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Abstract: Olfactory hedonic evaluation is the primary dimension of olfactory perception and thus
central to our sense of smell. It involves complex interactions between brain regions associated with
sensory, affective and reward processing. Despite a recent increase in interest, several aspects of
olfactory hedonic evaluation remain ambiguous: uncertainty surrounds the communication between,
and interaction among, brain areas during hedonic evaluation of olfactory stimuli with different
levels of pleasantness, as well as the corresponding supporting oscillatory mechanisms. In our
study we investigated changes in functional interactions among brain areas in response to odor
stimuli using electroencephalography (EEG). To this goal, functional connectivity networks were
estimated based on phase synchronization between EEG signals using the weighted phase lag
index (wPLI). Graph theoretic metrics were subsequently used to quantify the resulting changes
in functional connectivity of relevant brain regions involved in olfactory hedonic evaluation. Our
results indicate that odor stimuli of different hedonic values evoke significantly different interaction
patterns among brain regions within the olfactory cortex, as well as in the anterior cingulate and
orbitofrontal cortices. Furthermore, significant hemispheric laterality effects have been observed
in the prefrontal and anterior cingulate cortices, specifically in the beta ((13–30) Hz) and gamma
((30–40) Hz) frequency bands.

Keywords: electroencephalography; brain connectivity; olfaction; hedonic evaluation; lateralization

1. Introduction

Hedonic evaluation is integral to our sense of smell, and, in this context, subjective
pleasantness is a primary dimension in the perceptual characterization of olfactory stim-
uli [1]. Even though humans are remarkably capable at discriminating between odors
differing by small molecular variations [2]—owing to the sheer diversity of receptor types
inhabiting the olfactory epithelium [3]—the ability to verbally identify odors is relatively
poor. Yet, humans can readily and reliably appraise odors in terms of their pleasantness,
so much so that pleasantness/hedonic tone is the most prominent descriptor organizing
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the semantic space for olfactory objects [4]. Olfactory hedonic evaluation may be par-
tially innate [5], as it would be evolutionarily beneficial to determine if a foodstuff is
edible/nutritious, or if a prospective mate is compatible, based on the pleasing qualities of
olfactory cues [6].

Evidence obtained via structural and functional neuroimaging also demonstrates the
centrality of hedonic processing in olfactory perception. There is considerable overlap in
the functional neuroanatomy underlying olfactory, affective and reward processing [7].
After chemosensory registration of the odorant at the epithelium, olfactory neural signals
are conveyed to the olfactory bulb and then to the primary olfactory cortex (OLF), which
mainly encodes the identity [8] and sensory attributes (e.g., intensity/concentration) of
the olfactory stimulus [9]. The olfactory cortex then projects to two major centers of affec-
tive/reward processing—the amygdala and the orbitofrontal cortex (OFC). The amygdala
rapidly and automatically processes the emotional content of sensory stimuli [10]. The OFC
is the key hub that codes for odor pleasantness [11], as well as reward [12], and has di-
rect bidirectional structural connections with the amygdala [13]. The OFC projects to the
medial prefrontal cortex (mPFC), which supports explicit evaluation of stimulus-based
emotional [14] and reward value [15] underlying value-guided decision-making. The OFC
also projects to the anterior cingulate cortex (ACC), which processes the rewarding value
of stimuli and facilitates reward-driven learning and action [16].

Despite these advances, there exist several issues that demand further inquiry. First,
while it is understood that olfactory hedonic processing is implemented across multiple
brain areas, it is unclear how these brain areas communicate and interact with each other
during online hedonic evaluation of odors. Furthermore, olfactory hedonic processing
occurs on a fast timescale, with cortical responses occurring as soon as 250 ms following
stimuli, and further cognitive and behavioral responses unfolding within several hun-
dred milliseconds [17]. Neuroimaging research on the topic, based mostly on functional
magnetic resonance imaging (fMRI), has been limited in exploring fast temporal scale
activity. Moreover, such studies often rely on analyzing neural activation patterns of in-
dividual brain areas [18,19], with a dearth of publications directly examining functional
connectivity among them. The majority of previous efforts utilizing EEG [20–23] also lack
this focus. However, deeper insights into olfactory hedonic processing can be drawn via
network-based connectivity analyses that complement prior activation studies. In this
direction, the handful of olfaction studies employing EEG functional connectivity analysis
are focused on limited characterizations of global changes to the connectivity network in
response to pleasant and unpleasant stimuli, or without an investigation of the relevant
brain regions using graph theoretic metrics [24,25]. Other efforts focused on collateral
cognitive processes (not hedonic processing), such as attention to stimuli [26] or patholog-
ical aspects [27]. In previous works, we investigated cortical integration mechanisms by
assessing cross-frequency hubs [28] and functional network communities [29]. However,
these studies were limited to investigating specific frequency bands.

