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A B S T R A C T   

Based on fundamental electrode theory, an analytical transfer function to simulate the frequency impedance 
spectrum of the finite-length Warburg (FLW) impedance and the dynamic potential response of the FLW 
impedance in the time-domain has been developed in this study. Parameters reported in the literature estimated 
from experimental measurements carried out in polymer electrolyte fuel cells (PEFCs) have been considered to 
validate the new analytical transfer function. The analytical transfer function representing the FLW impedance 
can be considered in different equivalent electrical circuit configurations to simulate a more accurate dynamic 
output voltage of an electrochemical power system under the effect of diffusion phenomena. A Simulink model 
based on the Randles circuit and the new transfer function representing the FLW impedance is constructed to 
simulate the dynamic output voltage of a PEFC during a current-interrupt incident. In addition, a Simulink model 
based on an electrical circuit configuration and the new transfer function representing the FLW impedance is 
constructed to simulate the dynamic output voltage of a Li-ion battery. This study establishes a wider scope to 
relate the electrochemical impedance spectroscopy to the dynamic output voltage response of electrochemical 
power systems.   

1. Introduction 

Electrochemical impedance spectroscopy (EIS) is an experimental 
technique that can be applied in-situ to characterise physical processes 
of electrochemical power systems in the frequency-domain. The finite- 
length Warburg (FLW) impedance has been applied with EIS measure
ments to characterise diffusion processes in electrodes [1]. The mathe
matical equation of the FLW impedance was derived by Emil Warburg 
[2] and relates diffusion of electroactive species through an electrode 
surface. The conventional equation of the FLW impedance ZFLW =

RWtanh
( ̅̅̅̅̅̅̅̅̅̅̅

jωτW
√ )

/
̅̅̅̅̅̅̅̅̅̅̅
jωτW

√
considers a resistance RW and time constant 

τW for the diffusion of electroactive species in the electrode. Fig. 1 shows 
the impedance spectrum generated by the equation of the FLW imped
ance and presented in a complex-impedance (Nyquist) plot. In the high 
frequency range, a 45-degree straight line is apparent as shown in Fig. 1. 
The period of the sinusoidal signal during EIS measurements at high 
frequency is shorter than the time required for an electroactive species 
to diffuse through the finite diffusion layer. Hence, an infinite diffusion 
process is related to the 45-degree straight line in the impedance 

spectrum of the FLW. The time constant τs where the imaginary 
component of the impedance spectrum of the FLW impedance reaches its 
minimum value at − Zj (the summit of the impedance spectrum) in the 
Nyquist plot is a factor 2.53 smaller than the characteristic time constant 
τW represented in the FLW impedance equation τW = 2.53τs [3]. 

Simulink (MathWorks®) is a MATLAB-based graphical programming 
environment and a powerful programming environment for modelling 
and simulating multidomain dynamical systems such as electrochemical 
power systems. Simulink allows the representation of differential 
equations through the use of graphical block diagramming tools and a 
customizable set of block libraries. A transfer function can be defined 
with poles and zeros in the Laplace-domain and can be modelled in 
Simulink environment [4]. It is possible to simulate the input response of 
a transfer function in the time-domain using Simulink. It is not straight 
forward to represent the conventional equation of the FLW impedance 
with poles and zeros in the Laplace-domain. Although some approxi
mations have been reported in the literature to represent the FLW 
impedance as a transfer function with poles and zeros in the Laplace- 
domain [5]. Boukamp [3] and Montella [6] reported that the FLW 
impedance can be well represented through the Voigt circuit considering 
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an infinite combination of parallel resistor-capacitors. Eddine et al. [7] 
reported that it is possible to approximate the FLW impedance in the 
Laplace-domain through fractional order modelling. A fractional model 
to represent the FLW impedance has also been reported by Iftikhar et al. 
[8]. Gabano et al. [9] reported an impedance model based on fractional 
order modelling to simulate the bounded diffusion impedance repre
sented in the impedance response of lithium batteries. Rubio et al. [10] 
reported an electrical circuit configuration based on resistors and ca
pacitors connected in a parallel configuration to approximate the 
impedance of the FLW in the Laplace-domain. The aforementioned ap
proaches reported in the literature can approximate the impedance 
response of the FLW with the response of a transfer function comprising 
poles and zeros. These approaches only provide an approximate repre
sentation of the impedance spectrum of the FLW impedance in the 
frequency-domain and may not be accurate enough to represent the 
dynamic potential response of the FLW impedance in the time-domain. 

The Voigt circuit with an infinite series combination of parallel 
resistor-capacitor circuits can provide an exact representation of the 
impedance spectrum of the FLW in the frequency-domain [3,6] and 
could simulate the dynamic potential response of the FLW impedance in 
the time-domain. Nevertheless, the construction of the Voigt circuit with 
an infinite series combination of parallel resistor-capacitor circuits in 
Simulink environment may increase the computational effort and make 
the simulation process less effective for different modelling applications. 
For instance, during the fitting of a time-domain electrochemical model 
of a polymer electrolyte fuel cell (PEFC) with the experimental dynamic 
output voltage of the PEFC measured during a current-interrupt test 
[10]. Another disadvantage in using the aforementioned approaches 
reported in the literature is the fact that the diffusion time constant τW 
defined in the conventional mathematical equation of the FLW imped
ance is commonly associated with the time constant from the electrical 
configuration comprising resistors and capacitors [7]. A transfer func
tion representing the FLW impedance should be able to reproduce the 
characteristics (e.g. 45-degree straight line at high frequencies) of the 
impedance spectrum of the FLW impedance in the frequency-domain. 
Failing to do so, the transfer function will not simulate an exact repre
sentation of the dynamic potential response of the FLW impedance in the 
time-domain and will not be able to accurately simulate the effect of 
diffusion mechanisms on the dynamic output voltage of an electro
chemical system under the effect of mass transport limitations. 

The aim of this study is to develop a new transfer function in the 
Laplace-domain which can simulate the impedance spectrum of the FLW 
impedance in the frequency-domain and the dynamic potential response 
of the FLW impedance in the time-domain. The new transfer function is 
derived from fundamental electrode theory and considers the same pa
rameters of the conventional mathematical equation of the FLW 
impedance such as diffusion resistance RW and diffusion time constant 
τW. 

The aforementioned studies [7–9] do not provide guidance on how 
to apply the new analytical expression of the FLW impedance for the 
simulation of dynamic output voltage of electrochemical power systems 

and only a description of a generic algorithm containing extensive cal
culations to apply the analytical expression is presented. This may 
complicate the reproduction of the reported results and complicate the 
application of the new analytical expression in a programmable lan
guage carried out by early researchers or engineers from industry. In this 
study, a detailed guidance on how to apply the developed modelling 
architecture in a MATLAB/Simulink environment for the simulation of 
the dynamic voltage response of fuel cells and batteries considering 
parameters estimated from EIS measurements is presented. First the 
developed analytical transfer function is implemented in a MATLAB/ 
Simulink environment to simulate and study the dynamic potential 
response of the FLW impedance in the time-domain. Thereafter, the 
analytical transfer function representing the FLW impedance is consid
ered in different electrical circuit configurations constructed in a 
Simulink environment to simulate a more accurate dynamic output 
voltage of the PEFC and battery under the effect of diffusion phenomena. 
A Simulink model based on the new transfer function representing the 
FLW impedance and the Randles circuit is constructed to simulate the 
dynamic output voltage of a PEFC during a change in current-step. Pa
rameters from the Randles circuit reported in the literature [10,11] and 
estimated from experimental measurements carried out in PEFCs are 
considered in the Simulink model for the simulation of the dynamic 
output voltage of the PEFC. In the last section of the manuscript, it is 
demonstrated that the new transfer function representing the FLW 
impedance can also be considered in an electrical circuit configuration 
using a Simulink environment to simulate the dynamic output voltage of 
a Li-ion battery. The modelling architecture constructed in a Simulink 
environment requires parameters such as diffusion resistance and 
diffusion time constant from FLW impedance, charge transfer resistance, 
double-layer capacitance and ohmic resistance that can be estimated 
from EIS measurements carried out in the PEFC or in the battery at 
different operating conditions. The Simulink models presented in this 
study can also simulate the impedance response of the PEFC and battery; 
therefore, this study demonstrates that modelling can play an important 
role to study the relation between EIS and the dynamic output voltage of 
electrochemical power systems operated at different conditions. 

