dl->point[l] = v[l];
vert3dl->point[2] = v[2];
vert3dl->point[3] = v[3];
vert3dl- > linelist = finvert2d-> linelist;
vert3dl = VERTLIST;

}
}

v = vector(0,3);
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{
I = intmember(PROCEDGES,i, NUMSOLEDGES); 
edgelistl = edgelistl->nextedge2d;
if((l = = 0) && (edgelistl->edgetype < 4))

{
n i = edgelistl-> vertí; 
n2 = edgelistl- >vert2; 
n3 = edgelistl->edgetype;

}
II = intmember(PROCVERTS, ni, NUMSOLVERTS); 
12 = intmember(PROCVERTS, n2, NUMSOLVERTS);
if ((11 = = 1) && (12 = = 0))

{
e l + + ;
PROCEDGES[el] = i; 
vert3dl = VERTLIST; 
vertlistl = vertlist; 
for (i = 0; i = ni; i + + )

{
vert3dl = vert3dl->nextvert3d; 
vertlistl = vertlistl-> nextvert2d;

}
v[0] = vert3dl->point[0];
v[l] = vert3dl->point[l];
v[2] = vert3dl->point[2];
v[3] = vert3dl- >point[3];
vi = process_iso_straight(n3, v, vertlistl);
vert3dl = VERTLIST;
for(i = 0 ;i 2; i + + ) vert3dl = vert3dl- > nextvert3d; 
vert3dl->point[0] = vl[0]; 
vert3dl->point[l] = vl[l]; 
vert3dl->point[2] = vl[2]; 
vert3dl->point[3] = vl[3];
}
if ((11 = = 0) && (12 = = 1))

{
e l + + ;
PROCEDGES[el] = i; 
vert3dl = VERTLIST;

edgelistl =  edgelist-nextedge2d;
for (i =  1; i = NUMSOLEDGES; i +  + )
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{
vert3dl = vert3dl->nextvert3d; 
vertlistl = vertlistl->nextvert2d;
}

v[0] = vert3dl->point[0];
v[l] = vert3dl->point[l];
v[2] = vert3dl- >point[2];
v[3] = vert3dl->point[3];
vl = process_iso_straight(n3, v, vertlistl);
vert3dl = VERTLIST;
for (i = 0; i = nl; i + -l-) vert3dl = vert3dl- > nextvert3d;
vert3dl->point[0] = vl[0];
vert3dl->point[l] = vl[l];
vert3dl->point[2] = vl[2];
vert3dl->point[3] = vl[3];
}
}

}
r ...................................................................... 7
void process_construction()

{
Edge3d *newedge, *consedge3d;
Vert3d *newvert, *consvert3d, *solvert3dl;
Edge2d *consedge2dl, *soledge2dl;
Vert2d *consvert2dl, *solvert2dl;
Geom_edge2d *consgeom2dl, *solgeom;
int i, j = 0, k, 1 ,n, nl, n2, m l, m2, type;
float xl, yl, x2, y2, x3, y3, x4, y4, p i, *v, *vl, *v2, r;
PROCCONSVERT = ivector(0, NUMCONS VERTS-1); 
PROCCONSEDGE = ivector(0, NUMCONSEDGES-1); 
CONSEDGE3D = get_edge3d();
CONSVERT3D = get_vert3d();
consvert3d = CONSVERT3D;
for(i = 0; i < NUMCONSEDGES; i + + )

{
newedge = get_edge3d();
CONSEDGE3D = back_of_edge3d(newedge, CONSEDGE3D); 
PROCCONSEDGEfi] = 0;

}

vertlistl =  vertlist;
for (i = 0; i = n2; i + + );
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{
newvert = get_vert3d();
CONSVERT3D = back_of_vert3d(newvert, CONSVERT3D); 
PROCCONSVERT[i] = 0;