Second, uncertainty still surrounds the lateralization of hedonic processing in the
brain. Hedonic appraisal of positive experiences has been thought to implicate the left
hemisphere more so than its right counterpart [18,30]. However, some studies have found
a right-hemispheric bias in neural activation [31,32], while others report no discernible
lateralized effects [33]. Therefore, it is of interest to revisit the issue of laterality in pleasant-
ness evaluation—with respect to olfactory stimulation—this time approaching from the
perspective of connectivity.

Third, particular relevance pertains to the application of functional connectivity analy-
sis in the context of stimuli featuring the same valence level (the hedonic tone of an event).
Previous studies [20,21,34] compare pleasant to unpleasant stimuli. However, since va-
lence tends to dominate olfactory perception [35], it is preferable to compare pleasant-only
stimuli with different levels of pleasantness. This prevents extraneous influences of binary
valence (i.e., pleasant/unpleasant) on neural activity. These three points mark the main
contributions of the present work.
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The objective of this study is to analyze functional connectivity of the olfactory hedonic
network during exposure to exclusively pleasant olfactory stimuli. Electroencephalography
(EEG) was chosen due to its high temporal resolution. This allows unraveling of the fast
timescales at which olfactory hedonic responses occur, as well as scrutinizing oscillatory
mechanisms involved at different frequency bands. EEG signals were recorded while par-
ticipants were presented with exclusively pleasant odors (fragrances); these were rated on
pleasantness and intensity immediately after each presentation. The EEG data underwent
source localization to uncover the activity of five selected brain areas—the amygdala, OFC,
mPFC, ACC and the olfactory cortex—whose involvement in olfactory processing has
been discussed previously. Functional connectivity and graph theoretic analyses were
subsequently performed in an exploratory manner in the delta ((1–4) Hz), theta ((4–8) Hz),
alpha ((8–13) Hz), beta ((13–30) Hz) and gamma ((30–40) Hz) frequency bands, as prior
literature documents significant EEG modulations within these ranges during olfactory
perception [36,37]. To our knowledge, these efforts present the first EEG-based study
investigating functional connectivity during the hedonic evaluation of exclusively pleasant
olfactory stimuli.

It was hypothesized that fragrances of different levels of pleasantness (high vs. low)
elicit significantly different network connectivity patterns across brain areas, which are
quantified in terms of standard metrics (provided by graph theory), and across brain
hemispheres. Elevated connectivity may be found in both left- and right-hemisphere brain
areas, respectively, as previous literature on the topic presents non-uniform conclusions.

2. Materials and Methods

This section outlines the experimental design, collection and processing of data, as well
as the construction of pertinent functional connectivity networks. Subsequently, the mathe-
matical and statistical frameworks underlying relevant analyses are introduced.

2.1. Participants

Twenty-one female subjects aged 21 to 45 were recruited. Exclusion criteria con-
sisted of respiratory dysfunctions, neurological disorders, disorders affecting the olfactory
system, or presence of any metallic implants that could affect data quality. Approval of
the experimental protocol was granted by the Institution Review Board (IRB) of the Na-
tional University of Singapore (study reference code N-18-051). Subjects received monetary
remuneration for participating in the study.

2.2. Experimental Design

Subjects were blindfolded to avoid the influence of any visual stimuli on brain activity
and equipped with a nasal respiration sensor for the monitoring of breathing. The experi-
ment was conducted in a temperature-controlled, isolated laboratory room to prevent noise
and other confounding influences from affecting data acquisition and the presentation of
odors. Four olfactory stimuli consisting of exclusively pleasant fragrances (as prepared
by a perfumery professional) were used, with subjective pleasantness and intensity being
monitored via behavioral questionnaires. Subjects were presented one fragrance at a time
over a trial period lasting 8 s. The experiment comprised a randomized sequence of ten
trials for each fragrance, totaling 40 exposures. Following each trial, subjects were asked to
instantly rate the pleasantness and intensity of the presented stimulus on a scale of 0 to 10.
The inter-trial interval was kept at 2 min and—to avoid odor masking—coffee beans were
presented to the subjects after each trial, following completion of stimulus rating [23]. The
behavioral questionnaire scores were then considered to identify the two fragrances with
the highest and lowest pleasantness ratings, respectively. Only the 20 corresponding trials
(10 each for the high- and low-pleasantness stimulus) were used for further data analysis.
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2.3. EEG Data Acquisition & Preprocessing

EEG signals were recorded using a standard 64-channel ANT-Neuro cap at a sam-
pling rate of 512 Hz using Ag/AgCl electrodes. Conductive electrolyte gel was applied
between the scalp and the electrodes; impedance was kept below 5 kΩ. The EEGLAB
toolbox [38] was used to preprocess the raw data, first down-sampling it to 256 Hz and
then applying a bandpass filter (zero-phase Butterworth type filter, 4th order) from 1 Hz to
40 Hz. Signal artifacts caused by muscle movements were removed via automatic artifact
rejection (AAR) [39]. EEG signals were subsequently re-referenced to the common average.
Corresponding to the trial length (8 s), the data was then epoched to extract segments
of 1 s each, and independent component analysis (ICA) was conducted to remove eye
movement related artifacts [40]. For this purpose, the FastICA algorithm was run in a
per-subject manner by concatenating all trials of a subject. The ICLabel classifier was then
used to inform artifactual independent components rejection, with a threshold level of 90%
confidence [41].