2. Electrochemical phenomena in the cathode electrode 

The transfer function representing the FLW impedance is derived 
from fundamental electrode theory. The following assumptions will be 
considered in the mathematical treatment:  

1. The electrochemical reaction occurring at the cathode electrode is 
represented as a simple reaction or a single-step electron transfer 
process.  

2. The anodic current represented in the current-overpotential equation 
is neglected because it can have a minimum contribution at large 
negative overpotential (Tafel approximation) [12].  

3. A decoupling between reactant transport limitation and charge 
transfer process is considered because the EIS technique can 
decouple physical processes with different time constants and 
different frequency dependence in electrochemical power systems. 

The current-overpotential equation neglecting the anodic current 
contribution and neglecting reactant transport limitations can be 
expressed as [12]: 

iF = i0exp( − η/b) (1)  

where b is the Tafel slope with units V or expressed with units V/dec if b 
with units V is multiplied by a factor of 2.3, i0 is the exchange current 
density, η is the overpotential defined as η = E − Eeq, E is the potential of 
the electrode, and Eeq is the potential at equilibrium conditions. Eq. (1) 
is also known as the Tafel equation. The use of a low amplitude value in 
the sinusoidal signal during EIS measurements allows the application of 

Fig. 1. Impedance response of the finite-length Warburg impedance in a 
complex-impedance plot. 
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a linear model in order to analyse the electrochemical impedance 
spectra. Therefore, a linear model can be derived using the Taylor series 
expansion around the steady-state value [13] of Eq. (1) as such: 

iF
∼

=
E
∼

RC
(2) 

with 

RC =
b

i0exp( − ηSS/b)
(3) 

where iF
∼

is the oscillating faradaic current density, E
∼

is the oscillating 
potential, RC is the charge transfer resistance during the reduction re
action at the cathode, and ηSS is the overpotential at steady-state con
ditions. The denominator of Eq. (3) (charge transfer resistance) 
represents the steady-state current density [14]. It is possible to include 
the sinusoidal ratio φ∼ between the oscillating concentration of electro
active species in the electrode surface cδ

∼ and oscillating bulk concen
tration of electroactive species cb

∼ in the oscillating faradaic current 
density expressed in Eq. (2) as such: 

iF
∼

=
E
∼

RC
φ∼ (4) 

with 

φ∼ =
cδ
∼

cb
∼ (5) 

Under low current density operation, the ratio of concentration of 
electroactive species is approximately φ∼ ≈ 1. At high current density 
operation, the ratio of concentration of electroactive species is φ∼ < 1. A 
value of φ∼ less than 1 is attributed to the fact that the rate of con
sumption of electroactive species in the electrode surface to maintain the 
desired current density is higher than the rate of electroactive species 
being concentrated in the bulk solution cδ

∼
< cb

∼ . The inclusion of the 
parameter φ∼ in Eq. (2) as expressed in Eq. (4) was supported by the fact 
that no coupling between charge transfer resistance and reactant 
transport resistance can exist during EIS measurements in electro
chemical systems as the EIS technique allows the decoupling of physical 
processes with different time constants and different frequency depen
dence. Eq. (4) will allow the derivation of the conventional equation of 
the FLW impedance which has been broadly used to study mass trans
port limitations in PEFCs [11,15] and modern batteries [16]. 

2.1. Diffusion mechanisms 

The electrochemical reaction takes place in the interface between 
dissimilar materials (e.g. metal/solution) in the electrode. The study of 
the reactant transport in the electrode can be treated with certain sim
plifications and approximations. A linear drop in the concentration of 
electroactive species across the diffusion distance of the film or solution 
surrounding the electrode allows the study of the mass transport through 
Fick's First law. Fick's Second Law [12] is considered to model the 
diffusion of electroactive species from the bulk solution to the electrode 
surface with respect to time, as such: 

D
∂2c(x, t)

∂x2 =
∂c(x, t)

∂t
(6)  

where c is the local concentration of electroactive species diffusing 
through the film surrounding the electrode, D is the effective diffusion 
coefficient and x is the diffusion distance for electroactive species to 
diffuse from the bulk solution to the electrode surface. At steady-state 
conditions, it is possible to represent Eq. (6) in the Laplace-domain 
considering the bulk concentration in the solution cb at initial 

condition t = 0 as such: 

D
∂2c̄(x, s)

∂x2 = sc̄(x, s) − cb (7)  

where the bar located over a letter represents the Laplace transform s of 
a variable. The mathematical solution of Eq. (7) through the method of 
undetermined coefficients for a nonhomogeneous linear differential 
equation [12] results in: 

c̄(x, s) − c̄b = Aexp(λ1x)+Bexp(λ2x) (8)  

with c̄b = cb/s and λ1,2 = ±
̅̅̅̅̅̅̅̅
s/D

√

Evaluating boundary conditions in Eq. (8) at the electrode surface 
c̄(δ, s) = c̄δ and at the bulk solution c̄(0, s) = c̄b yields: 

A =
c̄b − c̄δ

exp(λ2δ) − exp(λ1δ)
(9)  

B =
c̄δ − c̄b

exp(λ2δ) − exp(λ1δ)
(10) 

Substituting Eq. (9) and Eq. (10) into Eq. (8) yields: 

c̄(x, s) − c̄b =
[c̄b − c̄δ]exp(λ1x)

exp(λ2δ) − exp(λ1δ)
+

[c̄δ − c̄b]exp(λ2x)
exp(λ2δ) − exp(λ1δ)

(11) 

It is possible to define the relation between faradaic current density, 
charge transferred and the consumption of electroactive species as such: 

iF = zFv̄ (12)  

where v̄ is the reactant flux, z is the number of electrons consumed 
during the electrochemical reaction and F is the Faraday constant. From 
Fick's First Law it is possible to establish that the flux of reactant is 
proportional to concentration gradient. 

v̄ = − D
dc̄(x, s)

dx x=δ
(13) 

During steady-state conditions, the current density at which the 
electroactive specie is consumed in the electrochemical reaction from 
Faraday's Law is equal to the diffusion flux from Fick's First Law. 
Substituting the Laplace form of Eq. (4), and Eq. (12) into Eq. (13) 
yields: 

φ̄
Ē

zFRC
= − D

dc̄(x, s)
dx x=δ

(14) 

Differentiating Eq. (11) with respect to the finite diffusion distance x 
and considering hyperbolic trigonometric identities for exponentials 
yields: 

dc̄(x, s)
dx

=
λ1[c̄δ − c̄b]cosh(λ1x)

sinh(λ1δ)
(15) 

Substituting Eq. (15) into Eq. (14) yields: 

φ̄
Ē

zFRC
= − Dλ1

c̄δ − c̄b

tanh(λ1δ)
(16) 

Rearranging Eq. (16) yields: 

φ =

[

1 +
E tanh(λ1δ)
RCzFDλ1c̄b

]− 1

(17) 

The use of a small amplitude sinusoidal perturbation through the EIS 
technique allows the use of a linear model to represent the impedance of 
the electrode. It is possible to consider a linearized relation of the po
tential by considering the Laplace form Ē = E/s and considering E = RT/ 
zF [12]. In addition, considering the Laplace form c̄b = cb/s, considering 
λ1 =

̅̅̅̅̅̅̅̅
s/D

√
and the transformation between the Laplace space and 

Fourier space s = jω in the term on the right-hand side of Eq. (17) yields: 
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φ∼ =
RC

RC + Z̃W
(18) 

where 

ZW
∼

= RW
tanh(

̅̅̅̅̅̅̅̅̅̅̅
jωτW

√
)

̅̅̅̅̅̅̅̅̅̅̅
jωτW

√ (19) 

Eq. (19) is the conventional equation of the FLW impedance [17] and 
represents the impedance response for reactant transport limitation in 
the frequency-domain, j is the imaginary component of a complex 
number and ω is the angular frequency 

with 

RW =
RTδ

z2F2cbD
(20) 

defined as the resistance for the diffusion process of electroactive 
species [15] and 

τW =
δ2

D
(21) 

defined as the time constant to diffuse electroactive species towards 
the electrode surface [18]. 