}
consvert2dl = SOLCONSVERT2D-> nextvert2d; 
consedge2dl = SOLCONSEDGE2D-> nextedge2d; 
consgeom2dl = SOLCONSGEOM-> nextgeom_edge2d;
CONSEDGE3D = CONSEDGE3D- > nextedge3d; 
solgeom = SOLGEOM; 
while(consedge2dl ! = NULL)

{
n = consedge2dl->edgetype; 
if(abs(n)< 4)

{
n l = consedge2dl-> vertí; 
n2 = consedge2dl->vert2;
m l = intmember(PROCCONSVERT, nl, NUMCONSVERTS); 
m2 = intmember(PROCCONSVERT, n2, NUMCONSVERTS); 
if((ml = = 1) && (m2 = = 1)) break; 
if((ml = = 0) && (m2 = = 0))

{
for(i = 1; i = nl; i + + ) consvert2dl = consvert2dl- > nextvert2d;
xl = consvert2dl->point[0];
yl = consvert2dl->point[l];
consvert2dl = SOLCONSVERT2D->nextvert2d;
for(i = 1; i = n2; i + + ) consvert2dl = consvert2dl- > nextvert2d;
x2 = consvert2dl->point[0];
y2 = consvert2dl->point[l];
for(i = 0; i < NUMSOLEDGES; i + + )

{
solgeom = solgeom-> nextgeom_edge2d;
j+  + ;
vl = solgeom- >v; 
p i = vl[0]*yl + vl[l]*xl +vl[2]; 
r = sqrt(vl[0]*vl[0] + v[l]*v[l]); 
p i = fabs(pl/r);
if((fabs(pl) 20) && (solgeom-> type < 4)) break;
}

if (pi 20)

for(i = 0; i <  NUMCONSVERTS; i +  + )
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{

{
soledge2dl = soledge2dl->nextedge2d;

}
k = soledge2dl-> vertí; 
for(i = 0; i = k; i + + )

{
solvert2dl = solve rt2d 1->nextvert2d;

}
V = solvert3dl-> point;

for(l = 0; 1 = ni; 1 + + ) consvert2dl = consvert2dl- > nextvert2d;
v2 = process_iso_straight(type, v, consvert2dl); 
for(l = 0; 1 = n i; 1 + + )

{
consvert3d = consvert3d->nextvert3d;

}
consvert3d-point[0] = v2[0]; 
consvert3d-point[l] = v2[l]; 
consvert3d-point[2] = v2[2]; 
consvert3d-point[3] = v2[3];
}

else

{
for(i = 0; i < NUMSOLEDGES; i + + )

{
solgeom = solgeom-> nextgeom_edge2d;

j + + ;
vl = solgeom-v;
p i = vl[0]*y2 + vl[l]*x2 +vl[2]; 
r = sqrt(vl[0]*vl[0] + v[l]*v[l]); 
p i = fabs(pl/r);
if((fabs(pl) 20) && (solgeom-> type < 4)) break;
}

if (pi 20)
{
for(i = 0; i= j; i+  + )

{
soledge2dl = soledge2dl->nextedge2d;
}

k = soledge2dl-> vertí;

for(i =  0; i= j; i+  + )
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{
solvert3dl = solvert3dl->nextvert3d;
}

V = solvert3dl-> point;
for(l = 0; 1 = ni; 1 + + ) consvert2dl = consvert2dl- > nextvert2d;

v2 = process_iso_straight(type, v, consvert2dl); 
for(l = 0; l = nl; 1+ + )

{
consvert3d = consvert3d- > nextvert3d;
}

consvert3d-> point[0] = v2[0]; 
consvert3d->point[l] = v2[l]; 
consvert3d-> point[2] = v2[2]; 
consvert3d-> point[3] = v2[3]; 
consvert3d-> linelist = consvert2dl- > linelist;
}

