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Abstract—Load forecasting is an essential task performed
within the energy industry to help balance supply with demand
and maintain a stable load on the electricity grid. As supply
transitions towards less reliable renewable energy generation,
smart meters will prove a vital component to facilitate these
forecasting tasks. However, smart meter adoption is low among
privacy-conscious consumers that fear intrusion upon their fine-
grained consumption data. In this work we propose and explore
a federated learning (FL) based approach for training forecasting
models in a distributed, collaborative manner whilst retaining the
privacy of the underlying data. We compare two approaches: FL,
and a clustered variant, FL+HC against a non-private, centralised
learning approach and a fully private, localised learning ap-
proach. Within these approaches, we measure model performance
using RMSE and computational efficiency. In addition, we suggest
the FL strategies are followed by a personalisation step and show
that model performance can be improved by doing so. We show
that FL+HC followed by personalisation can achieve a ∼5%
improvement in model performance with a ∼10x reduction in
computation compared to localised learning. Finally we provide
advice on private aggregation of predictions for building a private
end-to-end load forecasting application.

Index Terms—federated learning, load forecasting, distributed
machine learning, deep learning, data privacy, internet-of-things

I. INTRODUCTION

Smart meters are being deployed in many countries across
the world for the purpose of optimising efficiency within
electricity grids and providing consumers with insights into
their energy usage. The meters record energy consumption
within a building directly from the electricity supply and
periodically communicate this data to energy suppliers and
other entities in the energy sector. Smart meter data contain
an enormous amount of potential predictive power that will
aid the transition from fossil fuel technologies to cleaner and
renewable technologies [1]. However this high-resolution data
is particularly sensitive as it can easily enable inference about
household occupancy, lifestyle habits or even what and when
specific appliances are being used in a household [2].

A large contribution of renewables in the energy mix poses
a significant challenge for balancing supply and demand. If
peak demand coincides with low wind/solar inputs, energy
must be provided by reliable backup generation, such as idling
gas turbines. Such solutions are very costly, both economically
and environmentally and serve to discourage the installation of
large amounts of renewable energy generation. Reliable fore-
casting will provide opportunity for more efficient optimisation
of electricity grids to cope with varying energy demand.
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Despite the benefits for promoting a greener energy sector,
smart meter installation in most countries is an opt-in process
and levels of adoption of smart meters are beginning to
stagnate. Data privacy and security concerns are among the
most cited reasons consumers give for rejecting a smart meter
installation [3]. Specific privacy concerns with smart meters
include government surveillance, energy companies selling
data and illegal data acquisition/use [2].

Deep learning [4] - a subset of machine learning that makes
use of multi-layered neural networks for classification and
regression tasks, among others - has shown great promise
in many applications in recent years. Time-series forecasting
is one such strength of deep learning [5] using specific
architectures such as recurrent neural networks (RNNs) that
are designed to capture temporal dependencies during training.
Among the most successful RNN architectures for forecasting
are Long-Short Term Memory networks (LSTMs), that learn
long-range dependencies particularly well.

In this paper, we propose the use of a modern distributed
machine learning setting known as federated learning (FL)
[6] to train load forecasting LSTM models while preserving
the privacy of consumer energy consumption data that could
enable greater adoption of smart meters by privacy-conscious
consumers. Our main contributions are: (a) a thorough com-
parison of how FL training strategies and non-FL benchmarks
affect a model’s forecasting performance (b) a comparative
analysis of FL to a FL variant, designed specifically to perform
well over non-iid data, applied to load forecasting, (c) an
evaluation of computational efficiency issues arising in the FL
forecasting system, and (d) the identification of the necessity
of a personalisation step in FL-based forecasting to improve
model performance beyond training individual local models in
isolation.

The remainder of this paper is organised as follows. A
short literature study is presented in section II. We explore
properties of the smart meter energy demand dataset used in
our experiments in section III. In section IV we provide our
methodology and in section V we present our results along
with discussion. Finally we conclude our work in section VI.

II. LITERATURE REVIEW

In the literature, AI and machine learning have been adopted
for load forecasting since 1990s. In particular, artificial neural
networks have been the most popular technique during the
past three decades [7], while fuzzy logic and support vector
machines (SVM) have also been used in many papers [8], [9].
Since 2015 there has been a huge increase of applying deep
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learning to load forecasting, e.g. [10]–[12] Notably, the authors
of [11] have developed a bespoke deep learning application
for household load forecasting and the method was tested on
920 smart metered customers from Ireland. It is shown to out-
perform some of the state-of-the-art techniques in household
load forecasting, such as ARIMA (AutoRegressive Integrated
Moving Average) and SVR (support vector regression) in
terms of RMSE (Root Mean Square Error).

