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Abstract

Active seismic methodologies provide a non-invasive tool to remotely characterise the

physical properties of fractures at a wide range of scales, and have a positive impact in

helping to solve rock engineering problems in a variety of geo-industrial applications.

With current advances in seismic processing tools, such as full waveform inversion

(FWI), and accurate models of seismic wave interaction with fractures, seismic charac-

terisation of fractures can be tackled by utilising the entire seismic wavefield recorded at

the receiver locations. A two-step strategy, using the genetic algorithm (GA) for global

optimisation and the Neighbourhood Algorithm (NA) for evaluating uncertainties, was

developed to simultaneously estimate the fracture properties (both fracture specific

stiffness and equivalent fracture stiffness) and the background material properties di-

rectly from seismic waveforms. The optimisation involves minimising the difference

between the observed (measured) and forward-modelled full waveforms through the

finite difference code WAVE3D.

The development, named Genetic Algorithm Full-Waveform Fracture Inversion (GA-

FWFI), looks beyond conventional seismic methods which focus on characterising

fracture-induced anisotropy, by reducing the need to manually condition the data (e.g.

manual picking of seismic phases), and by providing a robust means to explore multi-

ple solutions. The development also allows the gap between different representations

of fracturing to be bridged within a comprehensive method which can employ both

discrete fracture and effective fracture models.

GA-FWFI is tested initially on synthetic ultrasonic experiments with parallel frac-

tures. Results confirm that the method can effectively invert for physical properties

such as fracture stiffness, location, background material properties, while the posterior

probability density (PPD) show that inversions are very well constrained. GA-FWFI

is then applied to waveforms from a laboratory experiment investigating fracture slip

and again results show high degree of accuracy.

GA-FWFI is then utilised to unveil the coupling between discrete fracture networks

(DFNs) and their equivalent fracture zone properties. The results reveal that the

transition from a medium with open cracks to one with welded interfaces leads to the

equivalent media having the equivalent medium stiffness non-linearly related to the

crack specific stiffness. An attribute χ is proposed which helps guide the interpretation

of a cracked medium by giving a range of likely values for crack size and crack stiffness.

This work paves the way for novel strategies to seismically characterise fractures.
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Chapter 1

Introduction

1.1 Preamble

The extensive presence of fractures throughout the Earth’s upper crust and their key

role in a multitude of physical processes in the subsurface make them a prominent

target in a variety of geo-industrial applications, such as hydrocarbon and geother-

mal exploration (Sayers, 2007; Liu and Martinez, 2012), rock damage and stability

investigation (Hildyard et al., 2005; Hildyard, 2007), carbon capture and storage (Id-

ing and Ringrose, 2009; March et al., 2018) and nuclear waste repositories monitoring

(MacQuarrie and Mayer, 2005; Tsang et al., 2015).

Therefore, the ability to identify fractures in different geological settings (Figure

1.1), and at different scales, can have a significant impact on characterising fluid flow

in the subsurface, paramount in reservoir management and in the final disposal of

spent nuclear fuel (Figure 1.1(a)), on determining the stability of engineered structures

and excavations, and even on understanding the evolution of the englacial water flow

system which controls the water storage, pressure, glacier sliding, and release of glacial

outburst floods (Fountain et al., 2005) (Figure 1.1(c)).

2
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(a) A model example of leaking in crystalline fractured
rock in KBS-3V repository type (Tsang et al., 2005)

(b) Fracture outcrop in Arches National Park, Utah (USA).
Monoclinic symmetries in fractured sandstone. Image taken
from Google Earth (coordinate 38°44’55.6”N 109°32’25.0”W)

(c) Aerial image of cracks in Pine Island Glacier’s ice shelf
(Antarctica), January 2010 (Washington, 2010).

Figure 1.1: Fractures and cracks in different geological settings.
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The characterisation of fractures or fractured rocks can be derived from a range of

geophysical measurements. For instance, core and image logs such as borehole teleview-

ers have been designed to image the subsurface fractures cutting through a borehole;

whereas sonic logging tools, which can use Stoneley waves as well as P-waves, are

utilised to produce a detailed understanding of small-scale cracks by estimating their

locations and permeability (Hornby et al., 1989). Although their usage is essential in

the fracture network model building, these methods are limited by the small sampling

area and the high cost (Liu and Martinez, 2012). Furthermore, the characterisation of

the fracture network properties might be inaccurate if there are only a few sparse wells

containing fractures information. On the contrary, a seismic survey provides a non-

invasive tool to characterise remotely physical properties of a wide range of fracture

scales, and it has the advantage of wider coverage, lower cost, and deeper penetration.

1.2 Motivation

Popular seismic methodologies, used as tool for fracture detection, exploit the direc-

tional dependence of seismic attributes (velocity, frequency, amplitude, attenuation),

referred to as seismic anisotropy, as well as the physical phenomenon of shear wave

birefringence. The first makes use of methods such as Azimuthal Amplitude Variation

(AVOA) (Rüger and Tsvankin, 1997; Rüger, 1998) or Normal Move-Out (NMO) vari-

ation with azimuth (Bakulin et al., 2000) to provide anisotropy maps over the survey

area. These can be converted to crack density and orientation according to the penny-

shaped crack model (Hudson, 1980; Hudson, 1981). Whereas the second defines the

physical splitting of shear waves into two separate polarised wavefields, S1 and S2 (Al-

ford, 1986). The interpretation of these two wavefields, quantified in the the time-lag

between S1 and S2 and their polarisations, leads to an estimation of the fracture density

and fracture orientation, respectively. Nevertheless, the focus of these methodologies

lies in the characterisation of fracture-induced anisotropy of the equivalent fractured

medium by analysing only the change in wave amplitude or the change in time arrival.

However, with advances in seismic processing tools, such as reverse-time migra-
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tion (RTM) and full-waveform inversion (FWI) (Virieux and Operto, 2009; Warner

et al., 2013; Jones, 2018), and fully developed accurate models of seismic wave interac-

tions with fractures (Hildyard et al., 1995; Hildyard, 2007), seismic characterisation of

fractures and fracture zones can be exploited by utilising the entire seismic wavefield

recorded at the receiver locations.

Moreover, although fracture location, density, and orientation are commonly ex-

tracted from seismic data, fracture specific stiffness is less often determined (Worthing-

ton, 2007; Worthington, 2008). However, several authors have shown the importance

of estimating mechanical properties of fractures, quantified by fracture stiffness, in or-

der to evaluate the fluid flow through the fractures (Pyrak-Nolte and Nolte, 2016) as

well as the visibility of macrofractures in seismic data (Worthington, 2007). Although

Hildyard and Young (2002), Hildyard et al. (2005), and Parastatidis et al. (2021) have

provided a data driven methodology to diagnose the state of fracturing by estimating

the fracture specific stiffnesses, this approach is based on a trial and error strategy to

match modelled and observed data.

Therefore, the main aim of this work consists in providing a semi-automated method,

with limited data processing, to characterise fractured media with respect to both the

discrete fracture attributes and the effective fracture parameters directly from seismic

waveforms. To achieve this goal, a waveform inversion technique GA-FWFI (Genetic

Algorithm-Full Waveform Fracture Inversion) has been developed and applied to

1. small scale experiments (both synthetic and active ultrasonic laboratory measure-

ments) for estimating discrete fracture properties, such as fracture location, and

specific fracture stiffness,

2. bigger scale experiments in a simulated cross hole seismic survey. In this case

equivalent fracture set orientation (fracture dip, and fracture strike), bulk stiff-

ness, and fracture intensity have been appraised in different discrete fracture

network scenarios.

In both cases the seismic wave propagation and its interaction with fractures and frac-
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tured media has been modelled using the fully-elastic finite difference modelling code

WAVE3D (Hildyard et al., 1995).

The proposed alternative scheme tries to look beyond the conventional local-

optimisation FWI for velocity models building (Virieux and Operto, 2009; Warner et al.,

2013) introduced in Section 1.6, and investigates a two-step method involving a global

optimization technique, the genetic algorithm (GA), and uncertainties evaluation using

the neighbourhood algorithm (NA) (Sambridge, 1999a). A schematic overview of this

project can be seen in Figure 1.2.



Chapter 1: Introduction 7

W
av

ef
or

m
in

ve
rs

io
n

to
es

ti
m

at
e

fr
ac

tu
re

pr
op

er
ti

es

Sm
al

ls
ca

le
ex

pe
ri

m
en

ts
(e

.g
.L

ab
ex

pe
rim

en
ts

,E
xc

a-
va

tio
n

D
am

ag
eZ

on
e(

ED
Z)

)

•
λ

∼
fra

ct
ur

el
en

gt
h

(s
ca

tt
er

in
g

re
gi

m
e)

•
A

fe
w

di
st

in
ct

fra
ct

ur
es

•
D

isc
re

te
fra

ct
ur

em
od

el
lin

g

M
od

el
Pa

ra
m

et
er

s

Fr
ac

tu
re

sp
ec

ifi
cs

ti
ffn

es
s

Fr
ac

tu
re

lo
ca

ti
on

/s
iz

e
B

ac
kg

ro
un

d
m

at
er

ia
lv

el
oc

it
ie

s

M
et

ho
do

gy

D
ev

elo
pe

d
as

to
ch

as
tic

wa
ve

fo
rm

in
ve

rs
io

n
ut

ili
sin

gG
A

as
op

-
tim

iza
tio

n
al

go
rit

hm
.N

A
al

go
ri

th
m

fo
ru

nc
er

ta
in

ty
an

al
ys

is
(G

A-
FW

FI
+

NA
)

A
pp

li
ca

ti
on

s

“S
yn

th
et

ic
”

2D
ro

ck
sa

m
pl

e
La

bo
ra

to
ry

w
av

ef
or

m
s(

3D
)

Bo
th

ob
se

rv
ed

an
d

m
od

el
le

d
da

ta
ar

eg
en

er
at

ed
th

ro
ug

h
W

AV
E.

Sy
nt

he
tic

sa
m

pl
ew

ith
5

pa
ra

lle
lf

ra
ct

ur
es

or
th

og
o-

na
lt

o
th

ew
av

ep
ro

pa
ga

tio
n.

A
ct

iv
eu

ltr
as

on
ic

m
ea

su
re

-
m

en
ts

to
m

on
ito

ra
sh

ea
rf

ai
l-

ur
eo

fa
gy

ps
um

sp
ec

im
en

B
ig

sc
al

ee
xp

er
im

en
ts

(e
.g

.S
im

ul
at

ed
fra

ct
ur

ed
re

se
rv

oi
r)

•
λ

≫
fra

ct
ur

el
en

gt
h

(E
ffe

ct
iv

ea
ni

so
tr

op
ic

m
ed

ia
)

•
Fr

ac
tu

re
d

ro
ck

vo
lu

m
e

•
Eq

ui
va

le
nt

M
ed

iu
m

(E
M

)m
od

el
lin

g

M
od

el
Pa

ra
m

et
er

s

E
qu

iv
al

en
t

m
ed

iu
m

st
iff

ne
ss

Fr
ac

tu
re

or
ie

nt
at

io
n

(s
tr

ik
e

an
d

sl
ip

)
B

ac
kg

ro
un

d
m

at
er

ia
lv

el
oc

it
ie

s
D

eg
re

e
of

fr
ac

tu
ri

ng
(c

ra
ck

de
ns

it
y)

M
et

ho
do

gy

G
A-

FW
FI

+
NA

A
pp

li
ca

ti
on

Si
m

ul
at

ed
cr

os
sh

ol
e

ex
pe

ri
m

en
t

G
en

er
at

ed
iff

er
en

ts
ce

na
rio

s
w

ith
di

ffe
re

nt
fra

ct
ur

es
iz

e,
fra

c-
tu

re
st

iff
ne

ss
,f

ra
ct

ur
ei

nt
en

sit
y.

Fr
ac

tu
re

d
vo

lu
m

e(
ob

s.
da

ta
)i

sr
e-

pl
ac

ed
by

EM
vo

lu
m

e(
m

od
.d

at
a)

F
ig
u
re

1
.2
:
S
ch
em

a
ti
c
ov
er
v
ie
w

o
f
th
is

w
o
rk
.



8 Chapter 1: Introduction

1.3 Chapter overview

This thesis is organised in 6 chapters. The first of these gives the reader an overview

of the key objectives and motivation for this thesis, as well as an essential introduction

to the relevant concepts used throughout the thesis, such as the numerical solution

of the wave equation (the forward problem), which is the core of waveform inversion

techniques, the general inverse theory, and an introduction of the least-square FWI.

Chapter 2 addresses theories for modelling the seismic response in cracked media by

using both the explicit fracture representation, and the equivalent medium modelling

in the two flavours of the displacement-discontinuity theory. Additionally, it presents

WAVE3D the program used in this project to simulate the wave propagation and inter-

action with fractures and fracture zones. Finally, it introduces the concept of seismic

anisotropy with a focus on the fracture-induced anisotropic parameters and how the

latter are characterised through seismic surveys.

Chapter 3 presents the implementation of the GA-FWFI approach, that is a stochas-

tic waveform inversion approach developed by the author, discussing the suitability of

a global optimisation method for the inversion of the fracture parameters. Some di-

agnostic analytical experiments are shown in order to examine the degree of accuracy

and convergence of the algorithm, and the ability of the NA method to appraise the

model ensemble. Findings of synthetic ultrasonic data inversion in a fractured medium

containing 5 parallel fractures are also presented.

Chapter 4 builds on findings of Chapter 3 to explore the suitability of the global

inversion scheme for a series of laboratory active ultrasonic measurements. These were

analysed in order to investigate the mechanical and geophysical processes occurring

during shear failure of rock joints. Both shear and compressional waveforms were

inverted to estimate the variation of the specific fracture stiffnesses with the shear

stress applied to the rock sample, the discontinuity location, and the velocities of the

background medium.

Chapter 5 focuses on assessing the effectiveness of the equivalent medium theory
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(displacement discontinuity theory) for discrete fracture network (DFN) models by

means of GA-FWFI. It is analysed how the discrete fracture parameters such as crack

density, crack size, and crack specific stiffness influence the equivalent fracture param-

eters, such as the equivalent fracture orientation, and the bulk stiffness, in a set of 54

different DFN scenarios.

The final chapter assesses the findings presented in the previous chapters, and dis-

cusses the results obtained in relation to the objective of this thesis. Finally, at the end

of the chapter a proposal of some further work for the future is given.

1.4 The forward problem: solving the seismic wave

equation

An indispensable tool for seismic motion studies and a key requirement for solving the

waveform inversion problem is founded on the solution of the forward problem, which

consists in the ability to solve the seismic wave equation. The solution of the wave

equation allows the description of the propagation of the seismic waves though the

Earth.

The forward problem, in a general form, can be written as

G(m) = d (1.1)

where m is a vector that contains the set of physical properties which describe the

subsurface model, G is a non-linear operator that calculates the seismic wavefield ev-

erywhere in the medium given the model m and some initial boundary conditions, and

d is the data vector which collects the synthetics seismic data at the receiver locations.

Therefore, the forward model operator maps elements from the model space M to the

data space D:

G : M → D. (1.2)

For relatively simple earth models the wave equation has analytical solutions. How-
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ever, in more realistic representations of the earth’s subsurface as a complex hetero-

geneous medium, is not possible to solve it analytically (Fichtner, 2010). Therefore,

numerical strategies need to be implemented.

1.4.1 The finite-difference method to numerically solve the wave equa-

tion

The finite-difference (FD) method is a popular technique for solving partial derivative

equations and it is the first numerical method that was widely used in seismological re-

search (Igel, 2017). For problems involving space-time dependency, both space and time

are discretised on regular grids, and the partial derivatives (continuous) are replaced

by the finite differences (discrete).

As an illustration consider the acoustic wave equation, defined as

1

v2
p(x)

∂2p(x, t)

∂t2
− ρ(x)∇ ·

(
1

ρ(x)
∇p(x, t)

)
= s(x, t), (1.3)

where vp is the acoustic velocity, ρ is density, p is the pressure wavefield, and s an

external force which represents the source of seismic wave motion, contains two second

derivatives: one in time and one in space.

The second-order central difference method for a generic function f dependent on

position x can be approximated as

f ′′(x) ≈ f(x−∆x)− 2f(x) + f(x+ δx)

∆x2
+O(∆x)2 (1.4)

where ∆x represents the discretisation used and O(∆x)2 the error associated to the

Taylor series truncation.

Applying the same procedure to the time derivative, and substituting these ap-

proximations to Equation (1.3), its second-order FD representation (both in space and

time) is thus expressed by

pn+1
i,j = 2pni,j + v2p

δn2

δh2
(
pni+1,j + pni−1,j + pni,j+1 + pni,j−1 − 4pni,j

)
− pn−1

i,j + δn2snj (1.5)
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where i and j are the spatial grid points along x and y directions, δn and δh (δh =

δx = δy) represent the temporal and spatial discretisations, respectively.

The stability conditions, as well as the grid dispersion issues are treated more in

depth in Section 2.3.2.

1.5 The inverse problem: estimating the model

parameters from the seismic data

The seismic inverse problem is the opposite of the forward problem discussed in Section

1.4, and represents a quantitative approach to the interpretation of the seismic data

in order to infer the elastic properties utilised to parametrise the subsurface. In other

words, the subsurface model m is the unknown of the seismic inverse problem and

needs to be estimated from the recorded seismograms dobs.

The non-linear inverse problem corresponding to the forward problem of Equation

(1.1) can be generally formulated as

G−1(d) = m, (1.6)

therefore, elements of the data space are mapped in the model space through a

non-linear inverse operator G−1 (Warner et al., 2013):

G−1 : D → M. (1.7)

Since the inverse problem is not-linear, an explicit solution cannot be found, however

the problem can be solved via a series of linearised steps. The problem is also non-

unique, i.e. multiple, or perhaps infinite combinations of model parameters can describe

equally well the observed seismograms. Such problems are termed ill-posed (Tarantola,

2005).

To estimate the subsurface model m̂ the inverse problem is often recast as an opti-
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misation problem where the goal is to minimise a so-called objective or misfit function

S which represents the measure of the distance between the computed seismic dataset

(Gi(m̂)) and the observations (dobsi ) (Tarantola, 2005; Menke, 2012), usually in a least-

squares sense:

S(m̂) =
∑
i

(
dobsi −Gi(m̂

)2
. (1.8)

L2-norm is usually employed as measure of the misfit because generates a smoother

gradient.

1.5.1 Deterministic and stochastic approaches

The most common way to deal with non-linear inverse problems is to cast them in a

framework of deterministic approaches (Snieder, 1998). This involves the linearisation

of the problem using a Taylor expansion about a starting background modelm0 (Menke,

2012) which is then iteratively updated based on the local gradient and curvature of

the objective function (Tarantola, 1984b; Tarantola, 1984a; Virieux and Operto, 2009;

Menke, 2012). Although iterative algorithms, such as gradient-based methods, are

more efficient at convergence, they are strongly dependent on the initial model guess

m0. Thus they might converge to the global minimum of the misfit function only if

m0 lies in its basin of attraction or, conversely, be prone to local minima entrapment.

The conventional FWI method falls into this deterministic category of inversion, and

in Section 1.6.3 it is discussed in more detail how FWI calculates the objective function

derivatives with respect to the model parameters, as well as the approaches used to

mitigate the non-linearity and non-uniqueness issues of the problem.

An alternative strategy for tackling non-linear inverse problems in the Bayesian

framework, where all information of an inverse problem is formulated in probabilis-

tic terms. It follows that the solutions of such inverse problem is not a single elite

model, but instead a probability density function (PDF) on the model parameters that

incorporates uncertainties in the seismic data and prior information (Mosegaard and

Tarantola, 1995; Sambridge and Mosegaard, 2002; Tarantola, 2005). This is treated in

Section 3.4.1.
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The ensemble inference can be seen as a sum of two distinct processes: the search

stage where the n-dimensional model space is sampled by the models generated through

the solution of the forward problem, and an appraisal stage where inferences are drawn

from the model ensemble generated (Snieder, 1998; Sambridge and Mosegaard, 2002;

Sambridge, n.d.). Sampling the model space can also be carried out in different ways:

from the systematic exploration of the entire space, which is often computationally

unaffordable, to the exploitation of the current state of information about the model

(Sambridge and Mosegaard, 2002) making use of stochastic optimisers such as, for

example, Simulated Annealing (Kirkpatrick et al., 1983), Particle Swarm Optimisation

(Kennedy and Eberhart, 1995), or Genetic Algorithm (Goldberg, 1989). Although these

approaches are still computationally demanding, they are more affordable than the pure

Markov Chain Monte Carlo (MCMC) algorithms and more robust than deterministic

algorithms that are inclined to be entrapped in a local minimum (Sen and Stoffa, 2013;

Sambridge and Mosegaard, 2002).

A qualitative comparison between these two categories applied to the Rastrigin

function (see Section 3.5.1 for its definition) for a two-parameter space is given in

Figure 1.3.
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(a) (b) (c)

(d) (e) (f)

Figure 1.3: Qualitative comparison between a global optimization method (Genetic Algo-
rithm (a)-(c) developed in this study) and a local optimization method (Gradient descent
(d)-(f)) (code modified from Allison, 2012). Both methods are applied to the Rastrigin func-
tion (f(x1, . . . , xn) = An+

∑n
i=1

[
x2
i −A cos(2πxi)

]
) in the same domain (see Section 3.5.1 for

more details). The GA method, starting with a random population of individuals (red dots) in
(a), is able to find the global minimum (black star) after 31 generations (c), while the descent
method converges towards the nearest minimum as function of the different starting models
(X1, X2, X3). Only the case (f) shows a correct convergence because the starting model lies in
the basin of attraction of the global minimum.

1.6 Full-waveform inversion as a local optimization

approach

FWI is a state-of-the-art seismic method that can yield much more accurate quantita-

tive models of any subsurface parameter by adopting whichever approximation of the

wave equation (Lailly, 1983; Tarantola, 1984a; Virieux and Operto, 2009; Warner et al.,

2013; Jones, 2018). P-wave velocity models are usually retrieved, although recent de-

velopments include S-wave velocity (Sears et al., 2008; Guasch et al., 2010), anisotropic

parameters (Debens, 2015), and attenuation (Brossier, 2011). An attempt to estimate

the spatial distribution and physical properties of fracture zones using a gradient based
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local FWI was proposed by Zhang et al. (2017).

FWI is based on a data-fitting technique seeking a wiggle-to-wiggle and trace-to-

trace match of real and modelled data. This is achieved in a deterministic local fashion

that minimises the difference between these two datasets, also referred as the data

residual ∆d

∆d = d− dobs (1.9)

via a series of iterative linearised model updates, following

mk+1 = mk +∆mk (1.10)

where k is the iteration number, and ∆m a small model update.

The starting model, that is iteratively updated, contains only long wavelength fea-

tures. The shorter wavelengths are progressively introduced by inverting higher fre-

quency of the seismic data (the so-called multi-scale approach). The final result is

a high-resolution model which honours the physics of the wave propagation limited

only by the numerical assumptions used. In fact, compared to the tomographic images

derived from ray theory which have a lateral resolution about 5 times the seismic propa-

gating wavelength (Jones, 2018), FWI increases the lateral resolution to a theoretically

possible value of half the wavelength (Virieux and Operto, 2009; Jones, 2018). This

leads to a potential order of magnitude improvement in parameter model resolution

with this wave based method (Jones, 2018).

1.6.1 Brief historical overview

The original study of FWI is attributed to the work of different authors such as Lailly

(1983), Tarantola (1984a), Tarantola (1984b), and Mora (1987) in the time domain,

and Pratt et al. (1998), Pratt (1999), and Pratt and Shipp (1999) in the frequency do-

main. They presented a method for inverting seismic data without computing explicitly

the partial derivatives with respect to the model parameters (Fréchet derivatives). In

fact, they showed that after linearisation the gradient of the objective function, with



16 Chapter 1: Introduction

respect to a given model parameter, can be evaluated by cross-correlating the forward

propagated wavefields from a seismic source, with the backward propagated wavefield

of the data residual from the receivers. In the geophysical community this approach is

often referred to as the adjoint-state method (Plessix, 2006; Virieux and Operto, 2009).

Additionally, due to the high non-linearity of the objective function, they also

showed that the FWI starting model needed to be accurate enough in order to match

the kinematics of the wavefield with an error less than the dominant period in order to

avoid cycle skipping (Virieux and Operto, 2009; Fichtner, 2010). To mitigate these ef-

fects different solutions have been proposed, e.g the multi-scale approach (Bunks et al.,

1995) which involves the gradual introduction of shorter wavelengths in the inversion,

or more recently the proposal of a optimum predictive filter applied at each iteration

in order to reduce the time shift between the modelled and the observed waveforms

(Warner and Guasch, 2016).

Due to the computational costs associated with its implementation, this formulation

has had to wait almost two decades to be fully tested in two-dimensional geophysical

problems. Only recently, have computers had the capabilities to handle 3D problems

(Warner et al., 2013).

1.6.2 Model update

The Born approximation is used to solve the inverse problem. Its first-order approxi-

mation provides a linear relationship between a small change in the model (∆m) and

its corresponding small change in the wavefield (scattered wavefield), therefore in the

data (∆d). Since this relationship is linear, it is also invertible (Virieux and Operto,

2009).

The application of Born approximation implies the knowledge of the residual wave-

field at the receiver locations. As stated in the beginning of Section 1.6, the residual

wavefield ∆d is calculated by subtracting the forward modelled data from the recorded

data (equation (1.9)). The objective of the inversion is to minimise the L2-norm of ∆d

– also called misfit function S(m).
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After some algebra (refer to Virieux and Operto (2009) for a complete mathematical

treatment) the expression of ∆m as function of the data residual ∆d is

∆m = −

[
∂2S(m)

∂m2

]−1
∂S(m)

∂m
= −H−1∇mS (1.11)

with

∇mS =
∂S(m)

∂m
=

(
∂dmod(m)

∂m

)T

∆d = JT∆d (1.12)

representing the gradient of the objective function with respect to the model param-

eters, H−1 = [∂
2S(m)
∂m2 ]−1 denote the inverse of the Hessian matrix, and J being the

Jacobian matrix. The perturbation model is searched in the opposite direction of the

gradient, that corresponds to the steepest ascent of the objective function at point m,

multiplied by the Hessian matrix which defines the curvature of the objective function

at the same point.

Since FWI involves the update of a large number of model parameters, computing

explicitly the Hessian matrix (and its inverse) is infeasible from a computational time

and memory requirement viewpoint (Fichtner, 2010). Therefore, numerical approxima-

tions need to be made to circumvent this issue.

1.6.3 Adjoint-state method for the gradient calculation

The steepest-descent method is the simplest technique that entails the replacement of

the Hessian H of equation (1.11) with a scalar value (Virieux and Operto, 2009). This

is expressed as

∆m ≈ −α∇mS (1.13)

where the global scaling factor α is commonly called step-length. In order to calculate

the updates of the model ∆m through equation (1.13), the gradient vector has to be

estimated. Due to its dimension, building explicitly the gradient vector is prohibitive

because it would require as many forward models as the vector dimension (from thou-

sands to millions) at each iteration.

To avoid this expensive process, the adjoint-state method is implemented which



18 Chapter 1: Introduction

requires only two forward models at each iteration (Tarantola, 1984a; Plessix, 2006).

This approach was introduced in the theory of inverse problems in the 1970s by Chavent

(1974) in optimization theory and then introduced in the geophysical context by Lailly

(1983) and Tarantola (1984a) where the computation of the gradient has connections to

the Claerbout’s imaging principle (Claerbout, 1985). The adjoint-state method involves

the following steps:

(i) forward-propagation of the source wavefield for each source across the medium to

produce a modelled data set

(ii) calculation of the data residuals by subtracting the modelled and observed data

at each receiver

(iii) back-propagation (time-reversal propagation or adjoint) of this residual wavefield

from the receivers into the actual medium

(iv) crosscorrelation of these forward and backward wavefields in time at each point

within the model to form the gradient for each source

(v) stack all the gradients obtained over the number of sources to get the Eq. (1.12)

at a given iteration

To generate the back-propagation wavefield a second partial differential equation

(PDE) needs to be solved (Plessix, 2006). Generally, the forward operator and the

adjoint operator are different, and two numerical solvers must be implemented.

However, if the wave equation is self-adjoint, then both PDEs can be computed

with the same numerical code. This is the case for both the acoustic and the elastic

wave equations (Plessix, 2006), on the contrary the viscoelastic wave equation based

on velocity-stress formulation is not self-adjoint. A study by Yang et al. (2016) showed

that the forward and adjoint equations for the viscoelastic equations, are asymmetric

therefore they are not self-adjoint. This was overcome by (Fabien-Ouellet et al., 2017).