}
consvert3d = CONSVERT3D;
}

if((ml = = 1) && (m2 = = 0))
{
for(l = 0; l = nl; 1+ + )

consvert3d = consvert3d-> nextvert3d; 
v = consvert3d- > point;

consvert2dl = CONSVERT2D; 
for(l = 0; 1 = n2; 1 + + )

consvert2dl = consvert2dl->nextvert2d; 
type = consedge2dl->edgetype; 
v2 = process_iso_straight(type, v, consvert2dl); 
consvert3d = CONSVERT3D; 
for(l = 0; 1 = n2; 1 + + )

consvert3d = consvert3d-> nextvert3d; 
consvert3d- > point[0] = v2[0]; 
consvert3d-point[l] = v2[l]; 
consvert3d-point[2] = v2[2j; 
consvert3d-point[3] = v2[3]; 
consvert3d-linelist = consvert2dl-> linelist;
}

if((ml = = 0) && (m2 = = 1))

{

for(i = 0; i = k; i + + )
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for(l = 0; 1 = n2; 1 + + )
consvert3d = consvert3d-> nextvert3d; 

v = consvert3d-> point;
consvert2dl = CONSVERT2D; 
for(l = 0; l = nl; 1+ + )

consvert2dl = consvert2dl->nextvert2d; 
type = consedge2dl->edgetype; 
v2 = process_iso_straight(type, v, consvert2dl); 
consvert3d = CONSVERT3D; 
for(l = 0; l = nl; 1+ + )

consvert3d = consvert3d-> nextvert3d; 
consvert3d-> point[0] = v2[0]; 
consvert3d->point[l] = v2[l]; 
consvert3d->point[2] = v2[2]; 
consvert3d-> point[3] = v2[3]; 
consvert3d-> linelist = consvert2dl->linelist;
}
n l = CONSEDGE3D- >vertl; 
n2 = CONSEDGE3D- >vert2;
CONSEDGE3D = CONSEDGE3D- > nextedge3d; 
consedge2dl = consedge2dl->nextedge2d;
}

}
}
/*........................................................................... 7
float *endpoints(Edge3d *edge)

{
int i, nl, n2;
Vert3d *vertlist; 
float * endpoints; 
endpoints = vector(0,5); 
n l = edge-> vert 1; 
n2 = edge->vert2; 
vertlist = VERTLIST; 
for(i = 0; i = nl; i+  + )

vertlist = vertlist-nextvert3d; 
endpoints[0] = vertlist-point[0]; 
endpoints[l] = vertlist-point[l]; 
endpoints[2] = vertlist-point[2]; 
vertlist = VERTLIST; 
for(i = 0; i = nl; i + + )
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vertlist = vertlist-nextvert3d; 
endpoints[3] = vertlist-point[0]; 
endpoints[4] = vertlist-pointfl]; 
endpoints[5] = vertlist-point[2]; 
return(endpoints);
}
r ..................................................................*/

float *reverse_position_vector (float v[])
{
float * position; 
position = vector(0,2); 
position[0] = v[0] - v[3]; 
position[l] = v[l]-v[4]; 
position[2] = v[2] - v[5]; 
return(position);

}
I * ___________________________________________________________* i

float *position_vector(float v[])

{
float ^position; 
position = vector(0,2); 
position[0] = v[3]-v[0]; 
position[l] = v[4] - v[l]; 
position[2] = v[5]-v[2]; 
return (position);

}
j%___________________________________ *1

int equality(float vl[], float v2[], int size)
{
int i, ans = 0;
for(i = 0; i < size; i + + )
{
if(vl[i] - v2[i] 0.01) break;
}
if(i= = size-1) ans = 1; 
return(ans);

}
r .......................................................................7
float *normal_vector(float vl[], float v2[])

{
float *norm;
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norm = vector (0,2);
norm[0] = vl[l]*v2[2] - vl[2]*v2[l];
norm[l] = vl[2]*v2[0] - vl[0]*v2[2];
norm[2] = vl[0]*v2[l] - vl[l]*v2[0];
return(norm);

}
/*.................................................................... */
extract_loops()