2.2. Electrochemical impedance in the electrode 

Substituting Eq. (18) into Eq. (4) yields the oscillating faradaic cur
rent density in terms of charge transfer resistance and finite-length 
Warburg impedance as such: 

iF
∼

=
E
∼

RC + Z̃W
(22) 

A double-layer structure for the interface between the electrode and 
the solution is presented in electrochemical systems. At this interface 
electrons will be collected at the surface of the electrode and ions will be 
attracted to the solution. A potential difference is present because of the 
charge distribution between electrons and ions at the electrode-solution 
interface. This potential difference has a determinant role in the charge 
distribution within the reactants as well as in the position and orienta
tion of the reactants to form the desired product. This double-layer can 
behave like a capacitor Cdl that is in parallel with the electrode reactions. 
The current passing from the electrode to the solution either can take 
part in the charge transfer reaction or can contribute to the charge in the 
capacitive effect. The total current density is defined as the sum between 
faradaic current density and non-faradaic current density [19] (charge 

capacitance current density) i
∼

= iF
∼

+ iCdl

∼

as such: 

i
∼

=
E
∼

RC + Z̃W
+CdljωE

∼

(23) 

The electrochemical impedance of an electrochemical system 
neglecting the anode contribution can be defined as the ratio between 
oscillating potential and oscillating current density as such: 

ZT = Re +
RC + Z̃W

[
RC + Z̃W

]
Cdljω + 1

(24)  

where Re represents the ohmic resistance in the electrolyte that sepa
rates the anode and cathode, and the second term on the right-hand side 
of Eq. (24) represents the impedance of the cathode (Eq. (23)). Eq. (24) 
is analogous to the impedance of the Randles circuit considering the 
FLW impedance [13,15] as shown in Fig. 2. The Randles circuit could 
also consider a constant phase element (CPE) instead of the capacitor 
[20]. A CPE improves the quality of the fit between EIS measurements 
and the impedance response of the Randles circuit. Orazem and Triboller 
[13] discussed the physical meaning of the CPE when applying it with 

EIS measurements to study the impedance of electrochemical systems 
with time-constant dispersion. 

The Randles circuit shown in Fig. 2 has been considered to charac
terise the impedance response of PEFCs [21] and batteries [22]. More 
complex electrical circuit configurations based on transmission-line 
models have also been reported [23,24] to characterise the frequency 
response of porous electrodes in electrochemical systems. 

3. Analytical transfer function for Warburg impedance 

The solution of the inverse Laplace transform of Eq. (17) by the 
Heaviside's Expansion Theorem [25] is detailed in Appendix A and re
sults in: 

cδ

cb
=

[

1 +
∑n

k=0

− E8δ
[2k + 1]2π2zFRCDcb

exp

(

−
[2k + 1]2π2D

4δ2 t

)]− 1

(25) 

The ratio between the concentration of electroactive species at the 
electrode surface cδ and bulk concentration in the solution cb can be 
expressed as a function of a mass transport resistance in the time-domain 
and charge transfer resistance by considering a linearized relation of 
potential [12] E = RT/zF and rearranging Eq. (25) as such: 

φ =
cδ

cb
=

RC

RC + RM
(26)  

where RC is the charge transfer resistance represented in Eq. (3) and RM 
is the mass transport resistance in the time-domain as such: 

RM =
∑n

k=0

− 8RW

[2k + 1]2π2
exp

(

−
[2k + 1]2π2

4τW
t

)

(27)  

where RW is the resistance for the diffusion of electroactive species 
expressed in Eq. (20) and τW is the diffusion time constant as expressed 
in Eq. (21). At this point, it would be possible to consider that Eq. (27) 
represents the FLW impedance in the time-domain. However, this can 
only be corroborated by comparing the frequency-domain response of 
Eq. (27) with the impedance response generated by the conventional 
mathematical equation of the FLW impedance (Eq. (19)). 

The potential related to the mass transport resistance can be 
expressed by multiplying the faradaic current density iF with Eq. (27) as 
such: 

EM =
∑n

k=0

− 8RWiF

[2k + 1]2π2
exp
(

−
t

τk

)

(28) 

with 

τk =
4τW

[2k + 1]2π2
(29) 

The Laplace transform s of Eq. (28) results in 

EM =
∑n

k=0

− 8RWiF

[2k + 1]2π2

1
s + 1

τk

(30) 

The transfer function of Eq. (30) considering īF = iF/s can be 
expressed as: 

Fig. 2. Randles circuit to characterise the impedance response of an electro
chemical system neglecting anode contribution. 
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R̄M =
ĒM

īF
=
∑n

k=0

− 8RW

[2k + 1]2π2

τks
τks + 1

(31) 

The frequency response of Eq. (31) represented in the Nyquist plot 
shown in Fig. 3 is simulated in MATLAB software considering the 
command nyquist(sys), where sys is a transfer function defined with 
poles and zeros in the Laplace-domain. The value of the parameters RW 
= 6.35 mΩ and τW = 0.779 s are taken from the study reported by Rubio 
et al. [10] and were estimated by fitting an electrical circuit with the 
dynamic voltage of a PEFC during a current-interrupt test. The imped
ance spectrum generated by Eq. (31) is shifted towards the negative real 
component of the complex-impedance plot as shown in Fig. 3. In 
Appendix A, an indeterminate solution resulted in the Inverse Laplace 
transform of Eq. (17) by considering the pole (s1)3/2 = 0 in the Heavi
side's Expansion Theorem. As a first approximation, the pole (s1)3/2 =

0 that yielded the indeterminate solution in the inverse Laplace trans
form was not considered in the mathematical treatment (see 
Appendix A). Therefore, this consideration in the mathematical treat
ment may have shifted the impedance spectrum shown in Fig. 3 towards 
the negative real component of the complex-impedance plot. 

The correct transfer function to simulate the frequency response of 
the FLW impedance can be obtained by summing the resistance for the 
diffusion process expressed in Eq. (20) with Eq. (31) as such: 

ZW = RW +
∑n

k=0

− 8RW

[2k + 1]2π2

τks
τks + 1

(32) 

The frequency response of Eq. (32) is simulated in MATLAB software 
and considering the script shown in Appendix B. The summation 
expression in Eq. (32) considered a value of n = 30 because minimum 
(negligible) changes on the simulated impedance response resulted at n 
> 30. The effect of the parameter n expressed in the summation 
expression of Eq. (32) on the impedance spectrum is shown in 
Appendix B. The parameter RW represented in the first term on the right- 
hand side of Eq. (32) shifts the high-frequency end of the impedance 
spectrum shown in Fig. 3 towards the origin of the real axis. The 
impedance spectra shown in Fig. 4 labelled “Eq. (19)” and “Eq. (32)” 
were generated by Eqs. (19) and (32) considering the parameters RW =

6.35 mΩ and τW = 0.779 s with a range of frequencies from 10 MHz to 
0.001 Hz. The low frequency limit of the impedance spectra converged 
with the value of RW = 6.35 mΩ. The simulation of the impedance 
spectrum generated by Eq. (19) was also carried out in MATLAB soft
ware. Fig. 4 shows that Eq. (32) can reproduce the same characteristics 
of the impedance spectrum generated by the conventional equation (Eq. 
(19)) of the FLW impedance. The transfer function represented in Eq. 

(32) can simulate the 45-degree straight-line feature at high frequencies 
attributed to the infinite diffusion process. 

3.1. Current input response of the Warburg impedance in the time-domain 

Eq. (32) can simulate the impedance spectrum of the FLW impedance 
and can simulate the current-input response of the FLW impedance in a 
MATLAB/Simulink environment. The simulation process in MATLAB/ 
Simulink to simulate the current-input response of the FLW impedance 
in the time-domain is carried out in two steps: 

1. First the script shown in Appendix B is executed in MATLAB soft
ware. The solution of the transfer function (Eq. (32)) representing the 
FLW impedance is loaded in the workspace of MATLAB.  

2. Second the model architecture shown in Fig. 5a is executed in a 
Simulink environment. Where the solution of the transfer function 
(Eq. (32)) from the first step loaded in the MATLAB workspace is 
imported to the “LTI System block” in the Simulink environment. 

Fig. 3. Frequency response of Eq. (31) represented in a Nyquist plot.  

Fig. 4. Comparison between impedance spectra generated by the transfer 
function (Eq. (32)) and generated by the conventional equation of the FLW 
impedance (Eq. (19)). 

Fig. 5. Simulation of the transfer function (Eq. (32)) representing the finite- 
length Warburg impedance, a) Simulink architecture, b) dynamic potential 
response during a step-change in current. 
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Further information about the “LTI System block” can be found 
elsewhere [26]. 