A graphical example of building the sensitivity kernel (partial derivative with re-

spect to a given model parameter, in this case vp) in a 2D gradient velocity model

is shown in Figure 1.4. Here the interaction of the forward wavefield and the adjoint
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wavefield is displayed at four time steps, until the gradient-kernel is completely formed,

often referred to as sensitivity kernel or banana-doughnut kernel (Tromp et al., 2005).
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(a) (b)

(c) (d)

Figure 1.4: Example of the computation of sensitivity kernels for vp by the interaction of the
forward wavefield (top figure of each panel) and the adjoint wavefield (middle figure of each
panel) at four different time steps in a 2D gradient velocity model. The forward wavefield is
constructed backward in time while the adjoint wavefield forward in time. The finite-difference
forward modelling code (2D acoustic) has been developed by the author.
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1.7 FWI as a global optimization approach

In the last 30 years, different strategies of stochastic FWI have been proposed to over-

come the inherent limitations of the gradient-based inversions, and to explore more

robust ways for estimating subsurface models. The most popular stochastic methods

applied to geophysical problems are genetic algorithms (Stoffa and Sen, 1991; Sam-

bridge and Drijkoningen, 1992; Sajeva et al., 2016), neighbourhood algorithm (Sam-

bridge, 1999a; Sambridge, 1999b), simulated annealing (Sen and Stoffa, 1991), and

particle swarm optimisation (Zhe and Hanming, 2013; Chen and Wang, 2017).

First implementations of global FWI were performed in the 1990s to invert single-

shot gathers, assuming 1D geological models in an acoustic approximation (Gallagher et

al., 1991; Stoffa and Sen, 1991; Sen and Stoffa, 1992; Sambridge and Drijkoningen, 1992;

Sambridge, 1999a). This simplified problem parametrisation allowed the discretisation

of the model space using only a few model parameters, and a relatively quick solution

of the 1D acoustic wave equation. Therefore, the application of FWI was suitable for

solving such problems. It is known, in fact, that the search stage suffers the so-called

curse of dimensionality, indicating that the computational cost grows exponentially

with the number of model parameters involved (Fichtner, 2010; Aleardi and Mazzotti,

2017).

Due to the recent growth of high-performance computing, stochastic FWI (using

genetic algorithm optimisation) has begun to be applied in deriving 2D and 3D velocity

macromodels as starting points for a subsequent optimisation through local FWI (Gao

et al., 2014; Tognarelli et al., 2015; Datta and Sen, 2016; Sajeva et al., 2016; Mazzotti

et al., 2016), for inverting anisotropic acoustic velocity models in a two-step strategy

global-local inversion (using quantum particle swarm optimisation) (Debens, 2015),

and to estimate the effective hydraulic aperture and the mechanical compliance of

isolated fractures intersecting a borehole through a Bayesian MCMC inversion of full-

waveform tube-wave data (Hunziker et al., 2020). A global FWI strategy to search for

the optima fracture models through the GA optimisation, and appraise the solution

from a Bayesian point of view is discussed in Chapter 3.
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Seismic characterization of

fractures: theory and

applications

2.1 Preamble

Seismic methods provide a non-invasive tool to characterise remotely physical properties

of fractures and fractured zones. The seismic visibility of fractures strongly depends

on their mechanical parameters, e.g. fracture stiffnesses, friction angle, cohesion, and

their geometric properties, such as fracture size, fracture spacing, and connectivity

(Worthington, 2008).

For a complete description of wave-fracture interaction, it is necessary to account for

the physics of scattering at each individual discrete fracture by making use of the dis-

crete fracture network (DFN) model representation, e.g. the displacement-discontinuity

model (Schoenberg, 1980; Pyrak-Nolte et al., 1990b). However, when the size of the

fractures is considerably less than the dominant seismic wavelength, the propagating

wave is weakly affected by individual fractures; conversely, it is influenced by the cracked

medium as whole. For this reason, equivalent medium (EM) theories, for instance the

22
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self-consistent model (Budiansky and O’Connell, 1976), linear-slip model (Schoenberg

and Sayers, 1995), penny-shaped cracks method (Hudson, 1980; Hudson, 1981), frac-

tures as collection of cracks (Myer, 2000), well describe the interaction between the

seismic wavefield and fractures by combining their effects and the host rock into an

equivalent anisotropic solid.

These different theoretical approaches reflect the need to characterise fractures at

different ranges of scale. In fact, it has been observed that fractures can span from

millimetre-scale microcracks (in core samples) to macroscopic kilometre-long faults

throughout the Earth’s upper crust (Liu and Martinez, 2012). As well as the numer-

ous mechanical-mathematical models proposed, a large variety of numerical techniques

have been employed for modelling elastodynamic behaviour in the presence of fractures

or fractured media. They include boundary element methods (BEMs) (e.g. Aliabadi

(1997)), finite-element methods (FEMs) (e.g. Mikhailenko (2000)), pseudo-spectral

methods (PSMs) (e.g. Lou and Rial (1995)), and finite difference methods (FDMs)

(e.g. Vlastos et al. (2003) and Hildyard (2007)).

Throughout this work the program WAVE3D was used to model three-dimensional

seismic wave propagation and its interaction with fractures and fractured media.

WAVE3D is a fully-elastic finite difference modelling code that implements discrete

fractures into the numerical mesh using the displacement discontinuity theory. It was

firstly implemented by Cundall (1992), and then extended to the current version by

Hildyard et al. (1995), Hildyard (2001), and Hildyard (2007). A more thorough review

of this program is given in Section 2.3.

2.2 Rock fractures - a theoretical overview

An idealized fracture can be conceived as two rough surfaces in partial contact (Figure

2.1). When the asperities of the fracture surfaces are not fully in contact, they give rise

to voids, where the distance of separation is called fracture aperture. The mechanical

and hydraulic response of fractures is strongly related to the number and topology of

these voids’ (Hopkins et al., 1987; Myer, 2000; Zimmerman and Main, 2004; Pyrak-
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Nolte and Nolte, 2016). Engineering activities as well as natural events can change the

state of stress of rock masses, which induces a change in voids geometry and in turn

the mechanical behaviour of fractures.

voids

asperities in contact
Fracture

Figure 2.1: Schematic model of a fracture as two rough surfaces in contact. When not fully
in contact the surfaces create voids.

Therefore, to predict the mechanical response of a fracture, the relationship between

the void geometry and stress needs to be understood. However, it is a difficult task,

even in a controlled environment, to measure the topography of the rough surfaces of a

fracture (Petrovitch et al., 2013). Instead, as stated in Bandis et al. (1983), Goodman

et al. (1968) introduced the concept of fracture specific stiffness as an approach to

characterise a single fracture without explicitly measuring the fracture aperture, and it

was shown that fracture specific stiffness captures the effect of the excess deformation

due to the fracture and its geometry (Petrovitch et al., 2013; Pyrak-Nolte and Nolte,

2016).

Since a fracture might cause a seismic energy partition, generating a reflected and

transmitted wavefield due to void areas and contacts, respectively, fracture specific

stiffness can be remotely characterised using elastic seismic waves.

2.2.1 The displacement-discontinuity model: the explicit fracture rep-

resentation

Among many theories proposed to explain the interaction of seismic waves and explicit

fractures, the displacement-discontinuity fracture (or linear-slip) model introduced by

Schoenberg (1980) and generalised by Pyrak-Nolte et al. (1990b) and Pyrak-Nolte et al.
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(1990a), is one of the most widely used within the geophysical community (Liu et al.,

2000).

κs,x
κs,y

κn

Fracture’s upper surface

Fracture’s lower surface

D = 0x

z
y

Figure 2.2: Schematic representation of the displacement discontinuity model. Open and
closed fractures of zero-width thickness D are represented as distributed normal and tangential
springs expressed by normal stiffness κn and shear stiffnesses κs,y and κs,x, respectively.

In this model, fractures are represented as non-welded interfaces (or discontinuities)

and their complex geometry is represented as the boundary between two elastic half

spaces: across the fracture plane the tractions are continuous but the displacements are

not. The link between the displacement fields and the tractions is given by the specific

fracture stiffnesses κ (Schoenberg, 1980; Pyrak-Nolte et al., 1990b). This is analogous

to two elastic half spaces coupled by a set of distributed normal and tangential springs

expressed by stiffnesses κn and κs, respectively (Figure 2.2).

Considering a 2-dimensional problem, the boundary conditions on the displacement

discontinuity (∆u) for Sv waves (polarised in the x−z plane) and compressional waves,

are (Pyrak-Nolte et al., 1990b)

∆us = u(u)s − u(l)s = τs/κs τ (u)s = τ (l)s (2.1)

∆un = u(u)n − u(l)n = σn/κn σ(u)
n = σ(l)

n

where κn and κs are the specific normal and shear (or tangential) fracture stiffness,

respectively, σn = σzz is the normal traction to the fracture plane, and τs = τzx is the

tangential traction in the x− z plane. The superscripts (u) and (l) are referred to the

upper and lower surface of the fracture plane, respectively.

Using the boundary conditions in equations (2.1), Pyrak-Nolte et al. (1990b) ana-
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lytically predicted and experimentally confirmed that for a purely elastic medium, the

reflection coefficient R and the transmission coefficient T are frequency dependent and

they are functions of the specific stiffness of the fracture. At normal incidence and with

equal materiel properties on either side of the fracture they are of the form

Rp,s(ω) =
−iω

−iω + 2κn,s/Zp,s
(2.2)

Tp,s(ω) =
2κn,s/Zp,s

−iω + 2κn,s/Zp,s
(2.3)

where ω is the angular frequency and Zp,s = ρvp,s is the seismic impedance. The

subscripts P and s indicate the P-wave and S-wave, respectively.

Figure 2.3: Compilation of laboratory and field estimates of dynamic fracture compliance.
Modified from (Worthington, 2008).

The specific fracture stiffnesses assume non negative values and they can span the

interval [0,∞[. From equations (2.2) and (2.3), as κ approaches 0, R → 1 and T → 0.

Therefore, the discontinuity behaves as an open fracture, i.e., all the energy is reflected

(Figure 2.5(a)). Conversely, the discontinuity becomes equivalent to a welded interface,

i.e., all the energy is transmitted (T → 1, R → 0), when κ → ∞ (Figure 2.5(d)). In

case of real fractures variation of the fracture specific stiffness along the discontinuity

must be taken into account in order to average the transmission coefficient over the

different sections of the fracture. This is due to that they depend on the local geometry
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of the asperities. To do that the following approximations are made (Pyrak-Nolte and

Nolte, 1992):

- the local transmission coefficient depends on the local static stiffness;

- regions of different stiffness transmit independently.

The first assumption is valid if the asperity separation is smaller than the wavelength

and if the local stiffness varies slowly with respect to a wavelength. Otherwise, the

transmitted signal will experience attenuation by scattering that is not accounted for the

displacement discontinuity formulation. The second approximation assumes that the

total transmission of seismic wave amplitude is the sum of the transmitted amplitudes

of individual regions (Pyrak-Nolte and Nolte, 1992).

Figure 2.4(a) shows the modelled waveforms recorded at the receiver location (black

triangle) for κ values spanning from κn = κs = κ = 1 · 1011 Pa/m to κ = 1 · 1014 Pa/m

(Figures 2.5(a)-2.5(d)). These simulations show how fractures of differing stiffnesses

behave seismically when an elastic wave impinges on their surfaces. Differences in

the responses are solely controlled by the fracture stiffness. The end members are

κ = 1 · 1011 Pa/m that simulates an open fracture where the energy is completely

reflected off the discontinuity (see the related amplitude spectrum in Figure 2.4(b)),

and κ = 1 ·1014 Pa/m simulates a close fracture where the transmitted wave has almost

identical amplitude and frequency content of the control case (no fracture case, Figure

2.5(e)). Two more values are utilised (κ = 1 · 1012 Pa/m, κ = 1 · 1013 Pa/m) to

show the transition between these two states. The fracture stiffness values were chosen

in agreement with the laboratory and field estimates of published dynamic fracture

compliances reviewed by Worthington (2008) (Figure 2.3).

The transmission coefficient, expressed in equation (2.3), is both frequency-dependent

and complex. Therefore, the shift in phase (Θt) of the transmitted wave caused by the

fracture can be related to the ratio of its imaginary and real part (Pyrak-Nolte et al.,

1990a). The derivative of the phase shift with respect to the angular frequency gives
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Figure 2.4: (a) Transmitted waveforms recorded at the receiver location (black triangles in
Figures 2.5(a)-2.5(e)) for κ spanning from κ = 1 · 1011 Pa/m to κ = 1 · 1014 Pa/m, with the
corresponding amplitude spectra (b).

the group time delay (tg) of the transmitted wave. At normal incidence tg becomes:

tg =
dΘt

dω
=

2

(
κn

Zp

)
4

(
κn

Zp

)
+ ω2

. (2.4)

For arbitrary fracture orientation the time delay is also function of the shear fracture

stiffness κs, and the angle of incidence.

Additionally, the equations (2.2) and (2.3) show characteristics of a low-pass filter

with a cut-off frequency of 2κ/Z (Figure 2.4(b)), and also in case of not dissipative

media |T (ω)|2 + |R(ω)|2 = 1 meaning that the energy is conserved (Pyrak-Nolte et al.,

1990a).
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Figure 2.5: Wavefield-fracture interaction for a single vertical fracture of variable stiffness:
(a) κ = 1 ·1011 Pa/m , (b) κ = 1 ·1012 Pa/m, (c) κ = 1 ·1013 Pa/m, (d) κ = 1 ·1014 Pa/m, (e) no
fracture (control). The κn/κs ratio = 1. The colour scale indicates the normalised amplitude
of the wavefield stress components (σ11 + σ22)/2
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2.2.2 The displacement-discontinuity model: the effective medium

theory

Due to the inherent limitation of seismic resolution that prevents a detailed knowl-

edge of the rock masses which the seismic waves have passed, the explicit fracture

model approach fails in characterising fractured rocks as whole. In fact, quantitative

characterization of specific fracture stiffness has been mainly carried out in laboratory

experiments (e.g. Pyrak-Nolte et al. (1990a), Pyrak-Nolte et al. (1990b), Lubbe et

al. (2008), Jiang et al. (2009), Hedayat et al. (2014b), and Choi et al. (2014)) with

only limited applications in the field. Recent successful field measurements of specific

fracture stiffness have been carried out by Hunziker et al. (2020) and Barbosa et al.

(2021).

In order to estimate the overall properties of cracked rocks and model the response

of seismic waves, effective-medium (EM) theories are commonly used (Liu et al., 2000).

These representations encapsulate the behaviour of a fractured rock within the elastic

moduli, therefore they combine the effects of fractures and the host rock into a medium

that potentially produces anisotropic material behaviour (Budiansky and O’Connell,

1976; Hudson, 1980; Schoenberg and Sayers, 1995; Liu et al., 2000). Therefore, EM

theories provide a straightforward way to characterise a fractured medium when the

size of the fractures, their spacing and opening are considerably smaller than the seismic

wavelength.

In a series of papers from early 80s to mid-90s, Schoenberg and Sayers proposed an

equivalent-medium theory (Schoenberg, 1983; Schoenberg and Douma, 1988; Schoen-

berg and Muir, 1989; Sayers and Kachanov, 1991; Schoenberg and Sayers, 1995) having

the same root of the displacement-discontinuity theory for discrete cracks, reviewed in

Section 2.2.1. Also this group of models are generically called linear slip-interface, or

displacement-discontinuity fracture models, since they all share the same interface con-

ditions: discontinuity of displacement and continuity of traction. Nevertheless, they

express the effect of small imperfectly bonded interfaces upon the compliance matrix

of the medium with the assumption of long wavelengths.
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In the presence of fractures embedded in an elastic medium of volume V , the effec-

tive compliance matrix s0ijkl is written as

sijkl = s0ijkl +∆s
(f)
ijkl (2.5)

where s0ijkl is the compliance matrix of the isotropic (elastic) host rock and ∆s
(f)
ijkl is the

excess compliance matrix resulting from the fractures. The general form of the excess

compliance matrix is (Schoenberg and Sayers, 1995; Liu et al., 2000)

∆s
(f)
ijkl =

1

4
(Bijnlnj +Bjknlni +Bilnknj +Bjlnkni) = (2.6)

=
NfSf

4V
(Zijnlnj + Zjknlni + Zilnknj + Zjlnkni) = (2.7)

=
1

4

1

L
(Zijnlnj + Zjknlni + Zilnknj + Zjlnkni) (2.8)

where B is the fracture system compliance tensor (equivalent fracture compliance), Z

is the specific fracture compliance tensor, ni is the i-th component of the axis normal

to the fractures, and Nf is the number of fractures, with mean area Sf , contained in

V . The factor
NfSf

V = 1
L represents the number of fractures per unit length and it is

called fracture intensity (Bakulin et al., 2000) (Figure 2.6). L is the average fracture

spacing.

Similarly, fracture intensity is also indicated as, e.g. (Liu et al., 2000),

Df =
1

L
=

NfSf

V
. (2.9)

For multiple fracture sets, the effective excess compliance matrix is the sum of ∆s
(f)
ijkl

for each fracture orientation.
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fractures

Figure 2.6: Schematic representation of a fractured medium containing a set of parallel frac-
tures orthogonal to the x-axis in a volume V = a · b · c. Each fracture has a surface area of
Sf = a · b and spacing L. This represents a horizontal transversely isotropic medium, or HTI
medium.
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If the medium contains only a set of parallel fractures invariant under rotations

about n = (1, 0, 0), i.e. the normal of fractures is parallel to the x-axis (Figure 2.6),

the fractured medium can be characterised by just two terms: the equivalent normal

fracture compliance Bn, and the equivalent tangential compliance Bs, with units of

Pa−1 (Schoenberg and Sayers, 1995). Such a medium is transversely isotropic (TI),

or more specifically it is a horizontal (since it is parallel to the x-axis) transversely

isotropic medium, or abbreviated HTI.

From equation (2.6), with some tensor algebra, the excess compliance matrix be-

comes

∆s
(f)
ijkl =

[
Bs

4
(δiknlnj + δjknlni + δilnknj + δjlnkni)+ (2.10)

(Bn −Bs)ninjnknl

]
.

or equivalently

∆s
(f)
ijkl =Df

[
Zs

4
(δiknlnj + δjknlni + δilnknj + δjlnkni)+ (2.11)

(Zn − Zs)ninjnknl

]
.

where Zn,s is the fracture compliances with units of m·Pa−1, defined as

Zn,s =
Bn,s

Df
. (2.12)

This can then be reduced to the conventional two-subscript condensed 6x6 compli-

ance matrix form. In this notation 11 → 1, 22 → 2, 33 → 3, 23 → 4 13 → 5, 12 → 6

(Schoenberg and Sayers, 1995). A factor of 2 is introduced when one of the matrix

indices is 4, 5, or 6 (e.g. s1,4, or s5,2 and so on), while a factor of 4 is introduced when
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both of the matrix indices are 4, 5, or 6 (i.e. s4,4, s5,5, and s6,6).

∆s(f) =



Bn 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 Bs 0

0 0 0 0 0 Bs


(2.13)

The factor 4 is absent in the 6×6 matrix form because ∆s5,5 = ∆s6,6 = 4 · Bs
4 = Bs.

Substituting equation (2.11) into equation (2.5) and inverting the compliance matrix

yields the stiffness matrix c of the fractured medium (Schoenberg and Sayers, 1995;

Bakulin et al., 2000)

c =
(
s0 +∆s(f)

)−1
=

=



(λ+ 2µ)(1−∆n) λ(1−∆n) λ(1−∆n) 0 0 0

λ(1−∆n) (λ+ 2µ)(1− r2∆n) λ(1− r∆n) 0 0 0

λ(1−∆n) λ(1− r∆n) (λ+ 2µ)(1− r2∆n) 0 0 0

0 0 0 0 0 0

0 0 0 0 µ(1−∆s) 0

0 0 0 0 0 µ(1−∆s)


(2.14)

with

r ≡ λ

λ+ 2µ
(2.15)

∆n =
(λ+ 2µ)Bn

1 + (λ+ 2µ)Bn
=

(λ+ 2µ)Zn

L+ (λ+ 2µ)Zn
=

(λ+ 2µ) (κn)
−1

L+ (λ+ 2µ) (κn)
−1 (2.16)

∆s =
Bsµ

1 +Bsµ
=

Zsµ

L+ Zsµ
=

(κs)
−1 µ

L+ (κs)
−1 µ

(2.17)

where λ and µ are the Lamé parameters, and ∆n and ∆s are called normal and shear
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(or tangential) weaknesses (Bakulin et al., 2000). The stiffness matrix from equation

(2.14) depends on only four independent quantities: µ, λ, ∆n, ∆s. Nevertheless, HTI

models are generally described by five independent parameters, such as c11, c33, c13,

c44, c55. Therefore, there exists a constraint between the stiffness matrix elements that

can be expressed as (Schoenberg and Sayers, 1995; Bakulin et al., 2000)

c11c33 − c213 = 2c44(c11 + c13) (2.18)

Arbitrarily oriented fracture sets

For a more general case of a fracture set with an arbitrary orientation defined by the

fracture dip, azimuth, and strike the effective stiffness tensor can be obtained by using

the Bond transformation.

The Bond Transformation is an efficient technique for the change of coordinates of a

stiffness (or compliance) tensor expressed as a 6× 6 matrix, therefore it can be applied

directly to the elastic constants given in 2-index notation (Mavko et al., 2020). The

transformation is expressed by two 6 × 6 rotation matrices, M and N, given in terms

of direction cosines defined for the stiffness tensor and compliance tensor, respectively,

as

c’ = McMT (2.19)

s’ = NsNT (2.20)

(2.21)
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where

M =



β2
11 β2

12 β2
13 2β12β13 2β13β11 2β11β12

β2
21 β2

22 β2
23 2β22β23 2β23β21 2β21β22

β2
31 β2

32 β2
33 2β32β33 2β33β31 2β31β32

β21β31 β22β32 β23β33 β22β33 + β23β32 β21β33 + β23β31 β22β31 + β21β32

β31β11 β32β12 β33β13 β12β33 + β13β32 β13β31 + β11β33 β11β32 + β12β31

β11β21 β12β22 β13β23 β12β23 + β13β22 β13β21 + β11β23 β11β22 + β12β21


(2.22)

and

N =



β2
11 β2

12 β2
13 β12β13 β13β11 β11β12

β2
21 β2

22 β2
23 β22β23 β23β21 β21β22

β2
31 β2

32 β2
33 β32β33 β33β31 β31β32

2β21β31 2β22β32 2β23β33 β22β33 + β23β32 β21β33 + β23β31 β22β31 + β21β32

2β31β11 2β32β12 2β33β13 β12β33 + β13β32 β13β31 + β11β33 β11β32 + β12β31

2β11β21 2β12β22 2β13β23 β12β23 + β13β22 β13β21 + β11β23 β11β22 + β12β21


(2.23)

For rotations about the x−axis, the elements βij are, in matrix notation, defined as

β =


1 0 0

0 cos(ϕ) sin(ϕ)

0 − sin(ϕ) cos(ϕ)


x−axis

, (2.24)

for rotation about the new z−axis, β takes the form

β =


cos(ϕ) sin(ϕ) 0

− sin(ϕ) cos(ϕ) 0

0 0 1


z−axis

, (2.25)
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and for rotation about the new y−axis, β takes the form

β =


cos(δ) 0 − sin(δ)

0 1 0

sin(δ) 0 cos(δ)


y−axis

. (2.26)

Additionally, in the case of more than one set of fractures, the fracture system

compliance tensor ∆s(f) can be obtained by summing the fracture compliance tensors

of each fracture orientation (Schoenberg and Sayers, 1995).

Fracture stiffness ratio as a fluid indicator

The mechanical properties of fractures (fracture stiffnesses) can be, furthermore, utilised

as an effective indicator of infilling fluids in fractures (Liu et al., 2000; Bakulin et al.,

2000; Verdon and Wüstefeld, 2013; Choi et al., 2014). More specifically, κs/κn ratio is

controlled by the presence or absence of fluids, and for dry cracks the ratio is equivalent

to (Schoenberg and Sayers, 1995; Liu et al., 2000)

κs
κn

= 1− ν

2
(for isolated cracks) (2.27)

or alternately (Liu et al., 2000; Lubbe et al., 2008)

κs
κn

=
1− ν

1− ν/2
(for a planar distribution of imperfect rough surfaces) (2.28)

where ν is the Poisson’s ratio of the host rock.

Since the Poisson’s ratio, for a variety of rocks, ranges typically from 0.1 ≤ ν ≤ 0.35,

κs/κn the ratio approaches unity for dry cracks (or gas infill) and almost vanishes for

fluid filled cracks (κs ≈ 0) (Pyrak-Nolte et al., 1990b; Hsu and Schoenberg, 1993).

Although theoretically the κs/κn ratio has been shown to have a value approaching

unity for dry cracks, experimentally (in both laboratory and field scale experiments) it

has been found to have values reaching up to 3.0 (Choi et al., 2014).
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2.3 WAVE3D: a program to model fractures numerically

WAVE3D was primarily created for modelling seismic waves recorded around exca-

vations in mines and modelling the wave interaction with fractures (Hildyard, 2001).

WAVE3D can model different phenomena such as wave mode conversion at oblique

incidence with planes of discontinuities, fracture interface waves as Rayleigh-type wave

propagating along the fault (Hildyard et al., 1995), as well as guided waves when they

remain trapped within compliant parallel fractures. Despite that, it does not model

cross-coupled waves due to shear stress applied to a fracture that converts, at normal

incidence, shear waves in compressional waves and vice versa (Nakagawa et al., 2000).

Those studies covered different problem scales: from a representation of dynamic fault

slip and rockburst mechanisms in mines, to a representation of dynamic behaviour and

wave propagation in fracture zones (Hildyard, 2007).

WAVE3D solves a system of first-order hyperbolic equations on a staggered grid

using the finite difference method. The staggered grid scheme ensures a computational

efficiency and a higher numerical accuracy (Virieux, 1986). WAVE3D implements a

discrete representation of fractures as well as the EM approach (Cundall, 1992; Hildyard

et al., 1995). Cracks are modelled as finite, and the displacements are continuous at the

crack tips. WAVE3D also models additional mechanical phenomena such as frictional

sliding, dynamic openness and closure of cracks, as well as variation of fracture specific

stiffness along the crack (Hildyard, 2001). Recent developments have been made to

introduce a hybrid approach between the EM and discrete fracture representation called

localised effective medium (LEM) (Parastatidis et al., 2017; Parastatidis et al., 2021).

This method models the fractures as grid cells containing equivalent anisotropic media

and Parastatidis et al. (2021) showed that LEM approximates well the explicit fracture

model when the thickness of the LEM layer is much smaller (∼ 20 times) than the

dominant wavelength.



Chapter 2: Seismic characterization of fractures 39

2.3.1 Solving the wave equation through the finite difference method

The FD method is widely used to numerically solve the wave equation with a FD stencil

to simulate seismic waves travelling through the subsurface. WAVE3D implements a

velocity-stress formulation of the wave equation solving the system of two first order

equations: a constitutive equation and an equation of motion. For a linear elastic

isotropic material they are

σ̇ij = δij

(
K − 2

3
G

)
∂ėkk + 2Gėij (2.29)

ρ
∂u̇i
∂t

=
∂σij
∂xj

(2.30)

where σij are the components of the stress tensor, eij are the components of the strain

tensor, ρ is density, K and G are the bulk and shear moduli, respectively. The strain

rates ėij are calculated from

ėij =
1

2

[
∂u̇i
∂xj

+
∂u̇j
∂xi

]
. (2.31)

The system of equations (2.29)-(2.30) is solved numerically replacing the partial

derivatives by finite differences by means of Taylor series (hence the origin of the

method’s name). Therefore, the continuum is discretised into a mesh at discrete points

in time and space (Figure 2.7(a)). Specifically, WAVE3D uses a staggered grid where

variables are separated by one half a grid length and each grid variable is computed at

different positions in space (Figure 2.7(b)). It uses a central difference scheme with a

second-order accuracy in time, and fourth-order in space. Nevertheless, the accuracy

is reduced to the second order in the vicinity of mesh boundaries, cavities or cracks

(Hildyard, 2001). Stresses are obtained from velocities using equation (2.29), while

velocities from equation (2.30).
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Figure 2.7: (a) A 2D portion of the WAVE3D mesh, showing the spatial positions for each
variable. (b) A unit 3D cell in the WAVE3D staggered grid with the respective variables.
Adapted from Hildyard (2007)

2.3.2 Numerical dispersion and numerical stability

The resulting space-time discretisation leads to non-physical phenomena such as numer-

ical dispersion and numerical instability. The numerical solution of the wave equation

is correct only if some stability and dispersion conditions are met, therefore limiting

the range of values for the time-step interval and grid-spacing.

To prevent excessive grid dispersion, the spatial criterion imposed on the grid-

spacing ∆h for a fourth-order accuracy scheme recommends that the shortest wave-
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length is sampled by at least five grid-points per wavelength (Levander, 1988). WAVE3D

follows this recommendation, however when there are large fractures or large numbers

of fractures it is prudent to be more conservative and use 10 grid-points (Hildyard,

2001). Mathematically this means:

∆h ⩽
λmin

10
=

1

10

cmin

fmax
(2.32)

where cmin is the slowest velocity of all materials, λmin the shortest wavelength, and

fmax the highest modelled frequency. Note that, generally, the shortest wavelength is

due to the S-wave velocity model, and therefore the shear velocity generally limits the

grid spacing.

On the other hand, the grid spacing is coupled to the time-step interval (∆t) through

the so called Courant–Friedrichs–Lewy (CFL) criterion. This describes how the tem-

poral discretisation has to be satisfied to ensure the stability of the wave equation

solution. It reads

∆t ⩽ C ∆h

cmax
(2.33)

where C is the Courant number (for fourth-order accuracy C = 0.606 (Fichtner, 2010)),

and cmax is the fastest velocity of all materials.