{
int *v;
Loop3d *looplist, *newloop, *trialloop, *looplistl;
Edge3d *edgelist, *firstedge, *nextedge;
Intnode *linelist, *newintnode, *linelist2; 
char c, givenloop[30],str[3];
float *norml, *norm2, *endpointsl, endpoints2, *posl, *pos2, *refnorm; 
float *revpos, *endpoint;
Vert2d *vert2d;
int i = 0, edgecount = 0, a, fe, ne, te, j = 0, elements, vert, ans;
linelist = get_intnode();
looplist = get_loop3d();
looplistl = looplist;
newloop = get_loop3d();
v = ivector(0,(2*NUMSOLEDGES -1));
printf("Please enter the first clockwise loop line numbers and space"); 
gets(givenloop); 
c = givenloop[i]; 
while(c! = ’\n ’)

{
if(c! = ” )
{
str[j] = c;
j+  + ;
}

else

{
str[j] = ’\0 ’;
j= 0 ;
a = atoi(str);
newintnode = get_intnode(); 
newintnode-> a = a; 
back_of_intnode(newintnode, linelist);
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v[edgecount] = a; 
edgecount + + ;

}
i+  + ;
c = givenloopfi];
}

newloop-> linelist = linelist; 
trialloop = looplistl->nextloop3d; 
while(trialloop ! = NULL)

{
linelist = trialloop-linelist;
elements = members_in_intlist(linelist);
while((linelist! = NULL) && (elements = = 3))
{
linelist = linelist-> nextintnode; 
fe = linelist-> a; 
ne = linelist-> nextintnode-> a; 
edgelist = EDGELIST;
for(i = 0; i = fe; i + + ) edgelist = edgelist- > nextedge3d; 
endpoint = endpoints(edgelist); 
posl = position_vector(endpoint); 
edgelist = EDGELIST;
for(i = 0; i = ne; i + + ) edgelist = edgelist- > nextedge3d;
endpoints 1 = endpoints(edgelist);
pos2 = position_vector(endpointsl);
refnorm = normal_vector(posl, pos2);
ne = fe;
do

{
edgelist = EDGELIST;
for(i = 0; i = ne; i + + ) edgelist = edgelist- > nextedge3d; 

endpoint = endpoints(edgelist);
vert = edgelist-> vert 1;
revpos = reverse_position_vector(endpoint);
vert2d = SOLVERT2D;
for(i = 0; i = vert; i + + ) vert2d = vert2d- > nextvert2d; 
linelist2 = vert2d-linelist; 
do

{
linelist2 = linelist2-> nextintnode; 
te = linelist2-a;
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edgelist = EDGELIST;
for(i = 0; i = te; i + + ) edgelist = edgelist- > nextedge3d;
endpoint = endpoints(edgelist);
posl = position_vector(endpoint);
norml = normal_vector(revpos, posl);
ans = equality(norml, refnorm, 3);
}
while (ans = = 1);

ans = 1; 
if (te ! = fe)

{
v[edgecount] = te; 
edgecount + + ;
}
ne = te;
}
while(ne = = fe);
linelist = linelist->nextintnode;
}

trialloop = looplistl->nextloop3d;
}
}
/*..................................................................7
int *get_loop_vertexlist(Intnode * linelist)
{
int i, ans = 0, vertcount, n = 0, n l, n2, *v;
Intnode * linelist 1;
Edge3d *edge3d;
linelistl = linelist-nextintnode;
while(linelistl! = NULL)

{
n +  + ;
linelistl = linelistl-nextintnode;
}

v = ivector(0,n-l); 
for(i = 0; i ; i + + ) v[i] = 0; 
linelistl = linelist; 
while(linelistl ! = NULL)

{
linelistl = linelistl-nextintnode; 
edge3d = EDGELIST;
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for(i = 0; i = linelistl-a; i + + ) edge3d = edge3d-nextedge3d;
n l = edge3d-vertl;
n2 = edge3d-vert2;
ans = intmember(v, nl, n);
if(ans = = 1) v[vert count] = nl;
ans = 0;
vertcount + + ;
}

return(v);
}
/*..................................................................*/

