
Ontology-Supported Sca�olding for
System Safety Analysis

Paul S Brown

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

The University of Leeds

Faculty of Engineering

School of Computing

April 2022



Intellectual Property

The candidate con�rms that the work submitted is his/her own and that appropriate credit has

been given where reference has been made to the work of others.

This copy has been supplied on the understanding that it is copyright material and that no

quotation from the thesis may be published without proper acknowledgement.

© 2022 The University of Leeds, Paul S Brown

i





Acknowledgements

I would like to acknowledge and thank several people who have helped with this research. First

and foremost I must express my deepest gratitude to my supervisors: Vania Dimitrova, Anthony

G. Cohn, and Glen Hart. They've spent many hours talking, reading, and advising. The

expertise provided by Glen and Tony has been indispensable. In addition, Vania's mentorship

has been invaluable. Thank you all for providing me with this opportunity, sticking with me

through all four-and-a-half years of it, and aiding me in learning so much. What I've learned

during the PhD has utility not only for research and career, but also for argument formulation

and critical thinking.

I must also thank my family who've been awaiting the completion of this research for far too

long. Now it's �nished, we'll get on with all those plans we've been making. Thank you for

your patience, listening to me talking in the babblish language that goes with research, and your

insistance that I �nish this before moving on with all those plans we've made.

Many thanks to Anne Ogborn, who patiently introduced me to Prolog. And many thanks to

Paulo Moura, who carried on my Prolog education, patiently introduced me to Logtalk, pointed

me towards how to use it to solve the problems I was encountering with Prolog, and has become

both a friend and colleague. That the software runs is only due to the generosity of Paulo and

his teaching; I began this research knowing no logic programming. I look forward to many more

hours Logtalking on future projects.

I was also fortunate to have the opportunity to discuss my research with several kind and patient

academics beyond my wonderful supervisors. I must thank �the team� who met with me from

the DSTL who suggested that I focus on STAMP. Thanks to Roberto Ferrario who took time

to introduce me to the philosophical side of ontology and discuss my ontological-plans. And

many thanks to Brandon Bennett, who patiently entertained me when I dropped by his o�ce

iii



at random times to chat about all things logical. During the Covid-19 enforced lockdown, these

chats with Brandon were the thing I missed the most about being on campus.

My studies were supported by the UKRI. Additional support was provided by the Defence

Science and Technology Laboratory (DSTL). Many thanks for your support, I wouldn't have

been able to conduct this research without it.

Ultimately, as in all things, Soli Deo Gloria.

iv



Some of the work in this thesis has been published prior to submission.

� The concept of using Contingent Sca�olding for System Safety analysis via ontology and

Situation Calculus was initially proposed in the Doctorial Concortium paper:

Paul S Brown, Anthony G Cohn, Glen Hart, and Vania Dimitrova (2020). �Contingent Scaf-

folding for System Safety Analysis�. In: International Conference on Arti�cial Intelligence in

Education. Springer, pp. 395�399

� An earlier version of Chapter 5 was presented in:

Paul S Brown, Vania Dimitrova, Glen Hart, Anthony G Cohn, and Paulo Moura (2021). �Refac-

toring the Whitby Intelligent Tutoring System for Clean Architecture�. In: Theory and Practice

of Logic Programming 21.6, pp. 818�834

� The STAMP ontology fromChapter 3 with examples has been published for public access:

Paul S. Brown (Apr. 2022). PaulBrownMagic/STAMP-Ontology: Initial Release. Version v1.0.0.

doi: 10.5281/zenodo.6489774. url: https://doi.org/10.5281/zenodo.6489774

v

https://doi.org/10.5281/zenodo.6489774
https://doi.org/10.5281/zenodo.6489774


Abstract

System Safety Analysis is a valuable task used when trying to ensure that any thing that can

be represented with the systems-model does not behave in some manner that is undesirable

to the stakeholders in that system. It's a creative task, with no known correct solution, with

limited tool support. This thesis investigates the possibility of providing support to analysts

undertaking this task through the use of ontology and pedagogy in an arti�cially intelligent tool.

An ontology to capture the system-model as understood by System-Theoretic Accident Model

and Processes (STAMP) was authored, building on an existing set-theoretic representation. This

required the authoring of underlying ontology-modules, including one for Control Systems and

one to capture su�cient information for use with Situation Calculus. Together these capture

information to be used in reasoning about system behaviour. During System Safety Analysis a

user extends this ontology to model their system, and the intelligent support tool interprets it

to o�er its advice.

The intelligent support tool uses Contingent Sca�olding to tailor its support to the user, this

pedagogical strategy was chosen as it's been shown to enable the learner to produce a better

quality product than they would be capable of alone. Contingent Sca�olding depends upon

knowledge of past behaviour of the learner so that interventions can be pitched at the correct level

for the learner. Typically ontology authoring tools use a synchronic view of the ontology, and

so don't capture the required history. This tool uses Situation Calculus to capture a diachronic

view of the ontology such that the history of authorship can be reasoned with to apply the

Contingent Sca�olding framework de�ned herein.

To evaluate the practicability of this approach the ontology and sca�olding were implemented

in software. This surfaced an issue with the inability to inverse dependencies in Prolog, which

was important to make the tools reuseable and shareable. These were overcome by Protocols

vi



provided in Logtalk. The code was then applied to other domains, such as robotics planning by

a third-party, demonstrating generalisability of the intelligent support tool.

A user study was conducted to evaluate the e�ectiveness of the intelligent support tool, in which

novices undertook a System Safety Analysis. The tool was able to e�ectively provide support

where de�nitions were missed and additional patterns of behaviour were identi�ed that are

indicitive of the user needing support.

The thesis makes a number of contributions including: a systems ontology with a focus on

capturing hypothetical and realised behaviour, a formal de�nition of a contingent sca�olding

framework that can be used with ill-de�ned tasks, and the use of dependency inversion in

Prolog to enable sharing of libraries. The primary contribution is in the use of a diachronic view

of ontology authoring to provide support, which has been successfully exploited and has scope

for providing a platform for many more applications.

vii



Contents

1 Introduction 1

2 Related Work 5

2.1 System Safety Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 System Safety Analysis Frameworks . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 STAMP and STPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Supporting System Safety Analysis . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Software Support for System Safety Analysis . . . . . . . . . . . . . . . . 11

2.2 Ontology and System-Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 System Safety Related Ontologies . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Modular Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Contingent Sca�olding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Supporting Ontology Authoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Existing Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.2 Capturing Authoring History . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Related Work Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Ontology for STAMP 35

3.1 Background and Problem De�nition . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Top Ontology Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Situation Ontology Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Situation Ontology Background . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.2 Situation Ontology Module De�ned . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Control System Ontology Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

viii



CONTENTS CONTENTS

3.5 STAMP Ontology Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.1 Step 1: Safety Situations . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5.2 Step 2: Control Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.3 Step 3: Identifying Potentially Unsafe Control Actions . . . . . . . . . . . 51

3.6 Illustrative Example Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6.1 Step 1: Analysis Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.2 Step 2: Control Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6.3 Step 3: Generating Potentially Unsafe Control Actions . . . . . . . . . . . 58

3.7 Reasoning for STPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.8 STAMP Ontology Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Sca�olding Ontology Authoring 63

4.1 Situation Calculus Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Ontology Authoring in Situation Calculus . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Answering Situational Questions . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 A Contingent Sca�olding Framework . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.1 Interactive Nudges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.2 Sca�olding Framework De�ned . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Application to STPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Sca�olding Ontology Authoring Conclusions . . . . . . . . . . . . . . . . . . . . . 77

5 Software Implementation 78

5.1 Software Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Refactoring for Reusable, Generalized Code . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 The Dependency Inversion Principle . . . . . . . . . . . . . . . . . . . . . 81

5.2.2 Whitby before refactoring: Pre-Whitby . . . . . . . . . . . . . . . . . . . 82

5.2.3 Refactored Whitby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.4 Dependency Inversion using Logtalk Protocols . . . . . . . . . . . . . . . . 91

5.3 Reusable Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.1 A Reusable SitCalc Library . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.2 Extending SitCalc with Reusable Libraries . . . . . . . . . . . . . . . . . . 99

5.3.3 OntAuth Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3.4 Sca�olding Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

ix



CONTENTS CONTENTS

5.4 Contingent Sca�olding for STPA Implementation . . . . . . . . . . . . . . . . . . 107

5.4.1 OSWIN Intervention Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Tour of the Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5.1 Step 1 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5.2 Intervention Interaction Diversion . . . . . . . . . . . . . . . . . . . . . . . 113

5.5.3 Step 2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.5.4 Step 3 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.5.5 What's Next? A Proactive Interface for Seeking Help . . . . . . . . . . . . 123

5.6 Intervention Walk-Through Examples . . . . . . . . . . . . . . . . . . . . . . . . 125

5.6.1 A Simple Mistake Quickly Resolved . . . . . . . . . . . . . . . . . . . . . 125

5.6.2 Missing Relation and Missing Intervention . . . . . . . . . . . . . . . . . . 127

5.7 Software Implementation Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 131

6 User Evaluation 135

6.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.1.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.1.2 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.1.3 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.1.4 Data Collected and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2 How Did OSWIN Intervene? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2.1 Use of De�ned Interventions . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2.2 Use of History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2.3 Additional Observed Behaviour . . . . . . . . . . . . . . . . . . . . . . . . 145

6.3 What E�ect Did OSWIN Have? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.3.1 Determining Model Quality . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.3.2 Determining Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.3.3 Do Interventions E�ect Task Completion? . . . . . . . . . . . . . . . . . . 154

6.3.4 Does Providing Interventions Positively E�ect Model Quality? . . . . . . . 159

6.3.5 Does Providing Interventions Improve Learning? . . . . . . . . . . . . . . 161

6.4 User Evaluation Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7 Conclusions 165

7.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

x



CONTENTS CONTENTS

7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.2.1 System Safety Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.2.2 Ontology Modeling and Authoring . . . . . . . . . . . . . . . . . . . . . . 168

7.2.3 Intelligent Tutoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.2.4 Prolog Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.3 Generality and Wider Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.3.1 Reuse of the STAMP Ontology . . . . . . . . . . . . . . . . . . . . . . . . 171

7.3.2 Reuse of Ontology Authoring and Contingent Sca�olding Frameworks . . 172

7.3.3 Reuse of Whitby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.4.1 Short-Term Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.4.2 Long-Term Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.5 And Finally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

References 177

A Introduction to STPA 187

A.1 Step 1: De�ne Purpose of the Analysis . . . . . . . . . . . . . . . . . . . . . . . . 187

A.2 Step 2: Model the Control Structure . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.3 Step 3: Identify Unsafe Control Actions . . . . . . . . . . . . . . . . . . . . . . . 189

A.4 Step 4: Identify Loss Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

B Additional STAMP Ontology Reasoning 191

B.1 Reasoning via Set Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

B.2 Set Building Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

B.3 Building Sets for STPA Support . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

C Missing and Mistake Interventions in Prolog 195

D User Study Protocol 202

D.1 Participant Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

D.1.1 Taking Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

D.1.2 What Do I Need To Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

D.1.3 What Will Happen To My Data? . . . . . . . . . . . . . . . . . . . . . . . 203

xi



CONTENTS CONTENTS

D.1.4 Who Is Doing This Research? . . . . . . . . . . . . . . . . . . . . . . . . . 204

D.1.5 Finally. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

D.2 Recommender System Scenario Safety Analysis . . . . . . . . . . . . . . . . . . . 206

D.2.1 System Safety Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

D.2.2 System Stakeholders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

D.2.3 The System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

D.2.4 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

D.3 STPA Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

D.4 System Scenario Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

E User Study Selected Logs 216

E.1 User 43 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

E.2 User 48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

xii



List of Figures

2.1 System of systems model, adapted from the Fault Tree Handbook (Vesely et al.

1981, p.I-5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 System model showing causal chain to system failure . . . . . . . . . . . . . . . . 7

2.3 Illustrating the need for ontology in System Safety. Shows distinction between

whether a universal, class or particular is being considered and highlighting how

recommendations included in the report can inform system safety processes at

each stage. An "airplane" is used to represent any system. . . . . . . . . . . . . . 14

2.4 Depiction of the eUFO-B ontology (Guizzardi and Wagner 2011). . . . . . . . . . 22

2.5 Depiction of the Activity Speci�cation ODP (Katsumi and Fox 2017). . . . . . . 27

3.1 STAMP Ontology Architecture: modules depict ontologies with the arrow denot-

ing a dependency on the de�nitions in the indicated module and above . . . . . . 36

3.2 Tiny Top Ontology: open arrows depict subsumption, other indicative roles are

labeled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Situation Ontology: Derived from the Top ontology, inverse and sub-roles omitted 41

3.4 Control System Ontology: Subsumption is depicted by open arrows, other labelled

roles also form part of their origin concept's de�nition . . . . . . . . . . . . . . . 44

3.5 Step 1 terms in the STAMP Ontology . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 System Control Abstraction in STAMP: depicting the control loop de�ned in the

Control System Ontology with the addition of 'requestsE�ect' and 'recordsFluent'

abstraction roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 A partial view of the taxonomy of Control Actions on STAMP; note the intersec-

tion to de�ne Di�erentDurationPotentiallyHazardousControlAction . . . . . . . . 51

xiii



LIST OF FIGURES LIST OF FIGURES

3.8 Control Hierarchy for Interlock: Human Operator and Power Controller are Con-

trollers controlling the Maintenance Controlled Process with Control Actions de-

noted by downward-pointing arrows and Feedback denoted by upward-pointing

arrows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Whitby Architecture: open arrows denote extension, closed arrows denote depen-

dence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Dependency Inversion Principle. Left-hand side has high-level policy depending

on low-level details, which is not recommended. Right-hand side has the de-

pendency inverted by the policy depending on some interface, which the details

extend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Dependencies in Pre-Whitby. Each node is a �le, within their directories, which

distinguish modules. Arrows denote imports, open diamonds denote consults. . . 83

5.4 Dependencies in Whitby and extracted libraries. Each node (without a mark) is

an object, within their directories. Protocols are marked with a �P�, categories

with a �C�. Closed arrows denote dependence, open arrows denote implementation

or extension, dashed arrow denotes event monitoring. Bede persists the Situation

Calculus (SitCalc) logs and Hilda queries them for both frameworks: ontology

authoring (in library OntologyAuthoring) and Contingent Sca�olding (in library

Scaffolding). OSWIN applies the Contingent Sca�olding framework to this STPA

domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 Dependencies within Whitby only. Each node is an object, within their directo-

ries. Arrows denote dependence, open arrows denote implementation or extension,

dashed arrow denotes event monitoring. Categories are marked with a �C�. . . . . 90

5.6 The editor interface is presented on step 1 with navigation to all 3 steps and the

capability to de�ne losses and hazards. . . . . . . . . . . . . . . . . . . . . . . . . 112

5.7 Step 1 with a loss de�ned. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.8 De�ning a Hazard in Step 1 with condition(s) and link back to the L-1 loss. . . . 113

5.9 An intervention has been triggered due to no losses or hazards being de�ned in

step 1. This is a level 1 prompt intervention. . . . . . . . . . . . . . . . . . . . . 114

5.10 The level of intervention has been increased to a level 2 leading question at the

request of the user. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

xiv



LIST OF FIGURES LIST OF FIGURES

5.11 The level of intervention has been increased to a level 3 instruction at the request

of the user. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.12 The level of intervention has been increased to a level 4 instruction at the request

of the user. The software has navigated to the correct place to assert a loss for

the user. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.13 Step 2 Interface with a prede�ned "Power" and "Door". . . . . . . . . . . . . . . 117

5.14 Adding a Controlled Process and information. . . . . . . . . . . . . . . . . . . . . 117

5.15 Adding related terms to a subject. . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.16 Editing entities, including those derived from hazard-�uent de�nitions. . . . . . . 118

5.17 De�ning a Control Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.18 Nested editing to de�ne the is possible in situation. . . . . . . . . . . . . . . . . . 119

5.19 Asserting who has what control action to add arrows to the diagram. . . . . . . . 120

5.20 De�ning Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.21 The completed Control Hierarchy Diagram, generated from the information de-

�ned by the analyst. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.22 Step 3: Denoting if a control action is potentially hazardous if provided or not

provided. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.23 Linking to Hazards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.24 Clicking on "What's Next" shows a missing-type of intervention for the current

step if one such intervention is possible. . . . . . . . . . . . . . . . . . . . . . . . 124

5.25 Incrementing a "What's Next?" intervention in the same way as a regular inter-

vetion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.26 Intervention regarding advice about label triggered for user 36 . . . . . . . . . . . 126

5.27 Intervention regarding an uncontrolled "Control Process" (CP-1) for user 43. . . 128

5.28 Intervention for user 43 resolved, but still incorrect as E-1 is also subject to CP-1. 130

5.29 Time to �nd an intervention for the logs �nal situation after the immediately

prior situation has been queried so that memoization with tabling is exploited.

Testing was done on a single core of a CPU with 512KB cache size and running

at 3792.914 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.1 Histogram showing distribution of Intervention Count per user . . . . . . . . . . 139

6.2 Histogram showing distribution of the "Request Help" action count per user . . . 140

xv



LIST OF FIGURES LIST OF FIGURES

6.3 Histogram showing the count of the Glossary check action per user . . . . . . . . 146

6.4 An attributed Control Action (CA-1) de�ned as acting upon self, indicating a

mistake from user 48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.5 Histogram showing distribution of scores for Total % . . . . . . . . . . . . . . . . 153

6.6 Histogram showing distribution of scores for Correctness % . . . . . . . . . . . . 153

6.7 Histogram showing distribution of scores for Sensibility % . . . . . . . . . . . . . 154

6.8 Histogram showing distribution of number of actions taken per user . . . . . . . . 155

6.9 Histogram showing distribution of Percent Complete measure . . . . . . . . . . . 156

6.10 Histogram showing distribution of Interventions Resolved per user . . . . . . . . 157

6.11 Interventions Resolved against Percent Complete including the users excluded

from the correlation test who resolved 0 interventions . . . . . . . . . . . . . . . . 158

6.12 Intervention Count plotted against the Total quality mark . . . . . . . . . . . . . 159

6.13 Glossary Count plotted against STPA Di�, which is the STPA Post - STPA Pre . 162

A.1 The 4 steps of STPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

A.2 Control Hierarchy Diagram Template . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.3 Control Hierarchy Diagram Example for a tea-making machine . . . . . . . . . . 189

A.4 Loss Scenario guidance diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

D.1 Recommender System Use-Case Diagram (UML2) . . . . . . . . . . . . . . . . . 207

xvi



List of Tables

6.1 Counts of missing-type intervention occurrences . . . . . . . . . . . . . . . . . . 140

6.2 Counts of mistake-type intervention occurrences . . . . . . . . . . . . . . . . . . 141

6.3 Summary of Model Quality Scores . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.4 Summary of Work Quantity Measures . . . . . . . . . . . . . . . . . . . . . . . . 155

6.5 Summary of Intervention Count Measures . . . . . . . . . . . . . . . . . . . . . . 157

6.6 Spearman Rank Correlation between Intervention Count measures and Work

Quantity measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.7 Spearman Rank Correlation between Intervention Count measures and Model

Quality measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.8 Summary of Model Quality Scores accounting for completeness . . . . . . . . . . 161

6.9 Spearman Rank Correlation between Intervention Count measures and propor-

tional Model Quality measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

xvii



Abbreviations

AI Arti�cial Intelligence
API Application Programming Interface
BFO Basic Formal Ontology
CAST Causal Analysis based on STamp
DCG De�nite Clause Grammer
DL Description Logic
DOLCE Descriptive Ontology for Linguistic and Cognitive Engineering
DSL Domain Speci�c Language
GFO General Formal Ontology
GUI Graphical User Interface
HTML HyperText Markup Language
ID IDentity
KB Knowledge Base
NASA TLX National Aeronautics and Space Administration Task Load indeX
ODP Ontology Design Pattern
OSWIN Ontology-driven Sca�olding with Interactive Nudges
OWL Web Ontology Language
RDF Resource Description Framework
SOLID Single responsibility, Open-closed, Liskov substitution,

Interface segregation, and Dependency inversion principles
STAMP System-Theoretic Accident Model and Process
STPA System Theoretic Process Analysis
STPA-Sec STPA for Security
STRIPS STanford Research Institute Problem Solver
UCA Unsafe Control Action
UFO Uni�ed Foundational Ontology
UI User Interface

xviii



Chapter 1

Introduction

The Ariane 5, a satellite payload rocket, took its maiden �ight on 4th June 1996. 37 seconds after

lifto�, it exploded, incurring a direct cost of ∼$370,000,000 (Dowson 1997; Nuseibeh 1997). The

immediate cause was tracked down to an over�ow error when converting a 64-bit �oating point

number to a 16-bit integer (Nuseibeh 1997). However, the software was operating exactly to its

requirements, which were de�ned for prior versions of the Ariane and were inappropriate for the

Ariane 5 (Dowson 1997). Therefore other causal factors were identi�ed including issues in design,

requirements, testing, project and risk management: a systemic process problem (Nuseibeh

1997).

The Therac-25, a software-controlled radiation therapy machine, was in use between June 1985

and January 1987 (Nancy G Leveson and Turner 1993). During that time it massively overdosed

at least six people, who were seriously injured and some of whom died. Analysis of the sequence

of incidents indicates that they were not fully addressed on each occurrence, resulting in the

possibility of further events, which kept occurring (Nancy G Leveson and Turner 1993). However,

in systems such as those capable of delivering lethal doses of radiation, it's not su�cient to correct

a discovered mistake, such systems need to be safe �rst time. The Therac-25 was developed

from an earlier model, the Therac-6, as was the Therac-20. Informal investigation showed under

similar conditions to those identi�ed as one of the causes of several incidents, the Therac-20's

mechanical interlocks would result in blown fuses and breakers, whereas the Therac-25's software

would deliver the lethal dose of radiation (Nancy G Leveson and Turner 1993).

System Safety Analysis is a high-stakes, high-value activity impacting our lives as we interact

1



Chapter 1. Introduction

with the myriad of things that can be described as systems with the potential to behave in

an undesirable manner. It is also a creative process with no known correct answer or point

of completion, which may be undertaken by non-expert analysts. Therefore, there is great

value in supporting analysts to produce as high-quality analyses as possible whilst also being a

challenging task to support with arti�cial intelligence.

The impetus behind this research is the idea that ontology can help support System Safety

Analysis, based upon ontology providing a shared model between human and machine that both

can reason with. To achieve this goal multiple topics are tackled in turn, each with their own

questions to address.

Under the topic of ontology:

� Can the STAMP1 model be satisfactorily capture in an ontology?

� How is it possible to capture su�cient information to reason about hypothetical futures?

� Does the ontology enable su�cient reasoning to provide support to an analyst?

Under the topic of support, which is provided by Contingent Sca�olding:

� Can a formal de�nition of Contingent Sca�olding be authored that provides �exibility?2

� What would a general de�nition of the levels of support provided be in a digital context?

� Does the additional information in the diachronic3 view of the ontology authoring process

o�er any bene�t over the synchronic one?

� Is the de�ned framework for Contingent Sca�olding e�ective in this creative domain of

System Safety Analysis?

Under the topic of software implementation:

� Can the software operate at su�cient speed as to provide perceptually immediate feedback?

� Can the generalisable libraries, such as those for reasoning about situations, ontology

authoring, and Contingent Sca�olding be shared as testimony to their being applicable to

other domains.

To address these topics and questions research is conducted by �rst examining the relevant the-

1STAMP is the System-Theoretic Accident Model and Process for System Safety Analysis. See: Section 2.1.2
2Flexibility to support creative processes, such as system-safety analysis, where the correct answers and user

actions can't be deduced.
3A diachronic view includes historical changes, as opposed to a synchronic view of only a single point in time

with no reference to historical changes.

2



Chapter 1. Introduction

oretical frameworks, formalising them if necessary, or incorporating them if they are already

formal. The result of this is the STAMP ontology and the Contingent Sca�olding framework.

These theoretical foundations are then validated for practicability by implementing them in

software and ensuring that the software can operate at su�cient speed as to provide immedi-

ate feedback to the analyst. The �nal step is to evaluate the e�cacy of the whole (ontology,

sca�olding, software with user interface) to improving the quality of a System Safety analyst's

model, particularly of those who are beginning to learn how to do such an analysis.

The tackling of these questions is of interest to multiple �elds, and so contributes to:

� System Safety Analysis: in particular the ontological model as well as novel and e�ec-

tive means of supporting analysts. The ontological approach merits consideration by the

community as it biases precision.

� Ontology Authoring: in particular the argument for a diachronic view of ontology

authoring and again a novel and e�ective means of supporting the author. Taking into

account past behaviour of the author(s) when o�ering support opens up more possibilities

for support.

� Intelligent Tutoring: in particular the formal de�nition of Contingent Sca�olding with

its novel means of providing �exibility. This formal de�nition makes it possible to prove

interventions will be provided under certain circumstances, rather than merely testing

them.

� Logic Programming: a solution to the architectural issue prohibiting sharing code that

depends on user de�ned terms. Application of Clean Architecture to Logic Programming.

This thesis is organised into seven chapters, this is the �rst one. The second chapter provides

a background to the domains used in this research and motivates the choices made. It then

summarises the plan for the research based upon this review of related works.

In chapter 3, an ontological model suitable for capturing the System Safety Analysis is de�ned.

It's also necessary to explore the potential reasoning such a model could support in order to

inform the kind of support that can be provided. A consideration here is to balance an ontolog-

ically sound model with the requirement to express the STAMP4 model in a manner that could

be understood by an analyst who is not a knowledge engineer.

4See: Section 2.1.2

3



Chapter 1. Introduction

Chapter 4 de�nes a framework for Contingent Sca�olding that can be applied to ontology author-

ing, which unbeknownst to the user of the software application is how their model is represented.

The Contingent Sca�olding framework is independent of ontology authoring, and so is applied

to ontology authoring in this chapter. The application of Contingent Sca�olding for ontology

authoring is also independent of the STAMP ontology, and is applied to it in the software appli-

cation. The goal here is to create a formal de�nition for Contingent Sca�olding for testing with

other domains.

In Chapter 5 the theoretical frameworks and ontology are incorporated into a software applica-

tion. While authoring the software it was discovered that shortcomings in the standard Prolog

language were inconducive to writing shareable code, which was addressed through Dependency

Inversion and Logtalk. This is an important goal as the ontology authoring and Contingent

Sca�olding frameworks are claimed to be applicable to other domains, therefore making it easy

to share encourages third-party veri�cation of this claim.

Chapter 6 reports on the user-study conducted in which 37 students in the School of Computing

at University of Leeds were introduced to the System Safety Analysis methodology used5, pro-

vided with a scenario describing a recommender system to analyse, and were observed conducting

their analysis with action logs collected. This was undertaken to test if the ontology-driven Con-

tingent Sca�olding framework, when implemented into software, provided any bene�cial support

to users who are beginning to learn the System Safety Analysis methodology used. The primary

focus is on improving model quality, but the impact on learning is also investigated as it is the

process by which a beginner gains expertise.

Chapter 7 summarises the main arguments and �ndings of this thesis. The generalisability and

reapplication of the various aspects are discussed. The immediate improvements identi�ed are

put forth, as well as longer term goals. As a preliminary investigation into the topic of ontology-

driven support for System Safety Analysis, there is much untapped potential that could not be

addressed, which is described for future endeavours.

5i.e. STPA, which is introduced in Section 2.1.2

4



Chapter 2

Related Work

2.1 System Safety Analysis

System Safety is:

The discipline that uses systematic engineering and management techniques to aid

in making systems safe throughout their life cycles. (Stephans 2012)

Where �Safety� is �freedom from harm� (Stephans 2012, p.11), and �System� is a �composite

of people, procedures, and plant and hardware working within a given environment to perform

a given task� (Stephans 2012). The �harm� to be free from is the loss of anything of value to

the stakeholders (N. Leveson and Thomas 2018, p.16), which occurs in loss events (N. Leveson

2017, p.465). Analysis is one part of System Safety used to identify and understand hazards

such that they can be controlled (Stephans 2012). A hazard is some �system state or set of

conditions that, together with a particular set of worst-case environment conditions, will lead

to a [loss]� (N. Leveson 2017, p.465).

For safety analysis, the scope of the systems considered is restricted to those that can cause harm

and that are controllable so that hazards may be controlled. For the system to cause harm it must

interact with its environment. The system described can be de�ned as a dynamic control system.

Where �a dynamic system is one whose present output depends on past inputs.� (Auslander 1974,

p.3) and a control system is �an interconnection of components forming a system con�guration

that will provide a desired system response� (Dorf and Bishop 2011, p.24). This de�nition

captures interaction with the environment through inputs and outputs as well as the intention

5



2.1. System Safety Analysis Chapter 2. Related Work

Figure 2.1: System of systems model, adapted from the Fault Tree Handbook (Vesely et al.
1981, p.I-5).

that the system behave in a desirable way, which is to also avoid undesired behaviours as de�ned

by the stakeholders.

Safety cannot be considered without understanding the environment within which the system is

placed. Knowing the inputs and outputs to the system is insu�cient; 44% of deaths in aviation

incidents in 2017 were people on the ground (Shepardson 2018). Therefore a �system of systems�

recursive approach is required, shown in Figure 2.1. This permits each component to be con-

sidered as a system, and the system being analysed to be a component in a broader system (Beer

1979; A. Aviºienis et al. 2004; Vesely et al. 1981; Wilson 1984). This allows the analyst to de-

termine the appropriate level of granularity with which to conduct their analysis (Wilson 1984;

Vesely et al. 1981).

A model that can describe the process that leads to a loss is required to perform safety analysis

in order to control the hazards (which are the conditions enabling a loss to occur). To describe

the process it must be able to describe the components that comprise the system and how they

are causally related (Zeigler 1976). Therefore the model must also describe the properties or

qualities of the components and the qualities that emerge when those components are combined

into a system. The qualities are descriptive variables (Zeigler 1976, p.10), meaning they describe

the situation a system or component is in as they vary. In such a model, events are mappings

between these situations. This is shown in Figure 2.2 where circles denote a situation and the

arrows between them a mapping from one situation to another.

6



Chapter 2. Related Work 2.1. System Safety Analysis

Figure 2.2: System model showing causal chain to system failure

To account for how a system can be controlled the model shown in Figure 2.2 also includes a

controller. The controller accepts output from the system and provides it with input (N. Leveson

2017). Due to the recursive nature of the system de�nition, a controller can also be considered as

a component in the system. A controller can be human or machine, deterministic or stochastic.

For the controller to choose inputs to provide they must have access to some model of the system.

This model may not be accurate or complete (N. Leveson 2017). Environmental in�uences that

are not controlled, such as wind direction or rainfall, are taken to be the worst-case scenario

values and otherwise excluded from the model as they can't be used to intentionally control the

hazards: the aim of system safety.

Once the system behaviour in relation to control of hazards is understood, some analysts will

proceed to assess the risks associated with each hazard. The System Safety Analysis considered

in this thesis is up to and including the identi�cation of unsafe behaviour, which precedes any risk

assessment. Therefore it's taken that the mere existence of any hazard is undesirable, regardless

of likelihood or severity.

7



2.1. System Safety Analysis Chapter 2. Related Work

2.1.1 System Safety Analysis Frameworks

The distinction between system safety engineering and reliability engineering must be made

prior to introducing the approaches. Safe systems need not be reliable, reliable systems need

not be safe, and sometimes safety and reliability constraints can con�ict (N. Leveson 2017, p.7).

The purpose of reliability engineering is to ensure that the system does not fail to provide the

functions for which it was designed. Whereas �System safety is the assurance and management

that the system is safe for all people, environment, and equipment.� (Bahr 2015, p.4) The two

do not necessarily con�ict, nor are they necessarily aligned.

The di�erence is evident considering an example investigation by the AAIB (2018). On 24th

September 2017, a three-seat Jodel DR1050-M Excellence aircraft struck three sheep when the

pilot experienced control di�culties and baulked the landing. The investigation found no fault

or failure in the aircraft, nor did they suggest that the pilot acted inappropriately given the

information they had. The system did not fail but two sheep were killed and the aircraft was

damaged.

System Safety involves identifying, analysing, and eliminating hazards (Bahr 2015; Vincoli 2006).

An older approach from pre-1940s aviation was known as the ��y-�x-�y� approach (Bahr 2015;

Stephans 2012), which made learning from errors more explicit than modern approaches that

emphasize getting it right �rst time. During the 1940s-1950s system safety evolved into a

discipline to cope with the demand to make systems safe that could not be tested using the

�y-�x-�y approach, such as the development of nuclear weapons and space travel (Stephans

2012).

In the 21st century there are multiple System Safety Analysis techniques available. Stephans

(2012) describes 20 di�erent techniques, without including STAMP's STPA and CAST as it was

published in the same year as N. Leveson (2004) was proposing STAMP as a new model. Each

technique frames the safety problem from a particular perspective to accomplish speci�c goals;

the main ones are summarised here:

� ETBA (Energy Trace and Barrier Analysis): Frames safety in terms of energy �ow, an

incident is the unwanted �ow of energy (Stephans 2012).

� FMEA (Failure Mode and E�ects Analysis): Typically for reliability analysis rather than

safety. FMEA is a form to record associations between components, failure modes, and

8



Chapter 2. Related Work 2.1. System Safety Analysis

failure e�ects. It can be used for subsystem and hazard analysis (Stephans 2012).

� FTA (Fault Tree Analysis): For reliability analysis rather than safety. Uses a tree for

qualitative and quantitative analysis of system failures (Vesely et al. 1981).

� PET (Project Evaluation Tree): Provides a graphic checklist to aid in evaluating the

system and its parts (Stephans 2012).

� Change Analysis: Frames safety as a change problem, and so lists and examines changes

systematically, using comparisons between situations, to ensure safety is not e�ected by

changes (Stephans 2012).

� MORT (Management Oversight and Risk Tree): Frames safety as a control problem. Uses

a tree as a systematic tool for accident investigation to identify the control factors that

can be improved to prevent recurrence (Stephans 2012).

� Event and Causal Factors Charts: Frames safety as a behavioural problem, inspects

the sequence of events that led to an accident. Creates a graphical representation of the

causal factors (Stephans 2012).

� STAMP: Frames safety as a control problem. Uses a systematic approach to identify the

control actions that are potentially unsafe and unsafe processes (N. Leveson 2017).

2.1.2 STAMP and STPA

STAMP is primarily a safety model, it combines systems theory with safety constraints, a hier-

archical safety control structure, and process models. At its core is the concept of a controller

within a feedback loop that can adjust the state of the system that it controls. Losses are under-

stood by �identifying the safety constraints that were violated and determining why the controls

were inadequate in enforcing them.� (N. Leveson 2017, p.90) With this model of causality, the

occurrence of a loss implies that a controller did not enforce a safety constraint, or that the

controller provided appropriate control actions but their results were not manifested.

STAMP can be used in two analysis process methodologies: pre-incident with STPA (System-

Theoretic Process Analysis), and also post-incident with CAST (Causal Analysis based on

STAMP) (N. Leveson 2017). Being grounded in Systems Theory it's amenable to formal mod-

eling, which has been exploited in a set-theoretic representation (Thomas 2013). Although

STAMP can be entirely conducted with pencil and paper, the utility of a formal model has

been recognised and used to aid analysis via software (Thomas 2013; Gurgel et al. 2015). The

set-theoretic model indicates an ontological one can not only provide the same utility, but with

9



2.1. System Safety Analysis Chapter 2. Related Work

subsumption and additional relations provide a richer model to support additional reasoning

tasks. STAMP is chosen as a safety analysis model, rather than a reliability model, which has

an existing formal model that can be extended.

STPA is relatively new, gaining results comparable with other methodologies and revealing

insights they missed (Fleming et al. 2013; Pawlicki et al. 2016). STPA is the analysis undertaken

pre-design, and so imposes the requirement to reason with hypotheticals, classes of things, and

branching time. Whereas CAST is undertaken post-incident and so requires instances of things

and linear time. Given that instances can be asserted from classes and that linear time is a single

branch of time, STPA's requirements on modeling are a superset of CAST's, and so STPA is

the primary focus of this research. An brief introduction to STPA is included in Appendix A.

2.1.3 Supporting System Safety Analysis

System safety analysis is conducted to understand the behaviour of increasingly complex systems

to mitigate or prevent undesirable behaviour. The consequences of inadequate analysis can be

catastrophic. Support tools aim to aid in the management of these complex models in order to

mitigate the risks associated with mistakes and incompleteness in the models.

Analysts require expert-level knowledge and skills regarding their chosen methodology (such as

STPA), chosen domain (such as hydroponic farming), modeling, as well as the system under

consideration (such as the Miracle-Gro AeroGarden Farm 24XL: an intelligent hydroponic home

system). Given that STPA is an emerging methodology, there are a growing number of people

wishing to learn it and its associated model. Expertise regarding the system also cannot be

assumed as STPA can be conducted from the design phase, on large systems distributed over

teams, and on complex systems requiring expertise in multiple �elds. Ideally some kind of

support tool would mitigate any lacking expertise.

STPA is an ill-de�ned task (as de�ned by Mitrovic and Weerasinghe (2009)) with an ambiguous

starting state, an unknown goal state, an advisory non-strict procedure, and no known correct

solution. It is an ill-de�ned domain (as de�ned by Mitrovic and Weerasinghe (2009)): STPA is

generic to all analyses and thus contains incomplete declarative knowledge regarding a particular

analysis, including the system under analysis. System safety is an ill-de�ned problem (as de�ned

by Lynch et al. (2009)), in STPA safety is re-characterised as a control problem, alternative

characterisations include Swiss-cheese and dominoes (N. Leveson 2017), others are discussed in

10



Chapter 2. Related Work 2.1. System Safety Analysis

Section 2.1.1. In summary, STPA is �ill-de�ned�, a term used in this text to denote the three

kinds of ill-de�ned here, which limits the support that can be provided. For such ill-de�ned

domains it is necessary to sca�old learning (Mitrovic and Weerasinghe 2009).

Currently, support for STPA analysts is primarily provided through a handbook by N. Leveson

and Thomas (2018), although regular workshops are also held. Whilst the handbook contains

a wealth of information, it is not interactive or adaptive to the current user. Many learning

institutions have textbooks, yet the teacher will still intervene with additional support as part

of their pedagogy, providing personalisation for each learner, including through sca�olding.

2.1.4 Software Support for System Safety Analysis

Inherent in any software for doing an STPA analysis is some level of support that emerges from

the user interface, which lays out the steps, terms, provides diagramming tools, and hyperlinks

between related terms. Tools that o�er this generic, nonadaptive support include: STAMP

Workbench1, SafetyHat2, and XSTAMP3.

Additional, intelligent support requires some kind of reasoning over the model to adapt to the

user's particular analysis. In this category there are three tools for STPA.

SpecTRM, A State-Based System Model

SpecTRM is the �rst formal model used for STPA analysis. It is based on the formalisation

of the de�nition of a hazardous control action and makes use of SpecTRM-RL, which uses a

state-based representation of the system (Thomas 2013).

The formal model can be used to automatically generate a list of potential unsafe control actions

described by the tuple: (SC,T,CA,Co), de�ned as:

� SC: Source controller, provided of control actions

� T: Type of control action (Provided or Not Provided)

� CA: Control Action, capable of being provided by SC

� Co: Context in which CA is provided or not

1Available at https://www.ipa.go.jp/sec/stamp_wb/manual/index.html
2User guide available at https://rosap.ntl.bts.gov/view/dot/12034
3Available at https://github.com/SE-Stuttgart/XSTAMPP

11

https://www.ipa.go.jp/sec/stamp_wb/manual/index.html
https://rosap.ntl.bts.gov/view/dot/12034
https://github.com/SE-Stuttgart/XSTAMPP


2.1. System Safety Analysis Chapter 2. Related Work

The context (Co) is described by a set of �context variables� associated with �context values�.

One example given (Thomas 2013, p.115) is for �train motion� as a context variable with the

possible context values of �stopped� or �moving�. The generation of potentially hazardous control

actions is essentially an enumeration and Cartesian product of all possible values for each element

in the tuple. Nine rules are de�ned that ensure the validity of the model (Thomas 2013, p.116),

however the model is not capable of distinguishing the ninth rule:

9. To qualify as a hazardous control action, the action (SC,T,CA,Co) must be able

to cause a hazard H ∈ H, where H is the set of system level hazards. (Thomas 2013,

p.116)

Thomas (2013) argues that the reduction of the set of automatically generated tuples to those

that are hazardous is a manual operation, which supports the early stages of system development

where the formal system model may be lacking. However, if it were possible to automate the

reduction of the generated hazardous control actions (or only generate those reasoned to be

hazardous), this could be used to provide support for the analyst by providing an explanation

of why the control action may or may not be hazardous. Furthermore it provides a means of

mitigating mistakes by calling attention to those control actions that can be reasoned to be

miscategorised.

From the set of hazardous control actions described by the tuples, requirements de�ning be-

haviour to be avoided can also be generated.

WebSTAMP

WebSTAMP is a web-stack based tool for STPA analysis (Souza et al. 2019). In terms of

intelligent support provided it also also uses the automatic generation of potentially hazardous

control actions that were described by Thomas (2013). In addition it applies the rule-based

approach of Gurgel et al. (2015) to include whether or not the software has identi�ed a control

action as hazardous to aid the user when they are manually reviewing the list.

The rules are manually created by the user to set certain parameters for the values that system

qualities can take as always being hazardous. The example from Gurgel et al. (2015) is that if

a train is moving and the doors are not fully closed, that is a hazard. Thus the rule allows the

system to determine that the system states where the train is moving and the doors are partially

or fully open are hazardous.

12



Chapter 2. Related Work 2.2. Ontology and System-Safety

RMStudio

RM Studio have been developing an STPA module for their risk-management suite of soft-

ware4 (Björnsdóttir and Rejzek 2017). The intelligent support includes analysis of Unsafe Con-

trol Actions and Loss Scenarios using data from the control structure and progress checking

of the analysis process. The progress check informs the analyst about all the de�ned elements

and how they are used or not used. This can include issues such as no justi�cation been docu-

mented, or an Unsafe Control Action not yet being linked to a Hazard. As proprietary software

the underlying mechanisms are undisclosed.

2.2 Ontology and System-Safety

The techniques employed in safety analysis can be divided into those used prior to a loss (STPA)

and the those used after (CAST). Within the realist framework, they can also be divided into

those applied on a universal, class or a particular (Arp et al. 2015), as shown in Figure 2.3.

Before a loss the analysis is conducted on a universal, which informs the design, manufacture,

use and maintenance of a particular. The particular is monitored through provenance data.

After a loss an investigation conducted on a particular is used to consider safety improvements

on some universals and classes. These improvements are then applied on particulars of these

universals or classes. Example 2.1, based on an accident report available at Skybrary (Aviation

Investigation Report: Loss of Rudder in Flight 2007), highlights these distinctions.

Example 2.1

When the designers of the Airbus A310-308 conducted Fault Tree Analysis (FTA) to determine

how it may fail, they were considering the universal A310-308 prior to any accident or incident.

When the A310-308, with serial number (MSN) 597 underwent pre-�ight checks on 6th March

2005, the crew were checking a particular prior to any accident or incident.

When (MSN) 597 landed later that day with its rudder missing (Aviation Investigation Report:

Loss of Rudder in Flight 2007), it was a particular that was investigated after an accident or

incident. When the investigators subsequently recommended an inspection program they did

so for the class of aircraft with part number A554715000 series rudders (Aviation Investigation

Report: Loss of Rudder in Flight 2007), again this was after the accident.

4Documentation (incomplete at time of writing) available at: https://support.riskmanagementstudio.com/
?section=stpa

13

https://support.riskmanagementstudio.com/?section=stpa
https://support.riskmanagementstudio.com/?section=stpa


2.2. Ontology and System-Safety Chapter 2. Related Work

Figure 2.3: Illustrating the need for ontology in System Safety. Shows distinction between
whether a universal, class or particular is being considered and highlighting how recommenda-
tions included in the report can inform system safety processes at each stage. An "airplane" is
used to represent any system.

In STPA, STAMP can be conducted for a system that does not yet exist, considering the abstract

kinds of events and kinds of components, i.e. universals. The intended use of this knowledge-

representation is within a knowledge-based application to support analysis with STAMP. There-

fore, it needs to be capable of describing hypothetical control systems and their behaviour

including projecting the consequences of that behaviour, at various levels of abstraction. This

is within the purpose of ontology as argued by Gruber (1995): as a conceptualisation of some

simpli�ed world-view for a purpose.

The key activities of an STPA analyst center around identi�cation, such as identifying situations

to be avoided, and communicating their �ndings, such as constraints that must be placed upon

system behaviour. The formal logic with which ontologies are represented enable assistance in

identi�cation, as per the enumerative methods using the set-theoretic representation (Gurgel et

al. 2015; Thomas 2013), however the additional information captured can do so more e�ciently

and for more terms.

Additionally, incidents caused by miscommunication have occurred, such as those surrounding

units of measurement in the Mars Climate Orbiter incident (Stephenson 1999). STAMP rec-

ognizes this need for people and teams to share a common mental model of the system (N.

14



Chapter 2. Related Work 2.2. Ontology and System-Safety

Leveson 2017, p.96). Ontologies not only ensure a common vocabulary (Noy and McGuinness

2001) but also provide a reference model, thus reducing ambiguity in communication. They're

also machine interpretable (Noy and McGuinness 2001), which will enable additional intelligent

tool support.

2.2.1 System Safety Related Ontologies

Aviation Safety Ontology

An ontology for aviation safety, aligned with Uni�ed Foundational Ontology (UFO)5 is available

through INBAS (INdicator BAsed Safety project) (INBAS 2018). The ontology is divided into

sections for UFO, documentation, core, aerodrome, airline, air tra�c management, maintenance

and aviation (Kostov et al. 2017). It contains over 1700 classes and over 2000 individuals (INBAS

2018). This ontology was analysed for anti-patterns, which whilst syntactically correct do not

produce the desired model (Ahmad and K°emen 2016). Anti-patterns were found in the parts

corresponding to both UFO-A and UFO-B (Ahmad and K°emen 2016).

The Aviation-Safety Ontology describes both the systems and contains rules for safety events,

an example is shown in Equation 2.1 (INBAS 2018).

aviation-safety:Bird strike ⊑ aviation-safety:Wildlife strike⊓

∃aviation-safety:has coliding [sic] object.aviation-safety:Bird

(2.1)

Although much of the ontology is domain speci�c it includes a Safety ontology aligned to a

conceptualisation of Risk Management. It contains terms to reason about the �ndings of audits

with regards to incidents and relate them to similar incidents (Kostov et al. 2017). This module

is still tailored to the working procedure in the Aviation domain, with the issue of incidence

reports, and does not include equivalents to terms essential to STAMP such as �Hazard�, �Loss�,

or �Controller�. STAMP is a non-domain speci�c model and a non-domain speci�c ontology is

required.

5Discussed in the upcoming Section 2.2.2

15



2.2. Ontology and System-Safety Chapter 2. Related Work

Hazard Ontology

The Hazard Ontology (Zhou, Hänninen, Lundqvist, and Provenzano 2017) is designed to capture

the de�nitions of hazards identi�ed by Preliminary Hazard Analysis, which can then be used to

further re�ne the de�nitions of these identi�ed hazards (Zhou, Hänninen, and Lundqvist 2017)

and identify causes of hazards (Zhou, Hänninen, and Lundqvist 2017). It provides an ontological

foundation for describing hazards ground in Uni�ed Foundational Ontology (UFO). It considers

hazards as a kind of situation that can be brought about by events, and provides terms to

capture additional information such as exposure, hazard elements, initiating roles and initiating

factors.

The Hazard Ontology claims di�erentiation from STPA in that it formalizes the analysts' expert

knowledge of the system (Zhou, Hänninen, and Lundqvist 2017), despite the set-theoretic model

for STPA (Thomas 2013), and that it enables the exploration of the causes of hazards (Zhou,

Hänninen, and Lundqvist 2017), despite step 4 of STPA: Identify Loss Scenarios (N. Leveson

and Thomas 2018). Although the Hazard Ontology is designed for the results of Preliminary

Hazard Analysis, the shared terms of situation-hazards, events, and the controller role suggest

that it may be possible to extract some shared higher ontology module positioned between UFO

and both the Hazard Ontology and the STAMP Ontology.

There are some fundamental di�erences in conceptualisation though. In Hazard Ontology an

Initiating Condition or Hazard can be related to an Initiating Event with a `trigger' relation,

and Initiating Events can `cause' Initiating Events. This conceptualisation caters to what Reiter

(2001) calls natural actions, which are those that cause change in the system due to obedience

to natural laws such as the Newtonian equations of motion. Thus if a condition exists where

a piano is up in the air unsupported, that will trigger the �falling� event, which will cause the

�piano crashing down� event. The �unsupported piano in the air� situation itself does not cause

the piano to fall, that makes it possible for the piano to fall. It's the law of gravity that e�ects

the falling, and ensures that the piano will always fall if it is possible that it can fall.

In STAMP the concern is with Control Actions, which are those events which are chosen to be

actuated by some controller, as only these can be manipulated to prevent Hazards from occur-

ring. The natural events are abstracted out of the model. So in STAMP the more appropriate

de�nition would be to relate a `Control Action' to a `Situation' with a relation that denotes some

`Controller', who is capable of doing that `Control Action' could decide to attempt to actuate

16



Chapter 2. Related Work 2.2. Ontology and System-Safety

that `Control Action' in that situation, i.e. The Baker House students have the capability to drop

a piano o� the roof, which they realize in a situation where the piano is on the roof, it's annual

piano drop day, and they choose to drop the piano. To remove agency from the controller and

state that the situation causes the event is to commit the fallacy of rei�cation; the situation has

no agency to e�ect change. So any bridge between Hazard Ontology and a STAMP Ontology

will need to account for the di�erences between UFO Events and STAMP Control Actions while

avoiding this fallacy.

Hazard Causes and Consequences

Another ontology supporting hazard identi�cation is pro�ered by Vargas and Bloom�eld (2015).

They also de�ne hazards as a situation, but also de�ne �Cause� and �Consequence� as situations

with no relation to events or actions that transition between situations. They do include a Pro-

cess de�nition, which is used to describe system behaviour and can be de�ned as the behavioural

location and scope of a hazard. Thus this de�nition lacks the terms to reason about how and

why a �Cause� situation could transition to a �Hazard� situation, and how the �Hazard� could

transition to a �Consequence� situation. Given situation's exist and do not change in and of

themselves, it seems odd to say a situation is a cause, rather than it being one in which it is

possible to transition to a hazard, and the event transitioning to the hazard then is the causal

part.

The Vargas and Bloom�eld (2015) ontology also contains a mereology of systems that includes

terms for �System�, �Subsystem�, and �Part�, which are all kinds of �Component�. They've

understood that �Systems� are a recursive structure, until the fundamental components that

can no-longer be split into constituent parts are reached. The use of the additional �Subsystem�,

�Part�, and �Component� terms is an attempt at scoping hazards, however they enforce the

representation of a system being modeled to the level of granularity chosen. Should an analyst

wish to decompose some �Part� in the ontology to examine its constituents, they're unable to

do so without rede�ning it as a �Subsystem�, which suggests an ontological error. Even in the

case where the parts were the elementary particles (such as quarks), there are multiple theories

reasoning hypothetically about the composition of these (such as preons), and ontology should

be capable of representing the hypothetical in order to support reasoning and creative thought.

17



2.2. Ontology and System-Safety Chapter 2. Related Work

STPA-Sec Ontology

An ontology for STPA-Sec, which is the application of STPA to Security is de�ned by Pereira

et al. (2019). The ontology reuses the �Hazard� term from the Hazard Ontology, and the �Haz-

ard triggers UnacceptableLoss� relationship already discussed. These are combined with terms

from security ontologies and terms from STPA-Sec (the methodology, not a pre-existing on-

tology). Given its di�erent purpose much of the security related terms are super�uous to a

plain STPA analysis, however the inclusion of these existing ontologies e�ects the de�nition

of STPA terms that they subsume. Therefore rather than de�ning controllers, actuators, and

sensors in terms of the control-systems theoretical foundation of STAMP, they're de�ned as

�STPASecElements� (where �Controller� is subsumed by �ModelledEntity�, which is subsumed

by �STPASecElements�), which are a kind of �Asset�, where an �Asset� is an inherited term taken

from ontologies that de�nes it in terms of aircraft and another that de�nes it in terms of items

of value to organisational objectives (Pereira et al. 2019). From these it's understood that an

asset can be a �function, security measure, human, or information, [and] function is realized as

part of the Controller entity� (Pereira et al. 2019, p.306).

Control Systems theory is central to STAMP, N. Leveson (2017, ch.3) dedicates a foundational

chapter to explaining how it is understood in STAMP. The de�nitions in the STPA-Sec ontology

fails to capture how these �STPASecElements� are understood in STAMP, and instead di�eren-

tiates them taxonomically by their use in the STAMP framework, typi�ed by �ModelledEntity�.

This is an ontological �aw, it's describing how the terms are used in the artifacts produced in

the analysis, rather than the nature of their being: their ontological nature.

Summary of Safety Ontologies

The authors of the ontologies discussed are motivated by the capability for ontology to aid in the

improvement of system-safety analysis. Notably Pereira et al. (2019), who authored the STPA-

Sec Ontology, found in their evaluation it helped analysts to identify more security scenarios

than when not using it. There are however ontological modeling issues and re�nement of the

representation of STAMP terms to be addressed.

18



Chapter 2. Related Work 2.2. Ontology and System-Safety

2.2.2 Modular Ontologies

The STAMP ontology uses terms that are subsumed by more generic terms from more general

theories. As STAMP is an ill-de�ned domain, these more general terms are modularised a priori

to aid in managing the complexity of the model and the dynamicity of the module edited by

the analyst (Thakker et al. 2011). The methodology of Thakker et al. (2011) uses three levels

to organise the modules:

1. Upper Ontology: to cover base concepts from a chosen theoretical framework

2. High-level reusable domain layer: connects the Upper Ontology to the Case speci�c

layer by de�ning domain concepts in terms of the upper ontology at a granularity such

that it can be used with multiple speci�c cases.

3. Case speci�c layer: de�nes concepts to the speci�c use case.

For the STAMP ontology, a case is taken as a distinct system-safety analysis model. Therefore

this is left to the analyst to de�ne for their system by extending the terms in the higher level

modules. The Upper Ontology layer is required to de�ne the most abstract concepts to aid in

de�ning the High-level reusable domain layer.

Between the two layers needs to be all the de�nitions to capture the STAMP model. This

includes STAMP speci�c terms as well as terms from its conceptualisation of the underlying

control systems theory. The control systems layer needs to be capable of capturing parts of the

system, such that it de�nes actuators, sensors, and controllers, but the structure of the system

is of little concern in STPA and needn't be captured. However, the behaviour of the system is

a primary concern for system safety analysis, and so a suitable representation is required.

Top Ontologies

These are the top-level, most abstract ontologies that are used for organising and guiding the

precise de�nition of the lower modules.