For fourth-order accuracy and in 3D, WAVE3D has a smaller value of C and uses

C = 0.45. Moreover, it allows for mixed sizes of dx, dy, and dz. It does not use the

smallest value to compute the stability of the wave equation solution, and larger dy

and dz increase the stable timestep.

2.3.3 Modelling fractures and fractured media in WAVE3D

In the mesh structure, discrete fractures are implemented as discontinuities and are

expressed as zero-width thickness between two coincident surfaces with boundary con-

ditions defined in Pyrak-Nolte et al. (1990b) and shown in Section 2.2.1. The orthogonal

shear specific stiffness κs,y, as shown in Figure 2.2, assumes the same value of the shear

stiffness κs,x for all experiments throughout the manuscript. This representation has
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been shown to be valid for a wide range of seismic frequencies with fracture sizes and

spacings both larger and smaller than the seismic wavelength (Hildyard, 2007).
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Figure 2.8: Representation of a 2-D horizontal fracture in the staggered mesh, in WAVE3D,
showing surrounding grid variables and different values of σ11, σ22, and u̇1 for the upper and
lower surface respectively. Adapted from Hildyard (2007).

For a two-dimensional horizontal crack case (Figure 2.8) the grid variables, coincid-

ing with the crack surfaces, have an upper and lower value: σup
22 and σlow

22 , σup
11 and σlow

11 ,

u̇up1 and u̇low1 , where for continuity σup
22 = σlow

22 = σ22, while σup
11 , σ

low
11 , u̇up1 , and u̇low1

must be independently computed (Hildyard, 2007). Whereas, to model a medium con-

taining fractures, WAVE3D implements the Schoenberg’s equivalent fractured medium

theory reviewed in Section 2.2.2.

Further descriptions of the numerical implementation of the displacement disconti-

nuity theory can be found in Hildyard and Young (2002) and Hildyard (2007).

2.3.4 Crack assemblies in WAVE3D

To generate crack assemblies with a certain size and density, WAVE3D implements the

conceptual model of fracturing as a collection of flat ellipsoidal openings introduced by

Budiansky and O’Connell (1976). Here, a cracked medium is described through the

crack density ϵ0, a dimensionless parameter, defined as (for ellipsoidal open cracks)

ϵ0 =
2N

π

〈
A2

P

〉
(2.34)
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where N = Nf/V is the total number of elementary cracks (Nf ) per unit volume V .

A and P are the crack area and perimeter, respectively, and ⟨·⟩ represents the average

value. For circular open cracks equation (2.34) reduces to

ϵ0 = N
〈
r3
〉

(2.35)

with r the average crack radius.

Considering rectangular cracks with the i-th crack sides ai and bi, Hildyard (2007)

defines ϵ, instead, as

ϵ =
1

πV

Nf∑
i=1

a2i b
2
i

ai + bi
. (2.36)

If the cracks are square (i.e., bi = ai), equation (2.36) becomes

ϵ =
1

2πV

Nf∑
i=1

a3i =
Nf

2π

〈
a3
〉
. (2.37)

Equation (2.37) gives values of ϵ between the values of an inscribed circle and a

circumscribed circle derived from equation (2.35) (Hildyard, 2007).

The interpretation of the crack density, however, gives rise to an inherent ambiguity.

In fact, radically different fracture distributions may produce the same crack density.

This is because a large number of small cracks (large N , small a) can have the same

crack density as a few large cracks (small N , large a) (Lubbe and Worthington, 2006).

Figure 2.9 shows an example of this behaviour, where two fractured models have the

same crack density ϵ, distributed in the same fractured volume, but with different

crack size. These two models, however, will have different fluid flow responses (e.g.,

(Pyrak-Nolte and Nolte, 2016)), as well as different anisotropic behaviours (Fuggi et al.,

2021).

Using a specific WAVE3D plug-in, a discrete fracture zone is created within the

numerical mesh by defining the crack size and crack density for each direction. Because

of the orthogonal mesh, cracks can be generated only along the mesh grid points, i.e.,
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(a) (b)

Figure 2.9: An example of the ambiguity of the crack density parameter. Two fracture models
have the same crack density (ϵ = 0.025), and same cracked volume (V = 50 × 67 × 57 m3).
However, in (a) crack size is a2 = 3× 3 m2, while in (b) crack size is a2 = 10× 10 m2.

parallel to the x− y plane, x− z plane, or y − z plane (Figure 2.10).

It follows that, for a defined fractured volume, discrete cracks are progressively added

(randomly distributed in space) until the crack density defined in equation (2.36), for

each direction, is satisfied. Crack intersections are avoided.

(a) (b)

Figure 2.10: Two fracture models with the same crack density ϵ = 0.045, crack size a2 = 6×6
m2 and cracked volume V = 50 × 67 × 57 m3, with different fracture orientations. In (a) the
axis normal to the cracks is parallel to the x-axis, while in (b) the cracked medium is composed
of three different sets of cracks orthogonal to each other. Each set has crack density ϵ = 0.015,
therefore, with a total crack density of ϵ = 0.045.

Differently to Budiansky’s model where cracks are considered open, in WAVE3D

at each discrete crack is an associated (κn, κs) pair, i.e., they can be considered open,
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closed, or partially open depending on the stiffnesses values. This is the reason why

in equations (2.34) and (2.35) crack density is named ϵ0, whereas it is ϵ in equations

(2.36) and (2.37).

2.3.5 Perfect Matched Layer (PML) as absorbing boundary condi-

tions

Absorbing boundary conditions are used to simulate an infinite medium for wave propa-

gation by implementing artificial boundaries at the edges of the computational domain.

WAVE3D offers two solutions for this purpose: the absorbing boundary conditions

(ABCs) and PML absorbing boundaries. PML was firstly developed and implemented

in elecromagnetism, and only subsequently in seismology (Collino and Tsogka, 2001).

Rather than using some local boundary conditions such as implemented by the ABCs,

PML boundaries are designed to surround the domain of interest with artificial ab-

sorbing layers where waves are trapped and exponentially attenuated (Komatitsch and

Tromp, 2003). Figure 2.11 shows a comparison between these two implementations in

WAVE3D, highlighting that PML boundary conditions outperform the ABCs, atten-

uating the impinging waves approximately 20 times more (Figure 2.11(c)). Although

they have a better performance, PML are also considerably more computationally de-

manding.
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(a) Snapshots at 13 ms of a wavefield propagat-
ing in a medium with ABCs.
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(b) Snapshots at 13 ms of a wavefield propa-
gating in a medium with PML boundaries.
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coded in the medium in (a) (blue), and
(b) (red).

Figure 2.11: Qualitative performance comparison between ABC (a) and PML (b) boundaries
in WAVE3D. Red star is the source location. A Ricker wavelet was used to generate the
propagating waves. (c) Waveforms recorded along a horizontal line of receivers passing through
the source location. The spurious reflections from the model boundaries in the ABC case have
amplitude approximately 20 times greater than the PML.

2.4 Surface seismic methodologies to characterise frac-

tured rocks

There are a variety of techniques that are able to extract some fracture properties from

surface seismic data. Most of them deal with the characterisation of anisotropy (of ve-

locities or attenuation) in order to estimate, as an inverse process, physical properties of

interest such as crack density (or fracture stiffnesses) and orientation (Chichinina et al.,
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2006; Willis et al., 2006; Clark et al., 2009; Moffat et al., 2010; Liu and Martinez, 2012).

The main techniques can be split into two macro categories: travel time-based meth-

ods (e.g., Shear-wave Splitting (SWS) (Crampin, 1981), Azimuthal variation of normal

moveout (NMO) velocity (Tsvankin, 1997)), and amplitude-based methods (e.g., Az-

imuthal Amplitude Variation with Offset (AzAVO or AVOAz) (Rüger, 1998), P-wave

attenuation (Clark et al., 2009)).

2.4.1 Anisotropic parameters for TI media

In most elasticity theory applications, the elastic medium is assumed to be isotropic

(Thomsen, 1986), therefore, the material properties are independent of direction. An

isotropic medium can be defined by only two independent variables of the stiffness

matrix, c11 and c44, reduced from the 21 parameters needed to describe a more general

case, the triclinic medium. It is common to describe an isotropic medium by using the

Lamé parameters λ and µ, which have the following relations with the element of the

stiffness matrix

c11 = λ+ 2µ, c44 = µ, (2.38)

and as functions of P-wave, S-wave velocities, and density, λ and µ are defined as

µ = ρv2s (also called shear modulus), and

λ = ρv2p − 2µ (2.39)

Nevertheless, in the presence of preferential alignment of minerals during deposition,

flow, or ambient stress conditions (e.g., clay particles in shale formations), horizontal

fine layering, or aligned fractures both the kinematic and the dynamic parameters

of seismic wavefields are directionally dependent, so these media give rise to seismic

anisotropy.

To describe explicitly the effect of anisotropy on the seismic wave propagation

through a vertical transversely isotropic (VTI) medium – for instance a fine horizon-

tal bedding – Thomsen (1986) defined dimensionless anisotropic parameters (ε, δ, γ
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- hereafter Thomsen parameters) to separate the influence of the anisotropy from the

isotropic parameters:

ε =
c11 − c33
2c33

(2.40)

δ =
(c13 + c44)

2 − (c33 − c44)
2

2c33(c33 − c44)
(2.41)

γ =
c66 − c44
2c44

. (2.42)

In an analogy with the Thomsen parameters, Tsvankin (1997) and Rüger (1997)

introduced a set of three anisotropic coefficients to describe HTI media, called ε(V ),

δ(V ), γ(V ). The superscript (V ) defines the parameters with respect to the vertical

symmetry axis – the Thomsen parameters are defined with respect to the horizontal

symmetry axis.

Using the elastic stiffness components cij , Tsvankin anisotropic parameters are de-

fined as

ε(V ) =
c11 − c33
2c33

(2.43)

δ(V ) =
(c13 − c55)

2 − (c33 − c55)
2

2c33(c33 − c55)
(2.44)

γ(V ) =
c66 − c44
2c44

. (2.45)

The parameter ε(V ) is also defined as the P-wave anisotropy parameter since it expresses

the difference between the P-wave velocity in the slowest and fastest direction, e.g.,

orthogonal and parallel to the fractures, respectively. δ(V ) is responsible for near-

vertical P-wave velocity variation along the normal direction to the fractures, whereas

γ(V ) is also called the shear-wave splitting parameter because it governs the shear-wave

splitting at vertical incidence. Both ε(V ) and δ(V ) are negative.

The relationship between the anisotropic Tsvankin parameters and the fracture

weaknesses ∆n and ∆s can be found by substituting the elastic stiffness components

of equation (2.14) in equations (2.43)-(2.45). Bakulin et al. (2000) give their exact and
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approximated expressions, assuming weak anisotropy (i.e. ε(V ) ≪ 1, δ(V ) ≪ 1 and

γ(V ) ≪ 1), as

ε(V ) =
2g(1− g)∆n

1−∆n(1− 2g)2
≈ −2g(1− g)∆n (2.46)

δ(V ) = − 2g[(1− 2g)∆n +∆s][1− (1− 2g)∆n]

[1−∆n(1− 2g)2]
[
1 + 1

1−g (∆s −∆n(1− 2g)2)
]

≈ −2g[(1− 2g)∆n +∆s] (2.47)

γ(V ) = −∆s

2
. (2.48)

The parameter g is defined as g = µ
λ+2µ = v̄2s

v̄2p
.

2.4.2 P-wave reflectivity in HTI media

The P-wave amplitudes (described by the AVOA attribute) and normal moveout (NMO)

velocity are sensitive to the anisotropy of rock masses (Crampin et al., 1980; Tsvankin,

1997; Rüger, 1998). If the anisotropy is caused by vertical fractures, their strike and

stiffness can be determined by the amplitude attributes (Rüger and Tsvankin, 1997).

Rüger and Tsvankin (1997) and Rüger (1998) proposed an analytical formulation to

express the variation of the seismic amplitudes with angle in case of two HTI layers with

the same orientation. The approximate reflection coefficient for compressional waves

(RHTI
PP ), under the assumptions of small-to-moderate contrasts in rock properties and

weak anisotropy between the upper and lower reflection interfaces, is given by Rüger

and Tsvankin (1997):

RHTI
PP (θ, φ) = AISO

+
(
BISO +BHTI(φ)

)
sin2 θ (2.49)

+
(
CISO + CHTI(φ)

)
sin2 θ tan2 θ
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where

AISO =
1

2

(
∆Z

Z̄

)
BISO =

1

2

(
∆vp
v̄p

− 4g
∆G

Ḡ

)
CISO =

1

2

(
∆vp
v̄p

)
(2.50)

BHTI(φ) =
1

2

[(
∆δ(V ) + 8g∆γv

)
cos2 φ

]
CHTI(φ) =

1

2

(
∆δ(V ) sin2 φ cos2 φ+∆ε(V ) cos4 φ

)
,

defined with θ and φ as the incident and azimuth angle (see Figure 2.12 for a graph-

ical guide), respectively, the overline ¯ and ∆ symbols represent the average and the

difference values between the two media across the interface. Z = ρvp is the acoustic

impedance, G = µ = ρv2s is the shear modulus.

Finally, substituting the Tsvankin parameters defined with respect to the fracture

properties (equations (2.46)-(2.48)) into equation (2.49), rock physics fracture models

are linked to the seismic AVOA attribute. In order to model the AVOA attribute for

fracture-induced HTI layered media, Fuggi et al. (2020) introduced a correction to the

isotropic parameters based on the elastic impedance formalism.

2.4.3 NMO velocity and traveltime in anisotropic media

Information about fractured rock volumes (e.g., fractured reservoirs) can also be ob-

tained from the variation of NMO velocity with azimuth by inverting azimuthally-

dependent reflection traveltimes (Bakulin et al., 2000) .

For a horizontal HTI layer having an arbitrary symmetry axis with respect to the x-

axis (defined by the angle β) the reflection moveout of pure modes (non-converted) can

be approximated by the hyperbolic equation (Tsvankin and Thomsen, 1994; Tsvankin,

1997; Grechka and Tsvankin, 1998):

t2 = t20 +
x2

V 2
nmo(φ)

(2.51)
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where

V −2
nmo(φ) =

cos2(φ− β)

V 2
nmo,fast

+
sin2(φ− β)

V 2
nmo,slow

. (2.52)

Vnmo(φ) is the azimuthally varying NMO velocity as a function of the shot-receiver

azimuth φ (see Figure 2.12(a)), and Vfast and Vslow the fastest (direction parallel to the

fracture strike) and slowest NMO velocities, respectively. The velocity Vslow is directly

related to Tsvankin’s parameter δ(V ) and Vfast by (Thomsen, 1986; Tsvankin, 1997)

Vslow = Vfast

√
1 + 2δ(V ). (2.53)

By substituting equation (2.53) into equation (2.52), and considering the trigonometry

identity cos2(x) = 1 − sin2(x), equation (2.52) assumes the following form (Bakulin

et al., 2000)

V 2
nmo(φ) = V 2

fast

1 + 2δ(V )

1 + 2δ(V ) sin2(φ− β)
(2.54)

If equation (2.54) is plotted as a function of azimuth, the NMO velocity forms an

ellipse with the semi-axes aligned with the vertical symmetry planes of the HTI layer.

The semi-major axis of the NMO ellipse is defined by Vfast, whereas the semi-minor

axis by Vslow.

An estimate of the magnitude of the anisotropy, which directly depends on δ(V ), is

provided by the ratio (Thomsen, 1986)

anisotropy ≈
Vfast − Vslow

Vfast
= 1−

√
1 + 2δ(V ) (2.55)
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the symmetry-axis is parallel to the x-axis.

θ

P

VP1
, VS1

, ρ1
VP2

, VS2
, ρ2 Fractured medium

x

z

(b) The incident angle θ is defined with respect to the vertical axis z.

Figure 2.12: Graphical guide for the definition of the incident angle θ and the azimuth angle
φ. Plan view in (a) and vertical cross-section view in (b) over a fractured medium containing
aligned vertical fractures with the symmetry-axis along the x-axis.
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2.4.4 Shear wave splitting

When a shear wave travels through an anisotropic medium it typically exhibits a phys-

ical phenomenon known as seismic birefringence, namely the incident shear wave splits

into two polarized shear waves which travel as two separate orthogonal modes with

different velocities, S1 and S2 components for fast and slow shear wave, respectively.

In the case of a fractured HTI medium, both the polarization and the propagation of

the faster split shear wave lies in the plane parallel to the strike of the cracks which is

preserved, unchanged, even after it exits from the anisotropic region (Crampin, 1981).

Therefore, once recorded, this shear wave mode can be used to infer the fracture orienta-

tion. The time delay (or time lag δt) between fast and slow shear waves is proportional

to the strength of the anisotropy (Crampin, 1981), which is directly related to the

Tsvankin parameter γ(V ) (Tsvankin, 1997), and in turn to the shear weakness (∆s)

of the fracture system (equation (2.48)). For dry or fluid-filled cracks, γ(V ) also well

approximates the crack density (Bakulin et al., 2000). Shear-wave splitting techniques

were first used for fracture detection by Alford (1986).

In practice, by employing 3-component geophones, both the shear wave polariza-

tions and δt can be measured. A fracture induced anisotropic medium is, therefore,

characterised (Angus et al., 2009; Verdon et al., 2009; Wuestefeld et al., 2010; Verdon

and Wüstefeld, 2013).

2.4.5 Attenuation due to aligned fractures

The amplitudes of seismic waves propagating in a fractured medium experience a decay

in amplitude due to a variety of physical phenomena, such as solid friction, scattering,

and transmission losses due to the energy partition at the fracture interfaces, generating

reflected and transmitted waves. In addition to these, causes of seismic attenuation are

also intrinsic attenuation, and geometrical spreading which are not necessary related

to the presence of fractures. The strength of the attenuation is commonly quantified

using the dimensionless quantity Q, also called the seismic quality factor.

Rock volumes containing aligned cracks or fractures are prone to produce conduits
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for fluid flow or fluid storage, which may lead to a azimuth-dependent attenuation

(Chichinina et al., 2006; Clark et al., 2009). Chichinina et al. (2006) analysed the

variation of Q-factor with azimuth, calling the method QVOA in analogy with the

azimuthal variation of AVO, and introducing new seismic attributes (QVO gradient

and associated Q-intercept) to be linked to the parameters of the fractured medium,

such as fracture-strike and crack density.

Some techniques described in this Section are beyond the scope of this work but

they offer a broad overview of fracture characterisation. Some are further exploited

and compared with the results obtained trough the inversion method developed and

detailed in the next Chapter.



Chapter 3

Genetic algorithm full-waveform

fracture inversion

In this chapter an alternative scheme is proposed that looks beyond the conventional

local-optimisation FWI for velocity model building, investigating a two-step method

involving a global optimisation technique, such as the genetic algorithm (GA), and

uncertainties evaluation using the neighbourhood algorithm (NA) in order to estimate

fracture properties directly from seismic waveforms.

The main task of the optimisation involves maximising or minimising of some misfit

functionals with the aim of best fitting the observed (measured) seismic data with accu-

rate models of seismic wave interactions with fractures. Therefore, the work presented

in this chapter describes the theory and the implementation of the GA method along

with the evolutionary operators that have been tested, and an introduction to the NA

technique.

The evolutionary operators are briefly presented in section 3.3.3, and the appraisal

of the model space through NA is presented in Section 3.4. In Section 3.5 the per-

formance of the GA+NA approach in minimising and appraising analytical functions

is also shown. A synthetic case of fracture characterisation in a simulated laboratory

experiment is carried out in Section 3.6.

55
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3.1 Preamble

In the context of discrete fractures characterisation, quantitative estimation of me-

chanical properties of fractures using waveform inversion techniques is very scarce. A

recent study conducted by Hunziker et al. (2020) shows a successful application of a

MCMC inversion of full-waveform tube-wave data recorded in a vertical seismic profil-

ing (VSP) setting with the aim of estimating aperture and compliance of fractures in

the underground Grimsel Test Site in the central Swiss Alps. Different to this project,

their solution of the forward problem is based on a semi-analytic solution rather than

a finite-difference solution of the elasto-dynamic equations.

A different approach to estimate fracture properties was followed by Rao and Wang

(2009) who performed a waveform tomography on fractured media utilising a gradient-

based (local) waveform inversion. The objective of this study was to investigate atten-

uation effects resulting from discrete fractures in subsurface media. In order to model

the direct problem a finite difference approach was employed. The elastic wave equa-

tion was solved in the time domain and the discrete fractures were modelled using the

displacement discontinuity approach proposed by (Coates and Schoenberg, 1995). The

waveform inversion was performed in the frequency domain and in acoustic approxi-

mation by estimating the attenuation model (Q−1) due to fractures.

Other approaches for fracture characterisation which utilise waveform inversion

methods deal with the estimation of fracture-induced anisotropy by means of the

gradient-based (local) technique, e.g. (Bansal and Sen, 2010; Hou et al., 2013; Zhang

et al., 2017).

To the author’s knowledge, there are no attempts to estimate fracture properties

explicitly through a stochastic seismic waveform inversion using a wave equation solver,

such as the finite-difference technique. Therefore, this chapter lays the foundations, for

the first time, of a more robust methodology in characterising fractures and fractured

media by means of global waveform inversion.
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3.2 An overview of Genetic Algorithms (GAs)

Genetic algorithms (GAs) are a subclass of evolutionary algorithms which mimic the

evolution processes and the natural selection of a biological counterpart in an effort

to solve complex multimodal optimisation problems (Goldberg, 1989; Sambridge and

Drijkoningen, 1992). The GA optimisation process consists of a series of evolutionary

operators, such as selection, crossover, mutation, and elitism, that operate in order

to select the best candidate solutions, interpreted as individuals of a population, and

through the evolution process (generations) find the optimum individual. The canon-

ical GA framework, as known today, was conceived by Holland (1975) but since then

different strategies and variations have been proposed and implemented to improve the

exploration of the model space (e.g. Belding (1995), Aleardi and Mazzotti (2017), and

Pierini et al. (2019)), the exploitation of the model space (e.g. Gonçalves et al. (2005)

and Wan and Birch (2013)), and the convergence rate (e.g. Janikow and Michalewicz

(1991)).

As a result of its flexibility and robustness, GA has had much success in a wide range

of applications in real-world problems, covering subjects from chemistry to finance, from

physics to image processing (Weise, 2009).

The first successful applications of GA to solve strongly non-linear geophysical problems

were firstly presented by Gallagher et al. (1991) and Mallick (1995), and with a focus on

waveform inversion and seismic tomography by Stoffa and Sen (1991), Sen and Stoffa

(1992), and Sambridge and Drijkoningen (1992). However, these studies assumed one-

dimensional geological models in an acoustic approximation in order to limit the large

computational costs associated with the cost function calculation, unaffordable for that

time. Nevertheless, due to the recent high rate growth of high-performance computing,

many applications of GA for waveform inversion have been proposed, for instance, to

derive 2D or 3D long-wavelength acoustic models of the subsurface (Sajeva et al., 2016;

Mazzotti et al., 2016; Aleardi and Mazzotti, 2017), to recover acoustic and anisotropic

parameters by combining local FWI and global inversion strategies (Debens, 2015;

Tognarelli et al., 2020), or to characterise the shallow sediments of a seabed making
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use of ultra-high-frequency seismic reflection waveforms (Provenzano et al., 2018).

3.3 GA-FWFI method

Like a biological organism, each individual (also called, throughout this manuscript,

model or candidate solution) is constituted by chromosomes which in turn are consti-

tuted by genes. A chromosome can therefore be represented as a 1 × N vector where

each vector element is a gene

chromosomei = (gene1, gene2, . . . , geneN )i. (3.1)

The j-th candidate solution of a model population can be defined as a collection of

P chromosomes, or more compactly as a P ×N matrix, as follows

individualj =



chromosome1

chromosome2
...

chromosomeP


j

=



gene1,1, gene1,2, . . . , gene1,N

gene2,1, gene2,2, . . . , gene2,N
...

geneP,1, geneP,2, . . . , geneP,N


j

. (3.2)

In the context of discrete fractures characterisation, each chromosome represents a

fracture or the elastic properties of the background medium and each gene represents,

in a general form, a fracture property such as κn, κs, size (lx1 , lx2 , along the x1-axis

and x2-axis), and location (x1, x2, x3). Thus, it follows that

modelj =



fracture1

fracture2
...

fractureM

vp

vs


j

=



κn,1, κs,1, lx1,1, lx2,1, x1,1, x2,1, x3,1

κn,2, κs,2, lx1,2, lx2,2, x1,2, x2,2, x3,2
...

κn,M , κs,M , lx1,M , lx2,M , x1,M , x2,M , x3,M

vp

vs


j

.

(3.3)
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In a more general case, background velocities can vary spatially, so they can assume

different values for each model grid point. This is the reason why both vp and vs are

expressed as vectors (bold). However, in the inversion experiments carried out in this

work, the host rock is always assumed homogeneous, isotropic, and non-attenuative.

3.3.1 GA-FWFI work-flow

A key aspect for the success of the algorithm is how a physical model can be represented

with a simple encoding. Under its initial formulation, the representation of the search

space solutions was a fixed-length binary coded string (Sambridge and Drijkoningen,

1992; Sambridge and Mosegaard, 2002; Sen and Stoffa, 2013), where each gene is coded

with a string of n bits, so with 2n values allowed. Nevertheless, this representation did

not seem adequate and particularly natural when optimisation problems with variables

in continuous search spaces were tackled (Herrera et al., 1998). In fact, the real-coded

(or floating-point) variable representation outperformed, especially in high-dimensional

non-linear problems, the binary representation (Janikow and Michalewicz, 1991; Sajeva

et al., 2016). In this work, consequently, a real-coded chromosome representation is

implemented.

Figure 3.1 shows a flowchart of GA-FWFI implemented in this work, with all the

operators involved. The GA procedure begins with a set of randomly generated models

within a defined search area. This defines the “Generation 0” or initial population.

A forward model is then solved through WAVE3D for each individual of the popula-

tion, concurrently. To evaluate the performance of each individual a fitness functional

is used, where the higher the value, the better the individual. This functional is in-

versely proportional to the misfit function which quantifies the discrepancy between

the observed and modelled data ( also referred to objective function throughout the

thesis). According to the model fitness, the most successful individuals are selected

and paired (parents) to produce new individuals (offspring). In this step, there is a

recombination (or a crossover) of the model parameter values of both parents that are

propagated to the offspring. Nevertheless, the crossover is not the only way to transfer

genetic material across generations. The mutation operator acts over the entire model
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population, randomly choosing the chromosomes and slightly changing some of their

genes to promote genetic diversity, i.e., higher degree of exploration of the search space.

An optional strategy can be taken allowing a small fraction of the fittest parents to be

preserved unchanged for the next generation. This strategy is named elitism. If this

step is active, to maintain the desired number of individuals in the new generation the

same amount of models needs to be rejected. The resulting individuals constitute the

new generation, whom are in turn subject to their fitness evaluation, and the algorithm

iterates through the generations until a convergence criterion is met. Finally, from the

final generation the fittest model (also referred as the elite, or best model) is extracted.

Start

Set GA parameters

Initial population

Evaluation

Are the
convergence
criteria met?

Selection
(Tournament Selection)

Recombination
(Intermediate Recombination)

New population
(Offspring)

Mutation
and Elitism

( Non-Uniform Mutation)

Best individual

Finish

• WAVE3D runs concurrently
• Residuals
• Misfit function (L2-norm)
• Performance

Generations

NOYES

Figure 3.1: The GA-FWFI workflow implemented in this work

3.3.2 GA-FWFI implementation

The GA algorithm is written in Python and exclusively by the author. It embeds

the forward modelling algorithm WAVE3D written predominantly in FORTRAN 90.

The conversion of WAVE3D’s output files into Python readable objects, such as lists

or numpy arrays, is achieved by a series of python scripts and functions developed

exclusively by the author (Fuggi et al., 2019).

In order to mitigate the computational burden given by solving thousands of forward
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problems, the algorithm has been parallelised over a computer cluster provided by the

University of Leeds (ARC4) (Operating system ARC4 2021).

The Message Passing Interface (MPI), that is a standardised means to communi-

cate between processes in distributed memory systems, has been adopted to distribute

models of the GA population onto cores of the computer cluster nodes. At the end of

each generation, the code waits until all GA models are submitted and terminated to

calculate the corresponding misfit function values and apply the GA operators.

All compute nodes contain Intel Xeon Gold 6138 CPUs, the clock rate is 2.0 GHz,

and the memory bandwidth per core is 800MHz. Each node contains 40 cores with 192

GB of memory each (Operating system ARC4 2021).

3.3.3 GA operators

Initialisation

Initialisation is a random process where the number of individuals and some user-

selected minimum and maximum bounds are defined. Each model parameter (gene)

of each candidate solution in the initial population is determined based on a uniform

distribution within the multi-dimensional space solution

geneijk = r(genehighijk − genelowijk ) + genelowijk (3.4)

where geneijk is the i-th gene of the j-th chromosome of the k-th individual, r is a

uniform random number in the interval [0, 1], and genehighijk , genelowijk are the upper and

lower bound for the geneijk. If the gene corresponds to the location of an explicit

fracture, equation (3.4) is rounded to the nearest integer to be implemented in the

WAVE3D mesh.