I* This algorithm fits an equation of a plane of the form 
[ab cd].[xy z 1] = 0 
7
float *fit_face(Intnode *linelist)
{
float yizi = 0, yiziplusl = 0, yipluslzi = 0, yipluslziplusl = 0; 
float zixi = 0, zixiplusl = 0, zipluslxi = 0, zipluslxiplusl = 0; 
float xiyi = 0, xiyiplusl = 0, xipluslyi = 0, xipluslyiplusl = 0; 
float sumx = 0, sumy = 0, sumz = 0; 
float xav, yav, zav; 
float *v;
float x, y, z, xl, yl, zl, xO, yO, zO; 
int i, j, n = 0, *vl;
Vert3d *vertlistl;
Intnode *linelistl; 
v l = get_loop_vertexlist(linelist); 
linelistl = linelist- > nextintnode; 
while(linelistl! = NULL)

{
n +  + ;
linelistl = linelistl-> nextintnode;
}

for(i = 0; i < n; i + + )

{
vertlistl = VERTLIST;
for(j = 0; j = v[i]; j + + ) vertlistl = vertlistl- > nextvert3d; 
xl = vertlistl- >point[0J; 
yl = vertlistl->point[l]; 
z l = vertlistl->point[2]; 
if(i = = 0)
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{
xO = xl; 
yO = yl; 
zO = zl;
X =  xl;
y = yi;
z = zl;
}

if(i > 0)
{
yizi = yizi + y*x;
yiziplusl = yiziplusl + y*zl;
yipluslzi = yipluslzi + yl*z;
yipluslziplusl = yipluslziplusl + yl*zl;
zixi = zixi + z*x;
zixiplusl = zixiplusl + z*xl;
zipluslxi= zipluslxi + zl*x;
zipluslxiplusl = zipluslxiplusl + zl*xl;
xiyi = xiyi + x*y;
xiyiplusl = xiyiplusl + x*yl;
xipluslyi = xipluslyi + xl*y;
xipluslyiplusl = xipluslyiplusl + xl*yl;
sumx = sumx + xl;
sumy = sumy + yl;
sumz = sumz + zl;
X = xl;
y = yi;
z = zl;

}
}
if(i= = n-l)

{
xl = xO; 
yl = yO; 
zl = zO;
yizi = yizi + y*x;
yiziplusl = yiziplusl + y*zl;
yipluslzi = yipluslzi + yl*z;
yipluslziplusl = yipluslziplusl + yl*zl;
zixi = zixi + z*x;
zixiplusl = zixiplusl + z*xl;
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zipluslxi= zipluslxi 4- zl*x; 
zipluslxiplusl = zipluslxiplusl + zl*xl; 
xiyi = xiyi + x*y; 
xiyiplusl = xiyiplusl + x*yl; 
xipluslyi = xipluslyi + xl*y; 
xipluslyiplusl = xipluslyiplusl + xl*yl;

}
v = vector(0,3);
v[0] = yizi + yiziplusl-yipluslzi-yipluslziplusl; 
v[l] = zixi + zixiplusl - zipluslxi - zipluslxiplusl; 
v[2] = xiyi + xiyiplusl-xipluslyi-xipluslyiplusl;
xav = sumx/n; 
yav = sumx/n; 
zav = sumx/n;
v[3] = -(xav*v[0] + yav*v[l] + zav*v[2]); 
return(v);

}
/*.........................................................................7
fit_3dgeometry()

{
Loop3d *looplistl, *looplist2;
Intnode *linelist, *linelist2;
int linecount, arccount, ellipsecount, n, type, i;
float *v;
Edge3d *edgelistl; 
edgelistl = EDGELIST;
FACELIST = get_face3d(); 
looplistl = LOOPLIST- > nextloop3d;
N U M LO O P =0; 
while (looplistl ! = NULL)