Basic Formal Ontology (BFO) BFO (Arp et al. 2015) is a top-level ontology used by the

domain ontologies that comprise the Open Biomedical Ontologies (OBO) Consortium, among

others. BFO's established use in the biomedical domain suggests it's successful at modeling

complex and critical systems. It commits to a philosophy of realism, meaning it commits to

only representing reality and not the linguistic, conceptual or theoretical.

19



2.2. Ontology and System-Safety Chapter 2. Related Work

The implication of a commitment to realism for a STAMP ontology means that any linguistic,

conceptual, or theoretical thing would have to be de�ned as such. The very concept of �system� is

one such term. In realism there is no entity that is a system. Instead the entity, such as a kettle,

exists as an object: a material entity. The concept of system in realism is a kind of �Concept�,

and so if one wished to examine the kettle using a systems model, it would be necessary to

de�ne �system� as some kind of theoretical modeling conceptualisation, and relate objects such

as �kettle� to the �system model of kettle�. The same applies to many terms in STAMP, and the

STPA analysis would then be conducted on these system model conceptualisations.

The trade-o� between truth and practicality needs to be considered with regards to a commit-

ment to realism. The realist representation is truthful, and so is more accurate. It's also more

versatile as a convenient lie of omission for one purpose can prevent re-application to another

purpose. However for an STPA analyst to use it would require training and a great divergence

from how they usually conduct an STPA analysis, unless it could be abstracted away in the

tools they use.

The core of BFO distinguishes between a Continuant, which may be independent or dependent,

and an Occurrent. For a kettle example:

� the heating element is an independent continuant

� the heating function is a dependent continuant, it's dependent on the heating element,

power and water being present.

� the heating functioning is an occurrent, this is the heating element performing its heating

function and is a process.

BFO also includes useful de�nitions to describe roles, objects, regions, sites, and �at boundaries.

It also considers dependency at its core and distinguishes between a disposition for an event and

the occurrence of that event, which may be useful. Del Frate (2014) has mapped failure onto

the terms continuant and occurrent. There is an e�ort to create a top-level ontology for systems

engineering using BFO (Jenkins 2018), however it's in the early stages of development.

Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE) DOLCE

is a top-ontology with a cognitive-bias (Masolo et al. 2002), which contrasts it against BFO's

commitment to realism. It's designed to capture ontological categories underlying language and

human commonsense (Masolo et al. 2002). DOLCE should be able to capture terms like �system�,

20



Chapter 2. Related Work 2.2. Ontology and System-Safety

and �situation� without needing to �rst de�ne what a conceptual thing is: its commitment is to

capturing cognitive artifacts. It includes terms related to mereology, participation, qualities and

functions. However, it's not intended to be a �universal� standard ontology (Masolo et al. 2002),

and was one of the foundational ontologies of UFO (Guizzardi, Botti Benevides, et al. 2021).

General Formal Ontology (GFO) GFO (Herre 2010) was envisioned to be a unifying

foundational ontology. It's structured with layered modules, which include de�nitions for objects

and processes. It was designed for use in applications in the socio-technical systems domain,

particularly medical, economical, and sociological.

GFO also has a commitment to realism that di�ers from that of BFO. In BFO the ontology must

be based on universals in reality, instead of concepts. GFO argues that there is no representation

of reality without concepts (Herre 2010). Therefore in GFO the concept of �System� can be

de�ned as a term without �rst de�ning �Concept� to subsume it, as the concept of �System�

exists in society.

GFO was used as one of the foundational ontologies of UFO (Guizzardi, Botti Benevides, et al.

2021).

Uni�ed Formal Ontology (UFO) UFO (Guizzardi, Botti Benevides, et al. 2021) is a multi-

part upper-level ontology, development on which is ongoing, therefore an �Essential� UFO is also

used as a reference version (Guizzardi and Wagner 2011), which is indicated by the acronym

�eUFO�. UFO, and thus in deference eUFO, are modular, including a base layer (0) de�ning

terms like �Thing�, �Individual� and �Universal�. This is extended to an A-part and B-part,

where A is concerned with material things, such as matter and qualities, whereas eUFO-B,

shown in Fig. 2.4, describes events.

UFO was motivated by the desire to provide ontological foundations for conceptual modeling.

The initial UFO attempted to unify DOLCE (Masolo et al. 2002) with General Formal Ontol-

ogy (Herre 2010), and has since continued to unify fundamental conceptual modeling notions

including types, mereology, particulars, roles, and the aforementioned events (Guizzardi, Botti

Benevides, et al. 2021). It aims to be a means for describing reality and its accounting for in

human cognition.

The practicality of using UFO as a top-ontology for system safety is attested by its use in the

21



2.2. Ontology and System-Safety Chapter 2. Related Work

Figure 2.4: Depiction of the eUFO-B ontology (Guizzardi and Wagner 2011).

Aviation Safety Ontology, Hazard Ontology, and thus STPA-Sec Ontology, discussed previously.

Structural Ontologies and Formal Representations

One aspect of control systems theory utilized by STAMP is the di�erent kinds of systems and

their interactions. Although there is little need for a �has part� relation, it would be wise to

consider an ontology that accommodates a mereological de�nition such that any ontology created

during an STPA analysis can be re-used in other tasks.

Semantic Sensor Network The Semantic Sensor Network (SSN) (Haller et al. 2017) family

of ontologies de�nes many of the required system terms making it a suitable candidate for

extension. However the purpose di�ers enough that reusing terms could be a source of confusion:

an Actuation in SSN is the instantiation of some kind of occurrent that is recorded in the

ontology, whereas in STAMP it is the capability that inheres in some kind of actuator that can

be realised in an occurrence. For example, SSN would record that WM30 is a wind-speed sensor

with its operating range, and that at 10:03 an instance of a WM30 sensor recorded a wind speed

of 5ms (Group 2005). Whereas a STPA would record that there is some kind of wind sensor

that has the capability to feedback wind speed data.

Part-Of Relations Mereology is the study of parts and their sums, which is the wholes they

form. Given system-theory is a decompositional and compositional theoretical model, mereology

provides a calculus for reasoning with the parts of a system. Here it is de�ned formally using

22



Chapter 2. Related Work 2.2. Ontology and System-Safety

the same notation as Simons (1987).

x is a part of y: x < y

Re�exivity: y < y

Antisymmetry: x < y ∧ y < x→ x = y

Transitivity: x < y ∧ y < z → x < z

x is a proper part of y: x≪ y
.
= x < y ∧ ¬y < x

x overlaps y: x ◦ y .
= ∃z(z < x ∧ z < y)

x is disjoint with y: x ≀ y .
= ¬(x ◦ y)

These de�nitions don't account for di�erent types of whole/part relations, just that �x is part of

y� without considering what �part of� means. Di�erent taxonomies of these relations have been

proposed, which include component-integral relationships (Odell 1994; Winston et al. 1987).

These are discussed as parts of the whole that have an additional functional relation to the

whole, which distinguishes them from pieces of a whole (Odell 1994; Winston et al. 1987). This

can be formally de�ned following the same de�nition used by Vieu, who in turn uses a de�nition

from Casati and Varzi (Vieu 2006).

Functional part: x <f y
.
= x < y ∧ ϕ(x, y)

Vieu (2006) has no need for antisymmetry in the de�nition. In the de�nition ϕ is used to denote

some relationship between x and y that is understood to be functional.

This is perhaps the simplest de�nition of part-hood that is suitable to describe a system

structure. To make the term more in-keeping with systems language, it can be denoted as

componentOf(x, y) or hasComponent(y, x) The underlying idea can be extended in a number of

ways as the representation requires, for example, this rule can be used to de�ne distinct entities

that interact in the same environment.

23



2.2. Ontology and System-Safety Chapter 2. Related Work

interact(x, y)
.
= ∃e(x≪ e ∧ y ≪ e ∧ x ≀ y ∧ ψ(x, y))

Behavioural Ontologies and Formal Representations

The second aspect of control systems theory utilized by STAMP is that they behave. Behaviour

is understood herein as a sequence of actions that when realized occur in time but that can also

be conceptualised for analysis and reasoning.

Behaviours And Functions Of Technical Artifacts This formal de�nition of technical

artifact behaviour is based upon the de�nitions of perdurant found in DOLCE6 and also makes

use of mereological terms (Borgo et al. 2009). It is intended for use with technical artifacts, of

which socio-technical systems may be considered a subset.

A ternary relation, read as �b is the behavior of the technical artifact a in event e� (Borgo et al.

2009, p.11) is introduced as a primitive:

Beh(a, e, b)

Borgo et al. (2009) then consider possible behaviours, �rstly by restricting what is logically

possible to occur. Generalised engineering perdurants (GEPD) excludes those which are not

logically possible. Physically possible perdurants (EPD) are those which are physically possible,

and actual possible perdurants (APD) are those which are actually possible. Parts of actu-

ally possible and physically possible perdurants are actually or physically possible respectively.

Actual possibility holds for the sum of actually possible perdurants.

6Equivalent to occurents, some kind of thing that "extend[s] in time by accumulating di�erent temporal parts,
so that, at any time they are present, they are only *partially* present, in the sense that some of their proper
temporal parts [..] may be not present." (Masolo et al. 2003, p.15) A typical example is in doing some process,
where at any point during the process the past-parts of it are no longer present and future parts are not yet.

24



Chapter 2. Related Work 2.2. Ontology and System-Safety

APD ⊆ EPD ⊆ GEPD ⊆ Perdurants

APD(e) ∧ Part(e′, e) → APD(e′)

APD(e) ∧APD(e′) → APD(e+ e′)

EPD(e) ∧ Part(e′, e) → EPD(e′)

Axioms for possible and impossible behaviour are then de�ned.

PossBeh(a, e, b) ≜ Beh(a, e, b) ∧ EPD(e)

ImBeh(a, e, b) ≜ Beh(a, e, b) ∧GEPD(e) ∧ ¬EPD(e)

Following this, relations for input and output perdurants are de�ned, which could be used

to represent the actions of a controller as an agent. More axioms are provided to represent

conditions, behavioural constraints, causation and interaction with the environment.

The distinction between kinds of possibility with regards to behaviour goes beyond the require-

ments for STAMP, but could be useful when considering the rule-based approach of Gurgel et al.

(2015) and supporting an analyst by identifying which control actions are potentially hazardous.

To do so would require a manner in which to identify the kind of possibility from reasoning rather

than assertion.

Situation Calculus Situation calculus was introduced as a formal language that could be

used by a computer program to decide what to do in order to reach a goal via a strategy (Mc-

Carthy and Hayes 1969). It is based on representing the world in terms of discrete interacting

automata (McCarthy and Hayes 1969), which has su�cient similarity to the systems model to

be acceptable, and follows the perdurant representation of time through �uents, where a �uent7

is a predicate that includes a situation (Reiter 2001), i.e. they are facts that are only true in

certain situations. It was designed with intention of answering questions, which also arise in

7Strictly a relational �uent; functional �uents are not used in this thesis.

25



2.2. Ontology and System-Safety Chapter 2. Related Work

safety analysis:

1. What will happen next in a certain aspect of the situation?

2. What will happen if I do a certain action?

5. Can I �gure out how to do this or must I get information from someone else or

something else?

(From McCarthy and Hayes (McCarthy and Hayes 1969, p. 4))

Situation calculus has many compatible features, including de�nitions of situations and �uents,

which have been discussed prior to introducing it here. Also it has a manner of determining

causality; action dependencies; action e�ects; strategies, which are a combination of actions; and

knowledge, which might for the basis of a representation for beliefs (McCarthy and Hayes 1969).

It is typically associated with planning tasks in AI, where a plan is found between a given state

and a goal state (Reiter 2001). This planning task bears strong similarities with the kind of

reasoning required for safety and reliability analysis.

However, the situation calculus is not without problems, most notably the Frame Problem,

which has several proposed solutions (McCarthy and Hayes 1969; Shanahan 1997; Reiter 2001;

Mueller 2015). Among these solutions is the Event Calculus, which provides solutions to many

problems the original Situation Calculus does not (Shanahan 1997; Mueller 2015), however it is

also based upon linear time, whereas Situation Calculus uses branching time (Mueller 2015). For

the purposes of Safety Analysis, branching time is a natural approach, allowing the analyst to

consider multiple possible futures from a given situation. An e�ort has been made to unify the

two calculi, however the computability of the uni�ed calculus is unknown (Bennett and Galton

2004).

Within Situation Calculus, a �simple solution� to the Frame Problem is o�ered by Reiter, which

has been used and tested in the Toronto University robotics laboratory (Reiter 2001). The

solution provided is limited to deterministic, primitive actions (Reiter 2001). However, Reiter

also o�ers Golog, which can overcome these di�culties.

Golog is a logic programming language for an extended situation calculus with a Prolog inter-

preter that can be used for applications in dynamic domains, including robotics, planning and

data applications (Reiter 2001). Variations of the interpreter o�er extensions to manage tempo-

26



Chapter 2. Related Work 2.2. Ontology and System-Safety

Figure 2.5: Depiction of the Activity Speci�cation ODP (Katsumi and Fox 2017).

ral information, exogenous actions, interrupts, environmental sensing, knowledge, and stochastic

actions. This suggests it could be an ideal tool to use in safety analysis, capable of application

o�ine, as well as for a system in use.

Activity Speci�cation Ontology Design Pattern (ODP) The Activity Speci�cation

ODP (Katsumi and Fox 2017) is based upon the notion of causality found in Event Calculus,

which is related to Situation Calculus (Kowalski and Sergot 1986). Situation Calculus makes

use of a representation of reality �as a system of interacting discrete automata� (McCarthy and

Hayes 1969, pg.9). The term `state' used is equivalent to `situation', `activity' is equivalent to

`event'.

This representation assumes an activity has a precondition described by a state, and that activity

can produce some result that is a new state. This implies that an activity can occur when its

preconditions are met. This design pattern could be used to describe the process leading to a

loss event occurring.

Katsumi and Fox (Katsumi and Fox 2017) suggest the pattern can be adapted to include other

ontologies for activities, temporal entities and states, as well as be expanded to include partic-

ipants. In comparison to Situation Calculus as de�ned by Reiter (2001), it lacks the relations

to describe the states (which are expected to be included from another ontology module), and

therefore lacks the relations to describe changes in states brought about by activity.

27



2.3. Contingent Sca�olding Chapter 2. Related Work

UFO-B UFO-B is one part of the UFO top ontology already discussed, it's the part that

de�nes perdurants (those things that occur) (Guizzardi, Botti Benevides, et al. 2021), depicted

in Figure 2.4. It includes terms to aggregate atomic events into complex events, participants,

and situations. It also contains the same pattern of relating events to situations as the Activity

Speci�cation ODP (Katsumi and Fox 2017), however under UFO-B the pre-state is simply what

the situation was prior with no commitment to it being a condition of the event or activity.

In comparison to Situation Calculus as de�ned by Reiter (2001), it also lacks the relations to

describe changes in situations brought about by events.

2.3 Contingent Sca�olding

Contingent Sca�olding is presented by D. Wood, Bruner, et al. (1976) as a process enabling

the learner to accomplish a task beyond their current capabilities, which is one key goal of sup-

porting the non-expert analyst. This is achieved by some more knowledgeable other controlling

the elements of the task that the learner cannot yet accomplish, allowing them to concentrate

their e�orts upon those that they can (Daniels 2010). Day and Cordón (1993) demonstrated

sca�olding required fewer examples and explanations, as well as providing better maintenance

of learning.

The term �sca�olding� was coined to describe how mothers were able to teach children as young as

three to complete a task that should not be possible for pre-operational children, as per Piaget's

theory, to accomplish. Wood and Wood (D. Wood 1998; D. Wood and H. Wood 1996a; D. Wood

and H. Wood 1996b) distilled two main observations from the studies for successful sca�olding:

help was o�ered as soon as the child struggled, and help was incrementally withdrawn when the

child succeeded. They later expounded the principals of �contingent sca�olding� (H. Wood and

D. Wood 1999) as:

� Help is provided expeditiously when the learner is in trouble

� Help is increased as the learner requires, until the solution is reached

� As the learner succeeds, support is withdrawn

The term �contingent instruction� was coined by the same group to describe this sca�olding

method of tutoring where the child has access to help when struggling but is not held back

by direct and intrusive teaching (D. Wood 1998). Inherent within contingent instruction is the

28



Chapter 2. Related Work 2.3. Contingent Sca�olding

o�ering of support in structuring the task at hand, which also reduces uncertainty. It's argued

that uncertainty in the task at hand distinguishes the learner from the expert and can make

learning more di�cult (Daniels 2010). Daniels (2010, p.109) suggests that the support o�ered

be within the child's Zone of Proximal Development, as per Vygotsky's theory, and suggests six

levels of control:

� Level 0: no assistance;

� Level 1: a general verbal prompt ('What might you do here?');

� Level 2: speci�c verbal ('You might use your computer tools here');

� Level 3: indicates materials ('Why not use a graph plotter?');

� Level 4: prepares materials (selects and sets up tool);

� Level 5: demonstrates use.

The learner's behaviour is observed to determine whether intervention is required, the tutor then

moves through the levels of support. What it means to be in �trouble� isn't de�ned, but is left

to the tutor to intuit. The number of levels vary, between 4 and 5 in QUADRATIC (H. Wood

and D. Wood 1999) or the 6 above (Daniels 2010); the only guidance being that they should

increase in depth or interference until physical intervention is undertaken.

Sca�olding has been successfully applied in Intelligent Tutoring Systems (ITSs), typi�ed by

providing one-on-one micro-tuition with graded support for multi-step problem solving in for-

malised domains (Du Boulay and Luckin 2001). One notable example for the safety domain is

Sherlock II, an apprenticeship-style learning system providing a coached practice environment

for troubleshooting complex electronic circuits in the domain of aviation. The amount of help

provided by the system when the analyst requested it was based upon their prior requests for

help and student model, becoming increasingly directive (Katz and Lesgold 1993).

D. Wood and H. Wood (1996b; 1998) draw the similarity between Anderson's Production Rule

approach developed from ACT theories (Anderson 1993) and contingent instruction based on

the condition-action pairs it results in. Anderson's production rules worked with de�ned goals

and sub-goals (Anderson 1993), in well understood domains: The Towers of Hanoi, LISP, and

Geometry (Anderson 1993). However, D. Wood and H. Wood (1996a; 1996b) also expressed

concern with the lack of �exibility and inability to handle novelty. AI education tools that

29



2.4. Supporting Ontology Authoring Chapter 2. Related Work

have succeeded Anderson's work have addressed how the tool is integrated into the classroom,

collaboration, as well as selection of tasks from within the Zone of Proximal Development and

selection of language used when communicating with the learner (Du Boulay and Luckin 2001).

The concern in implementations regarding a lack of �exibility spans more than 2 decades (Du

Boulay and Luckin 2001; D. Wood 2018; D. Wood and H. Wood 1996b), the di�culty arising

from the capability of a learner to approach a problem in an unexpected but valid way. Previous

work on ill-de�ned domains and tasks indicates various strategies have been successful, including

constraints (Lynch et al. 2009) that can check if certain properties of a solution are present or

not. The violation of some constraint indicates a need for intervention (Ohlsson 2015). Therefore

the proposed contingency sca�olding framework outlined in Chapter 4 uses constraints based

on situational calculus and a domain ontology to provide sca�olding �exibility in the context of

system safety analysis.

In order to support a STPA Analysis Support Framework providing Contingent Sca�olding, a

history of the ontology authoring process is used such that the arti�cially intelligent tutor can

determine if a learner has resolved an issue, or if a similar issue has arisen prior. With the typical

synchronic manner of ontology authoring, only the ontology as de�ned at the time of viewing is

available for viewing. Pertinent historical information is then captured in an extraneous user-

model. The alternate proposed herein is to use Situational Calculus for ontology authoring to

meet this requirement of a diachronic view of the ontology being authored, such that how the

ontology was authored can be considered.

2.4 Supporting Ontology Authoring

The motivation to provide support to non-expert authors drives the desire to capture as much

information regarding their authoring process as available, within a formal framework to support

in-depth querying.

2.4.1 Existing Tools

Ontology authoring support tools that analyse the static ontology, include OOPS! (Poveda-

Villalón et al. 2014), OntoDebug (Schekotihin et al. 2018), and BOADiS (Denaux 2013). These

three exemplify di�erent approaches to supporting authors. All three only have a synchronic

view of the ontology, and all three are run repeatedly as the ontology is being authored.

30



Chapter 2. Related Work 2.4. Supporting Ontology Authoring

OOPS! is an �OntOlogy Pitfall Scanner!� designed to semi-automatically catch common pitfalls

beginners make when authoring ontologies (Poveda-Villalón et al. 2014). It uses a catalogue of

common mistakes that it can identify, should one occur the author is informed so that they can

correct it and re-check with OOPS!

OntoDebug is an ontology debugging tool using author-de�ned test-cases (Schekotihin et al.

2018) similar to unit-testing in software authoring. A user can de�ne statements that the

reasoner should be able to prove are true or false. The tests can then be run on the de�ned

ontology to check the test statements. Any statement's truthiness that can't be proved is

reported with a view of the possibly faulty axioms to aid the author resolve the issues. The tests

can be run as frequently as the author desires.

BOADiS (Denaux 2013) is built on top of the Perico dialogue framework for ontology authoring.

BOADiS has dialogue actions to encourage/discourage edits, checking implications, and checking

justi�cations. This enforces a tight feedback loop and makes the ontology as understood by the

tool more transparent to the author.

These tools all provide useful feedback with synchronic views of the ontology being authored.

A diachronic view including the history of authoring would aid OOPS! to tailor feedback for

repeated pitfalls, OntoDebug to rank possibly faulty axioms by recency and inspect related

retracted axioms to determine if undoing an edit could resolve an issue, and aid BOADiS in

tailoring its checking dialogue actions to be taken more frequently on facts with more related

retractions.

2.4.2 Capturing Authoring History

The rei�cation of the asserted triple, as done with `rdf:Statement' (Hayes and Patel-Schneider

2020), or use of a Singleton Property (Nguyen et al. 2014), permits capturing of additional

information such as who authored the triple and at what time. This additional information

added to the static view of the current ontology enables answering questions about who, when,

and pace. Such questions can aid in �nding team-members with expertise in particular knowledge

domains, �nding who made what edits, or when knowledge on a domain was updated.

With times related to triples the sequence of assertion can be determined, however, retractions

are lost as the triple is no-longer present in the ontology. Therefore no analysis tool with a

synchronic view of the ontology can tell if a triple has been asserted, retracted and asserted

31



2.4. Supporting Ontology Authoring Chapter 2. Related Work

again, which might indicate some uncertainty as to its truthfulness. Or if some retracted triple

might resolve some pitfall in the ontology or cause some test-case to succeed. Such information

for database systems can be captured in a database log, or via Event Sourcing, both of which

can be formalised by Situation Calculus as described by Reiter (2001).

In Situation Calculus the database log is the sequence of actions that update the database (Reiter

2001), denoted as do([a : 1 . . . a : n], s0) or abbreviated as do(T, s0). This log is the source of

events from which current and past states can be determined plus, being Situation Calculus,

it can be queried directly. Furthermore, this log can be expanded to include other pertinent

actions the author or agents may undertake, such as those used in this project: consulting help

materials and o�ering advisory interventions.

Situation Calculus actions can still reify the triple and capture author and time information as

well as provide static views of the ontology for analysis via existing tools. Furthermore, Situation

Calculus enriches the information available about the ontology authorship by:

� Recording retractions, and thus edits

� Querying some past situation (Reiter 2001, p.76)

� Querying over all past situations (Reiter 2001, p.74)

� Capturing author actions in addition to those which alter the ontology

By using this framework, not only can the ontology be queried in order to facilitate the authors,

but also the process of authoring. Furthermore, additional information is captured, such as who

asserted what, when and where the author is focused. If additional procedural knowledge can be

captured regarding the authoring process, as is the case with STPA, then the authors' progress

can be compared against this. Thus the framework supports queries to answer questions such

as:

� Who asserted what?

� Who asserted in this subdomain, and thus might be knowledgeable about it?

� Has this fact always been true, i.e. existed in an imported top-ontology?

� Has an author retracted a top-ontology fact?

� Has some fact been asserted and retracted multiple times? Perhaps a sign of confusion or

con�ict.

� Was one assertion made prior to another? What was the time di�erence?

32



Chapter 2. Related Work 2.5. Related Work Conclusions

� When was this assertion made? Perhaps new information has arisen to challenge its

validity.

� What will be the e�ect of asserting or retracting? (Without doing the assertion/retraction)

� Can an assertion or retraction be made?

� Where is the author in the process?

� Is the author backtracking?

A subset of the questions from this list are used to re�ect upon the framework in Section 4.2.1.

2.5 Related Work Conclusions

System Safety Analysis is a valuable aspect of System Safety dependent upon the cognitive abil-

ities of the analysts who undertake it. It's an ill-de�ned task that could bene�t from sca�olding,

which should improve the quality of the analyses conducted by non-experts. This sca�olding

could be provided in an automated manner provided software and the analyst can reason with

a shared model, for which ontology is ideal. Therefore this thesis is undertaken to explore the

provision of Contingent Sca�olding using ontology to this valuable domain of System Safety

Analysis.

STAMP is selected as a system-safety model for initial exploration of using ontology to support

System Safety Analysis because the existing set-theoretic representation is already a formal

model that can be used to inform the ontology. STPA is selected for the analysis process

because it reasons with hypothetical systems, for which the requirements are broader than for

recording past events as could be done with CAST.

When considering existing ontologies for re-use, there are unsatisfactory elements in the safety

and systems ontologies discussed, mostly in lacking terms to reason with branching time, but

also in system representation, and not adhering to how terms are de�ned in STAMP. Therefore

these ontologies are used to inform, but a modular ontology will be authored.

The top-ontologies di�ering opinions of realism would require careful navigation as many STAMP

terms are conceptual representations of some real thing, such as system and situation. As this

thesis intends to assess the practicality of the use of ontology in this model rather than enter

a philosophical debate, a loosely de�ned top-ontology will be used such that the philosophical-

ontologist can re-align this work with their own understanding of realism.

33



2.5. Related Work Conclusions Chapter 2. Related Work

There are few requirements for de�ning the mereology of the system in STAMP. The primary con-

cern for parthood is with function rather than structure, and so the existing ideas of functional-

parthood can be re-used in the STAMP ontology.

In STPA there is the requirement to reason about hypothetical futures, which imposes sub-

scription to a theory of branching time. The behavioral ontologies discussed tend towards a

similar pattern of pre-condition and post-situation in some event. However, these ontologies

lack su�cient relations to provide for the simple solution to the frame problem as de�ned by

Reiter (2001), which provides some means to reason about the future even if not completely

general. Therefore it's proposed to take inspiration from this common pattern to inform a on-

tology module capable of capturing su�cient information that it can be used with a Situation

Calculus reasoner.

Contingent Sca�olding has been demonstrated to provide bene�ts in ill-de�ned domains and

through the use of constraints the lack of �exibility issue can be addressed. Additionally there

is no standard for the levels of support to be o�ered, and so this must be de�ned for this use-

case. In this thesis it's hypothesised that a diachronic view of the ontology authoring process

can provide additional information that can be exploited when providing support. Therefore

Situation Calculus is used again to de�ne a framework for Contingent Sca�olding, such that the

possibility of an action in a situation provides the �exibility and the log of actions is used to

inform the level of intervention.

34



Chapter 3

Ontology for STAMP

This chapter de�nes an ontology for STAMP1, derived from ontologies for control systems, and

situations, which by necessity are also de�ned. The purpose of this ontology is to capture a

STAMP model that results from STPA such that intelligent software support may be provided

to the analyst as they extend this ontology with the case they are examining. This ontology is

later integrated into such a software tool providing support to an analyst, including exploiting

a reasoner to aid in identifying hazardous actions and to intervene when appropriate.

3.1 Background and Problem De�nition

The ontology is described here using Description Logic. For compatibility with OWL-DL2 the DL

speci�cation which corresponds to SHOIN (D) (Baader et al. 2017) is used3. The architecture

is depicted in Figure 3.1. Top, and Situation comprise the �Upper ontology layer�, they cover

the theoretical frameworks that describe control systems and their behaviour via situations,

which are foundational to STAMP. Control System and STAMP are the �High-level reusable

domain layer�, they make the connection between the theoretical �Upper ontology layer�, and

the �Case speci�c layer�. The �nal �Case speci�c layer� is not de�ned as this is the task of the

analyst using the system: to extend the provided ontology to describe their speci�c case. This

1Available with example applications at: Paul S. Brown (Apr. 2022). PaulBrownMagic/STAMP-Ontology:
Initial Release. Version v1.0.0. doi: 10.5281/zenodo.6489774. url: https://doi.org/10.5281/zenodo.

6489774
2A dialect of the Web Ontology Language (Lacy 2005)
3STAMP ontology only makes use of the SHI(D) subset of the popular OWL-DL. This is a DL with ⊤, ⊥,

conjunction, disjunction, negation, existential restriction, value restriction, transitive roles, role hierarchy, and
inverse roles (Baader et al. 2017).

35

https://doi.org/10.5281/zenodo.6489774
https://doi.org/10.5281/zenodo.6489774
https://doi.org/10.5281/zenodo.6489774


3.1. Background and Problem De�nition Chapter 3. Ontology for STAMP

Figure 3.1: STAMP Ontology Architecture: modules depict ontologies with the arrow denoting
a dependency on the de�nitions in the indicated module and above

architecture was chosen a priori to aid in managing complexity and dynamicity (Thakker et al.

2011) as discussed in Section 2.2.2.

The requirement imposed by STPA to consider systems that may not yet exist beyond a vague

conceptualisation inhibits adherence to any top-ontology committed to realism, as understood in

BFO as opposed to GFO4. There still remains multiple suitable top-ontologies, however for the

purpose of independence, no adherence to any existing top ontology is claimed. Instead a tiny

top ontology is de�ned with the required terms, which have counterparts in many top-ontologies,

providing organisational structure to the subsuming terms.

The next �Upper ontology layer� module, the Situation ontology, ful�lls the requirement to

describe behaviour in terms of kinds of events and to consider the consequences of actions

systems may take. Thus an adherence to a philosophy of branching-time is a prerequisite so

that multiple futures can be considered.

The penultimate module and �rst one of the �High-level reusable domain layer� (Thakker et al.

2011), is required to describe control systems, a foundational theory for STAMP (N. Leveson

2017, ch.3). Control System theory is a high-level reusable domain, however, due to pragmatics

the Control System ontology is o�ered with caveat. This Control System ontology is de�ned

with regards to what is necessary for STAMP only and cannot claim to be a complete or

4See discussion in Section 2.2.2

36



Chapter 3. Ontology for STAMP 3.2. Top Ontology Module

accurate representation of the theoretical framework of Control Systems. Instead it de�nes

what is su�cient for STAMP and the terms as they are understood in STAMP. This limits the

application of the Control System module to use with STAMP.

The �nal module authored is the STAMP ontology, which contains those terms necessary for a

STAMP analysis that are not already de�ned. Each of these modules will be discussed in turn

from top to bottom.

3.2 Top Ontology Module

This ontology module, depicted in Figure 3.2, provides a few common terms typical in top-

ontologies (such as BFO (Arp et al. 2015) or UFO (Guizzardi, Botti Benevides, et al. 2021))

in order to orientate the reader and to provide discipline to the authorship of the lower-level

ontology modules (Arp et al. 2015).

With regards to the issue of realism, this ontology subscribes to the position of GFO5. Therefore

it takes as categories conceptual things, such as �System� or �Situation�, as equally valid as those

that are universals (or natural classes/kinds (Arp et al. 2015, p.14)). It's akin to a relativistic

view of truth, rather than absolutist: it represents the world as it is in the mind of the author

rather than how it exists external to perception. That said, the terms and structure are relatively

close to BFO (Arp et al. 2015), beginning with the two-category division into Continuant and

Occurrent, whereas UFO for example is a four-category ontology (Guizzardi, Botti Benevides,

et al. 2021). Continuants are those entities that are conceived to �continue to exist through

time� (Arp et al. 2015, p.52), such as this thesisp: it continues to exist through the time when

it does exist and it is wholly present for all of that time. Occurrents are those entities that

are conceived to �occur, which means that they are spread out not just in space but also in

time� (Arp et al. 2015, p.52), such as the process of your reading of this thesis: parts for which

have already passed and are spread through the time taken in reading. The sole Occurrent

de�ned is a Process, which is all that is required for this use-case; there is no goal to author a

complete top-ontology but only that which is required for the lower level ontology modules.

Continuant includes:

� Entity: a Continuant that doesn't depend on the existence of anything else to exist

5See discussion in Section 2.2.2

37



3.3. Situation Ontology Module Chapter 3. Ontology for STAMP

Figure 3.2: Tiny Top Ontology: open arrows depict subsumption, other indicative roles are
labeled

� Quality: an attribute or property that inheres in some entity

� Information Entity: the carrier of some information

� Capability: the capability to realise some process that inheres in some entity

3.3 Situation Ontology Module

The purpose of this ontology is to allow reasoning over processes. For STAMP it is necessary

to describe the preconditions and consequences of control actions, such as: �Opening the door

when the power is on may cause the hazard where the operator is exposed to the power source�.

3.3.1 Situation Ontology Background

In �The Theory of Situations� (Barwise and Perry 1983) a situation is described by the infons

that it supports. An infon is a relationship between a given number of arguments and a polarity

that denotes whether the infon stands in the situation or not. So the situation in which the door

is open and a power source is not on can be described as:

≪ hasQuality, door, open position, 1 ≫,

≪ hasQuality, power, on, 0 ≫

38



Chapter 3. Ontology for STAMP 3.3. Situation Ontology Module

Unfortunately, the ontology derived from �The Theory of Situations� by Kokar et al. (2009)

does not represent the transitions between situations. The same is true of DOLCE's `Ex-

tendedDnS:situation' (Gangemi and Mika 2003), which is de�ned as a non-agentive social object

that satis�es some description. Thus they cannot be used independently to project the conse-

quences of actions to the next situation: a vital requirement for safety analysis with STPA.

Additional terms are required to capture su�cient information to reason about future situa-

tions, which can be informed by the Situation Calculus, which can be used for this kind of

reasoning.

Situation Calculus (McCarthy and Hayes 1969) is used for reasoning about the transitions be-

tween situations described by �uents, via actions. McCarthy and Hayes (1969) proposed it as

a representation that can answer, albeit not always correctly, questions including: �What will

happen if I do a certain action?� (McCarthy and Hayes 1969, p.4) and �What will happen next

in a certain aspect of the situation?� (McCarthy and Hayes 1969, p.4). These are questions

frequently asked by the safety analyst, and the correctness of the answers matters to them as a

wrong answer could result in an incorrect behavioral model of the system, as per the introduc-

tory case of the Therac-25 where speed of input actions could result in the machine delivering

lethal doses of radiation (Nancy G Leveson and Turner 1993).

Situation Calculus, however, is not consistently de�ned: authors disagree on what a situation

is. Unless otherwise quali�ed, this thesis defaults to the de�nition of Reiter (2001) as that one

is accompanied with source-code for a reasoner. McCarthy and Hayes (1969) who proposed the

representation, de�ned a situation as a complete description of the state of a universe at any

particular time. Given the impossibility of such a complete description, they resigned to using

partial descriptions, from which useful information can still be garnered. The descriptors used

for those things that can change between situations are called ��uents�.

In contrast, Reiter (2001) de�nes a situation as the sequence of actions taken since some initial

situation `s0'. Such a situation carries its history with it, from which the �uents can be deter-

mined. Thus the door open and power off situation under Reiter's de�nition could be any of

39



3.3. Situation Ontology Module Chapter 3. Ontology for STAMP

these:

s0 ≡ Seg

do(toggle(power), do(open(door), s0)) ≡ Seg

do(make(tea), do(open(door), s0)) ≡ Seg

Fluents play a similar role to the infon in �The Theory of Situations� (Barwise and Perry 1983),

however the manner in which the truth of the �uent/infon holding in a de�ned situation di�ers.

Rather than use polarity and a relation to the situation, a �uent (Reiter 2001) either includes

the situation in which it stands as an parameter, or this is rei�ed via the relation `holds', which

denotes that the �uent stands in that situation:

hasQuality(door, open position, Seg) ∧ ¬hasQuality(power, on, Seg) ≡

holds(hasQuality(door, open position) ∧ ¬hasQuality(power, on), Seg)

Situation Calculus also includes the relation �poss�, which is true if the given action is possible

to do in the related situation. The consequences of actions are determined depending on the

de�nition of Situation Calculus used due to the di�ering de�nitions of a situation. Abstractly,

actions transition to a situation in which di�erent �uents hold; they are de�ned in terms of the

kind of situations they are possible in and which �uents they cause to hold.

The Frame Problem is present due to the static nature of an ontology i.e. each �uent that holds

in a situation will need to be related to that situation. This Frame Problem is mirrored in

STAMP, where context tables are generated via the set-theoretic representation for an analyst

to review, or software to execute (Thomas 2013), or rules to review (Gurgel et al. 2015). How-

ever, in the ontological approach presented here, there is no requirement to enumerate every

possible situation due to the formal model of causality provided by this Situation Ontology and

subsumption of situations.

As per the implementation by Reiter (2001), the Quali�cation and Rami�cation Problems are

ignored. Both issues are issues of reasoning: determining when an action is possible and what

the resultant state would be, respectively. The information captured in the ontology directly

e�ects the reasoning possible, and so if another solution were known the ontology should capture

40



Chapter 3. Ontology for STAMP 3.3. Situation Ontology Module

Figure 3.3: Situation Ontology: Derived from the Top ontology, inverse and sub-roles omitted

su�cient information to support it. Furthermore, a discrepancy between the open-world (there

may be truth not recorded) and closed-world (all truths are known and recorded) assumptions

can arise.

Under the open-world assumption the stated �uents are thus considered as necessary but not

complete. Unfortunately under this assumption it's impossible to deduce whether an action

is possible in a situation or to project the consequences of actions. If the world is closed,

considering the stated �uents as both necessary and complete, then the deduced facts may not

be true. However the deductions are comparable to intelligent human thought, given both have

the same incomplete information. Therefore a reasoner will not be capable of exceeding human

rationality, but it will be able to reach that standard with consistency given the same information

and exceed it when given more information than the human has the mental capacity to manage.

3.3.2 Situation Ontology Module De�ned

Situation Calculus is an ideal starting point as it supports the reasoning required. However,

uncertain terms require deliberation prior to de�ning. A Situation is considered as per �The

Theory of Situations� (Barwise and Perry 1983): an abstract situation describing some state-

of-a�airs in the world. It's de�ned by the set of �uents that hold in it, as per McCarthy and

Hayes (1969). This choice is made as a history of occurrent actions and events can be adequately

captured as a Process, which in turn can be related to the appropriate situations.

Situation ≡ Continuant ⊓ ∃hasHolding.Fluent

41



3.3. Situation Ontology Module Chapter 3. Ontology for STAMP

Situation Calculus typically uses the term �action� to denote the occurrent that transitions from

one situation to another, whereas in UFO-B the term �event� is used. In Situation Calculus such

actions/events are considered as taking no time, which for the domains it's typically applied to,

is untrue. Actions such as �turning on a light� may appear instantaneous, but they're a process

of �moving a switch�, �completing a circuit� and �passing current through an element� until

eventually �light is emitted�. Therefore Process is used in place of �action� and may be used

to subsume actions if a distinction is required to either processes undertaken by an actor, or to

subsume events to denote the granularity at which a process will be considered as atomic.

The term Process will enable the ontology to record sequences of occurrences and the situations

that were transitioned through. However, the STAMP model is required to answer questions

with regards to who can do what, and what situation would result if some Process occurred.

Using these questions the analyst is able to say that in a tailgating situation the front car

applying the brakes aggressively could result in a crash and it is the front car driver who can

apply the brakes. From this analysis they can then advise on safe driving technique when being

tailgated: they know who has control and what can happen that they desire not to occur.

This requires constructing hypothetical processes, just like this tailgating example, which can

be accomplished for the processes of concern to STAMP and actions of concern to Situation

Calculus via additional relations to Capability from the Top ontology module. The realization

of a Capability is a Process.

Capabilities in this Situation ontology module are de�ned with their pre-conditions and post-

conditions, via possibleIn and hasEffect respectively. The range of possibleIn is a Situation

such that all Situations it subsumes inherit the relation. The range of hasEffect is one

or more Fluents so that a resulting situation can be deduced from a Capability and prior

Situation, rather than requiring all possibilities to be enumerated. For this hasEffect requires

two sub-property relations: hasPositiveEffect and hasNegativeEffect to correlate with Re-

iter's Simple Solution for determining which �uents hold, as well as unique names axioms for

actions (Reiter 2001, p.30-31).

hasEffect ⊑ topObjectProperty,

hasPositiveEffect ⊑ hasEffect,

hasNegativeEffect ⊑ hasEffect.

42



Chapter 3. Ontology for STAMP 3.4. Control System Ontology Module

A Fluent is some relation that holds in a Situation. It is rei�ed to a concept to allow it to

be holdsIn related to Situation. No restrictions are placed upon the Fluent in this Situation

ontology module for portability, however a hasBearer relation is provided that may be used to

denote the subject of a Fluent. The Fluent class is also subsumed for use with a Quality like

so:

QualityFluent ≡ Fluent ⊓ ∃hasBearer.⊤ ⊓ ∃hasQualityInSomeSituation.Quality

Figure 3.3 depicts the relations between the three classes. In the Interlock example6 the door

open �uent and the capability to open it can be de�ned as:

DoorOpen ⊑ QualityFluent ⊓ ∃hasBearer.Door⊓

∃hasQualityInSomeSituation.OpenPosition

DoorClosed ⊑ QualityFluent ⊓ ∃hasBearer.Door⊓

∃hasQualityInSomeSituation.ClosedPosition

OpeningDoor ≡ Capability⊓

∃possibleIn.(Situation ⊓ ∃hasHolding.DoorClosed)⊓

∃hasPositiveEffect.DoorOpen ⊓ ∃hasNegativeEffect.DoorClosed

This Situation ontology module thus captures su�cient information to be used with a Situation

Calculus reasoner, such as the one de�ned by Reiter (2001). The information can be extracted

from the ontology and represented in the syntax of the language required for the reasoner to

work with.

3.4 Control System Ontology Module

The purpose of the Control System ontology module, depicted in Figure 3.4, is to de�ne control

systems as used in STAMP, integrating the Situations module to permit reasoning with Control

Actions and Actuations. It's not a complete representation of Control Systems, which is beyond

the scope of this work, it's only intended to be su�cient for this STAMP domain.

6Included with the STAMP ontology published for public access: Paul S. Brown (Apr. 2022).
PaulBrownMagic/STAMP-Ontology: Initial Release. Version v1.0.0. doi: 10.5281/zenodo.6489774. url:
https://doi.org/10.5281/zenodo.6489774

43

https://doi.org/10.5281/zenodo.6489774
https://doi.org/10.5281/zenodo.6489774


3.4. Control System Ontology Module Chapter 3. Ontology for STAMP

Figure 3.4: Control System Ontology: Subsumption is depicted by open arrows, other labelled
roles also form part of their origin concept's de�nition

44



Chapter 3. Ontology for STAMP 3.4. Control System Ontology Module

This ontology module, describing a certain type of system, requires a de�nition of System,

a term used to describe a multitude of diverse things that are represented with the systems

model. The word `system' derives from the Greek σύστηµα or súst	ema, which means: �A whole

compounded of several parts or members� (Liddell and Scott 1940). Thus a system is a model

of composition, an entity is modelled as a system by de�ning the relationship between the whole

and its constituent part(s). This component-integral relation or functional parthood relation is

one in which a part plays a functional role in the whole (Artale et al. 1996; Odell 1994; Vieu

2006; Vieu and Aurnague 2007; Winston et al. 1987). It's this component relation that is used

to determine if something is a system:

System ≡ Entity ⊓ ∃hasComponent.Entity

In a similar manner a sensor or actuator are de�ned by their purpose: to sense by observation

which �uents hold or by actuation cause a �uent to hold respectively. In this de�nition of

a Control Systems ontology module, these kinds of systems are de�ned by their capability to

observe or actuate rather than as a system that realises some observing or actuating. By this

de�nition an instance of some sensor that sits on a shelf and never realises its capability to sense

is still a sensor, which eases reasoning about the safety of a system prior to its deployment.

Sensor ≡ Entity ⊓ ∃hasCapability.Observation

Actuator ≡ Entity ⊓ ∃hasCapability.Actuation

STAMP makes use of a Controller system, which is one that can receive some Feedback

describing a Quality of some entity, and can make use of this information via a Procedure and

Process Model, to make decisions regarding its initiation of Control Actions (N. Leveson 2017;

Haller et al. 2017). Thus a controller can be de�ned as:

45



3.5. STAMP Ontology Module Chapter 3. Ontology for STAMP

Controller ≡ System⊓

∃hasCapability.ControlAction⊓

∃receivesFeedback.Feedback⊓

∃infomedBy.Procedure⊓

∃informedBy.ProcessModel

The two di�erent methodologies used with STAMP, STPA and CAST7, di�er in that STPA is

undertaken on a conceptual system whereas CAST is undertaken post-incident. In STPA the

Control Action considered is the capability to take such an action. For CAST the Control Action

considered is the instantiation of some Process that realizes this Capability, although early in

the analysis it may be the Capability that is de�ned prior to determining what Control Actions

were actually taken in the Loss Process. Therefore for the purposes of the STAMP domain a

ControlAction is subsumed by Capability, the CAST case being handled by the instantiation

of the Process that realizes the ControlAction Capability.

These Control Actions, when realised, request some Actuator execute some actuation, which is

the mechanism by which transition between situations is achieved. There is no guarantee that

the actuation will be achieved, nor that an unrequested actuation will be executed, nor that the

actuation will be precise. Likewise for the Sensor and some observation action. This also di�ers

from reasoning with a Situation Calculus reasoner (extraneous to the ontology) in conjunction

with the Situation ontology module, which will treat every action done as successful. This

either has to be born in mind by the analyst using such a reasoner (that its aid is incomplete),

or additional �control actions� need to be de�ned to aid the reasoner, such as �close door� and

�attempt to close door�, which cause di�erent �uents to hold/not hold.

3.5 STAMP Ontology Module

The distinction between the STAMP ontology and the STAMP ontology module is that the

STAMP ontology is comprised of the Top, Situation, Control Systems and STAMP modules.

The STAMP module is the lowest layer in the dependency graph that de�nes the terms required

7Introduced in Section 2.1.2

46



Chapter 3. Ontology for STAMP 3.5. STAMP Ontology Module

Figure 3.5: Step 1 terms in the STAMP Ontology

to capture the STAMP model that have not already been de�ned in those modules that it

depends upon. While describing the STAMP ontology module the STPA procedure, outlined

in Appendix A, is followed to contextualise the terms. The fourth step of the 4-step STPA

procedure is not described as no new terms are required to capture this phase.

3.5.1 Step 1: Safety Situations

The intention of Step 1 of STPA is to de�ne the scope and purpose of the analysis by identifying

the losses, hazards, and safety constraints.

The term �Loss� is used in STPA as an umbrella term for those used in di�erent industries, such

as accident or adverse event. It is used to describe that which is to be prevented (N. Leveson

and Thomas 2018). As an umbrella term it subsumes concepts such as �Accident� or �Failure�,

which are not de�ned here as they are not required for STAMP, which only uses �Loss� in place

of these other terms (N. Leveson and Thomas 2018).

This introduces some confusion as in STAMP, as opposed to STPA, an accident is an event that

results in a loss, where loss is unde�ned (N. Leveson 2017) but must be a kind of situation under

this ontological de�ntion. Given the succession of these resources it's taken that STPA �Loss�

supersedes the prior one such that a Loss is an event which transitions to a situation where

something of value to the stakeholders has been lost.

By the Situation ontology, this lost thing is some Fluent that holds which the stakeholders do

not want to hold. However, the thing that is of value to the stakeholders need not be captured

formally in the de�nitions of Loss nor any resulting situation, as it's not required by STPA

or CAST, although they can be included as stakeholder goal situations (Rising and Nancy G.

47



3.5. STAMP Ontology Module Chapter 3. Ontology for STAMP

Leveson 2018).

In the de�nition of �Loss�, STPA and CAST diverge. Within a CAST analysis some instance of

a loss has actually occured and is being investigated (N. Leveson 2017). In STPA the analyst is

concerned with the capability of the system to realize a loss (N. Leveson 2017; N. Leveson and

Thomas 2018). As a Capability can be related to a Process via realizes, in this ontology a

Loss is subsumed by Capability. Thus for STPA a Loss is de�ned as used, whereas for CAST

it's necessary to de�ne the Loss capability and the instance as a realization Process of that

Loss.

A Hazard then is a Situation in which a Loss is possible, described by STAMP as leading to

a loss when combined with a set of worst-case environment conditions.

Loss ⊑ Capability

Hazard ≡ Situation ⊓ ∃hasPossible.Loss

A �Safety Constraint� has two de�nitions in STAMP:

� ⟨Safety Constraint⟩ = ⟨System⟩ & ⟨Condition to Enforce⟩ & [⟨Link to Hazards⟩]

� ⟨Safety Constraint⟩ = If ⟨Hazard⟩ occurs, then ⟨what needs to be done to prevent or

minimize a loss⟩

These de�nitions are fundamentally in con�ict. The �rst is a situational de�nition, describing

some �uents that must hold. The second is a process-based de�nition, describing something to be

done in a situation. Therefore, despite being given the same name in STAMP, they are di�erent

kinds of things. The �rst is a subclass of Situation, whereas the second is the rei�cation of an

if/then relation between a situation and a capability to be realized in order to avoid the related

hazard. To avoid confusion that may arise from two de�nitions for the same term, they are

distinguished by su�xing �Situation� and �Capability�.

To formally de�ne �Safety Constraint Situation� requires determining what is meant by the two

'&'s in the provided de�nition above. From the Control Systems module, �⟨System⟩& ⟨Condition

to Enforce⟩� are rei�ed into a QualityFluent. There may be multiple �uents constituting a

safety constraint, therefore it is a kind of Situation, which is de�ned as a collection of �uents

that hold/don't hold in it.

48



Chapter 3. Ontology for STAMP 3.5. STAMP Ontology Module

Figure 3.6: System Control Abstraction in STAMP: depicting the control loop de�ned in the
Control System Ontology with the addition of 'requestsE�ect' and 'recordsFluent' abstraction
roles

The second `&' then is a relation between two Situations, in this case the intention is to state

that one Situation prevents the other, which is to say that the instantiation of one Situation at

some point in time at some particular location prohibits the instantiation of the other Situation

at the same time and location.

For example, a situation in which something conceived to be a power source is powered on cannot

co-occur with the situation in which there is not anything conceived to be a power source that

is powered on. The constrains role relating two particular situations is an assertion by the

analyst requiring particularly careful consideration as it is asserted with concepts rather than

instances.

SafetyConstraintSituation ⊑ Situation

⊓ ∃constrains.Hazard ⊓ ¬∃hasPossible.Loss

SafetyConstraintCapability ⊑ Capability

⊓ ∃isPossibleIn.Hazard ⊓ ¬∃hasResult.Hazard

3.5.2 Step 2: Control Structure

The purpose of Step 2 is to develop the model of the control structure, including the control

actions and feedback, which forms the basis of the remaining analysis. This is depicted in

49



3.5. STAMP Ontology Module Chapter 3. Ontology for STAMP

Figure 3.8 for the interlock example system. This stage of the analysis is conducted at a

level of abstraction that con�ates the control action with the actuation to not yet require the

actuator to be described. The same abstraction/con�ation is done for feedback and sensor.

This is depicted in Figure 3.6, where the `requestsE�ect' role bypasses the actuation. These

abstraction roles are de�ned as compositions:

requests ◦ hasEffect ⊑ requestsEffect

requests ◦ hasPositiveEffect ⊑ requestsPositiveEffect

requests ◦ hasNegativeEffect ⊑ requestsNegativeEffect

recordsResultOf ◦ observes ⊑ recordsFluent

This has the additional bene�t of accounting for occasions when the distinction between Con-

troller and Actuator or Sensor is pedantic, such as distinguishing the mind, hand and eye of

the Human Controller. With these roles there is no-longer the need to decompose the Human

Controller into their component parts, or other Controllers that exert direct control or directly

observe. Furthermore, the decomposition isn't prohibited should it be required.

A controlled process, depicted in Figure 3.58, is one which some controller can in�uence: in

the process there must be some controller that can issue a control action with the intention of

changing the �uents related to some system that is a subject of the controlled process. Again

this is an abstraction used in STAMP, it ignores the physical structure and instead creates a

functional model, which excludes the actuators and sensors during this phase of the analysis (N.

Leveson and Thomas 2018). To support this abstraction, a role is required to declare that some

systems are the subjects of the controlled process, meaning the change of the qualities they bear

in �uents is an intended consequence of the process.

ControlledProcess ⊑ Process ⊓ ∃hasSubject.System

50



Chapter 3. Ontology for STAMP 3.5. STAMP Ontology Module

Figure 3.7: A partial view of the taxonomy of Control Actions on STAMP; note the intersection
to de�ne Di�erentDurationPotentiallyHazardousControlAction

3.5.3 Step 3: Identifying Potentially Unsafe Control Actions

Step 3 is the �rst of two steps in which safety concerns are identi�ed. In this step those control

actions that may result in a hazardous situation are identi�ed and related to the Hazards they

may result in.

STAMP considers several manners in which a control action can be unsafe, including providing

a control action at a di�erent time or for a di�erent duration. It is claimed that the categories

considered are provably exhaustive, although no taxonomy of them is provided (N. Leveson and

Thomas 2018), which is remedied in this ontology. In STAMP control actions are de�ned by

their labels, such that braking too early, too late, too long or too short are all the same control

action: �brake�. However, by the ontological de�nitions in the Situations (Section 3.5.1) and

Control Systems (Section 3.5.1) modules, a control action is de�ned by the situation it is

possible in and the �uents it causes to hold and not hold in the resulting situation.

A control action done at a di�erent time is possible in a situation di�erent from the de�ned

one. A control action done for a di�erent duration causes di�erent �uents to hold from one

done for the expected duration. Therefore these are di�erent control actions by this ontological

de�nition, and need to be de�ned as such. Fortunately, to aid the analyst, they may all share

the same label. Note that the ontological de�nition does not preclude de�ning an intersection

control action done at both a di�erent time and for a di�erent duration, an intersection not

8Controlled Process as depicted in STAMP's Control Hierarchy diagram will also be shown later in the this
chapter in Figure 3.8 when working through an Interlock example

51



3.5. STAMP Ontology Module Chapter 3. Ontology for STAMP

explicitly considered in the STPA Handbook (N. Leveson and Thomas 2018), highlighting a

bene�t of explicit taxonomy.