Despite the above technical advancements, as pointed out by
the authors of [7], load forecasting is still an evolving field,
and ”no technique is superior to all other methods in load
forecasting”. Therefore, power system academics should work
together with industry as well as researchers in other disci-
plines, such as big data, computer science, and meteorology,
to facilitate wide deployment of better load forecasting models
in practice.

The most successful neural network architectures for fore-
casting are based on recurrent neural networks (RNNs), such
as Long-Short Term Memory networks (LSTMs) [13]. These
architectures can learn what long and short term information
to pay attention to during the training process. Recent surveys
compare and contrast traditional and modern approaches to
load forecasting and conclude that AI-based methods (such as
those that utilise neural networks) offer the greatest predictive
performance across all forecasting horizons [14], [15]. Kong
et al. [16] investigate the use of an LSTM architecture to
predict short-term electrical load for residential properties.
The authors show that forecasting with an LSTM outperforms
other statistical and machine learning methods for this purpose.
We draw inspiration from this work to form our comparative
centralised learning approach and thus the architecture for our
FL training scenarios.

The key drawback to how both traditional and AI-based
methods have been applied in the load forecasting literature
is the need for data to be centralised. Clearly the privacy of
consumer energy consumption data can easily be violated in
such cases. FL provides a key mechanism to tackle the issue
of training a model over private data. FL research has its roots
in distributed optimisation within the datacentre to deal with
very large datasets [17]. The term ‘federated learning’ was
coined in a paper by researchers at Google who presented a
simple distributed stochastic gradient descent (SGD) procedure
known as federated averaging [6] which allows a selection
of devices to train on local data and contribute updates to a
shared, global model. The procedure keeps raw data private but
requires significantly greater wall-clock time to train models
that can compete with models trained in the more conventional
centralised fashion. One key concern with training models
under FL is degraded optimisation performance and/or reduced
model performance in the presence of non-IID data [18].
Several approaches have been suggested to tackle this issue.
One idea is to regularise the updates from individual devices
to constrain the distance between local models and the global
model [5]. Another approach is to abandon the idea of training
a single global model in favour of multiple specialised models
to fit divergent data. Such ideas include federated multi-task
learning [19] and clustered FL [20]. In this paper we explore
the effect of a variant of FL using hierarchical clustering (HC)

known as FL+HC [21], that introduces a hierarchical clustering
algorithm during the FL procedure to partition devices by
update similarity.

For load forecasting applications, few works exist that con-
sider the use FL. The authors in [22] investigate how to predict
chiller efficiency in HVAC systems with the goal of reducing
energy consumption. The work compares a centralised learn-
ing approach with FL, concluding that FL model performance
suffers when training over all installation sites but can be
improved when data is grouped by installation site. In [23], the
authors apply FL to predict energy demand in the scenario of
electric vehicle charging networks. They show that clustering
charging stations geographically prior to learning improved
model performance and reduced communication overhead.

On smart meter data, [24] apply FL to privately predict
the value of various socio-demographic data features of each
household in order for energy utilities to offer diversified
services to their consumers. The work most similar to our own
in [25] provides a simple study of Fl for load forecasting using
household energy consumption data. Where our work differs
is the depth of our analysis and our comparison of training
strategies including multiple model approaches to tackle the
known issue of poor FL performance on non-IID datasets. We
additionally benchmark against both centralised learning and
localised learning - the latter already provides a fully-private
forecast, so is very important to compare an FL system against.
Finally we test a wide variety of time-series sequence lengths
to understand how this affects learning in all our different
approaches.

III. EXPLORATORY DATA ANALYSIS

In order to test an application for short-term energy load
forecasting, a suitable dataset with reliable real-world high
to medium resolution electricity meter readings was required.
Additionally, summarising and visualising the data and dis-
tribution of various facets of a dataset will allow us to
draw insights about individual households’ energy demand
over time. This section briefly describes the dataset used,
our sub-sample of the dataset and provides some exploratory
visualisations of the sampled data.

A. Dataset

The dataset used for our experiments was gathered under
the Low Carbon London project delivered by UK Power
networks [26]. This 4 year project was designed to support
low carbon energy solutions within the UK and was conducted
between 2011 and 2014. The project made available the smart
electricity meter readings for a sample of 5,567 London
households, many of which cover 1 or more years of the
duration of the project. The data is provided as discretised
30-minute meter readings showing total energy consumption
(in kWh) recorded within each interval.

In order to carry out a detailed comparative study between
different training methods, a small sample of 100 households
was randomly selected over the period 1st Jan 2013 to 30th
June 2013. The selection criteria for these 100 households
required that meter readings should cover the period described
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above and that the meters were gathering consumption data
under a standard flat-rate electricity billing tariff (as opposed
to a dynamic time of use tariff that was also present in
the dataset). This final criterion was applied to reduce the
behavioural bias that time of use tariffs induce in energy
consumption habits within a household. The resulting sample
was therefore expected to contain households who use energy
with no influence other than their normal daily habits and
occupancy.