A priori information can be included in the initialisation by using, for instance, a

Gaussian distribution around some best-guess value for each model parameter.
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Evaluation

The fitness for each model is evaluated by solving the forward problem in WAVE3D for

each individual in the population. A misfit function is defined as the Euclidean distance

(L2-norm) between the observed data (dobs) and modelled data (dmod), by comparing

the two datasets trace:

S(m) =
1

2

ns∑
s

nr∑
r

tmax∑
t=0

∣∣∣∣∣∣dobs(s, r, t)− dmod(s, r, t)
∣∣∣∣∣∣2
2
, (3.5)

where nr and ns are the number of receivers and sources, respectively, and tmax is the

maximum wave propagation time. Based on each individual’s objective function value,

fitness is evaluated to express how fit the model is.

Selection

There are a large variety of selection criteria which take into account different needs

for specific problems. One of the most popular selection techniques in GA is the Tour-

nament Selection (Shukla et al., 2015). From the actual population, the individuals

compete in a series of “tournaments” to select the best ones. A tournament size deter-

mines the number of individuals – randomly chosen – that compete against each other.

It is allowable to select the same model in different tournaments, meaning that it can

be selected more than once. The Tournament size has an impact on the diversity of

the next generations. The larger the tournament size, the greater is the probability of

losing diversity (Pohlheim, 2005; Shukla et al., 2015).

The individual with the highest fitness value wins the tournament and gets selected,

as parent, for generating the offspring. This process is repeated until the number of

parents selected is equal to the size of initial population.

An example of how the Tournament Selection works is showed in Figure 3.2. Here,

the initial population size is 10, whereas the tournament size is 3. In this case, Model

3 and Model 5 were randomly chosen two times, however only the latter won two

tournaments and therefore selected twice. This implies that the same model as a
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parent can be found several times.

Model 1 (fit=10)

Model 2 (fit=20)

Model 3 (fit=2)

Model 4 (fit=11)

Model 5 (fit=70)

Model 6 (fit=55)

Model 7 (fit=23)

Model 8 (fit=10)

Model 9 (fit=1)

Model 10 (fit=76)

Model 5 (fit=70)

Model 5 (fit=70)

Model 10 (fit=76)

...

...

...

...

Tournament Size=3 Parents

Figure 3.2: Example of Tournament Selection.

Mating

All the selected individuals (parents) from the previous stage, are paired for mating

and through the recombination they produce the offspring, and each pair generates two

new models to keep constant the number of final individuals. This mechanism allows

the sharing of the genome between the two individuals.

There are several recombination operators which can generate the offspring. The

Arithmetic Crossover is a family of operators that can be applied for the recombination

of individuals (Ind) with real valued variables. An offspring is produced according to

the following equation, that is a linear combination of the parents:

Indoffij = αjInd
par1
ij + (1− αj)Ind

par2
ij (3.6)

where i ∈ [1, 2, . . . , Nind] (Nind is the the number of initial individuals), j runs over

the generations, αj is a random value in the interval [−d, 1+d] (d defines the size of the

area for possible offspring, e.g. d = 0.25 means ±25% of the interval with respect to
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the extreme values), Indpar1ij and Indpar2ij are the two parents, and Indoffij is the offspring

individual.

If just one model parameter is considered for a given individual, the possible child’s

values lie in the red interval shown in the Figure 3.3. Therefore, all possible offspring’s

values lie in the segment that is bounded by two end points defined by the value d.

The blue interval represents the area of the parents.

Indpar1 Indpar2

(1 − d)(Indpar1 − Indpar2) + Indpar1−d(Indpar1 − Indpar2) + Indpar1

(d ∗ 100)% (d ∗ 100)%

Parents

Child

Figure 3.3: Graphical view of the Arithmetic Crossover. The Possible child’s values lie
in the red interval which is defined by the value d, i.e. between (min(Indpar1 , Indpar2) −
(d ∗ 100)%|Indpar2 − Indpar1 |) and (max(Indpar1 , Indpar2) + (d ∗ 100)%|Indpar2 − Indpar1 |).
Adapted from Pohlheim (2005).

Nevertheless, if two or more model parameters are considered, the whole arithmetic

crossover approach is used (Figure 3.4(b); Pohlheim (2005)). This approach guarantees

a better genetic diversity than the line operator, since it explores a larger model space

with less probability of getting stuck in a local minimum (Pohlheim, 2005)

The whole arithmetic crossover uses different random values αk (with k the kth

gene) for each model parameter. This leads to producing the offspring within a hyper-

cube (whose dimensions are equal to the number of genes) defined by the parents and

the value d. An example with just two genes per individual is represented graphically

for two genes for each individual, a graphical representation for the Simple Arithmentic

Crossover and the Whole Arithmentic Crossover is given in Figure 3.4(a) and Figure

3.4(b) respectively.

Mutation

Mutation is a random process where one or more genes of a given chromosome are

randomly altered. The mutation rate specifies the number of genes and chromosomes

that are modified, and strongly affects the algorithm convergence as well as genetic

diversity. For a high mutation rate the genetic diversity is higher, however the con-
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Figure 3.4: Graphical representation of the simple arithmetic crossover and whole arithmetic
crossover in the case of 2 model parameters. Adapted from Pohlheim (2005).

vergence to the optimum solution may be delayed. On the contrary, a low mutation

rate value limits the exploration of the model space, possibly leading the algorithm to

converge to a local minimum.

An operator that has proven to be very useful in many test cases is Non-Uniform

Mutation (NUM) (Michalewicz et al., 1994). This operator has a principal property of

mutating a gene of a chromosome by exploring the model space uniformly in the first

generations and more locally lately.

Through the operator NUM, a randomly selected gene gk of a randomly selected

chromosome is mutated into g′k, according to the following equation

g′k =


gk +∆(G, MaxVal− gk) if R ≤ 0.5

gk −∆(G, gk −MinVal) otherwise

(3.7)

where MinVal and MaxVal are the lower and upper bounds of gk respectively, G is the

actual generation, R is a random number uniformly distributed in [0, 1], and ∆(G, y)

is defined by:

∆(G, y) = y · r ·
(
1− G

GTOT

)b

(3.8)

where GTOT is the total number of generations, r is a random value in [0, 1], and b
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is called the Non-Uniformity Degree parameter which determines the strength of the

mutation operator, a higher b gives faster convergence . The function ∆(G, y) returns

a value in the range [0, y] and it operates more and more locally as the number of

generations increases (Figure 3.5(b)). A graphical representation of the NUM operator,

for a chromosome composed of two genes, is shown in the Figure 3.5(a).
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m
in

(g
2)

m
a
x

(g
2)

Indpar1

Model Parameter 1

M
od

el
Pa

ra
m

et
er

2

After mutation g1
After mutation g2
Chromosome
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Figure 3.5: (a) Mutation of two genes (g1, g2) of a given chromosome according to NUM.
The circles show how the values of the two mutated genes change through the generations.
Because of the function ∆, the mutated genes collapse toward the actual value at later stages.
(b) Variation of the ∆ function with the generations and the parameter 1 ⩽ b ⩾ 3 (case with
y = 1, and GTOT = 100).
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Elitism

The elitism operator involves copying a small proportion of the fittest candidates, un-

changed, into the next generation. The reinsertion follows a fitness-based criterion in

which the highest-fitness parents replace the lowest-fitness offspring. Elite chromosomes

are also eligible for selection as parents and their number is defined in percentage of

the entire population by the operator. This operator also influences the convergence

rate of the algorithm.

3.3.4 Population size

The population size is an important parameter that directly influences the ability of

exploring the model space and search for the optimum solution. Although a large

number of models improves the model space sampling, increasing the probability that

it contains a chromosome representing the optimal solution, it affects the computing

time which increases exponentially (Fichtner, 2010). Whereas, if the population size is

too small, the algorithm might converge too quickly to a local minimum of the misfit

function (Sambridge and Mosegaard, 2002). Finding an optimum population size is

not a trivial task due to its problem-dependent nature (Chen et al., 2012), and a trial-

and-error method may be adopted. Nevertheless, studies have shown that a population

size between 5 and 20 times the number of the search space dimension (number of

unknowns) is a good compromise between GA efficiency and run time (Sambridge and

Drijkoningen, 1992; Tran and Hiltunen, 2012; Sajeva et al., 2017).

3.3.5 Termination criteria

Two termination criteria were implemented in the algorithm: a pre-determined number

of generations, and when the improvement of the average fitness over a given number

of generations is negligible. Although the latter criterion might be more efficient, tests

carried out by the author have not shown improvement in terms of total number of

generations run. This is mainly due to the mutation operator which works locally at

later generations, converging toward the global minimum. Therefore, the more simple

criterion of a pre-determined number of iterations was used.



68 Chapter 3: Genetic algorithm full-waveform fracture inversion

3.4 Uncertainty estimation by means of Neighbourhood

Algorithm appraisal approach

As a stochastic optimiser, GA is implemented to explore the model space and locate

the region, therein contained, where a best-fitting set of model parameters produces

the lowest misfit data value. Conversely, from a statistical perspective, the solution of

an inverse problem is not limited to a single set of estimated parameters but rather is

represented by a probability density function (PDF), or posterior probability density

(PPD) when normalised, on the model space. Therefore, the aim of inversion is not only

to find a best-fitting set of model parameters but also to characterise the uncertainty

in the inversion results as well as the the non-uniqueness of the solution (Sambridge

and Mosegaard, 2002; Tarantola, 2005; Sen and Stoffa, 2013). Prior information, and

the statistics of noise, can be incorporated into the inverse problem.

In this work, the statistical significance of the resulting ensemble of GA models

is assessed through the Bayesian integration. To this end the Neighbourhood Algo-

rithm (NA) appraisal approach is used. This process is also called NA-Bayes or NAB

(Sambridge, 1999b)1.

In order to estimate the PPD function for each model parameter and evaluate

the Bayesian integrals, the distribution of the generated models needs to be known.

However, GA is not a Markov-Chain Monte Carlo (MCMC) method and it provides a

biased PPD if it is estimated directly from the GA-sampled models (Sambridge, 1999b;

Sambridge and Mosegaard, 2002; Aleardi and Mazzotti, 2017). To circumvent this

limitation, the first step of the NA appraisal method is to estimate an approximated

PPD from the misfit values associated with the GA models using Voronoi cells (no

additional forward models need to be solved in this step). Subsequently, the final

PPD is computed making use of the Gibbs Sampler (GS) which generates a new set

of samples whose distribution tends to the approximated PPD (Sambridge, 1999b).

Schematically,

1The NA computer package is freely available on-line at http://www.iearth.org.au/codes/NA/.
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Misfit values (GA ensemble) Approximated PPD PPD
voronoi cells GS

Last, the Bayesian integrals can be evaluated using the final estimated PPD function.

In the next section the NA appraisal approach is described, with a brief presentation

of the Bayesian inference.

3.4.1 Bayesian inference for parameter estimation

The solution of the inverse problem within the Bayesian framework is the PPD on

the model space, denoted by P (m|d), namely the conditional probability of a set of

modelsm given the data d, also defined as posterior probability. Using Bayes’ Theorem,

the PPD is directly proportional to two terms: the likelihood function L (m|d) which

represents the fit of the models, and the prior ρ(m) which represents the probability of

the model independent of the data (Tarantola, 2005; Sen and Stoffa, 2013). It can be

stated as

P (m|d) = kL (m|d) ρ(m) (3.9)

where k = 1
p(d) is a normalising factor. p(d) does not depend on the model and can be

considered as a constant in the inverse problem (Sen and Stoffa, 2013).

Assuming that the data measurement errors are Gaussian, the likelihood function

L (m|d) takes the form

L (m|d) = k exp

(
−1

2
(d− g(m))T C−1

D (d− g(m))

)
(3.10)

where CD is the data covariance matrix, and d − g(m) the misfit vector between the

observed data and those predicted by applying the forward operator. Consequently,

E(m) = (d− g(m))T C−1
D (d− g(m)) represents the misfit function minimised in the

inverse process (Sambridge, 1999b; Tarantola, 2005).

Equation (3.9) and equation (3.10) provides a means of calculating the posterior

probability of a particular set of model parameter m. A general form of a Bayesian
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integral J , can be expressed as (Sambridge, 1999b; Sambridge and Mosegaard, 2002)

J =

∫
M

Γ(m)P (m) dm (3.11)

where the domain spans over the entire model space M. To simplify the notation the

|d term in P (m|d) is dropped, so P (m|d) is substituted by P (m). The Γ(m) term

represents a generic function used to define each integrand.

For instance, the posterior mean model for the i-th parameter (mi), and the marginal

PPD of a particular model parameter are, respectively, given by:

mi =

∫
M

miP (m) dm, (3.12)

and

P (mi) =

∫
dm1

∫
dm2 . . .

∫
dmi−1

∫
dmi+1 . . .

∫
P (m) dmM . (3.13)

To quantify posterior uncertainty and thus solve the inverse problem, integrals in equa-

tions (3.12)-(3.13) need to be solved. The multi-dimensional integration over the model

space M is generally not analytically tractable, hence numerical integration techniques,

such as Monte Carlo, need to be employed to evaluate these integrals efficiently.

The discrete approximation of equation (3.11) to be used in a Monte Carlo integra-

tion technique, is expressed by (Sambridge, 1999b)

Ĵ =
1

N

N∑
k=1

Γ(mk)P (mk)

h(mk)
, (3.14)

where N indicates the number of Monte Carlo integration points, mk and h(mk) are

the k-th model and its density distribution that is assumed normalised:

∫
h(m)dm = 1. (3.15)

A crucial aspect of evaluating the numerical integration of equation (3.14) is how the
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model space is sampled. When a Monte Carlo sampling is applied within a Bayesian

framework, the samples are generated according to a particular distribution which

usually follows the PPD function (Sambridge and Mosegaard, 2002).

Neverthless, as Sambridge (1999b), Sambridge and Mosegaard (2002), and Sen and

Stoffa (2013) point out, in a case where the samples are generated with an unknown

distribution the numerical integration can lead to biased results. This is also the case

for the GA method.

To derive an unbiased PPD from an arbitrarily distributed ensemble, Sambridge

(1999b) proposes an approach where the neighbourhood approximation (also utilised

as an optimisation technique; Sambridge (1999a)) is applied. To this end, the NAB

approach constructs an approximated PPD using the models generated by the GA algo-

rithm and a multidimensional interpolant given by the Voronoi Cells. They are simply

the nearest neighbour regions about each sample (model), and inside the whole of any

individual Voronoi Cell the likelihood value of the model is set constant. The likeli-

hood value is calculated using equation (3.10) with the GA models misfit values. The

approximated PPD, also called neighbourhood approximation to the PPD, is defined

as (Sambridge, 1999b)

PNA(m) = P (mGA
i ) (3.16)

where mGA
i is the GA-sampled model in the input ensemble, which is closest to m,

a generic point in the multidimensional model space. Since the likelihood value of a

modelmi is assigned to the whole of any individual Voronoi Cell, PNA(m) has a uniform

probability inside that cell. The approximated PPD (PNA(m)), thus, represents all the

information gained from the input ensemble and can be used to compute the final PPD

with the GS technique. Assuming an efficient exploration of the model space during

the GA optimisation stage, PNA(m) can be considered as a rough approximation of

the final PPD function P (m) (Sambridge, 1999b; Aleardi and Mazzotti, 2017). So,

PNA(m) ≈ P (m). (3.17)
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The final PPD, consequently the Bayesian integrals, is then numerically evaluated by

drawing a set of new MC samples in model space with a distribution asymptotically

equivalent to PNA(m). This also means that h(m) ≈ PNA(m), which substituted in

equation (3.14) leads to:

ĴNA =
1

Ñ

Ñ∑
k=1

Γ(m̃k) (3.18)

where m̃ indicates the new set of Ñ Monte Carlo models generated through the GS. In

this form, Bayesian integrals become a simple average over the resampled ensemble.

3.5 GA performance on analytic objective functions

Before analysing the behaviour of seismic objective functions, a study of the perfor-

mance of the GA+NA approach was carried out on analytical functions. The interest

in the study of analytical functions lies in the fact they are assumed to have charac-

teristics similar to the seismic objective functions. However, at a computational level,

the resolution of the direct analytical problem is very much less expensive than the

resolution of the corresponding seismic.

As a first test, the robustness of the GA algorithm with respect to a highly mul-

timodal functional, such as the Rastrigin function, is evaluated. This test problem is

also used to determine how the number of models impacts the convergence of the GA

with respect to model space dimension (i.e., number of parameters). In a second test,

a more simple function (the peaks function) was used to estimate the PPD through the

NA approach.

3.5.1 The Rastrigin function

In a n-dimensional space, the Rastrigin function is defined by:

f(x1, . . . , xn) = An+

n∑
i=1

[
x2i −A cos(2πxi)

]
(3.19)

where A = 10, and xi ∈ [−5.12, 5.12].
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This function is a typical example of a non-convex function, which contains a large

number of local minima (increasing exponentially as 11n in the range [−5.12, 5.12]n),

and a global minimum in (0, . . . , 0) with f(0, . . . , 0) = (0, . . . , 0) (Sajeva et al., 2017).

Figures 3.6(a) and 3.6(b) show the Rastrigin function with n = 2 in three dimensions,

and as a 2D projection, respectively.
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Figure 3.6: Rastrigin function with n = 2, (a) as a three dimensional surface, and (b) as a
2D projection.

Due to its complexity, this function is often used as a performance test problem

for global optimisation algorithms, since for a local optimisation method, such as the

steepest descent or other gradient methods (see also Figure 1.3), is practically impos-

sible to obtain a successful convergence to the global minimum (Dieterich and Hartke,

2012; Weise, 2009; Sajeva et al., 2017).

Optimisation Rastrigin function with n = 2

Figure 3.7 shows the evolution of the individuals to optimise the Rastrigin function

with n = 2 from a random population of models (red dots) (Figure 3.7(a)). The GA

parameters used in this test are listed in Table 3.1. With a high mutation ratio (70%

of the models are mutated), and with no elitism operator, a wide exploration of the

model space is obtained.

The wide exploration can be indirectly observed in Figure 3.7(f), where the aver-

age value (red line) of all models remains roughly stable between generation 10 and

generation 70. It only converges to the optimum solution during the last generations
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GA parameters Values

Population size 500
Generations 100

Tournament size 2
Mutation ratio 0.7

b 2
d 0.3

Elitism 0

Table 3.1: GA inversion parameters for the optimisation of the Rastrigin function.

where the NUM operators constraint the search algorithm to explore the model space

more locally. Figure 3.7(e) shows generation 100 where all models have converged to

the global minimum.
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Analysis of population size vs space dimension: constant space dimension

The previous section has shown a simple example of optimising a function (Rastrigin)

of only two parameters. The potential of this algorithm has been highlighted, both

for exploring the model space and searching for the best solution. But how does the

correct convergence relate to the population size? Section 3.3.4 stressed the importance

of this parameter, as well as that the optimum number of models is problem-dependent.

Nevertheless, testing a highly multimodal function, such as the Rastrigin function, can

be considered as a guide to set the population size for the next inversion experiments.

The tests are carried out using the same GA parameters of Table 3.1 except for the

population size, which takes values of 10, 50, 200, 500. They correspond to a ratio R

between the population size and the number of parameters inverted of R = 5, R = 25,

R = 100, R = 250, respectively. For each population size the inversion is repeated 6

times. Figures 3.8(a)-3.8(d) show the evolution of the function value referred to the

elite model with the generations and the population size.

Optimising the Rastrigin function using only 10 individuals (R = 5) (Figure 3.8(a))

leads to a convergence toward a local minimum for four out of six tests (purple line

and green line represent successful optimisations). On the contrary, for population size

of 50, 200, and 500 the GA algorithm successfully finds the global minimum in all six

cases.

Analysing the value of the elite models, it can be observed there is no improvement

between the case of 50 and 200 models, and a slight improvement if compared to 500.

Therefore, the higher computational cost of evaluating the latter cases makes them

not convenient and unnecessary. The ratio R ⩾ 25 results to be a good compromise

between efficiency and computing time.

Analysis of population size vs space dimension: constant population size

Differently than the previous section where it was analysed the success of the optimi-

sation of the Rastrigin function with n = 2 with respect of the population size, in this

experiment the optimisation it is semi-quantitatively analysed by increasing the space
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Figure 3.8: Misfit evaluation for the same analytical function (Rastrigin function) in two di-
mensions (n = 2), but different population size. (a) population size of 10 models, (b) population
size of 50 models, (c) population size of 200 models, and (d) population size of 500 models. For
each population size, the inversion is repeated 6 times (Test 1 , ..., Test 6). For all cases with
more than 50 individuals, the optimisation of the Rastrigin function is successful. Only with a
population size of 10 individuals the minimisation of the function fails. Nevertheless, from 50
to 500 models there is not a huge improvement in the efficacy of the algorithm, however the
computational cost is 10 times more if it is not done in parallel programming. R ≤ 25 offers a
good compromise between efficiency and computing time.

dimension of the Rastrigin function from n = 5 to n = 50 (equation 3.19), fixing the

population size to 500. Therefore, the ratio R between the population size and model

space dimension spans Rn=2 = 250 to Rn=50 = 10. In this case

The parameters used in the GA optimisation are listed in Table 3.1 (as the previous

tests) for all model space dimensions analysed. The optimisation is repeated only once
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for each case.

Figure 3.9 shows the evolution of the L1-misfit as a function of the generation with

respect to the dimension of the Rastrigin model space n. As expected the convergence

rate decreases as the model space dimension increases, and the convergence to the

global minimum is only attained in cases from n = 5 to n = 20, so up to Rn=20 = 25.

This result is consistent to that obtained in the previous section where R ≤ 25 showed

a good compromise between efficiency and running time.
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Figure 3.9: Data misfit as function of GA generation with respect to the dimension of the
model space (number of model parameters). The population size remains constant at 500
individuals throughout the tests. The correct convergence to the optimum model is attained
up to the model space dimension n = 20, therefore R ≤ 25.

3.5.2 The peaks function

Peaks is a built-in MATLAB function of two variables obtained by translating and

scaling Gaussian distributions, and defined by:

f(x1, x2) =3(1− x1)
2e−x2

1−(x2+1)2 (3.20)

− 10
(x1
5

− x31 − x52

)
e−(x2

1+x2
2)

− 1

3
e−(x1+1)2−x2

2 .

It is a simple function, which contains only one local minimum in (x
(l)
1 , x

(l)
2 ) =

(−1.3473, 0.2045), and one global minimum in (x
(g)
1 , x

(g)
2 ) = (0.2283,−1.6255) with



Chapter 3: Genetic algorithm full-waveform fracture inversion 79

(a)

-5 0 5

x1

-5

0

5

x
2

-6

-4

-2

0

2

4

6

8

(b)

Figure 3.10: Peaks function defined in equation (3.20) as a three dimension surface in (a),
and as a 2D projection in (b).

f(x
(g)
1 , x

(g)
2 ) = −6.5511 as illustrated in Figure 3.10(a). The peaks function is used to

evaluate the convergence of the GA algorithm, and to assess the NAB approach for

sampling the related PPD function. Table 3.2 summarises the control parameters of

the GA algorithm utilised for optimising the peaks function.

GA parameters Values

Model population size 300
Generations 30

Tournament size 2
Mutation ratio 0.4

b 2
d 0.3

Elitism 0

Table 3.2: GA control parameters used in the optimisation of the peaks function.

The L1-norm = |f(xGA
1 , xGA

2 )| − |f(x(g)1 , x
(g)
2 )| is utilised to quantify the misfit be-

tween the peak function evaluated at the GA model’s coordinates (xGA
1 , xGA

2 ) and the

global minimum. Figure 3.11 shows how the best and the average values of the mis-

fit (blue and red line, respectively) evolve with the generations. The convergence is

accurately reached by all employed models by the 30th generation.

Using the whole ensemble of models (equivalent to 300×31 = 9300 models) as shown

in Figure 3.12(a), the marginal PPDs for both variables (x1 and x2) are calculated

(Figure 3.12(c)). As expected, the exploration of the GA algorithm is focused on the
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Figure 3.11: Misfit evolution with GA generation for the peaks function.

upper left corner where the two valleys are located, and in turn, the Voronoi cells,

which divide the entire model space explored by GA, are much denser where the global

minimum is placed. Finally, the marginal PPD, which is a projection of the joint PPD

to a given parameter axis and obtained by integrating out all the other parameters

(equation (3.13)), is correctly characterised as displayed in Figure 3.12(c).
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Figure 3.12: (a) The 9300 models (red dots) sampled during the genetic algorithm optimi-
sation. This represents the whole GA model ensemble generated throughout the generations.
The majority of the models explore the top left portion of the space, due to the presence of
two minima: a global and a local minimum. (b) The model space explored during the genetic
algorithm step is divided into Voronoi cells, and the fitness associated with each model is as-
signed to the whole cell. This builds an interpolant (in this case a 2D interpolant) of the search
space. The Neighbourhood Algorithm step approximates the posterior probability distribution,
and using the Gibbs Sampler method it estimates the PPD of each variable. (c) displays the
1D marginal distributions for the variable x1 and x2, which show a good degree of correlation
with the two minima.
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3.6 GA-FWFI to characterise fracture properties: a syn-

thetic case

Elastic wave measurements such as seismic, sonic or ultrasonic data can be an efficient

tool for non-invasive detection and characterisation of physical properties of fractures

(Liu and Martinez, 2012). The presence of fractures causes attenuation and delay of the

seismic waves when they propagate through the medium. Analysing the group travel

time (equation 2.4) as well as the amplitudes of transmitted and reflected waves, can

lead to an estimate of the specific stiffness of the fractures (Pyrak-Nolte et al., 1990a).

The magnitude of the transmission coefficient for a wave propagating across a set of

N parallel fractures at the normal incidence is |T |N , where |T | is the transmission

coefficient due to a single interface. |T | is dependent on the specific stiffness of the

interface and the frequency of the propagating wave (Pyrak-Nolte et al., 1990a; Pyrak-

Nolte et al., 1990b) and the effective group time delay for oblique incidence for the

same medium with N parallel fractures can be determined from (Pyrak-Nolte et al.,

1990a)

teff =
L

U
cos(θ) +Ntg (3.21)

where L is the total path length normal to the fracture planes, U is the group veloc-

ity in intact rock, θ the incidence angle, and tg is the time delay caused by a single

fracture (equation 2.4). Assumptions are made to simplify the model such as ignoring

the multiple reflections, fracture spacing, and considering a uniform stress state. Hild-

yard (2007) addressed the limitation of assuming homogeneous stress distribution and

showed that it is an important factor to take into account in wave propagation.

Such an analytical approach is therefore only applicable in simple cases. Further-

more, this approach does not provide an estimate of model parameter uncertainties as

well as equally likely possible multiple solutions. The data-driven approach presented

here, such as GA-FWFI, alleviates these limitations by proposing a more automated

method that takes into account the entire wavefield to characterise explicitly mechan-

ical properties of fractures and estimates the PPD function of the model parameters
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analysed.

Here, the GA-FWFI was applied to quantify the fracture-specific stiffnesses (both

normal and shear stiffness) of each fracture in a set of parallel discontinuities, their

spatial location and the background material properties. The focus was on inverting

transmitted and reflected waves mimicking ultrasonic laboratory experiments on a 2-D

isotropic and homogeneous sample containing 5 parallel fractures orthogonal to the

wave propagation. Hence, the so-called observed data was generated by using known

material and fracture properties through WAVE3D, whereas the inverse problem was

solved by estimating the fracture specific stiffnesses κn,s of each fracture, their location,

and the P-wave of the background medium, by best-fitting the observed data. In the

inverse process WAVE3D was used to generate the so called modelled data.

3.6.1 Synthetic 2-D sample with 5 vertical fractures

The two-dimensional synthetic square sample has side length of 14.7 cm, and contains 5

parallel and equidistant fractures (Figure 3.13). The fractures cut the sample vertically

from one side to the other. The fracture spacing is 1.5 cm and the fracture length 14.7

cm. They are located at 2.9 cm, 4.4 cm, 5.9 cm, 7.4 cm, and 8.9 cm from the source

location, corresponding to the sample’s left side.

The host medium is purely isotropic and homogeneous, with material density of

ρ = 1560 kg/m3, P-wave velocity vp = 3230 m/s, and S-wave velocity vs = 1910 m/s.

The material properties are equal to the gypsum elastic properties in the experiments

of Hedayat (2013) and Hedayat et al. (2014b), discussed in Chapter 5.

In order to minimise spurious reflections and boundary effects, the model edges were

shifted further away from the interest zone and the absorbing boundary conditions were

applied. In Figure 3.13 the actual synthetic sample is represented by the dashed red

line. Here it is also illustrated the acquisition geometry which is composed of one single

P-wave source on the left of the block (red star) and three lines of continuous receivers

with an offset of 0.1 cm, placed around the block represented by the blue triangles.

They record the dilatational components of stress given by σ̄ = σ1+σ2
2 .
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Figure 3.13: Fractured model used to compute the observed data (Figure 3.15) and the
snapshots displayed in Figure 3.14. See the text for the elastic properties of the background
material, and the mechanical properties of the fractures. The red star is the source, the blue
triangles the receivers, and the dashed red line represents the simulated sample edges.

The medium is discretised in space through a regular grid of 400 × 400 elements.

