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Abstract: Compared with electrical resistance tomography, capacitively coupled electrical resistance tomography 

(CCERT) is preferred since it avoids problems of electrode corrosion and electrode polarization. However, 

reconstruction of conductivity distribution is still a great challenge in CCERT. To improve reconstruction quality, 

this work proposes a novel image reconstruction method based on total fractional-order variation regularization. 

Simulation work is conducted and reconstruction of several typical models is studied. Robustness of the proposed 

method to noise is also conducted. Additionally, the performance of the proposed reconstruction method is 

quantitatively evaluated. We have also carried out phantom experiment to further verify the effectiveness of the 

proposed method. The results demonstrate that the quality of reconstruction has been largely improved when 

compared with the images reconstructed by Landweber, Newton-Raphson and Tikhonov methods. The inclusion is 

more accurately reconstructed and the background is much clearer even under the impact of noise. 

Keywords: capacitively coupled electrical resistance tomography, image reconstruction, total fractional-order 

variation regularization. 

I. Introduction 

Electrical resistance tomography (ERT) is an emerging imaging technique which has received 

considerable attention in monitoring multiphase flow [1-3]. Compared with other tomographic methods, 

ERT has the advantages of fast response, low cost, non-radiation and non-invasiveness [4],[5]. It is 

favorable for its visualization of conductivity distribution. However, sensor electrodes in ERT 

equipment are in contact with the measured medium. As a result, electrode corrosion and polarization is 

generated which affects measurement accuracy. Inspired by capacitively coupled contactless 

conductivity detection (C4D), capacitively coupled electrical resistance tomography (CCERT) has been 

developed [6],[7]. It is a non-contact conductivity measurement method with which imaging of 

conductivity distribution can be also realized. In CCERT, an array of electrodes is installed outside the 

pipe at equal intervals. Since the electrodes are not contact with the medium in the pipe, the problems 
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of electrode corrosion and polarization in ERT can be avoided. It largely improves the system 

reliability and reduces the maintenance cost. 

It should be remarked that image reconstruction is essential for conductivity reconstruction with 

CCERT. By processing the measured data from the electrodes, conductivity distribution in the detected 

region can be visualized with an image reconstruction method. It is known that reconstruction in ERT 

is mathematically a nonlinear ill-posed inverse problem. To cope with this problem, various methods 

have been proposed [8]-[11]. Similar with ERT, it is also a great challenge for the imaging of 

conductivity distribution with CCERT. Up until now, a number of methods have been proposed for 

image reconstruction in CCERT. In [12], a hybrid image reconstruction method with the combination 

of Tikhonov regularization and synchronous iterative reconstruction technique is presented for 

recovering conductivity distribution. In [13], image reconstruction in CCERT is implemented by 

combining Levenberg-Marquardt (L-M) method with synchronous algebraic reconstruction technique. 

With grey-level distribution of the image obtained by L-M method as the initial iterative value, the 

reconstruction is realized by employing synchronous algebraic reconstruction technique. In [14], an 

image reconstruction method combing linear back projection algorithm with K-means clustering 

algorithm is proposed. The linear back projection algorithm is used to obtain the original reconstructed 

image and the K-means clustering algorithm is used to obtain gray threshold values. Although some 

satisfactory results have been acquired, the reconstruction quality is still needed to be improved.  

To solve a typical ill-posed inverse problem in electrical tomography, Tikhonov regularization is a 

classical approach [15]. By adding a smoothing regularization term, the ill-posed problem can be 

regularized and is converted into a well-posed problem. However, the edge of an image is not well 

preserved with this method [16]. Comparatively, total variation regularization tends to search solution 

of piecewise constant function and is advantageous for edge preservation [17]-[20]. The disadvantage 

is that blocky effect is yielded when reconstructing images with smooth edge [21]. Mathematically, the 

problem of total variation method can be addressed by introducing higher-order or fractional-order 

derivatives. The success of these methods has been demonstrated in the field of image processing 

[22]-[24]. In this work, a novel image reconstruction method based on total fractional-order variation 

regularization（TFVR） is proposed for recovering conductivity distribution in CCERT.  



The remainder of this work is organized as follows. In section II, the mathematical model of CCERT 

is presented. The proposed TFVR method is provided in section III. In section IV, numerical simulation 

and phantom experiment are conducted to demonstrate the effectiveness of the proposed method. Also, 

comparison work with other reconstruction methods is performed. Section V draws the conclusion. 