In conjunction with the energy consumption data, we also
considered how weather related data might impact on fore-
casting models trained under different scenarios. As all the
consumption data is collected within the greater London area,
it was possible to collect weather readings that could be
easily fused with the consumption data. These included the
air temperature (in degrees Celsius) and relative humidity (as
a percentage) recorded by the Met Office [27]. As the exact
location of each household is not recorded in the dataset, the
London Heathrow weather station was selected as it contained
a full set of hourly readings for the duration of the study
period.

A detailed description of all specific data pre-processing
techniques that were applied to the resulting data sample in
our study are provided in subsection IV-A

B. Data visualisation

The hourly and daily energy consumption profiles of 3
random households from our sampled dataset (over 7 days and
6 month respectively) are presented in Figure 1 and Figure 2.
From the hourly profiles, each household uses more energy
during the day than at night as would be expected for most
people. However, the maximum level of energy consumption
is quite different among the households, as is the time of day
when most energy is used. Houses 1 and 2 show 2 or 3 peaks
roughly corresponding with increased energy consumption
in the morning and evening, whereas House 3 uses energy
more consistently throughout the day. Another insight that
becomes clear from visualising the hourly data is that private
habitual activity is visible at this granularity. For example, low
energy consumption in House 1 on the evening of the 17th
might suggest low or zero occupancy at that time, especially
considering high energy consumption in the evenings of all
other days in this time window.

Visualising the daily energy consumption profiles reveals
that longer term energy usage is quite different over these same
3 households as well. House 1 uses more energy for 7-14 day
periods followed by lower energy use. House 2 used more
or less energy sporadically day to day with a considerable
drop in energy use in early April (perhaps indicating electric
heating use in the colder months which would account for
the relatively high daily energy consumption). Finally, House
3 is incredibly consistent in its energy usage habits at this
granularity, as was the case at the hourly resolution.

Visualising just 3 households from the sample reveals the
non-iid nature of individual household energy consumption at
both a high and low resolution. Clearly, any forecasting model
built on this data will need to capture this variability in energy

Fig. 1. An example of the hourly energy consumption profiles for 3 random
households in the sampled dataset over a 7 day period between 15th January
2013 and 22nd January 2013

Fig. 2. An example of the daily energy consumption profiles for the same
3 random households as in Figure 1 in the sampled dataset over a 6 month
period between 1st January 2013 and 30th June 2013

usage between households. More broadly, we have produced
heatmaps showing the aggregated daily energy consumption
per household (Figure 3) and the mean energy consumption
by hour of the day for each houshold (Figure 4). Both
plots show min-max normalised energy consumption profiles
(normalisation applied to each household individually) and are
sorted by total energy consumption for each household.

Figure 3 reveals a large variance in aggregated daily energy
consumption between households. Additionally, households
where energy consumption remains consistent day to day are
visible, in contrast with households that display an irregular
distribution of energy usage depending on the day. Figure 4
shows that peak energy demand tends to occur between 7am
and 9am and 5pm until 10pm, likely consistent with occupancy
and waking hours. However, the hour of peak energy demand
shifts slightly from household to household which may prove
difficult for a single joint forecasting model to represent. In this
paper we will investigate how well several machine learning
training approaches affect the ability of a model to produce
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Fig. 3. Aggregated daily energy consumption per household in the sampled
dataset. The heatmap presents energy consumption as min-max normalised
values (by household) between 0 and 1. Households are sorted (top to bottom)
by total energy consumption.

Fig. 4. Mean hourly energy consumption per household in the sampled
dataset. The heatmap presents energy consumption as min-max normalised
values (by household) between 0 and 1. Households are sorted (top to bottom)
by total energy consumption.

accurate forecasts under the described non-iid data distribution
over individual households’ energy consumption habits.