A step-change in current with values I = 0 A at t = 0 s and I = 13 A at 
t = 1 s has been considered as inputs in the Simulink model shown in 
Fig. 5a. The parameters RW = 6.35 mΩ and τW = 0.779 s have been 
considered in the transfer function expressed in Eq. (32). Fig. 5.b shows 
the dynamic and steady potential responses of the FLW impedance 
during a step-change in current. Two-time constants can be represented 
in the dynamic potential response of the FLW impedance. The time 
constant τW related to the diffusion process and the time constant τs 
where the imaginary component of the impedance spectrum of the FLW 
impedance reaches its minimum value − Zj (the summit of the imped
ance spectrum) in the complex-impedance plot can be represented in the 
dynamic potential shown in Fig. 5b. The time constant τs is a factor 2.53 
smaller than the characteristic time constant τW represented in the FLW 
impedance equation [3,27] as such: τW = 2.53τs. The dynamic potential 
response had reached 68.5 % of the steady-state value at the time con
stant τs = 1 + 0.3079 s and at τW = 1 + 0.779 s the potential dynamic 
response had reached 92.1 % of its final value as shown in Fig. 5b. If the 
FLW impedance is approximated by the impedance of an electrical cir
cuit configuration comprising resistors and capacitors, the diffusion time 
constant would be approximated to the time constant from resistors and 
capacitors τW = RWCW [7]. Under this consideration, the potential 
response of the FLW impedance would be equivalent to the response of a 
first order system and will reach 63.2 % of the steady-state value [4] at 
τW = RWCW (diffusion time constant related to resistor RW and capacitor 
CW). Approximating the FLW impedance with the impedance of a circuit 
considering resistors and capacitors may incur an erroneous interpre
tation of the diffusion time constant on the dynamic potential and 
incorrect calculation/simulation of the dynamic potential of the FLW 
impedance in the time-domain. 

The diffusion coefficient D plays an important role in the diffusion 
process of electroactive species to reach the active zones of the electrode 
during the redox reaction. The diffusion coefficient D is inversely pro
portional to the diffusion resistance RW (Eq. (20)) and diffusion time 
constant τW (Eq. (21)). Increasing the bulk concentration cb of electro
active species reduces the diffusion resistance RW (Eq. (20)) and the FLW 
impedance. Fig. 6 shows the effect of decreasing the diffusion parame
ters D and cb on the dynamic potential estimated by the analytical 
transfer function Eq. (32) simulated by the Simulink model shown in 
Fig. 5a. The diffusion coefficient D was reduced by 50 % which is 
equivalent to an increase in diffusion resistance RW and diffusion time 
constant τW by a factor of 2 in Eq. (32). Fig. 6 shows that decreasing the 
diffusion coefficient D increases the steady-state potential and the time 
for the curve to reach the steady-state value. The bulk concentration cb 
was reduced by 50 % and this reduction is equivalent to an increase in 
diffusion resistance RW by a factor of 2 in Eq. (32) where Fig. 6 also 

shows that decreasing the bulk concentration cb increases the steady- 
state potential. 

The transfer function represented in Eq. (32) provides an exact 
representation of the impedance spectrum of the FLW impedance in the 
frequency-domain as shown in Fig. 4 therefore, it can confidently 
simulate the input-current response of the FLW impedance in the time- 
domain as demonstrated in Fig. 5b. The transfer function represented in 
Eq. (32) can be considered in the configuration of the Randles circuit 
and thus can simulate the dynamic output voltage of a PEFC during a 
current-interrupt incident. This will be demonstrated in the next section. 

4. Current-input response of the Randles circuit in the time- 
domain 

The impedance of the Randles circuit in the frequency-domain is 
represented in Eq. (24). Correa et al. [28] simulated the dynamic output 
voltage of a PEFC considering a steady-state model (polarisation curve 
model) of a PEFC with the Randles circuit shown in Fig. 2 but neglecting 
the FLW impedance. The authors attributed the dynamic output voltage 
of the PEFC to the double-layer capacitance in the electrodes and the 
effect of the diffusion time constant on the dynamic output voltage of the 
PEFC was neglected in the study. Fig. 7 shows an equivalent electrical 
circuit to simulate the voltage output of a PEFC during a step-change in 
current. The electrical circuit shown in Fig. 7 neglects the contribution 
of the anode on the voltage output of the PEFC because the hydrogen 
oxidation reaction is a less complicated and more facile reaction 
sequence than the oxygen reduction reaction (ORR) [29,30]. However, 
under certain operating conditions such as start-up events and long-term 
operation, anode losses can be increased [31,32] and should not be 
neglected in the electrical circuit configuration representing the PEFC. 
The electrical circuit shown in Fig. 7 can be considered to simulate the 
dynamic output voltage of a PEFC during a step-change in current [33] 
or during a current-interrupt test [34]. Re represents the ohmic resis
tance of the PEFC and considers the electron and proton opposition 
across the different layers of the PEFC, RC represents the charge transfer 
resistance during the ORR, Cdl represents the double-layer capacitance 
in the cathode catalyst layer (CCL), and ZW represents the opposition of 
reactant transport from the gas channel to the electrode surface which 
can be represented by Eq. (32). 

The parameters of the electrical circuit shown in Fig. 7 can be esti
mated from EIS measurements carried out in a PEFC. 

If Kirchhoff's laws are applied to the electrical circuit shown in Fig. 7, 
the voltage output of the PEFC Vcell can be calculated through the 
following equations: 

Vcell = Er − IcellRe − Ef (33)  

Icell =
Ef

RC + ZW
+Cdl

dEf

dt
(34)  

where Er is the reversible potential of the PEFC and can be represented 
through the open-circuit voltage equation [35], Icell is the current de
mand of the PEFC, EF is the overpotential (losses) during the ORR in the 
cathode and represents the potential in the parallel configuration of the 
electrical circuit considering the charge transfer resistance RC, transfer 

Fig. 6. Effect of decreasing diffusion parameters on the dynamic potential 
response of the finite-length Warburg impedance. 

Fig. 7. Equivalent electrical circuit to simulate the voltage output of a PEFC. 
The electrochemical mechanisms of the PEFC are modelled as elec
trical components. 
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function representing the FLW impedance ZW (Eq. (32)), and double- 
layer capacitance Cdl. 

One of the advantages of the Simulink environment is the fact that 
time-domain differential equations representing the transient response 
of a system can be defined in the Laplace-domain to simulate the input- 
response of the system in the time-domain. Fig. 8 shows the Simulink 
architecture to represent Eqs. (33) and (34) in the Laplace-domain. 

4.1. Voltage output of a PEFC during a current-interrupt incident 

The Simulink model shown in Fig. 8 can simulate the dynamic output 
voltage of the PEFC considering a current-step as an input. Prior to the 
execution of the Simulink model shown in Fig. 8, the values of the pa
rameters ER, RC, C, Re and ZW have to be defined and loaded in the 
workspace of MATLAB. Previously in Section 3.1 it was discussed that 
the solution of the transfer function (Eq. (32)) representing the FLW 
impedance is loaded in the workspace of MATLAB when the script 
shown in Appendix B is executed. The simulation of the current-input 
response of Eq. (32) in Simulink environment has been demonstrated 
in Fig. 5. 

Before carrying out the simulation of the dynamic output voltage of 
the PEFC using the Simulink model shown in Fig. 8, it is compulsory to 
demonstrate that the Simulink model is able to reproduce the same 
impedance spectrum in the frequency-domain generated by Eq. (24) 
(Impedance of the Randles circuit). The Simulink model considers the 
transfer function representing the FLW impedance defined in Eq. (32). 
Eq. (24) considers the conventional equation of the FLW impedance 
defined in Eq. (19). The considered parameters for the simulation of the 
impedance spectra generated by Eq. (24) and generated by the Simulink 
model (Fig. 8) are: ER = 0.92 V, Re = 0.0139 Ω, RC = 0.0053 Ω, C =
0.989 F, RW = 0.00635 Ω, and τW = 0.779 s. These parameters were 
reported by Rubio et al. [10] and were estimated by fitting an electrical 
circuit with the dynamic output voltage of a PEFC measured during a 
current interrupt test. 

Zhivomirov [36] reported a MATLAB script to calculate the imped
ance frequency response of a two-terminal circuit using the DAQ-system 
NI USB-6211. The MATLAB script reported by Zhivomirov [36] was 
considered to calculate the impedance frequency response of the 
Simulink model shown in Fig. 8. The MATLAB script defines a sinusoidal 
signal input at different frequencies and calculates the Fourier transform 
of the time-domain input and output signals. The simulation of the 
impedance frequency response of the Simulink model shown in Fig. 8 
and using the MATLAB script reported by Zhivomirov [36] is carried out 
through the following steps:  

1. The MATLAB script sends a sinusoidal current input to the Simulink 
model (Fig. 8) at different frequencies and the resulting sinusoidal 
voltage output from the Simulink model is read by the MATLAB 
script. 