DifferentDurationControlAction ⊑ ControlAction

TooShortControlAction ⊑ DifferentDurationControlAction

TooLongControlAction ⊑ DifferentDurationControlAction

TooShortControlAction ⊓ TooLongControlAction ⊑ ⊥

DifferentTimingControlAction ⊑ ControlAction

TooSoonControlAction ⊑ DifferentTimingControlAction

TooLateControlAction ⊑ DifferentTimingControlAction

TooSoonControlAction ⊓ TooLateControlAction ⊑ ⊥

Identifying Control Actions that are potentially unsafe is the key task of this step. Although

the ultimate responsibility for identifying these actions lies with the analyst, it is possible via

reasoning to provide assistance. To do this the terms �Providing Potentially Hazardous Control

Action� and �Not Providing Potentially Hazardous Control Action� need to be carefully de�ned.

A Control Action is potentially hazardous when provided if providing it could transition to a

Hazard situation. Whereas not providing it could be potentially hazardous if it could transition

out of a Hazard or into a Safety Constraint Situation, or if it's subsumed by a Safety Constraint

Capability.

A Situation, which subsumes both Hazard and Safety Constraint Situation, can be de�ned by

the Fluents that hold as well as those that do not. Both the positive and negative roles are

accounted for in the de�nitions of these potentially unsafe control actions:

52



Chapter 3. Ontology for STAMP 3.5. STAMP Ontology Module

ProvidingPotentiallyHazardousControlAction ≡

ControlAction⊓

(∃requestsPositiveEffect.(Fluent ⊓ ∃holdsIn.Hazard)

⊔ ∃requestsNegativeEffect.(Fluent ⊓ ¬∃holdsIn.Hazard))

NotProvidingPotentiallyHazardousControlAction ≡

SafetyConstraintCapability ⊔ (ControlAction ⊓ (

∃requestsPositiveEffect.(Fluent⊓

∃holdsIn.SafetyContraintSituation)

⊔ ∃requestsNegativeEffect.(Fluent⊓

¬∃holdsIn.SafetyContraintSituation)

⊔ ∃requestsNegativeEffect.(Fluent ⊓ ∃holdsIn.Hazard)

⊔ ∃requestsPositiveEffect.(Fluent ⊓ ¬∃holdsIn.Hazard)))

The potentially unsafe control actions of a di�erent duration and di�erent timing are only con-

sidered potentially unsafe when provided; not providing control actions that aren't expected to

be provided are also not considered in the analysis. As control actions of di�erent duration or

timing are subsumed by Control Action, the potentially unsafe ones are a specialisation of Pro-

viding Potentially Hazardous Control Action and can be de�ned by intersecting the appropriate

concepts:

53



3.6. Illustrative Example Use Chapter 3. Ontology for STAMP

TooLongPotentiallyHazardousControlAction ≡

ProvidingPotentiallyHazardousControlAction⊓

TooLongControlAction

TooShortPotentiallyHazardousControlAction ≡

ProvidingPotentiallyHazardousControlAction⊓

TooShortControlAction

TooLatePotentiallyHazardousControlAction ≡

ProvidingPotentiallyHazardousControlAction⊓

TooLateControlAction

TooSoonPotentiallyHazardousControlAction ≡

ProvidingPotentiallyHazardousControlAction⊓

TooSoonControlAction

The linguistic based de�nition of Control Actions used in STAMP, where they're identi�ed by a

label, can be determined if required by including a label, as exempli�ed for a braking example:

BrakingControlAction ≡ ControlAction ⊓ ∃rdfs:label.{�Brake�}

3.6 Illustrative Example Use

The interlock system illustrative example used in STAMP educational materials (N. Leveson

2017) is reused here9 to demonstrate usage and highlight the bene�ts to the analyst using this

ontological approach. This interlock system consists of a high-powered energy source such that

being in proximity of it in a powered state poses a risk to one's health. To prevent contact during

normal operation the system also has a barrier in the form of a door. During maintenance a

human operator is required to open the door in a safe manner. To make this possible, a power

9The complete ontology for interlock and STAMP is publically available: Paul S. Brown (Apr. 2022).
PaulBrownMagic/STAMP-Ontology: Initial Release. Version v1.0.0. doi: 10.5281/zenodo.6489774. url:
https://doi.org/10.5281/zenodo.6489774

54

https://doi.org/10.5281/zenodo.6489774
https://doi.org/10.5281/zenodo.6489774


Chapter 3. Ontology for STAMP 3.6. Illustrative Example Use

controller is included in the system, which is responsible for managing whether the power source

is on or o�.

3.6.1 Step 1: Analysis Scope

For the example interlock system the hazard to avoid is having the power on and door open at

the same time: in such a situation it's possible for a person to be injured or killed. By enforcing

the power to be o� whenever the door is open the hazard can be avoided, which in STAMP

terms is a safety constraint. The terms for Step 1 STPA without software support would be

de�ned, with links to other terms in square brackets, as:

� L-1: Loss of life or injury to people

� H-1: Power source is powered on and the door is open [L-1]

� SC-1: Power source must be o� when the door is open [H-1]

� SC-2: Door must be closed when the power is on [H-1]

L-1 is declared as a subclass of Loss without further ado. The hazardous situation also requires

the two �uents that describe the door being open and the power being on hold. Declaring these

�uents signposts important components and qualities to be considered in the analysis, avoiding

wasting resources on futile de�nitions and unnecessary complexity. Only those pertaining to the

door are included here as the power ones follow the same pattern.

L-1 ⊑ Loss

H-1 ≡ Hazard ⊓ ∃hasHolding.DoorOpenFluent ⊓ ∃hasHolding.PowerOnFluent

DoorOpenFluent ≡ SystemQuality ⊓ ∃hasBearer.Door⊓

∃hasQualityInSomeSituation.OpenPosition

Door ⊑ System

Position ⊑ Quality

OpenPosition ⊑ Position

Conducting an analysis is accomplished by extending the STAMP ontology, de�ning concepts

55



3.6. Illustrative Example Use Chapter 3. Ontology for STAMP

Figure 3.8: Control Hierarchy for Interlock: Human Operator and Power Controller are
Controllers controlling the Maintenance Controlled Process with Control Actions denoted by
downward-pointing arrows and Feedback denoted by upward-pointing arrows

that are subsumed by those de�ned within. This enforces a stricter interpretation and more

robust de�nition than STAMP alone. For example, assuming a single door and power source it

would be adequate in STAMP to state that the power being o� when the door is open prevents

the hazard. However, the ontological reading is regarding the concepts rather than instances,

so it becomes necessary to state the safety constraint as: �Whenever something that is a kind

of door is open, there should be nothing that's a kind of power source that is on�. With this

second de�nition a second door or power source can be added, or an additional quality, such

as ajar subsumed by open, and the statement will still be true. Instances can be added to the

ontology, but given the use of STPA in system design, the required reasoning should not, and

does not require them.

Therefore the non-naïve de�nition of SC-2 is:

SC-2 ≡SafetyConstraintSituation ⊓ ∃constrains.H-1⊓

∃hasHolding.PowerOnFluent ⊓ ¬∃hasHolding.DoorOpenFluent

In Step 1 the ontological de�nition has made explicit the situations and systems that are perti-

nent to the analysis by distinguishing them as terms outside a textual description such that they

are interpretable by software. The �uents describe key systems and qualities to be controlled,

indicating the need for control actions to cause the corresponding �uents to hold, signposting

Step 2.

56



Chapter 3. Ontology for STAMP 3.6. Illustrative Example Use

3.6.2 Step 2: Control Hierarchy

The control hierarchy diagram for the interlock system is shown in Figure 3.8, it summarises

the output of Step 2. Note it's at a level of abstraction where sensors and actuators are excluded

and a controlled process, �Maintenance� in Figure 3.8, hides other choice details.

The Step 1 �uents indicate how to begin creating this diagram; if the power source can be

powered on and not powered on then something must be capable of turning it on and o� via

some control actions. The control-loop controlled by the Power Controller is de�ned:

PowerController ⊑ Controller⊓

∃hasCapability.TurnOnPower⊓

∃hasCapability.TurnOffPower⊓

∃receivesFeedback.PowerSourceStatusObservation

TurnOnPower ≡ ControlAction⊓

∃isPossibleIn.(Situation ⊓ ∃hasHolding.PowerSourceOff)⊓

∃requestsNegativeEffect.PowerSourceOff⊓

∃requestsPositiveEffect.PowerSourceOn

PowerSourceStatusObservation ≡ Feedback⊓

∃recordsFluent.[PowerSourceOn ⊔ PowerSourceOff]

In Figure 3.8 it's the maintenance process that is being controlled by the human operator

and power controller. The door and power source are subjects in this procedure; their �uents

are subject to e�ective control actions, and they do not issue control actions themselves. This

demonstrates the use of the controlled process abstraction.

Maintenance ⊑ ControlledProcess ⊓ ∃hasSubject.Door ⊓ ∃hasSubject.PowerSource

57



3.7. Reasoning for STPA Chapter 3. Ontology for STAMP

3.6.3 Step 3: Generating Potentially Unsafe Control Actions

In this example system, all four control actions can be potentially hazardous, shown here as

Unsafe Control Actions (UCA) in the standard STPA format:

� UCA-1: Power Controller provides Turn On Power when Door Position Open [H-1]

� UCA-2: Power Controller does not provide Turn O� Power when Door Position Open

[H-1]

� UCA-3: Human Operator provides Open Door when Power Source On [H-1]

� UCA-4: Human Operator does not provide Close Door when Power Source On [H-1]

To declare the TurnOnPower as potentially unsafe when not provided, the de�nition can be

changed to:

TurnOnPower ≡ NotProvidingPotentiallyHazardousControlAction⊓

∃isPossibleIn.(Situation ⊓ ∃hasHolding.PowerSourceOff)⊓

∃requestsNegativeEffect.PowerSourceOff⊓

∃requestsPositiveEffect.PowerSourceOn

In this ontological approach the controller and context situation can be added to create the UCA

in STPA format via reasoning. Once de�ned ontologically, it's possible to recreate this STAMP

format through hasCapability to the Controller, isPossibleIn to the context Situation, and

`providingPotentiallyLeadsTo'/`notProvidingPotentiallyLeadsTo' to the linked Hazards. The

isPossibleIn Situation requires some reasoning to determine the context in which the Control

Action is potentially hazardous as discussed in Appendix B.1.

3.7 Reasoning for STPA

One of the advantages of using ontology is that it's machine interpretable and formal (Noy and

McGuinness 2001). The reasoning presented here is selected to demonstrate the utility of such

reasoning to STPA, as well as the variety of methods that may be employed with this STAMP

58



Chapter 3. Ontology for STAMP 3.7. Reasoning for STPA

ontology. Additional reasoning via sets is included in Appendix B.

Subsumption can aid in identi�cation, such as when considering if something is a Loss or a

Hazard, an Actuator or Controller, a System or a Controlled Process. As the analyst is extending

the STAMP ontology, any de�nition of a term they de�ne as subsumed from a STAMP ontology

term should be justi�able and also true for the subsuming STAMP term.

This can be exploited in Step 2, as on occasion it can be di�cult to determine whether a system

should be regarded as an actuator or controller, especially in cases where the system has decision

making capabilities but may not realistically be in a position to use them or they may not pertain

to the actions under consideration.

An example would be a nurse carrying out some instruction from a doctor, as a human they

possess decision making faculties, but their capability to exercise them is restricted by the control

hierarchy. Thus it must be judged on a case-by-case basis whether to include the nurse as a

controller or actuator. If the nurse is a controller they must have a decision making procedure,

a process model and feedback to inform their decision making, and the capability to choose to

initiate control actions. If the nurse is an actuator in their role, their innate decision making

capabilities that arise from being human must be surpressed so that they e�ectively are expected

to only follow orders. To aid an analyst in formulating an argument a classic expert system

backward-chaining procedure can be applied to determine if the required roles can be de�ned

for a controller, i.e is the nurse informed by a Procedure and Process Model, able to choose to

do a Control Action taking into account Feedback?

Within Step 3, this reasoning can be exploited in the key task of identifying those control actions

that are potentially unsafe. To show a control action such as TurnOnPower ⊑

ProvidingPotentiallyHazardousControlAction it can be shown that TurnOnPower ≡

ProvidingPotentiallyHazardousControlAction ⊓x where x is some as yet unknown term.

59



3.7. Reasoning for STPA Chapter 3. Ontology for STAMP

Substituting the term de�nitions this becomes:

ControlAction⊓

∃isRealizedIn.(Process ⊓ ∃isPossibleIn.(Situation ⊓ ∃hasHolding.PowerSourceOff))⊓

∃requestsNegativeEffect.PowerSourceOff ⊓ ∃requestsPositiveEffect.PowerSourceOn

∃recordsFluent.PowerStatusFluent ≡

ControlAction ⊓ x ⊓

(∃requestsPositiveEffect.(Fluent ⊓ ∃holdsIn.Hazard)

⊔ ∃requestsNegativeEffect.(Fluent ⊓ ¬∃holdsIn.Hazard))

There are matching ControlAction terms on both sides, and x can be uni�ed with:

∃isPossibleIn.(Situation ⊓ ∃hasHolding.PowerSourceOff))⊓

∃requestsNegativeEffect.PowerSourceOff ⊓ ∃recordsFluent.PowerStatusFluent

Thus the problem is reduced to showing:

∃requestsPositiveEffect.PowerSourceOn ⊑

∃requestsPositiveEffect.(Fluent ⊓ ∃holdsIn.Hazard)

⊔ ∃requestsNegativeEffect.(Fluent ⊓ ¬∃holdsIn.Hazard)

Only the left of the disjunctive term need be expanded to show the subsumption, and as

both sides then share the same role it's su�cient to show that PowerSourceOn ⊑ Fluent

⊓∃holdsIn.Hazard. PowerSourceOn is a SystemQuality, which is subsumed by Fluent, so

the term to match is ∃holdsIn.H-1 with ∃holdsIn.Hazard. H-1 is subsumed by Hazard, there-

fore it can be concluded that TurnOnPower is subsumed by

ProvidingPotentiallyHazardousControlAction.

Subsumption is a core task of Description Logics and OWL reasoners, therefore this very useful

reasoning can be done e�ciently with standard tools.

60



Chapter 3. Ontology for STAMP 3.8. STAMP Ontology Discussion

3.8 STAMP Ontology Discussion

The STAMP Ontology, as de�ned is capable of capturing the information required for an STPA

analysis, with the additional ability to capture further information that supports arti�cially

intelligent reasoning. Although this is demonstrated within the illustrative example use10, this

property of capturing the STAMP model is expected given the notation used in STPA was used

and made more explicit when authoring the ontology.

A top-down approach to authoring was followed, which highlighted discrepencies in some terms

already in use at the bottom, i.e. STAMP. Notably the term Safety Constraint and the additional

intersections of the potentially unsafe control actions. Precision is important in safety analysis,

therefore it is hoped this ontological de�nition will invoke careful consideration of these terms

among the experts in the STAMP community.

Following the modular approach has led to two interesting generic modules of this ontology

authoring. Due to the requirement to deliberate over hypothetical behaviour, and no such

ontology containing su�cient terms to do so, the Situation module was created. This module

contains su�cient terms such that su�cient information can be extracted from an ontology to

be used with a Situation Calculus reasoner, albeit with the caveats of closing the world and the

limitations of Situational Calculus.

The second generic module of interest is the Control System Ontology. Although it's intention

is only to describe control systems as understood from STAMP, it provides a reference to those

whose research is in the �eld of de�ning a comprehensive control systems, or systems, ontology.

The STAMP use-case is unusual in that its primary concern is with behaviour, as opposed to

the mereology of a system. Consideration of this important aspect of understanding systems

will ensure a more comprehensive upper-level ontology being authored for control systems.

With the upper layer, and highly reusable domain layer authored, the remaining authoring is

to be undertaken by analysts with their speci�c cases. This may include analysts who are not

experts in STAMP and who are very unlikely to be experts in ontology. Therefore, to support

these analyst authors, an ontology authoring environment with support that is speci�c to STPA

has been created. It's expected that underpinning the software with the STAMP ontology will

10The whole model is publically available at: Paul S. Brown (Apr. 2022). PaulBrownMagic/STAMP-Ontology:
Initial Release. Version v1.0.0. doi: 10.5281/zenodo.6489774. url: https://doi.org/10.5281/zenodo.

6489774

61

https://doi.org/10.5281/zenodo.6489774
https://doi.org/10.5281/zenodo.6489774
https://doi.org/10.5281/zenodo.6489774


3.8. STAMP Ontology Discussion Chapter 3. Ontology for STAMP

enable intelligent tutoring support enabling the production of a better �nal product as well as

developing the analysts STPA skills.

62



Chapter 4

Sca�olding Ontology Authoring

In this chapter the Contingent Sca�olding framework (Section 2.3) is de�ned, applied to on-

tology authoring (Section 2.4), and how it's applied to STPA is discussed. The formalisation

is done with Situation Calculus (Reiter 2001), which logs the users actions (such as the ontology

authoring actions for this use-case). The log of actions then provides a diachronic view of the

ontology that can be queried, enabling the Contingent Sca�olding.

4.1 Situation Calculus Notation

The de�nition of Situation Calculus (introduced in Section 2.2.2 and Section 2.4.2) used is

that of Reiter (2001), which is informally summarised here to serve merely as an introduction.

Reiter's de�nitions are used so that his Golog reasoner (Reiter 2001) may also be exploited when

creating the application.

Situation Calculus is a second-order language with equality and sorts. The three disjoint sorts

are action, situation, and object, where object is domain dependent and used for everything that

isn't an action or situation. For this application actions such as assertions and retractions are

of the action sort. The authors and triples are of the object sort. The situation sort is a term

described shortly.

In addition to actions, situations and objects, the standard logical operators are also used.

Within these pages these are:

� ∧ conjunction

63



4.2. Ontology Authoring in Situation Calculus Chapter 4. Sca�olding Ontology Authoring

� ∨ disjunction

� ¬ negation

� ≡ equivalence

� ∃ existential quanti�cation

� ∀ universal quanti�cation

The initial situation is denoted by the symbol s0, other situations are built with the do/2 term,

capturing the sequence of actions taken since s0. For example, with make and drink actions

and a tea object:

� s1 = do(make(tea), s0)

� s2 = do(drink(tea), do(make(tea), s0))

When considering what action(s) are possible to do in a situation the predicate Poss/2 is used.

The interpretation of Poss(a, s) is that action a is possible in the situation s.

Situations are described by the �uents that hold in the situation, where a �uent is a relation

between objects and the situation. For example:

� hot(tea, s1)

� colour(tea, black, s2)

� colour(tea, tan, s3)

For ease of working with these �uents they're often rei�ed with the Holds/2 predicate, thus the

example �uents can also be written:

� Holds(hot(tea), s1)

� Holds(colour(tea, black), s2)

� Holds(colour(tea, tan), s3)

4.2 Ontology Authoring in Situation Calculus

The ontology authoring framework is de�ned here with the assumption that the ontology will

be de�ned using triples1 in implementation. To identify the triple the predicate spo/3 is used,

named by the initials of: �subject�, �predicate,�object". This may be easily adapted according

to the requirements of the application.

1A data structure containing "subject", "predicate", and "object" as used in the RDF data model (D. Wood,
Zaidman, et al. 2014)

64



Chapter 4. Sca�olding Ontology Authoring 4.2. Ontology Authoring in Situation Calculus

Furthermore, the action of asserting or retracting triples in the ontology is considered to be a

relation between some rei�ed triple, the one to whom the action is attributed, and some time

at which it was executed. This permits detailed analysis of the ontology with regards to who

authored what and when. Again, this can be adapted to the meet the requirements of a given

application. Fluents to determine the �who� and �when� of assertion and retraction are left to

the reader to de�ne as they are minor adaptations of the asserted/3 �uent.

First, the axioms for authorship are considered, followed by those for ontological reasoning.

The de�nitions are presented in the format used by Reiter (2001) with the actions and �uents

�rst de�ned as facts. These are followed by the action precondition axioms de�ning in what

situation it's possible to do an action. Finally the successor state axioms de�ne how the situation

is changed by the action from one situation to the next, succeeding situation.

Actions

� assert(spo(s, p, o), author, time). Author asserted the triple `s, p, o' at the time.

� retract(spo(s, p, o), author, time). Author retracted the triple `s, p, o' at the time.

Fluents

� asserted(s, p, o, sit). The triple `spo(s, p, o)' has been asserted in sit situation. With

rei�cation this is equivalent to Holds(asserted(s, p, o), sit).

� fact(s, p, o, sit). The triple `s, p, o' has either been asserted or can be derived through

ontological reasoning in sit situation. This can also be rei�ed with Holds/2

as Holds(fact(s, p, o), sit).

Action precondition axioms

Poss(assert(spo(s, p, o), author, time), sit) ≡ ¬∃(a, t)[asserted(spo(s, p, o), a, t) ∧ time > t],

Poss(retract(spo(s, p, o), author, time), sit) ≡ ∃(a, t)[asserted(spo(s, p, o), a, t) ∧ time > t].

65



4.2. Ontology Authoring in Situation Calculus Chapter 4. Sca�olding Ontology Authoring

Successor state axioms

asserted(spo(s, p, o), do(a, sit)) ≡ ∃(author, time)[

a = assert(spo(s, p, o), author, time)

∨asserted(spo(s, p, o), sit) ∧ a ̸= retract(spo(s, p, o), author, time)],

fact(s, p, o, sit) ≡

asserted(s, p, o, sit)

∨asserted(p, hasCharacteristic, reflexive, sit)∧

∃(d)[asserted(p, hasDomain, d, sit) ∧ fact(s, subClassOf, d)] ∧ o = s

∨asserted(p, hasCharacteristic, symmetric, sit) ∧ asserted(o, p, s, sit)

∨asserted(p, hasCharacteristic, transitive, sit)∧

∃(z)[asserted(s, p, z, sit) ∧ fact(z, p, o, sit)]

∨∃(i)[asserted(p, hasInverse, i) ∧ fact(o, i, s, sit)]

∨∃(b)[asserted(b, subPropertyOf, p) ∧ fact(s, b, o, sit)]

∨∃(c)[asserted(s, instanceOf, c) ∧ fact(c, p, o, sit)]

∨∃(c)[asserted(s, subClassOf, c) ∧ fact(c, p, o, sit)]

A number of typical rules used to derive additional knowledge are demonstrated above, including

inheritance, re�exive, symmetric, transitive and inverse properties. The check on the domain

for a re�exive property ensures that the subject is in the set of things that are re�exively related

to themselves. These rules may be adapted to the chosen language and features required.

The initial situation, s0, can have �uents already holding in it. This is used in conjunction with

the STAMP ontology in the software application to reduce the number of actions in the situation

that need to be queried over. Therefore in the s0 provided to the analyst using the software the

STAMP ontology is already de�ned and ready for them to extend with their use case. Fluents

can be de�ned as holding in s0 like so:

66



Chapter 4. Sca�olding Ontology Authoring 4.2. Ontology Authoring in Situation Calculus

asserted(spo(s, p, o), s0) ≡

s = Hazard ∧ p = type ∧ o = Class

∨s = Hazard ∧ p = subClassOf ∧ o = Situation

Additional actions can be de�ned to capture the authors interaction with the ontology authoring

tool in order to facilitate appropriate support, an example is given below.

Action

� focus(area, author, time). The area, which is some space in the graphical user interface

that may or may not be visible to the user at any particular time, entered the authors

focus at this time.

Fluent

� focused(area). The area is in the authors focus.

Action precondition axiom

Poss(focus(area, author, time), sit) ≡ ¬focused(area, sit).

Successor state axiom

focused(area, do(a, sit)) ≡ ∃(author, time)[

a = focus(area, author, time)

∨focused(area, sit) ∧ ¬∃(area′)(a = focus(area′, author, time))],

Appendix E contains logs from the user study that show the interspersion of ontology authoring

actions with navigation and other actions. How this information is used is the subject of the

upcoming Section 4.3.2.

67



4.3. A Contingent Sca�olding Framework Chapter 4. Sca�olding Ontology Authoring

4.2.1 Answering Situational Questions

With the de�ned ontology authoring framework the �Who�, �What�, �When� and �Where� ques-

tions become �uents and follow the same query pattern as the asserted/3 �uent. However,

with this framework it is also possible to query retractions, some past situation, and all past

situations. This is demonstrated by answering a selection of example questions.

� Has this fact been asserted and retracted multiple times? Perhaps a sign of confusion or

con�ict.

∃(s, s′, s”)(s ⊑ do(T, s0) ∧ s′ ⊏ s ∧ s” ⊏ s′ ∧ ∃(a, a′, a”, t, t′, t”)[

asserted(spo(CA− 1, subClassOf,ControlAction), a, t, s)∧

¬asserted(spo(CA− 1, subClassOf,ControlAction), a′, t′, s′)∧

asserted(spo(CA− 1, subClassOf,ControlAction), a”, t”, s”)])

This example queries for a retraction and queries past situations.

� Has this triple always been asserted?

Holds(asserted(Hazard, subClassOf, Situation), s0)∧

¬∃(A) ∈ T(∃(a, t)[A ̸= retract(spo(Hazard, subClassOf, Situation), a, t)])

This example queries over the log, which depending on the implementation could be re-

duced to two look-ups.

� Has this fact always been true?

∀(s)(s ⊑ do(A, s0) ⊃ fact(Hazard, subClassOf, Situation, sit))

This example is included as fact is not a context-free �uent and thus can't take advantage

of the same e�ciency bene�ts the asserted �uent can.

4.3 A Contingent Sca�olding Framework

Contingent Sca�olding, abbreviated to Sca�olding, is a pedagogical strategy de�ned by D. Wood,

Bruner, et al. (1976). This is the method of providing support discussed in Section 2.3.

68



Chapter 4. Sca�olding Ontology Authoring 4.3. A Contingent Sca�olding Framework

This section will de�ne a formal framework for Contingent Sca�olding where the interactive

interventions subscribe to the philosophy of nudges to mitigate the ill-de�ned nature of the

domain.

4.3.1 Interactive Nudges

When contingent sca�olding, the intelligent tutor intervenes into a process via prompts, ques-

tions, and physical actions. Due to the nature of sca�olding in an ill-de�ned domain and op-

erating under the open-world assumption, it must be acknowledged that an analyst can author

a valid ontology extension without adhering to the guidance of the tutor. Therefore the tutor

pro�ers its advice, which may be rejected, negotiated, or accepted by the analyst. The negotia-

tion is to be understood as the method by which the analyst can ask for the level of intervention

to be increased, albeit the tutor may not always oblige.

Such an perspective on the nature of the interventions is a libertarian-paternalistic one. Lib-

ertarian because it's accepted that the analyst is free to respond to the intervention however

they wish, including ignoring it. Paternalistic because the intervention is o�ered with the belief,

correct or not, that to follow it would be best for the analyst.

Libertarian-paternalistic actions taken to alter behaviour, such as how interventions are used

within this framework, are coined �nudges� by Thaler and Sunstein (2009). The �interactive�

descriptor is added to make explicit the negotiation, which is inherent in the sca�olding process

of leveling the intervention, as well as the active, thoughtful contemplation of the choice to be

made by the analyst.

Nudges may be employed to modify behaviour by appealing to the unconscious aspects of choice-

making. This aspect is relevant to the process of ontology authoring; the presentation of the UI

can be used to discourage attempts at fruitless work such as trying to complete STPA step 3

before step 2. These kind of nudges are passive rather than interactive. Furthermore, this is the

domain of UI-design rather than interventions, such as prompts and questions that are taken in

order to provoke thought. It's impossible to present a UI without the design of it having some

e�ect on a user, therefore the design is shared, but it's not the focus of this study.

Contingent Sca�olding uses the term �intervention�, and therefore this work will continue to use

the same term. However, how interventions are used and thought of is informed by nudges in

the de�ned framework for Contingent Sca�olding and its later application.

69



4.3. A Contingent Sca�olding Framework Chapter 4. Sca�olding Ontology Authoring

4.3.2 Sca�olding Framework De�ned

To qualify as contingent sca�olding, each of the three principals H. Wood and D. Wood (1999)

need to be covered:

� Help is provided expeditiously when the learner is in trouble

� Help is increased as the learner requires until the solution is reached

� As the learner succeeds, support is withdrawn: a process called �fading�

Identifying when an analyst is in trouble will be accomplished through de�ning troublesome sit-

uation terms. The analyst's situation can then be checked if it's subsumed by some troublesome

situation. To accomplish this �rst requires de�ning what is meant by �trouble�.

The second two points relate to levels of support. Firstly the levels need to be enumerated,

secondly the appropriate level needs to be selected. In order to select the appropriate level some

record of previous interventions is required. The use of Situation Calculus here not only provides

this record, but previous situations can also be queried to determine if an analyst has previously

succeeded by resolving an intervention, and thus support may be withdrawn.

To de�ne �trouble�, the methodology of STPA that this research is seeking to support is applied:

�trouble� is the hazardous situation to be avoided. Considering the taxonomy of Potentially

Unsafe Control Actions de�ned, there are two kinds of unsafe control actions the analyst could

take to arrive in trouble: Providing or Not Providing. If an analyst is Providing some action

that results in a �trouble� situation, then it is supposed that taking this action was a mistake.

As per the libertarian framing it may not actually be a mistake, but within the paternalistic one

it shall be called as such. A mistake in this case ranges from critical, such as asserting logical

inconsistencies, to advisory.

The analyst Not Providing some action can only be identi�ed by tracking their progress through

some process and noting what should have been done according to some intervention de�nitions.

Again, as per the libertarian framing it may not actually be missing, but within the paternalistic

one it shall be called as such. These missing actions can range from critical, such as not de�ning

any control actions before trying to determine which ones are potentially unsafe, through to

advisory, such as adding thoughtful descriptions or comments.

Thus interventions are separated into two categories: �mistake� and �missing�. These two pred-

70



Chapter 4. Sca�olding Ontology Authoring 4.3. A Contingent Sca�olding Framework

icates for interventions follow these templates:

mistake(⟨kind⟩, ⟨situation query⟩, ⟨leading question format⟩)

missing(⟨step⟩, ⟨kind⟩, ⟨situation query⟩, ⟨leading question format⟩)

The actual interventions used in the software application are included in Appendix C. The

meaning of each parameter will be discussed in turn.

A mistake can be made at any time, whereas missingness can only be determined in relation to

progress. Therefore within the term to describe a �missing� intervention a parameter for when to

begin checking it is required, denoted by ⟨step⟩. As the user progresses through their analysis

they will navigate to steps 1-4, so at step 3 the missing interventions for steps 1 and 2 are

checked.

The parameter is denoted as ⟨situation query⟩ is a situation used as a query to be run over the

analyst's log in order to determine if the intervention is appropriate. This query is the �trouble�

situation, which if subsumed by the analyst's current situation (i.e. is true) will be used to cause

the intervention to be executed. In practice this is done with a Situation Calculus query due

to the representation of situation in this framework as a history of actions rather than as the

collection of �uents that hold in it, as a situation is represented in the STAMP ontology. An

example query from Appendix C:

l ogged_asse r t i on (Hazard , subClassOf , 'Hazard ' ) and

not ( l ogged_asse r t i on ( Loss , subClassOf , ' Loss ' ) and

logged_asse r t i on (Hazard , hasPoss ib l e , Loss ) )

There may be more than one instantiation of the situation query if, for example, an analyst

repeatedly fails to assert what losses are possible in their hazard situations, as per the example

query above. In such a case the parameter in the query that identi�es the hazard without a

possible loss would be di�erent, but the kind of �missing� is the same and so the intervention

level sca�olded should be related to the previous one. For example, the above query could

succeed at di�erent times with the bindings:

l ogged_asse r t i on ( 'H=1 ' , subClassOf , 'Hazard ' ) and

not ( l ogged_asse r t i on ( Loss , subClassOf , ' Loss ' ) and

71



4.3. A Contingent Sca�olding Framework Chapter 4. Sca�olding Ontology Authoring

logged_asse r t i on ( 'H=1 ' , hasPoss ib l e , Loss ) )

. . . and later:

l ogged_asse r t i on ( 'H=2 ' , subClassOf , 'Hazard ' ) and

not ( l ogged_asse r t i on ( Loss , subClassOf , ' Loss ' ) and

logged_asse r t i on ( 'H=2 ' , hasPoss ib l e , Loss ) )

The same query has succeeded in two di�erent ways. The di�erence is expressed in the query

itself. The similarity is the di�erent of kinds of �trouble�, which is identi�ed through the ⟨kind⟩

parameter, which then also enables multiple predicates to be de�ned with di�erent queries or at

di�erent steps to still be related as the same �kind�. This parameter also serves as the lowest-

level sca�old o�ered. The corresponding ⟨kind⟩ parameter to the example query is: `Hazards

will lead to a loss in some worst-case environment'.

The �nal parameter is the ⟨leading question format⟩. In the sca�olding levels one sca�old is

to ask a leading question, which in theory can be created from the query, but in practice resulted

in poor questions. Therefore this additional parameter was added, which is a template for the

leading question that can be instantiated with the results from the query. The running example

leading question format would substitute the `∼s' for the Hazard that the query succeeded with

(such as H-1 or H-2):

'Have you not a s s e r t ed which Loss i s p o s s i b l e to occur in the

∼s Hazard ? ' = [Hazard ]

Next the levels of intervention need to be de�ned. Although there's no canonical set of levels

de�ned, the six levels of Daniels (2010) can be generalised. This generalisation is required as

the software has no verbal capabilities. Additionally, determining the analogue to �materials�

from the Daniels (2010, p.109) levels �3: indicates materials� and �4: prepares materials� is

also ambiguous within a graphical user interface where there are no physical, material items.

Therefore the de�nition of �physical� is stretched to include the components of the graphical

interface, which can be presented to a user or changed by the software to add or remove content.

The levels of intervention should increase in intrusiveness and speci�city as the levels also in-

crease. Therefore the interventions transition from prompt, to instruction, to physical action.

At each level of action a kind of action to take is given based upon the comparative study of

72



Chapter 4. Sca�olding Ontology Authoring 4.3. A Contingent Sca�olding Framework

successful human tutors (Merrill et al. 1992).

� Level 0: no assistance

� Level 1: prompt (interjection prompting re�ection)

� Level 2: strategic instruction (leading question)

� Level 3: tactical instruction (step-by-step guidance through target actions)

� Level 4: physical preparation (completes preparatory actions but not the target action)

� Level 5: physical completion (completes target action)

When tutoring in an ill-de�ned domain it's frequently not possible to o�er a level 5 intervention

as the correct answer isn't known. To circumvent this di�culty the level 5 intervention is

con�ated into the level 4 intervention, such that an analysis of the situation is used to determine

if a level 5 intervention is possible, or if level 4 must be used. If a level 5 intervention is possible

that action is taken in place of level 4 so that level 4 can be treated as the maximum level for

the purposes of calculating the level of intervention to o�er.

Level 0 can be made implicit due to the use of a query determining if an interactive nudge should

be given. If the query fails, then no assistance is to be o�ered, which is the equivalent of level

0. If the query succeeds then it must be determined what level among the rest the interactive

nudge should be pitched at.

Using the de�ned �missing� and �mistake� interventions, at level 1 the ⟨kind⟩ parameter is used

as a prompt. At level 2 the ⟨leading question format⟩ is populated with the case-speci�c

information determined by the query. At level 3 the ⟨situation query⟩ is examined. The �rst

failing clause that the user is both permitted to change and capable of changing is parsed into

an instruction2. At level 4 that �rst failing clause's subject part of its spo/3 triple is used to

determine the part of the GUI to bring the user to, which is the physical preparation. If the

predicate and object of the triple in the clause are also both known then the software can assert

or retract them on behalf of the analyst.

If an intervention is possible in a situation, then that intervention could be done:

∃(i ∈ Intervention, s ∈ Situation)[poss(i, s) ⊂ do(i, s)]

2In application this is done by via a rule-set generating an instruction that the GUI can execute. What to
instruct is determined by what parameters are ground in the �rst failing clause

73



4.3. A Contingent Sca�olding Framework Chapter 4. Sca�olding Ontology Authoring

It is de�ned as an implication such that the intervention need not be done. For example, if it

were decided to only present one intervention at a time and another were already underway,

then even though more may be possible, they may also be ignored by some other rule.

Once an intervention has been elected for do/2, it's necessary to determine the level of inter-

vention to o�er, assemble any required payload of messages and perhaps physical intervention

instruction, before presenting it to the user in the chosen manner for their consumption3.

The level of intervention is determined by examining the situation term. The level 4 and level

5 interventions are con�ated into level 4, due to the inability to always provide a physical

intervention4 where the ontology authoring actions are taken by the software. and preclusion of

level 0 by the situation query failing leaves the following levels to choose from:

� Level 1: a general verbal prompt pertaining to the kind of issue;

� Level 2: a leading question pertaining to a speci�c issue;

� Level 3: an speci�c instruction pertaining to a speci�c issue;

� Level 4: physical intervention following the prior instruction as far as possible to do cor-

rectly;

As soon as it is possible to �rst do/2 an intervention it's considered to be at level 1. In order to

increment the level of intervention the user is provided with a �request help' ' action, which they

can use to increase the level of intervention until they reach the limit at level 4. To decrement

the level the situation is searched to �nd a moment where the intervention was possible, but the

next action made it no longer possible. At this moment the user has resolved the issue, and so

support is faded. The mechanism for fading is captured in the de�nition for intervention/3

below.

The �nal action provided to the user to a�ect the intervention level is to �dismiss intervention'`,

which resets the level to 1. This action is provided in deference to the users' expertise as the AI

works with imperfect knowledge. This gives the following de�nitions to change and determine

intervention level:

3In application this is done with a rule-set that given the intervention term and a level formats the information
to be sent at that level into JSON. The exact details depend heavily on the stack of technologies and languages
in use.

4Physical as in the software makes changes to the state of the software rather than request the analyst to do
so

74



Chapter 4. Sca�olding Ontology Authoring 4.4. Application to STPA

Poss(requestHelp(i), sit) ≡ Poss(i, sit)

Poss(dismissIntervention(i), sit) ≡ Poss(i, sit)

interventionLevel(l, i, s) ≡

∃(i ∈ Intervention, s ∈ Situation, l ∈ {0, 1, 2, 3, 4})[

(s = s0 ∧ l = 1) ∨ s = do(a, s′) ∧ interventionLevel(l′, i, s′) ∧ [

(a = requestHelp ∧ l = l′ + 1)∨

(a = dismissIntervention ∧ l = 1)∨

(¬Poss(i, s) ∧ Poss(i, s′) ∧ l = l′ − 1)∨

(a ̸= requestHelp ∧ a ̸= dismissIntervention∧

¬(¬Poss(i, s) ∧ Poss(i, s′)) ∧ l = l′]]

4.4 Application to STPA

The Contingent Sca�olding de�nitions and Ontology Authoring ones are independent, however

they can be used in conjunction with one another. With the STAMP ontology de�ned and the

Ontology Authoring de�ned, no additional de�nitions are required to enable an STPA analyst

to use these in extending the STAMP ontology to their own model.

To apply the Contingent Sca�olding de�nitions to STPA requires de�ning situations where the

the user has potentially missed something or potentially made a mistake. In situations that

subsume these �trouble� situations the intervention will be o�ered at the deduced level.

These situations were gleaned from the STPA Handbook (N. Leveson and Thomas 2018), extract-

ing the advice given and writing situation queries that could identify when they're contradicted.

The interventions identi�ed were organised into missing and mistake categories:

1. Mistake:

a. Hazards should not include ambiguous or recursive words like �unsafe�, �unintended�,

�accidental�, etc. (A situation where one of the aforementioned words is in a hazard

label)

75



4.4. Application to STPA Chapter 4. Sca�olding Ontology Authoring

b. Avoid using ambiguous and vague labels in the control structure: �commands�, �feed-

back�, �status�, �computer� (A situation where one of the aforementioned words is in

a control action or feedback label)

c. If you have more than 7 hazards, consider grouping or combining them to create a

more manageable set (A situation where Hazard has more than 7 subclasses)

d. Fluent can't both hold and not hold in a situation

e. Control Action can't both cause a �uent to hold and not hold

2. Missing:

i. Step 1:

a. Step 1 precedes Step 2 (A situation in step 2 where no loss or hazard is de�ned)

b. Hazards will lead to a loss in some worst case environment (A situation where

there's some hazard that is missing the �has possible� some loss relation)

c. Hazards must describe states or conditions to be prevented (A situation where a

hazard has been de�ned with no related �uents to describe it)

ii. Step 2:

a. Step 2 precedes Step 3 (A situation where de�nitions for controllers having control

action capabilities and feedback are lacking)

b. Check that every controlled physical process is controlled by one or more con-

trollers

c. Check that control actions needed to satisfy the responsibilities are included (A

situation where some �uent in a hazard isn't e�ected by some control action)

d. Check that feedback needed to satisfy the responsibilities is included (A situation

where some �uent in the hazard isn't sensed by some controller)

iii. Step 3:

a. Ensure traceability is documented to link every unsafe control action with one or

more hazards (A situation where a an unsafe control action isn't associated with

any particular hazard)

b. Ensure every unsafe control action speci�es the context that makes the control

action unsafe (A situation where an unsafe control action doesn't have the �is

possible in� situation de�ned)

c. Ensure the unsafe control action contexts are de�ned clearly (A situation where

the �is possible in� situation doesn't have any �uents de�ned to describe it)

76



Chapter 4. Sca�olding Ontology Authoring 4.5. Sca�olding Ontology Authoring Conclusions

d. Identify all Providing Potentially Hazardous Control Actions

e. Identify all Not Providing Potentially Hazardous Control Actions

Interventions for Step 4 of STPA are not included as Step 4 is not included in the �nal user

evaluation. This decision was made in deference to users' time commitment with regards to

both learning STPA and completing an analysis. An additional step solely for the purpose of

checking step 3 is used though. This additional step allows the software to look for the things

missing from step 3 when the user moves to it, declaring that they believe they're done with

step 3.

The de�nitions of these interventions are best understood by referring to the Prolog term de�-

nitions, which are included in Appendix C.

4.5 Sca�olding Ontology Authoring Conclusions

In this chapter an ontology authoring framework has been de�ned in Situation Calculus. This

framework provides a diachronic view of the ontology and can be further enriched with non-

authoring actions that an application developer deems important. The information captured by

this ontology authoring framework provides information that may be used to support an author,

including by employing Contingent Sca�olding.

A Contingent Sca�olding framework was also de�ned using Situation Calculus. This framework

is independent of the ontology authoring framework and may be used independently of it. How-

ever, when doing so the level 4 and level 5 interventions will require careful consideration to

determine what physical interference can be done in some other domain.

Finally, the ontology authoring framework and Contingent Sca�olding framework have been

applied together to the STPA domain. This is achieved by de�ning a set of interventions that

can be used to support an analyst as they extend the STAMP ontology.

There is a practical concern with using Situation Calculus when implemented in software. Flu-

ents that aren't context free (See Section 4.2.1) need to traverse the log multiple times: once

for each �context� �uent that they depend on. When the logs get longer, this could cause the

application to run su�ciently slowly that the interventions are not perceived as being imme-

diate. To test if this is the case, these libraries are implemented as software and a user-study

conducted from which timings are measured (See Section 5.7) in the next two sections.

77



Chapter 5

Software Implementation

With theoretical de�nitions of the STAMP ontology, Situation Calculus Ontology Authoring

framework, and Situation Calculus Contingent Sca�olding framework, an implementation in

software is required to determine the practicality and applicability of these frameworks. How

e�cacious the theory and implementation are will be assessed in the next section. The key aims

are:

� su�cient information captured for intervention

� immediate intervention

� generalized, reusable framework libraries (for other domains)

Prolog was chosen as an implementation language from the outset due to using both Ontology

and Situation Calculus as foundations in the design. The application contains approximately

10,000 lines of Logtalk source code plus the GUI written in ClojureScript. The parts authored

in Logtalk cover persistence of user projects, situation calculus reasoning, ontology authoring,

contingent sca�olding, web server, and generating HTML including forms based upon the history

of a user project.

5.1 Software Architecture

The software architecture was intentionally designed to follow the same layered framework as

the ontology, as depicted in Figure 5.1. To aid in organising and navigating the complex

software a naming convention centering around Whitby Abbey(Bede et al. 2008) was adopted;

Oswin happens to be the name of a King who was supplanted by the founder of the Abbey,

78



Chapter 5. Software Implementation 5.1. Software Architecture

Figure 5.1: Whitby Architecture: open arrows denote extension, closed arrows denote depen-
dence

King Oswiu, whose kingdom also included the land where Leeds University stands today. The

responsibilities of the named components are:

� Hilda: The wise. Responsible for reasoning over the logs and answering situational queries.

This meets the querying requirements for both the ontology authoring and Contingent

Sca�olding frameworks.

� Bede: The historian. Responsible for the logging of all actions on a per user basis and

retrieval of those logs as required. This meets the persistence requirements for the ontology

authoring framework.

� OSWIN: Ontology-driven Sca�olding With Interactive Nudges. Responsible for the

contingent sca�olding interventions, which are informed by the paternalistic-libertarian

perspective of nudges. Accomplishes the Contingent Sca�olding framework with the ex-

ception of determining if a situational query is true for some situation, which is done by

Hilda.

� Caedmon: The poet. Responsible for the interaction between user interface and the

components in the Application Layer.

79



5.2. Refactoring for Reusable, Generalized Code Chapter 5. Software Implementation

� Editor: The Graphical User Interface.

The personi�cation of the components is intended to ease in reasoning about how the application

is working. Thus, following this architecture in Figure 5.1, when a user takes some signi�cant

action in the Editor, it informs Caedmon of the action taken. Caedmon sends that information

to Bede, who will check with Hilda that the user is permitted to take that action based upon

the log Bede holds. If it's possible for the user to do the action Bede will update the log and

tell Caedmon to acknowledge the action to the Editor.

Caedmon, upon receiving the instruction to acknowledge the action is aware that the situation

has changed, and so checks with OSWIN for any interventions it would like sending to the Editor

too. OSWIN will ask Bede to give Hilda the user's log and check if one of its intervention queries

succeeds for that log. If Hilda �nds some intervention query that does succeed, then OSWIN

will formulate the intervention payload to be sent to the editor dependent upon how that query

succeeded and the current level of that intervention. Bede will also record the intervention in

the log at the behest of OSWIN.

The components in the upper 2 layers are used by the Application Layer as third-party libraries,

which are generalized. The SitCalc library is a dependency of the ontology authoring framework

discussed in Section 4.2 and the Contingent Sca�olding framework discussed in Section 4.3.

The Scaffolding library corresponds to the Contingent Sca�olding framework, and OntAuth

corresponds to the ontology authoring framework. All three of these libraries can all be, and

have been, applied to other domains, which is a key aim to demonstrate their generalisability.

5.2 Refactoring for Reusable, Generalized Code

The entire application has been re-written twice to overcome the architectural issues whose

solutions were unsatisfactory. The rami�cations of these solution-compromises grew with the

complexity of the application. In the �nal rewrite the code base was transitioned to Logtalk

and su�ciently decoupled as to extract three libraries. This extraction was the main motivation

behind the rewrites: the prior version was functioning but useful parts of it couldn't be shared.

In this section, the software engineering principles that guided the application rewriting to

extract the three libraries are presented, the architectures of the logic programming parts of the

last two versions of Whitby are compared, the motivations behind the transition from Prolog to

80



Chapter 5. Software Implementation 5.2. Refactoring for Reusable, Generalized Code

Logtalk are discussed, and the lessons learned are summarized.

5.2.1 The Dependency Inversion Principle

In refactoring the architecture, the SOLID principles of clean architecture (Martin 2018) are

applied. These principles are the summary of 20 years of debate between developers attempting

to abstract what made their software maintainable and extensible. They are intended to avoid

the situation, observed in even market-leading software, where progress is slowing while cost per

line of code increases, all while increasing development sta� (Martin 2018).

Appropriate application of these principles produces code that is easy to read, maintain, extend

and test. These bene�ts are primarily to those developing and maintaining the software, which

then has implications to organisations producing and consuming the software over a period of

time. Software with a clean architecture is argued to be easily extensible with new features,

typically using a plugin architecture, and robust to changes in business rules, technology, and

deployment scenarios (Martin 2018). Thus it reduces application risks and development costs.

The principles of SOLID architecture are:

� Single Responsibility Principle: each part has one and only one reason to change; it is

accountable to one stakeholder

� Open-Closed Principle: code should be open to extension and closed for modi�cation; such

as in a plugin architecture where new features are created by adding new code rather than

editing existing code

� Liskov Substitution Principle: parts should be interchangeable, which makes it robust to

even signi�cant changes such as to business rules meeting new legal requirements, or to

swapping components such as the database used or GUI framework

� Interface Segregation Principle: do not depend on things not used, which makes depen-

dents of some part robust against changes required by other dependents of that part

� Dependency Inversion Principle: high-level policy should not depend on low-level details,

but details should depend on policies, such that code which is volatile is not depended

upon by code that is stable

The Dependency Inversion Principle, depicted in Fig 5.2, is the main principle driving this

refactor and the technique used for decoupling. Closely related to this principle is the code for

interface, not for implementation best practice: no concrete module should be imported into any

81



5.2. Refactoring for Reusable, Generalized Code Chapter 5. Software Implementation

Figure 5.2: Dependency Inversion Principle. Left-hand side has high-level policy depending on
low-level details, which is not recommended. Right-hand side has the dependency inverted by
the policy depending on some interface, which the details extend.

other. Instead, an abstract de�nition of what the module should provide is used. This principle

and best practice allows high-level policies to be left untouched as low-level details are swapped

or undergo change, which in turn makes reuse of the high-level principles as libraries possible.

The concept of interface is thus central to the application of this principle and best practice as

further discussed in Section 5.2.4. In Logtalk, interfaces are represented using protocols, but

Prolog module systems do not provide an equivalent feature1.

The dependence on an interface, shown in Fig 5.2, also di�erentiates the technique from de-

pendency injection or meta-programming where the context of the low-level details are passed

to the high-level policy. With or without meta-programming, the policy is dependent on the

predicates required being present in the details, however with meta-programming the interface

is implicit, ungoverned, and not self-documenting. By using a declared interface as a �rst-class

language feature the required predicates become explicit, the details are governed through a

declared promise to de�ne the interface, implementers of the interface can be enumerated using

language re�ection predicates, and documentation can be automatically generated.

These principles are also considered at the component level (Martin 2018). At this level of ab-

straction, the key ideas are to enable reuse through sensible component contents and decoupling

through dependency cycle elimination as well as correlating dependency with stability.

5.2.2 Whitby before refactoring: Pre-Whitby

The �rst version of Whitby, written in Prolog using the module system and depicted in Fig 5.3,

shall be called Pre-Whitby to distinguish it from Whitby after the refactoring. This application

1The ISO Prolog standard for modules (ISO/IEC 2000) does specify a module interface language construct
but only allows a single implementation per interface, thus defeating the main purpose of de�ning interfaces.
Moreover, this standard is ignored by Prolog systems.

82



Chapter 5. Software Implementation 5.2. Refactoring for Reusable, Generalized Code

Figure 5.3: Dependencies in Pre-Whitby. Each node is a �le, within their directories, which
distinguish modules. Arrows denote imports, open diamonds denote consults.

83



5.2. Refactoring for Reusable, Generalized Code Chapter 5. Software Implementation

did implement the features required of it2. There was no particular issue with it from a user

perspective. The issues were entirely at the developer experience level.

The kb directory in Fig 5.3 is responsible for the ontology authoring with situation calculus.

The oscar directory, which is responsible for the contingent sca�olding interventions, is only

dependent upon the code within this module. This dependence is a necessity as oscar needs to

know about a user's ontology in order to o�er relevant interventions.

Several violations of the SOLID principles are hidden at this level of abstraction. Note that

golog and fluents are aggregated in kb_manager. This compromise is necessary because the

Golog Situation Calculus reasoner from Reiter (2001) includes a predicate that calls these �uents,

and so golog is dependent upon fluents. It is not uncommon in Prolog to apply some set of

rules, like those in golog, to some facts, like those in fluents.

But for golog to reason over the fluents and actions de�ned for some particular world under

analysis requires that world (details) to be imported into golog (policy). In this manner, the

abstract is dependent upon the concrete, the stable is dependent upon the �exible, the calculus

is dependent upon its own application. It's a violation of clean architecture that prevents code

reuse: golog cannot be extended to include a de�ned world to reason over without modi�ca-

tion to its own source code. Concurrent handling of multiple de�ned worlds is also precluded.

Although there are workarounds to these problems, some of which are discussed here, they are

unsatisfactory as the lack of necessary language constructs to cleanly express the application

architecture results in the violation of SOLID principles.

To circumvent the issue of circular dependencies in Pre-Whitby, the golog and fluents �les were

consulted instead. This loaded them both into the kb_manager namespace. However, this causes

a conundrum to resolve as there are �uents and actions for the oscar module that need to be

de�ned in the fluents and kb_manager �le so that golog is in the same namespace as them. For

example, actions pertaining to ontology authoring, contingent sca�olding, and user interface are

de�ned adjacent to each other in kb_manager, in violation of the Single Responsibility Principle,

as seen in this snippet:

:= consu l t ( kb ( go log ) ) .

:= consu l t ( kb ( f l u e n t s ) ) .

2The only feature requirement that changed between Pre-Whitby and Whitby was a change from handling
users with logins and many projects, to only handling many projects. Therefore this aspect is not compared.

84



Chapter 5. Software Implementation 5.2. Refactoring for Reusable, Generalized Code

%! ac t i on ( Action , GologPossQuery )

% Ontology Authoring

ac t i on ( add_data (_User , _Time , Payload ) ,

=a s s e r t ed ( Payload ) ) .

a c t i on ( delete_data (_User , _Time , Payload ) ,

a s s e r t ed ( Payload ) ) .

% User S c a f f o l d i n g Act ions

ac t i on ( d i smi s s_ in te rvent i on (_User , _Time , Fact , Leve l ) ,

in t e rvened (_, Fact , Level , _) ) .

a c t i on ( r eque s t_ inte rvent i on_inc r ea s e (_User , _T, ID , Fact , Leve l ) ,

in t e rvened ( ID , Fact , Level , _) ) .

% Agent S c a f f o l d i n g Act ions

ac t i on ( i n t e rv ene (_User , _Time , Fact , Level , _Payload ) ,

=some (n , ( d i smi s sed ( Fact , n ) & n >= L ) ) ) .

% User UI Act ions

ac t i on ( navigate_to_step (_User , _Time , _Step ) , t rue ) .

a c t i on ( concept_focus (_User , _Time , _Focus ) , t rue ) .

a c t i on ( g lossary_lookup (_User , _Time , term (_Term) ) , t rue ) .

a c t i on ( nudge (_User , _Time , _R) , t rue ) .

Code belonging to oscar (One of the directories in Figure 5.3) resides in �les in kb, which is

then loaded into a di�erent module. It should reside in �les in oscar and somehow be made

visible to kb to maintain separation of responsibilities and to ease code navigation. There are

mechanisms to achieve this in Prolog: via consulting which would warn if a predicate were

rede�ned, or via include/1, which includes the text of the �le within the other.