IV. METHODOLOGY

A. Dataset preparation

After selecting 100 households from the Low Carbon Lon-
don dataset (see subsection III-A for selection criteria), the raw
energy consumption readings were passed though a pipeline
of transformations to clean the data. For each individual
household, this included dropping duplicated readings, forward
filling empty readings and resampling the reading intervals
to give an hourly record of energy consumption. A design
matrix Xc was then built for each household c based on
this transformed data containing feature vectors of the form
xt = {et, yt, wt, dt, ht} for each time index t composed of:

1) the energy consumption value et in kWh

2) the year yt corresponding with the time index
3) the week of the year wt in the range 0-51
4) the day of the week dt in the range 0-6
5) the hour of the day ht in the range 0-23
A second design matrix Wc was also built for each

household c that included weather data from the Met Office
(discussed in more detail in subsection III-A). The feature
vectors of the form wt = {et, yt, wt, dt, ht, at, rt} comprising
this design matrix were additionally composed of:

1) the recorded air temperature at in degrees Celsius cor-
responding with the time index

2) the calculated relative humidity rt (as a percentage)
Finally both Xc and Wc for each household c were parti-

tioned into training, validation and testing datasets according
to 0.7/0.2/0.1 split. As the time series data is sequential by its
very nature, the validation split contains time indices strictly
greater than those in the training split and the test split contains
time indices strictly greater than those in the validation split.

B. Forecasting task

The forecasting task is designed specifically for how LSTMs
ingest data to be trained to perform predictions. As such,
the initial design matrices for each household are transformed
into consecutive rolling sequences of K feature vectors. For
example, each sequence St ∈ S drawn from the design matrix
Xc takes the form St = {xt−K , ...,xt−2,xt−1}. This forms
a single input sequence to the LSTM. The corresponding label
for this sequence is the energy consumption et at time index
t. The task of the LSTM is therefore to learn an appropriate
mapping from S → êt by minimising the error between
the observed energy consumption et and the predicted or
forecasted energy consumption êt. For all our experiments we
report the root mean squared error (RMSE) to compare the
different training strategies set out in this paper:

RMSE =
√∑

(êt − et)2/N (1)

We chose to create sequence datasets for K = 6, K = 12
and K = 24 hours. As we started with two design matrices
(with and without weather data fused), this results in 6
sequence datasets for each household which we denote:

• SK=6,+weather
• SK=12,+weather
• SK=24,+weather

• SK=6,-weather
• SK=12,-weather
• SK=24,-weather

The forecasting task can be formally verbalised as: “Predict
the current energy consumption from the preceding K hour’s
energy consumption readings”.

As LSTMs are more efficiently optimised when the data
in different dimensions are equally scaled, we apply a min-
max normalisation (independently in each dimension) to the
data to ensure all values fall between 0 and 1. The minimum
and maximum values for et are drawn globally from across
all the household datasets and therefore each sequence dataset
S makes use of the same normalisation operation across all
households.
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C. LSTM framework

The long short term memory (LTSM) [13] network belongs
to a family of neural network architectures known as recurrent
neural networks (RNNs). Such networks are designed to
handle sequential data such as time series data or language
fragments such as sentences. The major distinction between
RNNs and standard feed forward neural networks is the ability
to pass the output of hidden units back into themselves as
well as incorporating gates to control the flow of past and
current information. These conditions allow for learning of
temporal patterns. For an energy forecasting problem a RNN
can potentially learn how daily patterns of energy consumption
affect future consumption by way of the memory built into
RNNs.

The LSTM is one of the most sophisticated RNN archi-
tectures in that it works exceptionally well to store long-term
temporal dependencies. Earlier RNN architectural designs are
plagued with issues related to vanishing or exploding gradients
during training via backpropagation [28]. Such issues resulted
in the network becoming unable to learn anything from
information earlier in the sequence beyond the preceding few
time steps. LSTMs introduce an internal memory state that
can persist over many time steps allowing the network to learn
from long-term patterns.

In each LSTM cell, an internal state ct is regulated by a
forget gate ft controlling the weight of information from the
output during the previous time step ht−1 and the input for the
current time step xt. The input feature for the current time step
it is accumulated into the internal state under the influence of
the input gate gt. Finally the output gate ot governs the output
ht formed from the inputs and the internal cell state. The new
internal state ct and cell output ht become inputs for the the
cell at the next time step (additionally the final cell output ht is
passed to the next layer in a deep network). The memory cell
state ct and output activation ht are calculated using equations
2 to 7.

ft = σ(Wfxxt +Wfhht−1 + bf ) (2)
it = σ(Wixxt +Wihht−1 + bi) (3)
ot = σ(Woxxt +Wohht−1 + bo) (4)
gt = tanh(Wgxxt +Wghht−1 + bg) (5)
ct = ct−1 � ft + it � gt (6)
ht = tanh(ct � ot) (7)

The weight matrices associated with the inputs xt and ht−1

destined for each gate are given by Wfx, Wfh, Wix, Wih,
Wox, Woh, Wgx and Wgh and the bias vectors are given
by bf , bi, bo and bg . The � operator denotes element-wise
multiplication and σ is an application of the sigmoid function.
A schematic of the internal workings of an individual LSTM
cell is given in Figure 5.