II. Mathematical model of CCERT 

A typical CCERT measurement system is mainly composed of an array of sensor electrodes, a data 

acquisition and processing unit, and an image reconstruction unit. Fig. 1 shows the arrangement of 

electrodes in CCERT and its equivalent excitation-measurement circuit. As shown in Fig. 1(a), twelve 

electrodes are equidistantly equipped around an insulating pipe filled with conductive medium. With 

one electrode excited by an alternating voltage and one electrode performed as a measurement terminal, 

an AC path is established between the two electrodes [25]. The equivalent circuit is illustrated in Fig. 

1(b). Cp1 and Cp2 denote the coupling capacitance between two electrodes while Rm represents the 

equivalent resistance of conductive medium. Note that the current measured from the detection 

electrode reflects medium conductivity. Based on the measurement obtained by the data acquisition and 

processing unit, conductivity distribution is visualized with the image reconstruction unit. 

      

           (a)                                             (b) 

Fig.1 (a)The sketch of a 12-electrode CCERT sensor (b)Equivalent circuit of an electrode pair. 

The electrode is excited at the frequency of 500 kHz. Since the wavelength of the excitation signal is 

much larger than the dimension of the detected region, the sensitive field in CCERT is a quasi-static 

electromagnetic field. Based on Maxwell equations, the relationship between potential distribution and 

electrical parameters is mathematically described by [26]: 

         , , , 0  ,x y jw x y x y x y        (1) 

where  ,x y  represents conductivity distribution,  ,x y  and  ,x y  are respectively spatial 

permittivity and potential distribution, and   denotes the sensing area. 
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Boundary conditions are expressed by  
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where i, j and k are the indexes of excitation electrode, detection electrode and floating electrodes, 

respectively; V0 is the sinusoidal excitation voltage; 
i  , j  ,

k represent the spatial locations of 

excitation electrode, detection electrode and floating electrodes, respectively; n denotes outward unit 

normal vector.   

The current Iij measured on the detection electrode can be obtained by[27]  

ijI J d      (3) 

where J represents current density near the electrode. 

The equivalent impedance Zij between the excitation and detection electrode pairs can be calculated. 

It is worth noting that only the real part of Zij represents the equivalent resistance between electrodes 

which reflects the conductivity. Therefore 
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where Rij is the equivalent resistance between electrode pairs i and j. 

Based on finite element method, the variation of equivalent resistance R  against conductivity 

changeΔ can be described by  

Δ = ΔR S     (5) 

where S represents sensitivity matrix, which reflects the change of resistance caused by conductivity 

variation in the measured domain [28]. 

For simplicity, (5) is rewritten as 

=H Sg    (6) 

where H represents R and g stands for Δ . 

III. Image Reconstruction based on Total Fractional-order Variation Regularization  

It can be found from (6) that conductivity distribution in the detected region can be calculated once 

resistance and sensitivity matrix are known. In this paper, a novel total fractional-order variation 



regularization (TFVR) strategy is proposed for image reconstruction in CCERT. To cope with the 

ill-posedness of reconstruction, a fractional-order regularization term is added to restrict the solution. 

During the reconstruction, the proposed TFVR strategy is mathematically modeled as 

2

2 1
ˆ=arg min
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p

g

g Sg H D g
 

  
 

   (7) 

where ĝ  is the estimated optimal conductivity, Dp is the pth order finite difference, and   is the 

regularization parameter used to balance the fidelity term and the regularization term.  

Eq. (7) can be expressed as   
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Due to non-differentiability and nonlinearity of (8), it is still difficult to solve directly and effectively. 

Therefore, iterative alternating minimization scheme in [29] is introduced to obtain the solution of 

inverse problem. The minimized augmented Lagrangian function of (8) is 
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Based on alternating direction method in [30],[31], (9) is decomposed into two simple sub-problems: 
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For the w sub-problem, the solution is given by 
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The g sub-problem is solved by: 

       1 +1
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Besides, the one-step steepest descent method is adopted to obtain the final solution as: 

+1=m m m mg g d    (13) 

in which the step length is calculated by 
T

m m

m T

m m

Z Z

Z y
   

where d is the gradient direction of the objective function. 

Note that 

1m m mZ g g       (14) 

   1m m m m my d g d g    



During the iteration, the nonmonotone Armijo condition is required which is expressed as 
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where   and   are selected between 0 and 1. 

To summarize, the proposed TFVR strategy for image reconstruction in CCERT can be solved by 

alternating minimization scheme which is tabulated in Algorithm 1. 

 Algorithm 1: The solution for the proposed TFVR strategy 

 Input: S, H, m, ,  , , w0, g0. 

 Initialize: 0 , , 1    ,  0 0 0,AC L w g . 