The source signature is a Ricker wavelet with a peak frequency of 0.5 MHz. To gen-

erate minimal numerical dispersion and ensure the numerical stability of WAVE3D

everywhere in the medium, the grid spacing is set to dx = dy = 5 ·10−4 m (= 0.5 mm),

and the time-step to dt = 5 · 10−8 s (= 50 ns). The dominant compressional wave-

length is thus λp = 6.5 · 10−3 m which roughly corresponds to 0.43 times the fracture

spacing, while the dominant shear wavelength is λs = 3.8 · 10−3 m corresponding to

0.25 times the fracture spacing. The normal fracture stiffness is κn = 7 · 1012 Pa/m,

identical for all discontinuities, as well as the shear specific stiffness which is fixed to

κs = κn/2 = 3.5 · 1012 Pa/m for all fractures.

Some snapshots of the seismic wave propagation through this medium at t1 = 10 µs,

t2 = 20 µs, t3 = 30 µs, t4 = 40 µs, t5 = 50 µs, t6 = 60 µs can be visualised in Figures

3.14(a)-3.14(f), respectively. Figures 3.15(a)-3.15(b) show the observed data recorded

by the top, right, and bottom receivers lines, respectively.
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(a) Snapshot at t1 = 10 µs.
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(b) Snapshot at t2 = 20 µs.
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(c) Snapshot at t3 = 30 µs.
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(d) Snapshot at t4 = 40 µs.
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(e) Snapshot at t5 = 50 µs.
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(f) Snapshot at t6 = 60 µs.

Figure 3.14: Wavefield snapshots taken at six different time steps which propagate through
the fractured medium containing 5 parallel fractures. It represents the isotropic component of
stress σ̃.
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Figure 3.15: From top to bottom, seismograms related to the top, right and bottom receiver
lines of Figure 3.13, respectively. The traces show the isotropic component of stress σ̃.



Chapter 3: Genetic algorithm full-waveform fracture inversion 87

3.6.2 GA-FWFI results

The GA-FWFI stochastic inversion approach was applied to estimate the specific stiff-

nesses (both κn and κs) of the 5 fractures simultaneously (so 10 mechanical parameters

in total), as well as their spatial location along the x−axis, and the P-wave velocity of

the background material. Consequently, the model representation, following equation

(3.3), becomes

modelj =



fracture1

fracture2

fracture3

fracture4

fracture5

vp


j

=



κn,1, κs,1, x1

κn,2, κs,2, x2

κn,3, κs,3, x3

κn,4, κs,4, x4

κn,5, κs,5, x5

vp


j

(3.22)

where xi represents the coordinate of the i−th fracture along the x−axis. The total

number of inverted parameters is 16.

The ranges of the search space, for each model parameter inverted, are listed in

Table 3.3, where the boundaries for the fracture specific stiffnesses κn and κs are equal

for all fractures. The source signature is assumed known, as well as the density, and

S-wave background velocity. To avoid intersection between fractures in the modelling

(WAVE3D does not support fracture intersection), the GA search bounds for the frac-

ture locations do not overlap. This is also the reason why the number of fractures in

the inversion is kept fixed.

The control parameters used in the GA inversion are summarised in Table 3.4. The

observed data were inverted without any post-processing; however in order to have an

overall amplitude balancing, appropriate weights were applied to the waveforms of the

three receiver lines, the same for both observed and modelled data.

The evolution of the elite and average normalised misfits as function of the GA

generation is illustrated in Figure 3.16. The inversion’s convergence is gradual, although

it seems to stabilise after 40 generations.
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Model parameter Range Unit

Normal specific stiffness of the discontinuity (κn) [1 · 1012, 5 · 1013] Pa m−1

Shear specific stiffness of the discontinuity (κs) [5 · 1011, 2.5 · 1013] Pa m−1

Background P-wave velocity (vp) [3000, 3400] m s−1

Fracture location along x x1 ∈ [2.5, 3.3] cm
x2 ∈ [4.0, 4.8] cm
x3 ∈ [5.5, 6.3] cm
x4 ∈ [7.0, 7.8] cm
x5 ∈ [8.5, 9.3] cm

Table 3.3: Free parameters in the inversion with their search boundaries.

GA parameters Values

Population 400
Generations 50

Tournament size 3
Mutation ratio 0.4

b 2
d 0.3

Elitism 0.05

Table 3.4: GA inversion parameters used for optimising the objective function in the case of
5 parallel fractures.
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Figure 3.16: Normalised data misfit as a function of GA generation. The blue and red lines
represent the average and elite misfits for the population, respectively. The misfit at the last
generation corresponds to the optimum model parameters listed in Table 3.5.
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The model parameters obtained from the inversion, displayed in Table 3.5, resemble

with high accuracy the true values used for generating the observed data. As it can be

observed, the location of all fractures match exactly the true locations, as well as the

background compressional velocity.

κGA
n (κtruen ) κGA

s (κtruen ) x location (true) vp (true)
(Pa/m) (Pa/m) (cm) (m/s)

Frac. 1 7.4 · 1012
(
7.0 · 1012

)
3.3 · 1012

(
3.5 · 1012

)
2.900 (2.90)

Frac. 2 7.1 · 1012
(
7.0 · 1012

)
3.6 · 1012

(
3.5 · 1012

)
4.40 (4.40)

Frac. 3 7.3 · 1012
(
7.0 · 1012

)
3.3 · 1012

(
3.5 · 1012

)
5.90 (5.90) 3229.3

Frac. 4 7.6 · 1012
(
7.0 · 1012

)
3.6 · 1012

(
3.5 · 1012

)
7.40 (7.40) (3230.0)

Frac. 5 7.1 · 1012
(
7.0 · 1012

)
2.2 · 1012

(
3.5 · 1012

)
8.90 (8.90)

Table 3.5: Optimum GA model as defined in equation (3.22). The true model parameter
values, utilised to generate the observed data, are stated in parentheses. The fracture location
on the x-axis is referred to the distance between the source location and fractures.

The success of the inversion can be also recognised by the good match between the

observed and the modelled data, for the three receiver lines, in Figures 3.17(a), 3.17(c),

and 3.17(e). Their corresponding difference is shown in Figures 3.17(b), 3.17(d), and

3.17(f), respectively. The ratio between the maximum amplitude of the observed data

and the corresponding difference is around 15 times for top and bottom receivers, and

around 8 times for the receivers on the right.

The posterior probability distributions for each inverted parameter, as computed

by Bayesian integration through NA-Bayes, are plotted in Figure 3.18. Here the prior

probability distribution is set to be uniform within the parameter space boundaries,

assuming that all parameters in the parameter space are equally likely but also being

careful to avoid impossible solutions (e.g. dividing by zero, negative fracture stiffness

values). Nevertheless, the uniform prior has little impact on the posterior distribution

because it makes minimal assumptions about the model. The marginal distributions

show that all parameters are well constrained by the inversion, except for the shear

specific stiffness κs related to the fracture 5 (the furthest fracture from the source),
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where the optimum model results are underestimated with respect to the ground truth

model by a factor of about 1.6. The shear specific fracture stiffness is sensitive to the

shear waves so in this case, because the source is dilatational and the ’recorded traces’

are the isotropic stress, then the data include compressional waves converted to S-waves

and then reconverted to P. Therefore, the offset between expected and inverted value

may be due to a lack of converted waves at that discontinuity.
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Figure 3.17: In (a), (c), and (e) comparison between the observed (black) and modelled data
(red) for the top, right, and bottom line of receivers, respectively. The corresponding difference
between these two datasets is shown in (b), (d), and (f), respectively. The amplitude of the
difference is around 15 times smaller than the observed data in case (a) and (e), around 8 times
in case (c).



92 Chapter 3: Genetic algorithm full-waveform fracture inversion

F
ra

c
tu

re
1

1
2

7
20

PPD

5
n

1
2

7
20

PPD

5
s

2.
5

2.
7

3.
2

F
ra

ct
u
re

lo
ca

ti
o
n

F
ra

c
tu

re
2

1
2

7
20

PPD

1
2

7
20

PPD

4.
0

4.
4

4.
7

F
ra

c
tu

re
3

1
2

7
20

PPD

1
2

7
20

PPD

5.
5

5.
9

F
ra

c
tu

re
4

1
2

7
20

PPD

1
2

7
20

PPD
7.

0
7.

4
7.

7

F
ra

c
tu

re
5

1
2

7
20

"1
0
1
2

P
a
/
m

PPD

1
2

7
20

"1
0
1
2

P
a
/
m

PPD

8.
5

8.
9

9.
2

D
is
ta

n
ce

(c
m

)

30
50

32
30

33
80

m
/
s

v p

B
es
t
G
A

m
o
d
el

T
ru
e
va
lu
e

F
ig
u
re

3
.1
8
:
N
or
m
al
is
ed

m
ar
gi
n
al

P
P
D

fu
n
ct
io
n
s
es
ti
m
a
te
d
th
ro
u
g
h
th
e
N
A
-B

ay
es

m
et
h
o
d
b
y
u
si
n
g
th
e
m
o
d
el
s
sa
m
p
le
d
d
u
ri
n
g
th
e
G
A

o
p
ti
m
is
a
ti
o
n

(b
lu
e
cu
rv
e)
.
T
h
e
co
n
ti
n
u
ou

s
b
la
ck

li
n
e
re
p
re
se
n
ts

th
e
th
e
tr
u
e
m
o
d
el
p
a
ra
m
et
er
,
w
h
il
e
th
e
d
a
sh
ed

re
d
li
n
e
th
e
el
it
e
m
o
d
el
p
re
d
ic
te
d
b
y
th
e
G
A

in
ve
rs
io
n
.



Chapter 3: Genetic algorithm full-waveform fracture inversion 93

3.7 Summary and Discussion

Characterising mechanical properties of discrete fractures along with their spatial dis-

tribution is of primary importance in applications such as stability investigations and

rock damage, CO2 sequestration, geothermal energy exploration, nuclear waste moni-

toring and hydrocarbon recovery. Analytical equations can be used to estimate such

properties by measuring the group time delay (equation (3.21)), or the variation of

the seismic amplitude. Nevertheless, the theoretical assumptions behind the equations

limit their applicability to relatively simple fracture models. Moreover, such analytical

approaches require extensive manual processing of the data and they do not take into

account possible scenarios which could be equally likely. For these pathological cases,

numerical strategies need to be employed.

The stochastic approach GA-FWFI+NA, developed exclusively by the author and

presented in Section 3.3, overcomes these limitations. The proposed global wave-

form inversion technique employs the GA method in the optimisation step and em-

beds WAVE3D to solve the direct problem to infer the stiffness of individual fractures,

their location and the background medium velocity simultaneously by best-fitting the

observed data (Section 3.6). Hence, this provides a potential alternative to local ap-

proaches for multi-parameter inversion within the framework of FWI. In fact, unlike

the local optimisation techniques (e.g. conventional FWI) which exploit only a re-

stricted region of the model space, a global inversion method (such as GA) avoids the

calculation of the first- and second-order derivatives and the optimisation strategy is

less dependent on the initial models. Moreover, the models generated by this method

can be used to appraise the ensembles through NAB in order to estimate the posterior

probability distributions in model space.

A limitation of the GA-FWFI lies in the extremely high computational cost of

the optimisation step. This makes it impractical, at present, for large scale data or

problems in high-dimensional spaces; such a phenomenon is also known as the curse

of dimensionality (Sambridge and Mosegaard, 2002; Fichtner, 2010). For this reason,

the choice of the GA control parameters is paramount for thoroughly exploring the
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model space and at the same time having a reasonable model population size, or in

other words, a good balance between computational feasibility and correct convergence

towards the optimum model.

The robustness of the algorithm and the appraisal stage have been tested in Sec-

tion 3.5 by processing a highly multi-modal analytical function (the Rastrigin func-

tion) and the peaks function. For the more complex Rastrigin function the relation

between the population size and the correct convergence to the elite model was also

analysed. Although finding an optimal population size is not a trivial task due to its

problem-dependent nature, such analyses helped to evaluate how the algorithm be-

haves in optimising such a complicated multi-modal function designing the subsequent

implementation in fracture inversion experiments. These tests have highlighted that

a population size 25 times the space dimension (R ≈ 25) gives a good compromise

between efficiency and computing time. This value was then used to set the size of

the model population (400 models for 16 parameters) in the waveform inversion case in

Section 3.6. In this synthetic experiment a two-dimensional square sample, containing

5 parallel and equidistant fractures, was characterised by inverting transmitted and re-

flected compressional waves mimicking an ultrasonic laboratory experiment. Here, the

specific stiffnesses (normal and shear) of each fracture, their location along the x-axis,

and the background velocity were estimated by only means of seismic waves. The frac-

tures cut the sample vertically and they are orthogonal to the wave propagation. The

observed data was generated by using known material and fracture properties through

WAVE3D. The model parameters obtained from the GA inversion have shown a very

high degree of accuracy with respect to the true values used for generating the observed

data. The PPD functions have also shown that all parameters are well constrained by

the inversion and they do not exhibit cross-talk. The only parameter which was under-

estimated by the inversion was the shear specific stiffness of the fracture 5 (the furthest

fracture from the source). This could be due to the scarce presence of converted waves

caused by that fracture from the compressional source that weakly constrains the shear

specific stiffness.
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The application of the GA-FWFI work-flow on real laboratory datasets (3D inver-

sion) in order to characterise a single discontinuity during a shearing experiment is

presented in Chapter 4.



Chapter 4

GA-FWFI of active ultrasonic

measurements

4.1 Preamble

This chapter investigates the suitability of the global inversion scheme GA-FWFI for

a series of laboratory active ultrasonic measurements. The laboratory experiments

(Hedayat, 2013; Hedayat et al., 2014a; Hedayat et al., 2014b) were carried out with

the primary objective of investigating the mechanical and geophysical processes that

occur during shear failure of rock joints by analysing the amplitude variation of pulses

transmitted through and reflected off the discontinuities.

The raw seismograms were processed and analysed by the author following the an-

alytical procedure showed in Hedayat (2013) and Hedayat et al. (2014b). Successively,

the GA-FWFI method was applied Here, the variation of the mechanical properties of

the discontinuity, along with the elastic parameters of the rock specimen, was estimated

by taking into account the entire seismic waveforms. The objectives of this chapter are

two-fold. First, it seeks to show whether inferences from this novel approach resem-

bles with a good accuracy those from the conventional approaches. These laboratory

experiments provide an excellent test-bed of this inversion scheme on real waveforms

due to the reduced number of unknowns of the problem. Second, it aims to develop a

96
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robust and flexible approach to be applied in less constrained processes such as cases

with variation of seismic velocities, or unknown distribution of the discontinuities.

4.2 Laboratory experiment

In order to investigate the slip process along a frictional discontinuity, a series of direct

shear experiments was performed on gypsum specimens by (Hedayat, 2013; Hedayat et

al., 2014a; Hedayat et al., 2014b). During the shearing process the joint was monitored

using both compressional and shear waves.

4.2.1 Specimen characteristics

The specimen was composed of two prismatic blocks with perfectly mated contact

surfaces. The final dimensions of each block were 152.4 mm long, 127 mm wide, and

25.4 mm thick. The gypsum material is isotropic and homogeneous (Hedayat, 2013)

with measured material properties summarised in Table 4.1.

The contact surfaces consisted of two areas of equal size with distinct frictional

characteristics: a smooth area with low frictional strength (µ ∼ 0.7) on the lower half,

and a rough area with high frictional strength (µ ∼ 1.2) on the upper half. The sides

of the specimen were polished to obtain flat, smooth, and perfectly planar surfaces

to avoid any stress concentrations, to enable uniform compression loading along the

fracture surface, and to apply shear stresses parallel to the discontinuity.

Properties Values

Density 1560 kg/m3

Average P-wave velocity 3230 m/s
Average S-wave velocity 1910 m/s

Unconfined Compressive Strength (UCS) 36 MPa
Young’s modulus 6 GPa
Poisson’s ratio 0.15

Table 4.1: Material properties of the gypsum specimen.
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4.2.2 Experimental setup

Figure 4.1(a) shows the experimental setup which consists of a flatjack, loading platens

that encase the specimen and sensors, steel rods, and plates. A biaxial compression

apparatus, consisting of two independent loading frames, was used to apply both normal

and shear stresses to the contact surface between the two gypsum blocks (Figure 4.1(a)).

The normal stress of 1− 4 MPa, perpendicular to the fracture plane, was supplied by

a horizontal loading frame, and a standard loading machine was used to apply the

shear stress at a constant shearing rate of 8 µm/s. The average vertical displacement

of the specimen was recorded by two linear variable differential transformers (LVDT),

while the shear load was applied by a cell in the loading machine. To minimise the

vertical friction and ensure that the vertical load was directly transferred to the interface

between the gypsum blocks, a series of steel balls (rollers) was placed between the

loading platen and the steel plate (Figure 4.1(b)).

During the shearing process a data acquisition system enabled the measurements

of transmitted and reflected full waveforms to monitor continuously the shear failure

along the joint. This was carried out by using two arrays placed facing each other and

in contact with two opposite faces of a sample as shown schematically in Figure 4.1(b).

Each array involves thirteen broadband piezoelectric transducers, housed in specially

designed load platens. Six of these sensors (2P, 4P, 5P, 6P, 11P, 13P) were P-wave

transducers, while seven were S-wave transducers polarised parallel to the direction

of shear (1S, 3S, 7S, 8S, 9S, 10S, 12S). Figure 4.1(c) shows their layout (mirrored

arrangement) along with the polarisation direction of S-wave transducers that was used

for seismic measurements. The transducers were broadband with a central frequency

of 1MHz (Panametrics V103-RM for P-waves and V153-RM for S-waves). Two pulser-

receivers (Panametrics 5077PR), one in transmission mode and one in reflection mode,

were used to generate square wave pulses with a repetition rate of 5 kHz, amplitude of

100 V and a gain of +10 dB. A sampling rate of 20 Million samples/sec (0.05 µs per

point) was used to record full waveforms in real time. Although the transducers can

either work as sources or as receivers, only normal incident waveforms were recorded.
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Figure 4.1: (a) Photo of the biaxial compression apparatus (Hedayat et al., 2014b), and
its schematic setup (b) (adapted from (Hedayat et al., 2014a)). (c) Transducer layouts. The
vertical segments indicate the polarisation direction of the S-wave transducers (adapted from
(Hedayat et al., 2014a)).

Therefore, only the mirrored source-receiver pairs (e.g. 1S-1S, 2P-2P, etcetera) were

consecutively activated to record the waveforms. To increase the signal-to-noise ratio

the signals were averaged over 30 measurements for each transducer.



100 Chapter 4: GA-FWFI of active ultrasonic measurements

-1 -0.5 0 0.5

Shear Displacement (mm)

0

1

2

3

4

S
h
ea

r
S
tr

es
s
(M

P
a)

Peak shear
strength

Figure 4.2: Shear stress-displacement curve for the non-homogeneous specimen.

4.2.3 Experimental results - seismic ultrasonic monitoring of shear

failure

Figure 4.2 displays the shear stress versus shear displacement for the gypsum specimen

at a normal stress of 2.3 MPa. It can be noted that after the initial seating deformation

of the specimen, from −1.20 mm to −0.75 mm of shear displacement, the shear stress

increased rapidly with shear displacement until it reached the peak shear strength of the

discontinuity (red dashed curve). The shear displacement values are referenced with

respect to the displacement at which the peak shear stress (shear failure) occurred.

Therefore, negative values of shear displacement define the status before the failure

occurs.

Figure 4.3 shows a comparison of representative transmitted (Figure 4.3(a)-4.3(d))

and reflected (Figure 4.3(e)-4.3(h)) raw waveforms at two shear displacement values

(∆uz = −0.81 mm, and ∆uz = −0.25 mm). They represent the compressional trans-

ducer pairs such as the 2P-2P (Figure 4.3(a), and 4.3(e)) and the 4P-4P (Figure 4.3(b),

and 4.3(f)), and shear transducer pairs 8S-8S (Figure 4.3(c), and 4.3(g)) and 9S-9S

(Figure 4.3(d), and 4.3(h)).

As the shear displacement evolves with respect to the shear stress applied, seismic

waveforms change accordingly. Figure 4.4 shows the variation of the transmitted and

reflected amplitude with the shear displacement for all P-wave (4.4(a), 4.4(b)) and S-
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Figure 4.3: Comparison of representative raw waveforms at two shear displacement values
(∆uz = −0.81 mm, and ∆uz = −0.25 mm). (a) Transmitted compressional waves of the
transducer pair 2P-2P. (b) Transmitted compressional waves of the transducer pair 4P-4P. (c)
Transmitted shear waves of the transducer pair 8S-8S. (d) Transmitted shear waves of the
transducer pair 9s-9S. (a) Reflected compressional waves of the transducer pair 2P-2P. (b)
Reflected compressional waves of the transducer pair 4P-4P. (c) Reflected shear waves of the
transducer pair 8S-8S. (d) Reflected shear waves of the transducer pair 9S-9S.
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wave transducers (4.4(c), 4.4(d)). For a better comparison, the peak-to-peak amplitude

values were normalised with respect to their initial values before the shearing. The

variability in amplitude transmission and reflection across the specimen, with respect

to shear displacement, is significantly affected by the surface roughness that changes

the local contact area as well as the stress concentration.
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plitude for the reflected waves.
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Figure 4.4: Variation of the normalised shear and compressional amplitudes, for both reflected
and transmitted waves, as function of the shear stress applied to the sample.

Because compressional wave transducers are sensitive to the change in interface’s

normal stiffness and shear wave transducers are sensitive to the shear stiffness of the

interface, the analysis carried out in this section focuses on the effect of shearing on

the waveforms recorded by the compressional transducer pair 2P-2P (Figure 4.5) and
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by the shear transducer pair 8S-8S (Figure 4.6).

Compressional waveforms: transducer pair 2P-2P

Twelve compressional full waveform measurements (six in transmission and six in re-

flection), collected by the transducers 2P-2P during the direct shear experiment, were

extracted at six shear displacement measures: −1.15 mm, −0.81 mm, −0.50 mm, −0.25

mm, −0.08 mm, 0.07 mm (Figures 4.5(c), 4.5(d)). These values sample the peak-to-

peak amplitude curves of the seismic traces at the main events (Figures 4.5(a), 4.5(b)):

initial values, troughs, peaks, just before and just after the shear failure. Their corre-

sponding amplitude spectra are shown in Figures 4.5(c), 4.5(d).

The amplitude of the transmitted compressional waves increased as the shear load

was transferred to the specimen (Figure 4.5(a)). A distinct peak in the transmitted

wave amplitude occurred prior to the peak shear strength and it was identified as an

ultrasonic precursor indicating the imminent shear failure of the discontinuity (Hedayat

et al., 2014b). The maximum in amplitude was followed by a steep drop as slip occurred

due to the reduction of the joint’s normal specific stiffness induced by a damage and

loss of contact at the interface.

Conversely, the amplitude of the reflected compressional waves (Figure 4.5(b)) fol-

lowed the opposite trend of the transmitted waves, although the change is small relative

to the amplitude. The amplitude of the reflected signals decreased as the shear load

was transferred to the contact surface reaching a minimum value prior the shear slip oc-

curred and then increasing after failure. The minimum in the amplitude of the reflected

waves corresponded to the maximum of the amplitude of the transmitted waves. This

is also clearly observed in the amplitude spectra in Figure 4.5(e), where the shear dis-

placement ∆uz = −0.25 mm has amplitude greater than the other measurements in the

entire frequency band (purple curve). Conversely, the minimum energy is contained in

the transmitted waves at shear displacement ∆uz = 0.07 mm (light blue curve). Since

the difference in amplitude between the reflected waves is very little (Figure 4.5(d)),

this also reflects in a minimum difference in the amplitude spectra too (Figure 4.5(f)).
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Shear waveforms: transducer pair 8S-8S

The main features observed and described for the compressional transducer pair 2P-2P

(Figure 4.5), were also observed for the shear transducer pair 8S-8S (Figure 4.6). A

distinct maximum in the transmitted wave amplitude was likewise detected: in this

case at the shear displacement ∆z = −0.35 mm, (Figure 4.6(a)), also visible in the

time and frequency domain in Figure 4.6(c) and Figure 4.6(e), respectively.

The minimum in the peak-to-peak amplitude plot (Figure 4.6(b)) was detected

and corresponds to the maximum of the transmitted wave (Figure 4.6(a)). This can

be also observed both in Figure 4.6(d) (recorded reflected waveforms) and in Figure

4.6(f) (corresponding amplitude spectra). This is a clear indication of a change in the

discontinuity’s shear stiffness.
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(b) Shear stress displacement and compres-
sional peak-to-peak amplitude of reflected
waves using transducer pair 2P-2P.
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Figure 4.5: The figures on the left column, (a), (c), and (e), show the variation of the
transmitted wave peak-to-peak amplitude as function of the shear displacement, the transmitted
waveforms, and the corresponding frequency amplitude spectra for the transducer pair 2P-2P,
respectively. The figures on the right column, (b), (d), and (f), are referred to the reflected
waves of the transducer pair 2P-2P.
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to-peak amplitude of transmitted waves using
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(b) Shear stress displacement and shear peak-
to-peak amplitude of reflected waves using
transducer pair 8S-8S.
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(f) Variation of shear fracture stiffness with
shear displacement for the 8S-8S pair trans-
ducers.

Figure 4.6: The figures on the left column, (a), (c), and (e), show the variation of the
transmitted wave peak-to-peak amplitude as function of the shear displacement, the transmitted
waveforms, and the corresponding frequency amplitude spectra for the transducer pair 8S-8S,
respectively. The figures on the right column, (b), (d), and (f), are referred to the reflected
waves of the transducer pair 8S-8S.
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4.2.4 Computation of fracture stiffness

The seismic response of a fracture can be theoretically evaluated using the displacement

discontinuity model (Schoenberg, 1980; Schoenberg, 1983; Pyrak-Nolte et al., 1990b;

Pyrak-Nolte, 1996). Changes in the amplitude of transmitted and reflected waves

are associated with changes in the specific stiffnesses (normal or tangential) of the

discontinuity. For waves propagated at normal incidence the latter are calculated from

the following equations (Hedayat et al., 2014b; Choi et al., 2014):

κn(ω,∆uz) =
ωρvp
2

∣∣∣∣ TP (ω,∆uz)

RP (ω,∆uz)

∣∣∣∣ , (4.1)

κs(ω,∆uz) =
ωρvs
2

∣∣∣∣ TS(ω,∆uz)

RS(ω,∆uz)

∣∣∣∣ , (4.2)

where κn and κs are the normal and shear stiffness of the joint, respectively, ρ the gyp-

sum density, vp and vs the gypsum compressional and shear wave velocity, respectively,

∆uz the shear displacement, and ω the angular frequency. The subscripts P and S are

referred to the P- and S-wave amplitude, respectively.

The variation of normal and shear fracture stiffness during the direct shear exper-

iment, calculated using equation (4.1) and (4.2), is illustrated in Figure 4.7(a) (trans-

ducer pair 2P-2P) and Figure 4.7(c) (transducer pair 8S-8S). Due to the frequency-

dependent nature of specific stiffness (Pyrak-Nolte and Nolte, 1992), the blue and black

curve correspond to the maximum and minimum value of fracture stiffness within the

frequency band 0.4− 1 MHz as shown in Figure 4.7(b) and Figure 4.7(d). As observed

in the amplitude trends, the fracture specific stiffnesses showed a gradual increase with

shear stress until they reach a maximum preceding the shear failure (the precursor),

after which a sharp drop followed.
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(c) Variation of shear fracture stiffness during
the direct shear experiment for the transducers
pair 8S-8S.
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Figure 4.7: Comparison between the variation of the normal in (a) and shear specific fracture
stiffness in (c) for the transducers pair 2P-2P and 8S-8S, respectively. The blue and black curves
correspond to the maximum and minimum values of the fracture stiffnesses in the frequency
interval [0.4, 1] MHz, as shown in (b) and (d).
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4.3 Application of GA-FWFI to the laboratory waveforms

4.3.1 Estimation of the source wavelet

In the experiment an excitation signal (a voltage pulse) is applied to a transducer to

generate a stress wave which propagated through the gypsum specimen. The transmit-

ted waves (oexp(t)), recorded by the receiver on the opposite side, represent a signal

which combines the effect of the transducers and the effect of the sample material upon

the input pulse. In mathematical terms this translates in the convolution operation

between the input pulse shape iexp(t) and the system transfer function h(t) (or Green’s

function likewise), as (e.g. Claerbout (1976))

oexp(t)︸ ︷︷ ︸
output

=

input︷ ︸︸ ︷
iexp(t) ∗ h(t)︸︷︷︸

transfer
function

. (4.3)

To decouple these effects, the shape of the input pulses (both compressional and

shear wave sources) needed to be estimated numerically from the control experiment

(intact gypsum specimen). Then, these inverted sources were applied to the fractured

models. The estimation of the experimental source function is, in fact, the first step

needed to model the laboratory waveforms successfully. Figure 4.8 illustrates the pro-

cedure followed. The control experiment was modelled in three dimensions, through

WAVE3D, using a test input source imod(t) (Figure 4.8(c)) which propagated in a ma-

terial with the same elastic parameters of the gypsum sample. The modelled response

omod(t) (Figure 4.8(d)) to the input imod(t) can be expressed by the relation

omod(t) = imod(t) ∗ h(t). (4.4)

It was assumed that the modelled system transfer function was equivalent to the ex-

periment transfer function.