For our experiments we took inspiration from [16] and
designed our LSTM network using 2 connected layers, each
containing 20 hidden LTSM cells followed by a single linear
feed-forward layer. The loss function used for optimisation
was a simple mean squared error. The Adam optimiser was

Fig. 5. Schematic of the operations associated within an LSTM hidden unit.
The computed internal state ct, and output ht calculated at time step t form
the next inputs to the same cell at time step t+ 1 along with the next input
vector xt+1 in the sequence.

used for training the network in all experiments using the
recommended default hyperparameters in [29] combined with
a fixed learning rate of 0.001 and a fixed batch size of 256
sequences.

D. Training scenarios

In order to test the effectiveness of applying FL to load fore-
casting, we provide benchmarks against centralised learning,
local-only learning and various FL training scenarios. These
different training approaches are summarised in Table I and
described diagrammatically in Figure 6.

Firstly we developed a non-distributed, centralised learning
approach that is most commonly applied where the privacy
of data is not a major concern during training. This approach
pools individual household datasets together and training is
conducted in a single location. This approach provides a
baseline for what a single, joint forecasting model can achieve
in a non-private setting. In this scenario, the same network
parameters are used by all households at the inference stage.
Under this centralised approach we train models for 500
epochs with early stopping based on the lowest error achieved
on the validation set.

The most important benchmark we developed is a fully-
private localised learning setting. All individual datasets re-
main private and unseen by other data owners under this sce-
nario and the training procedure is isolated to each household.
This approach results in unique forecasting models tailored to
each household but cannot benefit from knowledge that could
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Fig. 6. Diagrams detailing the the different training scenarios. a) Centralised learning - data is sent from clients to server, model and training is on the server.
b) Localised training - data, model and training are isolated to each client. c) FL - data and training isolated to each client, model is aggregated from client
updates at the server. d) FL+HC - after n rounds of FL, clients are clustered and model updates from each cluster are aggregated to specialised cluster models
at the server (colours represent clusters). e) Local fine-tuning (LFT) - an extra step after either FL or FL+HC where training is isolated to each client starting
with the model produced at the FL stage.
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TABLE I
SUMMARY OF TRAINING SCENARIOS, THE FORECASTING MODELS

PRODUCED BY EACH SCENARIO AND THE PRIVACY ASSOCIATED WITH
EACH SCENARIO.

Training scenario Model Private?
Centralised Single/Joint 7
Localised Multiple/Specialised 3
FL Single/Joint 3 w.r.t. raw data
FL+HC Multiple/Specialised 3 w.r.t. raw data
FL → LFT Multiple/Specialised 3 w.r.t. raw data
FL+HC → LFT Multiple/Specialised 3 w.r.t. raw data

be embedded in data owned by other households. As per the
centralised learning approach, training was conducted for a
maximum of 500 epochs with early stopping.

Any FL system needs to offer benefits above and beyond
what can be achieved in the localised learning setting as this is
already a fully private approach. In this paper we investigate
how individual learners can benefit from patterns in energy
usage from other households in the population.

The goal of FL is the same as centralised learning - to
learn a single, joint model that generalises well enough to
provide accurate forecasts for all individual households. In FL
however, the training data belonging to each household (or
client in the parlance of FL) is not pooled as in centralised
learning. Instead, the training data remains private to each
local client. Whereas centralised learning seeks to optimise
a global objective of the form: min f(w), FL optimises an
objective as the finite sum of local objectives taking the form:
min 1

m

∑m
i=1 fi(w).

Training proceeds via communication rounds, beginning
with an initialised model state wt that is transmitted to a small
set of clients K. Each client k ∈ K computes an update wk

t+1

to the model state based on their dataset by optimising a local
forecasting objective fk(wt). In practice this usually involves
training just a few epochs on each client. Each client then
transmits their update to a centralised server that aggregates
the updates into a new model wt+1. For our experiments we
apply federated averaging (FedAvg) [6] as the FL algorithm
for aggregating client updates. FedAvg aggregates incoming
client model updates via a data weighted average such that:

wt+1 =

K∑
k=1

nk
n
wk

t+1 (8)

Here, nk

n represents the number of samples available to
client k compared to the total number of samples used
for training in round t, thus determining the data-weighted
contribution of client k. In the FL training scenario, model
performance is affected by additional hyperparameters that we
also test for:

• fraction of clients participating in each communication
round: 0.1, 0.2 & 0.3

• Number of epochs of training on clients: 1, 3 & 5

All FL training runs are capped at 500 communication
rounds with early stopping based on the best average validation
set performance across all clients.