 Iterations: 

1. While inner stopping condition unsatisfied do 

 2.  Compute 
1mw 
 using (11); 

 3.  Set 
m  through formula (13); 

 4.  While formula (15) unsatisfied do 

 5.  Backtrack m m  ; 

 6.  End do 

 7.  Compute 1m+g  by one-step steepest descent method (13); 

 8.  Set 1mC   according (15); 

 9.  m=m+1 

 10.  End do 

 Output: 1mg   

  

IV. Simulation and Experimental Reconstruction  

A. Simulation work  

With the proposed TFVR strategy, image reconstruction in CCERT is conducted by simulation work. 

In the simulation, a circular region with inner diameter of 50 mm and outer diameter of 54 mm is 

constructed in Comsol MultiPhysics. Twelve electrodes are equidistantly installed outside the circular 



region and inclusions are located in the detected area. The conductivity of the background and the 

inclusions is set to 0.03 S/m and 0.001 S/m, respectively. With an alternating voltage injected to an 

electrode, the equivalent resistance is calculated from another electrode while other electrodes are set to 

floating potential. There are totally 132 measurement data. The sensitivity matrix is preliminarily 

obtained. Based on the calculated sensitivity matrix and the measured resistance, conductivity 

distribution is reconstructed with the proposed TFVR method implemented in Matlab R2016a. In 

addition, image reconstructions obtained by Landweber, Newton-Raphson and Tikhonov methods are 

performed and used for comparison. 

In the study, six different models are reconstructed. The inclusion in the models has the same 

conductivity. These models cover inclusions with different quantities, different sizes and different 

locations. The image reconstructed by the TFVR method is shown in Fig. 3. Also, the reconstruction is 

compared with the results of Landweber, Newton-Raphson and Tikhonov methods. 
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Fig. 3 Image reconstruction of different models without noise 

From Fig. 3, it can be observed that the quality of images reconstructed by Landweber method is the 

worst. The reconstructed inclusion tends to be much larger than the original object. For models when 

there are multiple inclusions in the detected region, the boundary of inclusions can not be clearly 

identified from the reconstructed image. Moreover, the solution is not very accurate because this 

method is semi-convergent and the optimal solution may not be found. Compared with Landweber 

method, images reconstructed by Newton-Raphson method are generally improved. The boundary is 

clearer and it is easier to identify the boundary between inclusions. Images recovered by Tikhonov 

method are similar with the results of Newton-Raphson method. However, it takes much less time for 

the reconstruction with Tikhonov method. Note that the inclusions are still not well reconstructed and 

there are obvious artifacts in the reconstructed images. Comparatively, images reconstructed by the 

proposed TFVR method have been largely improved. The inclusion is the most accurately 



reconstructed among the four methods. Moreover, the boundary of the inclusion is the clearest and 

almost no artifact is observed in the background. 

For quantitative estimation of the proposed method in the reconstruction, blur radius (BR) is 

introduced to evaluate artifacts. It is defined as  

0A
BR

A
  (16) 

where A0 is the area of the reconstructed inclusion and A is the whole detected area[32]. 

TABLE 1 compares the calculated BR values when the reconstruction is conducted with the four 

methods. From (16), it can be found that a smaller BR value indicates fewer artifacts and higher 

reconstruction quality. Among the four methods, the proposed method shows the lowest BR values for 

all the six models. It further proves the excellent performance of this method in image reconstruction. 

TABLE1 Comparison of blur radius values with different methods 

Method 

model 
Landweber Newton-Raphson Tikhonov TFVR 

1 0.4312 0.3747 0.3562 0.1823 

2 0.5830 0.5264 0.5000 0.2301 

3 0.5061 0.4629 0.4508 0.2506 

4 0.7681 0.6248 0.6058 0.2579 

5 0.8773 0.6714 0.6452 0.2741 

6 0.5702 0.4938 0.4799 0.2046 

It is also of great importance to estimate computing time of the image reconstruction method. In 

TABLE 2, time performance of Landweber, Newton-Raphson and Tikhonov methods and the proposed 

method are compared. Since Tikhonov method requires no iteration, the reconstruction costs the 

shortest time. Newton-Raphson method takes the longest time as multiple iterations are required. 

Comparatively, calculation time of the proposed method is a little longer than that of Tikhonov method.  

TABLE2 Comparison of time performance with different methods 

Method 

model 
Landweber Newton-Raphson Tikhonov TFVR 

1 0.1467 0.4681 0.0128 0.0828 

2 0.1392 0.4560 0.0126 0.0809 

3 0.1358 0.4630 0.0138 0.0817 

4 0.1345 0.4592 0.0142 0.0810 

5 0.1355 0.4655 0.0129 0.0825 

6 0.1383 0.4551 0.0132 0.0803 



It is known that it is difficult to reconstruct inclusions with different conductivity. Aside from 

reconstruction of inclusions with the same conductivity, it is also essential to study the performance of 

the proposed method in reconstructing inclusions with different conductivity. Fig. 4 shows 

reconstruction of a model with the four methods. In this model, two inclusions respectively having the 

conductivity of 0.001 S/m and 0.005 S/m are positioned in the detected region. As can be seen from Fig. 