Taking the Fourier transform (F(·)) of equations (4.3) and (4.4), and rearranging
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with respect to the unknown source function, Iexp(ω) can be calculated as

Iexp(ω) =
Oexp(ω)

Omod(ω)
Imod(ω), (4.5)

where ω is the angular frequency, i(t)
F−→ I(ω), and o(t)

F−→ O(ω). The required source

was derived from equation (4.5) after applying the inverse Fourier transform.

Note that, any inelastic behaviour (such as Q) of the gypsum material itself were

included in the source function – and hence accounted for in both the control and

fracture experiment. Moreover, were assumed equal:

- the P- and S-wave velocities of intact and fractured specimens;

- the distance between the sources and receivers in the two cases (intact and frac-

tured sample);

- the sources in the two specimens are synchronised, i.e. they explode at the same

time zero, i.e. no phase change is assumed.

Although in field measurements this inversion procedure needs to be used with

caution especially due to inherent limitations of knowledge of material properties, in

controlled laboratory experiments the uncertainties related to material properties or

source-receiver geometry can be neglected.

The model shear and compressional wave sources involved a smooth excitation in

the σxy component of stress and a dilatation stress (σxx = σyy = σzz), respectively.

Velocity sources (vy for the S-wave source and vx for the P-wave source) were also

tested, however the results were very similar for both cases to the stress sources.

Basic pre-processing was applied to the laboratory control waveforms to obtain a

more stable solution. It included removal of the DC component from the signal and

a cosine taper to blank out the later-arriving waves isolating, consequently, only the

first arrival. Post-filtering was also necessary to suppress high frequency noise to avoid

numerical dispersion.

Different tapers were evaluated to determine which one would give the best repre-
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sentation of the spectral energy of the first pulse. The main criteria in selecting the

shape and duration of the taper was to ensure that the taper does not change the

spectrum of the pulse and preserve the low frequency content of the signal without too

much distortion in the high frequency range. The same procedure was also followed for

the main experiments (e.g. Figure 4.10).

Figures 4.9(c) and 4.9(a) show the inverted S-wave and P-wave sources, respectively,

after applying the inverse Fourier transform to equation (4.5). Their corresponding

simulated responses were compared to the experimental waveforms in Figures 4.9(d)

and 4.9(b), respectively. The latter also show that the match between the waveforms

is remarkably good, confirming the success of the inversion procedure. It needs to be

considered that for the purposes of this study, the relationship between voltage and

actual modelled stress is arbitrary.
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Figure 4.8: Procedure followed to estimate the unknown experimental input source (in this
case the source for the compressional wave experiment) in (a). The test source imod(t) in (c)
is injected into the model representing the intact gypsum specimen, to obtain the simulated
response (d). By taking the Fourier Transform of this response, the test source and the exper-
imental response, a source function can be found using equation 4.5.
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Figure 4.9: Compressional and shear wave stress sources after inversion in (a) and (c), re-
spectively, and their corresponding WAVE3D outputs in (b), and (d), respectively.
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4.3.2 Transmitted waveform inversion

The GA-FWFI+NA method was applied to characterise the discontinuity in terms of

its mechanical properties and to explore the possibility of detecting seismic precursors

to shear failure. To this end, the proposed multi-parameter FWI strategy used, as

input, the whole transmitted P- and S-wave fields with minimal pre-processing (DC

removal, cosine taper to isolate the main arrival, and filtering) (Figure 4.10) to invert

for the P- and S-wave velocity of the background material, the shear and normal specific

stiffness of the discontinuity, and its location. In order to estimate the joint location it

was required to constrain the inversion by using both the reflected and the transmitted

waves. Finally, the Neighbourhood Algorithm was employed to infer uncertainties

associated with the retrieved parameters from the entire ensembles of GA models.

Although the P-wave velocity, S-wave velocity and fracture location are known,

fewer constraints were included in the data fitting in order to generalise the inversion

and to show the potential of this methodology in cases where analytical solutions could

fail. Furthermore, the shear and normal fracture stiffness were also included in the

inversion of the compressional and shear seismic waveforms, respectively, as control. In

fact, P-waves at normal incidence (for a single fracture) are not sensitive to the shear

fracture stiffness, just as S-waves at normal incidence are not sensitive to the normal

fracture stiffness.
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Figure 4.10: Comparison between raw and post-processed waveform of transducer pair 2P-2P.
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The analysis was performed on compressional waves recorded by the transducer

pair 2P-2P, at the displacement measures of −1.15 mm, −0.81 mm, −0.50 mm, −0.25

mm, −0.08 mm, and +0.07 mm as shown in Figure 4.5(c), and on shear waves recorded

by the transducer pair 8S-8S at the displacement measures of −1.15 mm, −0.81 mm,

−0.50 mm, −0.35 mm, −0.08 mm, and +0.07 mm as shown in Figure 4.6(c).

4.3.3 Compressional waveforms inversion

Numerical simulations were performed over 3-D models. The model, with the back-

ground material isotropic and homogeneous, was discretised in space using a regular

3-D grid of 190 × 170 × 170 elements, and 30 cells (1.27 cm) of absorbing boundary

layers were added to each model boundary, bringing the total number of grid points to

nearly 9 millions. The numerical dispersion and stability criteria that apply to the FD

scheme, constrain the temporal and spatial sampling of the model. Using the elastic

properties of the gypsum material (Table 4.1) at maximum frequency of the source

signal, a time-step of dt = 55 ns and a grid spacing of dx = dy = dz = 0.423 mm gener-

ated minimal numerical dispersion and ensured the stability of WAVE3D everywhere.

With 400 time steps, the total recording time was 22 µs.

The P-wave source function estimated in the intact gypsum (Figure 4.9(a)) was

used in this inversion procedure. The genetic algorithm evaluated a total population

of 840 models within the multi-dimensional model space expressed by the parameter

vector

m = {κn, κs, vp, xjoint} , (4.6)

preconditioned by the number of discontinuities (one in this case), and its orientation

(orthogonal to the x−axis). The principal control parameters used in the GA inversion

are summarised in Table 4.2, and the misfit function was defined as the Euclidean

distance (L2-norm) between the recorded waveforms and the modelled waveforms.

The model space was bounded in each dimension by the search boundaries of each

parameter (Table 4.3). The GA ranges for the fracture specific stiffnesses (both κn and

κs) are consistent with the experimental values found by Pyrak-Nolte et al. (1990b),
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GA parameters Values

Population 40
Generations 20

Tournament size 3
Mutation ratio 0.4

Elitism 0.05

Table 4.2: GA inversion parameters for the compressional waves inversion.

Lubbe et al. (2008), and Verdon and Wüstefeld (2013).

Model parameters Range Unit

Normal specific stiffness of the discontinuity (κn) [1 · 1011, 5 · 1012] Pa m−1

Shear specific stiffness of the discontinuity (κs) [1 · 1011, 5 · 1012] Pa m−1

Background P-wave velocity (vp) [3000, 3400] m s−1

Location of the discontinuity along x (xjoint) [1.5, 3.5] cm

Table 4.3: Free parameters for the compressional waves inversion with their search boundaries.

From the inversion of the transmitted waveforms, six model parameter vectors

(equation 4.7) were determined: one set of model parameters for each shear displace-

ment value analysed: 

m1

m2

m3

m4

m5

m6


=



κn1, κs1, vp1, xjoint1

κn2, κs2, vp2, xjoint2

κn3, κs3, vp3, xjoint3

κn4, κs4, vp4, xjoint4

κn5, κs5, vp5, xjoint5

κn6, κs6, vp6, xjoint6


. (4.7)

The variation of the fittest GA models of the normal fracture stiffness with the shear

displacement can be seen in Figure 4.11(a). Here, the inverted models (red asterisks)

were superimposed on the analytical curves (Figure 4.7) obtained from equation (4.1)

using ωmin = 400KHz and ωmax = 1000KHz and plotted in Figure 4.11(a). A very

good degree of matching between the predicted and inverted results can be noticed. The

GA models, in fact, fall within the range of κn values, following precisely the analytical



Chapter 4: GA-FWFI of active ultrasonic measurements 117

trend. The peak prior to failure and the subsequent sharp drop are clearly reproduced.

Figure 4.11(b) shows the average data misfits, normalised to their maximum value, as a

function of GA generation for each inverted model. The inversion converges gradually

but stabilises after 15 generations.

∆u (mm) -1.17 -0.81 -0.50 -0.35 -0.08 +0.07

κn (Pa/m) 6.91 · 1011 5.96 · 1011 8.08 · 1011 1.13 · 1012 6.78 · 1011 9.84 · 1010
κs (Pa/m) 1.13 · 1011 1.48 · 1011 3.13 · 1011 2.25 · 1011 4.68 · 1011 9.43 · 1010

Joint
location (cm) 2.50 2.54 2.54 2.50 2.50 2.54

vp (m/s) 3229.0 3229.2 3227.7 3228.8 3228.2 3235.6

Table 4.4: Optimum GA model as defined in equation (4.7) for compressional waves, where
each model is represented by the set of parameters κn, κs, vp, xjoint. The true model parameter
values are vp = 3230 m/s, and xjoint = 2.54 cm. The fracture location on the x-axis is referred
to the distance between the source location and fractures.
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Figure 4.11: (a) GA inverted normal specific stiffness of the discontinuity (red stars) su-
perimposed to the analytical curves shown in Figure 4.7.(b) Misfit evolution as a function of
generations.

In Figure 4.12 the waveforms modelled using the elite GA models are overlaid on

the laboratory ones at the shear displacement values analysed. In all cases, not only

is the peak-to-peak amplitude well retrieved but the overall fit between the waveforms

is also extremely good. The good agreement between the modelled and experimental

data is also highlighted in the frequency domain (Figure 4.13).
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The PPD for each model parameter, as computed through NA, are plotted in Figure

4.14. The plots also show, as reference, the best GA models (dashed red curves) and

the true values (solid black curve), such as the measured vp and the joint location along

x. The estimates of these model parameters agree with the corresponding true values

and their PPDs are characterised by a peaked appearance. This means that only a

restricted range of values is able to explain the experimental data and there is not

any cross-talk between the model parameters inverted. The same behaviour can be

observed for the parameter κn, where the results are very well constrained to a unique

best solution. In contrast, the specific shear stiffness κs suffers multimodality meaning

that multiple solutions can have the same data misfit. This is due to the insensitivity

of compressional waves at normal incidence to the discontinuity to the variation of the

shear fracture stiffness, and is therefore in agreement with the expected behaviour.
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Figure 4.12: Comparison between the compressional waveforms (2P-2P) modelled using the
optimum GA model (black) with the respective experimental waveforms (red) for each shear
displacement (∆u) value analysed. In (a) ∆u = −1.17 mm, in (b) ∆u = −0.81 mm, in (c)
∆u = −0.50 mm, (d) ∆u = −0.25 mm, in (e) ∆u = −0.08 mm, and in (f) ∆u = +0.07 mm.
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Figure 4.13: Comparison of the amplitude spectra between modelled and laboratory wave-
forms shown in Figure 4.12.
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4.3.4 Shear waveforms inversion

To simulate the S-wave propagation, the model geometry needed to be modified to

honour the new numerical dispersion and stability criteria. Although the maximum

frequency modelled was similar to the previous case, S-wave velocity is slower than

the P-wave, therefore the grid spacing had to be smaller to sample correctly the shear

wavefields. A value of dx = dy = dz = 0.21 mm was chosen to satisfy the dispersion cri-

terion. In turn, to keep equal the model dimensions and to avoid numerical instability,

the model was discretised in space using a regular 3-D grid of 300×210×210 elements,

and a time-step of dt = 29 ns. Also the total time steps increased to 1150 cycles, with a

record time length of 33.35 µs. To reduce slightly the computational time, yet limiting

spurious reflections from the boundaries, the width of the PML zones was reduced from

30 cells to 20 cells.

The S-wave source function estimated in the intact gypsum (Figure 4.9(c)) was used

in this inversion procedure. Like the compressional waveforms inversion, GA evaluated

a total population of 840 models within the multi-dimensional model space

m = {κn, κs, vs, xjoint} , (4.8)

to find the optimum solution mbest =
{
κbestn , κbests , vbests , xbestjoint

}
which best fits the

experimental waveforms. The GA parameters employed in these numerical experiments

were kept unchanged (see Table 4.2), while the number of discontinuities and orientation

were fixed during the inversion. Table 4.5 shows the search boundaries for each model

parameter.

Model parameter Prior range Unit

Normal specific stiffness of the discontinuity (κn) 1 · 1011 − 5 · 1012 Pa m−1

Shear specific stiffness of the discontinuity (κs) 1 · 1011 − 5 · 1012 Pa m−1

Background S-wave velocity (vs) 1500− 2500 m s−1

Location of the discontinuity along x (xjoint) 1.5− 3.5 cm

Table 4.5: Free parameters in the shear waves inversion with their search boundaries.
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∆u (mm) -1.17 -0.81 -0.50 -0.35 -0.08 +0.07

κn (Pa/m) 8.98 · 1011 6.20 · 1011 1.19 · 1012 1.85 · 1012 8.21 · 1011 4.05 · 1010
κs (Pa/m) 9.99 · 1011 9.75 · 1011 1.13 · 1012 1.15 · 1012 7.30 · 1011 3.05 · 1010

Joint
location (cm) 2.50 2.58 2.54 2.54 2.54 2.50

vs (m/s) 1914.1 1920.8 1923.4 1924.1 1915.3 1918.5

Table 4.6: Optimum GA model as defined in equation (4.7) for shear waves, where each model
is represented by the set of parameters κn, κs, vs, xjoint. The true model parameter values
are vs = 1910 m/s, and xjoint = 2.54 cm. The fracture location on the x-axis is referred to the
distance between the source location and fractures.

Figure4.15(a) illustrates the inverted discontinuity’s shear stiffness (red asterisks)

compared with the predicted analytical values. Again, the best solutions of fracture

shear stiffnesses (κbests ) fall into the interval defined by the frequency band 400-1000

KHz and it follows the shape of the curve accurately. The precursor to the shear

failure (peak of the shear stiffness) is also correctly characterised. The convergence

to the optimal solutions can be observed between generation 15 and 20 ( see Figure

4.15(b)) which shows the evolution of the average misfit with the generations and for

each shear displacement tested).
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Figure 4.15: (a) GA inverted normal specific stiffness of the discontinuity (red stars) super-
imposed to the analytical curves shown in Figure 4.7. (b) Misfit evolution as a function of
generations.

The optimal GA solutions (mbest) were used to forward model the transmitted
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waveforms at different shear displacement steps. Figures 4.16 and Figure 4.17 compare

the modelled waveforms with the respective experimental ones and the corresponding

amplitude spectra. These show that a high degree of accuracy was achieved.

A quantitative Bayesian analysis of the entire multi-dimensional model space was

also carried out to infer the posterior probability density function for each model pa-

rameter and each inversion, by taking the entire ensemble of GA solutions (Figure

4.18). As observed in the compressional wave inversion, where the wave propagation

at normal incidence was insensitive to the shear stiffness, here the wave propagation is

insensitive to the the normal stiffness parameter. This behaviour is vividly displayed

in Figure 4.19(a) and Figure 4.19(b) which show the projection of all GA models and

their corresponding misfit values on the κn − κs plane in the case of the compressional

and shear waveform inversion. These show elongated valleys of minima parallel to the

κs-axis for compressional wave inversion and κn-axis for shear wave inversion. This is

clearly due to the insensitivity of P- and S-wave propagation to these two parameters.

In the case of the shear waveform inversion, this leads to a multimodal or flatter

PPD function for κn within the range analysed (Figure 4.18 top row) meaning that

multiple values are equally likely. On the other hand, κs was correctly estimated and

constrained to a narrow range of probable values. This can be observed in Figure

4.18 in the second row, where the marginal PPD functions exhibit sharp peaks at the

best-fitting GA values.
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Figure 4.16: Comparison between the shear waveforms (8S-8S) modelled using the optimum
GA model (black) with the respective experimental waveforms (red) for each shear displacement
(∆u) value analysed. In (a) ∆u = −1.17 mm, in (b) ∆u = −0.81 mm, in (c) ∆u = −0.50 mm,
(d) ∆u = −0.35 mm, in (e) ∆u = −0.08 mm, and in (f) ∆u = +0.07 mm.
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Figure 4.17: Comparison of the amplitude spectra between modelled and laboratory wave-
forms shown in Figure 4.16.
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Figure 4.19: Representative examples of the GA model ensemble related to the shear displace-
ment ∆u = −0.25 mm and transducer pair (2P-2P), and (8S-8S) in (a) and (b), respectively,
projected on the plane κn − κs. Each point represents a GA model, while the color represents
its misfit value. The red stars represent the fittest models. In (a) the misfit function contains
an elongated minimum valley orthogonal to the κn axis. This is due to the insensitivity of
compressional waves, at normal incidence of the discontinuity, to the κs variation. (b) shows
similar behaviour but the elongated valley is parallel to the κn axis, i.e. insensitivity with
respect to κn.

4.4 Reflected waveforms for the transducer pair 2P-2P

and 8S-8S

The best GA models (mbest) for both the compressional and shear waves, were used to

forward model the reflected waveforms at different shear displacement values analysed.

Figure 4.20 shows a comparison between the experimental (red) and the modelled

(black) compressional waveforms for the transducer pair 2P-2P. Although there is a

relatively good match in shape and amplitude between these two sets of waveforms, the

experimental waveforms seem to show a lack of high frequencies. This is confirmed by

the amplitude spectra displayed in Figure 4.21 which is attenuated for high frequency.

The reflected shear waves for the transducer pair 8S-8S are compared in Figure 4.22.

In this case, the match between the experimental and modelled (red and black, respec-

tively) is very good, albeit that there can be observed a slight mismatch in frequency

domain between 400 and 700 KHz. Nevertheless, the high frequency attenuation does

not occur. A principal reason could be due to the a slightly narrower frequency range
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(fmax < 1.3 MHz) than the P-wave case, within the transducer frequency response

range. As explained in Section 2.2.1, due to irregular geometry of the asperities between

the two sides of the discontinuity the propagating wavefield experiences attenuation by

scattering which might not be captured by the receivers. In these cases the displace-

ment discontinuity theory may not estimate correctly the dynamic of the wavefields

and consequently the energy is not conserved, i.e |T (ω)|2 + |R(ω)|2 ̸= 1. Moreover, the

phenomenon of cross-coupled waves due to the conversion of P- and S- waves in shear

and compressional waves, respectively, at normal incidence during shearing cannot be

explained by the displacement-discontinuity theory (Nakagawa et al., 2000).
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Figure 4.20: Comparison between the reflected compressional waveforms modelled (black)
using the optimum GA model (Table 4.4) with the respective experimental waveforms (red) for
each shear displacement (∆u) value analysed (transducer pair 2P-2P). In (a) ∆u = −1.17 mm,
in (b) ∆u = −0.81 mm, in (c) ∆u = −0.50 mm, (d) ∆u = −0.25 mm, in (e) ∆u = −0.08 mm,
and in (f) ∆u = +0.07 mm.
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Figure 4.21: Comparison between the amplitude spectra of modelled and laboratory reflected
compressional waves shown in Figure 4.20. The experimental waveforms show a lack of high
frequencies probably due to the transducers response.
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Figure 4.22: Comparison between the reflected shear waveforms modelled (black) using the
optimum GA model (Table 4.6) with the respective experimental waveforms (red) for each
shear displacement (∆u) value analysed (transducer pair 8S-8S). In (a) ∆u = −1.17 mm, in
(b) ∆u = −0.81 mm, in (c) ∆u = −0.50 mm, (d) ∆u = −0.35 mm, in (e) ∆u = −0.08 mm,
and in (f) ∆u = +0.07 mm.
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Figure 4.23: Comparison between the amplitude spectra of modelled and laboratory reflected
shear waves shown in Figure 4.22.
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4.5 Discussion and Conclusions

In this chapter a novel approach has been proposed to characterise mechanically a rock

joint during shear failure, at the laboratory scale. The laboratory experiments were

conducted by Hedayat (2013). The novelty of this work is the application of the stochas-

tic waveform inversion method (GA-FWFI) to invert active ultrasonic measurements.

In particular, the inversion was performed for both P- and S-waves, at normal incidence

with respect to the joint, to investigate the mechanical and geophysical processes that

occur during shear failure by monitoring the variation of fracture specific stiffnesses.

The acquisition layout (Figure 4.1(c)) used to record transmitted and reflected

waveforms, makes it possible to estimate analytically the mechanical properties (specific

stiffnesses) of the joint, through the equation (4.1) and (4.2), as shown by Hedayat et al.

(2014a) and Hedayat et al. (2014b). However, they are only valid for wave propagation

at normal incidence and single fracture with the assumption of homogeneous back-

ground medium, taking into account only the ratio between the amplitude of reflected

and transmitted waveforms. Therefore, the analytical approach can be employed only

for limited cases. In order to characterise a more complex fractured medium, numer-

ical wave modelling strategies need to be implemented, and consequently a waveform

inversion approach can help with this regard. Moreover, since the 3D forward solver

(WAVE3D) takes into account all the physical phenomena that are occurring in the

medium, there is no need to post-process heavily the seismic data or for correction due

to, for example, the geometrical spreading. It is known, in fact, that the geometrical

spreading plays a major role in the observed attenuation from seismic data and needs

to be taken into account for the characterisation of fractured media (Barbosa et al.,

2019; Bourne et al., 2021).

With respect to the model parameters, the P- and S-wave velocity of the gypsum

(sample’s material), and the joint location along the x-axis, although known from other

measurements, were added as free parameters in the inversion for two reasons. First, a

relaxation of constraints leads to a more robust and effective inversion for cases where

the analytical solution could not be applied (e.g. complex fracture geometry). Second, a
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possible cross-talk between the inverted model parameters can be analysed by Bayesian

inference through NA.

The GA-FWFI method was applied to characterise the discontinuity in terms of its

mechanical properties (κs and κn) by best fitting the experimental transmitted S- and

P-waves with the modelled ones. To this end, six experimental waveforms, for each

wave type, were selected at six different shear displacement values, before and after

the joint failure, to sample coherently the stiffness-displacement curve (Figure 4.7(a),

4.7(c)). The shear displacement values selected, for both P- and S-waves, span from

1.17 mm before to 0.08 mm after the peak shear stress. For both compressional and

shear wave inversion, the match between the experimental and modelled transmitted

waveforms was very good (Figure 4.12, 4.16). The inverted normal and shear stiffness

values followed with a high degree of accuracy the analytical trends (Figure 4.11(a),

4.15(a)), and the corresponding PPDs, estimated by the NA technique, showed a single

peak close to the elite models, meaning that the solution was well constrained. Since the

wave propagation occurs at normal incidence to the joint, transmitted compressional

waves are not sensitive to the shear fracture stiffness, whereas the shear waves are not

sensitive to the normal fracture stiffness. This is clearly observed in Figures 4.14 and

4.18, which show multimodal marginal PPDs for κs and κn, respectively.

Simultaneously with the fracture stiffnesses, the background velocities and the the

joint location were also estimated. For both P- and S-waves, the estimates of these

model parameters agreed with the corresponding true values, and they were also con-

firmed by the Bayesian analysis which showed that the PPDs were well constrained

(Figures 4.14 and 4.18). In both inversion experiments the prior probability density

distribution is set to be constant over the parameter space.

Using the elite GA models of the waveform inversion of both transducer pairs 2P-2P

and 8S-8S, the reflected wavefields were modelled at the different shear displacement

values analysed. From the comparison between all observed and modelled waveforms

(Figure 4.20 and Figure 4.22) it is clear that the match is extremely good although the

observed compressional waveforms are lacking in high frequency (Figure 4.21). This
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could be due to the amplitude response of the P-wave transducer which acted as a

low-pass filter.

The results presented in this chapter demonstrate that this novel approach can

provide reliable estimate of the mechanical characteristics (stiffnesses) of an individ-

ual fracture, its location and the background medium velocities from ultrasonic wave

measurements at laboratory scale.



Chapter 5

Application of GA-FWFI to

estimate the effective medium

parameters of DFN models

This chapter uses the GA-FWFI method to assess the effectiveness of the equivalent

medium (EM) theory for discrete fracture networks (DFNs). More specifically, it anal-

yses how the discrete crack parameters, such as crack density, crack stiffness, crack

size, and crack orientation, influence the equivalent properties of a cracked medium.

To this end, two main experiments were carried out. In a first experiment, GA-FWFI

is applied to synthetic seismic data generated in simulated multi-azimuth cross-hole

experiments in order to recover the equivalent medium fracture stiffness along with the

effective fracture strike ϕ and fracture dip δ. In a second experiment, GA-FWFI is

applied to quantify the extent that discrete crack properties impact the overall elastic

properties of a HTI material containing randomly distributed parallel cracks.

5.1 Introduction

Crack density and fracture intensity are two geometrical properties of fractured rocks

that are routinely employed in various formulations of cracked media as measure of the

137
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degree of fracturing. Both parameters are closely related to the crack size that plays

a crucial role in characterising the mechanical and hydraulic behaviour of a fractured

medium. Crack size impacts not only on the mechanical stability of rock masses, but has

indeed a great importance in understanding the fluid flow in the subsurface quantified

by the concept of permeability. For parallel plates - permeability is in fact proportional

to the crack aperture squared, which is in turn related to the crack size (Lubbe and

Worthington, 2006).

Inclusion-based theories, such as those proposed by Budiansky and O’Connell (1976),

Hudson (1980), Crampin (1984), and Liu et al. (2000), use crack density to relate the

seismic wave propagation in a fractured rock to the anisotropy magnitude. A different

approach is followed by the displacement discontinuity fracture models (Schoenberg

and Douma, 1988; Schoenberg and Muir, 1989; Schoenberg and Sayers, 1995) where

fractures are modelled as planes of weakness, and the degree of fracturing is quantified

by the volumetric fracture intensity which provides a non-directional intrinsic measure

of fracturing by incorporating both fracture size and fracture spacing (Rogers et al.,

2015). Other direct measures of fracture intensity using e.g. boreholes/scanlines or

outcrop mapping, in fact, provide a directionally and location biased data with respect

to orientation of boreholes/photogrammetry in relation to the orientation of fractures

and sampling location (see Section 5.1.3).

Nevertheless, the volumetric fracture intensity only gives an estimate of fracture

spacing (which must in some way relate to crack density, see Section 5.1.1), and to be

able to characterise the whole fractured medium, this parameter needs to be coupled

to the compliance of individual fractures (Schoenberg and Sayers, 1995; Worthington,

2008). Consequently, the equivalent fractured medium compliances Bn,s for a fractured

medium consisting of a set of Nf parallel fractures with area Sf , distributed in a rock

volume V , and with fracture compliances Zn,s, are equal to (see equations 2.12, 2.9,

Chapter 2)

Bn,s =
NfSf

V
Zn,s. (5.1)
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Using the definition of fracture intensity, as stated in equation (2.9),

Df =
NfSf

V
, (5.2)

equation (5.1) can be compactly rewritten as

Bn,s = DfZn,s. (5.3)

Although EM theories provide a straightforward way to characterise a fractured

medium, either using the crack density parameter or the equivalent medium compliance,

there are limitations and inherent ambiguities in their application (as noted in Section

2.3.4 for crack density). Vlastos et al. (2003) and Lubbe and Worthington (2006) warn

to use them with caution when interpreting seismic data. In fact, frequency range,

low concentration of cracks, details of their spatial distribution, and the inability to

distinguish between micro-cracks and meso-scale fractures, limit the applicability of

these approaches (Lubbe and Worthington, 2006).

Hence, fractured media within different theoretical frameworks, are conceptually

described by different discrete fracture parameters, and their influence influence upon

the effective fracture parameters has not been fully explored.

5.1.1 Fracture intensity vs crack density

For a collection of rectangular cracks of sides ai and bi, crack density ϵ is given by

(Hildyard, 2007) (see Section 2.3.4, equation (2.36))

ϵ =
1

πV

Nf∑
i=1

a2i b
2
i

ai + bi
, (5.4)

whereas, fracture intensity Df is given by (see equation (2.9))

Df =
1

V

Nf∑
i

aibi. (5.5)

Taking the ratio between equation (5.4) and (5.5), it is possible to express one
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quantity as function of the other:

ϵ

Df
=

1

π

Nf∑
i=1

a2i b
2
i

ai + bi

/ Nf∑
i

aibi. (5.6)

where Nf is the number of cracks/fractures in the volume V .

For identical square fractures with side length a, equation (5.5) becomes

Df =
1

V
Nfa

2, (5.7)

that is equivalent to equation (5.2), while equation (5.6) reduces to

ϵ

Df
=

a

2π
, (5.8)

which corresponds to a linear relationship between the crack density and fracture in-

tensity.

5.1.2 Fractures as distribution of individual cracks

Supposing that a fracture set is not simply composed of continuous interfaces (Figure

5.1(a)) but rather a distribution of individual cracks (Figure 5.1(b)) with surface Sc,

how the equivalent cracked medium compliances are related to the compliances of the

single crack?

Worthington (2007) and Worthington (2008) showed that the effective compliance

of the whole medium needs to be scaled by the effective area of all cracks in the volume.