2. The MATLAB script calculates the impedance response of the Simu
link model in the frequency-domain considering the Fourier 

transform of the sinusoidal input and output signals at different 
frequencies. 

Fig. 9 shows a comparison between the impedance spectrum 
generated by Eq. (24) and the impedance spectrum generated by the 
Simulink model shown in Fig. 8 considering the MATLAB script from 
Zhivomirov [36]. The considered range of frequencies was from 1 kHz 
down to 0.02 Hz. The impedance spectrum labelled “Eq. (24)” can be 
simulated by defining Eq. (24) in MATLAB or by constructing the Ran
dles circuit shown in Fig. 2 in ZView software (Scribner Associates Inc.). 
Two overlapped semicircles are represented in the impedance spectra 
shown in Fig. 9. The diameter of the first semicircle in the high-low 
frequency region is attributed to the value of the charge transfer resis
tance RC during the ORR. The diameter of the low frequency semicircle 
is attributed to the value of the diffusion resistance RW represented in 
the FLW impedance. In some cases, the separation of the semicircles 
cannot be visualised on the overall impedance spectrum and this effect 
has been attributed to a low value of the diffusion time constant τW [37]. 
The low frequency resistance can be calculated with the sum of the 
ohmic resistance, charge transfer resistance, and diffusion resistance as 
such Re + RC + RW = 0.0255 Ω. The high frequency resistance represents 
the ohmic resistance Re = 0.0139 Ω. 

The comparison between an experimental impedance spectrum and 
the simulated impedance spectrum generated by an impedance model 
can be assessed through the real and imaginary relative residuals of the 
simulated and measured impedance data. The comparison of the 
impedance spectra shown in Fig. 9 can be assessed through Eqs. (35) and 
(36) which represent the average of the real and imaginary relative re
siduals of the simulated data generated by the Randles circuit (Eq. (24)) 
and the Simulink model (Fig. 8). Eqs. (35) and (36) have been adapted 
and considered from the study of Song and Bazant [38]. 

ΔZR =
1
K
∑

k

ZRrandles(ωk) − ZRsimulink(ωk)⃒
⃒Zrandles(ωk)

⃒
⃒

(35) 

Fig. 8. Simulink architecture to simulate the voltage output of the PEFC considering the current as input. Er is the reversible potential, Re is the ohmic resistance, Rc 
is the charge transfer resistance, Zw is the transfer function representing the FLW impedance (Eq. (32)), and C is the double-layer capacitance. 

Fig. 9. Comparison between impedance response generated by the Randles 
circuit represented in the frequency-domain (Eq. (24)), and impedance 
response generated by the Simulink model (Fig. 8) using the MATLAB script 
reported by Zhivomirov [36]. 
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ΔZI =
1
K
∑

k

ZIrandles(ωk) − ZIsimulink(ωk)⃒
⃒Zrandles(ωk)

⃒
⃒

(36)  

where K is the number of the considered frequencies ω, Zrandles is the 
simulated data generated by the Randles circuit (Eq. (24)), ZRrandles and 
ZIrandles are the real and imaginary components of the simulated data 
generated by the Randles circuit (Eq. (24)) and correspond to the fre
quency ωk, where ZRsimulink and ZIsimulink are the real and the imaginary 
components of the simulated data generated by the Simulink model 
(Fig. 8). The comparison between the impedance spectra generated by 
Eq. (24) and the Simulink model shown in Fig. 9 is evaluated by the 
average of the real (Eq. (35)) and imaginary (Eq. (36)) relative residuals. 
The sum of Eqs. (35) and (36) ΔZ = ΔZR + ΔZI resulted in 7.1688 ×
10− 4. A good agreement between the impedance spectra is obtained 
when the real and imaginary relative residuals have a minimum value 
[38]. 

The dynamic voltage shown in Fig. 10 was simulated by the Simulink 
model shown in Fig. 8 and considering the following parameters: ER =

0.92 V, Re = 0.0139 Ω, RC = 0.0053 Ω, C = 0.989 F, RW = 0.00635 Ω, 
and τW = 0.779. These parameters were reported by Rubio et al. [10] 
and were estimated by fitting an electrical circuit with the dynamic 
voltage measured during a current-interrupt test in a PEFC. The elec
trical circuit reported by Rubio et al. [10] considered an approximation 
of the FLW impedance through a parallel configuration between re
sistors and capacitors. Thereafter, the authors simulated the impedance 
spectrum generated by the proposed electrical circuit. A step-change in 
current was considered in the Simulink model shown in Fig. 8. A current 
value of Icell = 13 A was initially considered at t = 0 s and the voltage 
output of the PEFC at steady-state resulted in 0.587 V as shown in 
Fig. 10. Thereafter the current was stepped down Icell = 0 A at t = 5 s. 
Stepping the current to a zero value can be analogous to a current- 
interrupt test during PEFC operation. Fig. 10 shows the dynamic 
output voltage of the PEFC during a current-interrupt incident. 

The simulation of the voltage output of the PEFC shows a vertical- 
line feature as the current is stepped down to zero. The magnitude of 
the vertical-line feature of the dynamic voltage at t = 5 s can be 
attributed to ohmic losses in the membrane of the PEFC [39]. The po
tential attributed to the ohmic resistance resulted in IcellRe = 0.1807 V. 
The magnitude of the vertical-line feature of the PEFC voltage Vcell is 
approximately 0.1807 V as shown in Fig. 10. The magnitude of the 
vertical-line feature of the PEFC voltage Vcell is proportional to the 
ohmic resistance Re. The vertical-line feature is related to electro
chemical mechanisms in the membrane (dielectric relaxation time [40]) 
of the PEFC with a small time constant. Buchi et al. [40] reported that 
the available time window for membrane resistance measurements 
using current-interrupt test is between 5 × 10− 10s and 10− 8s. Mea
surement equipment with high bandwidth is required to record the fast 

transient response of the PEFC during a current-interrupt test [41]. 
An exponential increase in voltage Vcell until reaching the value of 

the reversible potential ER = 0.92 V is observed in Fig. 10. The time for 
the voltage output of the PEFC to reach the steady-state value is 
attributed to the time constant of the charge transfer in the electrode/ 
electrolyte interface (double-layer capacitance) τC = [RC + RW]Cdl, the 
time constant for the reactant diffusion process τW and dielectric 
relaxation time constant of the membrane. The diffusion time constant is 
higher than the time constant of the double-layer capacitance τW > τC. 
The magnitude of the exponential voltage at t = 5 s until reaching a 
steady-state value is Icell[RC + RW] as shown in Fig. 10. Rubio et al. [10] 
estimated the diffusion time constant τW by fitting an electrical circuit 
comprised of resistors and capacitors with the experimental dynamic 
voltage measured during a current-interrupt test in a PEFC. Under this 
consideration, the estimated value of the diffusion time constant τW may 
be overestimated and may actually represent the value of the time 
constant τs from a parallel resistor-capacitor electrical configuration at a 
frequency where the imaginary component of the impedance spectrum 
reaches its minimum value − Zj (the summit of the impedance spectrum). 
As previously discussed in the introduction, the diffusion time constant 
τW is a factor 2.53 higher than the time constant τs. Increasing the 
diffusion time constant increases the time for the output voltage of the 
PEFC to reach the steady-state. The estimation of the electro-diffusion 
time constant from the dynamic output voltage of the PEFC could be 
achieved if the Simulink model represented in Fig. (8) considering the 
transfer function of the FLW impedance (Eq. (32)) is fitted to the 
experimental dynamic voltage measured from a current-interrupt test in 
a PEFC. This however is the aim of future work. The estimation of the 
parameters of the Simulink model from experimental data can be ach
ieved with the use of the Simulink toolbox “Simulink Design Optimi
zation” [42]. 