To use include/1 directives or multi�le predicates would be to take code from oscar and have

it e�ect the behaviour of kb; thus a developer working on either module must understand how

85



5.2. Refactoring for Reusable, Generalized Code Chapter 5. Software Implementation

the other one is working. A poorly placed cut, unfortunately named predicate, or rede�nition

of an operator in oscar could cause kb_manager, upon which it depends, to no-longer function

correctly. It opens up the potential for the consumer of some code to break what it should only

depend upon. A developer debugging kb looking solely at their code in kb, believing it has no

dependencies as the architecture diagram shows, would have little hope of resolving such an

error. For these reasons module systems are favoured over the older consult/1 and include/1

predicates and why using them is also an unsatisfactory solution. When authoring Pre-Whitby,

the more robust unsatisfactory solution was chosen, putting oscar code into kb, violating the

Open-Closed principle and preventing code reuse, but easing debugging.

Another mechanism tried for including actions from di�erent modules into kb_manager was to

declare action/2 as a multi�le predicate in kb_manager. Clauses for the predicate could then be

de�ned in oscar and any other module by using a pre�x: kb_manager:action(...). However,

this violates the Dependency Inversion Principle as high-level policy predicates belonging to

general ontology authoring and sca�olding are then dependent on the low-level detail that is the

kb_manager, which is the module responsible for updating and querying user projects extending

the ontology. Furthermore, this pre�x referring to a speci�c, �xed module would prohibit the

substitution of that module, thus violating the Liskov Substitution Principle of SOLID. Together

this prevents the code in oscar from being used with a knowledge base that is not named

kb_manager and using the same workaround.

Ideally a module would be used but the dependency needs to be inverted, such that fluents de-

pend upon golog. Another workaround within the module system would be to make kb_manager

dependent upon fluents and golog directly. Then the module can be included with the �uent

or action where it is de�ned in all queries to Golog3. For example:

ho lds (Module : Fluent0 , S i tua t i on ) :=

Module : r e s t o r eS i tArg ( Fluent0 , S i tuat ion , Fluent ) ,

Module : Fluent .

ho lds (Module : Fact , S i tua t i on ) :=

not Module : r e s t o r eS i tArg ( Fact , S i tuat ion , _) ,

isAtom ( Fact ) ,

Module : Fact .

3Available at: http://www.cs.toronto.edu/cogrobo/kia/

86



Chapter 5. Software Implementation 5.2. Refactoring for Reusable, Generalized Code

This example also represents the resultant code of one strategy attempted via using meta-

predicates to invert the dependency without using the interface depicted in Fig 5.2. With

holds/2 de�ned as a meta-predicate the calling context is passed implicitly, but restoreSitArg/3

will be de�ned in the same module as the Fluent, which may be in a di�erent module from the

calling context: in Whitby there are multiple calling contexts, whereas each �uent is de�ned

once. To make restoreSitArg/3 available to the calling context would result in name-clashes

when more than one module de�ning �uents is used. Therefore the dependency module where

the de�nitions reside needed to be passed (or injected) for context as per this example.

The concern for this example is in the Golog call to Module:Fluent, where Fluent could be

anything, including a meta-predicate, given in the query, which is a quali�ed call potentially

breaking the encapsulation of the module.

Furthermore, it's no longer possible to use holds/2 with a variable as the �rst argument to �nd

�uents that hold in a ground situation without explicitly enumerating all modules and testing

if they de�ne �uents or not; the lack of protocols/interfaces as �rst-class entities precludes a

simple and clean enumeration of only those modules that would declare conformance to a given

protocol. The import semantics of Prolog modules also would force the use of these explicitly-

quali�ed calls for the conforming modules to prevent predicate import clashes. This goes against

what is considered best practice with Prolog modules: the use of implicit imports and implicit

module-quali�ed predicate calls. But that is not the primary issue: by making a module that

de�nes �uents and actions an explicit argument, we are forced to anticipate all predicates that,

although not accessing �uents and actions directly, may be indirectly calling a predicate that

requires that access (and thus require the module argument to be passed from upstream).

In Whitby however, which makes use of the required language constructs provided by Logtalk,

SitCalc is loaded as a third-party package. As Logtalk does not use module-like imports

semantics, there are never any loading con�icts when two or more loaded objects de�ne the

same public predicates. Furthermore, Whitby also loads packages de�ning ontology authoring

terms and contingent sca�olding terms. The only place in Whitby where the contents of those

packages need be considered is in the use of their �uents in queries of a situation and in the

doing of their provided actions, both of which are done without the requirement to explicitly

de�ne the correct context to reason about them in.

Although dependency inversion is the crucial issue, there are additional violations of clean ar-

87



5.2. Refactoring for Reusable, Generalized Code Chapter 5. Software Implementation

chitecture that need to be addressed. The dependency cycle between kb_manager, ids, and kb

can cause a small edit in one of them to have perpetual rami�cations as its dependency graph

is also adapted to the change. Golog is more than a Situation Calculus reasoner; it is a parser

for a Situation Calculus based language; thus kb is depending on code that it does not use. Fur-

thermore, the four dependencies from the oscar module to the kb module suggest substitution

would require more e�ort than should be necessary.

5.2.3 Refactored Whitby

The abstract architecture of Whitby is depicted in Fig 5.1, whereas a detailed view is in Fig 5.4.

From the abstract view it can be seen how Whitby was designed to decouple the components of

Pre-Whitby enabling code reuse. It is not possible to layer Pre-Whitby in a similar manner as

in Fig 5.1 due to the compromises made and tight-coupling.

As shown in Fig 5.1, ' 'SitCalc provides the theoretical foundation, which can be used to tackle

a multitude of problems, it depends on nothing. The next �Highly Reusable Domain Layer� is

the application of SitCalc to two domains; these libraries depend on SitCalc, but nothing in

Whitby. Therefore they can be reused by any application wishing to apply Situation Calculus

to Contingent Sca�olding or Ontology Authoring. The �Application Layer� is the core of the

Whitby application, it is this code that applies the reusable libraries to the particular task at

hand: Contingent Sca�olding an STPA analyst who is unwittingly authoring an extension to an

ontology. Finally the �Interface Layer� provides a convenient means for the user to interact with

the application.

The architecture, shown in Fig 5.4, initially appears more complex than Pre-Whitby in Fig 5.3

as the third-party libraries that were extracted are also included, together with the protocols

used to achieve dependency inversion. Fig 5.5 shows only the internal dependencies: how the

application appears to a developer working on it. Such a developer need not concern themselves

with the working of any of the imported libraries; they are only responsible for what is depicted

in Fig 5.5, a much simpler view.

From the developers perspective adding behaviour is also relatively simple. Whitby required a

�uent describing what the user is looking at in the GUI; this is particular to the application

of Whitby and so is not de�ned in OntAuth. To add this �uent to Whitby requires creating a

new object that conforms to the fluent_protocol: new behaviour via extension rather than

88



Chapter 5. Software Implementation 5.2. Refactoring for Reusable, Generalized Code

Figure 5.4: Dependencies in Whitby and extracted libraries. Each node (without a mark) is
an object, within their directories. Protocols are marked with a �P�, categories with a �C�.
Closed arrows denote dependence, open arrows denote implementation or extension, dashed
arrow denotes event monitoring. Bede persists the Situation Calculus (SitCalc) logs and Hilda

queries them for both frameworks: ontology authoring (in library OntologyAuthoring) and
Contingent Sca�olding (in library Scaffolding). OSWIN applies the Contingent Sca�olding
framework to this STPA domain.

89



5.2. Refactoring for Reusable, Generalized Code Chapter 5. Software Implementation

Figure 5.5: Dependencies within Whitby only. Each node is an object, within their directories.
Arrows denote dependence, open arrows denote implementation or extension, dashed arrow
denotes event monitoring. Categories are marked with a �C�.

90



Chapter 5. Software Implementation 5.2. Refactoring for Reusable, Generalized Code

modi�cation and exposing predicates that the application developer has no business editing,

unlike prior to the refactor.

Fig 5.5 is a cleaner architecture, with no dependency cycles. However it is not yet perfect.

For example, bede should not depend upon id_generator. That particular predicate should

be exposed through hilda to provide an interface enabling easier substitution. Early in the

refactoring to Whitby, each of the named directories was implemented as its own microservice

communicating over HTTP. Correcting this issue would make it simple to split Whitby back

into microservices for scalability, which isn't possible to achieve with Pre-Whitby due to the

tight coupling between components.

5.2.4 Dependency Inversion using Logtalk Protocols

To achieve the desired architecture requires the application of the Dependency Inversion Prin-

ciple, which can be accomplished via the Abstract Factory design pattern (Gamma et al. 1997;

Martin 2018) described as:

"Provide an interface for creating families of related or dependent objects without

specifying their concrete classes." (Gamma et al. 1997)

In logic programming, we can reinterpret the implicitly imperative idea of creating families as

declaratively de�ning families. Therefore, with Logtalk it becomes possible to do Dependency

Inversion without dynamically creating objects. The concept of interface, in turn, is readily

available using Logtalk protocols, as described below.

The Dependency Inversion Principle is applied to decouple the application into three major

components. First a SitCalc library is extracted. Then SitCalc is extended, not modi�ed,

to create OntAuth and Scaffolding libraries. Finally, Whitby is created by importing these

libraries as third-party libraries. The �nal architecture, with these libraries included, is shown

in Fig 5.4. We start with a brief overview of Logtalk followed by a detailed account of how we

applied this design principle to each component.

Logtalk Overview

Logtalk as a language reinterprets object-oriented concepts from �rst principles to provide logic

programming with code encapsulation and code reuse mechanisms that are key in expressing

well understood design principles and patterns (described in depth in �The Logtalk Handbook' '

91



5.2. Refactoring for Reusable, Generalized Code Chapter 5. Software Implementation

(Moura 2021)). A key feature is the clear distinction between predicate declarations and predicate

de�nitions4, which can be encapsulated and reused as follows:

� protocols: Group functionally cohesive predicate declarations that can then be imple-

mented by any number of objects and categories. Allows an object or category to promise

conformance to an interface.

� objects: Group predicate declarations and predicate de�nitions. Objects can be stand-

alone or part of hierarchies. Object enforce encapsulation, preventing calling predicates

that are not within scope. Predicates are called using message sending, which decouples

calling a predicate from the predicate de�nition that is used to answer the message.

� categories: Group a functionally cohesive set of predicate declarations and predicate

de�nitions, providing a �ne-grained unit of code reuse that can be imported by any num-

ber of objects, thus providing a composition mechanism as an alternative to the use of

inheritance.

Predicates can be declared public, protected, or private. A predicate declaration does not require

that the predicate is also de�ned. Being able to declare a predicate, independent of any other

predicate properties, without necessarily de�ning it, is a fundamental requirement for the de�ni-

tion of protocols. It also provides clear closed world semantics where calling a declared predicate

that is not de�ned simply fails instead of generating an error (orthogonal to the predicate being

static or dynamic).

Logtalk de�nes a comprehensive set of re�ection predicates for reasoning about the use of these

components in the program. In particular, the conforms_to_protocol/2, which is true if the

�rst argument implements or is an extension of something that implements the protocol named

in the second argument, and current_object/1, which is true if its argument is an object in

the application current state (categories and protocols have their own counterparts). These

predicates are used in the implementation of the SOLID principles as illustrated in the next

sections.

Logtalk also provides a comprehensive set of portable developer tools, notably for documenting,

diagramming, and testing that were used extensively. These tools re�ect how the language

constructs are used in applications, from API documentation to diagrams at multiple levels of

4This distinction exists in standard Prolog (ISO/IEC 1995) only for predicates declared as *dynamic* or
*multi�le*. Notably, *static* predicates exported by a module must be de�ned by the module.

92



Chapter 5. Software Implementation 5.3. Reusable Libraries

abstraction that help developers and maintainers navigate and understand the code base and

its architecture.

5.3 Reusable Libraries

This section describes the application of SOLID with Logtalk to author the SitCalc, OntAuth,

and Scaffolding libraries.

5.3.1 A Reusable SitCalc Library

The SitCalc libraries5 can be used for reasoning with Situation Calculus. It includes predi-

cates that need to send messages to �uent and action objects. Rather than depend on these

�uents and actions directly, it depends instead on objects conforming to action_protocol and

fluent_protocol. This is the Dependency Inversion Principle of SOLID: to depend only on pro-

tocols/interfaces and not on concrete code (Martin 2018). These protocols declare the predicates

that an action and �uent are expected to de�ne:

:= pro to co l ( act ion_protoco l ) .

:= pub l i c ( do /2 ) .

:= i n f o ( do /2 , [

comment i s 'True i f doing ac t i on in ``S1`` r e s u l t s in ``S2 ` ` . ' ,

argnames i s [ ' S1 ' , 'S2 ' ]

] ) .

:= pub l i c ( poss / 1 ) .

:= i n f o ( poss /1 , [

comment i s 'True i f the ac t i on i s p o s s i b l e in the s i t u a t i o n . ' ,

argnames i s [ ' S i tuat ion ' ]

] ) .

:= end_protocol .

5The Situation Calculus libraries, including SitCalc, are made publicly available at
https://github.com/PaulBrownMagic/woolpack and can be installed with the Logtalk packs tool.

93

https://github.com/PaulBrownMagic/woolpack


5.3. Reusable Libraries Chapter 5. Software Implementation

:= pro to co l ( f l u en t_pro toco l ) .

:= pub l i c ( ho lds / 1 ) .

:= i n f o ( ho lds /1 , [

comment i s 'True i f the f l u e n t ho lds in the s i t u a t i o n . ' ,

argnames i s [ ' S i tuat ion ' ]

] ) .

:= end_protocol .

Thus any object that is an action or �uent can be found or validated, using the Logtalk built-in

re�ection predicates6. For some strategies attempted without an interface in Pre-Whitby, such

as when passing the de�nition context explicitly (as previously discussed in Section 5.2.2), the

enumeration of modules requires a hand-coded alternative to mark the modules, which is fragile

and not self-documenting. These predicates are used to validate or enumerate:

i s_act ion ( Action ) :=

conforms_to_protocol ( Action , act ion_protoco l ) ,

current_object ( Action ) .

i s_ f l u en t ( Fluent ) :=

conforms_to_protocol ( Fluent , f l u en t_pro toco l ) ,

current_object ( Fluent ) .

Now within the sitcalc object when it is necessary to call a �uent or action they can be called,

even if the argument is a variable, without depending on the �uents or actions. Here are two

extractions from the code within sitcalc that demonstrate doing so:

ho lds ( Fluent , S i t ua t i on ) :=

i s_ f l u en t ( Fluent ) ,

Fluent : : ho lds ( S i tua t i on ) .

6The conforms_to_protocol/2 predicate enumerates both objects and categories that implement a protocol.
As we are only interested in objects, we use the current_object/1 predicate to �lter out any categories as these
are used only to provide common de�nitions for utility predicates.

94



Chapter 5. Software Implementation 5.3. Reusable Libraries

poss ( Action , S i tua t i on ) :=

i s_act i on ( Action ) ,

Action : : poss ( S i tua t i on ) .

In addition to this, the extraneous code in Golog is not included in SitCalc such that unused

code is not depended upon.

There is more than one way to represent a situation in Situation Calculus: either as a history

of actions or as a collection of �uents. The �rst method, as used by this application, is to keep

the situation term as Reiter does (Reiter 2001), as a log of the history of actions. This method

can reason over part situations and the actions taken to reach any particular situation from the

initial one. However, if that log of actions becomes long then reasoning with context dependent

�uents can become slow. This method is implemented as the SitCalc library.

The alternative method is to store the situation as only a collection of the holding �uents, adding

and removing �uents as they become true or false respectively. This method is similar to the

classic STRIPS planner and is also discussed by Reiter (2001). With this method the history

of actions is lost but the computational complexity of checking if any �uent in the situation

holds is a function of the number of �uents that currently hold in the situation, rather than the

number of actions taken so far. This method is implemented as the STRIPState library, which

is not used in this application but only provided and described for reuse and completeness.

Both SitCalc and STRIPState share a common interface to ease learning. Within Logtalk they're

de�ned using protocols in the Situation library, upon which both SitCalc and STRIPState

depend. Therefore, objects that are �uents promise a holds/1 predicate and actions promise

do/2 and poss/2 predicates. For convenience, and to introduce more features, a situation

category is also provided that includes ways to iterate over all loaded actions and �uents, as

well as an interface for compound queries regarding what �uents hold in a situation, inspired by

Golog (Reiter 2001). Thus rather than querying like so:

?= temperature ( water , WT) : : ho lds (S ) ,

temperature (milk , MT) : : ho lds (S ) ,

\+ MT > WT.

This can be written in a syntax that's easier for a non-Prolog programmer to write, in an e�ort

to make it more accessible to domain experts. So a non-Prolog programmer can write the

95



5.3. Reusable Libraries Chapter 5. Software Implementation

expression uni�ed with Query, which the Prolog programmer can setup the query interface to

sitcalc for:

?= Query = temperature ( water , WT) and

temperature (milk , MT) and not MT > WT,

s i t c a l c : : ho lds (Query , S ) .

This domain speci�c query language for �uent queries extends the built in Prolog operators for

conjunction, disjunction and its �negation as failure� compromise of negation, with an implication

and equivalence operators. These are also replaced with words to eliminate the need for a non-

specialist user to learn the symbols:

:= op (800 , xfy , and ) .

:= op (850 , xfy , or ) .

:= op (870 , xfy , imp l i e s ) .

:= op (880 , xfy , equivalentTo ) .

:= op (600 , fy , not ) .

However due to Prolog's special kind of negation, the following caveats apply:

� For the case of not P, Prolog style negation is used (\+)

� For the case where P implies Q, P is false, and Q is not ground, Q can't be uni�ed with a

false case

� For the case where P equivalentTo Q if either P or Q are not ground only the case where

both P and Q are true will be uni�ed. If either is ground to a false case and the other is

not ground, it cannot be uni�ed with a false case which would make P equivalentTo Q

true.

This domain speci�c query language inherits the same defaulty representation of Prolog

queries (O'Keefe 1990). The defaulty representation occurs when unifying terms in multiple

heads for the same functor when a catch-all head is required. This means whenever a uni�cation

match is made with another head an unnecessary choice point is added because that term

will also match the catch-all head. As this code is core to situation calculus applications the

performance of this predicate is especially important, and so it's important to circumvent this

issue. In the case of this DSL implementation this occurs when checking if the query term is a

compound query and not a variable:

96



Chapter 5. Software Implementation 5.3. Reusable Libraries

compound_nonvar ( not _) .

compound_nonvar (_ and _) .

compound_nonvar (_ or _) .

compound_nonvar (_ imp l i e s _) .

compound_nonvar (_ equivalentTo _) .

compound_nonvar (Term) :=

nonvar (Term ) .

The method of circumvention used, while particular to this case and something of a trick, is

e�ective although not generalisable to all defaulty representations. As a variable is not allowed

at all, an error can be thrown if one is found, which will remove further choice points for following

heads. Therefore, a term that is not expected to be used as a �uent is placed in the head that

only a variable (or a �uent of the same name with arity 0), will unify with it:

% un i f i c a t i o n t r i c k to t e s t f o r v a r i ab l e

compound_nonvar ( ' Var iab le Fluents are not supported , at l e a s t some

part o f the Fluent term must be ground ' ) :=

context ( Context ) ,

throw ( e r r o r ( i n s t an t i a t i on_e r r o r , Context ) ) .

% t e s t i f arg i s a query term that r e qu i r e s t rans fo rmat ion

compound_nonvar ( not _) .

compound_nonvar (_ and _) .

compound_nonvar (_ or _) .

compound_nonvar (_ imp l i e s _) .

compound_nonvar (_ equivalentTo _) .

The obvious �aw in this solution is that it precludes one possible �uent name from the library

user. However, it's possible to choose an atom that's so improbable for a user to choose for a

�uent that it becomes negligible. The alternative solution would be to use a wrapper functor

to identify each non-compound �uent clause. This is rejected primarily as it's an unnecessary

burden on a non-expert programmer writing queries, and secondarily following the advice of

O'Keefe (1990), who also warns against using the defaulty representation as well as unnecessary

wrappers, both with regards to unnecessary performance costs. With compound_nonvar/1 de-

97



5.3. Reusable Libraries Chapter 5. Software Implementation

�ned the implementation of the query language, using the same Lloyd-Topper transformation

as Golog (Reiter 2001), is done like so:

% query /2 i s non=tab l ed ho lds /2

% f o r when tab l i n g i s supported ,

% i t reduces overhead o f t ab l i n g

% each subquery

query (Query , S i tua t i on ) :=

( compound_nonvar (Query ) % check i f f l u en t , compound , or var

=> compound_query (Query , S i tua t i on ) % decompose query

; : : holds_ (Query , S i tua t i on ) % check f l u e n t

) .

compound_query ( not Query , S i tua t i on ) :=

\+ query (Query , S i tua t i on ) .

compound_query (P and Q, S i tua t i on ) :=

query (P, S i tua t i on ) ,

query (Q, S i tua t i on ) .

compound_query (P or _Q, S i tua t i on ) :=

query (P, S i tua t i on ) . % Decompose query

compound_query (_P or Q, S i tua t i on ) :=

query (Q, S i tua t i on ) . % Decompose query

compound_query (P imp l i e s Q, S i tua t i on ) :=

( query (P, S i tua t i on )

=> query (Q, S i tua t i on )

; i gno r e ( query (Q, S i tua t i on ) )

) .

compound_query (P equivalentTo Q, S i tua t i on ) :=

( query (P, S i tua t i on )

=> query (Q, S i tua t i on ) % P holds , so Q must a l s o hold

; \+ query (Q, S i tua t i on ) % not P holds , so not Q must hold

) .

The �nal feature added is memoization for these queries. When running queries with context

98



Chapter 5. Software Implementation 5.3. Reusable Libraries

dependent �uents over situations with hundreds of actions, it can be that it takes seconds to

compute. At the cost of memory this can be mitigated by using Prolog's tabled resolution for

those Prolog dialects that provide it:

:= i f ( cu r r ent_logta lk_f lag ( tab l ing , supported ) ) .

:= t ab l e ( ho lds / 2 ) .

:= end i f

ho lds (Query , S i tua t i on ) :=

% holds /2 might be tabled ,

% pass to query /2 to avoid overhead o f t ab l i n g subque r i e s

query (Query , S i tua t i on ) .

The same tabling strategy is used for individual �uents in the SitCalc library. It means that

whenever the holds/2 predicate is called with a Situation term it has seen before then it will

get the result from memory rather than re-calculating it. When encountering a Situation term

it hasn't seen before the last situation that was seen e�ectively becomes s0, avoiding the need

to walk the whole Situation term on each query.

5.3.2 Extending SitCalc with Reusable Libraries

The two OntAuth and Scaffolding libraries both extend SitCalc, but both are also de�ned in

a way that they can be used as third-party libraries with SitCalc as a dependency. They extend

SitCalc by de�ning �uents and actions that are pertinent. OntAuth includes a �uent to see what

triples hold in the initial situation. Here, s0 is a marker protocol, allowing easy enumeration of

initial situations by using the re�ection predicates, and also dependency inversion via a protocol

(fluent is a category that implements fluent_protocol):

:= ob j e c t ( i n i t i a l_ a s s e r t i o n (_Subject_ , _Predicate_ , _Object_ ) ,

imports ( f l u e n t ) ) .

ho lds (_AnySit ) :=

conforms_to_protocol ( S0 , s0 ) ,

current_object ( S0 ) ,

S0 : : a s s e r t ed (_Subject_ , _Predicate_ , _Object_ ) .

99



5.3. Reusable Libraries Chapter 5. Software Implementation

:= end_object .

Scaffolding includes an action to intervene (here action is a category that implements action_protocol):

:= ob j e c t ( i n t e rv ene ( _Intervention_ , _Query_ , _Lvl_ , _Time_) ,

imports ( ac t i on ) ) .

poss ( S i t ) :=

conforms_to_protocol ( In t e rvent i on s , i n t e r v en t i o n s ) ,

current_object ( I n t e r v en t i on s ) ,

I n t e r v en t i on s : : i n t e r v en t i on ( _Intervention_ , _Query_) ,

s i t c a l c : : ho lds (_Query_ , S i t ) ,

i n t e r v en t i on_ l ev e l ( _Intervention_ , _Query_ , _Lvl_ ) : : ho lds ( S i t ) ,

\+ l i v e_ in t e r v en t i on ( _Intervention_ , _Query_ , _Lvl_ ) : : ho lds ( S i t ) .

:= end_object .

Both objects are parametric objects (Moura 2011). The object parameters (e.g. _Subject_ are

logic variables shared with all the object predicates.

Due to the implementation of SitCalc, all these �uents and actions are visible to sitcalc

whilst it does not depend on them. However, these two examples both depend upon some

implementation details: some S0::asserted/3 and some interventions::intervention/2.

These dependency issues are solved in the same manner as for SitCalc: through dependency

on a protocol (as illustrated in Fig 5.4).

Between these two libraries a total of 14 �uent and action terms are introduced that can be

queried via SitCalc. Although these depend on SitCalc, they do not depend on any appli-

cation that makes use of them. Whitby is such an application, by importing these libraries

it gains these 14 �uents and actions, needing only to implement both the s0_protocol and

intervention_protocol. In contrast to Pre-Whitby, the contingent sca�olding is also not de-

pendent on code that includes ontology authoring, meaning it can be applied to other activities

than ontology authoring.

100



Chapter 5. Software Implementation 5.3. Reusable Libraries

5.3.3 OntAuth Library

The ontology authoring library is intended to de�ne all the actions and �uents necessary for

authoring and reasoning with an ontology with SitCalc. As SitCalc is written in Logtalk the

reasoning is done with Prolog, and so there are di�erences from the usual Description Logic

reasoners used with OWL ontologies.

Ontology Authoring Actions

These align with the typical database type of actions, a user can:

� assert(Triple, User, Time): that is to add some new subject-predicate-object triple to

the ontology. It's possible when the triple is not already asserted.

� retract(Triple, User, Time): that is to remove some subject-predicate-object triple to

the ontology. It's possible when the triple is already asserted, including if it's in an initial

ontology loaded in s0.

� update(OldTriple, NewTriple, User, Time): that is to change some triple. It's pos-

sible when the two triples are di�erent and if both retract(OldTriple, User, Time)

and assert(NewTriple, User, Time) are possible. This provides an atomic way to do

updates for multi-threaded applications.

In the implementation triples are stored as spo(Subject, Predicate, Object) terms.

These authoring actions import the action category from the SitCalc library, and so they are

globally visible as actions without the application author needing to do anything more than load

the library.

Ontology Authoring Reasoning

The reasoning is provided through �uents that can be used within SitCalc queries dependent on

the application authors needs and with attention to the cost of reasoning.

At the root of every situation term is s0, and for this library to function with an s0 that contains

some pre-existing ontology, it needs to know the predicates to call to get that information.

Therefore an s0 protocol is provided that an application developer can implement with their

own de�nitions, which is what is done in Whitby.

:= pro to co l ( s0 ) .

101



5.3. Reusable Libraries Chapter 5. Software Implementation

:= pub l i c ( a s s e r t ed /3 ) .

:= i n f o ( a s s e r t ed /3 , [

comment i s 'A t r i p l e that i s a s s e r t ed to be t rue in s0 ' ,

argnames i s [ ' Subject ' , ' Predicate ' , 'Object ' ]

] ) .

:= end_protocol .

Thus, in Whitby where the ontology being loaded into s0 is de�ned in OWL, the SWI-Prolog

RDF libraries are used to load the triples. Terms are then stripped of the URI's and pre�xes for

developer convenience. The stripped terms are then asserted into spo/3 predicates, which are

held in a kb object as public predicates. So the de�nition of the s0 ontology object becomes as

simple as:

:= ob j e c t ( stpa_ontology , implements ( s0 ) ) .

a s s e r t ed (S , P, O) :=

kb : : spo (S , P, O) .

:= end_object .

Furthermore, due to static binding, the message call to kb::spo/3 is compiled away so there is

no performance overhead here.

With this protocol the �rst reasoning �uent can be de�ned, which is to query what was asserted

in s0, irregardless of any subsequent actions. This can provide a useful shortcut for access to

facts that are known to be in the initial ontology if the users are prohibited by the application

developer from retracting them. In Whitby it's used for tasks like retrieving the labels of STAMP

ontology terms.

:= ob j e c t ( i n i t i a l_ a s s e r t i o n (_S_, _P_, _O_) , imports ( f l u e n t ) ) .

ho lds ( _Sit ) :=

implements_protocol ( S0 , s0 ) ,

S0 : : a s s e r t ed (_S_, _P_, _O_) .

:= end_object .

The complementary �uent to initial_assertion/3 is logged_assertion/3, which is a triple

asserted by an action in the log, ignoring any assertions in s0. This is used in Whitby to

102



Chapter 5. Software Implementation 5.3. Reusable Libraries

distinguish facts the user has asserted when considering if they will be permitted, or even

encouraged, to change those facts.

:= ob j e c t ( l ogged_asse r t i on (_S_, _P_, _O_) , imports ( f l u e n t ) ) .

ho lds ( do ( a s s e r t ( spo (_S_, _P_, _O_) , _User , _Time) , _Sit ) ) .

ho lds ( do ( update (_Old , spo (_S_, _P_, _O_) , _User , _Time) , _Sit ) ) .

ho lds ( do ( Action , S i t ) ) :=

holds ( S i t ) ,

\+ r e t r a c t i o n ( Action ) .

r e t r a c t i o n ( r e t r a c t ( spo (_S_, _P_, _O_) , _User , _Time ) ) .

r e t r a c t i o n ( update ( spo (_S_, _P_, _O_) , _New, _User , _Time ) ) .

:= end_object .

These two assertion �uents are then combined into an asserted/3 �uent that provides the

means to query all �uents that have been asserted in a situation.

:= ob j e c t ( a s s e r t ed (_S_, _P_, _O_) , imports ( f l u e n t ) ) .

ho lds ( S i t ) :=

l ogged_asse r t i on (_S_, _P_, _O_) : : ho lds ( S i t ) .

ho lds ( _Sit ) :=

i n i t i a l_ a s s e r t i o n (_S_, _P_, _O_) : : ho lds ( s0 ) .

:= end_object .

The �asserted� family of �uents provide ways to simply retrieve triples that have been explicitly

asserted. Ontology, however, can be used to deduce additional information, which in this library

is made available through a fact/3 �uent (as de�ned in Section 4.2). This �uent supports

inverse, re�exive, symmetric, and transitive relations, as well as sub-properties. However, due to

time and e�ciency constraints the implementation of subClassOf is treated only as a re�exive

and transitive relation, meaning the reasoner cannot detect if one term is a subclass of another

by analysis of the relations they hold but only through reasoning with the explicit subClassOf

term. A correct subclass reasoner in Prolog was considered out-of-scope for this work and wasn't

required for this application, therefore it has been left for further work.

103



5.3. Reusable Libraries Chapter 5. Software Implementation

5.3.4 Sca�olding Library

The sca�olding library is dependent on SitCalc and independent of OntAuth. It de�nes the

necessary terms to implement Contingent Sca�olding following the framework as de�ned in

Section 4.3.2. Note that the library does not use or de�ne any of the intervention messages

created or used, that functionality is left to the developer as it will be application and UI speci�c.

This library is dependent on some user-de�ned intervention terms being accessible. Following

the same design-pattern used before, a protocol is provided for the application developer to

implement such that the Sca�olding library can query the user-de�ned intervention terms:

:= pro to co l ( i n t e r v en t i o n s ) .

:= pub l i c ( i n t e r v en t i on /2 ) .

:= mode( i n t e r v en t i on (+atom , +term ) , zero_or_more ) .

:= i n f o ( i n t e r v en t i on /2 ,

[ comment i s 'An In t e rv en t i on with a s s o c i a t ed query '

, argnames i s [ ' ID ' , 'Query ' ]

] ) .

:= end_protocol .

An intervention is de�ned with some identity term, which also can be used to give a quickly

human-readable label, and some query, which is a Situation Calculus query that when true

means the intervention is possible to do.

Sca�olding Actions

There are two user actions and one software action to de�ne. A user can request_help/3 or

dismiss_intervention/3 for a live intervention, identi�ed by the live_intervention/3 �uent.

The software action is to intervene/4, where the �rst two arguments correspond to the identity

and query of the intervention, the third argument is the level the intervention is being done

at with respect to the framework, and the last argument is for the time, but is unused by the

Sca�olding library.

It's possible to do an intervention when the associated query holds, so that the message to

intervene/4::poss/1 can be called with variable terms in search for an intervention that's

possible, the intervention protocol is used to iterate over all de�ned interventions, in the same way

104



Chapter 5. Software Implementation 5.3. Reusable Libraries

as the Situation Calculus library does for sitcalc::is_action/1 and sitcalc::is_fluent/1.

If one is found where the query succeeds and that's not a current live intervention,

intervention_level/3 �uent is checked to see at what level the intervention should be done.

Sca�olding Fluents

There are two key �uents in the library: live_intervention/3 and intervention_level/3.

An intervention is live if the intervene/4 action has been done, it's not been dismissed, and if

the query that made it possible still succeeds and has succeeded in all the intermediate situations.

This is an expensive computation to do without tabling, it's also pervasive, being required for

every sca�olding action poss/1 check and being very useful when prioritising interventions to

present to a user in the application.

:= ob j e c t ( l i v e_ in t e r v en t i on ( _Intervention_ , _Query_ , _Level_ ) ,

imports ( f l u e n t ) ) .

ho lds ( S i t ) :=

holds ( S it , S i t ) .

ho lds ( do ( in t e rvene ( _Intervention_ , _Query_ , _Level_ , _Time) ,

_SitTai l ) , CurSit ) :=

s i t c a l c : : ho lds (_Query_ , CurSit ) .

ho lds ( do (A, S i tTa i l ) , CurSit ) :=

A \= in t e rv ene ( _Intervention_ , _Query_ , _Level_ , _Time) ,

A \= d i smi s s_ in te rvent i on ( _Intervention_ , _User , _Time) ,

ho lds ( S i tTa i l , CurSit ) , % grounds query , so check can be done

s i t c a l c : : ho lds (_Query_ , do (A, S i tTa i l ) ) .

:= end_object .

An alternative to tabled resolution would be to monitor when an intervention no longer becomes

live and to insert some action at this point to mark it in the situation term. This approach hasn't

been followed as it's an arti�cial action that no party took and tabled resolution is su�cient.

In this way the log of actions is still a log of actions and not contaminated with pseudo-actions

105



5.3. Reusable Libraries Chapter 5. Software Implementation

added for computation purposes only.

The intervention_level/3 �uent follows from the formal de�nition (Section 4.3.2), taking

advantage of Prolog's multiple clause syntax to aid readability.

:= ob j e c t ( i n t e r v en t i on_ l ev e l ( _Intervention_ , _Query_ , _Level_ ) ,

imports ( f l u e n t ) ) .

ho lds ( S i t ) :=

once ( holds_ (_Query_ , S i t ) ) .

% no=change

holds_ (Query ,

do ( in t e rv ene ( _Intervention_ , Query , _Level_ , _Time) ,

_S) ) .

% increment

holds_ (Query ,

do ( request_help ( _Intervention_ , _User , _Time) ,

S ) ) :=

i n t e r v en t i on_ l ev e l ( _Intervention_ , Query , N) : : ho lds (S ) ,

succ (N, Inc ) , _Level_ i s min ( Inc , 4 ) .

% r e s e t

holds_ (_Query ,

do ( d i smi s s_ in te rvent i on ( _Intervention_ , _User , _Time) ,

_S) ) := _Level_ = 1 .

% decrement

holds_ (Query , do (A, S ) ) :=

s i t c a l c : : ho lds (Query , S ) , % in t e r v en t i on was va l i d

\+ s i t c a l c : : ho lds (Query , do (A, S ) ) , % but now re s o l v ed

i n t e r v en t i on_ l ev e l ( _Intervention_ , Query , N) : : ho lds (S ) ,

106



Chapter 5. Software Implementation 5.4. Contingent Sca�olding for STPA Implementation

succ (Dec , N) , _Level_ i s max(Dec , 1 ) . % so fade

% recur , not bar r ing cho i c e po in t s f o r decr f o r e f f i c i e n c y

holds_ (Query , do (A, S ) ) :=

A \= in t e rv ene ( _Intervention_ , Query , _, _) ,

A \= request_help ( _Intervention_ , _, _) ,

A \= d i smi s s_ in te rvent i on ( _Intervention_ , _, _) ,

holds_ (Query , S ) .

% s0 , i t e x i s t s and de f au l t i s 1 (0 i s when i t ' s not p o s s i b l e )

holds_ (_Query , s0 ) :=

_Level_ = 1 .

:= end_object .

This �uent is highly context dependent, with many calls to other �uents. Again, tabled resolution

is used to mitigate the computation time, reducing the cost of a holds/2 call to O(1) on the

second time it's called with the same variable bindings. The once/1 call in holds/1 is used to

cut any remaining choice points as there is only one valid answer to what the intervention level

is, but without cutting any choice points prior to this call that a user may have left in their

application.

5.4 Contingent Sca�olding for STPA Implementation

With the generalised libraries de�ned for Situation Calculus, Ontology Authoring, and Contin-

gent Sca�olding, they need to be applied to STPA within the application. This is done in the

component named OSWIN, which given a situation can deduce any intervention to be pro�ered

to the user, in a format agreeable to being sent to the UI as a payload. Therefore OSWIN uses

a bank of interventions and message generating reasoning to determine the messages to send.

5.4.1 OSWIN Intervention Bank

The de�nition of an intervention requires an identity, so we can log what intervention was �red,

and a query, so that we can determine if the intervention should be �red. It also needs to support

107



5.4. Contingent Sca�olding for STPA Implementation Chapter 5. Software Implementation

messages for all the levels of contingent sca�olding:

1. General prompt

2. Leading question

3. Speci�c instruction

4. Physical intervention

Message Generation

The general prompt is the most general message, it describes the intervention and denotes the

kind of intervention o�ered. Therefore this is used for the identity and is included in the log.

Whilst it's possible to generate the rest of the intervention messages from the query, it's not

always advisable.

The leading question was originally translated from the query via a Prolog DCG, such that a

query ground as:

l ogged_asse r t i on ( 'H=1 ' , subClassOf , 'Hazard ' ) and

not ( l ogged_asse r t i on ( Loss , subClassOf , ' Loss ' ) and

logged_asse r t i on ( 'H=1 ' , hasPoss ib l e , Loss ) )

Would become: �Have you not asserted that `H-1' is a kind of `Hazard' and some `Thing' is a

kind of `Loss' and that `H-1' has possible `Thing'?�. These confusing messages become even

harder for a human to parse as the number of clauses grow. Rather than burden the user with

the task of trying to read clunky and grammatically incorrect English, it was decided to burden

the one de�ning the interventions with the additional task of writing a leading question with

variable substitutions, like so:

'Have you not a s s e r t ed which Loss i s p o s s i b l e to occur in

the ∼s Hazard ? ' = [Hazard ]

Which for the same query grounding becomes the leading question: �Have you not asserted

which Loss is possible to occur in the H-1 Hazard?�.

The message generating DCG is still used for the instruction generation, without becoming

unintelligible. In this intervention the message is narrowed down to a single action the user can

take in order to change some succeeding clause in the query to fail. Such that the intervention

108



Chapter 5. Software Implementation 5.4. Contingent Sca�olding for STPA Implementation

will not �re. This is somewhat counter-intuitive as the goal is to make the query fail rather than

succeed.

The Lloyd-Topor transformations are used, as found in Golog (Reiter 2001), and the �rst suc-

ceeding sub-goal of the reversed and reduced query is used to generate the instruction. The

query is reduced to remove terms that a user cannot change (such as 3 > 2), in this case nothing

is excluded by the reduction. The query is reversed so that the last clauses are instructed on

�rst as they tend to be better candidates for editing, depending upon variables ground in earlier

clauses. The reduced and reversed query becomes:

not ( l ogged_asse r t i on ( 'H=1 ' , hasPoss ib l e , Loss ) and

logged_asse r t i on ( Loss , subClassOf , ' Loss ' ) ) and

logged_asse r t i on ( 'H=1 ' , subClassOf , 'Hazard ' )

This reduced query is then searched for its component �uents using the Lloyd-Topor transfor-

mations. This generates the single clauses one at a time of:

not l ogged_asse r t i on ( 'H=1 ' , hasPoss ib l e , Loss ) ;

not l ogged_asse r t i on ( Loss , subClassOf , ' Loss ' ) ;

l ogged_asse r t i on ( 'H=1 ' , subClassOf , 'Hazard ' ) .

Each clause is considered individually to instruct the user on how to make that clause fail,

whereas now it succeeds. The �rst clause begins with not, which indicates that the term should

be failing, and indeed it does not hold in the situation that generated this semi-ground query

(where `H-1' has been de�ned without a hasPossible link to a loss). This agreement that

it should not hold and does not hold is part of what is making this query succeed to �re the

intervention. So the user is instructed to assert that some `Loss' is possible in `H-1'; the negation

of the clause is passed through the Prolog DCG to create the instruction: �You need to assert

that `H-1' has possible some `Thing'.�

The same can be followed for subsequent clauses if they continue to cause the intervention to

�re, so if the user asserted the fact spo(′H-1′, hasPossible,′ L-1′) but not that L-1 was a `Loss',

they'd next be instructed: �You need to assert that `Something' is a kind of `Loss' �. The order

of the clauses is important, as the �nal clause instruction would be: �You need to not assert that

`H-1' is a kind of `Hazard' �, which would also prevent the intervention from �ring but likely

moves the user away from their intended goal rather than aid them.

109



5.4. Contingent Sca�olding for STPA Implementation Chapter 5. Software Implementation

The physical intervention is generated in a similar manner. The last succeeding clause is found

and reasoned with to create UI speci�c instructions that are sent to the UI to execute; generating

ClojureScript rather than English.

Intervention De�nition

Two kinds of interventions were determined7: potentially missing and a potential mistake.

Mistake-type interventions can be immediately determined as to being required, such as when

a user asserts something that is either provably wrong or they violate some advice. This inter-

vention catches a logical contradiction: if the user asserts that some action both causes some

�uent to hold and not hold in the subsequent situation.

mistake (

'Control Action can \ ' t both cause a f l u e n t to hold and not hold ' ,

l ogged_asse r t i on (CA, subClassOf , 'ControlAction ' ) and

logged_asse r t i on (CA, requestsToHold , F) and

logged_asse r t i on (CA, requestsToNotHold , F) ,

'Have you a s s e r t ed that the Control Action ∼s r eque s t s ∼F both holds

and doesn \ ' t hold ? ' = [CA, F ]

) .

The missing kind of intervention can only be determined after a user has passed some point in

the process, such as if a user were to go to step 2 without de�ning the losses required in step 1.

This missing/4 intervention is to catch the case where a user hasn't asserted that some hazard

leads to some loss. This is an assertion that should be made during step 1, and this intervention

will be checked if the user is in step 2.

miss ing (

step1 ,

'Hazards w i l l l ead to a l o s s in some worst=case environment ' ,

l ogged_asse r t i on (Hazard , subClassOf , 'Hazard ' ) and

not ( l ogged_asse r t i on ( Loss , subClassOf , ' Loss ' ) and

logged_asse r t i on (Hazard , hasPoss ib l e , Loss ) ) ,

'Have you not a s s e r t ed which Loss i s p o s s i b l e to occur in

7See Section 4.3.2

110



Chapter 5. Software Implementation 5.5. Tour of the Graphical User Interface

the ∼s Hazard ? ' = [Hazard ]

) .

These two kinds of interventions require di�erent de�nitions and handling. A mistake interven-

tion can be �red anytime it's possible. However, there is no need to even consider if a missing

intervention pertaining to some step 2 action is possible when a user is still in step 1. Fur-

thermore, the missing interventions provide a manner to advise a user on the minimal actions

required for the current step: by simulating being at the next step the same reasoning code can

be used to intervene on missing from the current step.

The complete list of de�ned missing and mistake interventions can be seen in Appendix C.

5.5 Tour of the Graphical User Interface

This section describes the design and capabilities of the interface part of the �Editor� component

of Whitby, which is provided to the analyst in order to interact with the software.

5.5.1 Step 1 Interface

When a user begins their STPA analysis they are greeted by the screen in Figure 5.6. The

STPA analysis interface contains two navigation bars, the uppermost one pertains to the user-

study only. The second one provides a way for the user to navigate back-and-forth between the

three steps they are to undertake. They are currently on step 1, therefore that navigation item

is emphasized and they're presented with an interface for de�ning losses and hazards, which will

be recorded by Bede so that Hilda can reason with them.

111



5.5. Tour of the Graphical User Interface Chapter 5. Software Implementation

Figure 5.6: The editor interface is presented on step 1 with navigation to all 3 steps and the
capability to de�ne losses and hazards.

To add a loss the button highlighted in Figure 5.6 is clicked. Losses are simple terms with only

a label. Next is to add a hazard.

Figure 5.7: Step 1 with a loss de�ned.

To add a hazard the button highlighted in Figure 5.7 is clicked. Hazards are more complex

112



Chapter 5. Software Implementation 5.5. Tour of the Graphical User Interface

terms, with conditions that hold and links back to losses, therefore the interface is more complex

by necessity, as shown in Figure 5.8. In this screenshot a condition has been added which here

states �H-1: Power is On�, but in the ontology this has added H-1 as a subclass of Hazard,

created a �Power� entity, created an �On� quality, and asserted that there is a �uent holding in

H-1 with this entity and quality. Thus a total of 6 triples have been added to the ontology by

this simpli�ed representation, easing the burden on the analyst and restricting scope for error.

Figure 5.8: De�ning a Hazard in Step 1 with condition(s) and link back to the L-1 loss.

5.5.2 Intervention Interaction Diversion

Once Losses and Hazards are de�ned the user may move on to step 2. However, when the user

moves on to step 2 without de�ning any losses or hazards, Bede records the action of moving

to step 2, Hilda answers OSWIN's intervention-situation-query so that OSWIN then triggers

the instantiated intervention, as shown in Figure 5.9. This is a level 1 intervention, which

is a prompt. The interventions serve as nudges, as such they're designed to be noticeable but

inobtrusive. Therefore the GUI-frameworks message �ashing feature is used for them, which

does not block the user from continuing with other actions.

113



5.5. Tour of the Graphical User Interface Chapter 5. Software Implementation

Figure 5.9: An intervention has been triggered due to no losses or hazards being de�ned in step
1. This is a level 1 prompt intervention.

At this point the user may navigate themselves back to step 1 to tackle the issue themselves, they

may dismiss the intervention by clicking the �X� button next to the mouse cursor in Figure 5.9,

or they can click the �?� button under the mouse cursor in Figure 5.9 to increase the level

of intervention. Again Bede records the action of the user requesting help and OSWIN queries

Hilda to see if any interventions are required. OSWIN �nds the current intervention in progress

and the result of the query regarding which level to present the intervention at will be level 2: a

leading question, shown in Figure 5.10. Hilda has uni�ed the variables in the query, therefore

OSWIN has all the required information to formulate the leading question from the interventions

template.

114



Chapter 5. Software Implementation 5.5. Tour of the Graphical User Interface

Figure 5.10: The level of intervention has been increased to a level 2 leading question at the
request of the user.

In Figure 5.10 the user has the same options as in Figure 5.9: begin working on their solution,

dismiss, or request further help. Figure 5.11 shows what happens when they request help: the

level of intervention is increased to level 3: a tactical instruction.

Figure 5.11: The level of intervention has been increased to a level 3 instruction at the request
of the user.

115



5.5. Tour of the Graphical User Interface Chapter 5. Software Implementation

At level 3 the user's option to request more help is replaced by a button, under the mouse cursor

in Figure 5.11, that will execute some instructions in the interface to �physically� intervene.

In this case the user needs to add some loss or hazard, but the software cannot know what these

losses or hazards are. Therefore the most �physical� aid it can provide is to take the user to the

correct place and repeat the instruction. The result of this is shown in Figure 5.12.

Figure 5.12: The level of intervention has been increased to a level 4 instruction at the request
of the user. The software has navigated to the correct place to assert a loss for the user.

After a level 4 intervention no further help is available.

5.5.3 Step 2 Interface

With some losses and hazards de�ned, the user moves onto step 2 where they de�ne the terms

to automatically generate the control hierarchy diagram. Any entities they de�ned during step

1 while de�ning �uents are already in the ontology and so will already be displayed in the

generated diagram. In Figure 5.13 a �Power� and �Door� were already de�ned during step 1.

Step 2 requires de�ning multiple kinds of things, and so the analyst is given a tabbed editing

panel that groups these into �Controlled Process�, �Controllers and Systems� (entities), �Control

Actions�, and �Feedback�. They do not need to be de�ned in order, the grouping merely serves

as an organisational structure.

116



Chapter 5. Software Implementation 5.5. Tour of the Graphical User Interface

Figure 5.13: Step 2 Interface with a prede�ned "Power" and "Door".

In Figure 5.14 a CP-1 Controlled Process has been added with the label �Maintenance�. To

add additional relations where CP-1 is the subject a dropdown menu is provided.

Figure 5.14: Adding a Controlled Process and information.

Using the dropdown is how �Door� and �Power� are added as subjects of CP-1, note they are

then hidden from the diagram as they are added.

117



5.5. Tour of the Graphical User Interface Chapter 5. Software Implementation

Figure 5.15: Adding related terms to a subject.

In the same way as a Controlled Process was de�ned in Figure 5.14, new systems can be de�ned

as shown in Figure 5.16. This is also where the E-1 �Power� and E-2 �Door� entities whose

existence was derived from the hazard de�nitions are provided for editing.

Figure 5.16: Editing entities, including those derived from hazard-�uent de�nitions.

The relations that can be added for the entities are not yet de�ned, so these are added under

118



Chapter 5. Software Implementation 5.5. Tour of the Graphical User Interface

their respective tabs. In Figure 5.17 a control action is being de�ned with what �uents it

requests hold.

Figure 5.17: De�ning a Control Action

In Figure 5.18 the situation in which the control action is possible in is being edited. There is

no distinct interface for situation terms, they are only edited as nested terms in this manner.

Figure 5.18: Nested editing to de�ne the is possible in situation.

119



5.5. Tour of the Graphical User Interface Chapter 5. Software Implementation

The Control Hierarchy Diagram is automatically generated from the facts asserted by the analyst,

in this user-interface they have no control over how it is drawn besides by changing their asserted

facts. Originally the diagram structure was determined by a query to Hilda, however by using

Datalog this query was unnecessarily reproduced on the client-side to save server resources. By

asserting that the �Human Controller� has the control action �Open Door�, the labelled arrow

representing this fact is added to the diagram in Figure 5.19.

Figure 5.19: Asserting who has what control action to add arrows to the diagram.

Using di�erent graphical user interface technologies would certainly make it possible to assert

facts from the user interactively drawing the diagram, although some editing interface would

still be required to add additional information such as the �uents requested by a control action.

This feature was not provided only due to the drawing libraries in use not supporting interactive

drawing.

Feedback is de�ned in the same manner as all the other terms in step 2, as shown in Figure 5.20.

120



Chapter 5. Software Implementation 5.5. Tour of the Graphical User Interface

Figure 5.20: De�ning Feedback

Feedback is related to the controllers in the same manner as the control actions seen in Fig-

ure 5.19, and so the Control Hierarchy Diagram shown in Figure 5.21 is completed and it's

time to move onto step 3.

Figure 5.21: The completed Control Hierarchy Diagram, generated from the information de�ned
by the analyst.

121



5.5. Tour of the Graphical User Interface Chapter 5. Software Implementation

5.5.4 Step 3 Interface

In step 3 the analyst is required to denote which control actions are potentially hazardous when

provided or not provided. This is a reduced problem from the standard STPA where the analyst

also has to consider if control actions of di�ering durations and timing. The simpli�cation is

used as a teaching step for the STPA beginners who are the target user-group of the user-study.

However, when including these other kinds of potentially hazardous control actions the update

to the user-interface is not as simple as adding additional columns for these kinds because under

the ontological de�nition a control action done for a di�erent duration (i.e. di�erent �uents

requested to hold) or with di�erent timing (i.e. possible in a di�erent situation) are di�erent

control actions and so they need to be de�ned as such.

In Figure 5.22 the Control Actions de�ned in step 2 are displayed. The analyst has the option

to check the box denoting that if that control action were/were not provided then it would be

potentially hazardous. Each checked box triggers an update of the ontology, which is recorded

by Bede.

Figure 5.22: Step 3: Denoting if a control action is potentially hazardous if provided or not
provided.

A potentially hazardous control action should also be de�ned with the situation in which it is

possible, and it should be linked to the hazard that it may lead to. The situation in which it is

possible in is already provided for and shown in Figure 5.18. To allow an analyst to link the

122



Chapter 5. Software Implementation 5.5. Tour of the Graphical User Interface

hazard the �+� button and pop-up are provided shown in Figure 5.23.

Figure 5.23: Linking to Hazards

This completes the interface for step 3, which completes the requirements for the STPA analysis

by the target user-group for the user-study.

5.5.5 What's Next? A Proactive Interface for Seeking Help

The missing-type of interventions check to see if some de�nitions are included in the ontology.

They are only checked after the relevent step, otherwise on starting the analysis a user will be

presented with a barrage of advice that may not be welcome or sensible at that time. To aid a

user that may not be sure of what action they should take next, the missing-interventions for

the current step are made available via the �What's Next?� button. Clicking on that button

will provide such an intervention if found, as shown in Figure 5.24. It works like a �What If?�

kind of question that Situation Calculus was designed to answer (See Section 2.2.2), OSWIN

asks �What if we were in the next step? Then what interventions would there be?�, which it

does by temporarily (and in memory only) moving onto the next step in the current situation

before querying Hilda for interventions.

123



5.5. Tour of the Graphical User Interface Chapter 5. Software Implementation

Figure 5.24: Clicking on "What's Next" shows a missing-type of intervention for the current
step if one such intervention is possible.

These interventions behave in the same manner as regular interventions, Figure 5.25 shows the

level of the intervention being incremented to level 2, just like Figure 5.10 shows for a regular

intervention.

Figure 5.25: Incrementing a "What's Next?" intervention in the same way as a regular interve-
tion.

124



Chapter 5. Software Implementation 5.6. Intervention Walk-Through Examples

It should be noted that the intervention shown in Figure 5.25 demonstrates the capability of

the reasoning in the software to automatically determine whether providing or not providing an

as de�ned control action is potentially hazardous. However, to do so in this application would

be contrary to the intended goal, which is to aid in learning STPA rather than completing an

STPA.

5.6 Intervention Walk-Through Examples

In this section examples taken from the user evaluation logs will be described to show how the

intervention system works. The two examples include both missing and mistake interventions,

successful and required interventions.