{
N U M LO O P + + ;
linelist = looplistl-> linelist;
linelist = linelist-> nextintnode;
linecount = 0;
arccount = 0;
ellipsecount = 0;
while(linelist! = NULL)

{
n = linelist-> a;
for(i = 0; i = n; i + + ) edgelistl = edgelistl- > nextedge3d;
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type = edgelistl-> linetype; 
if (type < 5) linecount + + ; 
if(type > 8) arccount + + ; 
linelist = linelist- > nextintnode; 

}
linelist2 = looplistl-> linelist; 
if((linecount < 2) && (arccount < 2))

{
V = fit_face(linelist2); 
looplistl->v = v;

}
looplistl = looplistl->nextloop3d;
}

}/*..................................................................7
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APPENDIX C
OUTPUTS OF ‘L’ BLOCK SKETCH

THE POINTS FILE

37,725
389
0
0
0
0
34,719
33,743
31,767
29,787
29,810
30,831
31,856
34,882
35,912
35,933
36,956
37,976
36,997
37,1019
39,1050
39,1079
39,1107
40,1128
40,1148
43,1172
42,1192
43,1218
44,1239
45,1259
66,1264
85,1246
104,1236
122,1221
144,1208

The origin in three and two dimensions 
Number of points in the visible lines 
Number of points in the hidden lines 
Number of points in the centre lines 
Number of points in the construction lines 
Number of points in the erased lines 
Start of the 389 points
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162,1198
180,1184
204,1172
223,1160
243,1146
262,1137
281,1128
276,1107
276,1082
276,1061
277,1034
275,1011
290,991
308,980
323,965
340,953
356,939
376,926
401,916
418,903
442,890
462,883
484,875
504,867
520,852
516,830
514,801
515,772
515,752
513,728
509,701
510,672
508,650
506,630
506,608
507,587
506,563
507,541
506,519
506,498
508,478
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509,457
508,436
46,719
67,705
84,690
103,677
119,660
134,644
151,633
171,618
194,606
212,596
237,580
256,573
275,564
297,553
316,546
337,536
357,526
376,514
396.501 
416,489
439.476 
462,465 
481,452 
504,441 
522,450 
546,464
564.476 
592,488
611.502 
629,512 
655,528 
677,540 
697,555 
720,568 
752,587 
775,599 
799,621 
826,635 
849,646
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867,657
888,669
911,682
930,693
960,704
978,720
1006,732
1028,746
1058,757
1081,771
1099,780
1117,790
1136,802
1159,813
1176,825
1193,837
1212,846
1223,1268
1223,1244
1223,1213
1226,1188
1225,1160
1225,1130
1225,1106
1227,1077
1228,1054
1227,1026
1227,1003
1226,973
1225,947
1224,925
1222,903
1217,881
1217,860
1214,839
514,858
540,873
565,884
594,899
613,912
639,927
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■

658,938
683,952
711,967
728,982
750,993
773,1009
796,1024
819,1042
843,1054
865,1067
887,1082
908,1094
924,1106
947,1119
970,1133
998,1144
1018,1156
1043,1166
1065,1182
1089,1193
1110,1202
1131,1217
1152,1231
1172,1241
1194,1255
1214.1262 
989,1410 
1010,1400 
1031,1384 
1052,1368 
1069,1355 
1086,1344 
1109,1334 
1127,1321 
1146,1309 
1164,1299 
1182,1284 
1204,1274
1220.1262 
284,1000 
314,1017
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341,1036
361,1043
383,1058
407,1067
429,1084
463,1098
485,1115
504,1130
528,1143
548,1155
577,1175
594,1186
619,1202
651,1219
669,1235
693,1243
714,1256
737,1267
757,1281
786,1295
812,1305
833,1321
857,1332
874,1343
895,1351
918,1359
935,1376
953,1386
971,1397
988,1408
998,1427
994,1448
990,1468
986,1494
984,1517
982,1538
274,1134
303,1147
330,1168
353,1182
375,1193
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393,1203
419,1217
436,1229
464,1242
480,1254
503,1262
531,1287
553,1293
577,1310
611,1328
634,1344
662,1356
679,1372
706,1384
724,1397
747,1410
769,1422
785,1435
812,1446
834,1458
858,1473
875,1486
899,1497
919,1505
938,1519
959,1532
978,1543
763.1684
781.1673 
802,1659 
823,1650 
848,1636 
871,1619 
892,1605 
914,1593 
929,1579 
944,1565 
963,1553 
983,1540
761.1684
740.1674