4.1.1. Voltage output of a PEFC with and without microporous layers 
Malevich et al. [11] reported EIS measurements carried out in a 100 

cm2 H2/air PEFC with and without microporous layers (MPLs) attached 
to the gas diffusion layers (GDLs) and operated at a current density of 0.5 
A/cm2. The authors fitted the Randles circuit considering FLW imped
ance with the EIS measurements. The parameters reported by Malevich 
et al. [11] are shown in Table 1 and are considered in the Simulink 
model represented in Fig. 8 to simulate the effect of the MPLs on the 
dynamic output voltage of the PEFC. The parameters shown in Table 1 
demonstrate that it is not straight forward to determine the role of the 
MPLs on PEFC performance because the diffusion parameters estimated 
from EIS-PEFC measurements can be related to either the GDL or CCL. 
The MPL could have removed water from the GDL and increased the 
amount of liquid water in the CCL. Under this condition a reduction of 
the oxygen diffusion resistance RW in the GDL is expected as shown in 
Table 1. Nevertheless, a lower oxygen diffusion time constant τW in the 
PEFC with MPLs compared with the PEFC without MPLs would be ex
pected because the diffusivity of oxygen through the GDL is increased 
and the effective diffusion distance is reduced. The relation between 
oxygen diffusion resistance RW and oxygen diffusion time constant τW 
for PEFCs with and without MPLs shown in Table 1 has been discussed in 
the study of Malevich et al. [11]. A change in double-layer capacitance 
in PEFCs considering MPLs compared with PEFCs without MPLs would 
be expected and Roy and Orazem [43] reported an increase of the 

Fig. 10. Simulated dynamic voltage generated by the Simulink model (Fig. 8). 
The dynamic voltage represents the voltage output of a PEFC during a current- 
interrupt test. The current Icell is stepped down from 13 A to 0 A. 

Table 1 
Parameters reported in the study of Malevich et al. [11] estimated by fitting the 
Randles circuit with EIS measurements carried out in a 100 cm2 H2/air PEFC at 
0.5 A/cm2.  

PEFC Re/Ω RC/Ω RW/Ω τW/s Cdl/F 
[43,44] 

with MPL 1.7 × 10− 4  0.0019 9 × 10− 4  0.172  1.116 
without MPL 1.5 × 10− 4  0.0024 0.0032  0.0689  0.372  
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interfacial capacitance in PEFCs with MPLs. Malevich et al. [11] re
ported the parameters shown in Table 1, but did not report the value of 
the double-layer capacitance Cdl in the CCL; therefore as a first 
approximation, the capacitance Cdl = 0.372 F reported by Rubio et al. 
[44] will be considered in the simulation of the voltage output of the 
PEFC without MPLs. The capacitance Cdl = 0.372 F reported by Rubio 
et al. [44] was estimated by fitting the Randles circuit with EIS mea
surements carried out in a 100 cm2 H2/air PEFC. An increase of capac
itance 3Cdl will be considered in the simulation of the voltage output of 
the PEFC with MPLs. The increase of capacitance by 3Cdl is consistent 
with the results reported by Roy and Orazem [43] for a PEFC with MPLs 
compared with a PEFC without MPLs operated at 0.5 A/cm2. 

Fig. 11 shows the impedance spectrum generated by the Randles 
circuit shown in Fig. 2 represented by Eq. (24) and the impedance 
spectrum generated by the Simulink model shown in Fig. 8. The pa
rameters shown in Table 1 and the range of frequencies from 2 kHz 
down to 0.02 Hz were considered in the simulated impedance spectra 
shown in Fig. 11. The MATLAB script reported by Zhivomirov [36] was 
considered to simulate the impedance spectra generated by the Simulink 
model shown in Fig. 8. As previously discussed, the MATLAB script re
ported by Zhivomirov [36] defines a sinusoidal signal input at different 
frequencies and calculates the Fourier transform of the time-domain 
input and output signals of the Simulink model shown in Fig. 8. The 
diameter of the first semicircle from the high-low frequency region 
represents the charge transfer resistance RC during the ORR, and the 
diameter of the second semicircle in the low frequency range represents 
the oxygen diffusion resistance RW. The impedance spectrum related to 
the PEFC with MPLs presents a lower magnitude than the impedance 
spectrum related to the PEFC without MPLs. The semicircles repre
senting the charge transfer process and oxygen diffusion process can be 
masked and overlapped in a single impedance spectrum at a very low 
value of the oxygen diffusion time constant [37]. The sum ΔZ = ΔZR +

ΔZI of the average of the real (Eq. (35)) and imaginary (Eq. (36)) relative 
residuals of the simulated impedance spectra shown in Fig. 11 resulted 
in ΔZ = 0.0027 for the case PEFC with MPL and ΔZ = 0.0031 for the case 
PEFC without MPL. 

Fig. 12 shows the output voltage of the PEFC simulated by the 
Simulink model shown in Fig. 8 considering the parameters shown in 
Table 1. The simulation results shown in Fig. 12 were carried out with a 
step-change in current from I = 50 A at t = 0 s to I = 0 A at t = 5 s. The 
simulated output voltage during a step-change in current at I = 0 A is 
analogous to the measured voltage of the PEFC during a current- 
interrupt test. A lower output voltage of the PEFC at I = 50 A results 
when the Simulink model considers the parameters from the PEFC 
without MPL. This low value of the output voltage of the PEFC without 
MPL compared with the voltage of the PEFC with MPL is attributed to 
the magnitude of the impedance spectra as shown in Fig. 11. The profile 
of the dynamic voltage of the PEFC with and without MPLs is observed 
in Fig. 12 where the steady-state voltage at 5.5 s represents the revers
ible potential of the PEFC at I = 0 A. The simulated output voltage of the 

PEFC in Fig. 12 is a function of the time constant related to the double- 
layer capacitance τC = [RC + RW]Cdl and the oxygen diffusion time 
constant τW. Fig. 12 demonstrates the importance of considering a 
transfer function of the FLW impedance in the electrical circuit repre
senting the PEFC to simulate the phenomenological processes with 
different time constants in the dynamic output voltage of the PEFC. The 
Simulink model shown in Fig. 8 could also simulate the effect of elec
trochemical mechanisms such as Tafel slope b, diffusion coefficient D, 
diffusion distance δ, bulk concentration cb, double-layer capacitance Cdl 
on the dynamic output voltage of the PEFC. 

5. Other applications 

The Simulink model shown in Fig. 8 could incorporate the de
pendency of the electrochemical parameters of the PEFC with different 
operating conditions such as pressure, temperature and flow rate. For 
instance, the oxygen diffusion coefficient in the GDL can be defined as a 
function of the operating temperature and pressure of the PEFC through 
the empirical relation reported by Iranzo et al. [45]. The electrochemical 
model represented in a Simulink environment and shown in Fig. 8 can 
also be implemented with a Simulink model representing the balance of 
plant of a PEFC system [46]. It would be possible to simulate the dy
namic output voltage of the PEFC during the dynamic change in reactant 
pressure, reactant flow rate and PEFC temperature. It could be a valu
able simulation tool for the development and optimization of different 
control strategies to ensure optimal PEFC performance at different 
operating conditions [47]. The Randles circuit comprising the FLW 
impedance can also be considered to study the phenomenological pro
cesses represented in EIS measurements in solar cells [48,49]. The 
Simulink model shown in Fig. 8 could also simulate and study the dy
namic transient response of solar cells attributed to the diffusion of 
electrical carriers across the diffusive layers of the solar cell. 

5.1. Voltage output of a Li-ion battery 

The FLW impedance has been connected in series with a resistor/ 
capacitor parallel configuration to represent the impedance of a Li-ion 
battery [7]. The FLW impedance has also been considered in a trans
mission line model [16] and Randles circuit [50] to simulate the 
impedance response of a Li-ion battery. Different electrical circuit con
figurations have also been reported to represent the impedance response 
of Li-ion batteries [51–53]. Surya et al. [54] reported a method to es
timate the state of charge (SoC) in Li-ion batteries using MATLAB/ 
Simulink software and the Randles circuit shown in Fig. 2 but neglecting 
the FLW impedance. A better prediction of the SoC in batteries could 

Fig. 11. Impedance spectra representing the PEFC with and without MPLs. The 
impedance spectra are generated by Eq. (24) and Simulink model (Fig. 8) 
considering the parameters from Table 1. 