Namely, the reduction of the effective (bulk) compliance due to the transition from a

continuous fracture planes (with fracture intensity Df ) to individual cracks decreases

by a factor η, is given by

η =
Dc

Df
=

NcSc

V

V

NfSf
=

NcSc

NfSf
(5.9)
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Figure 5.1: Schematic representation of a fractured medium in (a) and its evolution in a
cracked medium in (b). The fractured medium contains a set of parallel fractures orthogonal
to the x-axis in a volume V = ABC. Each fracture has a surface area of Sf = AB and spacing
L. Whereas, in (b) the fractured medium is represented as a collection of Nc small cracks, each
with area Sc.

therefore

Dc = ηDf (5.10)

where Dc is the volumetric fracture intensity due to cracks.

For a medium containing isolated cracks with specific compliances Z
(c)
n,s, the equiv-

alent cracked medium compliances, expressed by equation (5.3), become

B(c)
n,s = DcZ

(c)
n,s, (5.11)

substituting equation (5.10) into equation (5.11), B
(c)
n,s becomes:

B(c)
n,s = ηDfZ

(c)
n,s. (5.12)

Equation (5.12) represents therefore a linear relationship between the compliances

of a single crack and the effective medium compliances. Worthington (2008) shows a

similar relationship, although the inverse of Df becomes the average crack spacing in

a direction orthogonal the crack strike.
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The effective compliance matrix s of the cracked medium is then calculated by

adding up the excess compliance matrix due to cracks ∆s(c) to the isotropic background

medium compliance s0:

s = s0 +∆s(c). (5.13)

where ∆s(c) is defined as (see equation (2.13), Chapter 5)

∆s(c) =



B
(c)
n /η 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 B
(c)
s /η 0

0 0 0 0 0 B
(c)
s /η


. (5.14)

To yield the stiffness matrix c equation (5.13) can be simply inverted. Nevertheless,

to model the equivalent cracked medium (quantified in the equivalent fracture stiffness,

or volumetric fracture stiffness κvfn,s), WAVE3D requires as input the specific stiffness

κn,s = Z−1
n,s of the fracture plane that contains the smaller cracks, along with the

fracture intensity Df that corresponds to the inverse of the fracture spacing L (see

Section 5.1.3). Hence, from equation (5.3) follows:

κvfn,s = (Bn,s)
−1 =

1

Df
κn,s = Lκn,s. (5.15)

To take into account the stiffness increment of the whole medium due to the tran-

sition from a continuous fracture plane to individual cracks, the effective medium stiff-

nesses κvfn,s is derived from equation (5.12) as

κvfn,s =
1

ηDf
κ(c)n,s ≡

L

η
κ(c)n,s (5.16)

where κ
(c)
n,s = ηκn,s.
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5.1.3 Linear vs volumetric intensity for cracked media

A classification scheme for the fracture intensity parameter have been proposed to quan-

titatively describe fractured rock masses for different scales and dimensions (Dershowitz

and Herda, 1992; Rogers et al., 2015).

This scheme is known as the Pij system where the subscript i represents the di-

mension of the sample (i = 1 for 1D borehole, i = 2 for 2D map, and i = 3 for 3D

volume), whereas the subscript j indicates the dimensions of the measure, e.g. dimen-

sionless measure (j = 0), length (j = 1), area (j = 2), introduced by Dershowitz (1998).

Hence, according to this system, the fracture intensities are measured in terms of P10,

P21, P32. Nevertheless, in order to be consistent with the definition of fracture intensity

expressed in Section 5.1.1, the corresponding multi-dimensional fracture intensities are

defined as follows:

1. Linear fracture intensity, D1D
f (≡ P10), is usually measured from borehole data

or scan lines. It counts the number of fractures per unit length (units 1/m);

2. Surface fracture intensity, D2D
f (≡ P21), is derived by mapping outcrop or tunnel

walls, and it measures the length of fractures per unit area (units m/m2);

3. Volumetric fracture intensity, D3D
f (≡ P32) or simply Df throughout the Chapter.

It is not always possible to be directly measured since it is extremely difficult to

observe the internal geometry of fractures. However, it can be estimated from the

linear and surface fracture intensity (Dershowitz and Herda, 1992). It measures

the area of fractures per unit volume (units m2/m3).

Volumetric fracture intensity yields a more comprehensive indication of rock volume

fracturing and it is used as an input parameter to generate DFN models (Rogers et al.,

2015). However, the linear fracture intensity is the easiest to measure and it can be

used to have an estimate of the average crack spacing (Lu et al., 2017).

Although linear fracture intensity can produce biased estimates of crack spacing

with respect to orientation of boreholes in relation to the orientation of fractures and

sampling location, it can be converted to non-directional intensity property, i.e. the
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volumetric intensity (Rogers et al., 2015; Lu et al., 2017).

Figure 5.2(a) shows a comparison between the linear (blue curve) and volumetric

fracture intensity (red curve) for the cracked models displayed later in Figures 5.14(a),

5.14(b), and 5.14(c). In these models the crack length is 3 m, and the crack density cor-

responds to ϵ = 0.01, 0.025, and 0.05, respectively. The volumetric fracture intensity,

for all crack density cases, is computed using equation (5.8), whereas the linear fracture

intensity is estimated by counting the number of cracks that intersect random gener-

ated scanlines normal to the crack plane, and taking their arithmetic mean values. The

distribution of the number of cracks counted along the scanlines for each crack density

value, with its mean value are shown in Figures 5.2(b), 5.2(c), 5.2(d). Since the cracks

are randomly generated in the volume, the crack distribution is roughly symmetric

around the arithmetic mean value. The linear fracture intensity is linearly related to

the crack density and it is roughly 4 times larger than the volumetric fracture intensity.

As just shown, fracture intensities of different dimensionality cannot have the same

values for the same fractured volume (Lu et al., 2017). However, a special case of

fracture model having the same fracture intensity is a set of fractures composed of

identical, parallel, and aligned fractures as shown in Figure 5.1(a), where the three

fracture intensity parameters degenerate to an equivalent case. Here the fracture vol-

ume is V = ABC and the area of a single fracture plane is Sf = AB. The fracture

intensity parameters are thus as follows

1. D1D
f =

Nf

C = 1
L

2. D2D
f =

NfA
AC = 1

L

3. D3D
f =

NfAB
ABC = 1

L

Therefore, D1D
f ≡ D2D

f ≡ D3D
f = 1

L = D0
f
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Figure 5.2: (a) Comparison between the linear (blue curve) and volumetric fracture intensity
(red curve) for the cracked models displayed in Figures 5.14(a), 5.14(b), and 5.14(c). (b), (c),
and (d) are distribution of the number of cracks counted along the scanlines, randomly gener-
ated, for crack density ϵ = 0.01, 0.025, 0.05, respectively. The red lines show the arithmetic
mean values of the number of cracks along the x-axis.

5.1.4 Effective crack length in numerical models

Crack length is a very important parameter for crack generators since the crack density

depends on the cube of the length (equation (5.4)). In fracture modelling codes crack

length is usually defined as the distance between the two end grid nodes. However,

(Hildyard et al., 1995; Hildyard and Young, 2002) have shown that, for a crack under

static load, the WAVE3D solution converges to the correct one for an effective crack
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length shorter than the actual length. Hildyard (2001) has empirically calculated that

the positions of the crack tips span from 0.3 to 0.4 elements from the end nodes.

This observation has been implemented in the calculation of the crack density ϵ,

where the crack length l is substituted by the effective crack length l̃ that is defined as

(Hildyard, 2001)

l̃ = (n− 0.7)∆h = l − 0.7∆h (5.17)

where n is the number of elements in the crack, and ∆h is the grid spacing.

5.2 From a discrete fracture model to the effective medium

model

In this section the relationship in equation (5.15) is tested by using GA-FWFI to es-

timate the effective fractured media stiffness, and equivalent fracture sets orientation,

from synthetic waveforms generated for known fracture networks. The numerical ex-

periments simulate a cross-hole seismic acquisition having a single point source outside

the cracked medium, and 198 3-component receivers, evenly distributed in three verti-

cal boreholes with an interborehole spacing of 20 m, placed outside the cracked volume

on the opposite side of the source location (Figure 5.3).

To model realistic cracked media, the explicit fracture approach (DFN approach)

is employed (Figure 5.3(a)), and the “observed” data is generated. For the inverse

process the EM model (Figure 5.3(b)) is utilised, allowing the bulk fractured medium

properties to be estimated by best fitting the observed seismic data.

To model the equivalent cracked medium, as explained in Section 5.1.2, WAVE3D

requires as input parameters:

• specific stiffnesses κn,s of the fracture planes containing the smaller cracks;

• fracture intensity Df corresponding to the inverse of fracture spacing L;

• fracture strike ϕ and fracture dip δ to define the fracture set orientation.

The volumetric fracture stiffness is the calculated using equation (5.15).
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(a) (b)

Figure 5.3: A simulated cross hole seismic acquisition across a fractured medium modelled
as a distribution of small isolated cracks (DFN approach) in (a), and as an fracture-induced
anisotropic medium (EM approach) in (b). In order to estimate the fracture-induced anisotropic
parameters, the EM approach is used in the waveform inversion method to best fit the observed
data generated through the DFN model.

Two main experiments were carried out. Firstly, GA-FWFI was applied to assess

whether the effective fracture strike (ϕ) and dip (δ) angles could be correctly recovered

from acquisition at different azimuths in a cracked medium containing vertical cracks.

In a second numerical experiment, the waveform inversion was performed to investigate

to what extent discrete crack properties such as crack size, crack stiffness, and crack

density impact the overall elastic properties of a HTI material containing randomly

distributed cracks.

5.3 Application of GA-FWFI to a multi-azimuth acquisi-

tion

The base fracture model consists of vertical square cracks normal to the x-axis, em-

bedded in a purely isotropic background medium with P-wave velocity vp = 5200 m/s,

S-wave velocity vs = 3160 m/s, and density ρ = 2700 Kg/m3. Cracks are identical with

size 3 × 3 m2, crack density ϵ = 0.025, and normal crack stiffness κn = 1 · 109 Pa/m.

Shear crack stiffness is half of the normal stiffness. Cracks are randomly distributed

along parallel planes which are 1 m apart, thus L = 1 m. The dimension of the cracked

zone is (x, y, z) = (57m, 57m, 67m) placed within a model with overall dimension of
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(x, y, z) = (150m, 150m, 110m) as displayed in Figure 5.3(a) and Figure 5.4.

Compressional and shear waves are generated from a single point source by a smooth

excitation in the σ12 component of stress. The dominant source frequency (fpeak) is

approximately 175 Hz corresponding to a dominant wavelength of λP ≈ 30 m, and

λs ≈ 18 m. The dominant wavelength was chosen much longer than the crack size

to meet the theoretical requirement of a DFN model for successful analysis with an

effective medium approach. The grid spacing is set to ∆h = 1 m to sample correctly

the S-waves (shorter wavelength), and the time step to ∆t = 70 µs to satisfy the

stability criterion of the wave equation solution. To minimise the spurious reflections

from the model edges the PML absorbing condition is used with a layer thickness of 20

elements.

To record the seismic data at different azimuths, the source-receiver geometry is

rotated clockwise by angles of ϕ = 0◦, 15◦, 30◦, 60◦ with respect to the x-axis and about

the centre of the cracked volume. For all cases, the cracked zone remains unchanged.

Figure 5.4 shows a plan view of the cracked zone and the source-receiver geometry at

different azimuth angles, from ϕ = 0◦ in Figure 5.4(a), to ϕ = 60◦ in Figure 5.4(d). The

recorded x and y components of velocity, referred to the middle receiver line, are shown

in Figures 5.5 and 5.6, respectively. These seismograms, along with the z component

of velocity (Figure 5.7) and the other two receiver lines not showed here, comprise the

observed data which feed the GA-FWFI algorithm.
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(a) (b)

(c) (d)

Figure 5.4: Plan view of the cracked medium shown in Figure 5.3(a) at different azimuth
angles acquisition. (a) at ϕ = 0◦, (b) at ϕ = 15◦, (c) at ϕ = 30◦, (d) at ϕ = 60◦ with
respect to the x−axis. Due to the model geometry, ϕ also corresponds to the fracture strike
in the coordinate system source-(middle) receiver line (black line). The red dashed line is the
symmetry axis of the fractured medium.
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(d) ϕ = 60◦

Figure 5.5: Raw data (observed data) of velocity component x recorded by the line receiver
2 (middle) at four azimuth angles: (a) ϕ = 0◦, (b) ϕ = 15◦, (c) ϕ = 30◦, (d) ϕ = 60◦.
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(d) ϕ = 60◦.

Figure 5.6: Raw data (observed data) of y velocity component recorded by the line receiver
2 (middle) at four azimuth angles: (a) ϕ = 0◦, (b) ϕ = 15◦, (c) ϕ = 30◦, (d) ϕ = 60◦.
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(d) ϕ = 60◦.

Figure 5.7: Raw data (observed data) of z velocity component recorded by the line receiver
2 (middle) at four azimuth angles: (a) ϕ = 0◦, (b) ϕ = 15◦, (c) ϕ = 30◦, (d) ϕ = 60◦.
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5.3.1 GA inversion results and the Bayesian analysis

The genetic algorithm operates on the multi-parameter space, preconditioned by the

exact background elastic properties (vp, vs, and ρ), the same used for the DFN models.

It exploits a random population of 80 models, that evolve through 30 generations

according to a misfit function defined as the L2−norm between the observed data and

the modelled data (here, the EM approach is used). The source function is assumed

known. Table 5.1 summarises the control parameters of the GA algorithm.

GA parameters Values

Model population size 80
Generations 30

Tournament size 3
Mutation ratio 0.4

b 2
d 0.3

Elitism 0.05

Table 5.1: GA control parameters used in this numerical experiment.

δ

ϕ

y

x

z

Fracture plane

Figure 5.8: Schematic illustration of a fracture plane. The angle δ represents the fracture
dip, so the angle between the horizontal plane and the fracture plane. The angle ϕ represents
the fracture strike, so the angle that forms the intersection of the fracture plane with the x− y
plane, and the y axis.

The EM model, that needs to be estimated through GA-FWFI, can be described by
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the parameter vector m = {κvfn , ϕ, δ} where the angle ϕ represents the fracture strike

with respect to the y-axis, and δ is the fracture dip (angle between the fracture plane

and the x−y plane) as depicted in Figure 5.8. Due to the model geometry, the fracture

strike corresponds to the azimuth angle. The shear fracture stiffness κvfs is fixed in the

inverse process assuming the value κvfs = κvfn /2. The fracture intensity Df = 1/L is

also fixed at the arbitrary value of 1/L = 0.001 m−1, such that the volumetric fracture

stiffness κvfn,s is calculated from equation (5.15)). Therefore, the stiffness matrix of such

a medium can be defined as (equation (2.14), Chapter 2):

c =



(λ+ 2µ)(1−∆n) λ(1−∆n) λ(1−∆n) 0 0 0

λ(1−∆n) (λ+ 2µ)(1− r2∆n) λ(1− r∆n) 0 0 0

λ(1−∆n) λ(1− r∆n) (λ+ 2µ)(1− r2∆n) 0 0 0

0 0 0 0 0 0

0 0 0 0 µ(1−∆s) 0

0 0 0 0 0 µ(1−∆s)


(5.18)

with

r ≡ λ

λ+ 2µ

∆n =
(λ+ 2µ) (Lκn)

−1

1 + (λ+ 2µ) (Lκn)
−1

∆s =
2 (Lκs)

−1 µ

1 + 2 (Lκs)
−1 µ

The stiffness matrix in equation (5.18) is then transformed using the tensor rotation

(or Bond transformation) according to the angle ϕ around the z−axis, followed by a

rotation of an angle δ around the new y−axis (equations (2.25), (2.26), Chapter 2).

Figure 5.9(b) shows the compressional velocity as function of angle (the fracture

strike ϕ) comparing the expected theoretical values calculated from the inverted stiffness

matrix in equation (5.18), namely vp =
√

c33/ρ, and the manual picking of the P-wave

arrivals (Figure 5.9(a)). The P-wave anisotropy parameter (Tsvankin parameter ε(V ))
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calculated from the inverted stiffness matrix is

ε(V ) =
c11 − c33
2c33

= −0.0625. (5.19)

The elastic parameters used in this simulation correspond to the isotropic back-

ground medium defined previously, and the equivalent medium stiffness κvf,GA
n found

via GA-FWFI. The waveforms are extracted from a single receiver in the central bore-

hole having the same depth as the source, forming the angles with respect to the x−axis

from 0◦ to 90◦, as shown in Figure 5.4.
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Figure 5.9: (a) First P-wave arrivals at different azimuth angles ϕ. (b) Compressional velocity
as function of the angle ϕ. Blue curve is calculated using the stiffness matrix of equation (5.18)
and the Bond transformation to rotate the coordinate system according to ϕ. Red curve is
obtained by picking the first arrivals of the compressional waves shown in (a).

The search boundaries for the inverted parameters are listed in Table 5.2. The

maximum frequency inverted is 200 Hz, which corresponds to a wavelength of λp ≈ 26

m, and λs ≈ 16 m, therefore approximately 9 times the crack length for P-waves, and

6.5 times for S-waves.

The successful application of the waveform inversion can be seen in the good match

between the observed (black) and modelled data (red) in Figures 5.10-5.12 of represen-

tative seismic data (three components of the velocity for the middle line of receivers).

These correspond to the same seismograms showed in Figures 5.5-5.7, after applying a

low-pass filter with cutoff frequency of 200 Hz.
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Model parameter Range Unit

Normal fracture stiffness (κvfn ) [1 · 1010, 5 · 1013] Pa
Fracture strike (ϕ) [−15◦, 40◦]
Fracture dip (δ) [70◦, 110◦]

Table 5.2: Free parameters in the inversion with their search boundaries.

The best GA models for each azimuth case, are listed in Table 5.3. Finally, the

posterior probability density function is estimated through the NA method, and the

marginal probability distributions, for each inverted model parameter, are shown in

Figure 5.13. All parameters are well constrained by the inversion and they well depict

the ground truth represented by the solid black line.

κvf,GA
n δGA ϕGA

Case 1 (ϕ = 0◦) 3.20 · 1011 Pa 89.5◦ -1.2
Case 2 (ϕ = 15◦) 3.26 · 1011 Pa 91.5◦ 16.5
Case 3 (ϕ = 30◦) 3.24 · 1011 Pa 90.2◦ 32.1
Case 4 (ϕ = 60◦) 3.28 · 1011 Pa 90.5◦ 61.9

Table 5.3: Best GA models for the 4 cases analysed.

As shown in Table 5.3, the effective fracture set orientation is extremely well re-

trieved, for both dip and strike angle in all inversion cases. Cracks in the DFN models

are vertical, so δ = 90◦, and orthogonal to the x−axis, therefore ϕ = 0◦. Nevertheless,

in the coordinate system of the acquisition geometry, that is rotated with respect to

the x−axis, ϕ corresponds to the actual angle between the source-middle receivers line

direction and the x−axis. The dip angle, on the contrary, remains unchanged.

The inverted values of the effective fracture stiffness κvf,GA
n , with respect to the

azimuth angles, show coherently the same value that is approximately 3.2 · 1011 Pa.

The expected value of bulk stiffness κvfn for the medium is given by equation (5.16):

κvfn =
L

η
κ(c)n ≈ 1.5 · 1010 Pa (5.20)
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with

L = 1 m (5.21)

η =
NcSc

NfSf
=

2811 · (3− 0.7)2m2

58 · (57 · 67) m2
= 0.0671 (5.22)

κ(c)n = 1 · 109 Pa/m. (5.23)

Comparing the expected value κvfn with the inverted value κvf,GA
n , it can be noted

that the latter is approximately 20 times larger than the predicted theoretical value.

This unexpected result leads to the second series of numerical experiments which aim to

reveal the direct relationship between discrete crack parameters and the corresponding

best-fit effective medium parameters.
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Figure 5.10: Comparison between the observed data (black) and the best predicted seismo-
grams (red) through the waveform inversion of x component of velocity for azimuth angles of
ϕ = 0◦ in (a), ϕ = 15◦ in (b), ϕ = 30◦ in (c), ϕ = 60◦ in (d). A low-pass filter with cutoff
frequency of 200 Hz has been applied to all cases in both datasets.
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Figure 5.11: Comparison between the observed data (black) and the best predicted seismo-
grams (red) through the waveform inversion of y component of velocity for azimuth angles of
ϕ = 0◦ in (a), ϕ = 15◦ in (b), ϕ = 30◦ in (c), ϕ = 60◦ in (d). A low-pass filter with cutoff
frequency of 300 Hz has been applied to all cases in both datasets.
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(a) ϕ = 0◦ velocity component x.
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(b) ϕ = 15◦ velocity component x.
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(c) ϕ = 30◦ velocity component x.
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Figure 5.12: Comparison between the observed data (black) and the best predicted seismo-
grams (red) through the waveform inversion of z component of velocity for azimuth angles of
ϕ = 0◦ in (a), ϕ = 15◦ in (b), ϕ = 30◦ in (c), ϕ = 60◦ in (d). A low-pass filter with cutoff
frequency of 300 Hz has been applied to all cases in both datasets.
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Figure 5.13: Marginal PPDs computed by the NAB algorithm using the GA model ensembles.
(a) shows the marginal PPD of the effective medium stiffness κvf

n , (b) the marginal PPD of the
strike angle ϕ, and (c) the marginal PPD of the dip angle δ. The solid black line represents the
ground truth, whereas the dashed red line the best GA inverted parameter.



162 Chapter 5: GA-FWFI to estimate the EM parameters of DFN models

5.4 Waveform inversion to assess the effectiveness of the

EM models

The first numerical experiment (Section 5.3) has shown the successful application of

GA-FAWFI to retrieve both fracture orientation and volumetric fracture stiffness in

a simulated multi-azimuth acquisition. However, the inverted values of volumetric

fracture stiffness do not follow the theoretical derived values of equation (5.16).

A second series of numerical experiments was therefore designed to analyse how

the discrete crack parameters, such as crack density, crack stiffness, and crack size,

influence the effective properties of a cracked medium. In all cases seismic wavelengths

are much longer than the crack length, so that the effective medium approach still

applies.

To this end, a set of 54 different DFN scenarios consisting of vertical cracks or-

thogonal to the x−axis in an isotropic background medium are generated. Cracks are

randomly distributed along parallel planes which are 1 m apart, thus L = 1 m. The

isotropic medium properties are the same as the previous experiment, so vp = 5200

m/s, vs = 3160 m/s, and ρ = 2700 Kg/m3. The explicit crack parameters are in

turn changed while keeping the other two constant. Crack density takes values of

ϵ = (0.01, 0.025, 0.05), crack length of l = (3, 4, 10) m, and normal crack stiffness of

κ
(c)
n = (1, 2, 5, 10, 50, 100) GPa/m. The ratio κ

(c)
n /κ

(c)
s is set to 2 for all cases, and the

acquisition geometry is kept fixed. Figure 5.14 illustrates the cracked media involved in

this study for all crack density and crack size values: each row shows the cracked media

with the same crack size, but with crack density increasing from left to right. The DFN

models can be described, consequently, by the parameter vector m = {ϵ, κ
(c)
n , l}. The

fracture strike ϕ and fracture dip δ are set to 0◦ and 90◦, respectively, and they remain

fixed throughout the experiment.

Compressional and shear waves are generated from a single point source by a smooth

excitation in the σ12 component of stress. The source signature is a Ricker wavelet.

All cases were designed to fit within the Rayleigh scattering regime (i.e. λS/l ≫ 1).
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For l = 3 m, and l = 4 m the dominant source frequency (fpeak) is approximately 175

Hz. The corresponding dominant wavelength is λP ≈ 30 m, and λS ≈ 18 m which

is approximately 8-10 times the crack length for P-waves, and roughly 5-6 times for

S-waves. For l = 10 m the dominant source frequency is reduced to 90 Hz in order

to meet the long wavelength requirement for the EM approach (λS/l > 3 leads to a

valid approximation of a cracked medium through the EM theory (Yousef and Angus,

2016)). In fact, in this case, λP ≈ 57 m and λS ≈ 38 m which is approximately 6 and 4

times the crack length for P-waves and S-waves, respectively. Representative raw data

(observed data) of x, y and z components of velocity (middle borehole) for all crack

size cases are displayed in Figure 5.15, and Figure 5.16.

Again, in order to minimise the spurious reflections from the model edges the PML,

absorbing condition is used with a layer thickness of 20 elements.

The grid spacing is set to ∆h = 1 m, and the time step to ∆t = 70 µs to satisfy the

stability criterion of the wave equation solution.



164 Chapter 5: GA-FWFI to estimate the EM parameters of DFN models

(a) Crack 3× 3 m2, ϵ = 0.01. (b) Crack 3× 3 m2, ϵ = 0.025. (c) Crack 3× 3 m2, ϵ = 0.05.

(d) Crack 4× 4 m2, ϵ = 0.01. (e) Crack 4× 4 m2, ϵ = 0.025. (f) Crack 4× 4 m2, ϵ = 0.05.

(g) Crack 10× 10 m2, ϵ = 0.01. (h) Crack 10× 10 m2, ϵ = 0.025. (i) Crack 10× 10 m2, ϵ = 0.05.

Figure 5.14: Cracked models used to generate the observed data, where the red star is the
source and the blue triangles are the receivers. Each row represents a set of three models with
the same crack size but with crack density increasing from left to right. Respectively, from top
to bottom crack size of 3× 3 m2, 4× 4 m2 and 10× 10 m2, and from left to right crack density
of ϵ = 0.01, ϵ = 0.025, ϵ = 0.05.
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Figure 5.15: Raw data (observed data) of x and z components of velocity, first and second
column, respectively, for crack size of 3× 3 m2, 4× 4 m2 and 10× 10 m2 from top to bottom,
respectively. The dominant source frequency fpeak for 3× 3 m2, and 4× 4 m2 cracks is 175 Hz,
whereas fpeak = 90 Hz for 10× 10 m2 cracks.
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(c) ϕ = 60◦ velocity component x.

Figure 5.16: Raw data (observed data) of y component of velocity for crack size of 3× 3 m2,
4 × 4 m2 and 10 × 10 m2 from top to bottom, respectively. The dominant source frequency
fpeak for 3× 3 m2, and 4× 4 m2 cracks is 175 Hz, whereas fpeak = 90 Hz for 10× 10 m2 cracks.
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The values for κvfn predicted by the linear relationship expressed in equation (5.15)

with respect to parameters involved (ϵ, κ
(c)
n , l), are plotted against the crack stiffness

κ
(c)
n in Figure (5.17). The dashed lines are results for three different crack densities

(0.01, 0.02, 0.05). Figure 5.17(a), 5.17(b), 5.17(c) are for 3 × 3 m2 cracks, 4 × 4 m2

cracks, and 10× 10 m2 cracks, respectively. There is a linear relationship with a slope

of L/η. Taking logarithms of equation (5.16) gives

log(κvfn ) = log(L)︸ ︷︷ ︸
=0

− log(η)︸ ︷︷ ︸
<0

+ log(κ(c)n ), (5.24)

and hence plotted on a logarithmic scale (Figure 5.17) the lines are parallel with a

shift given by log(η) which only depends on the crack density. The predicted values

are independent of crack size as observed by comparing Figure 5.17(a), 5.17(b), and

5.17(c).
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Figure 5.17: Predicted values of κvf
n as function of specific crack stiffness κ

(c)
n implied by the

linear relationship expressed in equation (5.15), with respect of crack density ϵ, and crack size.
In (a) the crack length is l = 3 m, in (b) l = 4 m, in (c) l = 10 m.
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5.4.1 GA inversion results and the Bayesian analysis

Each of the 54 DFN models was inverted using GA-FWFI. The host rock properties

(vp, vs, and ρ) are assumed known, therefore they are kept fixed during the inversion

process, as well as the source wavelet. Hence, the global waveform inversion operates

on the space defined by m = {κvfn , ϕ, δ} for each of the 54 DFN model scenarios. Each

inversion used a population of 80 models, approximately 25 times the model dimension

(3 parameters). This population size has shown good performance in both exploration

and convergence. The models evolve through 30 generations to minimise the cost

function defined as the L2−norm between the observed data and the modelled data.

Table 5.4 summarises the control parameters used by the GA algorithm, and Table 5.5

shows the search range of each inverted model parameter.

GA parameters Values

Model population size 80
Generations 30

Tournament size 3
Mutation ratio 0.4

b 2
d 0.3

Elitism 0.05

Table 5.4: GA control parameters used in the experiment.

Model parameter Range Unit

Normal fracture stiffness (κvfn ) [1 · 1010, 5 · 1014] Pa
Fracture strike (ϕ) [−15◦, 30◦]
Fracture dip (δ) [70◦, 110◦]

Table 5.5: Free parameters in the inversion with their search boundaries.

For l = 3 m, and l = 4 m the maximum frequency inverted is 200 Hz, which corre-

sponds to a wavelength of compressional waves of λp ≈ 26 m, therefore approximately

9 times the smaller crack length, and 6.5 times the case of l = 4 m. For shear waves

λs ≈ 16 m, so 5 and 4 times longer than the crack lengths.

For the case of crack length l = 10 m, the inversion process involves frequencies up to
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100 Hz, and wavelength approximately 5 times the crack size for P-wave, and 3 times

for S-waves.