2.4. Functional Connectivity Network Construction

Subsequently, source localization was performed using standardized-Low Resolution
Electromagnetic Tomography (s-LORETA) to estimate the cortical sources generating the
recorded scalp level EEG signals [42]. The s-LORETA software extracted voxel-based
activation information, which was further parceled into established anatomical regions of
interest (116 ROIs), based on the Automatic Anatomical Labeling (AAL) atlas [43]. ROIs
corresponding to cerebellar and sub-cortical regions were discarded, resulting in a set
of size n = 80. To construct functional connectivity networks from the EEG time series,
each ROI was considered as a node, with individual functional connections between them
as edges. These connections were calculated using the weighted phase lag index (wPLI),
which estimates functional connectivity based on the phase-synchronization of current
source density values [44], and has the advantage of being less sensitive to noise and
volume conduction effects [45]. As seen in Figure 1, the result is a 80 × 80 adjacency matrix.
Figure S1, located in the supplementary materials, shows a more detailed representation
of network construction from EEG time series. Functional connectivity networks were
constructed for the following frequency band-ranges: delta ([1–4] Hz), theta ([4–8] Hz),
alpha ([8–13] Hz), beta ([13–30] Hz) and gamma ([30–40] Hz).

Afterwards, Dimitriadis’ orthogonal minimum spanning tree (OMST) algorithm [46]
was used for topological filtering of said matrices; this thresholding procedure has the ad-
vantage of yielding reproducible networks [47]. At the same time, compared to traditional
sparsity thresholding, applying OMSTs yields more biologically relevant functional net-
works by not differentiating weak from strong connections. They also retain the advantage
of minimal spanning trees, as resulting networks contain no isolated nodes [48].

2.5. Graph Theoretic Metrics & Analysis

To characterize neural responses to pleasant fragrance stimuli, several graph theoretic
metrics were estimated, including the weighted nodal degree (WD), betweenness centrality
(BC) and clustering coefficient (CC). These can capture changes in the configuration of
functional connectivity networks in response to different stimuli, both in terms of localized,
as well as distributed processing [49].

As elaborated by Fornito et al. [49], the nodal degree is a commonly used metric to
characterize localized, segregated functional activity, by means of quantifying the number
of each ROI’s functional connections. The weighted degree, by extension, also incorporates
the strength of these connections, by summing the weight of the edges a node is connected
to [49]. Sporns [50] describes how the betweenness centrality characterizes integrated
(distributed) brain functional activity by means of estimating how well a given ROI is
embedded within its functional network. BC estimation is based on the proportion of
shortest paths along which an ROI is located, compared to the total number of shortest
paths in the network. Lastly, the clustering coefficient, defined as the probability of finding
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a connection between any two neighbors of a given node [50], describes the “cliquishness”
of a typical neighborhood and measures network integration/segregation [51].

Figure 1. Overview of the study’s methodology. EEG signals recorded in response to pleasant
olfactory stimuli exposure (A) were preprocessed and source localization was performed to estimate
the cortical sources generating scalp level signals (B). Then, functional connectivity between source-
level EEG signals was estimated using the weighted phase lag index (wPLI), yielding 80 × 80
adjacency matrices that store pairwise connectivity values between sources (ROIs). The wPLI matrices
were subject to further thresholding based on orthogonal minimum spanning trees (OMST) (C),
resulting in functional connectivity networks that were analyzed (D) to estimate graph theoretic
metrics (nodal degree, clustering coefficient, betweenness centrality). Using said metrics, statistical
analyses were carried out to quantify cortical dynamics induced by olfactory stimuli of different
perceived pleasantness. This included direct comparisons of experimental factors via paired samples
t-tests, as well as utilizing graph metrics to assess hemispheric laterality effects.

The aforementioned graph metrics were computed for both pleasantness conditions
(averaged across the respective 10 high and low pleasantness trials) for each subject. Paired
samples t-tests were subsequently used to identify statistically significant differences be-
tween high- and low-pleasantness stimuli within individual regions. Results were corrected
for multiple testing in accordance with the procedure introduced by Storey [52]; the a
priori probability was set at 0.05. To avoid any extraneous influence of multiple sniffs on
cortical activity—see Kareken et al. [53]—all statistical analyses were confined to the first
1000 milliseconds of fragrance exposure and as such solely within the first sniff. The one-
second window was chosen because it is long enough for odor-evoked cortical responses
to manifest [54], but still within the duration of an average sniff (≈1.6 s [55]).