Fig. 12. Simulated output voltage of a PEFC with and without MPLs during a 
step-change in current. The current step is I = 50 A at t = 0 s and I = 0 A at t = 5 
s. The simulated output voltage during a step-change in current at I = 0 A is 
analogous to the measured voltage of the PEFC during a current-interrupt test. 
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result if the equivalent electrical circuit representing the battery con
siders the diffusion impedance of electrical chargers. It is possible to 
construct a Simulink model considering the transfer function of the FLW 
(Eq. (32)) and other electrical components to simulate the impedance 
response of a Li-ion battery in the frequency-domain and the dynamic 
output voltage of the Li-ion battery in the time-domain. Fig. 13a shows 
the electrical circuit configuration to represent the voltage output of the 
Li-ion battery. A CPE is considered in the electrical circuit configuration 
to simulate the impedance response of the Li-ion battery represented at 
the lowest frequencies during EIS measurements. The impedance of a 
CPE is represented as: 

ZCPE =
1

Y[jω]P (37) 

Y represents a parameter related to the CPE with units sP/Ω, and the 
superscript P represents a parameter to account for roughness at the 
blocking interface of the electrode [55]. For the specific case if super
script P is equal to 1 in Eq. (37); Eq. (37) would represent the impedance 
of an ideal capacitor with Y having units F. Eq. (37) can be represented 
in the Laplace-domain by considering s = jω. The CPE is connected in 
series with the rest of the electrical components in the electrical circuit 
configuration representing the impedance of the Li-ion battery as shown 
in Fig. 13a. The Simulink model of the electrical circuit representing the 
impedance of the Li-ion battery is shown in Fig. 13b. The Simulink 
model comprises the transfer function representing the FLW impedance 
defined in Eq. (32), a transfer function to represent the impedance of the 
parallel connection between the charge transfer resistance Ra and 
capacitance Ca in the anode, and a Simulink block representing a frac
tional operator to account for the frequency dispersion when the 
parameter P from the CPE is different to 1, (Eq. (37) considering sP with 
P ∕= 1 and s = jω). The fractional operator block considered in the 
Simulink model shown in Fig. 13b was taken from the Simulink library 
FOTF Toolbox developed by Xue [56]. FOTF Toolbox has been designed 
for the modelling analysis and the design of fractional-order control 
systems and can be downloaded from MathWorks [57]. The fractional 
operator block shown in Fig. 13b allows the simulation of the impedance 
response of the CPE. 

In a previous study [16], EIS measurements were carried out in a Li- 
Po battery at an open circuit voltage (OCV) of 11.44 V with a range of 
frequencies from 20 kHz to 0.002 Hz. Fig. 14 shows the experimental 
impedance spectrum of the Li-Po battery [16]. The electrical circuit 

configuration shown in Fig. 13a was constructed in ZView software 
(Scribner Associates Inc.) and was fitted to the experimental impedance 
spectrum of the Li-Po battery as shown in Fig. 14. ZView software 
considers the conventional equation of the FLW impedance represented 
in Eq. (19). The resulting parameters from the fitting process carried out 
in ZView software were Re = 0.0187 Ω, Ra = 0.0031 Ω, Ca = 3.19 F, Rc =

0.0057 Ω, Cc = 0.229 F, RW = 0.0156 Ω, τW = 17.87 s, Y = 892.2 sPΩ− 1, 
and P = 0.7. The aforementioned parameters were considered in the 
Simulink model shown in Fig. 13b to simulate the output voltage of the 
Li-Po battery in the time-domain. Before proceeding with the simulation 
of the voltage output of the Li-Po battery, the MATLAB script reported by 
Zhivomirov [36] was considered to simulate the impedance response of 
the Simulink model shown in Fig. 13b in the frequency-domain. The 
MATLAB script reported by Zhivomirov [36] was previously considered 
in Section 4.1. The MATLAB script defines a sinusoidal signal input at 
different frequencies and calculates the Fourier transform of the time- 
domain input and output signals of the Simulink model shown in 
Fig. 13b. 

Fig. 14 shows that the Simulink model shown in Fig. 13b can simu
late the measured impedance spectrum of the Li-Po battery and also 
shows the contribution of the FLW impedance on the impedance spec
trum. A disagreement between the experimental spectrum and the 
simulated impedance spectrum from the Simulink model is present at 
the lowest frequencies as shown in Fig. 14. This disagreement in the 

Fig. 13. Modelling architecture to simulate the 
voltage output of a Li-ion battery in a Simulink 
environment, a) equivalent electrical circuit, b) 
Simulink model, I is the current input, Eoc is the 
voltage measured at open-circuit, Re is the ohmic 
resistance, Ra and Ca are the charge transfer resis
tance and capacitance in the anode, Rc and Cc are the 
charge transfer resistance and capacitance in the 
cathode, Zw is the transfer function representing the 
FLW impedance (Eq. (32)), Y is a parameter from the 
CPE impedance (Eq. (37)).   

Fig. 14. Comparison between experimental impedance spectrum of the Li-Po 
battery, simulated impedance spectrum generated by the Simulink model 
(Fig. 13b) and fitted impedance spectrum considering ZView software. 
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lowest frequency region is mainly attributed to the fractional operator 
block shown in Fig. 13b representing the Laplace operator 1/sP of the 
CPE. The fractional operator block in Simulink was developed by Xue 
[56] and allows the user to select different filters such as Oustaloup and 
Matsuda-Fuki filters as well as the approximation order of the Laplace 
operator sP. Perhaps a correct selection of the filter and approximation 
order in the fractional operator block could improve the simulation re
sults from the Simulink model shown in Fig. 14 at the lowest frequencies 
(impedance of CPE). The comparison between the experimental 
impedance spectrum and the impedance spectrum generated by the 
Simulink model shown in Fig. 14 is evaluated by the average of the real 
(Eq. (35)) and imaginary (Eq. (36)) relative residuals. The sum of Eqs. 
(35) and (36) ΔZ = ΔZR + ΔZI resulted in 0.025. The resulting value of 
ΔZ could be reduced by improving the simulated response of the frac
tional operator block (CPE) represented at the lowest frequencies of the 
impedance spectrum as shown in Fig. 14. 

The aim of this study is not to discuss the values of the parameters 
from the electrical circuit representing the impedance of the Li-ion 
battery as different electrical circuit configurations can reproduce the 
same set of EIS measurements. For instance, in the previous study [16], 
the experimental impedance spectrum shown in Fig. 14 was analysed 
with an electrical circuit configuration consisting of a transmission-line 
model, FLW impedance and blocked-diffusion Warburg impedance. The 
aim of this study is to demonstrate that the developed transfer function 
representing the FLW impedance (Eq. (32)) can be considered in the 
electrical circuit configuration representing the Li-Po battery to simulate 
the impedance response in the frequency-domain and dynamic output 
voltage in the time-domain as demonstrated in Figs. 14 and 15. The 
dynamic output voltage of the Li-Po battery is shown in Fig. 15 and is 
simulated with the Simulink model shown in Fig. 13b. A constant 
current-input of 2 A is considered in the Simulink model where a 
decrease in the voltage output of the battery starting at the OCV of 
11.44 V is shown in Fig. 15. The dynamic output voltage of the Li-Po 
battery does not reach a steady-state value. This behaviour is related 
to the fact that the impedance of the battery is increased with decreasing 
frequency during EIS tests. The time constant τW from the FLW imped
ance related to the diffusion of lithium ions in the solution-phase of the 
cathode can be represented in the dynamic output voltage of the Li-Po 
battery. Following the methodology in MATLAB/Simulink reported by 
Surya et al. [54], the Simulink model shown in Fig. 13b considering the 
transfer function representing the FLW impedance (Eq. (32)) could be a 
valuable tool to provide a better prediction of the SoC in the Li-ion 
battery. 

6. Conclusions 

Based on electrode theory, an analytical transfer function to repre
sent the FLW impedance has been derived. The analytical transfer 

function can simulate the impedance spectrum of the FLW impedance in 
the frequency-domain. The developed transfer function representing the 
FLW impedance can be implemented in a Simulink environment to 
simulate the current-input response of the FLW impedance in the time- 
domain. Parameters reported in the literature estimated from experi
mental measurements carried out in PEFCs have been considered to 
validate the new analytical transfer function. This study demonstrated 
that it is possible to simulate the dynamic output voltage of a PEFC 
during a step-change in current using a Simulink model based on the 
Randles circuit and considering the developed transfer function repre
senting the FLW impedance. In addition, this study demonstrated that it 
is possible to simulate the dynamic output voltage of a Li-Po battery 
using a Simulink model based on an electrical circuit configuration 
considering the developed transfer function for the FLW impedance. The 
transfer function representing the FLW impedance can be considered in 
different electrical circuit configurations to simulate the dynamic output 
voltage of electrochemical power systems such as fuel cells, batteries, 
and solar cells. It is therefore possible to obtain an insight into the effect 
of the diffusion mechanisms on the potential dynamic response of 
electrochemical systems. 