288



720,1661
690,1647
670.1634 
642,1617 
621,1606 
597,1595 
579,1583 
555,1562 
528,1546 
509,1536
483.1524 
464,1508 
438,1498 
419,1491 
394,1476 
372,1465 
352,1450 
330,1442 
310,1428 
292,1416 
271,1402 
247,1390 
225,1378 
203,1360 
176,1350 
150,1337 
130,1327 
108,1311 
89,1302 
69,1293 
50,1279 
759,1680 
759,1658
761.1634 
760,1610 
759,1587 
761,1565 
761,1545
759.1524 
759,1504 
757,1480
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756,1456
757,1433
757,1413
758,1386
760,1363
761,1340
762,1320
763,1296
763,1271
763,1251
763,1228
761,1204
759,1180
757,1160
757,1138
44,725
64,733
83,749
110,763
128,774
147,783
169,792
188,804
207,816
225,829
252,839
271,849
296,864
314,873
333,887
360,900
376,915
406,929
424,942
449,952
472,972
494,984
512,994
537,1007
558,1025
576,1034
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594,1044
619,1055
637,1065
658.1079 
680,1089
702.1100
720.1114
738.1126
758.1127
774.1115
795.1101 
816,1091
838.1080 
857,1072 
873,1058 
893,1047 
915,1038 
932,1026 
951,1018 
969,1006
986,995 
1010,984 
1027,971 
1048,958 
1068,945 
1088,930 
1110,916 
1128,901 
1149,888 
1168,878 
1184,865 
1206,856
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LBLOCK.ONE FILE

389
0
0
0
0
18
12

37.00 725.00 Three and two dimensional origin 
Number of points in visible lines 
Number of points in hidden lines 
Number of points in centre lines
Number of points in construction lines
Number of points in erased lines 
Number of edges