2.6. Laterality Analysis

In addition to direct comparisons of graph metrics across subjects, the functional preva-
lence of one hemisphere over the other was investigated between pleasantness conditions.
To do so, graph metrics were used to compute a laterality coefficient, defined as:

CL =
metricleft − metricright

metricleft + metricright
(1)

where “metric” denotes a given graph theoretic metric (WD, CC, BC). By definition, CL
has range [−1 1]. When CL > 1 the result is labeled “left dominant” (LD) and, vice versa,
“right dominant” (RD) when CL < 1. To compare laterality coefficients across pleasantness
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conditions (averaged over 10 respective trials for each subject), paired samples t-tests were
used; corrections (a priori probability = 0.05) were performed using Storey’s method [52].

2.7. Olfactory Hedonic Network

To investigate differences in the neural response to olfactory stimuli of different
pleasantness values, and the impact on the underlying olfactory, affective and reward
processing regions, further functional network analysis focused on 14 cortical source
ROIs of the AAL atlas—their location in the brain highlighted by Figure 2—considered to
comprise the OFC, mPFC, OLF, ACC and amygdala. These regions, as discussed in the
introduction, are part of the core network that drives olfactory hedonic processing [7,15].
With respect to the lateral orientation of their constituent ROIs, they were then defined
as: OFCLeft/Right = ORBmidL/R + ORBinfL/R; mPFCLeft/Right = MFGL/R + SFGmedL/R;
OLFLeft/Right = OLFL/R; ACCLeft/Right = ACGL/R; AmygdalaLeft/Right = AMYGL/R. Where
regions were considered to consist of more than one ROI (i.e., OFC, mPFC), the average of
relevant metrics was considered during analysis.

Figure 2. Location of selected AAL ROIs underlying major regions involved in olfactory, affective
and reward processing. Regions comprise a total of 14 nodes: The middle frontal gyrus (MFGL/R),
the superior frontal gyrus, medial part (SFGmedL/R), the anterior cingulate gyrus (ACGL/R), the mid-
dle frontal gyrus, orbital part (ORBmidL/R), the inferior frontal gyrus, orbital part (ORBinfL/R),
the olfactory cortex (OLFL/R) and the amygdala (AMYGL/R).

2.8. Null Network Comparisons

To additionally benchmark whether significant results were statistically unexpected
and due to the topology of a given network, graph null-hypothesis testing was carried
out. As outlined by Váša and Mišić [56], the statistical significance of a network feature x
was evaluated by computing that same network feature on a population of “null models”,
created by systematically disrupting and/or preserving characteristics of the original
network. Comparing, using statistical testing, the original and “null features” then reveals
whether feature x can be attributed to characteristics of the original network that were
unaffected during the creation of null models [56].

To account for inter-subject variability, null-hypothesis testing was carried out at
the trial-level. Wherever statistically significant differences in graph theoretic metrics
or laterality coefficients were observed (between high and low pleasantness conditions),
the randmio_und_connected function, taken from Rubinov and Sporns’ Brain Connectivity
Toolbox [57], was used to create null models. Networks were randomized while degree
distribution was preserved, with the function’s rewiring parameter set to ITER = 10 (the
approximate number of times an edge was rewired). For each of the 10 trials per subject,
the network at hand was randomized a total of 500 times, with the “null-value” of the
corresponding feature (graph metric or laterality coefficient) calculated each iteration;
this was done for both pleasantness levels. The resulting population of 500 null-values
was then averaged across the 10 trials, and – using one-sample t-tests—compared to the
empirically obtained test-values (separately for pleasantness values and corrected using
Storey’s method [52]).
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Subsequently, only data that showed statistically significant differences on the trial-
level was considered for further analysis. Null-values were compared to their empirical
counterparts at the subject-level: the relevant feature (graph metric or laterality coefficient),
computed as the average over the 500 null networks for both pleasantness levels, was
further averaged across the number of trials. Finally, null-values of the features were com-
pared to their empirical counterparts by means of paired-samples t-tests (false discovery
rate (FDR) correction was carried out using Storey’s method [52]).

Consider the following example: the weighted nodal degree of the OLF in the beta
band was found to differ significantly between pleasantness levels. After considering indi-
vidual subjects at the trial-level using one-sample t-tests (n = 500), only those that showed
significant differences were considered for subject-level comparisons: the null-value of
the weighted degree (OLF) for each pleasantness condition was found by computing
said metric on 500 null-networks, averaging results across the network population and
with respect to the number of trials. Paired-samples t-tests were then used to compare
between the null-feature and empirical value, comparing within pleasantness levels (i.e.,
pleasantnesshigh, original vs. pleasantnesshigh, null).