5.6.1 A Simple Mistake Quickly Resolved

This is from the log �le of user 36, beginning with the 147th action about 10 minutes into their

analysis.

focus_concept ( ' Feedback ' , 3 6 ,

datet ime (2022 , 3 , 8 , 1 6 , 4 4 , 9 ) ) .

a s s e r t ( spo ( 'FB=1 ' , l abe l , "Module eva lua t i on feedback ") ,36 ,

datet ime (2022 , 3 , 8 , 16 , 44 , 19 ) ) .

a s s e r t ( spo ( 'FB=1 ' , r ecordsFluent , 'F=3 ') ,36 ,

datet ime (2022 , 3 , 8 , 16 , 44 , 30 ) ) .

i n t e rv ene (

'Avoid us ing ambiguous and vague l a b e l s in the con t r o l s t r u c tu r e :

"commands" , " feedback " , " s t a tu s " , "computer " ' ,

l ogged_asse r t i on ( 'FB=1 ' , subClassOf , ' Feedback ' ) and

logged_asse r t i on ( 'FB=1 ' , l abe l , "Module eva lua t i on feedback ") and

f a c t ("Module eva lua t i on feedback " , containsWord , feedback ) and

f a c t ( feedback , instanceOf , 'AmbiguousOrRecursiveWord ' ) ,

1 , datet ime (2022 , 3 , 8 , 1 6 , 44 , 30 ) ) .

The user has navigated to the Feedback tab and asserted some �Module evaluation feedback�

exists and records the �uent `F-3'. The STPA Handbook (N. Leveson and Thomas 2018, p.31)

advises against using the word �feedback� when de�ning feedback as being vague and ambiguous,

125



5.6. Intervention Walk-Through Examples Chapter 5. Software Implementation

Figure 5.26: Intervention regarding advice about label triggered for user 36

therefore this is included as an intervention. The second term with the intervene/4 term in

the log is the intervention query that succeeded in order to �re this intervention, which has been

given as a level 1 intervention as it has not �red before. This can be seen as presented to the

user in the screenshot in Figure 5.26.

The user then takes 15 seconds to read the intervention, consider it, and respond:

r e t r a c t ( spo ( 'FB=1 ' , l abe l , "Module eva lua t i on feedback ") ,36 ,

datet ime (2022 , 3 , 8 , 16 , 44 , 45 ) ) .

a s s e r t ( spo ( 'FB=1 ' , l abe l , "Module eva lua t i on survey r e s u l t s " ) , 36 ,

datet ime (2022 , 3 , 8 , 16 , 44 , 45 ) ) .

This label change removes the word �feedback� and so the intervention is resolved. It's also

improved the label of `FB-1' in the manner intended: before it wasn't clear how the module would

be evaluated, the new label is less vague and ambiguous and the system designers can consider

the implications of an evaluation survey rather than some unknown method of evaluation.

126



Chapter 5. Software Implementation 5.6. Intervention Walk-Through Examples

Immediately after resolving the intervention, which vanishes from the UI, the user click's the

�What Next?� button to request an intervention. As the one they were working on was resolved

the AI system looks for a �missing� intervention and �nds one to present. The user doesn't

engage with this intervention, suggesting their request was for con�rmation of the validity of

their correction rather than as a request for help.

r eque s t_ inte rvent i on (36 , datet ime (2022 , 3 , 8 , 1 6 , 4 5 , 7 ) ) .

i n t e rv ene ( ' Step 2 precedes Step 3 ' ,

not ( l ogged_asse r t i on (_23438 , hasCapabi l i ty , _23442 ) and

f a c t (_23442 , r e qu e s t sE f f e c t , _23498 ) and

logged_asse r t i on (_23530 , subClassOf , ' Feedback ' ) ) ,

1 , datet ime (2022 , 3 , 8 , 1 6 , 4 5 , 7 ) ) .

focus_concept ( ' ControlAction ' , 3 6 , datet ime (2022 , 3 , 8 , 1 6 , 45 , 10 ) ) .

focus_concept ( ' Feedback ' , 3 6 , datet ime (2022 , 3 , 8 , 1 6 , 45 , 11 ) ) .

focus_concept ( ' ControlAction ' , 3 6 , datet ime (2022 , 3 , 8 , 1 6 , 45 , 13 ) ) .

focus_concept ( ' Feedback ' , 3 6 , datet ime (2022 , 3 , 8 , 1 6 , 45 , 14 ) ) .

focus_step ( step3 , 36 , datet ime (2022 , 3 , 8 , 1 6 , 45 , 16 ) ) .

The log shows they survey step 2 terms before moving on to step 3. If this is discovered to

be a repeated pattern, that may suggest users are expecting con�rmation when resolving an

intervention that's not being provided.

5.6.2 Missing Relation and Missing Intervention

This example is from user 43's log and the interaction begins about 27 minutes and 241 actions

into their analysis. By this point they've already de�ned much of their control hierarchy terms for

step 2 and they're making use of the AI to guide their work�ow. So they request an intervention,

and the AI identi�es that their controlled process isn't controlled by any controller. In this case

they're simply missing some hasSubject relationships.

r eque s t_ inte rvent i on (43 , datet ime (2022 , 3 , 9 , 1 3 , 17 , 19 ) ) .

i n t e rv ene ( 'Check that every c on t r o l l e d phy s i c a l p roc e s s i s

c on t r o l l e d by one or more c o n t r o l l e r s ' ,

l ogged_asse r t i on ( 'CP=1 ' , subClassOf , ' Contro l l edProces s ' ) and

not ( l ogged_asse r t i on ( 'CP=1 ' , hasSubject , _11750 ) and

127



5.6. Intervention Walk-Through Examples Chapter 5. Software Implementation

Figure 5.27: Intervention regarding an uncontrolled "Control Process" (CP-1) for user 43.

128



Chapter 5. Software Implementation 5.6. Intervention Walk-Through Examples

l ogged_asse r t i on (_11802 , hasBearer , _11750 ) and

f a c t (_11858 , r e qu e s t sE f f e c t , _11802 ) and

logged_asse r t i on (_11894 , hasCapabi l i ty , _11858 ) ) ,

1 , datet ime (2022 , 3 , 9 , 1 3 , 17 , 19 ) ) .

request_help ( 'Check that every c on t r o l l e d phy s i c a l p roc e s s i s

c on t r o l l e d by one or more c o n t r o l l e r s ' ,

43 , datet ime (2022 , 3 , 9 , 13 , 17 , 25 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 17 , 39 ) ) .

g lossary_lookup ( ' Contro l l edProces s ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 17 , 41 ) ) .

focus_concept ( ' ControlAction ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 17 , 57 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 1 8 , 5 ) ) .

a s s e r t ( spo ( 'CP=1 ' , hasSubject , 'E=4 ') ,43 , datet ime (2022 , 3 , 9 , 1 3 , 18 , 14 ) ) .

r e t r a c t ( spo ( 'CP=1 ' , hasSubject , 'E=4 ') ,43 , datet ime (2022 , 3 , 9 , 1 3 , 18 , 53 ) ) .

a s s e r t ( spo ( 'CP=1 ' , hasSubject , 'E=3 ') ,43 , datet ime (2022 , 3 , 9 , 1 3 , 18 , 53 ) ) .

r e t r a c t ( spo ( 'CP=1 ' , hasSubject , 'E=3 ') ,43 , datet ime (2022 , 3 , 9 , 1 3 , 1 9 , 4 ) ) .

a s s e r t ( spo ( 'CP=1 ' , hasSubject , 'E=2 ') ,43 , datet ime (2022 , 3 , 9 , 1 3 , 1 9 , 4 ) ) .

r eque s t_ inte rvent i on (43 , datet ime (2022 , 3 , 9 , 1 3 , 19 , 28 ) ) .

focus_step ( step3 , 43 , datet ime (2022 , 3 , 9 , 1 3 , 19 , 30 ) ) .

In response to the intervention they request help, which increases the intervention level to 2 (this

kind of intervention hasn't occurred previously in their log). They're then presented with the

leading question: �Have you not asserted that any Controllers are capable of a Control Action

that has an E�ect upon some System that is subject to the Controlled Process CP-1?� as shown

in Figure 5.27. This long question contains a lot of details to unpack, rather than request more

help they instead identi�ed, in 14 seconds, that they needed to do something about �Controlled

Process� and navigated to it.

They immediately (2 seconds) checked the glossary for �Controlled Process� as they were trying

to �gure out what to do. After 16 seconds of thought they referred to their Control Actions,

which is signi�cant because they help inform the �hasSubject� relationship. Following this they

asserted and retracted several �hasSubject� relationships as they were thinking through the

possible objects before settling on their �nal answer.

Once they've settled on CA-1 hasSubject E-2, they repeat the same checking behaviour of

129



5.6. Intervention Walk-Through Examples Chapter 5. Software Implementation

Figure 5.28: Intervention for user 43 resolved, but still incorrect as E-1 is also subject to CP-1.

130



Chapter 5. Software Implementation 5.7. Software Implementation Discussion

hitting the �What Next?� button to request an intervention. None is found and it continues.

The intervention that was resolved is to ensure that every controlled process in the model is

controlled by some controller. However, there is another entity in the model which should be

declared as the subject of CA-1: E-1 is controlled by E-3 and has no control actions of its own, as

shown in Figure 5.28. This is a di�erent intervention that was not included in the intervention

bank and which became apparent during this user study: if an entity has no capability that's a

control action and it's not the subject of any control process then it's likely the user has missed

one of these relationships. Adding this intervention to the bank, now it's identi�ed through

observation, would be trivial.

5.7 Software Implementation Discussion

The �rst aim of the software implementation was to create an executable software version of

the theoretical aspects of the code. The programming languages used were chosen to ease this.

Firstly the STAMP ontology was de�ned using a subset of the SHOIN (D) Description Logic

(See Section 3.1), which can be de�ned using OWL-DL. SWI-Prolog provides libraries for

reading this format, and so the assertions in the ontology are the same in DL, OWL, and as

Prolog facts. What di�ers is the reasoning, which in Prolog is with horn-clause logic. This

resulted in an incomplete de�nition for subsumption, as discussed in Section 5.3.3, although

this application is su�ciently restricted as to not be e�ected by it.

The ontology authoring and Contingent Sca�olding frameworks were both de�ned in Situation

Calculus (Section 4.2 and Section 4.3.2 respectively). Therefore with the SitCalc library

providing Situation Calculus reasoning both frameworks could be de�ned in Logtalk, with minor

syntactic alterations such as using multiple clauses for disjunction.

The claim of these frameworks and libraries is that they are generalized and so reuseable. How-

ever in Pre-Whitby they were not able to be easily shared and reused. Taking a set of rules and

applying them to some facts is a typical task in Prolog. However, the limitations of the module

system often result in code that only handles a �xed set of facts at a time, either imported into

the rules module or loaded into the user special module. But sometimes these rules are useful

to many applications, as is the case with Situation Calculus. When the rules are to be shared

as third-party libraries, any dependency of rules on facts needs to be inverted to decouple the

rules from a particular set of facts. This dependency inversion allows multiple set of facts to

131



5.7. Software Implementation Discussion Chapter 5. Software Implementation

be loaded and used concurrently (providing an alternative solution for implementing the many-

worlds design pattern). Key to this dependency inversion is the concept of interface or protocol,

supported by Logtalk but absent in Prolog module systems.

This inversion was achieved in Logtalk by taking inspiration from the Abstract Factory design

pattern and considering how it could be achieved with protocols and categories. The �nal

solution is simpler than the Abstract Factory design pattern as no dynamic creation of objects

is necessary. Instead, dependency upon a protocol and conforming to it is all that is required.

This is an elegant pattern for Logtalk that can be repeated when creating third-party libraries

to reason about de�nitions in an application without depending upon them.

The use of protocols in this manner results in a plugin architecture. A third-party can �plug-in' '

code to the SitCalc library, or other libraries, to work with it. This is a very versatile design

pattern as it allows an application developer, or even third-parties and end-users provided with a

plugin loading interface, to adapt the behaviour of the application to their needs without editing

the core application code. It also leaves the application immune from changes made elsewhere

via the plugin, with the provision they are not malicious, by the drawing of boundaries in the

architecture (Martin 2018).

This use of protocols has focused on their application for dependency inversion due to the

speci�cs of the Whitby application architecture. It should be noted their use also resulted

in adherence to the Single Responsibility and Open-Closed Principles. Protocols also have

signi�cant contribution to adherence to the Liskov Substitution Principle, making it a simple

matter to swap objects that adhere to the same protocol, as well as the Interface Segregation

Principle by providing explicitly de�ned interfaces as �rst class entities.

The refactor from Pre-Whitby to Whitby decoupled code from Pre-Whitby that can be reused,

which are published as third-party libraries to satisfy the motivation behind the refactoring. This

has simpli�ed Whitby, where there is less functionality now to maintain, and has enabled other

applications and libraries to use Situation Calculus reasoning while also keeping a clean archi-

tecture. The workarounds that we attempted to compensate for the lack of required features in

the Prolog module systems accumulated and increased the complexity of the application. Those

workarounds are not supported by development tools (especially documenting and diagramming

tools) and raised new issues, thus creating additional burden on developers while not solving

the reusable goals that prompted the refactoring.

132



Chapter 5. Software Implementation 5.7. Software Implementation Discussion

By using the language constructs provided by Logtalk to apply SOLID principles in the refac-

toring, the Whitby application documentation and diagrams trivially re�ect the actual archi-

tecture of the application, further simplifying development and maintenance. But hand-coded

workarounds that try to compensate for missing language features (in this case: the module sys-

tem in the original version of the application) required additional e�ort to document as they are

not visible to developer tools as �rst-class constructs. These workarounds must also be repeated

in every application with the impact of their limitations carefully taken into account.

This refactoring has bene�ted the Whitby application, the Situation Calculus reasoning is open

to extension without modi�cation, which was used to add application speci�c �uents and actions

as the need arose. Additionally, the separation of responsibilities has made it easier to navigate

and edit the code base. But the primary bene�t is to other applications that wish to make use

of the extracted libraries. Whitby demonstrates how they can be reused. Bedsit8 is one example

of such reuse: it is an exploratory framework for rapidly prototyping applications using SitCalc

and includes both TicTacToe and ToDo example applications with a variety of UIs. The author

has also reused SitCalc and OntAuth to quickly prototype a proprietary ontology browser and

editor.

As part of the AI4EU9 initiative, Rubinstein Pérez (2021) was provided with Whitby to adapt

to a new project in the domain of robotics planning. Due to Whitby's adherence to the Single

Responsibility and Liskov Substitution Principles, which was not possible with Pre-Whitby, a

third-party should need only to make changes at the periphery of the code base: telling kb to

load a di�erent OWL �le, optionally substituting any reasoning rules speci�c to their domain,

substituting intervention_bank for an object with appropriate interventions, and substituting

the EditorGUI to be appropriate for that domain. There is still room for improvement, however.

For example, they also needed to change a list in action_bank, which contains the classes used

as tabs in the GUI.

In addition to demonstrating the generalisability and reuseability of the code, and thus the de�-

nitions from which the code was authored, there is also an important issue of timing. Contingent

Sca�olding depends upon o�ering support as soon as the learner is in trouble, and so the time to

�nd and return a relevant intervention must be �immediate�. This is primarily achieved through

8https://github.com/PaulBrownMagic/BedSit
9https://www.ai4eu.eu/ Established to build the �rst European Arti�cial Intelligence On-Demand Platform

and Ecosystem with the support of the European Commission under the H2020 programme.

133



5.7. Software Implementation Discussion Chapter 5. Software Implementation

Figure 5.29: Time to �nd an intervention for the logs �nal situation after the immediately prior
situation has been queried so that memoization with tabling is exploited. Testing was done on
a single core of a CPU with 512KB cache size and running at 3792.914 MHz.

tabled-resolution in Prolog to memoize reasoning already done. Furthermore the number of

interventions returned is restricted to one10 and returning any on-going intervention that's still

relevant before searching for another. With these measures in place the time taken to intervene

has been reduced to less than 1/10th of a second for the majority of �nal situations with a

maximum observed time of less than 1 second: see Figure 5.29.

10A single intervention was also chosen so as not to confuse the user or contradict giving a single instruction
at level 3.

134



Chapter 6

User Evaluation

To validate Whitby a user-study was conducted using the application developed. The main goal

of the user-study was to assess the e�ectiveness of the interventions provided by OSWIN. The

questions addressed are:

1. How did OSWIN intervene with the system safety analysis?

2. What was the e�ect of the interventions provided?

It's expected that there will be more �trouble� situations in the log than are intervened on

and that can be intervened on in the STPA domain and via Contingent Sca�olding. This is

due to the interventions de�ned not been proven exhaustive, and contingent sca�olding being a

pedagogical technique for intervening on a process, rather than teaching or de�ning the process,

which is required for a novice. Contingent Sca�olding has been shown to improve quality of the

�nal product (Daniels 2010), so it's expected to still hold in this case.

The Engineering and Physical Sciences Research Ethics Committee (EPS/FREC) provided ap-

proval for the user-study with code: MEEC 20-011.

6.1 Experimental Design

A cohort of users were given the scenario, included in Appendix D.2, to undertake an STPA

analysis using Whitby. The scenario requests they conduct the analysis for a recommender

system, which given information about students and possible course modules can recommend

modules for the student to take. Users' logs were captured and users' were observed conducting

135



6.1. Experimental Design Chapter 6. User Evaluation

the analysis in order to identify �in-trouble� situations. Finally users were questioned to ascertain

their expertise with regards to STPA and their experience using the application.

6.1.1 Scenario

The recommender software scenario is chosen as one whose basic architecture will be familiar to

the computing students invited to participate: a standard model-view-controller application. It

contains data and recommendation-rules gathered from di�erent sources: the model, some rules

about how it gathers data and makes recommendations: the controller, and a user-interface: the

view.

Furthermore, the recommender system is a suitably simple analysis for a beginner STPA analyst.

As a computing system, all actions can be considered as atomic (i.e. having no duration),

therefore control actions and potentially unsafe control actions of unexpected duration need not

be considered. It's also a small system, with 3-4 controllers involved and 7 control actions,

which eases the mental burden on the beginner and is achievable within the time-limit on each

user-study.

6.1.2 Participants

The user-study consisted of 37 voluntary participants from the School of Computing, University

of Leeds. Participation was o�ered to any willing student within the School of Computing

to ensure some familiarity with the software domain of the scenario. No restrictions were in

place with regards to level of study, prerequisite modules, or any other factor besides being a

Computing student. The participants were non-expert beginners who are only familiar with the

terms, process, and need for STPA. Expert STPA analysts were not invited to participate as

the support system is targeted to aid those who are learning STPA. The software also lacks a

tutorial feature for teaching STPA to complete beginners, as such a cohort was unavailable this

was compensated for with an introductory lecture on STPA analysis including a demonstration

analysis.

Each participant chose a time to suit themselves to conduct the study, and were observed

individually via video-conferencing software.

136



Chapter 6. User Evaluation 6.1. Experimental Design

6.1.3 Materials and Procedure

User's were provided with participation information, included in Appendix D.1, and the rec-

ommender scenario included in Appendix D.2. The recommender would gather data from

students and module leaders such that it could recommend modules to a student. This remit,

similar to what could be provided by a party requesting the analysis, included requests that

correspond to the losses and hazards to be de�ned in step 1 in order to limit the scope of the

study due to time constraints. It wasn't made explicit that these were su�cient to de�ne the

losses and hazards so that participants still had scope to create their own de�nitions based upon

their interpretation of the information, or as in some observed cases, ignore it entirely. Further-

more, in deference to the time constraints, step 4 of the STPA procedure1 was excluded from

the system.

After consenting to take part in the study, a participant is presented with the following sequence

of tasks.

1. Pre-study Expertise Test This is a questionnaire with 8 questions derived from advice

in the STPA Handbook N. Leveson and Thomas 2018 designed to ascertain a base-line of

the users knowledge. Information gained here is not used to inform Whitby, but only used

to compare against the Post-study Expertise Assessment to determine if learning can be

demonstrated. The questionnaire is included in Appendix D.3.

2. STPA Analysis The participant is presented with the application UI and asked to com-

plete an analysis based upon the scenario provided. The OSWIN contingent-sca�olding

module is turned on for all participants and will intervene when it can. If a participant

is in trouble in some manner that OSWIN cannot intervene to help with, such as a user-

interface issue like �nding a button to click, then the observer will intervene acting as a

tutor. However, on matters of correctness to the scenario, such as asserting an irrelevant

loss that's out of scope, no intervention is provided. The distinction is made to aid partic-

ipants to use the tool, but not aid them in their analysis. Figure 5.27 and Figure 5.28

shows the UI in use.

3. Post-study Expertise Test This is an exact repeat of the Pre-study Expertise, the same

as Appendix D.3.

1The STPA procedure is outlined in Appendix A

137



6.2. How Did OSWIN Intervene? Chapter 6. User Evaluation

6.1.4 Data Collected and Analysis

Each participant is assigned an identifying number so disparate data sources can be joined.

These sources are:

� Answers to the STPA test taken pre-study and repeated post-study.

� Log Data, generated by the tool on each action that updates the situation term, including

ontology authoring, navigation, intervention, and glossary access actions.

� STAMP model, which is derived from the Log Data

� Observer notes, including any additional intervention given

Each research question is analysed below with a corresponding method of analysis.

6.2 How Did OSWIN Intervene?

This question is to assess the capability to intervene. It's therefore comprised of the following

sub-questions:

1. Which of the de�ned interventions were provided to the users?

2. Were missing or mistake types more prevalent?

3. Were there observed situations where a user was in trouble that OSWIN did not intervene

in?

4. Of those observed situations are there any that OSWIN could easily intervene in?

To evaluate these questions both the log data and observer notes are searched for records of

interventions.

6.2.1 Use of De�ned Interventions

With regard to how many interventions were o�ered to each user, a histogram is shown in

Figure 6.1, and the summary statistics are:

� Total Across All 37 Logs: 130

� Mean: 3.5135

� Median: 3

� Mode: 4

� Standard Deviation: 2.0631

138



Chapter 6. User Evaluation 6.2. How Did OSWIN Intervene?

Figure 6.1: Histogram showing distribution of Intervention Count per user

� Minimum: 0

� Maximum: 9

The users were also provided with a �Request Help� action, which they could use to increase

the level of intervention o�ered. A histogram of these actions is shown in Figure 6.2, and the

summary statistics are:

� Total Across All 37 Logs: 99

� Mean: 2.6756

� Median: 2

� Mode: 2

� Standard Deviation: 2.5825

� Minimum: 0

� Maximum: 10

In total 19 di�erent interventions are de�ned, 13 of the missing-type and 6 of the mistake-type.

In the 37 analyses undertaken a total of 138 interventions were provided. Of the missing-type,

128 interventions were provided, and of the mistake-type 10 were provided. Thus the missing-

type interventions were far more prevalent than the mistake type, with only 7 of the 37 users

receiving any mistake intervention. Table 6.1 shows the number of occurrences of each missing

intervention, whereas Table 6.2 shows the same for the mistake-type interventions.

139



6.2. How Did OSWIN Intervene? Chapter 6. User Evaluation

Figure 6.2: Histogram showing distribution of the "Request Help" action count per user

Table 6.1: Counts of missing-type intervention occurrences

Missing Intervention Count

Hazards will lead to a loss in some worst-case environment 8

Hazards must describe states or conditions to be prevented 6

Check that every controlled physical process is controlled by one or more

controllers

18

Check that control actions needed to satisfy the responsibilities are included 26

Check that feedback needed to satisfy the responsibilities is included 23

Ensure traceability is documented to link every unsafe control action with one

or more hazards (Providing)

4

Ensure traceability is documented to link every unsafe control action with one

or more hazards (Not Providing)

1

Ensure every unsafe control action speci�es the context that makes the control

action unsafe

8

Ensure the unsafe control action contexts are de�ned clearly 2

Step 1 precedes Step 2 12

Step 2 precedes Step 3 18

Identify all Providing Potentially Hazardous Control Actions 2

Identify all Not Providing Potentially Hazardous Control Actions 0

140



Chapter 6. User Evaluation 6.2. How Did OSWIN Intervene?

Table 6.2: Counts of mistake-type intervention occurrences

Mistake Intervention Count

Hazards should not include ambiguous or recursive words like �unsafe�,

�unintended�, �accidental�, etc.

0

Avoid using ambiguous and vague labels in the control structure: �commands�,

�feedback�, �status�, �computer� (Control Action)

0

Avoid using ambiguous and vague labels in the control structure: �commands�,

�feedback�, �status�, �computer� (Feedback)

8

If you have more than 7 hazards, consider grouping or combining them to

create a more manageable set

0

Fluent can't both hold and not hold in a situation 1

Control Action can't both cause a �uent to hold and not hold 1

From these it can be seen that missing some de�nition, particularly pertaining to control actions

and feedback during step 2 was the most common cause of intervention. Among the mistakes

made, the most prevalent was in poor naming of feedback; often users would fail to identify a

suitable feedback, such as �student model�, �module model�, or �recommender accuracy score�

and instead used an ambiguous or vague label with some hint at the �uent. For example, user 28

asserted the label: �Algorithm Feedback�, user 40 asserted: �check status of student information�,

and user 55 asserted: �Recommendation Feedback�. All of which do not inform a reader about

what the feedback is intended to be.

6.2.2 Use of History

Underpinning the contingent sca�olding is the diachronic view of the ontology authoring process,

which provides the history of actions and also states via the Situation Calculus reasoner. This is

used to determine the level of intervention at which to o�er an intervention. If an intervention

has been o�ered previously, resolved, and occurred again, it will be faded by one level from the

previous max. So if it were at level 2, it will be o�ered at level 1. If it were at level 3, it will be

o�ered at level 2.

In post-study analysis fading was found to have occurred on 10 occasions for 7 users. That is

141



6.2. How Did OSWIN Intervene? Chapter 6. User Evaluation

10/130 interventions o�ered being assigned a level where fading occurred. This was determined

by the following query, shown with output. For each user the query conducts the same search

and prints out the result. The search it conducts is to divide the users log into three sections:

Early, Mid, and Later, with the Early section ending with a request_help action. This action

will increase the intervention level of whatever intervention it was acting upon (the variable I).

The intervention that was o�ered is found in the Early section, along with the situation query

(Q) that succeeded. The Later section is then checked to ensure that this intervention was

o�ered again. The Mid section is when the intervention must have been resolved, this is checked

by recreating the situation up until the end of the Mid section (MidEarlySit) and ensuring that

the query (Q) does not hold in it. The sorting on the date-time parameter is to remove duplicates

found by changing the exact dividing points between the sections in the search process.

?= f o r a l l ( use r (U) ,

( bede (U) : : s i t ( S i t ) , abo l i sh_a l l_tab l e s ,

s i t c a l c : : s i t u a t i o n_ l i s t ( S i t , S i t L i s t ) ,

f i n d a l l ( I=DT,

( append ( Later , MidEarly , S i t L i s t ) ,

append (Mid , [ request_help ( I , U, DT1) | Early ] , MidEarly ) ,

once ( ( member( i n t e rvene ( I , Q, _, _) , Early ) ,

member( i n t e rvene ( I , _, _, DT) , Later ) ,

s i t c a l c : : s i t u a t i o n_ l i s t ( MidEarlySit , MidEarly ) ,

\+ s i t c a l c : : ho lds (Q, MidEarlySit ) ) )

) , Cases ) ,

s o r t (2 , @<, Cases , CaseSet ) ,

( CaseSet = [ ]

=> true

; format('===∼nUser : ∼d∼n ' , U) ,

mapl i s t ( [C, I ]>>arg (1 , C, I ) , CaseSet , ISe t ) ,

mapl i s t ( wr i t e ln , ISe t )

) ) ) .

===

User : 14

Check that every c on t r o l l e d phy s i c a l p roc e s s i s c o n t r o l l e d by one \

142



Chapter 6. User Evaluation 6.2. How Did OSWIN Intervene?

or more c o n t r o l l e r s

Check that feedback needed to s a t i s f y the r e s p o n s i b i l i t i e s i s inc luded

===

User : 33

Check that c on t r o l a c t i on s needed to s a t i s f y the r e s p o n s i b i l i t i e s \

are inc luded

===

User : 36

Check that c on t r o l a c t i on s needed to s a t i s f y the r e s p o n s i b i l i t i e s \

are inc luded

Check that feedback needed to s a t i s f y the r e s p o n s i b i l i t i e s i s inc luded

===

User : 40

Avoid us ing ambiguous and vague l a b e l s in the con t r o l s t r u c tu r e : \

"commands" , " feedback " , " s t a tu s " , "computer"

===

User : 41

Check that feedback needed to s a t i s f y the r e s p o n s i b i l i t i e s i s inc luded

===

User : 43

Check that c on t r o l a c t i on s needed to s a t i s f y the r e s p o n s i b i l i t i e s \

are inc luded

Check that feedback needed to s a t i s f y the r e s p o n s i b i l i t i e s i s inc luded

===

User : 44

I d en t i f y a l l Provid ing Po t en t i a l l y Hazardous Control Act ions

t rue .

Additionally, there were 8 occasions over 6 users where OSWIN made use of the diachronic view

of the ontology to intervene at a level greater than 1. This means that OSWIN made use of the

history of actions to inform the level of intervention, determining on these 8 occasions that it

was appropriate to begin at level 2 or 3 because the user had previously needed help with this

143



6.2. How Did OSWIN Intervene? Chapter 6. User Evaluation

kind of intervention. This was determined through a search over the logs to �nd actions where

the level of intervention was greater than 1. The query and output follows:

?= f o r a l l ( user (U) ,

( bede (U) : : s i t ( S i t ) , abo l i sh_a l l_tab l e s ,

f i n d a l l ( I=N,

( s i t c a l c : : member( i n t e rvene ( I , _, N, _) , S i t ) ,

N > 1

) , I s ) ,

( I s = [ ]

=> true

; format('===∼nUser : ∼d∼n ' , U) ,

mapl i s t ( ( [ I=N]>>format ( '∼s @ l e v e l : ∼d∼n ' , [ I , N] ) ) , I s ) )

) ) .

===

User : 14

Check that every c on t r o l l e d phy s i c a l p roc e s s i s c o n t r o l l e d by one or \

more c o n t r o l l e r s @leve l : 2

===

User : 23

Check that c on t r o l a c t i on s needed to s a t i s f y the r e s p o n s i b i l i t i e s \

are inc luded @leve l : 3

===

User : 24

Step 2 precedes Step 3 @leve l : 3

Step 2 precedes Step 3 @leve l : 2

===

User : 27

Step 2 precedes Step 3 @leve l : 2

===

User : 36

Check that feedback needed to s a t i s f y the r e s p o n s i b i l i t i e s i s \

inc luded @leve l : 3

144



Chapter 6. User Evaluation 6.2. How Did OSWIN Intervene?

Check that feedback needed to s a t i s f y the r e s p o n s i b i l i t i e s i s \

inc luded @leve l : 3

===

User : 40

Avoid us ing ambiguous and vague l a b e l s in the con t r o l s t r u c tu r e : \

"commands" , " feedback " , " s t a tu s " , "computer" @leve l : 2

t rue .

OSWIN has made use of the history, which indicates that this part of the contingent sca�olding

framework executes as desired, although the quantity of data gathered is insu�cient to draw

conclusions regarding the e�cacy of using history to determine intervention level on model

quality or learning. However, the intention is to demonstrate that the diachronic view of the

ontology provides additional, useful information that can be exploited by ontology authoring

support tools. OSWIN has demonstrated that explicitly by how fading is accomplished. OSWIN

not only reasons on previous actions with regards to the intervention being o�ered previously

and help requested to increase the level, but also can query earlier states of the ontology to

determine that the intervention had been resolved in the intermediate time.

6.2.3 Additional Observed Behaviour

In addition to the de�ned interventions that occurred and were logged, the analyses were also

observed, and notes recorded in individual free-text documents, in order to determine if addi-

tional �trouble� situations occurred. When a user was in �trouble� with no intervention to be

o�ered, or if they sought help, or o�ered an opinion of what could help, this was recorded in the

documents. The 37 documents were then reviewed to �nd such notes pertaining to additional

support and the common themes abstracted out.

Glossary Improvement

The most common requirement of users pertained to the glossary rather than the interventions,

the usage of the glossary histogram is shown in Figure 6.3. Users often struggled particularly

with understanding �Controlled Process�2 and asked for de�nitions beyond the glossary provided:

2For example, user-41 requested that the system "be a bit more clear in de�ning what each (e.g control
process vs control action) was", user-39 stated: "Understanding the concept of each role (e.g. the di�erence
between controllers and control processes). When these concepts are confused the system gets harder and harder
to navigate/build o� of."

145



6.2. How Did OSWIN Intervene? Chapter 6. User Evaluation

Figure 6.3: Histogram showing the count of the Glossary check action per user

�What activity is the system doing?�. The additional explanation provided by the observer was

�The thing that the system is doing overall. So if it were a self-driving car it would be driving,

for a nuclear power station it would be generating power�.

This suggests that the glossary may be able to function within the Contingent Sca�olding frame-

work also, with the escalation of de�nitions to provide examples and further description if the

hint is not understood. Furthermore users requested the glossary functionality also be pro-

vided for the predicates as well as the subjects. This contingent-sca�olded-glossary could be

incorporated into OSWIN by an additional request_help type of action that provides some

definition_of(Term) parameter for OSWIN to de�ne, although the levels of intervention would

require re-examination.

States vs Events

The next most prevalent di�culty noted was in a lack of understanding between situations or

states and events. Things that are kinds of events or capabilities were labelled with descriptions

of some state, or situation, or �uent in text. Also things that are kinds of situation were labelled

with verbs in the text. A couple of users were observed to be struggling because they lacked

the fundamental distinction between events and state; they did not yet understand that events

change state. For example, user 52's log includes:

a s s e r t ( spo ( 'CA=1 ' , subClassOf , ' ControlAction ' ) ,

52 , datet ime (2022 , 3 , 10 , 16 , 10 , 35 ) ) .

146



Chapter 6. User Evaluation 6.2. How Did OSWIN Intervene?

a s s e r t ( spo ( 'CA=1 ' , l abe l , " I n c o r r e c t In format ion about Student ") ,

52 , datet ime (2022 , 3 , 10 , 16 , 14 , 46 ) ) .

A Control Action is a kind of event, but the label they've chosen describes the state of some

information about a student. There is no verb in their label. In the inverse direction, user 23's

log includes:

a s s e r t ( spo ( 'S=1 ' , subClassOf , ' S i tuat ion ' ) ,

23 , datet ime (2022 , 2 , 21 , 10 , 54 , 43 ) ) .

a s s e r t ( spo ( 'S=1 ' , l abe l , " User d i r e c t l y g i v e s the system in fo rmat ion ") ,

23 , datet ime (2022 , 2 , 21 , 10 , 55 , 31 ) ) .

A situation is an abstraction of state, but the label they've chosen includes the verb �gives�,

indicating an action.

For those users who had no concept of events and their causal relation to state, additional tuition

is required as a prerequisite to system safety analysis3, which is beyond the scope of a nudge

intervention. However, for a user who understands how events and states relate, the use of a

verb in some situation label, or the lack of a verb in a capability label could indicate a mistake

that OSWIN could identify and nudge on.

A post-study analysis of Capability labels (Losses and Control Actions are both subsumed by

Capability in the STAMP ontology) found that 50% of these labels in the �nal models and 42%

of all 415 capability labels ever asserted contained no verb. This indicates this was a common

mistake and a �missing verb in label� kind of intervention could be added to identify when a

label is asserted with no verb. It's expected that if a user were to engage with a �missing verb

in label� kind of intervention it would improve the quality of their model.

Attribution of Control Actions

The template provided for Unsafe Control Actions in the STPA Handbook (N. Leveson and

Thomas 2018) is:

UCA− < ID >:< Source >< Type >< ControlAction >< Context >< LinktoHazards >

3User-52's feedback requested: "Explanation about the theory of the actions (with examples) which would
allow the user to work through their own scenario."

147



6.2. How Did OSWIN Intervene? Chapter 6. User Evaluation

Figure 6.4: An attributed Control Action (CA-1) de�ned as acting upon self, indicating a mistake
from user 48

The < Source > slot is for the Controller who is capable of doing the < ControlAction >, which

is the `hasCapability' relationship in the STAMP ontology. So it was expected that the Control

Action would be given some label, such as �Add su�cient information about self�, and that would

be related to the Controller via the provided relation: �Student hasCapability `Add su�cient

information about self' �. However, in observation several users attributed the Control Action

to the Controller in the label, so it became: �Student hasCapability `Student Adds su�cient

information about self' �. An example from user-48 is shown in Figure 6.4.

Although this redundant verbosity would be trivial for OSWIN to catch by asserting that Control

Action (and Feedback) labels cannot contain a Controller label, it's not clear if this would be

bene�cial. It was observed for users who de�ned Control Actions before Controllers that this

was their identi�cation of Controllers for inclusion in the model. Furthermore, this should

be identi�able through reasoning with the history of authoring actions to determine order of

assertions and rudimentary linguistic analysis searching for a noun followed by a verb. Therefore,

it should be possible to use this information to determine controllers that may not be de�ned

or other mistakes.

The CA-1 example in Figure 6.4 contains an additional control action attribution mistake,

which should be and can be addressed. Furthermore this mistake was seen in multiple cases.

The user has asserted that the Student has a capability that requests some �uent to hold that is

born by the Student. In STAMP terms, they have a controller whose control action e�ects itself,

148



Chapter 6. User Evaluation 6.2. How Did OSWIN Intervene?

which is super�uous and indicative of a mistake. Diagrammatically, the arrow in the diagram

is self-referential and it should be pointing to some other box. When constructing the Control

Hierarchy diagram self-control is abstracted away in the controllers internal process model, only

control between distinct entities should be de�ned. This mistake can be discovered with the

query:

l ogged_asse r t i on ( Cont ro l l e r , hasCapabi l i ty , CA) and

( logged_asse r t i on (CA, requestsToHold , Fluent ) or

l ogged_asse r t i on (CA, requestsToNotHold , Fluent )

) and

logged_asse r t i on ( Fluent , hasBearer , Con t r o l l e r )

For user 48 that query would succeed and unify with:

l ogged_asse r t i on ( ' Student ' , hasCapabi l i ty , 'CA=1 ') and

( logged_asse r t i on ( 'CA=1 ' , requestsToHold , 'F=1 ') or

l ogged_asse r t i on ( 'CA=1 ' , requestsToNotHold , Fluent )

) and

logged_asse r t i on ( 'F=1 ' , hasBearer , ' Student ' )

A post-study analysis across all 37 log �les found 21 uni�cations where this query succeeded. In

total 12 users could have bene�ted from this intervention.

This intervention could indicate that a user has missed a controller from their system, and

so they're attributing the capability to the �uent bearer in error. It can also indicate, as in

this example case, that the control action is poorly de�ned. However, increasing the level of

intervention to an instruction for this query would begin with the assumption that the control

action de�nition is incorrect, it cannot identify the missing controller case.

The attribution of control actions can also indicate two other common mistakes observed during

the user study: de�ning a controller as subject to the controlled process or missing a �hasSub-

ject� relation when some entity has no control actions or feedback. In the already discussed

Figure 5.28 from user 43's analysis, the E-1 entity should have been declared as subject to

CP-1: it has no control actions or feedback. This intervention could be caught as a missing type

with the query:

l ogged_asse r t i on (E, subClassOf , ' Entity ' ) and

149



6.2. How Did OSWIN Intervene? Chapter 6. User Evaluation

not ( l ogged_asse r t i on (E, hasCapabi l i ty , _) or

l ogged_asse r t i on (E, hasFeedback , _)

) and

not logged_asse r t i on (CP, hasSubject , E)

The case where a user has asserted some controller is subject to a controlled process can be

caught with the query:

( l ogged_asse r t i on (C, hasCapabi l i ty , _) or

l ogged_asse r t i on (C, hasFeedback , _)

) and logged a s s e r t i o n (CP, hasSubject , C)

A post-study analysis was conducted using these two queries run across all 37 log �les and found

143 entities de�ned. Of these 64 were controllers, and 79 were not controllers. 47 of the 79

non-controllers had not been de�ned as subject to any controlled process, which is close to 60%

of non-controllers, and by 27/37 users. Of the 64 controllers, 14 were de�ned as subject to some

controlled process, or 22% of them, and by 8/37 users. This indicates that implementing these

two interventions would bene�t the majority of users and aid in improving their model quality.

Adherence to the Scenario

Users were provided with a scenario (included in Appendix D.2), which asked them to conduct

their STPA analysis on a recommender system that could recommend modules to students.

OSWIN cannot account for deviation from the scenario due to its design; OSWIN is not provided

with any information about the correct model, instead it only seeks to aid a user make their model

correct. This could be observed with users who ignored the provided scenario and immediately

set about their own analysis.

The scenario losses are �Decrease of student satisfaction�, and �Decrease of sta� satisfaction�4.

However, user 14 chose �Leaked emails and passwords of users� as their Loss, scored 8% for

correctness and 71% for sensibility5, which means their model was very poor with respect to the

scenario provided but above average quality with respect to the scenario they chose. In such

a case OSWIN cannot intervene to nudge the user to follow the requested and desired analysis

as it doesn't know what that is by design: it's a tool to support users' doing analysis rather

4Under "System Safety Goals" in Appendix D.2
5See the upcoming Section 6.3.1 for the meaning of these terms

150



Chapter 6. User Evaluation 6.3. What E�ect Did OSWIN Have?

than tutor beginners in how to repeat a pre-formulated analysis. Nothing prohibits this tutoring

feature being added at a later date for additional study.

Some less-con�dent users were seeking reassurance from the observer as to the correctness of their

assertions. Although OSWIN cannot determine the correctness to a gold-standard, it could reuse

the methodology from BOADiS6 (Denaux 2013) to provide reassurance by describing what it

understands from the assertions, particularly across relations. It can also con�rm an intervention

has been correctly resolved with a noti�cation when the intervention query �rst fails, rather than

merely vanishing, which often led to the user requesting a further intervention to check their

work. Provision of these assurances would require testing to see if they have the intended e�ect.

6.3 What E�ect Did OSWIN Have?

It has been claimed that Contingent Sca�olding will aid a student to produce a better quality

product (Daniels 2010) with fewer examples and with better retention of learning (Day and

Cordón 1993). In this evaluation only the quality of the product is considered as no examples

were provided, and with a single study retention of learning cannot be assessed.

6.3.1 Determining Model Quality

Model quality was determined through marking the �nal model produced by each user. The

mark-scheme was designed to take into account both adherence to the provided scenario (see

Appendix D.2 and for the solution see Appendix D.4), dubbed �correctness�, and internal

consistency, dubbed �sensibility�. This distinction is made to aid in distinguishing the quality of

a model irregardless of the users adherence to the instruction to complete the analysis for the

provided scenario. This distinction was made a-priori as OSWIN is designed to aid a user make

a high-quality model as opposed to re-asserting some pre-de�ned one.

The projects were marked along 23 factors. For each factor they received a score between 0

and 3. 3 marks were awarded if all that factor was all present and correct. 2 marks were

awarded if there was some missingness or some mistake. 1 mark was awarded if there was some

missingness and some mistake. 0 marks were awarded if it was entirely incorrect. If the factor

was unattempted then it was left blank to distinguish from incorrect, and will default to 0 when

a numerical value is required for the �eld.

6An existing support tool for ontology that provides this kind of support and discussed in Section 2.4.1

151



6.3. What E�ect Did OSWIN Have? Chapter 6. User Evaluation

Of the 23 factors, 8 pertained to correctness:

1. Losses. Have they de�ned the correct losses?

2. Hazards. Have they de�ned the correct hazards?

3. Controlled Process. Have they de�ned the correct Controlled Process?

4. Control Actions: Have they de�ned the correct Control Actions?

5. Feedback: Have they de�ned the correct Feedback?

6. Controllers: Have they identi�ed the correct Controllers?

7. Unsafe Control Actions: Have they correctly identi�ed the Unsafe Control Actions?

8. UCA Link to Hazards: Have they correctly linked the UCAs to the correct Hazards?

Of the 23 factors, the remaining 15 pertain to sensibility:

1. Loss Label: Does it describe a capability?

2. Hazard Fluents: Are they �uents?

3. Hazard Link to Loss: Are they sensible given their de�nitions?

4. Controlled Process Label: Is it a Controlled Process?

5. Controlled Process Subjects: Are they consistent with their model?

6. Control Action Label: Are they Capabilities?

7. Control Action Requests: Are they relevant to the hazard conditions?

8. Control Action Poss: For UCA, are they de�ned and sensible?

9. Feedback Label: Does it describe some method of recording a �uent?

10. Feedback records: Is it relevant to the hazards and recorded by the method?

11. Controllers Label: Is it a control system?

12. Controller Capabilities: Are they consistent with the model and reasonable?

13. Controller Feedback: Are they consistent with the model and reasonable?

14. Consistent UCA: Have they identi�ed them consistent with their model?

15. Consistent UCA Link to Hazards: Have they identi�ed them consistent with their model?

Once the factors were marked, three scores were calculated for each user:

� Total %: Sum marks / Maximum Possible Score

� Correctness %: Sum Correctness Factor Marks / Maximum Possible Correctness Score

� Sensibility %: Sum Sensibility Factor Marks / Maximum Possible Sensibility Score

The results of marking are summarised in Table 6.3

152



Chapter 6. User Evaluation 6.3. What E�ect Did OSWIN Have?

Figure 6.5: Histogram showing distribution of scores for Total %

Figure 6.6: Histogram showing distribution of scores for Correctness %

Table 6.3: Summary of Model Quality Scores

Score Mean Standard Deviation Min Median Max Histogram

Total % 0.4756 0.1908 0.1739 0.4499 0.8659 Figure 6.5

Correctness % 0.3570 0.2558 0.0000 0.2917 0.8750 Figure 6.6

Sensibility % 0.5309 0.1893 0.1778 0.5333 0.9111 Figure 6.7

The Total % score averaged 48%. The Sensibility % score was a little higher at 53% and with

a slightly lower standard deviation, whereas the Correctness % was lower at 36% and with

a broader standard deviation. Thus the users are scoring higher on their sensibility in the

153



6.3. What E�ect Did OSWIN Have? Chapter 6. User Evaluation

Figure 6.7: Histogram showing distribution of scores for Sensibility %

models than correctness. The users' scores for correctness depend upon both an adherence to

the scenario and sensibility: later correct scores will be prohibited by earlier errors. Therefore,

along with OSWIN targeting sensibility, it is expected that correctness scores would be lower to

some unknown degree.

6.3.2 Determining Learning

To determine if learning occurred during the analysis the STPA pre and post questionnaires

were marked and the di�erence in scores compared. The Wilcoxon Signed Rank Test, for paired

data, was used to test for learning based on these scores.

Under this test the null hypothesis is taken as the scores for �STPA Pre� are less than or the

same as those of �STPA Post�, meaning that the median of the di�erence (Pre − Post) will

either be symmetric around the median at or below 0. The Wilcoxon Signed Rank statistic

(sum of the ranks of the di�erences above zero) is 92.0, however p=0.1914, therefore the null

hypothesis cannot be rejected based upon this data and the claim that learning occurred across

the population cannot be a�rmed.

6.3.3 Do Interventions E�ect Task Completion?

Due to the each user-study being assigned a 45 minute slot to complete in the users didn't

all have time to complete the study. Furthermore, some users take more individual actions

than others. This is important as it's expected that the more work the user did the more

interventions they are likely to have encountered, and so it could be argued that some of the

154



Chapter 6. User Evaluation 6.3. What E�ect Did OSWIN Have?

Figure 6.8: Histogram showing distribution of number of actions taken per user

correlation between Intervention Count and any of the model quality scores could be caused by

the users who did better taking a greater volume of actions or progressing further, which then

triggers more interventions.

For testing correlation Spearman's rank correlation coe�cient is used as a non-parametric mea-

sure that measures how well the relationship between the two variables can be described by a

monotonic and not necessarily linear function.

As an STPA analysis is iterative and de�nitions within steps can be done in di�erent orders it's

not possible to use navigation to determine progress. Instead the 23 factors that are marked can

be used to judge what was attempted: a mark of 0, 1, 2, or 3 denotes the factor was attempted

and so the mark was assigned. When a factor was not attempted, no mark was assigned and so

the missing marks can be used to determine what factors were not attempted. This data was

used to generate a measure called �Percent Complete�, which describes how much of the system-

safety analysis the user had completed. Counting the actions taken is as trivial as counting the

length of the log. The summary statistics of these two measures are in Table 6.4

Table 6.4: Summary of Work Quantity Measures

Measure Mean Standard Deviation Min Median Max Histogram

Action Count 255.68 86.88 94 238 463 Figure 6.8

Percent Complete 0.8166 0.1727 0.3478 0.8696 1 Figure 6.9

155



6.3. What E�ect Did OSWIN Have? Chapter 6. User Evaluation

Figure 6.9: Histogram showing distribution of Percent Complete measure

A correlation between these two measures is expected: the more actions a user takes the more

they should complete. However, no such correlation was found. With a null hypothesis of a

negative or no correlation between the two measures the Spearman Rank Correlation Coe�cient

was 0.08 with p=0.3.

A correlation between Action Count and Intervention Count would indicate that the more actions

taken, the more interventions would be expected, as well as the more interventions provided the

more actions would be expected to be taken. A correlation is intuitively expected here, especially

as a minimum number of actions are required for certain interventions to trigger. However, if a

user has not engaged with OSWIN's interventions then the Intervention Count measure will be

1 or 2, no matter how many actions were taken or were possible due to OSWIN waiting for the

intervention already o�ered being engaged with.

Therefore it's necessary to distinguish between the interventions o�ered and the interventions

engaged with to determine any correlation with Action Count or Percent Complete. It's possible

for a user to have read and taken into account an intervention while not resolving it, which would

be a form of engagement, but for the purposes of this correlation an engagement is an action

that allows an another intervention to be o�ered, i.e: the intervention is resolved. Therefore an

additional variable is measured for this correlation: �Interventions Resolved�, where a resolved

intervention is one that is o�ered and whose query no-longer holds in the �nal situation. The

summary statistics compared to Intervention Count are in Table 6.5.

156



Chapter 6. User Evaluation 6.3. What E�ect Did OSWIN Have?

Figure 6.10: Histogram showing distribution of Interventions Resolved per user

Table 6.5: Summary of Intervention Count Measures

Measure Mean Standard Deviation Min Median Max Histogram

Intervention Count 3.51 2.06 0 3 9 Figure 6.1

Interventions Resolved 2.32 1.97 0 2 7 Figure 6.10

157



6.3. What E�ect Did OSWIN Have? Chapter 6. User Evaluation

Figure 6.11: Interventions Resolved against Percent Complete including the users excluded from
the correlation test who resolved 0 interventions

For users who resolved 0 interventions the number of actions taken cannot correlate with the

number of interventions either provided or resolved as the number of interventions was prohibited

from increasing. With these 8 users excluded, the Spearman Rank Correlation Coe�cients were

calculated, in each case the alternate hypothesis is that there is positive correlation between the

two variables, shown in Table 6.6. Interventions Resolved is plotted against Percent Complete

in Figure 6.11

Table 6.6: Spearman Rank Correlation between Intervention Count measures andWork Quantity
measures

First Variable Second Variable R p

Intervention Count Action Count 0.3586 0.0280

Interventions Resolved Action Count 0.3412 0.0351

Intervention Count Percent Complete 0.4008 0.0156

Interventions Resolved Percent Complete 0.4626 0.0058

158



Chapter 6. User Evaluation 6.3. What E�ect Did OSWIN Have?

Figure 6.12: Intervention Count plotted against the Total quality mark

In all cases the null hypothesis can be rejected in favour of the alternate: that a positive corre-

lation exists between the First and Second Variables. To resolve an intervention requires taking

action and interventions cannot occur without the necessary actions been taken, therefore these

correlations are to be expected. However, it's encouraging that the coe�cients for Percent Com-

plete are stronger than for Action Count, as there is no correlation between Percent Complete

and Action Count (R=0.0890, p=0.3 for single-tailed test with an alternative hypothesis of a

positive correlation), and so it appears that the interventions are having a targeted e�ect on

completion rather than just actions, provided the user engages with them.

6.3.4 Does Providing Interventions Positively E�ect Model Quality?

If OSWIN's interventions were to positively e�ect model quality a positive correlation between

the number of interventions provided and the quality of the model would be expected. Addi-

tionally this correlation should be present for the internal quality (sensibility) and should not

be present for the correctness quality mark as OSWIN's interventions cannot e�ect correctness.

The �rst test is to see if there is a correlation between �Intervention Count� and the �Total %�

quality mark. These two variables are plotted in Figure 6.12. Taking the null hypothesis for

a single-tailed test as �Intervention Count has no e�ect or a negative e�ect on Total %�, and

alternative hypothesis as �Intervention Count has a positive e�ect on Total %�, the Spearman

rank correlation coe�cient (R) is 0.28 with p=0.04. Therefore it can be concluded that the

Intervention Count weakly correlates with the Total %.

159



6.3. What E�ect Did OSWIN Have? Chapter 6. User Evaluation

The same is repeated substituting �Total %� for �Correctness %� and �Sensibility %�, giving the

results shown in Table 6.7.

Table 6.7: Spearman Rank Correlation between Intervention Count measures and Model Quality
measures

First Variable Second Variable R p

Intervention Count Total % 0.2801 0.0466

Intervention Count Correctness % 0.0446 0.3964

Intervention Count Sensibility % 0.2989 0.0361

Interventions Resolved Total % 0.3208 0.0264

Interventions Resolved Correctness % 0.0906 0.2968

Interventions Resolved Sensibility % 0.3475 0.0175

These results show the stronger correlation for Sensibility than Total, as expected. They also fail

to show any correlation for Correctness, as expected. The correlations are also stronger if the

interventions are resolved (i.e. the intervention situation query fails in some situation after the

intervention is given). Table 6.6 shows the correlations between Action Count with Intervention

Count, and Percent Complete also with Intervention Count. Furthermore, Percent Complete

correlates with Total % with R = 0.68 and p = 1.59 × 10−6 (single-tailed positive), meaning

the more complete a model is the better the model quality. Therefore the correlations taking

into account the Percent Complete also need to be examined to determine if the interventions

improve model quality regardless of how much of the model they completed.

To account for Percent Complete in the model quality three new measures are introduced based

upon the existing ones, which only score based on factors attempted, i.e. with a mark between

0 and 3 (summarised in Table 6.8):

� Total Complete %: Sum marks / Factors attempted count ×3

� Correctness Complete %: Sum Correctness Factor Marks / Correctness Factors attempted

count ×3

� Sensibility Complete %: Sum Sensibility Factor Marks / Sensibility Factors attempted

count ×3

160



Chapter 6. User Evaluation 6.3. What E�ect Did OSWIN Have?

Table 6.8: Summary of Model Quality Scores accounting for completeness

Score Mean Standard Deviation Min Median Max

Total Complete % 0.5751 0.1681 0.2807 0.5758 0.8768

Correctness Complete % 0.4070 0.2673 0.0000 0.4166 0.8750

Sensibility Complete % 0.6647 0.1447 0.3333 0.6667 0.9111

The Spearman Rank Correlation Coe�cient for these proportional quality measures with the

alternative hypotheses being a positive correlation between the First and Second variables are

shown in Table 6.9.