23 1 1 34.00 719.00 45.00 1259.00
Number of vertices
59.00 First line segment

12 24 1 45.00 1259.00 281.00 1128.00 
6 36 1 281.00 1128.00 290.00 991.00 
12 42 1 290.00 991.00 520.00 852.00 
18 54 1 520.00 852.00 508.00 436.00
23 73 1 46.00 719.00 504.00 441.00 
32 96 1 504.00 441.00 1212.00 846.00
17 129 1 1223.00 1268.00 1214.00 839.00 
31 147 1 514.00 858.00 1214.00 1262.00 
12 179 1 989.00 1410.00 1220.00 1262.00 
31 192 1 284.00 1000.00 988.00 1408.00 
6 223 1 988.00 1408.00 982.00 1538.00
31 230 1 274.00 1134.00 978.00 1543.00 
11 262 1 763.00 1684.00 983.00 1540.00
32 274 1 761.00 1684.00 50.00 1279.00
24 307 1 759.00 1680.00 757.00 1138.00
33 332 1 44.00 725.00 738.00 1126.00 
24 365 1 738.00 1126.00 1206.00 856.00
0.00 -1.00 36.35 36.35 0.00 Geometry of the first edge
-1.00 -0.58 1291.15 153.33 1202.58
0.00 -1.00 276.83 276.83 0.00
-1.00 -0.58 1150.43 392.00 924.00
0.00-1.00 510.06 510.06 0.00
-1.00 -0.58 728.09 257.65 579.26
-1.00 0.58 150.56 853.28 643.44
0.00 -1.00 1224.12 1224.12 0.00
-1.00 0.58 563.87 861.26 1061.35
-1.00 -0.58 1974.07 1097.42 1340.17
-1.00 0.58 838.22 641.68 1208.87
0.00 -1.00 990.00 990.00 0.00
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-1.00 0.58 976.70 625.87 1338.23 
-1.00 -0.58 2120.08 866.36 1619.64 
-1.00 0.58 1247.07 410.44 1484.16 
0.00-1.00 759.79 759.79 0.00 
-1.00 0.58 696.94 381.97 917.58 
-1.00 -0.58 1561.04 961.46 1005.67
121 
2 3 3  
34  1 
4 5 3  
56  1 
163  
6 7 2  
87 1 
5 8 2  
9 8 3  
4 9 2  
9 101 
3 10 2
11 103 
1122  
11 12 1 
1 12 2
12 7 3
34.00 719.00 1 6 17
45.00 1259.00 1 2 15
281.001128.00 2 3 13
290.00 991.00 3 4 11
520.00 852.00 4 5 9
508.00 436.00 5 6 7
1212.00 846.00 7 8 18
1223.00 1268.00 8 9 10
989.00 1410.00 10 11 12
982.00 1538.00 12 13 14
763.00 1684.00 14 15 16
757.00 1138.00 16 17 18 
32.59 712.51 16 17 
37.07 1269.11 1 2 15 
274.97 1133.93 2 3 13 
274.20 994.32 3 4 11 
509.13 857.15 45 9

Firsr edge connecting vertex 1 and 2 of type 1 
Second edge connecting vertex 2 and 3 of type 3

First terminal point common to lines 1 6 17 
Second terminal point common to lines 1 2 15

First vertex common to lines 1 6 17
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LBLOCK.TWO FILE

37.00 725.00 Three and two dimensional origin 
389 Number of points in visible lines
0 Number of points in hidden lines
0 Number of points in centre lines
0 Number of points in construction lines
0 Number of points in erased lines
18 Number of edges
12 Number of vertices
121  Firsr edge connecting vertex 1 and 2 of type 1
2 3 3 Second edge connecting vertex 2 and 3 of type 3
34  1
4 5 3  
56  1 
163  
6 7 2  
87 1 
5 8 2  
9 8 3  
4 9 2  
9 10 1
3 10 2
11 10 3 
1122 
11121
1 12 2
12 7 3
0.00 -1.00 36.35 36.35 0.00 Geometry of the first edge
-1.00 -0.58 1291.15 153.33 1202.58
0.00 -1.00 276.83 276.83 0.00
-1.00 -0.58 1150.43 392.00 924.00
0.00 -1.00 510.06 510.06 0.00
-1.00 -0.58 728.09 257.65 579.26
-1.00 0.58 150.56 853.28 643.44
0.00 -1.00 1224.12 1224.12 0.00
-1.00 0.58 563.87 861.26 1061.35
-1.00 -0.58 1974.07 1097.42 1340.17
-1.00 0.58 838.22 641.68 1208.87
0.00 -1.00 990.00 990.00 0.00
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First vertex common to lines 1 6 17

-1.00 0.58 976.70 625.87 1338.23 
-1.00 -0.58 2120.08 866.36 1619.64 
-1.00 0.58 1247.07 410.44 1484.16 
0.00 -1.00 759.79 759.79 0.00 
-1.00 0.58 696.94 381.97 917.58 
-1.00 -0.58 1561.04 961.46 1005.67 
32.59 712.51 16 17 
37.07 1269.11 1 2 15 
274.97 1133.93 2 3 13 
274.20 994.32 3 4 11
509.13 857.1545 9 
506.00 439.325 6 7 
1222.84 855.80 7 8 18 
1222.74 1268.97 8 9 10 
987.28 1406.14 10 11 12 
989.88 1548.39 12 13 14
758.14 1683.57 14 15 16 
755.06 1128.99 16 17 18
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