List of symbols 

A bar over a letter represents the Laplace transform s of the variable, 
e.g. c̄(x, s), Ē(s), īF(s). 
b Tafel slope (V) 
Cdl capacitance between dissimilar materials (F/cm2) 
c local concentration of electroactive species (mol/cm3) 
cb reactant bulk concentration (mol/cm3) 
cδ reactant concentration in the electrode surface (mol/cm3) 
cb
∼ oscillating reactant bulk concentration (mol/cm3) 
cδ
∼ oscillating reactant concentration in the electrode surface 

(mol/cm3) 
D diffusion coefficient (m2/s) 
E potential in the electrode (V) 

E
∼

oscillating potential (V) 
F faraday constant (96,485 C/mol) 
f frequency (Hz) 
i current density considering faradaic and non-faradaic current 

density (A/cm2) 
iF faradaic current density (A/cm2) 
i0 exchange current density (A/cm2) 

iCdl

∼

oscillating charge capacitance current density (A/cm2) 

iF
∼

oscillating Faradaic current density (A/cm2) 
j imaginary component in impedance 
P parameter related to CPE (dimensionless) 
R ideal gas constant (8.3143 J/mol-K) 
RC charge transfer resistance in cathode (Ωcm2) 
Re ohmic resistance in electrolyte (Ωcm2) 
RW resistance for the diffusion process of electroactive species 

(Ωcm2) 
T temperature (K) 
t time (s) 
Y parameter related to CPE (sP/Ωcm2) 

ZW
∼

conventional equation of the finite-length Warburg 
impedance (Ωcm2) 

Z̄W transfer function representing the finite-length Warburg 
impedance (Ωcm2) 

z electrons released or consumed 

Greek 

δ diffusive distance for electroactive species (m) 
η overpotential (V) 

Fig. 15. Simulated output voltage of the Li-Po battery generated by the 
Simulink model (Fig. 13b) considering a constant current of 2 A. 
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ηSS steady-state overpotential (V) 
τC time constant related to the double-layer capacitance (s) 
τs time constant related to the summit of the impedance 

spectrum (s). 
τW time constant to diffuse electroactive species (s) 
ω angular frequency (rad/s) 
φ∼ ratio between oscillating reactant concentration in the 

electrode surface and oscillating reactant bulk concentration, 
dimensionless. 
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Appendix A. Solution of the inverse Laplace transform by the Heaviside's Expansion Theorem 

Rearranging Eq. (17) yields: 

c̄δ = c̄b −
c̄δ

c̄b

E
zFRC

̅̅̅̅
D

√
sinh

(
δ
̅̅̅̅̅̅̅̅
s/D

√ )

̅̅
s

√
cosh

(
δ
̅̅̅̅̅̅̅̅
s/D

√ ) (A.1) 

Representing Eq. (A.1) with the inverse Laplace transform: 

L
− 1
[c̄δ] = L

− 1
[c̄b] − L

− 1

⎡

⎣c̄δ

c̄b

E
zFRC

̅̅̅̅
D

√
sinh

(
δ
̅̅̅̅̅̅̅̅
s/D

√ )

(s)1/2cosh
(

δ
̅̅̅̅̅̅̅̅
s/D

√ )

⎤

⎦ (A.2) 

Expressing Eq. (A.2) in terms of the Laplace domain with Ē = E/s, c̄b = cb/s and c̄δ = cδ/s yields: 

cδL
− 1
[

1
s

]

= cbL
− 1
[

1
s

]

−
cδ

cb

E
zFRC

̅̅̅̅
D

√ L
− 1

⎡

⎣
sinh

(
δ
̅̅̅̅̅̅̅̅
s/D

√ )

(s)3/2cosh
(

δ
̅̅̅̅̅̅̅̅
s/D

√ )

⎤

⎦ (A.3) 

Solving the inverse Laplace transform of the second term on the right-hand side of Eq. (A.3) by the Heaviside's Expansion Theorem yields: 

L
− 1

⎡

⎣
sinh

(
δ
̅̅̅̅̅̅̅̅
s/D

√ )

(s)3/2cosh
(

δ
̅̅̅̅̅̅̅̅
s/D

√ )

⎤

⎦ = L
− 1
[

p(s)
q(s)

]

=
∑m

y=1

p
(
sy
)

q′
(
sy
)exp

(
tsy
)

(A.4)  

where sy are the distinct roots of the equation q(s): 

(s1)
3/2

= 0

cosh
( ̅̅̅̅

sk

D

√

δ
)

= 0
(A.5) 

Considering a trigonometric identity in the second pole of Eq. (A.5) yields: 

cosh
( ̅̅̅̅

sk

D

√

δ
)

=

exp
( ̅̅̅̅sk
√

̅̅̅̅
D

√ δ
)
+ exp

(
−

̅̅̅̅sk
√

̅̅̅̅
D

√ δ
)

2

=

exp
(

2
̅̅̅̅sk

√

̅̅̅̅
D

√ δ
)
+ 1

2exp
( ̅̅̅̅sk
√

̅̅̅̅
D

√ δ
)

= 0

(A.6) 

considering 

exp
( ̅̅̅̅sk
√

̅̅̅̅
D

√ δ
)

= x (A.7) 

Substituting Eq. (A.7) into Eq. (A.6) yields x2+1
2x = 0 which results in 

x =
̅̅̅̅̅̅̅
− 1

√
(A.8) 

Substituting Eq. (A.8) into Eq. (A.7) yields: 
̅̅̅̅sk

√

̅̅̅̅
D

√ δ = ln
( ̅̅̅̅̅̅̅

− 1
√ )

(A.9) 

considering exp(jπ[2k + 1]) = − 1 with k = 0, 1, 2, . …n, and substituting into A.9 yields: 

S. Cruz-Manzo and P. Greenwood                                                                                                                                                                                                          



Journal of Energy Storage 55 (2022) 105529

13

̅̅̅̅sk
√

̅̅̅̅
D

√ δ = ln
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

exp(jπ[2k + 1] )
√ )

(A.10) 

Eq. (A.10) can be expressed as 

sk = [2k + 1]2
j2π2D
4δ2 (A.11) 

Once the poles defined in Eq. (A.5) and Eq. (A.11) have been estimated, it is possible to apply the Heaviside's Expansion Theorem to calculate the 
inverse Laplace transform of Eq. (A.4). From Eq. (A.4) it can be defined: 

p(s) = sinh
(

δ
̅̅̅̅̅̅̅̅
s/D

√ )

q(s) = (s)3/2cosh
(

δ
̅̅̅̅̅̅̅̅
s/D

√ )

q′

(s) =
3
2
(s)1/2cosh

(
δ
̅̅̅̅̅̅̅̅
s/D

√ )
+

sδ
2
̅̅̅̅
D

√ sinh
(

δ
̅̅̅̅̅̅̅̅
s/D

√ )
(A.12) 

If pole (s1)3/2 = 0 is substituted in Eq. (A.4) considering Eq. (A.12), an indeterminate solution results. It seems that the solution of the inverse 
Laplace of Eq. (A.4) should be derived through a different mathematical approach. Nevertheless, as a first approximation the pole (s1)3/2 = 0 will not 
be considered in Eq. (A.4). This can have a consequence in the calculation of the frequency response of the transfer function of the FLW impedance to 
be defined. This effect is discussed in Section 3. Substituting the pole expressed in Eq. (A.11) and neglecting the pole (s1)3/2 = 0 in Eq. (A.4) and 
considering Eq. (A.12) yields: 

L
− 1

⎡

⎣
sinh

(
δ
̅̅̅̅̅̅̅̅
s/D

√ )

(s)3/2cosh
(

δ
̅̅̅̅̅̅̅̅
s/D

√ )

⎤

⎦ =
∑n

k=0

− 8δ
[2k + 1]2π2

̅̅̅̅
D

√ exp

(

−
[2k + 1]2π2D

4δ2 t

)

(A.13) 

The inverse Laplace Transform of Eq. (A.1) considering Eq. (A.13) yields: 

cδ

cb

[

1+
∑n

k=0

− 8δE
[2k + 1]2π2zFRCDcb

exp

(

−
[2k + 1]2π2D

4δ2 t

)]

= 1 (A.14)  

Appendix B. MATLAB script for simulation of the impedance spectrum of the transfer function representing the FLW impedance

The effect of the parameter n expressed in the summation expression of Eq. (32) on the impedance spectrum is shown in Fig. B1. 
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Fig. B1. Impedance spectrum generated at different values of the parameter n in the summation expression of Eq. (32).  
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