Table 6.9: Spearman Rank Correlation between Intervention Count measures and proportional
Model Quality measures

First Variable Second Variable R p

Intervention Count Total Complete % 0.0771 0.3251

Intervention Count Correctness Complete % -0.028 0.5662

Intervention Count Sensibility Complete % 0.2090 0.1072

Interventions Resolved Total Complete % 0.1273 0.2265

Interventions Resolved Correctness Complete % 0.0155 0.4638

Interventions Resolved Sensibility Complete % 0.2247 0.0906

No p-value in Table 6.9 can be used to justify rejecting the null hypotheses that there is no

correlation, or a negative correlation between providing interventions and the model quality

measures of just the model de�ned. When the null hypotheses are taken for a two-tailed test as

�There is no correlation between First and Second Variables�, the p-values also fail to give cause

to reject it. From this it cannot be concluded that there's a correlation between the quality

of the parts of a model the user has de�ned and the interventions o�ered, despite their being

correlations between the whole model quality and the number of interventions o�ered/resolved.

6.3.5 Does Providing Interventions Improve Learning?

Although learning across the entire population could not be claimed, there may be a correlation

between learning and intervention count as the questions in the STPA Questionnaire directly

161



6.3. What E�ect Did OSWIN Have? Chapter 6. User Evaluation

Figure 6.13: Glossary Count plotted against STPA Di�, which is the STPA Post - STPA Pre

relate to the interventions provided. In this case it would be expected that a user who has not

learned something in the STPA Questionnaire will be more likely to encounter an intervention

related to that learning, which they should learn from.

To test this hypotheses the �STPA Di�� measure is used, which is �STPA Post - STPA Pre�. The

null hypothesis taken for a single tailed test is �Intervention Count has no e�ect or a negative

e�ect on STPA Di��, with the alternative hypothesis of �Intervention Count has a positive

e�ect on STPA Di��. For this test the Spearman Rank Correlation Coe�cient (R) is -0.06,

with p=0.64. Therefore the null hypothesis cannot be rejected and the claim of interventions

improving learning cannot be made.

However, interventions were not the sole learning support tool made available in the application.

A user was also able to check terms in the glossary. Conducting the same test but substituting

�Intervention Count� for �Glossary Count�, where �Glossary Count� is the number of times the

user checked a glossary term revealed a weak correlation with R = 0.28 and p=0.04. This is

plotted in Figure 6.13

This is quite a surprising result: the interventions, which the learning test targeted, seem to

not have a discernible e�ect on the learning but the glossary, which depends on the user being

pro-active, does. One possible explanation is that the users with most to learn depended more

heavily on the glossary in their analyses.

162



Chapter 6. User Evaluation 6.4. User Evaluation Conclusions

6.4 User Evaluation Conclusions

How did OSWIN intervene with the system safety analysis? It provided 138 interventions with

missing-type interventions being more common than mistake-type interventions. Users reported

they found the missing type interventions useful, particularly as the model is too large to keep

visible at any time and so the interventions aided them in �nding what they had missed:

� User-26 stated: �It pointing out missing de�nitions was useful�,

� User-28 with 2 missing and 2 mistake interventions stated: �Hints provided were helpful�

� User-36 stated: �Oswin [sic] provided some good information�. Their initial analysis was

done with 2 hazards, they then went back to add more, which is when they verbally

reported that OSWIN providing missing-interventions became more important to them,

helping to �nd what is missing.

� User-42 stated: �Hint section was quite helpful to �nd next step.�

� User-44 was observed to be relying heavily on the missing interventions, with resolutions to

one missing-intervention giving rise to another missing-intervention. Their feedback was

to request textual-improvement to make these missing de�nitions easier to �nd: �More

clear labels when giving help, eg stating what �-2 related to, a loss or a hazard to make it

easier to �nd�

These users reported that the missing interventions helped them to complete more of their

analysis.

OSWIN was also able to make use of the history of actions to: apply fading on 10 occasions, begin

from level 1 for the novel interventions, increase the level of intervention as requested and so

begin from higher levels for repeated interventions on 8 occasions. This justi�es a diachronic view

in which the history is available. Furthermore, this history was available to use in the post-study

analyses to see how often fading had occurred. The history was also used in analysing potential

interventions and additional correlations, for example when conducting the post-study analysis

to see if capability labels contained verbs it was possible to check every label asserted whether it

had been retracted later or not. This post-study analysis used in conjunction with observation

enabled the identi�cation of the multiple interventions for inclusion in Section 6.2.3, which

would have been relevant to the majority of users and can be included in further-work.

With regards to the e�ect of the interventions, only correlations can be examined. Correlations

163



6.4. User Evaluation Conclusions Chapter 6. User Evaluation

were discovered between interventions o�ered/resolved and the total/sensibility model quality

measures. A correlation was also discovered between Percent Complete and the number of

interventions o�ered/resolved. However no correlation can be claimed for the interventions and

model quality when that model quality measurement is only considering the parts that the user

de�ned.

The interventions did not aid, in a statistically signi�cant measurable manner, the user to make

higher quality assertions. However they do correlate with the user making a greater quantity of

sensible assertions. Given that the ratio of mistake-type to missing-type interventions pro�ered

was 5:64 (4:39 for interventions resolved), this makes some sense: OSWIN primarily o�ered

aid in completing the model over correcting it. Additional potential interventions for common

mistakes that would e�ect multiple users models were identi�ed from the observation, such as

the lack of verbs in capability labels, which if implemented may enable OSWIN to be more

e�ective in supporting model quality improvement.

The interventions did nothing to improve adherence to the provided system scenario, as designed,

and improved model quality whether the user adhered to the system scenario or not. This is

as expected, but in future-work a guided-tutoring feature could be added to walk a beginner

through set example analyses if so desired7. The same methodology could be used to achieve

this by adding additional interventions that pertain solely to the set examples, and adding the

necessary GUI features that will guide and instruct the user.

The interventions did not improve learning, however use of the glossary did. Furthermore from

the observations of users interacting with the application a strategy for improving the glossary

functionality was identi�ed, which would also exploit the contingent sca�olding mechanism.

OSWIN has exploited the diachronic view of the ontology authoring process to o�er interventions

that correlate with model quality regardless of the scenario, primarily through informing a user

about what they were missing, as reported by users. Additional interventions and features have

been identi�ed for future-work that should target common mistakes and improve learning.

7As requested by user 56 in their feedback: "As �rst time using STPA, Oswin could have helped in instructing
me through the process in more detail, step by step, rather than pointing out large sections that I had missed.
Very di�cult to do the STPA process without having instructions on how to do the STPA process to hand."

164



Chapter 7

Conclusions

Can ontology support Sca�olding for System Safety Analysis? This thesis sought to address

this question, which means also addressing every domain in that question: ontology, ontology

authoring, Contingent Sca�olding, and System Safety Analysis. Furthermore, if ontology can

provide support, is that support e�ective?

The STAMP ontology has been de�ned, along with formal de�nitions in Situation Calculus

for ontology authoring and Contingent Sca�olding frameworks. These were applied to STPA

and incorporated into software (Whitby). To make these frameworks into shareable libraries

an architectural constraint was overcome by dependency inversion. Whitby, incorporating the

ontology and theoretical frameworks, was then tested in a user-study. The outcomes of the

user-study showed promise; the interventions correlated with the completeness as well as the

quality of their analyses, and according to user feedback, the missing-type interventions enabled

them to complete more of their analysis.

In this chapter the whole research process will be summarised, contributions discussed, general-

isability and applicability considered, then directions for future work proposed.

7.1 Synopsis

STAMP was chosen as a model to build upon the existing set-theoretic model from Thomas

(2013), with the STPA analysis methodology used before the system is designed due to the

additional ontological challenges that representing some conceptualisation imposes. Therefore a

STAMP ontology was required. The STAMP model is based in a control systems paradigm with

165



7.1. Synopsis Chapter 7. Conclusions

a focus on safety, therefore ontologies relating to hazards, systems, and behaviour (as in change

in state over time abstracted out into conceptual situations for STPA). These informed the

authoring of a multi-layered STAMP ontology with modules for control systems and situations.

With the STAMP ontology written, the next goal was to tackle the provision of support. Con-

tingent Sca�olding was chosen due to the claims that it can enable a user to produce a product

beyond their capabilities (D. Wood, Bruner, et al. 1976), and it being recommended for use in

ill-de�ned domains (Mitrovic and Weerasinghe 2009), which System Safety Analysis is.

When a human tutor is sca�olding, they make use of their memory of prior events with their

tutee to inform how much they'll interfere when they notice the tutee is in trouble. It was

noticed that existing ontology authoring support tools, like those discussed in Section 2.4.1,

did not keep a record of this history. When researching situations for the ontology it was noticed

that Situation Calculus can keep a history of actions, and so if an ontology authoring tool could

be formalised in Situation Calculus it would make this history available to support a Contingent

Sca�olding framework. This is the preposition that the additional information provided by a

diachronic view of the ontology over the synchronic view is useful. Therefore, the ontology

authoring framework was de�ned in Situation Calculus.

One of the concerns with Contingent Sca�olding is its lack of �exibility, which can be overcome

by constraints. A constraint can be used to recognise when a user has breached that constraint.

In the same way, a Situation Calculus query can be used to recognise when a user has entered

into a situation that's inadvisable to be in. Therefore, the Situation Calculus de�nitions were

continued to formally de�ne a Contingent Sca�olding framework. To author this framework also

required de�ning an abstract set of levels of interference and determining how being in �trouble�

could be both categorised and recognised.

Once the formal frameworks were de�ned they were applied to STPA prior to being authored

in software. Prolog was chosen as the language to write in due to the use of multiple logical

formalisms. However, Prolog was found to be lacking the necessary language constructs required

to make the code libraries pertaining to the ontology authoring and Contingent Sca�olding

frameworks shareable. This was an important factor because both frameworks should be domain

agnostic; creating them as third-party libraries supports this claim. Therefore the application

was refactored using the Logtalk programming language, which provides the necessary language

constructs to do the dependency inversion required. The third-party libraries were extracted

166



Chapter 7. Conclusions 7.2. Contributions

and the application was applied to another domain by Rubinstein Pérez (2021).

Finally a user-study was undertaken to assess the e�cacy of the software using the ontology

and implementing the ontology authoring and Contingent Sca�olding frameworks. The OSWIN

part of the software, responsible for Contingent Sca�olding, was found to be capable of o�ering

relevant interventions in a timely manner, which users found useful according to their feedback.

OSWIN primarily o�ered interventions of the missing-type, and there were correlations between:

interventions engaged with and how complete the models were, how complete the models were

and model quality, as well as interventions engaged with an model quality. This strongest

correlating measure of model quality ignored whether they followed the provided scenario or

not, suggesting generalisability across system safety analysis domains.

7.2 Contributions

In this section the signi�cance of the research accomplished will be highlighted on a domain

basis.

7.2.1 System Safety Analysis

Ontology for System Safety Analysis has been done before (See Section 2.2.1), however the

approach to authoring the STAMP ontology is novel for this domain by taking a top-down

approach from the very top at a philosophical level of realism and conceptualism, down through

theories of situations, to control systems, and �nally to the domain of STAMP. This approach

addressed some of the issues in the STPA-Sec ontology discussed in Section 2.2.1: all terms

in the STAMP ontology are de�ned according to the conceptualisation of their being rather

than how they are used in the STAMP model artifacts. The ontology also provides a di�erent

perspective on the STAMP model for consideration by the STAMP community. In particular

it highlights the di�erent kinds of Safety Constraint, provides a taxonomy of unsafe control

actions, and makes clear the abstractions used in the model.

When authoring STAMP ontology a top-ontology was used to discipline the rest of the on-

tology authoring process (Arp et al. 2015), with the distinction between universal-realism and

conceptual being addressed. The approach taken then worked top-down to de�ne modules of

situations to capture hypothetical behaviour, and control systems, which is a foundational the-

ory to STAMP (N. Leveson 2017, ch.3). The STAMP module was de�ned being subsumed by

167



7.2. Contributions Chapter 7. Conclusions

terms from the higher modules. This resulted in an ontology capable of representing the STAMP

model and that enables additional novel reasoning. This is useful to those who create tools to

support STAMP analyses, such as Whitby, which exploits only some of the possible reasoning.

The ontology also contributes to the reasoning underlying existing methodologies of support for

analysts, which has been a generative approach in the tools discussed in Section 2.1.3. These

tools will generate all possible states for a user to review if a control action would be unsafe in

that state, with some tools also providing rules to �lter the states. The ontological representation

can also provide this generative support: reasoning with the sets these tools use is discussed in

Appendix B. However, due to the use of Situation Calculus to inform the Situation ontology

module, a more targeted approach can be taken to �nd the states and control actions that

will result in a hazard given the information captured in the ontology (also in Appendix B).

Additionally the ontology contains the means to aid in classi�cation, such as determining if

something is an actuator or controller, which could be done with an expert system as discussed

in Section 3.7. The greater scope of reasoning provided by the ontology provides greater scope

for support.

Finally, this thesis proposes a pedagogical approach to providing support in the form of Con-

tingent Sca�olding and demonstrates that it can help non-experts. Given that System Safety

Analysis is a high-value and di�cult task, the ability to support a non-expert user to produce a

higher quality analysis than they are capable of alone is also of high-value.

7.2.2 Ontology Modeling and Authoring

The STAMP ontology when applied with STPA analysis is an unusual use of ontology as it

represents an entirely hypothetical world, using conceptual notions of the things in that world,

but for a real-world application. The questions asked of the ontology, such as �What would

happen if?� and �How can I prevent that from happening?� place requirements on the ontology

that are quite di�erent from recording some process of events to recall and reason with. Due

to these requirements the additional hasPositiveEffect and hasNegativeEffect roles were

added to the Situation-Process behavioural loop to allow reasoning with Situation Calculus

with branching time, which may particularly be of interest to users of the Activity Speci�cation

Ontology Design Pattern (Katsumi and Fox 2017) and others who need to hypothesise about

possible futures.

168



Chapter 7. Conclusions 7.2. Contributions

The Control Systems module in the STAMP ontology provides a contribution to those who

are authoring a more complete Control Systems ontology. This module provides a perspective

on systems where the main focus is on behaviour and control, rather than structure of the

components.

When authoring the ontology a-priori modularisation (Thakker et al. 2011) was successfully

used to de�ne the architecture. Whilst there is a chapter in this thesis regarding the refactoring

of the software, no such refactoring of the ontology was required. This methodology is not a

novelty of this thesis, however this is a testimony to the e�ectiveness of the approach to managing

dynamicity and complexity. The methodology was found to be so e�ective that it was re-applied

to the software architecture during the refactor.

This thesis has argued that the additional information in the diachronic view of an ontology

is useful for providing support as it retains a history of how the ontology was authored. The

diachronic view can not only recall what has been deleted, but it can also recall the complete state

of the ontology at any time during the authoring process. Furthermore, additional information

about the authoring process can be captured, such as what interventions are o�ered. The

ontology authoring framework is contributed as one means to achieve this diachronic view.

Using the ontology authoring framework enabled the Contingent Sca�olding framework to work

without the need for an additional user-model to remember past events.

The Contingent Sca�olding framework applied to ontology authoring is also a novel means of

supporting an author. As per System Safety Analysis, ontology authoring is an ill-de�ned task

in an ill-de�ned domain, and so Contingent Sca�olding is recommended as a support method-

ology for it (Mitrovic and Weerasinghe 2009). This thesis has demonstrated the applicability of

Contingent Sca�olding as users who were unaware they were authoring an ontology by extending

the STAMP ontology were successfully supported by it.

7.2.3 Intelligent Tutoring

Contingent Sca�olding is applied by tutors, both human and arti�cially intelligent software,

following from its identi�cation and description by D. Wood, Bruner, et al. (1976). This research

contributes a formalised model for Contingent Sca�olding such that whether an intervention can

be o�ered or not can be proven, rather than merely tested in software. The formalisation also

provides discipline to precise discussion around issues such as what �trouble� means.

169



7.2. Contributions Chapter 7. Conclusions

This thesis has o�ered a de�nition of trouble as some mistake or missing something, derived

from the STAMP taxonomy of potentially unsafe control actions in Section 4.3.2. It has also

pro�ered a de�nition of the levels of intervention that is abstract and intended to be generalisable.

These were used in the Contingent Sca�olding framework and subsequently applied to STPA

and used in Whitby for the user-study.

Furthermore, the formalisation of Contingent Sca�olding was done using Situation Calculus,

which provides a means of addressing the �exibility issue that D. Wood and H. Wood (1996a;

1996b) complained of with regards to software implementations of Contingent Sca�olding (See

Section 2.3). Rather than model what a user should do, this approach to Contingent Sca�olding

uses a situation query to determine when the user has made a mistake or missed something.

This is similar to the use of constraints in Contingent Sca�olding, where the violation of some

constraint is used as an indication that an intervention is needed (Ohlsson 2015), but with

expressive Situation Calculus queries, including the over the history of actions, and implemented

in a homoiconic language such that the successful query itself can be reasoned with to inform

the intervention.

Under the Contingent Sca�olding framework, a user can take a creative approach and interven-

tions will only be o�ered when one of these situation queries recognises that the user is in a

situation that is inadvisable. Furthermore, the libertarian-paternalistic perspective associated

with nudges is adopted for the interventions, such that the framework will advise a user but

acquiesce should the user dismiss it. This approach was adopted for an ill-de�ned task where the

user may have additional information that the software does not: it enables sensible behaviour

for ill-de�ned tasks but it may not be appropriate for well-de�ned tasks.

7.2.4 Prolog Programming

The di�culty encountered with the extraction of third-party libraries prior to the refactor of

Whitby, which was the motivation to refactor, revealed that the Prolog language lacks the

necessary constructs to do dependency inversion. That's not to say that Prolog cannot do

dependency inversion, but that �rst the necessary language constructs need to be de�ned. These

de�nitions have already been authored as part of the Logtalk programming language, which itself

compiles to Prolog.

This thesis then demonstrates the need for dependency inversion to make third-partly libraries,

170



Chapter 7. Conclusions 7.3. Generality and Wider Applicability

particularly those that contain rules to be applied to facts in a user's code. It describes the

necessary language constructs to achieve dependency inversion and demonstrates it using these

constructs in Logtalk. Finally it demonstrates the success of this approach by extracting the

frameworks as third-party libraries, some of which are made publicly available1.

7.3 Generality and Wider Applicability

Abstraction has been a constant theme through the research, with the goal of creating units

that could be extracted, reused, and repurposed. Therefore multiple products of the research

can be, and have been reapplied.

7.3.1 Reuse of the STAMP Ontology

The STAMP Ontology is reused every time a user extends it when conducting their own STPA

analysis. This was accomplished through the a-priori modularisation, where the user analysis

forms the case-speci�c layer. However, each module could also be reapplied:

� STAMP module: this thesis has used it for STPA, however it could also be extended for

STPASec (akin to the existing ontology discussed in Section 2.2.1) and applied to CAST

(post-accident analysis).

� Control Systems module: can be applied to anything reasoning about something that

can be represented as a control system, which is a very broad domain. It's expected to

be particularly useful when reasoning about behaviour, control, and capabilities as the

ontology was informed by the perspective of STAMP, which considers these issues.

� Situation module: for reasoning about situations, particularly useful if the intention is

to use it in conjunction with a Situation Calculus reasoner to answer questions. As an

upper-ontology layer, this module is very general and can be applied to a wide range of

domains.

� Top module: as the highest module this is the most general of all. However, there are more

established top ontologies available, which have been the subject of far more research too.

This module was not authored with the intention of reuse, but only in the interest of

independence and because of philosophical di�erences with BFO and UFO.

1Using Logtalk's Package Manager and the "woolpack" Logtalk Pack Registry at https://github.com/

PaulBrownMagic/woolpack

171

https://github.com/PaulBrownMagic/woolpack
https://github.com/PaulBrownMagic/woolpack


7.3. Generality and Wider Applicability Chapter 7. Conclusions

The STAMP model, and so STAMP ontology shares terms that are found in other System

Safety artifacts, such as �Hazard� in Preliminary Hazard Analysis (PHA). This suggests some

generalisation could be accomplished such that information garnered from multiple sources could

be captured in a single ontology. To accomplish this would require identifying those terms,

conducting research over the relevant literature to check that the perspective of those terms in

STAMP is valid across the models, extracting them out into a �System Safety� module between

the Control Systems module and STAMP module, and using the �System Safety� module to

subsume the new methodology speci�c terms.

7.3.2 Reuse of Ontology Authoring and Contingent Sca�olding Frameworks

The ontology authoring framework was designed to be reused, either by implementing the de�-

nition in a programming language of choice, or using the Logtalk pack. It can be used to capture

the authoring process of any ontology, and an ontology authoring tool developer can add any

additional pertinent action they wish to record.

There is also the possibility to apply this approach to data-capturing processes other than

ontology authoring. Event Sourcing is a methodology whereby events are logged which update

state, thus state can be recovered by replaying the events (Erb et al. 2016). This shares the

logging of the events and determining of state from the events with the Situation Calculus

formalisation of the ontology authoring framework. However, because the ontology authoring

framework is written in Situation Calculus it's formal, which means state can be proven rather

than reconstructed. Furthermore, Situation Calculus enables a greater range of queries as it can

be used to reason with the events themselves and needn't restart from the beginning of the log

to determine state, but can begin from the end of the log. This similarity suggests the approach

taken could be generalised to other applications, such as those using Event Sourcing.

The Contingent Sca�olding framework was also designed for reuse, either by implementing the

de�nition in a programming language of choice, or by using the Logtalk pack as a third-party

library. To apply it to another domain requires the de�nition of missing and mistake interven-

tions, and determining how or if level 4 and level 5 interference can be accomplished based upon

if the task is ill-de�ned and the GUI. The same needs to be done if reapplying it to an ontology

authoring task in another domain too, as the interventions are domain and GUI speci�c.

172



Chapter 7. Conclusions 7.4. Future Work

7.3.3 Reuse of Whitby

Whitby was provided to Rubinstein Pérez (2021), who reapplied it to the robotics planning

domain. To do so they needed to create their own ontology for extension, bank of interventions,

create their own GUI, and adapt the code that generated interfering instructions at level 4 to

work with their GUI. As they had the entire application, complete with web-server, they also

needed to change the web-pages served to provide their own GUI HTML and client-side code.

Additionally, the third-party libraries for Situation Calculus reasoning, ontology authoring and

Contingent Sca�olding can also be reused without the whole Whitby application. Examples of

the reuse of the Situation Calculus library were discussed in Section 5.7.

7.4 Future Work

This thesis was an exploration into the merit of using ontology to support System Safety Analysis,

as such there is much future work to be undertaken. Therefore the tasks are divided into short-

term and long-term projects.

7.4.1 Short-Term Future Work

The user-study revealed interventions that could be added into the intervention bank imme-

diately, and some that would require a little extra work to incorporate linguistic analysis into

the software. These interventions, some complete with their situation queries, were discussed in

Section 6.2.3. In the same Section 6.2.3, the idea of an interactive glossary that made use

of the Contingent Sca�olding framework to increase in level was proposed. Implementation of

this kind of glossary would show versatility of the framework and application to a help-seeking

use-case rather than the monitoring which is characteristic of Contingent Sca�olding.

Section 6.2.3 also proposed the implementation of a tutoring feature for instructing based on

pre-formulated examples, as well as the application of the methodology from BOADiS (Denaux

2013) to provide reassurance. Although these projects would take a little longer to implement

due to changes in GUI and implementation of algorithms, there is little research to undertake

to accomplish them and they're expected to resolve particular issues raised during the study.

With these changes in place it would be interesting to conduct another user-study to determine

if they have a tangible e�ect on the learning and analysis quality. Furthermore it would be

173



7.4. Future Work Chapter 7. Conclusions

interesting to compare results with other cohort targets, such as those who might be undertaking

formal study including STPA analysis. For example, trainee engineers who expect to need safety

analysis in the future as well as current engineers who are learning STPA for their current roles.

Such user-studies would require partnership other Universities who teach STPA as part of their

curriculum and industry partners who are using STPA as part of their system-safety toolkit.

These user-studies would provide an opportunity to hone the sca�olding to the needs of the

more experienced analysts, and unveil additional areas where support could be bene�cial.

Due to time constraints on the user-study, step 4 of STPA, which is discussed in Appendix A,

was excluded from the application. This can be added in immediately with interventions and

GUI to support that stage of the analysis.

7.4.2 Long-Term Future Work

There are a few topics that would be interesting to address with the STAMP ontology. Starting

from the top module, which is a kind of compromise between BFO and UFO, it would be

bene�cial to attempt to align it with both of these top ontologies. UFO should be quite achievable

given the majority of System Safety related ontologies discussed in Section 2.2.1 are subsumed

by it. Aligning to UFO will impact the lower modules, which must then be revised, for example

Fluents would need to take into account qualia.

Aligning with BFO would be more challenging due to the need to �rst de�ne conceptual terms

as concepts, such as System and Situation, although the Modal Relations Ontology (MRO), and

other Common Core Ontologies (CCO)2, which are subsumed by BFO, likely provide some of

the solution. Again, the lower modules would likely need some revision to correctly align with

BFO too.

Within the STAMP module part of the STAMP ontology, there are temporal terms, such as

�Too Soon� and �Too Short�, however there is no conceptualisation of time in the ontology,

and so what it means to be too soon or too short cannot be captured. Furthermore, a loss

denotes that something of value is lost, but there is no ontological representation of that thing

of value or value. The STAMP ontology contains little more than the minimum to capture an

analysis, but it would be useful to expand outwards from STAMP to incorporate these more

peripheral topics. Such expansion could aid in integrating the System Safety Analysis into the

2Available at: https://github.com/CommonCoreOntology/CommonCoreOntologies

174

https://github.com/CommonCoreOntology/CommonCoreOntologies


Chapter 7. Conclusions 7.4. Future Work

wider system life-cycle if other information were captured in the same ontology such as that

pertaining to manufacturing, maintenance, or decommissioning.

Additionally, as System Safety Analysis is often conducted using several methodologies, it would

be useful to expand on the STAMP ontology to incorporate additional methodologies, such as

FMEA, Change Analysis, or any other listed in Section 2.1.1. To accomplish this would

involve creating an additional �System Safety� module layer in the ontology as discussed in

Section 7.3.1.

The additional information the ontology authoring framework can capture has a lot of potential

for research in the domain of ontology authoring support. For example, knowing who asserted

or retracted what and when could be used to aid collaboration. Another topic, which would

require a signi�cant number of logs, would be to search for patterns in behaviour that indicate

an author is struggling without the need for pre-de�ning �trouble� situations. A third would be

to generalise the Contingent Sca�olding to an unknown ontology domain.

The ontology authoring and Contingent Sca�olding frameworks in their application to an STPA

analysis have been tested in a structured ontology extension process. In Whitby a user is

provided with the STAMP ontology to extend and a 3-step process with tailored graphical feed-

back to guide them through their authoring. However, it should be possible to make use of

these frameworks to support an ontology author creating an ontology ex nihilo, or extending

their chosen top-ontology without a prior known domain with an n-step guided authoring pro-

cess. The existing tools discussed in Section 2.4.1 can aid to inform such an application by

providing common mistakes (OOPS! (Poveda-Villalón et al. 2014)), the idea of user-asserted

�trouble� situations (OntoDebug (Schekotihin et al. 2018)), and guiding the user in their next

edits (BOADiS (Denaux 2013)).

In this thesis a decision was made to exploit the reasoning a�orded by the ontology to provide

sca�olding, however it could have also been exploited to auto-complete assertions, generate def-

initions, or suggest de�nitions. A partnership with either an software provider already working

with industry partners would provide an opportunity to gather information on how users would

like this reasoning to be exploited, and conduct user-studies to compare the relative bene�ts.

Plugin integration into commercial software for analysis would be ideal. This has the greatest

potential for the furthest reaching impact and providing a platform to conduct studies across

multiple domains, such that the bene�ts it aims to realize can be gradually enhanced.

175



7.5. And Finally Chapter 7. Conclusions

Although Whitby was reapplied to the robotics planning domain (Rubinstein Pérez 2021), it

would be bene�cial to reapply to some other ill-de�ned task and ill-de�ned domain. This would

greater demonstrate the versatility and domain agnosticism of the software plus underlying

frameworks. It would also enable a comparison of user-study results across domains, some-

thing Rubinstein Pérez (2021) was prevented from doing due to circumstances beyond their

control. Application to a new domain requires a suitable foundational ontology, set of relevant

interventions, and new interface.

7.5 And Finally

This research was undertaken to see if ontology could be exploited to support System Safety

Analysis. As an initial foray into the topic, this thesis has demostrated that it can. Furthermore,

it has brought to light multiple directions this research could be taken in to improve upon the

results obtained and to integrate it into the broader system life-cycle. The research also has

rami�cations for some of its sub-topics, such as ontology authoring support and Contingent

Sca�olding in software. Given the value of System Safety, the e�ect it has on our lives, money,

and environment, it has been a priviledge and most worthwhile endeavour to contribute to the

enabling of the betterment of the tools that support analysts to do the best job that they can.

176



References

A. Aviºienis, C. Landwehr, Laprie, J., and Randell, B. (Jan. 2004). �Basic Concepts and Tax-

onomy of Dependable and Secure Computing�. In: IEEE Transactions on Dependable and

Secure Computing 1, pp. 11�33. issn: 1545-5971. doi: 10.1109/TDSC.2004.2. url: doi.

ieeecomputersociety.org/10.1109/TDSC.2004.2.

AAIB (Feb. 2018). AAIB investigation to Jodel DR1050-M Excellence, G-JODL. https://www.

gov.uk/aaib-reports/aaib-investigation-to-jodel-dr1050-m-excellence-g-jodl.

Ahmad, Jana and K°emen, Petr (2016). �Ontological Anti-patterns in Aviation Safety Event

Models�. In: Communications in Computer and Information Science, pp. 18�30. doi: 10.

1007/978-3-319-45880-9:2.

Anderson, John R (1993). Rules of the Mind. Hillsdale, NJ: Lawrence Erlbaum Associates.

Arp, Robert, Smith, Barry, and Spear, Andrew D (2015). Building Ontologies with Basic Formal

Ontology. Cambridge, MA: The MIT Press. isbn: 9780262527811.

Artale, Alessandro, Franconi, Enrico, Guarino, Nicola, and Pazzi, Luca (1996). �Part-whole

relations in object-centered systems: An overview�. In: Data & Knowledge Engineering 20.3.

Modeling Parts and Wholes, pp. 347�383. issn: 0169-023X. doi: https://doi.org/10.1016/

S0169-023X(96)00013-4. url: http://www.sciencedirect.com/science/article/pii/

S0169023X96000134.

Auslander, D. M (1974). Introducing Systems and Control. USA: McGraw-Hill.

Aviation Investigation Report: Loss of Rudder in Flight (2007). https://www.skybrary.aero/

bookshelf/books/1364.pdf.

177

https://doi.org/10.1109/TDSC.2004.2
doi.ieeecomputersociety.org/10.1109/TDSC.2004.2
doi.ieeecomputersociety.org/10.1109/TDSC.2004.2
https://www.gov.uk/aaib-reports/aaib-investigation-to-jodel-dr1050-m-excellence-g-jodl
https://www.gov.uk/aaib-reports/aaib-investigation-to-jodel-dr1050-m-excellence-g-jodl
https://doi.org/10.1007/978-3-319-45880-9:2
https://doi.org/10.1007/978-3-319-45880-9:2
https://doi.org/https://doi.org/10.1016/S0169-023X(96)00013-4
https://doi.org/https://doi.org/10.1016/S0169-023X(96)00013-4
http://www.sciencedirect.com/science/article/pii/S0169023X96000134
http://www.sciencedirect.com/science/article/pii/S0169023X96000134
https://www.skybrary.aero/bookshelf/books/1364.pdf
https://www.skybrary.aero/bookshelf/books/1364.pdf


REFERENCES REFERENCES

Baader, Franz, Horrocks, Ian, Lutz, Carsten, and Sattler, Uli (2017). An Introduction to De-

scription Logic. Cambridge, UK: Cambridge University Press.

Bahr, Nicholas J (2015). System safety engineering and risk assessment. 2nd ed. Boca Raton:

CRC Press.

Barwise, Jon and Perry, John. (1983). Situations and Attitudes. eng. Cambridge, Mass.: MIT

Press. isbn: 0262021897.

Bede, Colgrave, Bertram, McClure, Judith, and Collins, Roger (2008). The ecclesiastical history

of the English people. Oxford University Press.

Beer, Sta�ord (1979). The heart of enterprise. Bath: Wiley, p. 118.

Bennett, Brandon and Galton, Antony P. (2004). �A unifying semantics for time and events�.

In: Arti�cial Intelligence 153.1-2, pp. 13�48. doi: 10.1016/j.artint.2003.02.001.

Björnsdóttir, Svana Helen and Rejzek, Martin (2017). �Embedding STPA into a highly successful

risk management software application�. In: 6th MIT STAMP Workshop, Boston, USA, 27-30

March 2017. ZHAW Zürcher Hochschule für Angewandte Wissenschaften.

Borgo, Stefano, Carrara, Massimiliano, Garbacz, Pawel, and Vermaas, Pieter E. (2009). �A

formal ontological perspective on the behaviors and functions of technical artifacts�. In: Ar-

ti�cial Intelligence for Engineering Design, Analysis and Manufacturing 23.01, p. 3. doi:

10.1017/s0890060409000079.

Brown, Paul S, Cohn, Anthony G, Hart, Glen, and Dimitrova, Vania (2020). �Contingent Scaf-

folding for System Safety Analysis�. In: International Conference on Arti�cial Intelligence in

Education. Springer, pp. 395�399.

Brown, Paul S, Dimitrova, Vania, Hart, Glen, Cohn, Anthony G, and Moura, Paulo (2021).

�Refactoring the Whitby Intelligent Tutoring System for Clean Architecture�. In: Theory and

Practice of Logic Programming 21.6, pp. 818�834.

Brown, Paul S. (Apr. 2022). PaulBrownMagic/STAMP-Ontology: Initial Release. Version v1.0.0.

doi: 10.5281/zenodo.6489774. url: https://doi.org/10.5281/zenodo.6489774.

178

https://doi.org/10.1016/j.artint.2003.02.001
https://doi.org/10.1017/s0890060409000079
https://doi.org/10.5281/zenodo.6489774
https://doi.org/10.5281/zenodo.6489774


REFERENCES REFERENCES

Daniels, Harry (2010). Vygotsky and Pedagogy. London: Routledge.

Day, Jeanne D. and Cordón, Luis A. (1993). �Static and Dynamic Measures of Ability: An

Experimental Comparison.� In: Journal of Educational Psychology 85.1, pp. 75�82. doi: 10.

1037/0022-0663.85.1.75.

Del Frate, Luca (2014). �Failure: Analysis of an Engineering Concept�. PhD thesis. Delft Uni-

versity of Technology.

Denaux, Ronald (2013). �Intuitive Ontology Authoring using Controlled Natural Language�.

PhD thesis. University of Leeds.

Dorf, Richard C and Bishop, Robert H (2011). Modern control systems. 12th ed. Boston [Mass.]:

Pearson.

Dowson, Mark (1997). �The Ariane 5 software failure�. In: ACM SIGSOFT Software Engineering

Notes 22.2, p. 84.

Du Boulay, Benedict and Luckin, Rosemary (Jan. 2001). �Modelling Human Teaching Tactics

and Strategies for Tutoring Systems�. In: International Journal of Arti�cial Intelligence in

Education 12, pp. 235�256. doi: 10.1007/s40593-015-0053-0.

Erb, Benjamin, Habiger, Gerhard, and Hauck, Franz J (2016). �On the potential of event sourcing

for retroactive actor-based programming�. In: First Workshop on Programming Models and

Languages for Distributed Computing, pp. 1�5.

Fleming, Cody Harrison, Spencer, Melissa, Thomas, John, Leveson, Nancy, and Wilkinson, Chris

(2013). �Safety assurance in NextGen and complex transportation systems�. In: Safety Science

55, pp. 173�187. doi: 10.1016/j.ssci.2012.12.005.

Gamma, Erich, Helm, Richard, Johnson, Ralph, and Vlissides, John (1997). Design Patterns:

Elements of Reusable Object-Oriented Software. Reading, Massachusetts: Addison Wesley.

Gangemi, Aldo and Mika, Peter (2003). �Understanding the Semantic Web through Descriptions

and Situations�. In: On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and

ODBASE. Ed. by Robert Meersman, Zahir Tari, and Douglas C. Schmidt. Berlin, Heidelberg:

Springer Berlin Heidelberg, pp. 689�706. isbn: 978-3-540-39964-3.

179

https://doi.org/10.1037/0022-0663.85.1.75
https://doi.org/10.1037/0022-0663.85.1.75
https://doi.org/10.1007/s40593-015-0053-0
https://doi.org/10.1016/j.ssci.2012.12.005


REFERENCES REFERENCES

Group, W3C SSN Incubator (2005). SSN Ontology example: Wind Sensor. https://www.w3.

org/2005/Incubator/ssn/ssnx/meteo/WM30.

Gruber, Thomas R. (1995). �Toward principles for the design of ontologies used for knowledge

sharing?� In: International Journal of Human-Computer Studies 43.5-6, pp. 907�928. doi:

10.1006/ijhc.1995.1081.

Guizzardi, Giancarlo, Botti Benevides, Alessander, Fonseca, Claudenir M, Porello, Daniele,

Almeida, João Paulo A, and Prince Sales, Tiago (2021). �UFO: Uni�ed Foundational On-

tology�. In: Applied Ontology Preprint, pp. 1�44.

Guizzardi, Giancarlo and Wagner, Gerd (2011). �Towards an Ontological Foundation of Discrete

Event Simulation�. In: Proceedings of the 2010 Winter Simulation Conference (WSC), pp. 652�

664.

Gurgel, D. L., Hirata, C. M., and M. Bezerra, J. d. (Sept. 2015). �A rule-based approach for

safety analysis using STAMP/STPA�. In: 2015 IEEE/AIAA 34th Digital Avionics Systems

Conference (DASC), 7B2-1-7B2�8. doi: 10.1109/DASC.2015.7311464.

Haller, Armin, Janowicz, Krzysztof, Cox, Simon, Le Phuoc, Danh, Taylor, Kerry, and Lefrançois,

Maxime (2017). Semantic Sensor Network Ontology. https://www.w3.org/TR/2017/REC-

vocab-ssn-20171019/.

Hayes, Patrick J. and Patel-Schneider, Peter F. (2020). RDF 1.1 Semantics. url: https://www.

w3.org/TR/2014/REC-rdf11-mt-20140225/%5C#reification (visited on 05/01/2020).

Herre, Heinrich (2010). �General Formal Ontology (GFO): A foundational ontology for con-

ceptual modelling�. In: Theory and applications of ontology: computer applications. Springer,

pp. 297�345.

INBAS (2018). Ontologie pro bezpecnost v letectvi dokumentace. https://dev.inbas.cz/

owldoc/index.html.

ISO/IEC (1995). International Standard ISO/IEC 13211-1 Information Technology � Program-

ming Languages � Prolog � Part I: General core. ISO/IEC.

180

https://www.w3.org/2005/Incubator/ssn/ssnx/meteo/WM30
https://www.w3.org/2005/Incubator/ssn/ssnx/meteo/WM30
https://doi.org/10.1006/ijhc.1995.1081
https://doi.org/10.1109/DASC.2015.7311464
https://www.w3.org/TR/2017/REC-vocab-ssn-20171019/
https://www.w3.org/TR/2017/REC-vocab-ssn-20171019/
https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/%5C#reification
https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/%5C#reification
https://dev.inbas.cz/owldoc/index.html
https://dev.inbas.cz/owldoc/index.html


REFERENCES REFERENCES

� (2000). International Standard ISO/IEC 13211-2 Information Technology � Programming

Languages � Prolog � Part II: Modules. ISO/IEC.

Jenkins, Steven (2018). Semantic Technologies for Systems Engineering. https://github.com/

st4se. Accessed: 2018-3-6.

Katsumi, Megan and Fox, Mark (2017). �De�ning Activity Speci�cations in OWL�. In: Proceed-

ings of the Workshop on Ontology Patterns.

Katz, Sandra and Lesgold, Alan (1993). �The Role of the Tutor in Computer-Based Collaborative

Learning Situations�. In: Computers as Cognitive Tools. Ed. by Susanne P. Lajoie and Sharon

J. Derry. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 289�318.

Kokar, Mieczyslaw M, Matheus, Christopher J, and Baclawski, Kenneth (2009). �Ontology-based

situation awareness�. In: Information fusion 10.1, pp. 83�98.

Kostov, Bogdan, Ahmad, Jana, and K°emen, Petr (2017). �Towards Ontology-Based Safety

Information Management in the Aviation Industry�. In: On the Move to Meaningful Internet

Systems: OTM 2016 Workshops. Cham: Springer International Publishing, pp. 242�251. isbn:

978-3-319-55961-2.

Kowalski, R and Sergot, M (Jan. 1986). �A Logic-based Calculus of Events�. In: New Gen.

Comput. 4.1, pp. 67�95. issn: 0288-3635. doi: 10.1007/BF03037383. url: http://dx.doi.

org/10.1007/BF03037383.

Lacy, Lee W. (2005). OWL: Representing Information Using The Web Ontology Language. Vic-

toria: Tra�ord.

Leveson, Nancy (2004). �A new accident model for engineering safer systems�. In: Safety science

42.4, pp. 237�270.

� (2017). Engineering a safer world. Cambridge, Mass.: The MIT Press.

Leveson, Nancy and Thomas, John (2018). STPA Handbook. https://psas.scripts.mit.edu/

home/get:file.php?name=STPA:handbook.pdf.

181

https://github.com/st4se
https://github.com/st4se
https://doi.org/10.1007/BF03037383
http://dx.doi.org/10.1007/BF03037383
http://dx.doi.org/10.1007/BF03037383
https://psas.scripts.mit.edu/home/get:file.php?name=STPA:handbook.pdf
https://psas.scripts.mit.edu/home/get:file.php?name=STPA:handbook.pdf


REFERENCES REFERENCES

Leveson, Nancy G and Turner, Clark S (1993). �An investigation of the Therac-25 accidents�.

In: Computer 26.7, pp. 18�41.

Liddell, H. G. and Scott, R. (1940). A Greek-English Lexicon. url: http://www.perseus.

tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.04.0057%3Aentry%3Dsu%2Fsthma

(visited on 12/12/2017).

Lynch, Collin, Ashley, Kevin D, Pinkwart, Niels, and Aleven, Vincent (2009). �Concepts, struc-

tures, and goals: Rede�ning ill-de�nedness�. In: International Journal of AI in Education 19.3,

pp. 253�266.

Martin, Robert C (2018). Clean Architecture: A Craftman's Guide to Software Structure and

Design. Hudson, New Jersey: Prentice Hall.

Masolo, Claudio, Borgo, Stefano, Gangemi, Aldo, Guarino, Nicola, and Oltramari, Alessandro

(2002). �Wonderweb deliverable d17�. In: Science Direct Working Paper No S1574-034X (04),

pp. 70214�8.

� (2003). WonderWeb Deliverable D18 Ontology Library (�nal). Tech. rep. IST Project 2001-

33052 WonderWeb: Ontology Infrastructure for the Semantic Web.

McCarthy, John and Hayes, Patrick J. (1969). �Some Philosophical Problems from the Stand-

point of Arti�cial Intelligence�. In: Machine Intelligence 4. Ed. by B. Meltzer and D. Michie.

reprinted in McC90. Edinburgh University Press, pp. 463�502.

Merrill, Douglas C., Reiser, Brian J., Ranney, Michael, and Trafton, J. Gregory (1992). �E�ective

Tutoring Techniques: A Comparison of Human Tutors and Intelligent Tutoring Systems�. In:

Journal of the Learning Sciences 2.3, pp. 277�305. doi: 10.1207/s15327809jls0203:2.

Mitrovic, Antonija and Weerasinghe, Amali (2009). �Revisiting ill-de�nedness and the conse-

quences for ITSs�. In: Arti�cial intelligence in education: Building learning systems that care

from knowledge representation to a�ective modelling, pp. 375�382.

Moura, Paulo (Apr. 2011). �Programming Patterns for Logtalk Parametric Objects�. In: Ap-

plications of Declarative Programming and Knowledge Management. Ed. by Salvador Abreu

182

http://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.04.0057%3Aentry%3Dsu%2Fsthma
http://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.04.0057%3Aentry%3Dsu%2Fsthma
https://doi.org/10.1207/s15327809jls0203:2


REFERENCES REFERENCES

and Dietmar Seipel. Vol. 6547. Lecture Notes in Arti�cial Intelligence. Berlin Heidelberg:

Springer-Verlag, pp. 52�69.

� (May 2021). The Logtalk Handbook. Release 3.46.0.

Mueller, Erik T (2015). Commonsense reasoning. 2nd ed. Waltham, MA: Elsevier.

Nguyen, Vinh, Bodenreider, Olivier, and Sheth, Amit (2014). �Don't like RDF rei�cation?�

In: Proceedings of the 23rd international conference on World wide web - WWW '14. doi:

10.1145/2566486.2567973.

Noy, N. and McGuinness, Deborah (Jan. 2001). �Ontology Development 101: A Guide to Cre-

ating Your First Ontology�. In: Knowledge Systems Laboratory 32.

Nuseibeh, Bashar (1997). �Ariane 5: who dunnit?� In: IEEE Software 14.3, p. 15.

O'Keefe, Richard A. (1990). The Craft of Prolog. Cambridge, Massachusetts: The MIT Press.

Odell, James J. (Jan. 1994). �Six Di�erent Kinds Of Composition�. In: Journal Of Object-

Oriented Programming 5.8.

Ohlsson, Stellan (2015). �Constraint-Based Modeling: From Cognitive Theory to Computer Tu-

toring � and Back Again�. In: International Journal of Arti�cial Intelligence in Education

26.1, pp. 457�473.

Pawlicki, Todd, Samost, Aubrey, Brown, Derek W., Manger, Ryan P., Kim, Gwe-Ya, and Leve-

son, Nancy G. (2016). �Application of systems and control theory-based hazard analysis to

radiation oncology�. In: Medical Physics 43.3, pp. 1514�1530. doi: 10.1118/1.4942384.

Pereira, Daniel Patrick, Hirata, Celso, and Nadjm-Tehrani, Simin (2019). �A STAMP-based

ontology approach to support safety and security analyses�. In: Journal of Information Security

and Applications 47, pp. 302�319.

Poveda-Villalón, María, Gómez-Pérez, Asunción, and Suárez-Figueroa, Mari Carmen (2014).

�OOPS! (OntOlogy Pitfall Scanner!)� In: International Journal on Semantic Web and Infor-

mation Systems 10.2, pp. 7�34. doi: 10.4018/ijswis.2014040102.

Reiter, Raymond (2001). Knowledge in Action. Cambridge, Massachusetts: The MIT Press.

183

https://doi.org/10.1145/2566486.2567973
https://doi.org/10.1118/1.4942384
https://doi.org/10.4018/ijswis.2014040102


REFERENCES REFERENCES

Rising, John M. and Leveson, Nancy G. (2018). �Systems-Theoretic Process Analysis of space

launch vehicles�. In: Journal of Space Safety Engineering 5.3-4, pp. 153�183. doi: 10.1016/

j.jsse.2018.06.004.

Rubinstein Pérez, Federico (2021). �Desarrollo de un Sistema de Gestión del Conocimiento que

utiliza Contingent Sca�olding para asistir a un operador industrial en la de�nición de procesos

de un cobot�. B.S. thesis. Universitat Politècnica de Catalunya.

Schekotihin, Konstantin, Rodler, Patrick, and Schmid, Wolfgang (2018). �OntoDebug: Interac-

tive Ontology Debugging Plug-in for Protégé�. In: Foundations of Information and Knowledge

Systems. Ed. by Flavio Ferrarotti and Stefan Woltran. Cham: Springer International Publish-

ing, pp. 340�359.

Shanahan, Murray (1997). Solving the Frame Problem. Cambridge, Massachusetts: The MIT

Press.

Shepardson, David (2018). 2017 safest year on record for commercial passenger air travel -

groups. https://uk.reuters.com/article/uk-aviation-safety/2017-safest-year-on-

record-for-commercial-passenger-air-travel-groups-idUKKBN1EQ17F.

Simons, Peter (1987). Parts. A study in Ontology. Oxford: Clarendon Press.

Souza, Fellipe GR, Pereira, Daniel P, Pagliares, Rodrigo M, Nadjm-Tehrani, Simin, and Hirata,

Celso M (2019). �WebSTAMP: a web application for STPA & STPA-Sec�. In: MATEC Web

of Conferences. Vol. 273. EDP Sciences, p. 02010.

Stephans, R.A. (2012). System Safety for the 21st Century: The Updated and Revised Edition of

System Safety 2000. New Jersey: Wiley.

Stephenson, Arthur (1999). Mars Climate Orbiter Mishap Investigation Board Phase I Report.

Mars Climate Orbiter Mishap Investigation Board.

Thakker, Dhavalkumar, Dimitrova, Vania, Lau, Lydia, Denaux, Ronald, Karanasios, Stan, and

Yang-Turner, Fan (2011). �A Priori Ontology Modularisation in Ill-De�ned Domains�. In:

Proceedings of the 7th International Conference on Semantic Systems. I-Semantics '11. Graz,

184

https://doi.org/10.1016/j.jsse.2018.06.004
https://doi.org/10.1016/j.jsse.2018.06.004
https://uk.reuters.com/article/uk-aviation-safety/2017-safest-year-on-record-for-commercial-passenger-air-travel-groups-idUKKBN1EQ17F
https://uk.reuters.com/article/uk-aviation-safety/2017-safest-year-on-record-for-commercial-passenger-air-travel-groups-idUKKBN1EQ17F


REFERENCES REFERENCES

Austria: Association for Computing Machinery, pp. 167�170. isbn: 9781450306218. doi: 10.

1145/2063518.2063541. url: https://doi.org/10.1145/2063518.2063541.

Thaler, Richard H and Sunstein, Cass R (2009). nudge: Improving decisions about health, wealth

and happiness. Penguin Books Ltd.

Thomas, John (2013). �Extending and Automating a Systems-Theoretic Hazard Analysis for

Requirements Generation and Analysis�. PhD thesis. Massachusetts Institute of Technology.

Vargas, Abigail Parisaca and Bloom�eld, Robin (2015). �Using Ontologies to Support Model-

based Exploration of the Dependencies between Causes and Consequences of Hazards.� In:

KEOD, pp. 316�327.

Vesely, W. E, Roberts, N., Goldberg, F., and Haasl, D. (1981). Fault tree handbook. Washington,

D.C: U.S. Nuclear Regulatory Commission.

Vieu, Laure (Jan. 2006). �On the transitivity of functional parthood�. In: Applied Ontology 1,

pp. 147�155.

Vieu, Laure and Aurnague, Michel (2007). �Part-of relations, functionality and dependence�.

In: The Categorization of Spatial Entities in Language and Cognition, pp. 307�336. doi: 10.

1075/hcp.20.18vie.

Vincoli, Je�ery W (2006). Basic Guide To System Safety. 2nd ed. New Jersey: Wiley.

Wilson, B (1984). Systems: concepts, methodologies and applications. Wiley.

Winston, Morton E., Cha�n, Roger, and Herrmann, Douglas (1987). �A Taxonomy of Part-

Whole Relations�. In: Cognitive Science 11.4, pp. 417�444. doi: 10.1207/s15516709cog1104:

2.

Wood, David (1998). How Children Think and Learn. Oxford, UK: Blackwell.

� (2018). �Commentary: Contribution of Sca�olding to Learning and Teaching: Interdisciplinary

Perspectives�. In: International Journal of Educational Research 90, pp. 248�251. doi: 10.

1016/j.ijer.2018.03.005.

185

https://doi.org/10.1145/2063518.2063541
https://doi.org/10.1145/2063518.2063541
https://doi.org/10.1145/2063518.2063541
https://doi.org/10.1075/hcp.20.18vie
https://doi.org/10.1075/hcp.20.18vie
https://doi.org/10.1207/s15516709cog1104:2
https://doi.org/10.1207/s15516709cog1104:2
https://doi.org/10.1016/j.ijer.2018.03.005
https://doi.org/10.1016/j.ijer.2018.03.005


REFERENCES REFERENCES

Wood, David, Bruner, Jerome S., and Ross, Gail (1976). �The Role of Tutoring in Problem

Solving�. In: Journal of Child Psychology and Psychiatry 17.2, pp. 89�100. doi: 10.1111/j.

1469-7610.1976.tb00381.x.

Wood, David and Wood, Heather (1996a). �Contingency in Tutoring and Learning�. In: Learning

and Instruction 6.4, pp. 391�397. doi: 10.1016/s0959-4752(96)00023-0.

� (Mar. 1996b). �Vygotsky, Tutoring and Learning�. In: Oxford Review of Education 22, pp. 5�

16. doi: 10.1080/0305498960220101.

Wood, David, Zaidman, Marsha, Ruth, Luke, and Hausenblas, Michael (2014). Linked Data.

Structured data on the Web. New York: Manning publications co.

Wood, Heather and Wood, David (1999). �Help seeking, learning and contingent tutoring�. In:

Computers & Education 33.2-3, pp. 153�169. doi: 10.1016/s0360-1315(99)00030-5.

Zeigler, Bernard P (1976). Theory of modelling and simulation. New York: Wiley.

Zhou, Jiale, Hänninen, Kaj, and Lundqvist, Kristina (2017). �A Hazard Modeling Language for

Safety-Critical Systems Based on the Hazard Ontology�. In: 2017 43rd Euromicro Conference

on Software Engineering and Advanced Applications, pp. 301�304.

Zhou, Jiale, Hänninen, Kaj, Lundqvist, Kristina, and Provenzano, Luciana (2017). �An onto-

logical approach to identify the causes of hazards for safety-critical systems�. In: 2017 2nd

International Conference on System Reliability and Safety (ICSRS), pp. 405�413.

186

https://doi.org/10.1111/j.1469-7610.1976.tb00381.x
https://doi.org/10.1111/j.1469-7610.1976.tb00381.x
https://doi.org/10.1016/s0959-4752(96)00023-0
https://doi.org/10.1080/0305498960220101
https://doi.org/10.1016/s0360-1315(99)00030-5


Appendix A

Introduction to STPA

In this section a brief overview of the steps taken by an STPA analyst is provided. For a more

detailed explanation see the STPA Handbook (N. Leveson and Thomas 2018), from which this

Appendix is sourced. STPA is a 4-Step process, as depicted in Figure A.1.

A.1 Step 1: De�ne Purpose of the Analysis

The purpose of this step is to de�ne the scope of the analysis. To do this the losses, hazards,

and safety constraints must be de�ned.

The template for a loss de�nition is:

⟨ID⟩ : ⟨Description⟩

Common examples include:

� L-1: Loss of life or injury to people

Figure A.1: The 4 steps of STPA

187



A.2. Step 2: Model the Control Structure Chapter A. Introduction to STPA

Figure A.2: Control Hierarchy Diagram Template

� L-2: Loss of or damage to vehicle

� L-3: Loss of customer satisfaction

The template for a hazard de�nition is:

⟨ID⟩ : ⟨System⟩&⟨Unsafe Condition⟩&⟨Link to Losses⟩

For example:

� H-1: Door open and power on [L-1]

The templates for safety constraint are:

⟨ID⟩ : ⟨System⟩&⟨Condition to Enforce⟩&⟨Link to Hazards⟩

⟨ID⟩ : If ⟨hazard⟩ occurs, then ⟨what needs to be done to prevent or minimize a loss⟩

For example:

� SC-1: Power o� and door open [H-1]

� SC-2: If H-1 occurs, then turn o� power

A.2 Step 2: Model the Control Structure

The purpose of this step is to de�ne the control structure so that it may be analysed for safety.