3. Results

Significant outcomes regarding the hedonic evaluation of olfactory stimuli are reported
in this section. This includes an interpretation of the behavioural questionnaires used
to assess pleasantness, as well as results of the functional connectivity analysis using
graph metrics. In addition, pertinent hemispheric laterality effects are summarized, and an
assessment of relevant cortical connections is provided.

3.1. Behavioral Data

Analysis of the self-reported data revealed substantial variations in pleasantness
ratings. All 21 subjects showed statistically significant differences (p < 0.001) between
their ratings of the highest and lowest pleasantness stimuli, respectively. Corresponding
intensity scores did not differ significantly (p = 0.453), confirming that stimulus-related
arousal (perceived intensity) was not modulated meaningfully across different levels of
pleasantness. Figure 3 displays average pleasantness and intensity ratings for all subjects.
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3.2. Graph Metrics & Functional Connectivity

Across the five frequency bands, no statistically significant differences (p > 0.05) in
graph metrics were observed when comparing the values of the metrics in the high vs.
low pleasantness conditions, averaged across all 80 nodes. Considering the regions in the
olfactory hedonic network (Section 2.7), three instances of such significant differences were
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observed. Specifically, as shown in Figure 4, the magnitude of the OLF’s weighted degree
in the beta band (β) is significantly larger during exposure to high-pleasantness stimuli
(p = 0.021, after FDR correction). Conversely, the OFC and ACC were shown to exhibit
significantly larger clustering coefficients (also in the beta band) during exposure to the
low-pleasantness stimuli (p = 0.049 and p = 0.034, respectively; FDR corrected).
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pleasantness stimuli (individual regions, paired samples t-tests), including results of graph null-
hypothesis testing (*: p < 0.01). Plots show results relating to the weighted nodal degree (A) and
clustering coefficient (B). All events were observed in the beta (β) frequency band. FDR-corrected
p-values are depicted; error bars show the standard error.

These results underline the important role played by the OLF, OFC and ACC in mediat-
ing olfactory hedonic processing. The higher nodal degree values shown by the OLF during
exposure to high-pleasantness stimuli indicate the fact that the olfactory cortex strengthens
its role as a processing hub in response to these stimuli. Furthermore, the significant changes
in the clustering coefficient suggest that the OFC and ACC mediate downstream olfactory
processing differently across pleasantness levels. Specifically, the increased specialized (or
segregated) processing observed in the case of low pleasantness stimuli (when compared
to high pleasantness stimuli), highlights the crucial roles played by the OFC and ACC
in olfaction.

Importantly, graph null-hypothesis testing revealed significant differences (p < 0.01;
t-test, FDR-corrected) across the entirety of comparisons between metrics computed on
null-networks and their counterparts in the high- and low-pleasantness conditions.

The dichotomy informing our results (high vs. low pleasantness) stems from be-
havioural data (see Figure 3). To test whether stimuli pleasantness can be reliably predicted
by graph theoretic metrics, binomial logistic regression was carried out for the significant
instances shown in Figure 4. In all three cases (Supplementay Materials, Figure S2, panels A
to C) regression analysis showed a significant relationship between outcome (pleasantness)
and predictor variable (graph metrics). The weighted degree for the OLF (beta band, panel
A of Figure 4) exhibited a negative relationship (odds ratio = 0.421, p = 0.024), while the
clustering coefficient for the OFC and ACC (beta band, panel B in Figure 4) displayed
positive associations (odds ratio > 1 in both cases, p = 0.045 and p = 0.030, respectively).

To further evaluate hub-related functions of the OLF during olfactory perception,
a qualitative analysis of its connectivity preferences within the network of selected ROIs
was carried out. The weighted adjacency matrix representing said network was isolated
from the original 80 × 80 OMST matrix and averaged across the number of trials, as well
as subjects; this was done for high- and low-pleasantness stimuli. As shown in Figure 5,
chord diagrams were then used to display the normalized connectivity weights between
the OLF and remaining network regions. Differences across the high- and low-pleasantness
stimuli for connections between the OLF and OFC (38.7% for high-pleasantness vs. 34.4%
for low-pleasantness), as well as the OLF and mPFC (23.6% for high-pleasantness vs. 27.3%
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for low-pleasantness) are more pronounced than those between the OLF and the ACC or
amygdala (almost no discernible changes).

Figure 5. Chord diagrams outlining normalized connectivity preferences of the olfactory cortex (OLF)
to regions included in the proposed hedonic evaluation model (consisting of OFC, mPFC, OLF, ACC,
AMYG), for high- (panel A) and low pleasantness (panel B) stimuli. Only the beta band ([13–30] Hz)
was considered.