Models trained via FL have been shown to suffer under
non-IID distributions. As we have explored, the individual
household datasets exhibit differing data distributions due
to the varied ways in which household occupants consume
energy. As such, we investigate the use of a modification
of FedAvg known as FL+HC [21] (our previous work) that
incorporates a clustering step into the FL protocol. In FL,
the local objectives are expected to approximate the global
objective, however if data among clients is distributed non-
IID, this expectation over data available to client Dk is not
valid: EDk

[fk(w)] 6= f(w). In FL+HC, clients are assigned to
a cluster c ∈ C, where the goal is to train a specialised model
fc tailored to clients that share a similar data distribution. We
use client updates as a proxy for client similarity in order to
preserve the privacy of the raw training data. A hierarchical
clustering algorithm is run at communication round n taking as
input the weight updates from all clients. Clients that produce
similar updates are clustered together and further training via
FL proceeds for each cluster in isolation. For a good clustering
under FL+HC, the expectation of local objectives (clients)
assigned to a cluster c approximates the cluster objective:

∀c ∈ C,EDk
[fk(w)] = fc(w) where k ∈ c (9)

FL+HC introduces more hyperparameters to control the
clustering process which we test for:

• clustering distance threshold: 0.8, 1.4 & 2.0
• hierarchical clustering linkage mechanism: ward, average,

complete & single
• number of rounds of FL prior to clustering step n: 3, 5

& 10

To keep the number of permutations of experiments for
the FL+HC scenario manageable, we fix the client fraction
at 0.1, the number of epochs to 3 and exclusively use the
Euclidean (L2) clustering distance metric. All FL+HC training
runs are capped at 200 communication rounds with early
stopping based on the best average validation set performance
per cluster.

Finally, we also test scenarios where the models produced
by FL and FL+HC are further fine-tuned on the local clients
for a small number of epochs (a process known as personali-
sation). These local fine-tuning (LFT) scenarios are termed FL
→ LFT and FL+HC → LFT. We test whether personalisation
produces more accurate, highly specialised models for each
household that also builds on the wisdom of the private data of
other households. The fine-tuning step is limited to 25 epochs
on all clients with early stopping based on the best validation
set performance.

E. Running the experiments

All experiments are run in the PyTorch deep learning frame-
work [30] on the Google Cloud Computing (GCP) platform
using a single NVIDIA Tesla K80 GPU attached to 30GB of
memory, a 128GB SSD and 8 virtual CPUs on an Intel Xeon
processor (n1-standard-8 GCP machine type). The distributed
training scenarios are all simulated on a single machine.
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V. RESULTS & DISCUSSION

A. Forecasting performance

To understand how the different training approaches perform
compared to one another, we report the RMSE achieved on the
test set for each of the 6 datasets, SK=6,+weather, SK=12,+weather,
SK=24,+weather, SK=6,-weather, SK=12,-weather and SK=24,-weather.
The RMSE reported is an average over all clients (in dis-
tributed approaches) or over all sequences (in the centralised
approach). For experiments that involve tuning hyperparam-
eters (namely those that involve FL), we report the test set
RMSE for the best performing model based on the lowest
error on the validation set. We also report the mean RMSE
and lowest RMSE over all datasets for each training approach
along with a percentage difference to compare with the fully
private localised approach. Model performance results are
detailed in Table II.

In the centralised approach, the training procedure has ac-
cess to all sequences pooled from across the individual house-
hold datasets. Therefore model performance might be expected
to be relatively high compared to the other approaches where
there is much less data to learn from. Conversely, we show
that average model performance in the centralised approach is
actually 4.8% worse than the localised approach and the best
centralised model is 8.0% worse than the best localised model.
This is somewhat surprising given that the localised models
only have access to 1/100 the amount of data. This implies
that the centralised models (and possibly single, joint models
in general) struggle to capture individual household behaviours
in energy usage and/or suffer from trying to optimise for
competing objectives. Larger models might allow for learning
more individual behaviours but as data has to be gathered into
a single location, the privacy risk to energy consumers is by
far the highest in this training approach. The 24-step sequence
(1 whole of day of prior readings) provides the model with the
most information with which to make a prediction, resulting
in the lowest RMSE in the centralised approach (followed by
the 12-step, then 6-step).

In the localised learning approach, a model for each house-
hold is trained in isolation using only the data available to
that household. Model performance is exceptionally good in
this approach and the simple LSTM architecture is sufficient to
learn more nuanced energy demand behaviours unique to each
household. This approach represents a fully private setting in
that nothing is shared between households. Datasets formed
around 12-step sequences result in models that significantly
outperform 6-step and 24-step sequence datasets in this ap-
proach. We see a similar pattern for the remaining training
approaches, suggesting that a 12-hour time window is optimal
for local learners to most accurately predict future energy
demand.