This is done diagrammatically using the template in Figure A.2. The analysts de�ne the

Controllers, which are the entities in the system capable of deciding which control actions to do,

taking into account feedback. The control actions are captured by downward arrows, feedback

by upward arrows. The control actions and feedback are shown in Figure A.3, which is an

example for a tea-making machine.

188



Chapter A. Introduction to STPA A.3. Step 3: Identify Unsafe Control Actions

Figure A.3: Control Hierarchy Diagram Example for a tea-making machine

A.3 Step 3: Identify Unsafe Control Actions

In this step the control actions are considered on a case-by-case basis to determine if providing

them, not providing them, or providing them in a temporally di�erent manner could be unsafe.

The template for an unsafe control action is:

⟨ID⟩ : ⟨Source⟩ ⟨Type⟩ ⟨Control Action⟩ ⟨Context⟩ ⟨Link to Hazards⟩

For example:

� UCA-1: Power Controller Provides Power On when Door Open [H-1]

A.4 Step 4: Identify Loss Scenarios

In the �nal step loss scenarios are described, which are descriptions of the causal factors that

could lead to the unsafe control actions and hazards. This is done using a diagram to guide the

thought process, which is shown in Figure A.4.

189



A.4. Step 4: Identify Loss Scenarios Chapter A. Introduction to STPA

Figure A.4: Loss Scenario guidance diagram

190



Appendix B

Additional STAMP Ontology

Reasoning

The decision to focus on STAMP was taken due to an existing set-theoretic representation from

Thomas (2013). This section is included to show how the ontology terms could be used for

set-theoretic reasoning. It demonstrates that the STAMP ontology is capable of reasoning to

provide likely de�nitions of terms based on information already captured. Whilst such a feature

is likely to be useful to the attentive professional, it apparently accomplishes some of the tasks

the STPA learner is to learn how to do. Therefore these kinds of reasoning are not provided

by default, being reserved for a high-level of interference when the user is in �trouble� in the

Contingent Sca�olding framework.

B.1 Reasoning via Set Construction

Reasoning through constructing sets from the known properties of known individuals provides a

means to identify the sets of interest to the analyst or supporting software. It may also be used

to check if declared sets contain valid and all individuals. The utility of set-theoretic reasoning

has already been established for STPA (Thomas 2013; Gurgel et al. 2015), here additional

applications exploiting the de�ned ontology are presented.

Typically when considering ontology from a set-theoretic perspective, it's the individual instances

of a class that are considered as the individuals within or without a particular set. When

needing to consider those individuals as well as the classes themselves the computation becomes

191



B.2. Set Building Notation Chapter B. Additional STAMP Ontology Reasoning

prohibitively complex, entering the domain of second-order logic. However, for the STPA use-

case there are no individuals to consider, only the classes themselves due to the hypothetical

nature of the exercise. Therefore, for the set reasoning within this work, the classes are taken

as the individuals, keeping within �rst-order logic. Thus a term like `Hazard' is an individual

belonging to the set of terms that are subsumed by `Loss'.

B.2 Set Building Notation

Set-builder notation is used to describe these sets, which includes the typical set operators:

� ∧ Union

� ∨ Disjunction

� \ Subtraction

The building of a set contains a variable found on both sides of a dividing |, which can be read

as �for�. The left hand side can be just the variable or an expression denoting the set, the right

hand side is another expression or predicate that determines the individuals that may be uni�ed

with the variable for inclusion. The syntax informally corresponds to:

{how the set is built|the individuals the set is built from}

For example, the building of a set of facts within a sit/1 predicate, sit(t), where the terms t

have been de�ned as a subClassOf Situation would be written as so:

{sit(t)|subClassOf(Situation, t)}

B.3 Building Sets for STPA Support

Safety constraint situations can often be determined by negating some �uent that holds in a

Hazard (N. Leveson and Thomas 2018), which is a trivial task for software. The following

set constructor outlines the reasoning required to achieve this, the right-hand side enumerates

the subclasses of Hazard and the Fluents that hold in each one. The left-hand side relates a

set of Fluents with the Hazard by a mayPrevent/2 predicate, which is used so that it may be

suggested to the analyst that the set of Fluents might prevent the Hazard from occurring. The

192



Chapter B. Additional STAMP Ontology Reasoning B.3. Building Sets for STPA Support

set of Fluents within mayPrevent/2 is the set that hold in the Hazard with the Fluent under

consideration subtracted and its negation added. The result is a set of mayPrevent/2 predicates

that can be presented to the analyst for consideration and added to their ontology if approved,

with the addition of an identity for the Safety Constraint Situation they represent.

{mayPrevent({¬f} ∨ {f ′|holdsIn(f ′, h)} \ {f}, h)|subClassOf(h, Hazard) ∧ holdsIn(f, h)}

Similar to the generation of possible Safety Constraint Situations, it's also possible to determine

the set of �uents that do not yet have a control action de�ned by subtracting the set that do

from the whole set of �uents. Although this can aid the analyst in ensuring control actions aren't

missed, it's non-exhaustive. It only determines if every �uent can be controlled by at least one

control action, rather than if all control actions have been de�ned for all �uents, which cannot

be known by the software. Therefore it's best used to ensure each �uent has been considered.

The same can be applied to the feedback side of the control loop with trivial adjustment.

{f |subClassOf(f, Fluent) ∧ f ̸= Fluent}\

{f |subClassOf(c, ControlAction) ∧ requestsEffect(c, f)}

An intelligent context situation for unsafe control actions can be determined based on the expla-

nation of why that control action is unsafe by unifying �uents that are required for the action to

be possible with those that hold in the appropriate hazard or safety constraint situation minus

the appropriate ones the control action e�ects.

For example, UCA-1 turning on the power source, is potentially hazardous as it is a control

action that requests that the power be on, which holds in the H-1 hazard. For the case of

providing a control action that causes a �uent to hold in the hazard, such as this one, the

context situation can be generated with:

{f |isPossibleIn(TurnOnPower, s) ∧ holdsIn(f, s)}∨

({f |holdsIn(f, H-1)} \ {f |requestsPositiveEffect(TurnOnPower, f)})

The generated context to provide is more explicit than given in the standard STPA format as

193



B.3. Building Sets for STPA Support Chapter B. Additional STAMP Ontology Reasoning

it ensures the action is possible:

{PowerSourceOff} ∨ ({DoorOpenFluent, PowerSourceOn} \ {PowerSourceOn})

= {PowerSourceOff, DoorOpenFluent}

194



Appendix C

Missing and Mistake Interventions in

Prolog

miss ing ( step1 ,

'Hazards w i l l l ead to a l o s s in some worst=case environment ' ,

l ogged_asse r t i on (Hazard , subClassOf , 'Hazard ' ) and

not ( l ogged_asse r t i on ( Loss , subClassOf , ' Loss ' ) and

logged_asse r t i on (Hazard , hasPoss ib l e , Loss ) ) ,

'Have you not a s s e r t ed which Loss i s p o s s i b l e to occur in the

∼s Hazard ? ' = [Hazard ]

) .

miss ing ( step1 ,

'Hazards must d e s c r i b e s t a t e s or c ond i t i on s to be prevented ' ,

l ogged_asse r t i on (Hazard , subClassOf , 'Hazard ' ) and

not ( l ogged_asse r t i on (Hazard , hasHolding , _) or

l ogged_asse r t i on (Hazard , notHasHolding , _) ) ,

'Have you not a s s e r t ed any f l u e n t s ( c ond i t i on s ) that must hold

in the ∼s Hazard ? ' = [Hazard ]

) .

mistake ( 'Hazards should not in c lude ambiguous or r e c u r s i v e words

195



Chapter C. Missing and Mistake Interventions in Prolog

l i k e " unsa fe " , " unintended " , " a c c i d en t a l " , e t c . ' ,

l ogged_asse r t i on (Hazard , subClassOf , 'Hazard ' ) and

( logged_asse r t i on (Hazard , hasHolding , Fluent )

or l ogged_asse r t i on (Hazard , notHasHolding , Fluent )

) and

logged_asse r t i on ( Fluent ,

hasQual i tyInSomeSituat ion , Qual i ty ) and

logged_asse r t i on ( Quality , l abe l , Label ) and

f a c t ( Label , containsWord , Word) and

f a c t (Word , instanceOf , 'AmbiguousOrRecursiveWord ' ) ,

'Haven\ ' t you de f ined the Hazard ∼s with "∼s " , which

conta in s the ambiguous or r e c u r s i v e word "∼s "? ' = [

Hazard , Label , Word ]

) .

mistake ( 'Avoid us ing ambiguous and vague l a b e l s in the con t r o l

s t r u c tu r e : "commands" , " feedback " , " s t a tu s " , "computer " ' ,

l ogged_asse r t i on (CA, subClassOf , 'ControlAction ' ) and

logged_asse r t i on (CA, l abe l , Label ) and

f a c t ( Label , containsWord , Word) and

f a c t (Word , instanceOf , 'AmbiguousOrRecursiveWord ' ) ,

'Haven\ ' t you l a b e l l e d the Control Action ∼s "∼s " , which

conta in s the ambiguous or r e c u r s i v e word "∼s "? ' = [

CA, Label , Word ]

) .

mistake ( 'Avoid us ing ambiguous and vague l a b e l s in the con t r o l

s t r u c tu r e : "commands" , " feedback " , " s t a tu s " , "computer " ' ,

l ogged_asse r t i on ( Feedback , subClassOf , 'Feedback ' ) and

logged_asse r t i on ( Feedback , l abe l , Label ) and

f a c t ( Label , containsWord , Word) and

f a c t (Word , instanceOf , 'AmbiguousOrRecursiveWord ' ) ,

196



Chapter C. Missing and Mistake Interventions in Prolog

'Haven\ ' t you l a b e l l e d the Feedback ∼s "∼s " , which conta in s

the ambiguous or r e c u r s i v e word "∼s "? ' = [ Feedback , Label , Word ]

) .

miss ing ( step2 ,

'Check that every c on t r o l l e d phy s i c a l p roc e s s i s c o n t r o l l e d

by one or more c o n t r o l l e r s ' ,

l ogged_asse r t i on (CP, subClassOf , ' Contro l l edProces s ' ) and

not ( l ogged_asse r t i on (CP, hasSubject , E) and

logged_asse r t i on (F , hasBearer , E) and

f a c t (CA, r eque s t sE f f e c t , F) and

logged_asse r t i on (_, hasCapabi l i ty , CA) ) ,

'Have you not a s s e r t ed that any Con t r o l l e r s are capable o f a

Control Action that has an E f f e c t upon some System that i s

sub j e c t to the Contro l l ed Process ∼s ? ' = [CP]

) .

miss ing ( step2 ,

'Check that c on t r o l a c t i on s needed to s a t i s f y the

r e s p o n s i b i l i t i e s are inc luded ' ,

l ogged_asse r t i on (Hazard , subClassOf , 'Hazard ' ) and

logged_asse r t i on (Hazard , hasHolding , Fluent ) and

not ( l ogged_asse r t i on (_, requestsToHold , Fluent ) ) ,

'Your ∼s Hazard has ho ld ing the ∼s Fluent . Have you not

a s s e r t ed that any Control Action r eque s t s ∼s to hold ? ' = [

Hazard , Fluent , Fluent ]

) .

miss ing ( step2 ,

'Check that feedback needed to s a t i s f y the r e s p o n s i b i l i t i e s i s

inc luded ' ,

l ogged_asse r t i on (Hazard , subClassOf , 'Hazard ' ) and

197



Chapter C. Missing and Mistake Interventions in Prolog

logged_asse r t i on (Hazard , hasHolding , Fluent ) and

not ( l ogged_asse r t i on (_, recordsFluent , Fluent ) ) ,

'Your ∼s Hazard has ho ld ing the ∼s Fluent . Have you not

a s s e r t ed that any Feedback r e co rd s the Fluent ∼s ? ' = [

Hazard , Fluent , Fluent ]

) .

miss ing ( step3 ,

'Ensure t r a c e a b i l i t y i s documented to l i n k every unsa fe c on t r o l

a c t i on with one or more hazards ' ,

l ogged_asse r t i on (CA, subClassOf ,

' Provid ingPotent ia l lyHazardousContro lAct ion ' ) and

not logged_asse r t i on (CA, prov id ingPotent ia l lyLeadsTo , _Hazard ) ,

'Have you not a s s e r t ed that prov id ing the unsa fe c on t r o l a c t i on

"∼s " can lead to some hazard ? ' = [CA]

) .

miss ing ( step3 ,

'Ensure t r a c e a b i l i t y i s documented to l i n k every unsa fe c on t r o l

a c t i on with one or more hazards ' ,

l ogged_asse r t i on (CA, subClassOf ,

'NotProvid ingPotent ia l lyHazardousContro lAct ion ' ) and

not logged_asse r t i on (CA, notProvid ingPotent ia l lyLeadsTo , _Hazard ) ,

'Have you not a s s e r t ed that not prov id ing the unsa fe c on t r o l a c t i on

"∼s " can lead to some hazard ? ' = [CA]

) .

miss ing ( step3 ,

'Ensure every unsa fe c on t r o l a c t i on s p e c i f i e s the context that

makes the con t r o l a c t i on unsafe ' ,

f a c t (CA, subClassOf , ' Potent ia l lyHazardousContro lAct ion ' ) and

f a c t (CA, is_id , 'ControlAction ' ) and

198



Chapter C. Missing and Mistake Interventions in Prolog

not l ogged_asse r t i on (CA, i sPo s s i b l e I n , _) ,

'You\ ' ve a s s e r t ed that the ∼s Control Action i s p o t e n t i a l l y

hazardous . Have you not a s s e r t ed in what S i tua t i on i t \ ' s p o s s i b l e

f o r ∼s to occur ? ' = [CA, CA]

) .

miss ing ( step3 ,

'Ensure the unsa fe c on t r o l a c t i on context s are de f ined c l e a r l y ' ,

f a c t (CA, subClassOf , ' Potent ia l lyHazardousContro lAct ion ' ) and

f a c t (CA, is_id , 'ControlAction ' ) and

logged_asse r t i on (CA, i sPo s s i b l e I n , S) and

not ( l ogged_asse r t i on (S , hasHolding , _)

or l ogged_asse r t i on (S , notHasHolding , _)

) ,

'You\ ' ve a s s e r t ed that the ∼s Control Action i s p o t e n t i a l l y

hazardous . Have you not de s c r ibed the Fluents that hold in

the S i tua t i on ∼s in which ∼s i s p o s s i b l e ? ' = [CA, S , CA]

) .

miss ing ( step1 ,

' Step 1 precedes Step 2 ' ,

not ( l ogged_asse r t i on (_L, subClassOf , ' Loss ' ) and

logged_asse r t i on (_H, subClassOf , 'Hazard ' ) ) ,

'Have you not a s s e r t ed any Losses or Hazards yet ? ' = [ ]

) .

mis s ing ( step2 ,

' Step 2 precedes Step 3 ' ,

not (

l ogged_asse r t i on (_E, hasCapabi l i ty , _CA) and

f a c t (_CA, r eque s t sE f f e c t , _Fluent ) and

logged_asse r t i on (_FB, subClassOf , 'Feedback ' )

199



Chapter C. Missing and Mistake Interventions in Prolog

) ,

'Have you not a s s e r t ed any Cont r o l l e r can do some Control Action

that r eque s t an e f f e c t or any Feedback yet ? ' = [ ]

) .

mis s ing ( step3 ,

' I d e n t i f y a l l Provid ing Po t en t i a l l y Hazardous Control Actions ' ,

f a c t (CA, equivalentTo ,

' Provid ingPotent ia l lyHazardousContro lAct ion ' ) and

not logged_asse r t i on (CA, subClassOf ,

' Provid ingPotent ia l lyHazardousContro lAct ion ' ) ,

'Have you not a s s e r t ed that ∼s i s a Provid ing Po t en t i a l l y

Hazardous Control Action ? ' = [CA]

) .

miss ing ( step3 ,

' I d e n t i f y a l l Not Provid ing Po t en t i a l l y Hazardous Control

Actions ' ,

f a c t (CA, equivalentTo ,

'NotProvid ingPotent ia l lyHazardousContro lAct ion ' ) and

not logged_asse r t i on (CA, subClassOf ,

'NotProvid ingPotent ia l lyHazardousContro lAct ion ' ) ,

'Have you not a s s e r t ed that ∼s i s a Not Provid ing

Po t en t i a l l y Hazardous Control Action ? ' = [CA]

) .

mistake ( ' I f you have more than 7 hazards , c on s id e r grouping or

combining them to c r ea t e a more manageable set ' ,

f a c t ( 'Hazard ' , subClassCount , C) and C > 7 ,

'You\ ' ve a s s e r t ed ∼d Hazards , have you cons ide r ed reduc ing the

number you are con s i d e r i ng in t h i s a n a l y s i s ? ' = [C]

) .

200



Chapter C. Missing and Mistake Interventions in Prolog

mistake ( ' Fluent can \ ' t both hold and not hold in a s i t ua t i on ' ,

l ogged_asse r t i on ( Sit , notHasHolding , Fluent ) and

logged_asse r t i on ( Sit , hasHolding , Fluent ) ,

'Have you a s s e r t ed that the Fluent ∼s both ho lds and doesn \ ' t

hold in the S i tua t i on ∼s ? ' = [ Fluent , S i t ]

) .

mistake ( ' Control Action can \ ' t both cause a f l u e n t to hold and

not hold ' ,

l ogged_asse r t i on (CA, subClassOf , 'ControlAction ' ) and

logged_asse r t i on (CA, requestsToHold , F) and

logged_asse r t i on (CA, requestsToNotHold , F) ,

'Have you a s s e r t ed that the Control Action ∼s r eque s t s ∼F both

ho lds and doesn \ ' t hold ? ' = [CA, F ]

) .

201



Appendix D

User Study Protocol

This Appendix contains documents provided to participants.

D.1 Participant Information

You are being invited to take part in this research. Before you decide it is important for you to

understand why the research is being done and what it will involve. Please take time to read the

following information carefully and discuss it with others if you wish. Ask us if there is anything

that is not clear or if you would like more information. Take time to decide whether or not you

wish to take part.

Conducting a safety analysis is a di�cult task, particularly for those who haven't developed

expertise over years of practice. Therefore we've developed a software application to help those

who are still learning. This software is based upon AI technologies like Ontology, and uses

teaching support methods like Contingent Sca�olding. We hope that it will help a non-expert

analyst to work more like an expert.

D.1.1 Taking Part

As a participant you'll be contributing to research that will help those who conduct safety

analysis do a better job to save lives, money, the environment, etc. Plus you'll be reimbursed

with a ¿25 Amazon voucher.

It is up to you to decide whether or not to take part. If you do decide to take part you will need

to provide consent when you begin, and you can still withdraw at any time during the study,

202



Chapter D. User Study Protocol D.1. Participant Information

just click the �Withdraw� link. You do not have to give a reason for withdrawal. However, once

you have completed the study there will be no way to withdraw as all of the data is collected

anonymously.

We want to know if the tutor part of the AI technology can provide useful support, so we need

to compare using the software with and without the tutor. To do this we'll randomly turn the

AI tutor on or o� when you start the study. The tutor gives interventions, so if you don't see

any that either means you're doing really well or it's been turned o�. But even if you don't have

the tutor to help you, we still want to know if the software has been useful to you.

D.1.2 What Do I Need To Do?

The study will require an hour of your time and can be completed entirely online with a laptop

or desktop computer. It's not recommended to use a tablet for this due to the amount of typing

involved.

The STPA analysis is to be conducted for the provided system and scenario, a description of

which you should have received along with this information sheet, please contact us for a copy

if you do not have it. This description will also be reiterated during the study to refresh your

memory. A researcher will be available to answer system and study questions during University

of Leeds o�ce hours throughout the period when the study is open.

You will be expected to complete the study in a single sitting, it is not possible to guarantee a

session can be resumed once stopped, which means you would have to start all over again. Don't

worry though, a simple page refresh is �ne as we'll be able to identify you via your session data.

D.1.3 What Will Happen To My Data?

We gather three sources of data.

If you choose to enter the prize-draw we'll ask you for your University of Leeds email address

so we can distribute the prizes. This will be kept strictly con�dential, stored separately from

the research data. Your email address will be deleted as soon as all three prizes have been

distributed.

The other two types of data we gather are your answers to the questionnaires and the log of

actions taken during the STPA analysis. These are gathered in the software application with no

203



D.1. Participant Information Chapter D. User Study Protocol

identifying information. There's no way we can tell who you are from this data.

The actions we log during the analysis tell us what facts you're asserting and retracting, what

you're looking at on the screen, and any AI tutor intervention interactions. An example log

looks like this:

focus_concept('Hazard', 10, datetime(2021, 2, 12, 10, 15, 58)).

In this log, user 10, whoever that may be, is looking at their Hazards. Should you wish to know

more about these logs, please do not hesitate to contact us.

The gathered data will be analysed, with the results to be published at relevant conferences

and journals, as well as within the �nal thesis. As we believe in open-research and open-data,

we will also publish the anonymous data to Research Data Leeds so that other researchers can

make use of it. This includes both the logs and answers to the questionnaires. Should you wish

to be noti�ed of this publication, whether participating in the study or not, please contact us.

Note, if you withdraw consent, all data associated with that your user number will be auto-

matically deleted. Although identifying information is not required anywhere in this part of the

process, should you include any in your answers to the questionnaires or in your STPA analysis

it will be redacted prior to publication.

During the study and analysis, all data transmission will be conducted via encrypted channels,

such as HTTPS. To prevent the accidental loss of your data we will back-up the server running

the software. This back-up will be deleted upon publication of the data.

D.1.4 Who Is Doing This Research?

We are very grateful for the UKRC and DSTL for funding for this research, and to the DSTL

for their additional consultation and initial impetus.

The primary researcher and initial point of contact is:

� Paul Brown, University of Leeds, PhD researcher, (sc16pb@leeds.ac.uk)

The supervision team are:

� Prof Vania Dimitrova, University of Leeds, (V.G.Dimitrova@leeds.ac.uk)

� Prof Anthony G. Cohn, University of Leeds

� Glen Hart, DSTL

204



Chapter D. User Study Protocol D.1. Participant Information

D.1.5 Finally. . .

Thank you for reading! Please keep a copy of this for your records. You should also have

received a copy of the consent form you'll be asked to complete on beginning the study, as

well as a description of the system scenario for the analysis. Should you require any additional

information, please contact Paul Brown (sc16pb@leeds.ac.uk).

205



D.2. Recommender System Scenario Safety Analysis Chapter D. User Study Protocol

D.2 Recommender System Scenario Safety Analysis

The University of Leeds is (hypothetically) considering developing a module recommender to aid

students in choosing which modules to study. As part of their requirements gathering process

they've asked you to conduct a System Safety Analysis, applying System-Theoretic Process

Analysis (STPA), to ensure that their good intention works out.

This is a part of a wider analysis; you only need to consider this small, simple component.

D.2.1 System Safety Goals

This study will focus only on the primary goals of student and sta� satisfaction. These goals

will be considered failed if there is:

1. Decrease of student satisfaction

2. Decrease of sta� satisfaction

To prevent failing the goals the following conditions of the module recommender must be met:

� an adequate user model, including interests and career goals

� adequate information regarding modules

� an appropriate recommendation algorithm

D.2.2 System Stakeholders

The project leader has also identi�ed the following acting stakeholders, who are people with a

vested interest in the success of the project:

� Student: one who chooses modules

� Module leader: one who describes the module

� Developer: one who authors the recommender software

D.2.3 The System

A broad system model is considered in this safety analysis. The system is the actors as well as

the recommender software (see diagram below). At this early stage of design only a use-case

diagram has been created showing the system interactions including actors and activities. This

diagram contains su�cient information for the safety analysis: adding additional information is

unnecessary for a successful safety analysis and may even lead to a poor safety analysis.

206



Chapter D. User Study Protocol D.2. Recommender System Scenario Safety Analysis

Figure D.1: Recommender System Use-Case Diagram (UML2)

D.2.4 Instructions

1. Go to https://owlsai.com

2. Follow the instructions there

3. Don't spend more than 2 hours on this, it should take about an hour

4. Keep this document handy and use it to help you with the analysis

207



D.3. STPA Questionnaire Chapter D. User Study Protocol

D.3 STPA Questionnaire

These are the questions presented to a user before and after their analysis in order to assess

learning. The correct answers are marked with a dot.

Do all de�nitions of hazards need to lead to a loss?

⊙ All hazard de�nitions must include a link to a loss

◦ Not all hazard de�nitions need to include a link to a loss

Can we just use a hazard with a name or do we have to describe the hazardous

situation?

◦ A name is enough

⊙ Must decribe situation

Which hazard de�nition is better?

◦ H-1: Power tool in unsafe state

⊙ H-2: Power tool safety guard not in place

The driver of a car can see how much fuel they have left in the tank. What is the

best label for this feedback?

◦ Fuel status

⊙ Quantity remaining

Is it necessary to de�ne the context in which unsafe control actions are possible?

⊙ Yes

◦ No

What do you need to de�ne in step 1 of STPA?

⊡ Losses

□ Controllers

208



Chapter D. User Study Protocol D.3. STPA Questionnaire

□ Loss Scenarios

□ Controlled Processes

□ Which Control Actions are Unsafe

□ Control Actions

□ Feedback

⊡ Hazards

What do you need to de�ne in step 2 of STPA?

□ Losses

⊡ Controllers

□ Loss Scenarios

⊡ Controlled Processes

□ Which Control Actions are Unsafe

⊡ Control Actions

⊡ Feedback

□ Hazards

What do you need to de�ne in step 3 of STPA?

□ Losses

□ Controllers

□ Loss Scenarios

□ Controlled Processes

⊡ Which Control Actions are Unsafe

□ Control Actions

□ Feedback

□ Hazards

209



D.4. System Scenario Solution Chapter D. User Study Protocol

D.4 System Scenario Solution

This is derived from the system scenario. It's described here with a frame-based, turtle-like

syntax to ease reading in textual format.

L=1 a Class

subClassOf Loss

l a b e l "Decrease o f student s a t i s f a c t i o n "

L=2 a Class

subClassOf Loss

l a b e l "Decrease o f s t a f f s a t i s f a c t i o n "

H=1 a Class

subClassOf Hazard

hasHolding F=1

hasPos s ib l e L=1

hasPos s ib l e L=2

H=2 a Class

subClassOf Hazard

notHasHolding F=2

hasPos s ib l e L=1

hasPos s ib l e L=2

H=3 a Class

subClassOf Hazard

notHasHolding F=3

hasPos s ib l e L=1

hasPos s ib l e L=2

F=1 a Class

subClassOf Qual i tyFluent

210



Chapter D. User Study Protocol D.4. System Scenario Solution

hasBearer E=1

hasQual i tyInSomeSituat ion Q=1

F=2 a Class

subClassOf Qual i tyFluent

hasBearer E=2

hasQual i tyInSomeSituat ion Q=1

F=3 a Class

subClassOf Qual i tyFluent

hasBearer E=3

hasQual i tyInSomeSituat ion Q=2

E=1 a Class

subClassOf Entity

l a b e l " user model"

E=2 a Class

subClassOf Entity

l a b e l "module model"

E=3 a Class

subClassOf Entity

l a b e l " recommendation a lgor i thm"

Q=1 a Class

subClassOf Qual i ty

l a b e l " adequate "

Q=2 a Class

subClassOf Qual i ty

l a b e l " appropr ia t e "

211



D.4. System Scenario Solution Chapter D. User Study Protocol

CP=1 a Class

subClassOf Cont ro l l edProce s s

l a b e l "Recommending Modules"

hasSubject E=1

hasSubject E=2

hasSubject E=3

E=4 a Class

subClassOf Entity

l a b e l "Student "

hasCapab i l i ty CA=1

hasCapab i l i ty CA=2

hasFeedback FB=1

E=5 a Class

subClassOf Entity

l a b e l "Module Leader "

hasCapab i l i ty CA=3

hasCapab i l i ty CA=4

hasFeedback FB=2

E=6 a Class

subClassOf Entity

l a b e l "Developer "

hasCapab i l i ty CA=5

hasCapab i l i ty CA=6

hasFeedback FB=1

hasFeedback FB=2

hasFeedback FB=3

CA=1 a Class

212



Chapter D. User Study Protocol D.4. System Scenario Solution

subClassOf ControlAct ion

subClassOf NotProv id ingPotent ia l lyHazardousContro lAct ion

l a b e l "Add adequate in fo rmat ion about s e l f "

requestsToHold F=1

i sP o s s i b l e I n S=1

notProv id ingPotent ia l lyLeadsTo H=1

CA=2 a Class

subClassOf ControlAct ion

subClassOf Prov id ingPotent ia l lyHazardousContro lAct ion

l a b e l "Add inadequate in fo rmat ion about s e l f "

requestsToNotHold F=1

i sP o s s i b l e I n S=1

prov id ingPotent ia l lyLeadsTo H=1

CA=3 a Class

subClassOf ControlAct ion

subClassOf NotProv id ingPotent ia l lyHazardousContro lAct ion

l a b e l "Add adequate in fo rmat ion about module"

requestsToHold F=2

i sP o s s i b l e I n S=1

notProv id ingPotent ia l lyLeadsTo H=2

CA=4 a Class

subClassOf ControlAct ion

subClassOf Prov id ingPotent ia l lyHazardousContro lAct ion

l a b e l "Add inadequate in fo rmat ion about module"

requestsToNotHold F=2

i sP o s s i b l e I n S=1

prov id ingPotent ia l lyLeadsTo H=2

CA=5 a Class

213



D.4. System Scenario Solution Chapter D. User Study Protocol

subClassOf ControlAct ion

subClassOf NotProv id ingPotent ia l lyHazardousContro lAct ion

l a b e l "Author appropr ia t e recommendation a lgor i thm"

requestsToHold F=3

i sP o s s i b l e I n S=1

notProv id ingPotent ia l lyLeadsTo H=3

CA=6 a Class

subClassOf ControlAct ion

subClassOf Prov id ingPotent ia l lyHazardousContro lAct ion

l a b e l "Author inapprop r i a t e recommendation a lgor i thm"

requestsToNotHold F=3

i sP o s s i b l e I n S=1

prov id ingPotent ia l lyLeadsTo H=3

FB=1 a Class

subClassOf Feedback

l a b e l " In format ion conta ined in user model"

reco rdsF luent F=1

FB=2 a Class

subClassOf Feedback

l a b e l " In format ion conta ined in module model"

reco rdsF luent F=2

FB=3 a Class

subClassOf Feedback

l a b e l "Performance met r i c s f o r the model under t e s t i n g "

reco rdsF luent F=3

S=1 a Class

subClassOf S i tua t i on

214



Chapter D. User Study Protocol D.4. System Scenario Solution

l a b e l "The top s i t u a t i o n which subsumes a l l o the r s "

215



Appendix E

User Study Selected Logs

E.1 User 43

a s s e r t ( spo ( 'L=1 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 12 , 50 , 55 ) ) .

a s s e r t ( spo ( 'L=1 ' , subClassOf , ' Loss ' ) , 4 3 , datet ime (2022 , 3 , 9 , 12 , 50 , 55 ) ) .

a s s e r t ( spo ( 'L=1 ' , l abe l , " Decrease " ) , 43 , datet ime (2022 , 3 , 9 , 12 , 51 , 27 ) ) .

g lossary_lookup ( ' Loss ' , 4 3 , datet ime (2022 , 3 , 9 , 1 2 , 51 , 27 ) ) .

r e t r a c t ( spo ( 'L=1 ' , l abe l , " Decrease " ) , 43 , datet ime (2022 , 3 , 9 , 1 2 , 5 2 , 0 ) ) .

a s s e r t ( spo ( 'L=1 ' , l abe l , " Decrease in student s a t i s f a c t i o n ") ,

43 , datet ime (2022 , 3 , 9 , 1 2 , 5 2 , 0 ) ) .

a s s e r t ( spo ( 'L=2 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 1 2 , 5 2 , 0 ) ) .

a s s e r t ( spo ( 'L=2 ' , subClassOf , ' Loss ' ) , 4 3 , datet ime (2022 , 3 , 9 , 1 2 , 5 2 , 0 ) ) .

a s s e r t ( spo ( 'L=2 ' , l abe l , " Decrease in ") ,43 , datet ime (2022 , 3 , 9 , 1 2 , 5 2 , 4 ) ) .

r e t r a c t ( spo ( 'L=2 ' , l abe l , " Decrease in ") ,

43 , datet ime (2022 , 3 , 9 , 12 , 52 , 17 ) ) .

a s s e r t ( spo ( 'L=2 ' , l abe l , " Decrease in s t a f f s a t i s f a c t i o n ") ,

43 , datet ime (2022 , 3 , 9 , 12 , 52 , 17 ) ) .

a s s e r t ( spo ( 'H=1 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 12 , 52 , 17 ) ) .

a s s e r t ( spo ( 'H=1 ' , subClassOf , 'Hazard ' ) , 4 3 , datet ime (2022 , 3 , 9 , 12 , 52 , 17 ) ) .

a s s e r t ( spo ( 'F=1 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 12 , 52 , 41 ) ) .

a s s e r t ( spo ( 'F=1 ' , subClassOf , ' Fluent ' ) , 4 3 , datet ime (2022 , 3 , 9 , 12 , 52 , 41 ) ) .

a s s e r t ( spo ( 'E=1 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 12 , 52 , 41 ) ) .

216



Chapter E. User Study Selected Logs E.1. User 43

a s s e r t ( spo ( 'E=1 ' , subClassOf , ' Entity ' ) , 4 3 , datet ime (2022 , 3 , 9 , 12 , 52 , 41 ) ) .

a s s e r t ( spo ( 'Q=1 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 12 , 52 , 41 ) ) .

a s s e r t ( spo ( 'Q=1 ' , subClassOf , ' Quality ' ) ,

43 , datet ime (2022 , 3 , 9 , 12 , 52 , 41 ) ) .

a s s e r t ( spo ( 'H=1 ' , hasHolding , 'F=1 ') ,43 , datet ime (2022 , 3 , 9 , 1 2 , 52 , 41 ) ) .

a s s e r t ( spo ( 'F=1 ' , hasBearer , 'E=1 ') ,43 , datet ime (2022 , 3 , 9 , 1 2 , 52 , 41 ) ) .

a s s e r t ( spo ( 'F=1 ' , hasQual i tyInSomeSituat ion , 'Q=1 ') ,

43 , datet ime (2022 , 3 , 9 , 12 , 52 , 41 ) ) .

a s s e r t ( spo ( 'E=1 ' , l abe l , "Module in fo rmat ion ") ,

43 , datet ime (2022 , 3 , 9 , 12 , 54 , 27 ) ) .

a s s e r t ( spo ( 'Q=1 ' , l abe l , " unc l ea r " ) , 43 , datet ime (2022 , 3 , 9 , 12 , 54 , 35 ) ) .

a s s e r t ( spo ( 'H=1 ' , hasPoss ib l e , 'L=1 ') ,43 , datet ime (2022 , 3 , 9 , 1 2 , 54 , 35 ) ) .

a s s e r t ( spo ( 'F=2 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 12 , 54 , 39 ) ) .

a s s e r t ( spo ( 'F=2 ' , subClassOf , ' Fluent ' ) , 4 3 , datet ime (2022 , 3 , 9 , 12 , 54 , 39 ) ) .

a s s e r t ( spo ( 'E=2 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 12 , 54 , 39 ) ) .

a s s e r t ( spo ( 'E=2 ' , subClassOf , ' Entity ' ) , 4 3 , datet ime (2022 , 3 , 9 , 12 , 54 , 39 ) ) .

a s s e r t ( spo ( 'Q=2 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 12 , 54 , 39 ) ) .

a s s e r t ( spo ( 'Q=2 ' , subClassOf , ' Quality ' ) , 4 3 , datet ime (2022 , 3 , 9 , 12 , 54 , 39 ) ) .

a s s e r t ( spo ( 'H=1 ' , hasHolding , 'F=2 ') ,43 , datet ime (2022 , 3 , 9 , 1 2 , 54 , 39 ) ) .

a s s e r t ( spo ( 'F=2 ' , hasQual i tyInSomeSituat ion , 'Q=2 ') ,

43 , datet ime (2022 , 3 , 9 , 12 , 54 , 39 ) ) .

a s s e r t ( spo ( 'F=2 ' , hasBearer , 'E=2 ') ,43 , datet ime (2022 , 3 , 9 , 1 2 , 54 , 39 ) ) .

r e t r a c t ( spo ( 'F=2 ' , hasQual i tyInSomeSituat ion , 'Q=2 ') ,

43 , datet ime (2022 , 3 , 9 , 12 , 54 , 42 ) ) .

r e t r a c t ( spo ( 'Q=2 ' , subClassOf , ' Quality ' ) ,

43 , datet ime (2022 , 3 , 9 , 12 , 54 , 42 ) ) .

r e t r a c t ( spo ( 'Q=2 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 12 , 54 , 42 ) ) .

r e t r a c t ( spo ( 'E=2 ' , subClassOf , ' Entity ' ) ,

43 , datet ime (2022 , 3 , 9 , 12 , 54 , 42 ) ) .

r e t r a c t ( spo ( 'E=2 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 12 , 54 , 42 ) ) .

r e t r a c t ( spo ( 'F=2 ' , hasBearer , 'E=2 ') ,43 , datet ime (2022 , 3 , 9 , 1 2 , 54 , 42 ) ) .

r e t r a c t ( spo ( 'F=2 ' , subClassOf , ' Fluent ' ) ,

217



E.1. User 43 Chapter E. User Study Selected Logs

43 , datet ime (2022 , 3 , 9 , 12 , 54 , 42 ) ) .

r e t r a c t ( spo ( 'F=2 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 12 , 54 , 42 ) ) .

r e t r a c t ( spo ( 'H=1 ' , hasHolding , 'F=2 ') ,43 , datet ime (2022 , 3 , 9 , 1 2 , 54 , 42 ) ) .

a s s e r t ( spo ( 'H=2 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 12 , 54 , 45 ) ) .

a s s e r t ( spo ( 'H=2 ' , subClassOf , 'Hazard ' ) , 4 3 , datet ime (2022 , 3 , 9 , 12 , 54 , 45 ) ) .

a s s e r t ( spo ( 'F=2 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 1 2 , 5 5 , 0 ) ) .

a s s e r t ( spo ( 'F=2 ' , subClassOf , ' Fluent ' ) , 4 3 , datet ime (2022 , 3 , 9 , 1 2 , 5 5 , 0 ) ) .

a s s e r t ( spo ( 'E=2 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 1 2 , 5 5 , 0 ) ) .

a s s e r t ( spo ( 'E=2 ' , subClassOf , ' Entity ' ) , 4 3 , datet ime (2022 , 3 , 9 , 1 2 , 5 5 , 0 ) ) .

a s s e r t ( spo ( 'Q=2 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 1 2 , 5 5 , 0 ) ) .

a s s e r t ( spo ( 'Q=2 ' , subClassOf , ' Quality ' ) , 4 3 , datet ime (2022 , 3 , 9 , 1 2 , 5 5 , 0 ) ) .

a s s e r t ( spo ( 'F=2 ' , hasBearer , 'E=2 ') ,43 , datet ime (2022 , 3 , 9 , 1 2 , 5 5 , 0 ) ) .

a s s e r t ( spo ( 'F=2 ' , hasQual i tyInSomeSituat ion , 'Q=2 ') ,

43 , datet ime (2022 , 3 , 9 , 1 2 , 5 5 , 0 ) ) .

a s s e r t ( spo ( 'H=2 ' , hasHolding , 'F=2 ') ,43 , datet ime (2022 , 3 , 9 , 1 2 , 5 5 , 0 ) ) .

a s s e r t ( spo ( 'E=2 ' , l abe l , " Recommendation a lgor i thm ") ,

43 , datet ime (2022 , 3 , 9 , 12 , 55 , 22 ) ) .

a s s e r t ( spo ( 'Q=2 ' , l abe l , " f lawed ") ,43 , datet ime (2022 , 3 , 9 , 1 2 , 55 , 43 ) ) .

a s s e r t ( spo ( 'H=2 ' , hasPoss ib l e , 'L=1 ') ,43 , datet ime (2022 , 3 , 9 , 1 2 , 55 , 43 ) ) .

a s s e r t ( spo ( 'H=2 ' , hasPoss ib l e , 'L=2 ') ,43 , datet ime (2022 , 3 , 9 , 1 2 , 55 , 46 ) ) .

r eque s t_ inte rvent i on (43 , datet ime (2022 , 3 , 9 , 1 2 , 56 , 41 ) ) .

g lossary_lookup ( 'Hazard ' , 4 3 , datet ime (2022 , 3 , 9 , 1 2 , 56 , 46 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 3 , datet ime (2022 , 3 , 9 , 1 2 , 57 , 13 ) ) .

focus_step ( step2 , 43 , datet ime (2022 , 3 , 9 , 1 2 , 57 , 13 ) ) .

focus_concept ( ' Entity ' , 4 3 , datet ime (2022 , 3 , 9 , 1 2 , 57 , 58 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 3 , datet ime (2022 , 3 , 9 , 1 2 , 5 8 , 2 ) ) .

a s s e r t ( spo ( 'CP=1 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 1 2 , 5 8 , 5 ) ) .

a s s e r t ( spo ( 'CP=1 ' , subClassOf , ' Contro l l edProces s ' ) ,

43 , datet ime (2022 , 3 , 9 , 1 2 , 5 8 , 5 ) ) .

focus_subconcept ( 'CP=1 ' ,43 , datet ime (2022 , 3 , 9 , 12 , 58 , 13 ) ) .

focus_concept ( ' Entity ' , 4 3 , datet ime (2022 , 3 , 9 , 1 2 , 58 , 31 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 3 , datet ime (2022 , 3 , 9 , 1 2 , 58 , 34 ) ) .

218



Chapter E. User Study Selected Logs E.1. User 43

glossary_lookup ( ' Contro l l edProces s ' , 4 3 , datet ime (2022 , 3 , 9 , 1 2 , 58 , 40 ) ) .

focus_concept ( ' Entity ' , 4 3 , datet ime (2022 , 3 , 9 , 1 2 , 58 , 47 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 3 , datet ime (2022 , 3 , 9 , 1 2 , 58 , 50 ) ) .

r e t r a c t ( spo ( 'CP=1 ' , subClassOf , ' Contro l l edProces s ' ) ,

43 , datet ime (2022 , 3 , 9 , 12 , 58 , 51 ) ) .

r e t r a c t ( spo ( 'CP=1 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 12 , 58 , 51 ) ) .

focus_concept ( ' Entity ' , 4 3 , datet ime (2022 , 3 , 9 , 1 2 , 58 , 52 ) ) .

focus_subconcept ( 'E=1 ' ,43 , datet ime (2022 , 3 , 9 , 1 2 , 58 , 53 ) ) .

g lossary_lookup ( ' Entity ' , 4 3 , datet ime (2022 , 3 , 9 , 1 2 , 58 , 56 ) ) .

focus_concept ( ' ControlAction ' , 4 3 , datet ime (2022 , 3 , 9 , 1 2 , 5 9 , 7 ) ) .

g lossary_lookup ( ' ControlAction ' , 4 3 , datet ime (2022 , 3 , 9 , 1 2 , 59 , 10 ) ) .

a s s e r t ( spo ( 'CA=1 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 12 , 59 , 18 ) ) .

a s s e r t ( spo ( 'CA=1 ' , subClassOf , ' ControlAction ' ) ,

43 , datet ime (2022 , 3 , 9 , 12 , 59 , 18 ) ) .

focus_subconcept ( 'CA=1 ' ,43 , datet ime (2022 , 3 , 9 , 1 2 , 59 , 24 ) ) .

a s s e r t ( spo ( 'F=3 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 0 , 6 ) ) .

a s s e r t ( spo ( 'F=3 ' , subClassOf , ' Fluent ' ) , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 0 , 6 ) ) .

a s s e r t ( spo ( 'CA=1 ' , requestsToHold , 'F=3 ') ,43 , datet ime (2022 , 3 , 9 , 1 3 , 0 , 6 ) ) .

a s s e r t ( spo ( 'F=3 ' , hasBearer , 'E=1 ') ,43 , datet ime (2022 , 3 , 9 , 1 3 , 0 , 6 ) ) .

a s s e r t ( spo ( 'F=3 ' , hasQual i tyInSomeSituat ion , 'Q=2 ') ,

43 , datet ime (2022 , 3 , 9 , 1 3 , 0 , 6 ) ) .

a s s e r t ( spo ( 'CA=1 ' , l abe l , "Module Leader ") ,

43 , datet ime (2022 , 3 , 9 , 1 3 , 0 , 3 7 ) ) .

r e t r a c t ( spo ( 'CA=1 ' , l abe l , "Module Leader ") ,

43 , datet ime (2022 , 3 , 9 , 1 3 , 0 , 4 8 ) ) .

a s s e r t ( spo ( 'CA=1 ' , l abe l , "Module Leader d e s c r i b e s module ") ,

43 , datet ime (2022 , 3 , 9 , 1 3 , 0 , 4 8 ) ) .

focus_concept ( ' Entity ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 0 , 5 9 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 1 , 7 ) ) .

a s s e r t ( spo ( 'CP=1 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 1 , 1 0 ) ) .

a s s e r t ( spo ( 'CP=1 ' , subClassOf , ' Contro l l edProces s ' ) ,

43 , datet ime (2022 , 3 , 9 , 1 3 , 1 , 1 0 ) ) .

219



E.1. User 43 Chapter E. User Study Selected Logs

focus_subconcept ( 'CP=1 ' ,43 , datet ime (2022 , 3 , 9 , 1 3 , 1 , 1 4 ) ) .

g lossary_lookup ( ' Contro l l edProces s ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 1 , 2 1 ) ) .

g lossary_lookup ( ' Contro l l edProces s ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 1 , 2 2 ) ) .

a s s e r t ( spo ( 'CP=1 ' , l abe l , " Students choos ing a module ") ,

43 , datet ime (2022 , 3 , 9 , 1 3 , 2 , 4 ) ) .

a s s e r t ( spo ( 'CP=2 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 2 , 2 7 ) ) .

a s s e r t ( spo ( 'CP=2 ' , subClassOf , ' Contro l l edProces s ' ) ,

43 , datet ime (2022 , 3 , 9 , 1 3 , 2 , 2 7 ) ) .

focus_subconcept ( 'CP=2 ' ,43 , datet ime (2022 , 3 , 9 , 1 3 , 2 , 3 1 ) ) .

r e t r a c t ( spo ( 'CP=2 ' , subClassOf , ' Contro l l edProces s ' ) ,

43 , datet ime (2022 , 3 , 9 , 1 3 , 2 , 3 2 ) ) .

r e t r a c t ( spo ( 'CP=2 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 2 , 3 2 ) ) .

focus_concept ( ' Entity ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 2 , 3 3 ) ) .

r eque s t_ inte rvent i on (43 , datet ime (2022 , 3 , 9 , 1 3 , 2 , 5 1 ) ) .

i n t e rv ene ( 'Check that c on t r o l a c t i on s needed to s a t i s f y the \

r e s p o n s i b i l i t i e s are inc luded ' ,

l ogged_asse r t i on ( 'H=2 ' , subClassOf , 'Hazard ' )

and logged_asse r t i on ( 'H=2 ' , hasHolding , 'F=2 ')

and not logged_asse r t i on (_20334 , requestsToHold , 'F=2 ') ,

1 , datet ime (2022 , 3 , 9 , 1 3 , 2 , 5 1 ) ) .

focus_step ( step1 , 43 , datet ime (2022 , 3 , 9 , 1 3 , 3 , 6 ) ) .

focus_concept ( ' Loss ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 3 , 6 ) ) .

focus_step ( step2 , 43 , datet ime (2022 , 3 , 9 , 1 3 , 3 , 1 1 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 3 , 1 1 ) ) .

focus_concept ( ' ControlAction ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 3 , 2 6 ) ) .

focus_concept ( ' Entity ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 3 , 2 8 ) ) .

a s s e r t ( spo ( 'E=1 ' , hasCapabi l i ty , 'CA=1 ') ,43 , datet ime (2022 , 3 , 9 , 1 3 , 3 , 3 7 ) ) .

r e t r a c t ( spo ( 'E=1 ' , hasCapabi l i ty , 'CA=1 ') ,43 , datet ime (2022 , 3 , 9 , 1 3 , 4 , 1 ) ) .

a s s e r t ( spo ( 'E=3 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 4 , 8 ) ) .

a s s e r t ( spo ( 'E=3 ' , subClassOf , ' Entity ' ) , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 4 , 8 ) ) .

focus_subconcept ( 'E=3 ' ,43 , datet ime (2022 , 3 , 9 , 1 3 , 4 , 1 0 ) ) .

a s s e r t ( spo ( 'E=3 ' , l abe l , "Module Leader ") ,

220



Chapter E. User Study Selected Logs E.1. User 43

43 , datet ime (2022 , 3 , 9 , 1 3 , 4 , 1 5 ) ) .

a s s e r t ( spo ( 'E=3 ' , hasCapabi l i ty , 'CA=1 ') ,43 , datet ime (2022 , 3 , 9 , 1 3 , 4 , 2 2 ) ) .

focus_concept ( ' ControlAction ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 4 , 2 4 ) ) .

focus_subconcept ( 'CA=1 ' ,43 , datet ime (2022 , 3 , 9 , 1 3 , 4 , 2 5 ) ) .

r e t r a c t ( spo ( 'CA=1 ' , l abe l , "Module Leader d e s c r i b e s module ") ,

43 , datet ime (2022 , 3 , 9 , 1 3 , 4 , 4 9 ) ) .

a s s e r t ( spo ( 'CA=1 ' , l abe l , " Desc r ibe s module ") ,

43 , datet ime (2022 , 3 , 9 , 1 3 , 4 , 4 9 ) ) .

focus_concept ( ' Entity ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 4 , 4 9 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 5 , 4 8 ) ) .

focus_subconcept ( 'CP=1 ' ,43 , datet ime (2022 , 3 , 9 , 1 3 , 5 , 5 7 ) ) .

focus_concept ( ' Entity ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 6 , 3 9 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 6 , 4 2 ) ) .

focus_concept ( ' ControlAction ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 6 , 4 5 ) ) .

a s s e r t ( spo ( 'CA=2 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 6 , 5 5 ) ) .

a s s e r t ( spo ( 'CA=2 ' , subClassOf , ' ControlAction ' ) ,

43 , datet ime (2022 , 3 , 9 , 1 3 , 6 , 5 5 ) ) .

focus_subconcept ( 'CA=2 ' ,43 , datet ime (2022 , 3 , 9 , 1 3 , 6 , 5 7 ) ) .

a s s e r t ( spo ( 'CA=2 ' , l abe l , " Provides in fo rmat ion ") ,

43 , datet ime (2022 , 3 , 9 , 1 3 , 7 , 4 ) ) .

focus_subconcept ( 'CA=1 ' ,43 , datet ime (2022 , 3 , 9 , 1 3 , 7 , 4 ) ) .

a s s e r t ( spo ( 'F=4 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 7 , 2 3 ) ) .

a s s e r t ( spo ( 'F=4 ' , subClassOf , ' Fluent ' ) , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 7 , 2 3 ) ) .

a s s e r t ( spo ( 'F=4 ' , hasBearer , 'E=2 ') ,43 , datet ime (2022 , 3 , 9 , 1 3 , 7 , 2 3 ) ) .

a s s e r t ( spo ( 'F=4 ' , hasQual i tyInSomeSituat ion , 'Q=1 ') ,

43 , datet ime (2022 , 3 , 9 , 1 3 , 7 , 2 3 ) ) .

a s s e r t ( spo ( 'CA=2 ' , requestsToHold , 'F=4 ') ,

43 , datet ime (2022 , 3 , 9 , 1 3 , 7 , 2 3 ) ) .

focus_concept ( ' Entity ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 8 , 2 4 ) ) .

a s s e r t ( spo ( 'E=4 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 8 , 3 0 ) ) .

a s s e r t ( spo ( 'E=4 ' , subClassOf , ' Entity ' ) , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 8 , 3 0 ) ) .

focus_subconcept ( 'E=4 ' ,43 , datet ime (2022 , 3 , 9 , 1 3 , 8 , 3 2 ) ) .

221



E.1. User 43 Chapter E. User Study Selected Logs

a s s e r t ( spo ( 'E=4 ' , l abe l , " Student ") , 43 , datet ime (2022 , 3 , 9 , 1 3 , 8 , 3 8 ) ) .

a s s e r t ( spo ( 'E=4 ' , hasCapabi l i ty , 'CA=2 ') ,43 , datet ime (2022 , 3 , 9 , 1 3 , 8 , 4 4 ) ) .

focus_concept ( ' Feedback ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 8 , 5 0 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 8 , 5 2 ) ) .

focus_subconcept ( 'CP=1 ' ,43 , datet ime (2022 , 3 , 9 , 1 3 , 8 , 5 7 ) ) .

r eque s t_ inte rvent i on (43 , datet ime (2022 , 3 , 9 , 1 3 , 9 , 1 0 ) ) .

r eque s t_ inte rvent i on (43 , datet ime (2022 , 3 , 9 , 1 3 , 9 , 1 2 ) ) .

request_help ( 'Check that c on t r o l a c t i on s needed to s a t i s f y the \

r e s p o n s i b i l i t i e s are inc luded ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 9 , 2 3 ) ) .

focus_concept ( ' ControlAction ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 9 , 3 1 ) ) .

focus_step ( step1 , 43 , datet ime (2022 , 3 , 9 , 1 3 , 9 , 3 8 ) ) .

focus_concept ( ' Loss ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 9 , 3 8 ) ) .

focus_step ( step2 , 43 , datet ime (2022 , 3 , 9 , 1 3 , 9 , 4 7 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 9 , 4 7 ) ) .

focus_subconcept ( 'CA=2 ' ,43 , datet ime (2022 , 3 , 9 , 1 3 , 9 , 5 1 ) ) .

r e t r a c t ( spo ( 'CA=2 ' , requestsToHold , 'F=

4 ' ) , 43 , datet ime (2022 , 3 , 9 , 1 3 , 1 0 , 3 ) ) .

r e t r a c t ( spo ( 'F=4 ' , hasBearer , 'E=2 ') ,43 , datet ime (2022 , 3 , 9 , 1 3 , 1 0 , 3 ) ) .

r e t r a c t ( spo ( 'F=4 ' , hasQual i tyInSomeSituat ion , 'Q=1 ') ,

43 , datet ime (2022 , 3 , 9 , 1 3 , 1 0 , 3 ) ) .

r e t r a c t ( spo ( 'F=4 ' , subClassOf , ' Fluent ' ) , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 1 0 , 3 ) ) .

r e t r a c t ( spo ( 'F=4 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 1 0 , 3 ) ) .

a s s e r t ( spo ( 'F=4 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 13 , 10 , 14 ) ) .

a s s e r t ( spo ( 'F=4 ' , subClassOf , ' Fluent ' ) , 4 3 , datet ime (2022 , 3 , 9 , 13 , 10 , 14 ) ) .

a s s e r t ( spo ( 'CA=2 ' , requestsToHold , 'F=4 ') ,

43 , datet ime (2022 , 3 , 9 , 13 , 10 , 14 ) ) .

a s s e r t ( spo ( 'F=4 ' , hasBearer , 'E=2 ') ,43 , datet ime (2022 , 3 , 9 , 1 3 , 10 , 14 ) ) .

a s s e r t ( spo ( 'F=4 ' , hasQual i tyInSomeSituat ion , 'Q=1 ') ,

43 , datet ime (2022 , 3 , 9 , 13 , 10 , 14 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 10 , 18 ) ) .

focus_concept ( ' Loss ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 10 , 20 ) ) .

focus_step ( step1 , 43 , datet ime (2022 , 3 , 9 , 1 3 , 10 , 20 ) ) .