Apart from the OLF, the connectivity preferences for the entirety of the proposed
olfactory hedonic model were assessed as well. Network edges (wPLI values) in the beta
band were averaged across trials and subjects and then sorted by weight; the ten strongest
connections (for both pleasantness levels) are displayed in Figure 6.

Figure 6. Top 10 strongest connections (from the wPLI adjacency matrices) within the hedonic
olfactory model, averaged across subjects and trials. (Panel A) shows the high-pleasantness condition,
(panel B) the low-pleasantness counterpart. Beta band ([13–30] Hz) results are displayed.

The weighted degree of the OLF is larger for the high-pleasantness stimuli (panel
A) when compared to its low-pleasantness counterpart (panel B); this mirrors panel A of
Figure 4. In general, the high-pleasantness stimuli appear to elicit stronger connections
(i.e., larger connectivity weights). On the other hand, the low-pleasantness stimuli seem to
feature more distributed connectivity patterns.

3.3. Laterality

As in the case of graph metrics analysis, no significant differences were observed
when assessing laterality effects across the entire 80 nodes (p > 0.05); this was true for
all five frequency bands. However, when investigating laterality effects of ROIs in the
olfactory hedonic network, significant differences between the two conditions were ob-
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served. Figure 7 shows the medial pre-frontal cortex exhibiting significant differences in
laterality coefficients. Specifically, in the [13–30] Hz range (beta), the low-pleasantness
stimulus appeared to evoke left-dominant activity when computed using the weighted
nodal degree (p = 0.003; t-test, FDR-corrected) and betweenness centrality (p = 0.039;
t-test, FDR-corrected). Conversely, in the gamma band, the high-pleasantness stimulus
elicited a left-dominant response when assessing laterality using the weighted degree
(p = 0.029; t-test, FDR-corrected).

Brain Sci. 2022, 1, 0 10 of 16

served. Figure 7 shows the medial pre-frontal cortex exhibiting significant differences in
laterality coefficients. Specifically, in the [13–30] Hz range (beta), the low-pleasantness
stimulus appeared to evoke left-dominant activity when computed using the weighted
nodal degree (p = 0.003; t-test, FDR-corrected) and betweenness centrality (p = 0.039;
t-test, FDR-corrected). Conversely, in the gamma band, the high-pleasantness stimulus
elicited a left-dominant response when assessing laterality using the weighted degree
(p = 0.029; t-test, FDR-corrected).

WD (β) WD (γ) BC (β)

0.3

0.2

0.1

0

−0.1

−0.2

p = 0.005

p = 0.652

∗

∗∗

p = 0.029

p = 0.065

∗

∗

p = 0.039
p = 0.101

∗

∗∗

La
te

ra
lit

y
C

oe
ffi

ci
en

t
(G

ra
ph

M
et

ri
cs

)

Medial pre-frontal cortex (mPFC)

High Pleasantness High Pl. (Null)
Low Pleasantness Low Pl. (Null)

Figure 7. Statistically significant differences in laterality coefficients between high- and low pleasant-
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testing (*: p < 0.05, **: p < 0.01). Coefficients were computed based on graph metrics; positive
coefficients indicate a left-dominant response, right-dominance is indicated by negative coefficients.
FDR corrected p-values are depicted; error bars show the standard error.

The significant lateralization of the pre-frontal cortex, including its medial regions,
has long been associated with changes in emotional and social behavior, suggesting the
mPFC to play a crucial role in activating different components of emotions [58]. Our results
suggest that the mPFC may also mediate olfactory and emotion processing pathways
through different oscillatory mechanisms in the beta and gamma bands.

Similar to Section 3.2, significant results displayed in Figure 7 were further examined
using binomial logistic regression. Once more, significant relationships between between
outcome (pleasantness) and predictor variable (laterality coefficients) were observed in
all three instances. Panels D to F of Figure S2 in the supplementary materials show these
results. Laterality coefficients computed using the weighted degree and the betweenness
centrality in the beta band showed a positive relationship (odds ratio > 1 in both cases,
p = 0.006 and p = 0.017, respectively). When considering coefficients obtained via the
weighted degree in the gamma band, a negative association was obtained (odds ratio < 1,
p = 0.026).

4. Discussion

In the present study, we sought to investigate how functional connectivity among brain
regions related to olfactory hedonic processing changes in response to stimuli of different
levels of pleasantness. Research characterizing the neural underpinnings of olfactory
processing has seen increasing interest recently, due to the significant behavioral and
clinical relevance of this sensory modality. For example, the hedonic evaluation of odors
has been investigated in relation to obesity [59], pain perception [60] and depression [61].

Figure 7. Statistically significant differences in laterality coefficients between high- and low pleasant-
ness stimuli (individual regions, paired samples t-tests), including results of graph null-hypothesis
testing (*: p < 0.05, **: p < 0.01). Coefficients were computed based on graph metrics; positive
coefficients indicate a left-dominant response, right-dominance is indicated by negative coefficients.
FDR corrected p-values are depicted; error bars show the standard error.