Figures 5.19-5.20 show a comparison between the inverted (red) and observed wave-

forms (black) of representative seismic data for the three velocity components. The

examples shown are for the DFN models with ϵ = 0.025, κ
(c)
n = 10 GPa, and for crack

length of l = 3 m, l = 4 m, and l = 10 m, respectively. For a correct comparison, the

synthetics modelled with crack length 3 m and 4 m have been low-pass filtered with

a cutoff frequency of 200 Hz (maximum inverted frequency), while in the seismograms

modelled with crack length of 10 m all frequencies above 100 Hz have been filtered out.

All cases show that an excellent match is obtained between the modelled and observed

data for all velocity components. This result, coupled with the good estimates of frac-

ture orientation (Table 5.6), means that the waveform inversion has correctly found the

global minimum of the misfit function.

A more complete description of the misfit function for all DFN scenarios are dis-

played in Figures (5.21)-(5.29) where the marginal distributions of all inverted param-

eters are displayed. Each figure inverts for the equivalent medium fracture stiffness

(κvfn ), fracture strike, and dip, left, middle and right hand columns respectively, with

crack stiffness (κ
(c)
n ) increasing top to bottom. In all cases the PPDs associated to

the equivalent medium stiffness κvfn is well constrained, although they widen for larger

and stiffer cracks (e.g. Figure (5.21) left column, top to bottom), and for larger cracks

(e.g. LH column in Figures (5.21), (5.24) and (5.27)). On the contrary, the PPDs

related to the equivalent fracture set orientation (fracture strike and dip) suffer from

multimodality, indicating that multiple values of these parameters generate seismo-

grams with almost identical data misfit, when the cracks become stiffer. This verifies

especially for cases of κ
(c)
n = 5 · 1010 Pa/m and κ

(c)
n = 1 · 1011 Pa/m), and for low crack

density (ϵ = 0.01), e.g. Figure (5.21), and Figure (5.24). Generally, the fracture dip is

better constrained than the fracture strike (central and right-hand columns of Figures

(5.21)-(5.29)). This can be due to the geometry acquisition where the aperture is wider

(Figure 5.18). In fact, the angle α which represents the maximum aperture about the
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depth axis (vertical axis) (Figure 5.18(a)) is α ≈ 24◦, while the maximum aperture

β about the Y -axis is β ≈ 40◦. This behaviour becomes even more evident in case

of 10 × 10 m2 cracks (Figure (5.27), and Figure (5.28)) where the PPDs are mostly

flat within the intervals considered. Conversely, for higher crack density (ϵ = 0.05)

and smaller cracks, the PPD functions are characterised by a more spiky appearance

meaning that the range of possible solutions narrows.

(a)

(b)

Figure 5.18: (a) Plan view of the fracture model of Figure 5.14(b) showing the maximum
aperture (α) about the depth axis. (b) Vertical 2D projection of the fracture model of Figure
5.14(b) showing the maximum aperture (β) about the Y -axis. The red star is the source and
the blue triangles the receivers. α ≈ 24◦, and β ≈ 40◦.
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Figure 5.19: Comparison between the observed data (black) (Figure 5.15) and the best pre-
dicted seismograms (red) of the x and y components of velocity (left and right column, respec-
tively), and for crack size of 3×3 m2, 4×4 m2 and 10×10 m2 from top to bottom, respectively.

For all cases ϵ = 0.025, and κ
(c)
n = 1 ·1010. Both observed and modelled data has been low-pass

filtered with a cutoff frequency of 200 Hz.
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Figure 5.20: Comparison between the observed data (black) (Figure 5.16) and the best pre-
dicted seismograms (red) of the z component of velocity. From top to bottom l = 3, l = 4,

l = 10, respectively. For all cases ϵ = 0.025, and κ
(c)
n = 1 · 1010. Both observed and modelled

data has been low-pass filtered with a cutoff frequency of 200 Hz.



Chapter 5: GA-FWFI to estimate the EM parameters of DFN models 175

1011 1012 1013 -10 0 10 20 30 70 80 90 100 110

1011 1012 1013 -10 0 10 20 30 70 80 90 100 110

1011 1012 1013

N
o
rm

.
P
D

F

-10 0 10 20 30 70 80 90 100 110

1011 1012 1013 -10 0 10 20 30 70 80 90 100 110

1011 1012 1013 -10 0 10 20 30 70 80 90 100 110

1011 1012 1013

5vf
n (Pa)

N
o
rm

.
P
D

F

-10 0 10 20 30

? (deg)
70 80 90 100 110

/ (deg)

1 · 109 Pa/m

2 · 109 Pa/m

5 · 109 Pa/m

1 · 1010 Pa/m

5 · 1010 Pa/m

1 · 1011 Pa/m

κ
(c)
n

Best GA model True value

Figure 5.21: The normalised marginal PPD functions for the case l = 3 m, and ϵ = 0.01 are

represented from top to bottom for the six inverted normal crack stiffness (κ
(c)
n ) values. The

equivalent medium stiffness κvf
n , the equivalent fracture strike ϕ, and the equivalent fracture

dip δ values are represented in the left, central, and right columns, respectively. The continuous
black line represents the the true model parameter, while the dashed red line the elite model
predicted by the GA inversion.
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Figure 5.22: The normalised marginal PPD functions for the case l = 3 m, and ϵ = 0.025 are

represented from top to bottom for the six inverted normal crack stiffness (κ
(c)
n ) values. The

equivalent medium stiffness κvf
n , the equivalent fracture strike ϕ, and the equivalent fracture

dip δ values are represented in the left, central, and right columns, respectively. The continuous
black line represents the the true model parameter, while the dashed red line the elite model
predicted by the GA inversion.
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Figure 5.23: The normalised marginal PPD functions for the case l = 3 m, and ϵ = 0.05 are

represented from top to bottom for the six inverted normal crack stiffness (κ
(c)
n ) values. The

equivalent medium stiffness κvf
n , the equivalent fracture strike ϕ, and the equivalent fracture

dip δ values are represented in the left, central, and right columns, respectively. The continuous
black line represents the the true model parameter, while the dashed red line the elite model
predicted by the GA inversion.
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Figure 5.24: The normalised marginal PPD functions for the case l = 4 m, and ϵ = 0.01 are

represented from top to bottom for the six inverted normal crack stiffness (κ
(c)
n ) values. The

equivalent medium stiffness κvf
n , the equivalent fracture strike ϕ, and the equivalent fracture

dip δ values are represented in the left, central, and right columns, respectively. The continuous
black line represents the the true model parameter, while the dashed red line the elite model
predicted by the GA inversion.
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Figure 5.25: The normalised marginal PPD functions for the case l = 4 m, and ϵ = 0.025 are

represented from top to bottom for the six inverted normal crack stiffness (κ
(c)
n ) values. The

equivalent medium stiffness κvf
n , the equivalent fracture strike ϕ, and the equivalent fracture

dip δ values are represented in the left, central, and right columns, respectively. The continuous
black line represents the the true model parameter, while the dashed red line the elite model
predicted by the GA inversion.
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Figure 5.26: The normalised marginal PPD functions for the case l = 4 m, and ϵ = 0.05 are

represented from top to bottom for the six inverted normal crack stiffness (κ
(c)
n ) values. The

equivalent medium stiffness κvf
n , the equivalent fracture strike ϕ, and the equivalent fracture

dip δ values are represented in the left, central, and right columns, respectively. The continuous
black line represents the the true model parameter, while the dashed red line the elite model
predicted by the GA inversion.
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Figure 5.27: The normalised marginal PPD functions for the case l = 10 m, and ϵ = 0.01 are

represented from top to bottom for the six inverted normal crack stiffness (κ
(c)
n ) values. The

equivalent medium stiffness κvf
n , the equivalent fracture strike ϕ, and the equivalent fracture

dip δ values are represented in the left, central, and right columns, respectively. The continuous
black line represents the the true model parameter, while the dashed red line the elite model
predicted by the GA inversion.
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Figure 5.28: The normalised marginal PPD functions for the case l = 10 m, and ϵ = 0.025 are

represented from top to bottom for the six inverted normal crack stiffness (κ
(c)
n ) values. The

equivalent medium stiffness κvf
n , the equivalent fracture strike ϕ, and the equivalent fracture

dip δ values are represented in the left, central, and right columns, respectively. The continuous
black line represents the the true model parameter, while the dashed red line the elite model
predicted by the GA inversion.
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Figure 5.29: The normalised marginal PPD functions for the case l = 10 m, and ϵ = 0.05 are

represented from top to bottom for the six inverted normal crack stiffness (κ
(c)
n ) values. The

equivalent medium stiffness κvf
n , the equivalent fracture strike ϕ, and the equivalent fracture

dip δ values are represented in the left, central, and right columns, respectively. The continuous
black line represents the the true model parameter, while the dashed red line the elite model
predicted by the GA inversion.



184 Chapter 5: GA-FWFI to estimate the EM parameters of DFN models

Figures 5.30(a), 5.30(c), and 5.30(e) (left column of Figure 5.30) compare the in-

verted values of effective normal fracture stiffness κvf,GA
n (solid curves) to values pre-

dicted from equation (5.16) (shown in Figure (5.17)), for all 54 DFN cases. The color

indicates the same crack density (as in Figure (5.17)).

In all cases, κvf,GA
n has a non-linear trend flattening for compliant cracks but ap-

proaching the theoretical results for stiff cracks. For crack stiffness for this size crack

relative to the background medium, cracks are effectively open for crack stiffnesses

lower than κ
(c)
n ≲ 3 · 109 Pa/m, and hence the effective stiffness of the cracked medium

is invariant even for lower values of κ
(c)
n . For increasingly stiff cracks however, the

numerical results eventually tend towards the linear trend of the relationship predicted

by equation (5.15) (Figure 5.30(a), 5.30(c), 5.30(e)).

To better visualise the results obtained through GA inversion and their connection

to the corresponding theoretical values, the attribute χ is introduced. It is defined as

the ratio between the numerical and the theoretical values of the bulk stiffness, therefore

χ =
κvf,GA
n

κvfn
. (5.25)

Figure 5.30(b), 5.30(d), and 5.30(f) (rigth-hand column of Figure 5.30) display the

χ attribute for the three crack size of this experiment, l = 3 m, l = 4 m, and l = 10

m, respectively. A direct comparison between three curves of the attribute χ shown in

Figure 5.30, is displayed in Figure 5.31.

Three clear trends are revealed in Figure 5.31

• chi depends only on crack size and is independent of crack density

• χ tends towards 1 for larger crack sizes

• chi tends towards 1 for increasing crack stiffness

These results also indicate that separating the effect of big or small cracks becomes

more and more difficult if cracks are stiffer. Conversely, for case of compliant cracks, χ

diverges and it becomes simpler to distinguish crack size.
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Figure 5.30: Comparison between the predicted values of κvf
n (dashed lines) showed in Figure

5.17, and the optimal GA values κvf,GA
n listed in Table 5.6. In (a) the crack length is l = 3 m,

in (c) l = 4 m, in (e) l = 10 m. The right column shows the corresponding χ attributes.
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Figure 5.31: Comparison between the attribute χ as function of the specific crack stiffness

κ
(c)
n , with respect to the three crack size.

5.5 Discussion

Field measurements of mechanical properties of cracks are very often obtained by em-

ploying EM theories, such as inclusion-based theories (e.g. (Hudson, 1980)) or the dis-

placement discontinuity theory (e.g. (Schoenberg and Sayers, 1995)). However, they

are valid only when the long wavelength approximation is observed (i.e., the wavelength

is much greater than the crack length, and crack spacing). These theories are imple-

mented in a variety of methodologies which deal with the characterisation of seismic

anisotropy to estimate, as an inverse process, the physical properties of interest such

as crack density, and crack orientation (Worthington, 2007; Hobday and Worthington,

2012; Liu and Martinez, 2012; Verdon and Wüstefeld, 2013; Yousef and Angus, 2016).

Nevertheless, the estimation of seismic anisotropy using EM theories needs to be care-

fully interpreted, since they cannot take into account the spacial distribution of cracks,

and because the crack length is not uniquely defined in such theories (Vlastos et al.,

2003; Lubbe and Worthington, 2006). In fact, for the long wavelength approximation,

EM cannot distinguish small fractures from large ones, since the variation of the overall

medium stiffness depends on the effective area of all cracks in the medium, regardless

of size (equations (5.9) and (5.15)).
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The stochastic waveform inversion method (GA-FWFI) was applied to reveal an

improved understanding of the link between the Effective Medium parameters and the

explicit crack properties under the long wavelength approximation regime. An uncer-

tainty estimate is obtained through the NA appraisal approach using the GA model

ensembles. Section 5.3 estimated the crack orientation for a multi-azimuth acquisition

directly from the seismic waveforms was carried out. Section 5.4 then analysed the ef-

fect of the transition from open cracks to welded interfaces upon the equivalent medium

parameters.

In the multi-azimuth acquisition a good match is attained between the modelled and

observed data (Figures 5.10-5.12). This leads to an estimate of the equivalent fracture

orientation which is in excellent agreement (Table 5.3) with the crack dip and crack

strike (from 0◦ to 60◦) of a medium composed of randomly distributed cracks along

parallel planes. The marginal PPDs show that all parameters are well constrained by

the inversion (Figure 5.13). The inverted equivalent medium stiffness is consistent with

respect to all azimuth angles (approximately 3.2 · 1011 Pa) with respect to the azimuth

angles. Nevertheless, this result is in disagreement with the expected theoretical value

(approximately 1.5 · 1010 Pa) given by the linear relationship between the equivalent

medium stiffness and the specific stiffness of the cracks therein contained (equation

(5.15)). This mismatch between the optimum value retrieved by GA-FWFI and the

expected value theoretical derived by Worthington (2007) and Worthington (2008)) was

further explored by systematically analysing the influence of discrete crack parameters

on the corresponding equivalent medium ones.

The analysis performed in the second experiment (Section 5.4), has shown that the

transition from a medium with open cracks (κ
(c)
n ≲ 2 · 109 Pa/m) to one with welded

interfaces (κ
(c)
n ≳ 5 · 1010 Pa/m) leads to the equivalent media having the bulk stiffness

κvf non-linearly related to the crack specific stiffness κ(c). This holds for media with

different crack density and crack size, although with a different degree. The analysis

introduces the attribute χ which shows that there is indeed a crack-size dependence

upon the equivalent medium stiffness (Figure 5.31). So, in spite of the long wavelength
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approximation, crack size has an indubitable impact on the variation of the effective

parameters. For stiffer cracks, the bulk stiffness estimated through GA-FWFI, tends to

the theoretical value for all crack size values analysed. Therefore, for stiffer cracks the

attribute χ tends to 1 and the crack size effect, upon the equivalent medium parame-

ters, vanishes. The result that the EM models are more correct for the cases of high

crack stiffness is also consistent with results of Yousef and Angus (2016) who observed

that the displacement-discontinuity EM theory becomes increasingly inaccurate as the

stiffness decreases, as well as Chichinina et al. (2015) who showed analytically that the

displacement-discontinuity EM theory is only valid when the anisotropy parameter δ

turns to 0, so ∆n = ∆s or for the case of ∆n = 0, so κn → ∞ (see equation (2.15,

Chapter 2). On the contrary, for compliant cracks, crack size has a greater impact on

the attribute χ, and the distinction between larger cracks and smaller ones is more

prominent. Furthermore, the larger the cracks the more χ flattens towards 1, making

this consistent with the theoretical assumption such that the fracture set spans the

entire volume (from the case in Figure 5.1(b) to the case in Figure 5.1(a)). The prop-

erties of χ can therefore be employed to guide the interpretation of a cracked medium

by giving a range of likely values for crack size and crack stiffness.

The systematic analysis of the uncertainties for all 54 DFN scenarios through the

NA method (Figures 5.21-5.29) has shown that this method produces a good well-

constrained estimate of the bulk stiffness, although the PPDs widen for larger and

stiffer cracks. The DFN scenario that exhibited the highest variance in the bulk stiffness

characterisation was the case with crack length l = 10 m and ϵ = 0.01. This is likely

caused by the combination of small crack density with relatively large cracks, which

produces a non-uniform distribution of fractures within the volume, and leaving portion

of the model intact (see the bottom left side of Figure 5.32(a)). During the inversion

the equivalent medium volume remains unchanged and the associated bulk stiffness

is uniform throughout the volume. Therefore, this always leads to a mismatch in

waveform fitting and thus a wider interval of accepted stiffness values, due to the

fracture distribution asymmetry and waves travel path. As matter of fact, this was

not observed for the smaller cracks as the high number of cracks within the volume
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resulted in their more even distribution (Figure 5.32(b)). Moreover, a higher degree of

uncertainty is caused by high stiffness cracks which behave like closed cracks, making

the transmitted wavefield less sensitive to the crack stiffness, and in turn widening the

range of possible solutions.

Contrary to the bulk stiffness uncertainty estimation, the PPDs related to the

fracture orientation (both fracture strike and fracture dip) suffer of crosstalk between

the two angles as well as multimodality especially for low crack density and high stiffness

cracks. As previously noted, this behaviour becomes even more evident for the cases

of l = 10 m cracks (Figure (5.27), and Figure (5.28)) where the PPDs are mostly flat

within the intervals considered. This can again be related to the fracture distribution

asymmetry for the case ϵ = 0.01, leading to a less constrained inversion due to the loss

of sensitivity of the transmitted waves with respect to the stiff cracks.

(a) (b)

Figure 5.32: (a) Lateral 2D projection on (depth, y)-plane of Figure 5.14(g) (l = 10 m,
ϵ = 0.01). (b) Lateral 2D projection on (depth, y)-plane of Figure 5.14(a) (l = 3 m, ϵ = 0.01).

5.6 Summary and Conclusions

This chapter has attempted to unveil the coupling between the discrete fracture param-

eters and the equivalent fractured zone properties, by means of a stochastic waveform

inversion approach (GA-FWFI). When seismic wavelengths are comparable to crack
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size and spacing, EM theory fails in retrieving crack properties since it cannot model

scattering phenomena by individual discontinuities. On the other hand, for the long

wavelength approximation, EM cannot distinguish small fractures from large ones, since

the variation of the overall medium stiffness depends on the effective area of all cracks

in the medium, regardless of size. Nevertheless, the attribute χ shows that crack size

indeed has an impact on the variation of effective fracture parameters. Only for stiff

cracks, despite their size and density, do κvfn values follow the theoretical trend χ → 1;

hence, it becomes difficult to separate the effect of big or small cracks. On the con-

trary, for compliant cracks, the attribute χ is able to distinguish the crack size and it

approaches unity for larger cracks.

This attribute can be utilised to better determine the crack stiffness in real field

scenarios. However, inverting only for the volumetric stiffness both crack size and

crack stiffness cannot be uniquely and simultaneously characterised using χ. Hence two

independent measures of crack size and crack spacing (e.g. from outcrops or boreholes)

are needed – the latter is used to estimate κvol. In this way the mechanical properties

of the cracks in the rock volume, paramount for both mechanical and hydraulic models,

are uniquely defined.

Finally, GA-FWFI has shown accuracy and robustness in estimating fracture strike

ϕ and fracture dip δ by analysing a narrow azimuth seismic dataset.



Chapter 6

Conclusions and suggestions for

future studies

6.1 Summary of key findings

This thesis develops a novel approach for characterising individual fracture properties

as well as fractured rock volumes within the framework of full waveform inversion.

The proposed approach, named Genetic Algorithm Full-Waveform Fraction Inver-

sion (GA-FWFI), employs the genetic algorithm as optimisation method to best fit

the observed data with forward modelled data in order to estimate fracture stiffness

(both specific and volumetric), fracture location and background material properties.

The model ensembles generated through GA are subsequently utilised to estimate the

posterior probability distributions using the Neighbourhood Algorithm (NA) technique.

The key achievements and findings of this thesis can be summarised as follows:

1. Successful development of the genetic algorithm method in Python. The code

has been parallelised using the message-passing interface (MPI) protocol to be

distributed over a large multi-core multi-node cluster and to mitigate the com-

putational burden given by solving thousands of forward problems;

2. Implementation of the NA methodology to characterise the uncertainty associated

191
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with the inverted model parameters, and describe qualitatively the whole model

space;

3. The degree of accuracy and convergence of the algorithm, and the ability of

the NA method to appraise the model ensemble, has been established through

diagnostic analytical experiments. A population size around 25 times the space

dimension was shown a good compromise between efficiency and computing time;

4. Synthetic ultrasonic experiments for a fractured medium containing 5 parallel

fractures were successfully inverted. Here, the specific stiffnesses (normal and

shear) of each fracture, their location along the x-axis, and the background veloc-

ity were correctly estimated by the inversion. All the inverted parameters were

well constrained as shown by the PPDs. They did not exhibit cross-talk;

5. The GA-FWFI method was successfully applied to a laboratory experiment to me-

chanically characterise a rock joint during shear failure. The GA-FWFI method

was applied to characterise the discontinuity in terms of its mechanical properties

(both κn and κs) by best fitting the experimental transmitted and reflected S-

and P-waves. To generalise the process for cases where the analytical solution

could fail, P- and S-wave velocity, and the joint location along the x-axis were

added as free parameters;

6. The inversion of the experiment gave estimates of the joint location and back-

ground velocities agreed with the corresponding ground-truth. The inverted frac-

ture specific stiffness values followed with a high degree of accuracy the analytical

trend, and the precursors to the shear failure were also correctly characterised;

7. The Bayesian analysis of all inverted parameters for the experiment showed that

they were well constrained. Exceptions were shear fracture stiffness for P-wave

inversions and normal fracture stiffness for S-wave inversions, which are insensitive

due to the wave propagation being normal to the joint;

8. GA-FWFI was applied to synthetic seismic data generated in simulated multi-

azimuth cross-hole experiments across a medium containing discrete randomly
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distributed parallel cracks. Effective fracture strike ϕ and fracture dip δ, along

with the equivalent fracture stiffness were estimated. A good match was obtained

between the modelled and observed data. This leads to an estimate of the equiv-

alent fracture orientation which is in excellent agreement with the crack dip and

crack strike (from 0◦ to 60◦);

9. GA-FWFI was applied to quantify the extent that discrete crack properties im-

pact the overall elastic properties of an HTI material containing randomly dis-

tributed parallel cracks. The data analysis was performed over 54 different dis-

crete fracture networks. It has shown that the transition from a medium with

open cracks (low crack stiffness) to one with welded interfaces (high crack stiff-

ness) is described by a non-linear relationship between the crack specific stiffness

and the bulk fracture stiffness. This was verified for media with different crack

densities and crack sizes;

10. Results showed that even in the long wavelength approximation, crack size has

an indubitable impact on the variation of the effective fracture parameters. The

attribute χ was introduced to characterise the crack-size dependence of the equiv-

alent medium stiffness in real field scenarios. However, independent measures of

crack size and crack spacing are needed. This attribute was shown to be inde-

pendent of crack density;

11. The attribute χ captures the behaviour of media with stiff cracks which approach

the linear trend. This holds for any crack size.

12. The uncertainties associated with the inverted stiffness increase for stiff crack

cases, showing flat and multimodal PPDs.

13. The properties of χ can be therefore employed to guide the interpretation of a

cracked medium by giving a range of likely values for crack size and crack stiffness;
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6.2 Conclusions

The key role of fractures in a variety of physical processes in the subsurface make them

a prominent target in a variety of geo-industrial applications, such as hydrocarbon and

geothermal exploration, stability of underground openings, carbon capture and storage,

and nuclear waste repositories.

Conventional seismic methods, which are used to detect and interpret the pres-

ence of fractures in seismic data, deal with the characterisation of the fracture-induced

anisotropy making use of equivalent medium theories. These analyses are provided by

processing only the change in wave amplitude or traveltime. However, these approaches

need to be used with caution when the seismic wavelength decreases and approaches

the order of magnitude of the fracture size and fracture spacing. For these cases it is

necessary to account for the physics of scattering at each individual discrete fracture by

making use of the discrete fracture representation. Experimental investigation of am-

plitude, or phase, changes as a function of explicit fracture properties have been carried

out in controlled laboratory experiments with simple fracture geometries. However, a

gap exists in linking different fracture model representations within a more compre-

hensive seismic method which can employ both the discrete fracture and the effective

fracture models.

This thesis bridges this gap by developing and implementing a waveform inversion

method (GA-FWFI) to advance and improve seismic processing methods by reducing

the need to manually condition the data (e.g. manual picking) and providing a robust

means to explore multiple solutions.

GA-FWFI facilitated the estimation of physical properties (fracture specific stiff-

ness, fracture location, and background material properties) with a very high degree

of accuracy in both synthetic and measured active ultrasonic waveforms. Moreover,

the GA-FWFI approach was applied to unveil the coupling between the discrete frac-

ture parameters with the equivalent fractured zone properties, showing that there is a

non-linear relationship between the bulk fracture stiffness and crack specific stiffness

and producing good estimates of the equivalent fracture orientation even for narrow
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azimuth data.

This work demonstrates that mechanical properties of fractures can be retrieved

through a data driven methodology such as GA-FWFI. The set of information derived

using the proposed methodology is useful to address a broad range of applications.

From characterising, for instance, the fractured region closest to a tunnel (the Excava-

tion Damage Zone), to a fundamental question of how to link different fracture media

representations (e.g. discrete fractures to equivalent media approaches). The results

shown in Chapter 5 demonstrates that the estimates of the mechanical properties of

cracks are inaccurate (always underestimates) if the theoretical derivation is used. The

mismatch increases as the cracks become more compliant and smaller.

Further work may be needed to explore these findings in a wider variety of settings,

but the insights presented here provide a solid foundation on which to build future

studies.

6.3 Recommendations for future studies

Future research and further GA-FWFI implementation includes, but is not limited to,

the following:

1. Non uniform fracture stiffness

The numerical experiments on explicit fractures carried out in this work have

considered a uniform stress state which produces a uniform fracture stiffness

along the fracture. Nevertheless, when the stress state is not uniform, fracture

stiffness varies along the fracture. It is therefore worth extending this approach

to invert for spatially varying fracture stiffness both for interpreting stress and as

an alternative to stress dependent stiffness.

2. Localised Effective Medium (LEM)

Further improvement of the inversion algorithm can be obtained by implementing

the LEM approach (Parastatidis et al., 2021) to model explicit fractures. The

discrete fracture representation in WAVE3D has the main limitation of creating
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explicit fractures only along the rectangular FD grid, so tilted fractures cannot be

modelled. However, the LEM approach condenses the advantages of the explicit

representation and those of the equivalent medium approach by readily creating

tilted fractures. This leads to a generalised approach for a more complete fracture

characterisation.

3. Medium with two or more fracture sets

Characterising a medium with several fracture sets can be more challenging due

to a potential cross-talk between stiffness and fracture orientation of the different

sets. However, the GA-FWFI method could be used to quantitatively assess the

relationship between these parameters.

4. Algorithmic improvements

There exist many variants of GA which aim to improve its accuracy, robustness,

convergence, and computing time. One GA scheme that could be adopted to

better characterise fractures is an implementation which uses multiple populations

within a single generation, where each population evolves in a different model

space region. This has shown more robustness against premature convergence

and a better sampling of the model space, improving in turn the uncertainty

estimation (Aleardi and Mazzotti, 2017).

5. GPU implementation

With the aim to improve the computing cost a GPU (graphics processing unit)

implementation, thanks to its highly parallel architecture, would allow for a signif-

icant reduction of computing cost. This can significantly enhance the possibility

of application to larger data volumes.
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Verdon, J., J.-M. Kendall, and A. Wüstefeld (2009). “Imaging fractures and sedimen-

tary fabrics using shear wave splitting measurements made on passive seismic data”.

In: Geophysical Journal International 179.2, pp. 1245–1254.

Virieux, J. (1986). “P-SV wave propagation in heterogeneous media: Velocity-stress

finite-difference method”. In: Geophysics 51.4, pp. 889–901.

Virieux, J. and S. Operto (2009). “An overview of full-waveform inversion in exploration

geophysics”. In: Geophysics 74.6, WCC1–WCC26.

Vlastos, S., E. Liu, I. G. Main, and X.-Y. Li (2003). “Numerical simulation of wave

propagation in media with discrete distributions of fractures: effects of fracture sizes

and spatial distributions”. In: Geophysical Journal International 152.3, pp. 649–668.

Wan, W. and J. B. Birch (2013). “An improved hybrid genetic algorithm with a new

local search procedure”. In: Journal of Applied Mathematics 2013.

Warner, M., A. Ratcliffe, T. Nangoo, J. Morgan, A. Umpleby, N. Shah, V. Vinje, I.

Stekl, L. Guasch, C. Win, G. Conroy, and A. Bertrand (2013). “Anisotropic 3D

full-waveform inversion”. In: Geophysics 78, R59–R80.

Warner, M. and L. Guasch (2016). “Adaptive waveform inversion: Theory”. In: Geo-

physics 81.6, R429–R445.

Washington, I. J. of (2010). Edge of Pine Island Glacier’s ice shelf is ripping apart,

causing key Antarctic glacier to gain speed. [Online; accessed October 27, 2021].

Weise, T. (2009). Global optimization algorithms-theory and application. Self-Published

Thomas Weise.



REFERENCES 211

Willis, M. E., D. R. Burns, R. Rao, B. Minsley, M. N. Toksöz, and L. Vetri (2006).
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