In the FL approach, only a fraction of clients are selected
for each round of training (and each client trains on its
local data set in isolation for a small number of epochs).
Additionally a single, joint model is being co-trained by these
selected clients when model updates are aggregated. As such,
we see that the RMSE for FL models suffers in the same
way as centralised models when we compare to the localised

approach. Additionally, as FL has been shown to perform
sub-optimally in cases where the training data is non-IID
as is the case with the individual household datasets, the
RMSE suffers even more so than in the centralised learning
approach. Compared with localised learning the average model
performance in the FL approach was 7.6% worse with the best
FL model significantly worse (10.5% higher RMSE) than the
best localised learning model.

The FL+HC approach produces specialised models for
a number of clusters of clients that can more specifically
tailor forecasts for groups of households that provide similar
model updates (a proxy for similar underlying energy demand
distributions across clients). As such, the average RMSE of
clients is no longer tied to a single, joint model as in the FL
training approach, but rather to a specialised cluster model.
In the average case across the 6 datasets, FL+HC produces
models 4.7% worse than the localised approach - comparable
to centralised learning. However, the best model trained with
FL+HC significantly outperforms models trained with FL or
centralised learning but remains 3.5% worse than localised
learning. Although the FL approaches (FL and FL+HC) do
occasionally produce a slightly better model than the cen-
tralised training scenario, the mean RMSE across all datasets
shows that on average FL performance is degraded compared
to centralised learning, consistent with the findings of most
previous FL literature.

Although the base models trained with FL and FL+HC show
a higher RMSE than those trained with fully private localised
learning, we now show how the situation can be improved if
we treat FL or FL+HC as a pre-training task to be followed
by further fine-tuning on the local clients in isolation. In the
FL → LFT approach, we use each joint model trained under
FL on each of the 6 datasets and perform a small amount
of further training per client to produced highly specialised
models. The trained parameters of the base models serve as a
good initialisation point for rapid training on the clients which
often converge within just a few epochs of fine-tuning. These
personalised models exhibit a lower RMSE than the other ap-
proaches across all datasets. On average FL → LFT produces
models with a 4.5% lower RMSE than localised training with
the best model performing 4.9% better than the best localised
model. In FL+HC → LFT approach, clients initialise their
personalised models from the specialised model trained within
the cluster each client belongs to. This approach produces
similarly performing models (4.5% better than the average
and best localised model). These personalisation approaches
clearly show that local models can benefit by learning from
the energy demand patterns of other users. FL allows for
energy consumers to contribute to the shared learning task
whilst retaining the privacy of their raw consumption data
prior to privately fine-tuning their own models to produce more
accurate forecasts.

The datasets that included weather features (SK=6,+weather,
SK=12,+weather and SK=24,+weather) show a small improvement
in model performance in almost all scenarios compared to
datasets without such features. We would therefore recom-
mend that an load forecasting system should make use of
weather related features if possible as these indicators can help
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TABLE II
FORECASTING ERROR (RMSE) VALUES FOR THE 6 DATASETS AND 6 TRAINING SCENARIOS. ’MEAN’ AND ’BEST’ COLUMNS SHOW PERCENTAGE

DIFFERENCE COMPARED TO FULLY-PRIVATE LOCALISED LEARNING

Dataset

incl. weather not incl. weather

Training scenario 6 steps 12 steps 24 steps 6 steps 12 steps 24 steps mean best

Centralised 0.0210 0.0207 0.0198 0.0210 0.0208 0.0198 0.0205 (-4.8%) 0.0198 (-8.0%)
Localised 0.0198 0.0183 0.0201 0.0201 0.0188 0.0202 0.0196 (—) 0.0183 (—)
FL 0.0219 0.0202 0.0207 0.0219 0.0205 0.0210 0.0210 (-7.6%) 0.0202 (-10.5%)
FL+HC 0.0209 0.0189 0.0208 0.0214 0.0198 0.0210 0.0205 (-4.7%) 0.0189 (-3.5%)
FL → LFT 0.0194 0.0177 0.0192 0.0195 0.0174 0.0192 0.0187 (+4.3%) 0.0174 (+4.9%)
FL+HC → LFT 0.0193 0.0176 0.0192 0.0193 0.0175 0.0192 0.0187 (+4.5%) 0.0175 (+4.5%)

TABLE III
COMPUTATIONAL EFFICIENCY (MEASURED IN MILLIONS OF SAMPLES REQUIRED TO TRAIN TOP PERFORMING MODELS) FOR THE 6 DATASETS AND 6

TRAINING SCENARIOS. ’MEAN’ AND ’BEST’ COLUMNS SHOW SAVINGS IN COMPUTATION COMPARED TO FULLY-PRIVATE LOCALISED LEARNING.