The significant lateralization of the pre-frontal cortex, including its medial regions,
has long been associated with changes in emotional and social behavior, suggesting the
mPFC to play a crucial role in activating different components of emotions [58]. Our results
suggest that the mPFC may also mediate olfactory and emotion processing pathways
through different oscillatory mechanisms in the beta and gamma bands.

Similar to Section 3.2, significant results displayed in Figure 7 were further examined
using binomial logistic regression. Once more, significant relationships between between
outcome (pleasantness) and predictor variable (laterality coefficients) were observed in
all three instances. Panels D to F of Figure S2 in the supplementary materials show these
results. Laterality coefficients computed using the weighted degree and the betweenness
centrality in the beta band showed a positive relationship (odds ratio > 1 in both cases,
p = 0.006 and p = 0.017, respectively). When considering coefficients obtained via the
weighted degree in the gamma band, a negative association was obtained (odds ratio < 1,
p = 0.026).

4. Discussion

In the present study, we sought to investigate how functional connectivity among brain
regions related to olfactory hedonic processing changes in response to stimuli of different
levels of pleasantness. Research characterizing the neural underpinnings of olfactory
processing has seen increasing interest recently, due to the significant behavioral and
clinical relevance of this sensory modality. For example, the hedonic evaluation of odors
has been investigated in relation to obesity [59], pain perception [60] and depression [61].
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Despite a surge in research pertaining olfactory processing, important aspects related to the
widely distributed nature of brain networks involved in the hedonic evaluation of odors
remain to be elucidated.

Previous studies focusing on said evaluation discriminated between pleasant and
unpleasant odours; a widely cited example is a study by Rolls et al. [34], which utilized
fMRI. EEG has also been employed to this end; a 2014 paper by Kroupi et al. [20] and a 2020
publication by Hou et al. [21] directly used EEG signals to compare between pleasant and
unpleasant odors. Another 2016 study [22] used EEG to calculate the approach/withdrawal
index with regards to olfactory stimuli.

The scope of previous research lacks the distinct combination of (a) comparing pleas-
antness levels within the positive segment of the hedonic spectrum (i.e., high vs. low
pleasantness as opposed to pleasant vs. unpleasant) and (b) approaching the topic from the
standpoint of functional connectivity (e.g., employing the wPLI) and quantifiable graph
theoretic metrics. Previous work by our lab [23,62] aimed at using EEG to compare within
pleasantness levels (a), yet lacks the functional connectivity approach (b). To address
this gap and add to the body of previously published work, we performed experiments
in which participants were exposed repeatedly to exclusively pleasant olfactory stimuli,
with neural responses being recorded using EEG. Subsequently, source localization of the
EEG data was performed to estimate source-level signals and the corresponding cortical
regions. Functional connectivity analysis (employing the wPLI) was then performed to
model and quantify changes induced in the functional network. This was accomplished
using graph theoretic metrics, which were computed across all five frequency bands (delta
to gamma).

First, we found that, at the global network level (comprising all 80 cortical ROIs),
there were no statistically significant differences between graph metrics when comparing
between the two conditions. This reinforces our initial hypothesis that brain processing
supporting olfactory hedonic evaluation is facilitated by a more localized network consist-
ing of regions involved in sensory, affective and reward processing, as reported by other
studies [19]. Second, we aimed at characterizing the impact of olfactory stimuli on the
functional connectivity within this olfactory hedonic processing network. Importantly—as
it indicates hub-related activities—the weighted nodal degree for the olfactory cortex was
found to differ significantly during exposure to stimuli of different pleasantness values
(high pleasantness stimuli elicited higher degree magnitudes). This reinforces findings by
Rolls [7], as well as other studies [63,64], who mention this region to be involved in evalu-
ating the pleasantness of odors. It must be noted that previous fMRI research suggests the
dominant function of the primary OLF to be coding for the identity and sensory attributes
of odors [65], further pinpointing the piriform cortex to be responsible for this task.

The multifaceted olfactory percept, of which hedonic evaluation is a major part, is
shaped by projections from the OLF across predominantly higher levels of the olfactory
processing hierarchy. This includes the OFC and ACC, which evaluate the pleasantness and
reward value of odors [7] and may facilitate subsequent behavioral action. In this context,
our findings of significant differences in localized processing at the level of the OFC and
ACC, as indexed by the clustering coefficient metric, support the major role attributed to
the duo in olfactory hedonic evaluation. Interestingly, we observed significantly lower
levels of localized processing activity in these regions in the high pleasantness condition.
We speculate that this may be due to a relative suppression of complex localized cortical
activity, instead favoring interconnections of the OFC and ACC to other regions. However,
this needs to be further investigated in future studies.