4, the image reconstructed by the proposed method is obviously much better than other three 

regularization methods. The inclusion is the most accurately reconstructed. Also, the background is the 

clearest and no artifacts are observed. 

 

Fig.4 Reconstruction of a model with inclusions having different conductivity 

It should be noted that noise has a great impact on the measurement. To evaluate the anti-noise 

performance of the proposed TFVR method in the image reconstruction, Gaussian white noise with a 

noise level of 1% is considered to simulate an actual CCERT system. Under the noise, the 

reconstruction result is shown in Fig. 5. It is obvious that the images reconstructed by the four methods 

are affected by the noise. In some reconstructions, the recovered inclusions are deformed and more 

artifacts are observed. Nevertheless, the TFVR method proposed in this work shows the strongest 

robustness to the noise among the four methods. The inclusion is still the best reconstructed and the 

background shows the fewest artifacts.  

 model Landweber Newton-Raphson Tikhonov TFVR
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Fig.5 Image reconstruction under noise level of 1% 

Under the noise level of 1%, TABLE 3 compares the BR values when reconstruction of six models 

is performed with the four methods. Again, the proposed TFVR method shows the smallest BR value 

among these methods which further demonstrates the robustness of this method to noise.  

TABLE 3 Comparison of blur radius values under noise level of 1% 

Method 

model 
Landweber Newton-Raphson Tikhonov TFVR 

1 0.4773 0.4589 0.4298 0.1683 

2 0.6099 0.5659 0.5648 0.2135 

3 0.5205 0.5000 0.4988 0.2163 

4 0.7728 0.6058 0.7453 0.2531 

5 0.8710 0.7616 0.8200 0.2718 

6 0.6877 0.6078 0.6209 0.1985 

In addition, Fig. 6 shows the anti-noise performance of the proposed TFVR method in reconstructing 

inclusion with different conductivity. Reconstructed images are compared with the results obtained by 



Landweber, Newton-Raphson and Tikhonov methods. It is found that the shape of inclusions can be 

much better reconstructed by the TFVR method and the reconstruction is less affected by noise. 

Comparatively, serious deformation of inclusions is generated and lots of artifacts are observed in the 

reconstructed images of other three methods. 

 model Landweber Newton-Raphson Tikhonov TFVR
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Fig.6 Image reconstruction of inclusions with different conductivity under noise level of 1% 

B. Phantom experimental validation  

To validate the feasibility and effectiveness of the proposed TFVR image reconstruction algorithm, 

we carried out phantom experiments on a 12-electrode CCERT system [33]. The tank is filled by tap 

water with the conductivity of 0.018 S/m. Several combinations of plastic rods with the diameter of 

26.5 mm, 29.5 mm and 34.5 mm are employed as the inclusion. The frequency and amplitude of the 

excitation voltage are 500 kHz and 3.3V respectively. Fig. 7 shows the reconstruction results. Also, 

comparison is made with the images reconstructed by Landweber, Newton-Raphson and Tikhonov 

methods. From Fig. 7, it can be observed that the proposed TFVR method outperforms other three 

methods during the reconstruction of conductivity distribution. The reconstructed object is the most 

similar with the true inclusion. Furthermore, the boundary of inclusions is the clearest and the artifacts 

in the background are the least. 
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Fig.7 Reconstructed images based on experimental cases 

V. Conclusion 

In this paper, a novel TFVR method is proposed for recovering conductivity distribution in CCERT. 

According to the measurement principle, the mathematical model of CCERT is firstly established. To 

acquire conductivity distribution, iterative alternating minimization scheme is adopted to solve the 

proposed method. To verify the performance of the proposed TFVR strategy, reconstruction of several 

typical models with inclusions having the same conductivity is studied by simulation work. An 

additional model with inclusions having different conductivity is also studied. The results show that 

images reconstructed by the proposed method are obviously much better than other three regularization 

methods. By introducing the concept of blur radius, quantitative evaluation of the proposed method in 

inhibiting artifacts is conducted. It is found that BR values of the proposed method are the lowest 

which indicates the fewest artifacts and highest reconstruction quality. Calculation time of the proposed 

method is acceptable. Furthermore, anti-noise performance of the four methods is compared and the 

strongest robustness to noise is observed for the proposed TFVR method. Phantom experiments 

demonstrate the effectiveness of the proposed method. 
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