Dataset

incl. weather not incl. weather

Training scenario 6 steps 12 steps 24 steps 6 steps 12 steps 24 steps mean best*

Centralised 78.9 19.5 21.2 15.6 26.6 57.7 36.6 (1.9x) 57.7 (1.4x)
Localised 71.5 79.5 52.7 94.9 67.1 60.5 71.0 (—) 79.5 (—)
FL 266.3 290.7 384.4 238.1 424.3 455.3 343.2 (0.2x) 290.7 (0.3x)
FL+HC 6.3 6.1 6.8 7.3 7.0 0.1 5.6 (12.7x) 6.1 (13.1x)
FL → LFT 268.4 292.5 388.0 239.2 429.6 458.2 346.0 (0.2x) 429.6 (0.2x)
FL+HC → LFT 7.2 6.9 7.9 8.0 8.7 1.2 6.7 (10.7x) 8.7 (9.1x)

* the best savings are calculated by comparing the best performing model for each training scenario to the best performing localised
model, as reported in Table II.

the model to make better predictions on the whole.

B. Computational efficiency

In addition to measuring the accuracy of forecasts produced
by the various training approaches, we note the computational
efficiency via the number of samples passing through the
optimiser during training. In this sense we can understand how
many data samples are required to train the best performing
model for each training scenario/dataset. Fewer training sam-
ples corresponds with models that can be trained with less
computational effort - a desirable characteristic if the fore-
casting task is to be run at the network edge on low-compute
smart meter devices in the homes of energy consumers. In
FL it is also very desireable to reduce the amount of commu-
nication during training which would otherwise require large
amounts of bandwidth. In a practical implementation of FL,
communicating large models between household smart meters
and entities coordinating the model training could become a
bottleneck in the learning process. Any measures to reduce
the total number of communication rounds will be beneficial,
therefore we present a study of the computational efficiency
of each training method within this section. We provide
results for computational efficiency (measured in millions of
samples) in Table III. We also benchmark each method against
the fully private localised case, reporting average savings in
computation and the savings for the best performing models
for each training scenario. In all scenarios where multiple

specialised models are trained, we report the total number
of samples required to train all models (be they clustered or
individual to each client).

Although non-private we noted that 36.6 million samples
were required on average to train the single, joint centralised
model. The fewest samples (15.6 million) were required for
the model trained using the SK=6,-weather dataset. Training the
best performing centralised model required 1.4x fewer samples
than were required to train all the localised models. Training
the individual localised models required 71.0 million samples
on average and 79.5 million samples for the best performing
model using the SK=12,+weather dataset.

Under the FL training scenario, many hundreds of commu-
nication rounds were required to reach the minimum training
loss before overfitting. Although only a fraction of clients are
selected during each communication round, training proceeds
on each client for a number of epochs. These factors lead to
a significant amount of computation in total over the whole
training operation. On average 5x more computation is re-
quired to train the FL models vs the localised models. The best
performing FL model required nearly 4x more computation to
train vs the best localised models.

The FL+HC training scenario only trains a single, joint
model for a small number of rounds prior to producing
specialised models at the clustering step. Post-clustering, each
specialised model is exclusively trained on the cluster’s subset
of clients. This has the effect of drastically reducing the
amount of computation required to train each model. In
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Table III We report the total number of samples required
to train the FL+HC models across all the clusters. There
is a drastic saving in computation in this training scenario
as FL+HC strikes a good balance between learning from all
clients initially to produce specialised models that are quick
to train. On average FL+HC requires 12.7x fewer samples to
train models vs localised training and 13.1x fewer samples to
train the best performing models.

Where FL and FL+HC are followed by a fine tuning step,
only a few epochs of training are required to produce the best
performing personalised models. Therefore very little extra
computation is required to fine-tune. As we showed earlier,
these personalised models exhibit the lowest error of all the
models we tested and FL+HC → LFT in particular produces
low error models with ∼10x reduction in computation com-
pared to localised training.

VI. CONCLUSION

In this paper, we explored the use of FL for the purpose
of private load forecasting using an LSTM network. We
compared our results with benchmarks - a non-private cen-
tralised training approach and a fully private localised learning
approach. Additionally we investigated the use of FL+HC -
a clustered variant of FL shown to perform well on non-
IID data. We determined that FL approaches can outperform
centralised learning but perform worse than localised learning.
We presented favourable results however, when a personalisa-
tion step is applied to the models trained by FL and FL+HC.
In this case model performance can be improved by up to
5% compared to localised learning while still retaining the
privacy of the raw energy consumption data. We also reported
the computational efficiency of the various training methods,
concluding that FL+HC and FL+HC followed by fine-tuning
result in vast computational savings (on the order of 10x
reduction) in the number of samples required to train the best
models. Finally we provide some brief advice on aggregation
of predictions after the training procedure to inform the design
of a complete privacy-preserving training/inference framework
for load forecasting.
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