222



Chapter E. User Study Selected Logs E.1. User 43

r e t r a c t ( spo ( 'Q=2 ' , l abe l , " f lawed ") ,43 , datet ime (2022 , 3 , 9 , 1 3 , 10 , 26 ) ) .

a s s e r t ( spo ( 'Q=2 ' , l abe l , " unc l ea r " ) , 43 , datet ime (2022 , 3 , 9 , 13 , 10 , 26 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 10 , 28 ) ) .

focus_step ( step2 , 43 , datet ime (2022 , 3 , 9 , 1 3 , 10 , 28 ) ) .

focus_concept ( ' Entity ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 10 , 30 ) ) .

focus_concept ( ' ControlAction ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 10 , 32 ) ) .

focus_step ( step1 , 43 , datet ime (2022 , 3 , 9 , 1 3 , 10 , 34 ) ) .

focus_concept ( ' Loss ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 10 , 34 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 10 , 46 ) ) .

focus_step ( step2 , 43 , datet ime (2022 , 3 , 9 , 1 3 , 10 , 46 ) ) .

focus_concept ( ' Feedback ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 1 1 , 4 ) ) .

focus_concept ( ' ControlAction ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 1 1 , 8 ) ) .

r e t r a c t ( spo ( 'CA=2 ' , requestsToHold , 'F=4 ') ,

43 , datet ime (2022 , 3 , 9 , 13 , 11 , 17 ) ) .

r e t r a c t ( spo ( 'F=4 ' , hasBearer , 'E=2 ') ,43 , datet ime (2022 , 3 , 9 , 1 3 , 11 , 17 ) ) .

r e t r a c t ( spo ( 'F=4 ' , hasQual i tyInSomeSituat ion , 'Q=1 ') ,

43 , datet ime (2022 , 3 , 9 , 13 , 11 , 17 ) ) .

r e t r a c t ( spo ( 'F=4 ' , subClassOf , ' Fluent ' ) ,

43 , datet ime (2022 , 3 , 9 , 13 , 11 , 17 ) ) .

r e t r a c t ( spo ( 'F=4 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 13 , 11 , 17 ) ) .

focus_step ( step1 , 43 , datet ime (2022 , 3 , 9 , 1 3 , 11 , 18 ) ) .

focus_concept ( ' Loss ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 11 , 18 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 11 , 22 ) ) .

focus_step ( step2 , 43 , datet ime (2022 , 3 , 9 , 1 3 , 11 , 22 ) ) .

focus_subconcept ( 'CA=2 ' ,43 , datet ime (2022 , 3 , 9 , 13 , 11 , 31 ) ) .

a s s e r t ( spo ( 'CA=2 ' , requestsToHold , 'F=2 ') ,

43 , datet ime (2022 , 3 , 9 , 13 , 11 , 36 ) ) .

r eque s t_ inte rvent i on (43 , datet ime (2022 , 3 , 9 , 1 3 , 11 , 42 ) ) .

i n t e rv ene ( 'Check that c on t r o l a c t i on s needed to s a t i s f y the \

r e s p o n s i b i l i t i e s are inc luded ' ,

l ogged_asse r t i on ( 'H=1 ' , subClassOf , 'Hazard ' )

and logged_asse r t i on ( 'H=1 ' , hasHolding , 'F=1 ')

223



E.1. User 43 Chapter E. User Study Selected Logs

and not logged_asse r t i on (_10202 , requestsToHold , 'F=1 ') ,

1 , datet ime (2022 , 3 , 9 , 1 3 , 11 , 42 ) ) .

request_help ( 'Check that c on t r o l a c t i on s needed to s a t i s f y the \

r e s p o n s i b i l i t i e s are inc luded ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 11 , 47 ) ) .

focus_subconcept ( 'CA=1 ' ,43 , datet ime (2022 , 3 , 9 , 1 3 , 11 , 54 ) ) .

r e t r a c t ( spo ( 'CA=1 ' , requestsToHold , 'F=3 ') ,

43 , datet ime (2022 , 3 , 9 , 13 , 11 , 59 ) ) .

r e t r a c t ( spo ( 'F=3 ' , hasBearer , 'E=1 ') ,43 , datet ime (2022 , 3 , 9 , 1 3 , 11 , 59 ) ) .

r e t r a c t ( spo ( 'F=3 ' , hasQual i tyInSomeSituat ion , 'Q=2 ') ,

43 , datet ime (2022 , 3 , 9 , 13 , 11 , 59 ) ) .

r e t r a c t ( spo ( 'F=3 ' , subClassOf , ' Fluent ' ) ,

43 , datet ime (2022 , 3 , 9 , 13 , 11 , 59 ) ) .

r e t r a c t ( spo ( 'F=3 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 13 , 11 , 59 ) ) .

a s s e r t ( spo ( 'CA=1 ' , requestsToHold , 'F=1 ') ,

43 , datet ime (2022 , 3 , 9 , 1 3 , 1 2 , 4 ) ) .

r eque s t_ inte rvent i on (43 , datet ime (2022 , 3 , 9 , 1 3 , 1 2 , 8 ) ) .

i n t e rv ene ( 'Check that feedback needed to s a t i s f y the \

r e s p o n s i b i l i t i e s i s inc luded ' ,

l ogged_asse r t i on ( 'H=1 ' , subClassOf , 'Hazard ' )

and logged_asse r t i on ( 'H=1 ' , hasHolding , 'F=1 ')

and not logged_asse r t i on (_10570 , recordsFluent , 'F=1 ') ,

1 , datet ime (2022 , 3 , 9 , 1 3 , 1 2 , 8 ) ) .

request_help ( 'Check that feedback needed to s a t i s f y the \

r e s p o n s i b i l i t i e s i s inc luded ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 12 , 11 ) ) .

focus_concept ( ' Feedback ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 12 , 16 ) ) .

g lossary_lookup ( ' Feedback ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 12 , 18 ) ) .

a s s e r t ( spo ( 'FB=1 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 13 , 12 , 21 ) ) .

a s s e r t ( spo ( 'FB=1 ' , subClassOf , ' Feedback ' ) ,

43 , datet ime (2022 , 3 , 9 , 13 , 12 , 21 ) ) .

focus_subconcept ( 'FB=1 ' ,43 , datet ime (2022 , 3 , 9 , 1 3 , 12 , 23 ) ) .

focus_concept ( ' Entity ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 1 3 , 2 ) ) .

focus_concept ( ' Feedback ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 13 , 12 ) ) .

224



Chapter E. User Study Selected Logs E.1. User 43

a s s e r t ( spo ( 'FB=1 ' , l abe l , " Read module in fo rmat ion ") ,

43 , datet ime (2022 , 3 , 9 , 13 , 13 , 56 ) ) .

a s s e r t ( spo ( 'FB=1 ' , r ecordsFluent , 'F=1 ') ,

43 , datet ime (2022 , 3 , 9 , 13 , 13 , 56 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 14 , 10 ) ) .

focus_concept ( ' Feedback ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 14 , 12 ) ) .

focus_concept ( ' ControlAction ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 14 , 21 ) ) .

focus_concept ( ' Entity ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 14 , 31 ) ) .

a s s e r t ( spo ( 'E=4 ' , informedBy , 'FB=1 ') ,43 , datet ime (2022 , 3 , 9 , 1 3 , 1 5 , 2 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 15 , 37 ) ) .

focus_subconcept ( 'CP=1 ' ,43 , datet ime (2022 , 3 , 9 , 1 3 , 15 , 40 ) ) .

g lossary_lookup ( ' Contro l l edProces s ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 15 , 49 ) ) .

r eque s t_ inte rvent i on (43 , datet ime (2022 , 3 , 9 , 1 3 , 15 , 54 ) ) .

i n t e rv ene ( 'Check that feedback needed to s a t i s f y the \

r e s p o n s i b i l i t i e s i s inc luded ' ,

l ogged_asse r t i on ( 'H=2 ' , subClassOf , 'Hazard ' )

and logged_asse r t i on ( 'H=2 ' , hasHolding , 'F=2 ')

and not logged_asse r t i on (_11228 , recordsFluent , 'F=2 ') ,

1 , datet ime (2022 , 3 , 9 , 1 3 , 15 , 54 ) ) .

request_help ( 'Check that feedback needed to s a t i s f y the \

r e s p o n s i b i l i t i e s i s inc luded ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 15 , 56 ) ) .

focus_concept ( ' Feedback ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 1 6 , 0 ) ) .

a s s e r t ( spo ( 'FB=2 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 1 6 , 5 ) ) .

a s s e r t ( spo ( 'FB=2 ' , subClassOf , ' Feedback ' ) ,

43 , datet ime (2022 , 3 , 9 , 1 3 , 1 6 , 5 ) ) .

focus_step ( step1 , 43 , datet ime (2022 , 3 , 9 , 1 3 , 1 6 , 8 ) ) .

focus_concept ( ' Loss ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 1 6 , 8 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 16 , 14 ) ) .

focus_step ( step2 , 43 , datet ime (2022 , 3 , 9 , 1 3 , 16 , 14 ) ) .

focus_subconcept ( 'FB=2 ' ,43 , datet ime (2022 , 3 , 9 , 13 , 16 , 18 ) ) .

a s s e r t ( spo ( 'FB=2 ' , l abe l , "Module suggested ") ,

43 , datet ime (2022 , 3 , 9 , 13 , 16 , 46 ) ) .

225



E.1. User 43 Chapter E. User Study Selected Logs

a s s e r t ( spo ( 'FB=2 ' , r ecordsFluent , 'F=2 ') ,

43 , datet ime (2022 , 3 , 9 , 13 , 16 , 47 ) ) .

focus_concept ( ' Entity ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 16 , 50 ) ) .

focus_subconcept ( 'E=4 ' ,43 , datet ime (2022 , 3 , 9 , 1 3 , 16 , 53 ) ) .

a s s e r t ( spo ( 'E=4 ' , informedBy , 'FB=2 ') ,43 , datet ime (2022 , 3 , 9 , 1 3 , 1 7 , 5 ) ) .

r eque s t_ inte rvent i on (43 , datet ime (2022 , 3 , 9 , 1 3 , 17 , 19 ) ) .

i n t e rv ene ( 'Check that every c on t r o l l e d phy s i c a l p roc e s s i s \

c on t r o l l e d by one or more c o n t r o l l e r s ' ,

l ogged_asse r t i on ( 'CP=1 ' , subClassOf , ' Contro l l edProces s ' )

and not ( l ogged_asse r t i on ( 'CP=1 ' , hasSubject , _11750 )

and logged_asse r t i on (_11802 , hasBearer , _11750 )

and f a c t (_11858 , r e qu e s t sE f f e c t , _11802 )

and logged_asse r t i on (_11894 , hasCapabi l i ty , _11858 )

) ,

1 , datet ime (2022 , 3 , 9 , 1 3 , 17 , 19 ) ) .

request_help ( 'Check that every c on t r o l l e d phy s i c a l p roc e s s i s \

c on t r o l l e d by one or more c o n t r o l l e r s ' ,

43 , datet ime (2022 , 3 , 9 , 13 , 17 , 25 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 17 , 39 ) ) .

g lossary_lookup ( ' Contro l l edProces s ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 17 , 41 ) ) .

focus_concept ( ' ControlAction ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 17 , 57 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 1 8 , 5 ) ) .

a s s e r t ( spo ( 'CP=1 ' , hasSubject , 'E=4 ') ,43 , datet ime (2022 , 3 , 9 , 1 3 , 18 , 14 ) ) .

r e t r a c t ( spo ( 'CP=1 ' , hasSubject , 'E=4 ') ,43 , datet ime (2022 , 3 , 9 , 1 3 , 18 , 53 ) ) .

a s s e r t ( spo ( 'CP=1 ' , hasSubject , 'E=3 ') ,43 , datet ime (2022 , 3 , 9 , 1 3 , 18 , 53 ) ) .

r e t r a c t ( spo ( 'CP=1 ' , hasSubject , 'E=3 ') ,43 , datet ime (2022 , 3 , 9 , 1 3 , 1 9 , 4 ) ) .

a s s e r t ( spo ( 'CP=1 ' , hasSubject , 'E=2 ') ,43 , datet ime (2022 , 3 , 9 , 1 3 , 1 9 , 4 ) ) .

r eque s t_ inte rvent i on (43 , datet ime (2022 , 3 , 9 , 1 3 , 19 , 28 ) ) .

focus_step ( step3 , 43 , datet ime (2022 , 3 , 9 , 1 3 , 19 , 30 ) ) .

g lossary_lookup ( 'UCA' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 19 , 36 ) ) .

a s s e r t ( spo ( 'CA=1 ' , subClassOf ,

' Provid ingPotent ia l lyHazardousContro lAct ion ' ) ,

226



Chapter E. User Study Selected Logs E.1. User 43

43 , datet ime (2022 , 3 , 9 , 13 , 19 , 44 ) ) .

a s s e r t ( spo ( 'CA=1 ' , prov id ingPotent ia l lyLeadsTo , 'H=1 ') ,

43 , datet ime (2022 , 3 , 9 , 13 , 19 , 49 ) ) .

a s s e r t ( spo ( 'CA=1 ' , subClassOf ,

'NotProvid ingPotent ia l lyHazardousContro lAct ion ' ) ,

43 , datet ime (2022 , 3 , 9 , 13 , 19 , 59 ) ) .

a s s e r t ( spo ( 'CA=1 ' , notProvid ingPotent ia l lyLeadsTo , 'H=1 ') ,

43 , datet ime (2022 , 3 , 9 , 1 3 , 2 0 , 3 ) ) .

a s s e r t ( spo ( 'CA=2 ' , subClassOf ,

'NotProvid ingPotent ia l lyHazardousContro lAct ion ' ) ,

43 , datet ime (2022 , 3 , 9 , 13 , 20 , 13 ) ) .

a s s e r t ( spo ( 'CA=2 ' , notProvid ingPotent ia l lyLeadsTo , 'H=2 ') ,

43 , datet ime (2022 , 3 , 9 , 13 , 20 , 23 ) ) .

a s s e r t ( spo ( 'CA=2 ' , subClassOf ,

' Provid ingPotent ia l lyHazardousContro lAct ion ' ) ,

43 , datet ime (2022 , 3 , 9 , 13 , 20 , 25 ) ) .

a s s e r t ( spo ( 'CA=2 ' , prov id ingPotent ia l lyLeadsTo , 'H=2 ') ,

43 , datet ime (2022 , 3 , 9 , 13 , 20 , 27 ) ) .

a s s e r t ( spo ( 'CA=1 ' , notProvid ingPotent ia l lyLeadsTo , 'H=2 ') ,

43 , datet ime (2022 , 3 , 9 , 13 , 20 , 48 ) ) .

a s s e r t ( spo ( 'CA=1 ' , prov id ingPotent ia l lyLeadsTo , 'H=2 ') ,

43 , datet ime (2022 , 3 , 9 , 1 3 , 2 1 , 2 ) ) .

r eque s t_ inte rvent i on (43 , datet ime (2022 , 3 , 9 , 1 3 , 2 1 , 7 ) ) .

i n t e rv ene ( ' Ensure every unsa fe c on t r o l a c t i on s p e c i f i e s the context \

that makes the con t r o l a c t i on unsafe ' ,

f a c t ( 'CA=2 ' , subClassOf , ' Potent ia l lyHazardousContro lAct ion ' )

and f a c t ( 'CA=2 ' , i s_id , ' ControlAction ' )

and not logged_asse r t i on ( 'CA=2 ' , i sPo s s i b l e I n , _13440 ) ,

1 , datet ime (2022 , 3 , 9 , 1 3 , 2 1 , 7 ) ) .

focus_step ( step2 , 43 , datet ime (2022 , 3 , 9 , 1 3 , 21 , 43 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 21 , 43 ) ) .

focus_concept ( ' ControlAction ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 21 , 44 ) ) .

227



E.1. User 43 Chapter E. User Study Selected Logs

focus_subconcept ( 'CA=1 ' ,43 , datet ime (2022 , 3 , 9 , 1 3 , 2 2 , 0 ) ) .

focus_subconcept ( 'CA=2 ' ,43 , datet ime (2022 , 3 , 9 , 1 3 , 22 , 54 ) ) .

focus_step ( step3 , 43 , datet ime (2022 , 3 , 9 , 1 3 , 23 , 16 ) ) .

request_help ( ' Ensure every unsa fe c on t r o l a c t i on s p e c i f i e s the \

context that makes the c on t r o l a c t i on unsafe ' ,

43 , datet ime (2022 , 3 , 9 , 13 , 23 , 20 ) ) .

request_help ( ' Ensure every unsa fe c on t r o l a c t i on s p e c i f i e s the \

context that makes the c on t r o l a c t i on unsafe ' ,

43 , datet ime (2022 , 3 , 9 , 13 , 23 , 25 ) ) .

focus_step ( step2 , oswin , datet ime (2022 , 3 , 9 , 1 3 , 23 , 27 ) ) .

focus_concept ( ' Control Actions ' , oswin , datet ime (2022 , 3 , 9 , 13 , 23 , 27 ) ) .

focus_subconcept ( 'CA=2 ' , oswin , datet ime (2022 , 3 , 9 , 1 3 , 23 , 27 ) ) .

request_help ( ' Ensure every unsa fe c on t r o l a c t i on s p e c i f i e s the \

context that makes the c on t r o l a c t i on unsafe ' ,

43 , datet ime (2022 , 3 , 9 , 13 , 23 , 27 ) ) .

a s s e r t ( spo ( 'S=1 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 13 , 23 , 44 ) ) .

a s s e r t ( spo ( 'S=1 ' , subClassOf , ' S i tuat ion ' ) ,

43 , datet ime (2022 , 3 , 9 , 13 , 23 , 44 ) ) .

a s s e r t ( spo ( 'CA=2 ' , i sPo s s i b l e I n , ' S=1 ') ,43 , datet ime (2022 , 3 , 9 , 1 3 , 23 , 44 ) ) .

focus_subconcept ( 'S=1 ' ,43 , datet ime (2022 , 3 , 9 , 1 3 , 23 , 54 ) ) .

focus_subconcept ( 'CA=1 ' ,43 , datet ime (2022 , 3 , 9 , 1 3 , 23 , 59 ) ) .

a s s e r t ( spo ( 'S=2 ' , type , ' Class ' ) , 4 3 , datet ime (2022 , 3 , 9 , 13 , 24 , 11 ) ) .

a s s e r t ( spo ( 'S=2 ' , subClassOf , ' S i tuat ion ' ) ,

43 , datet ime (2022 , 3 , 9 , 13 , 24 , 11 ) ) .

a s s e r t ( spo ( 'CA=1 ' , i sPo s s i b l e I n , ' S=2 ') ,43 , datet ime (2022 , 3 , 9 , 1 3 , 24 , 11 ) ) .

focus_step ( step3 , 43 , datet ime (2022 , 3 , 9 , 1 3 , 24 , 15 ) ) .

r eque s t_ inte rvent i on (43 , datet ime (2022 , 3 , 9 , 1 3 , 24 , 17 ) ) .

i n t e rv ene ( ' Ensure the unsa fe c on t r o l a c t i on context s are de f ined \

c l e a r l y ' ,

f a c t ( 'CA=2 ' , subClassOf , ' Potent ia l lyHazardousContro lAct ion ' )

and f a c t ( 'CA=2 ' , i s_id , ' ControlAction ' )

and logged_asse r t i on ( 'CA=2 ' , i sPo s s i b l e I n , ' S=1 ')

228



Chapter E. User Study Selected Logs E.2. User 48

and not ( l ogged_asse r t i on ( 'S=1 ' , hasHolding , _14256 )

or l ogged_asse r t i on ( 'S=1 ' , notHasHolding , _14292 )

) ,

1 , datet ime (2022 , 3 , 9 , 1 3 , 24 , 17 ) ) .

focus_step ( step4 , 43 , datet ime (2022 , 3 , 9 , 1 3 , 24 , 33 ) ) .

focus_step ( step4 , 43 , datet ime (2022 , 3 , 9 , 1 3 , 24 , 37 ) ) .

in te rvent ion_feedback ( inte rvent ion_feedback ( ' Ensure the unsa fe \

con t r o l a c t i on context s are de f ined c l e a r l y ' , ' Inappopr iate ' ) ,

43 , datet ime (2022 , 3 , 9 , 13 , 24 , 58 ) ) .

d i sm i s s_ in te rvent i on ( ' Ensure the unsa fe c on t r o l a c t i on context s are \

de f ined c l e a r l y ' , 4 3 , datet ime (2022 , 3 , 9 , 1 3 , 24 , 58 ) ) .

focus_step ( step4 , 43 , datet ime (2022 , 3 , 9 , 1 3 , 2 5 , 1 ) ) .

focus_step ( step3 , 43 , datet ime (2022 , 3 , 9 , 1 3 , 2 5 , 3 ) ) .

focus_step ( step4 , 43 , datet ime (2022 , 3 , 9 , 1 3 , 2 5 , 4 ) ) .

i n t e rv ene ( ' Ensure the unsa fe c on t r o l a c t i on context s are de f ined \

c l e a r l y ' ,

f a c t ( 'CA=1 ' , subClassOf , ' Potent ia l lyHazardousContro lAct ion ' )

and f a c t ( 'CA=1 ' , i s_id , ' ControlAction ' )

and logged_asse r t i on ( 'CA=1 ' , i sPo s s i b l e I n , ' S=2 ')

and not ( l ogged_asse r t i on ( 'S=2 ' , hasHolding , _13520 )

or l ogged_asse r t i on ( 'S=2 ' , notHasHolding , _13528 )

) ,

1 , datet ime (2022 , 3 , 9 , 1 3 , 2 5 , 1 ) ) .

focus_step ( step4 , 43 , datet ime (2022 , 3 , 9 , 1 3 , 2 5 , 7 ) ) .

focus_step ( step3 , 43 , datet ime (2022 , 3 , 9 , 1 3 , 25 , 17 ) ) .

E.2 User 48

glossary_lookup ( ' Loss ' , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 0 , 9 ) ) .

a s s e r t ( spo ( 'L=1 ' , type , ' Class ' ) , 4 8 , datet ime (2022 , 3 , 10 , 9 , 5 0 , 27 ) ) .

a s s e r t ( spo ( 'L=1 ' , subClassOf , ' Loss ' ) , 4 8 , datet ime (2022 , 3 , 10 , 9 , 5 0 , 27 ) ) .

a s s e r t ( spo ( 'L=2 ' , type , ' Class ' ) , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 1 , 6 ) ) .

229



E.2. User 48 Chapter E. User Study Selected Logs

a s s e r t ( spo ( 'L=2 ' , subClassOf , ' Loss ' ) , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 1 , 6 ) ) .

r e t r a c t ( spo ( 'L=2 ' , subClassOf , ' Loss ' ) , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 1 , 9 ) ) .

r e t r a c t ( spo ( 'L=2 ' , type , ' Class ' ) , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 1 , 9 ) ) .

a s s e r t ( spo ( 'L=1 ' , l abe l , " Student s a t i s f a c t i o n ") ,

48 , datet ime (2022 , 3 , 10 , 9 , 5 1 , 29 ) ) .

a s s e r t ( spo ( 'L=2 ' , type , ' Class ' ) , 4 8 , datet ime (2022 , 3 , 10 , 9 , 5 1 , 29 ) ) .

a s s e r t ( spo ( 'L=2 ' , subClassOf , ' Loss ' ) , 4 8 , datet ime (2022 , 3 , 10 , 9 , 5 1 , 29 ) ) .

a s s e r t ( spo ( 'L=2 ' , l abe l , "Module number o f s tudents ") ,

48 , datet ime (2022 , 3 , 1 0 , 9 , 5 2 , 3 ) ) .

a s s e r t ( spo ( 'H=1 ' , type , ' Class ' ) , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 2 , 3 ) ) .

a s s e r t ( spo ( 'H=1 ' , subClassOf , 'Hazard ' ) , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 2 , 3 ) ) .

a s s e r t ( spo ( 'F=1 ' , type , ' Class ' ) , 4 8 , datet ime (2022 , 3 , 10 , 9 , 5 2 , 11 ) ) .

a s s e r t ( spo ( 'F=1 ' , subClassOf , ' Fluent ' ) , 4 8 , datet ime (2022 , 3 , 10 , 9 , 5 2 , 11 ) ) .

a s s e r t ( spo ( 'E=1 ' , type , ' Class ' ) , 4 8 , datet ime (2022 , 3 , 10 , 9 , 5 2 , 11 ) ) .

a s s e r t ( spo ( 'E=1 ' , subClassOf , ' Entity ' ) , 4 8 , datet ime (2022 , 3 , 10 , 9 , 5 2 , 11 ) ) .

a s s e r t ( spo ( 'Q=1 ' , type , ' Class ' ) , 4 8 , datet ime (2022 , 3 , 10 , 9 , 5 2 , 11 ) ) .

a s s e r t ( spo ( 'Q=1 ' , subClassOf , ' Quality ' ) ,

48 , datet ime (2022 , 3 , 10 , 9 , 5 2 , 11 ) ) .

a s s e r t ( spo ( 'F=1 ' , hasBearer , 'E=1 ') ,48 , datet ime (2022 , 3 , 1 0 , 9 , 5 2 , 11 ) ) .

a s s e r t ( spo ( 'H=1 ' , hasHolding , 'F=1 ') ,48 , datet ime (2022 , 3 , 1 0 , 9 , 5 2 , 11 ) ) .

a s s e r t ( spo ( 'F=1 ' , hasQual i tyInSomeSituat ion , 'Q=1 ') ,

48 , datet ime (2022 , 3 , 10 , 9 , 5 2 , 11 ) ) .

g lossary_lookup ( 'Hazard ' , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 2 , 16 ) ) .

a s s e r t ( spo ( 'E=1 ' , l abe l , "Module " ) , 48 , datet ime (2022 , 3 , 10 , 9 , 5 2 , 39 ) ) .

r e t r a c t ( spo ( 'H=1 ' , hasHolding , 'F=1 ') ,

48 , datet ime (2022 , 3 , 10 , 9 , 5 2 , 40 ) ) .

a s s e r t ( spo ( 'H=1 ' , notHasHolding , 'F=1 ') ,48 , datet ime (2022 , 3 , 1 0 , 9 , 5 2 , 40 ) ) .

a s s e r t ( spo ( 'Q=1 ' , l abe l , " l i k e d ") ,48 , datet ime (2022 , 3 , 1 0 , 9 , 5 2 , 58 ) ) .

a s s e r t ( spo ( 'H=1 ' , hasPoss ib l e , 'L=1 ') ,48 , datet ime (2022 , 3 , 1 0 , 9 , 5 2 , 58 ) ) .

a s s e r t ( spo ( 'H=2 ' , type , ' Class ' ) , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 3 , 1 ) ) .

a s s e r t ( spo ( 'H=2 ' , subClassOf , 'Hazard ' ) , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 3 , 1 ) ) .

a s s e r t ( spo ( 'F=2 ' , type , ' Class ' ) , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 3 , 5 ) ) .

230



Chapter E. User Study Selected Logs E.2. User 48

a s s e r t ( spo ( 'F=2 ' , subClassOf , ' Fluent ' ) , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 3 , 5 ) ) .

a s s e r t ( spo ( 'E=2 ' , type , ' Class ' ) , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 3 , 5 ) ) .

a s s e r t ( spo ( 'E=2 ' , subClassOf , ' Entity ' ) , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 3 , 5 ) ) .

a s s e r t ( spo ( 'Q=2 ' , type , ' Class ' ) , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 3 , 6 ) ) .

a s s e r t ( spo ( 'Q=2 ' , subClassOf , ' Quality ' ) ,

48 , datet ime (2022 , 3 , 1 0 , 9 , 5 3 , 6 ) ) .

a s s e r t ( spo ( 'F=2 ' , hasQual i tyInSomeSituat ion , 'Q=2 ') ,

48 , datet ime (2022 , 3 , 1 0 , 9 , 5 3 , 6 ) ) .

a s s e r t ( spo ( 'F=2 ' , hasBearer , 'E=2 ') ,48 , datet ime (2022 , 3 , 1 0 , 9 , 5 3 , 6 ) ) .

a s s e r t ( spo ( 'H=2 ' , hasHolding , 'F=2 ') ,48 , datet ime (2022 , 3 , 1 0 , 9 , 5 3 , 6 ) ) .

a s s e r t ( spo ( 'E=2 ' , l abe l , "Module l e ade r ") ,

48 , datet ime (2022 , 3 , 10 , 9 , 5 3 , 16 ) ) .

r e t r a c t ( spo ( 'H=2 ' , hasHolding , 'F=2 ') ,48 , datet ime (2022 , 3 , 1 0 , 9 , 5 3 , 25 ) ) .

a s s e r t ( spo ( 'H=2 ' , notHasHolding , 'F=2 ') ,48 , datet ime (2022 , 3 , 1 0 , 9 , 5 3 , 25 ) ) .

a s s e r t ( spo ( 'Q=2 ' , l abe l , " s a t i s f i e d with number o f s tudents ") ,

48 , datet ime (2022 , 3 , 10 , 9 , 5 3 , 50 ) ) .

a s s e r t ( spo ( 'H=2 ' , hasPoss ib l e , 'L=2 ') ,48 , datet ime (2022 , 3 , 1 0 , 9 , 5 3 , 51 ) ) .

r eque s t_ inte rvent i on (48 , datet ime (2022 , 3 , 1 0 , 9 , 5 4 , 12 ) ) .

focus_step ( step2 , 48 , datet ime (2022 , 3 , 1 0 , 9 , 54 , 16 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 4 , 16 ) ) .

a s s e r t ( spo ( 'CP=1 ' , type , ' Class ' ) , 4 8 , datet ime (2022 , 3 , 10 , 9 , 5 4 , 19 ) ) .

a s s e r t ( spo ( 'CP=1 ' , subClassOf , ' Contro l l edProces s ' ) ,

48 , datet ime (2022 , 3 , 10 , 9 , 5 4 , 19 ) ) .

focus_subconcept ( 'CP=1 ' ,48 , datet ime (2022 , 3 , 1 0 , 9 , 5 4 , 22 ) ) .

g lossary_lookup ( ' Contro l l edProces s ' , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 4 , 31 ) ) .

a s s e r t ( spo ( 'CP=1 ' , l abe l , " Suggest module ") ,

48 , datet ime (2022 , 3 , 10 , 9 , 5 4 , 54 ) ) .

focus_subconcept ( 'CP=1 ' ,48 , datet ime (2022 , 3 , 1 0 , 9 , 5 5 , 0 ) ) .

r eque s t_ inte rvent i on (48 , datet ime (2022 , 3 , 1 0 , 9 , 5 5 , 26 ) ) .

i n t e rv ene ( ' Step 2 precedes Step 3 ' ,

not ( l ogged_asse r t i on (_16478 , hasCapabi l i ty , _16482 )

and f a c t (_16482 , r e qu e s t sE f f e c t , _16538 )

231



E.2. User 48 Chapter E. User Study Selected Logs

and logged_asse r t i on (_16570 , subClassOf , ' Feedback ' ) ) ,

1 , datet ime (2022 , 3 , 1 0 , 9 , 5 5 , 26 ) ) .

focus_concept ( ' Entity ' , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 6 , 4 ) ) .

focus_subconcept ( 'E=1 ' ,48 , datet ime (2022 , 3 , 1 0 , 9 , 5 6 , 7 ) ) .

focus_subconcept ( 'E=2 ' ,48 , datet ime (2022 , 3 , 1 0 , 9 , 5 6 , 18 ) ) .

focus_concept ( ' Feedback ' , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 56 , 31 ) ) .

focus_concept ( ' ControlAction ' , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 56 , 33 ) ) .

focus_concept ( ' Entity ' , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 6 , 34 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 6 , 36 ) ) .

focus_step ( step1 , 48 , datet ime (2022 , 3 , 1 0 , 9 , 56 , 38 ) ) .

focus_concept ( ' Loss ' , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 6 , 38 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 6 , 40 ) ) .

focus_step ( step2 , 48 , datet ime (2022 , 3 , 1 0 , 9 , 56 , 40 ) ) .

focus_concept ( ' Entity ' , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 6 , 41 ) ) .

r e t r a c t ( spo ( 'E=1 ' , l abe l , "Module " ) , 48 , datet ime (2022 , 3 , 10 , 9 , 5 6 , 52 ) ) .

a s s e r t ( spo ( 'E=1 ' , l abe l , " Student ") , 48 , datet ime (2022 , 3 , 10 , 9 , 5 6 , 52 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 6 , 52 ) ) .

focus_concept ( ' Entity ' , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 6 , 53 ) ) .

focus_step ( step1 , 48 , datet ime (2022 , 3 , 1 0 , 9 , 56 , 58 ) ) .

focus_concept ( ' Loss ' , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 6 , 58 ) ) .

r e t r a c t ( spo ( 'Q=1 ' , l abe l , " l i k e d ") ,48 , datet ime (2022 , 3 , 1 0 , 9 , 5 7 , 20 ) ) .

a s s e r t ( spo ( 'Q=1 ' , l abe l , " happy with module ") ,

48 , datet ime (2022 , 3 , 10 , 9 , 5 7 , 20 ) ) .

focus_step ( step2 , 48 , datet ime (2022 , 3 , 1 0 , 9 , 57 , 20 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 7 , 20 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 7 , 23 ) ) .

focus_concept ( ' Entity ' , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 7 , 25 ) ) .

focus_concept ( ' ControlAction ' , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 57 , 27 ) ) .

a s s e r t ( spo ( 'CA=1 ' , type , ' Class ' ) , 4 8 , datet ime (2022 , 3 , 10 , 9 , 5 7 , 29 ) ) .

a s s e r t ( spo ( 'CA=1 ' , subClassOf , ' ControlAction ' ) ,

48 , datet ime (2022 , 3 , 10 , 9 , 5 7 , 29 ) ) .

focus_subconcept ( 'CA=1 ' ,48 , datet ime (2022 , 3 , 1 0 , 9 , 5 7 , 30 ) ) .

232



Chapter E. User Study Selected Logs E.2. User 48

glossary_lookup ( ' ControlAction ' , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 7 , 34 ) ) .

focus_step ( step1 , 48 , datet ime (2022 , 3 , 1 0 , 9 , 57 , 42 ) ) .

focus_concept ( ' Loss ' , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 7 , 42 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 7 , 49 ) ) .

focus_step ( step2 , 48 , datet ime (2022 , 3 , 1 0 , 9 , 57 , 49 ) ) .

g lossary_lookup ( ' ControlAction ' , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 8 , 6 ) ) .

a s s e r t ( spo ( 'CA=1 ' , requestsToNotHold , 'F=1 ') ,

48 , datet ime (2022 , 3 , 10 , 9 , 5 8 , 31 ) ) .

a s s e r t ( spo ( 'CA=1 ' , l abe l , " Student p r e f e r s p r a c t i c a l over t h e o r e t i c a l " ) ,

48 , datet ime (2022 , 3 , 10 , 9 , 5 9 , 14 ) ) .

focus_concept ( ' Feedback ' , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 59 , 48 ) ) .

a s s e r t ( spo ( 'FB=1 ' , type , ' Class ' ) , 4 8 , datet ime (2022 , 3 , 10 , 9 , 5 9 , 52 ) ) .

a s s e r t ( spo ( 'FB=1 ' , subClassOf , ' Feedback ' ) ,

48 , datet ime (2022 , 3 , 10 , 9 , 5 9 , 52 ) ) .

g lossary_lookup ( ' Feedback ' , 4 8 , datet ime (2022 , 3 , 1 0 , 9 , 5 9 , 53 ) ) .

focus_subconcept ( 'FB=1 ' ,48 , datet ime (2022 , 3 , 1 0 , 9 , 5 9 , 56 ) ) .

a s s e r t ( spo ( 'F=3 ' , type , ' Class ' ) , 4 8 , datet ime (2022 , 3 , 1 0 , 1 0 , 0 , 7 ) ) .

a s s e r t ( spo ( 'F=3 ' , subClassOf , ' Fluent ' ) , 4 8 , datet ime (2022 , 3 , 1 0 , 1 0 , 0 , 7 ) ) .

a s s e r t ( spo ( 'E=3 ' , type , ' Class ' ) , 4 8 , datet ime (2022 , 3 , 1 0 , 1 0 , 0 , 7 ) ) .

a s s e r t ( spo ( 'E=3 ' , subClassOf , ' Entity ' ) , 4 8 , datet ime (2022 , 3 , 1 0 , 1 0 , 0 , 7 ) ) .

a s s e r t ( spo ( 'Q=3 ' , type , ' Class ' ) , 4 8 , datet ime (2022 , 3 , 1 0 , 1 0 , 0 , 7 ) ) .

a s s e r t ( spo ( 'Q=3 ' , subClassOf , ' Quality ' ) , 4 8 , datet ime (2022 , 3 , 1 0 , 1 0 , 0 , 7 ) ) .

a s s e r t ( spo ( 'FB=1 ' , r ecordsFluent , 'F=3 ') ,48 , datet ime (2022 , 3 , 1 0 , 1 0 , 0 , 7 ) ) .

a s s e r t ( spo ( 'F=3 ' , hasBearer , 'E=3 ') ,48 , datet ime (2022 , 3 , 1 0 , 1 0 , 0 , 7 ) ) .

a s s e r t ( spo ( 'F=3 ' , hasQual i tyInSomeSituat ion , 'Q=3 ') ,

48 , datet ime (2022 , 3 , 1 0 , 1 0 , 0 , 7 ) ) .

r e t r a c t ( spo ( 'F=3 ' , hasBearer , 'E=3 ') ,48 , datet ime (2022 , 3 , 1 0 , 10 , 0 , 18 ) ) .

r e t r a c t ( spo ( 'F=3 ' , hasQual i tyInSomeSituat ion , 'Q=3 ') ,

48 , datet ime (2022 , 3 , 10 , 10 , 0 , 1 8 ) ) .

r e t r a c t ( spo ( 'F=3 ' , subClassOf , ' Fluent ' ) ,

48 , datet ime (2022 , 3 , 10 , 10 , 0 , 1 8 ) ) .

r e t r a c t ( spo ( 'F=3 ' , type , ' Class ' ) , 4 8 , datet ime (2022 , 3 , 10 , 10 , 0 , 1 8 ) ) .

233



E.2. User 48 Chapter E. User Study Selected Logs

r e t r a c t ( spo ( 'FB=1 ' , r ecordsFluent , 'F=3 ') ,

48 , datet ime (2022 , 3 , 10 , 10 , 0 , 1 8 ) ) .

r e t r a c t ( spo ( 'Q=3 ' , subClassOf , ' Quality ' ) ,

48 , datet ime (2022 , 3 , 10 , 10 , 0 , 1 8 ) ) .

r e t r a c t ( spo ( 'Q=3 ' , type , ' Class ' ) , 4 8 , datet ime (2022 , 3 , 10 , 10 , 0 , 1 8 ) ) .

r e t r a c t ( spo ( 'E=3 ' , subClassOf , ' Entity ' ) ,

48 , datet ime (2022 , 3 , 10 , 10 , 0 , 1 8 ) ) .

r e t r a c t ( spo ( 'E=3 ' , type , ' Class ' ) , 4 8 , datet ime (2022 , 3 , 10 , 10 , 0 , 1 8 ) ) .

a s s e r t ( spo ( 'FB=1 ' , l abe l , " Student grades in s p e c i f i c modules ") ,

48 , datet ime (2022 , 3 , 10 , 10 , 0 , 4 2 ) ) .

a s s e r t ( spo ( 'FB=1 ' , r ecordsFluent , 'F=1 ') ,

48 , datet ime (2022 , 3 , 10 , 10 , 0 , 4 2 ) ) .

focus_concept ( ' Entity ' , 4 8 , datet ime (2022 , 3 , 1 0 , 10 , 0 , 50 ) ) .

focus_concept ( ' ControlAction ' , 4 8 , datet ime (2022 , 3 , 1 0 , 10 , 0 , 53 ) ) .

a s s e r t ( spo ( 'CA=2 ' , type , ' Class ' ) , 4 8 , datet ime (2022 , 3 , 10 , 10 , 1 , 2 0 ) ) .

a s s e r t ( spo ( 'CA=2 ' , subClassOf , ' ControlAction ' ) ,

48 , datet ime (2022 , 3 , 10 , 10 , 1 , 2 0 ) ) .

focus_subconcept ( 'CA=2 ' ,48 , datet ime (2022 , 3 , 1 0 , 10 , 1 , 28 ) ) .

a s s e r t ( spo ( 'CA=2 ' , l abe l , " Not enough students e n r o l l e d in module ") ,

48 , datet ime (2022 , 3 , 1 0 , 1 0 , 2 , 3 ) ) .

focus_concept ( ' Feedback ' , 4 8 , datet ime (2022 , 3 , 1 0 , 1 0 , 2 , 3 ) ) .

a s s e r t ( spo ( 'FB=2 ' , type , ' Class ' ) , 4 8 , datet ime (2022 , 3 , 10 , 10 , 2 , 1 4 ) ) .

a s s e r t ( spo ( 'FB=2 ' , subClassOf , ' Feedback ' ) ,

48 , datet ime (2022 , 3 , 10 , 10 , 2 , 1 4 ) ) .

focus_subconcept ( 'FB=2 ' ,48 , datet ime (2022 , 3 , 1 0 , 10 , 2 , 17 ) ) .

a s s e r t ( spo ( 'FB=2 ' , l abe l , "Number o f s tudents e n r o l l e d on every

module ") ,

48 , datet ime (2022 , 3 , 10 , 10 , 2 , 3 6 ) ) .

r eque s t_ inte rvent i on (48 , datet ime (2022 , 3 , 1 0 , 10 , 2 , 36 ) ) .

focus_step ( step3 , 48 , datet ime (2022 , 3 , 1 0 , 10 , 2 , 3 9 ) ) .

request_help ( ' Step 2 precedes Step 3 ' , 48 , datet ime (2022 , 3 , 1 0 , 10 , 2 , 5 4 ) ) .

focus_step ( step2 , 48 , datet ime (2022 , 3 , 1 0 , 1 0 , 3 , 3 ) ) .

234



Chapter E. User Study Selected Logs E.2. User 48

focus_concept ( ' Contro l l edProces s ' , 4 8 , datet ime (2022 , 3 , 1 0 , 1 0 , 3 , 3 ) ) .

focus_concept ( ' Entity ' , 4 8 , datet ime (2022 , 3 , 1 0 , 1 0 , 3 , 4 ) ) .

focus_concept ( ' ControlAction ' , 4 8 , datet ime (2022 , 3 , 1 0 , 1 0 , 3 , 4 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 8 , datet ime (2022 , 3 , 1 0 , 1 0 , 3 , 6 ) ) .

focus_concept ( ' Feedback ' , 4 8 , datet ime (2022 , 3 , 1 0 , 1 0 , 3 , 6 ) ) .

request_help ( ' Step 2 precedes Step 3 ' , 48 , datet ime (2022 , 3 , 1 0 , 1 0 , 3 , 9 ) ) .

focus_concept ( ' Entity ' , 4 8 , datet ime (2022 , 3 , 1 0 , 10 , 3 , 28 ) ) .

focus_concept ( ' Feedback ' , 4 8 , datet ime (2022 , 3 , 1 0 , 10 , 3 , 30 ) ) .

focus_concept ( ' Entity ' , 4 8 , datet ime (2022 , 3 , 1 0 , 10 , 3 , 34 ) ) .

focus_subconcept ( nu l l , 4 8 , datet ime (2022 , 3 , 1 0 , 1 0 , 4 , 3 ) ) .

a s s e r t ( spo ( 'E=1 ' , hasCapabi l i ty , 'CA=1 ') ,

48 , datet ime (2022 , 3 , 10 , 10 , 4 , 5 6 ) ) .

focus_subconcept ( 'CA=1 ' ,48 , datet ime (2022 , 3 , 1 0 , 10 , 5 , 10 ) ) .

a s s e r t ( spo ( 'E=2 ' , informedBy , 'FB=2 ') ,48 , datet ime (2022 , 3 , 1 0 , 10 , 5 , 26 ) ) .

r eque s t_ inte rvent i on (48 , datet ime (2022 , 3 , 1 0 , 10 , 5 , 33 ) ) .

i n t e rv ene ( 'Check that every c on t r o l l e d phy s i c a l p roc e s s i s \

c on t r o l l e d by one or more c o n t r o l l e r s ' ,

l ogged_asse r t i on ( 'CP=1 ' , subClassOf , ' Contro l l edProces s ' )

and not ( l ogged_asse r t i on ( 'CP=1 ' , hasSubject , _8594 )

and logged_asse r t i on (_8646 , hasBearer , _8594 )

and f a c t (_8702 , r e que s t sE f f e c t , _8646 )

and logged_asse r t i on (_8738 , hasCapabi l i ty , _8702 ) ) ,

1 , datet ime (2022 , 3 , 1 0 , 10 , 5 , 33 ) ) .

r eque s t_ inte rvent i on (48 , datet ime (2022 , 3 , 1 0 , 10 , 5 , 37 ) ) .

r eque s t_ inte rvent i on (48 , datet ime (2022 , 3 , 1 0 , 10 , 5 , 43 ) ) .

a s s e r t ( spo ( 'FB=2 ' , r ecordsFluent , 'F=2 ') ,48 , datet ime (2022 , 3 , 1 0 , 1 0 , 7 , 5 ) ) .

focus_concept ( ' Feedback ' , 4 8 , datet ime (2022 , 3 , 1 0 , 1 0 , 8 , 1 ) ) .

a s s e r t ( spo ( 'FB=3 ' , type , ' Class ' ) , 4 8 , datet ime (2022 , 3 , 1 0 , 1 0 , 8 , 3 ) ) .

a s s e r t ( spo ( 'FB=3 ' , subClassOf , ' Feedback ' ) ,

48 , datet ime (2022 , 3 , 1 0 , 1 0 , 8 , 3 ) ) .

focus_subconcept ( 'FB=3 ' ,48 , datet ime (2022 , 3 , 1 0 , 1 0 , 8 , 5 ) ) .

a s s e r t ( spo ( 'FB=3 ' , l abe l , " Contents o f module ") ,

235



E.2. User 48 Chapter E. User Study Selected Logs

48 , datet ime (2022 , 3 , 10 , 10 , 8 , 1 6 ) ) .

a s s e r t ( spo ( 'FB=3 ' , r ecordsFluent , 'F=1 ') ,

48 , datet ime (2022 , 3 , 10 , 10 , 8 , 2 2 ) ) .

focus_concept ( ' Entity ' , 4 8 , datet ime (2022 , 3 , 1 0 , 10 , 8 , 23 ) ) .

a s s e r t ( spo ( 'E=1 ' , informedBy , 'FB=3 ') ,48 , datet ime (2022 , 3 , 1 0 , 10 , 8 , 27 ) ) .

focus_concept ( ' Feedback ' , 4 8 , datet ime (2022 , 3 , 1 0 , 10 , 8 , 44 ) ) .

focus_concept ( ' Entity ' , 4 8 , datet ime (2022 , 3 , 1 0 , 10 , 8 , 51 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 8 , datet ime (2022 , 3 , 1 0 , 10 , 8 , 52 ) ) .

focus_concept ( ' ControlAction ' , 4 8 , datet ime (2022 , 3 , 1 0 , 1 0 , 9 , 7 ) ) .

focus_concept ( ' Entity ' , 4 8 , datet ime (2022 , 3 , 1 0 , 1 0 , 9 , 9 ) ) .

focus_concept ( ' Contro l l edProces s ' , 4 8 , datet ime (2022 , 3 , 1 0 , 10 , 9 , 25 ) ) .

a s s e r t ( spo ( 'CP=1 ' , hasSubject , 'E=2 ') ,48 , datet ime (2022 , 3 , 1 0 , 10 , 9 , 27 ) ) .

focus_concept ( ' Entity ' , 4 8 , datet ime (2022 , 3 , 1 0 , 10 , 9 , 44 ) ) .

r eque s t_ inte rvent i on (48 , datet ime (2022 , 3 , 10 , 10 , 10 , 19 ) ) .

r eque s t_ inte rvent i on (48 , datet ime (2022 , 3 , 10 , 10 , 10 , 22 ) ) .

r eque s t_ inte rvent i on (48 , datet ime (2022 , 3 , 10 , 10 , 10 , 26 ) ) .

focus_step ( step3 , 48 , datet ime (2022 , 3 , 10 , 10 , 10 , 38 ) ) .

g lossary_lookup ( 'UCA' , 4 8 , datet ime (2022 , 3 , 10 , 10 , 10 , 41 ) ) .

a s s e r t ( spo ( 'CA=1 ' , subClassOf ,

'NotProvid ingPotent ia l lyHazardousContro lAct ion ' ) ,

48 , datet ime (2022 , 3 , 10 , 10 , 11 , 18 ) ) .

a s s e r t ( spo ( 'CA=2 ' , subClassOf ,

'NotProvid ingPotent ia l lyHazardousContro lAct ion ' ) ,

48 , datet ime (2022 , 3 , 10 , 10 , 11 , 23 ) ) .

a s s e r t ( spo ( 'CA=1 ' , notProvid ingPotent ia l lyLeadsTo , 'H=1 ') ,

48 , datet ime (2022 , 3 , 10 , 10 , 11 , 43 ) ) .

a s s e r t ( spo ( 'CA=2 ' , notProvid ingPotent ia l lyLeadsTo , 'H=2 ') ,

48 , datet ime (2022 , 3 , 10 , 10 , 11 , 53 ) ) .

r eque s t_ inte rvent i on (48 , datet ime (2022 , 3 , 10 , 10 , 12 , 34 ) ) .

focus_step ( step4 , 48 , datet ime (2022 , 3 , 10 , 10 , 12 , 40 ) ) .

focus_step ( step4 , 48 , datet ime (2022 , 3 , 10 , 10 , 12 , 44 ) ) .

focus_step ( step3 , 48 , datet ime (2022 , 3 , 10 , 10 , 12 , 44 ) ) .

236



Chapter E. User Study Selected Logs E.2. User 48

focus_step ( step4 , 48 , datet ime (2022 , 3 , 10 , 10 , 12 , 45 ) ) .

237


	Introduction
	Related Work
	System Safety Analysis
	System Safety Analysis Frameworks 
	STAMP and STPA 
	Supporting System Safety Analysis
	Software Support for System Safety Analysis

	Ontology and System-Safety
	System Safety Related Ontologies
	Modular Ontologies 

	Contingent Scaffolding 
	Supporting Ontology Authoring
	Existing Tools
	Capturing Authoring History 

	Related Work Conclusions

	Ontology for STAMP
	Background and Problem Definition
	Top Ontology Module
	Situation Ontology Module
	Situation Ontology Background
	Situation Ontology Module Defined

	Control System Ontology Module
	STAMP Ontology Module
	Step 1: Safety Situations 
	Step 2: Control Structure 
	Step 3: Identifying Potentially Unsafe Control Actions

	Illustrative Example Use
	Step 1: Analysis Scope
	Step 2: Control Hierarchy
	Step 3: Generating Potentially Unsafe Control Actions

	Reasoning for STPA
	STAMP Ontology Discussion

	Scaffolding Ontology Authoring 
	Situation Calculus Notation
	Ontology Authoring in Situation Calculus
	Answering Situational Questions 

	A Contingent Scaffolding Framework
	Interactive Nudges
	Scaffolding Framework Defined

	Application to STPA
	Scaffolding Ontology Authoring Conclusions

	Software Implementation 
	Software Architecture
	Refactoring for Reusable, Generalized Code
	The Dependency Inversion Principle
	Whitby before refactoring: Pre-Whitby
	Refactored Whitby
	Dependency Inversion using Logtalk Protocols

	Reusable Libraries
	A Reusable SitCalc Library
	Extending SitCalc with Reusable Libraries
	OntAuth Library
	Scaffolding Library

	Contingent Scaffolding for STPA Implementation
	OSWIN Intervention Bank

	Tour of the Graphical User Interface
	Step 1 Interface
	Intervention Interaction Diversion
	Step 2 Interface
	Step 3 Interface
	What's Next? A Proactive Interface for Seeking Help

	Intervention Walk-Through Examples
	A Simple Mistake Quickly Resolved
	Missing Relation and Missing Intervention

	Software Implementation Discussion

	User Evaluation
	Experimental Design
	Scenario
	Participants
	Materials and Procedure
	Data Collected and Analysis

	How Did OSWIN Intervene?
	Use of Defined Interventions
	Use of History
	Additional Observed Behaviour

	What Effect Did OSWIN Have?
	Determining Model Quality
	Determining Learning
	Do Interventions Effect Task Completion?
	Does Providing Interventions Positively Effect Model Quality?
	Does Providing Interventions Improve Learning?

	User Evaluation Conclusions

	Conclusions
	Synopsis
	Contributions
	System Safety Analysis
	Ontology Modeling and Authoring
	Intelligent Tutoring
	Prolog Programming

	Generality and Wider Applicability
	Reuse of the STAMP Ontology
	Reuse of Ontology Authoring and Contingent Scaffolding Frameworks
	Reuse of Whitby

	Future Work
	Short-Term Future Work
	Long-Term Future Work

	And Finally

	References
	Introduction to STPA
	Step 1: Define Purpose of the Analysis
	Step 2: Model the Control Structure
	Step 3: Identify Unsafe Control Actions
	Step 4: Identify Loss Scenarios

	Additional STAMP Ontology Reasoning 
	Reasoning via Set Construction
	Set Building Notation
	Building Sets for STPA Support

	Missing and Mistake Interventions in Prolog
	User Study Protocol
	Participant Information
	Taking Part
	What Do I Need To Do?
	What Will Happen To My Data?
	Who Is Doing This Research?
	Finally…

	Recommender System Scenario Safety Analysis 
	System Safety Goals
	System Stakeholders
	The System
	Instructions

	STPA Questionnaire
	System Scenario Solution

	User Study Selected Logs 
	User 43 
	User 48 