Importantly, significant differences in graph theoretic metrics were all observed in the
beta frequency range ([13–30] Hz). Such oscillations have been previously identified to
play a major role in supporting integration of various cortical areas, and across cognitive
systems. The beta band has also been reported to be particularly involved in sensory
perception, as well as being linked to brain mechanisms relevant to olfactory [66] and
reward processing [67]. Our results underline the important role played by beta oscillations
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in coordinating information transfer spanning multiple neurocognitive mechanisms during
olfactory hedonic perception.

Finally, a focal interest of the paper revolves around unearthing laterality effects with
regards to regions encompassing the olfactory hedonic network. Functional lateralization,
i.e., the differential activation of the brain’s hemispheres for achieving specialized functions
in certain tasks, has been previously associated with neural processing in olfaction [68,69],
as well as emotion and hedonic processing [70]. There are currently different interpretations
regarding frontal lateralization. One predominant view is that asymmetric frontal activa-
tions are associated with the hedonic valence of stimuli (positive vs. negative), where left
hemisphere dominance is observed in response to positive stimuli. Another view suggests
that the motivational system is engaged by the stimulus (approach vs. avoidance), in which
left hemisphere dominance facilitates the approach to engaging stimuli. A more recent
hypothesis, which aims to account for contradictory subsequent findings, proposes a more
nuanced view, in that lateralization should be viewed from a more localised perspective.
Specifically, subregions of the frontal cortex are proposed to drive asymmetric activations,
with support from distinct but interrelated subnetworks exhibiting their own lateralization
patterns [70].

Our findings seem to support the latter hypothesis. We found high-pleasantness
fragrances to elicit both left- and right-dominant lateralization across different frequency
bands, especially with regards to the medial pre-frontal cortex (mPFC). In particular,
the beta band ([13–30] Hz) contained a right-dominant response, with the weighted nodal
degree and betweenness centrality of the right mPFC exhibiting larger magnitudes than
their left-hemisphere counterparts. Conversely, the gamma band ([30–40] Hz) included
a left-dominant activation of the mPFC when considering the weighted degree. These
findings may suggest that different sub-networks operating at distinct oscillation modes
drive the observed hemispheric lateralization. Our results also highlight the important
hub-related activity of the mPFC—a key region in processing the hedonic value [71], as well
as appetitive (or rewarding) value of stimuli [15].

Limitations

Crucially, the current study was not set out to map the direction of interactions between
brain areas subserving olfactory hedonic processing. Characterizing directed functional
connectivity within the olfactory hedonic network (e.g., via partial directed coherence)
presents the most proximate avenue for prospective future work. It is likely that many of
the functional interactions considered in the study involve both feed-forward and feedback
signaling acting along the reciprocal structural pathways connecting the proposed model.

Furthermore, participants recruited for this study were exclusively female; this was
done for two reasons: first, to avoid heterogeneity due to gender differences, and, second,
due to the previously reported difference in the olfactory ability of females and males [72].
As established by Royet et al. [73], females show increased left-based lateralization during
the emotional processing of odors, especially with regards to the orbitofrontal cortex. This
may present a confounding effect when investigating hemispheric laterality, especially
since the OFC projects to the medial pre-frontal cortex [14,15].

5. Conclusions

The present study investigated how functional connectivity among brain areas in-
volved in olfactory hedonic processing changes in response to odor stimuli featuring
different levels of pleasantness. Graph metrics were used to compare key brain regions
involved in the olfactory hedonic processing network and informed an investigation into
laterality effects. Several significant differences regarding these regions were found, most
notably including the olfactory cortex, as well as the orbitofrontal and medial pre-frontal
cortices. Our results strengthen the current scientific consensus regarding the importance of
the OFC and mPFC in olfactory hedonic processing, while also supporting a more recently
emerging view that favors an increasingly localized understanding of hemispheric laterality.
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The design of our study features three key characteristics. First, by utilizing fragrance
stimuli of exclusively pleasant nature, different levels of positive hedonic evaluation were
compared, in order to avoid cross-valence confounding effects; this would be the case when
comparing positive vs. negative stimuli. Second, functional connectivity was assessed at
the cortical source level, yielding a network of relevant brain regions which allows for
accurate modeling of lateralization. Third, EEG signals were used to unearth neural activity
pertaining to olfactory hedonic processing. Due to its non-invasive nature, coupled with a
high temporal resolution, ease of implementation and relatively low cost, EEG presents a
feasible option for brain-computer interface (BCI) applications. This is especially relevant
for the field of consumer neuroscience, which relies on neural signals to discern customer
preferences and make more informed decisions regarding product development. Other
relevant areas include clinical applications where tools for objective affective evaluation of
olfactory stimuli are needed (e.g., when investigating depression).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/brainsci12101408/s1, Figure S1: Network Construction; Figure S2:
Binomial Regression Plots.
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