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Abstract 

Today’s geoscience challenges often require repurposing of data and samples from legacy 

boreholes. Collection of new deep core is expensive; maximising this investment is vital. However, 

condition of legacy cores varies due to factors including recovery, sampling, lithology, and storage.  

Rock Quality Designation analysis is often undertaken on new core but this only provides a snapshot 

of core condition and will not be indicative of subsequent condition. Poor core condition can make 

destructive analytical techniques impossible and also impacts non-destructive techniques including 

core scanning.  

Since 2011, BGS have systematically collected 125,000 core images. This study investigates if core 

condition of this archive can be assessed using automated analysis by machine learning. A neural 

network-based approach was used to segment these images. By differentiating imaged core from 

their background, properties such as number of fragments and total rock area were determined and 

used to assess core condition. Analysis of outputs demonstrate that with minimal input data, core 

condition can be rapidly assessed. This allows users to better understand and visualise core. This can 

be used to qualitatively assess non-destructive data, improve success of destructive sampling 

through targeted sampling and reduce the time and effort spent interacting with physical material. 

Supplementary material: The code for CoreScore is available at 

https://github.com/BritishGeologicalSurvey/CoreScore/. The photographs analysed are available for 

download from the British Geological Survey website, https://www.bgs.ac.uk/information-

hub/photos-and-images/. ACCEPTED M
ANUSCRIP

T
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Core material from boreholes is critical to the understanding and modelling of subsurface systems. 

However, acquiring new core is an expensive operation, and in addition to this UK onshore drilling 

projects have come under increased public scrutiny due to perceived environmental risks and 

impacts (Ireland et al., 2021). This adds additional complexity to the development of new onshore 

drilling projects and, as a result acquisition of new core material.  

In the absence of new core material, subsurface research relies heavily on archive of legacy core for 

the UK landmass and continental shelf.  Over 600 km of core material and is stored as part of the 

National Geoscience Data Centre (NGDC) hosted at the British Geological Survey (BGS) Keyworth 

site.  The NGDC archive underpins a huge volume of subsurface research, from large scale 

characterisation studies (e.g. NIREX, 1997; Andrews et al., 2013; Monaghan et al., 2016) to small 

scale physical property studies (e.g. Fellgett et al., 2019; Payton et al., 2021).  

Regardless of how carefully core is handled and stored post acquisition, it will degrade over time. 

The condition of legacy core can be highly variable and is dependent on a number of factors 

including initial core recovery, sampling (pre and post-delivery to the NGDC), lithology and physical 

properties. Some lithologies such as well cemented sandstones may not degrade much over time but 

others such as shales may degrade within years of acquisition. Storage techniques such as wrapping 

and refrigeration can help preserve core condition, but such techniques are costly and due to the 

volumes of core stored in the NGDC only a small proportion of the core can be preserved in this way. 

Core which is not specially preserved for the longer term can develop core breaks (biscuiting), post-

acquisition salt crust or crumble into small pieces (rubbling) (Fig. 1) 

Storage conditions including humidity, sealing and temperature alongside manual handling will also 

impact core condition. Each of these factors will influence not just the core condition but also the 

ongoing capacity of that core to be used for research and sampling. For example, if required to 

sample a 20 mm by 50 mm plug for triaxial testing, it may involve examining tens to hundreds of 

metres of core in order to find core pieces of sufficient size and quality to enable the taking of viable 

samples. In some highly heterogeneous lithologies there may not be an appropriate core section 

available to take viable samples (Fig. 1).  

Issues with core condition also presents a problem for acquisition of non-destructive analyses of 

core and core scanning techniques. Certain cores or sections of cores may be too broken to allow for 

taking of plugs or thin sections. This reduces the type of analytical work which can be undertaken.  

Core scanning allows for consistent and relatively rapid core property measurements, including 

geophysical, geochemical and structural analysis. The application of core scanning data is manyfold 

and data can underpin various geological disciplines, including mineral exploration studies (e.g., 

Tappert et al., 2011; Fresia et al., 2017), petroleum geology (e.g., Blunt et al., 2013, Zhang et al., 

2019), geotechnics and geohazards (e.g., Kuras et al., 2016; Harraden, et al., 2019), nuclear waste 

management (e.g., Smith et al., 2020), and environmental studies (e.g., Frisia et al., 2012, Ruhl et al., 

2016). However, some of these core scanning techniques, such as hyperspectral and X-ray 

fluorescence (XRF), only investigate the top few mm of the core. These techniques can be influenced 

by changes in core surface condition from core breaks to core samples, which leads to a reduction in 

signal and unreliable results which must be removed from final analysis (Fig.2). 
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An example of this is the work undertaken by the BGS Core Scanning Facility (Damaschke et al., 

202X). The core scanning facility is co-located with the NGDC at the BGS Keyworth site, and allows 

for the collection of large quantities of images, physical and chemical property data from the legacy 

core archive. A description of the facility and its applications can be found in Damaschke et al. 

(202X). 

When undertaking core scanning BGS currently uses a simple visual assessment of suitability for 

surface profile scanning. Cores are graded from 0 – 4 with grade 0 considered as representing the 

best quality surface for profiling data and Grade 4 being unsuitable for surface profile scanning (Fig. 

3) This methodology is further discussed in Damaschke et al. (202X).   

Existing methods for assessing core condition are largely based on the Rock Quality Designation 

(RQD) originally proposed in 1968 (Deere, 1968) and reviewed in 1989(Deere and Deere, 1989). RQD 

specifically provides a mechanism of assessing rock quality at a drill site shortly after its recovery. It 

is based on the number of natural discontinuities and core loss measurement to calculate an index 

that expresses core condition from 0% (very poor) to 100% (very good).  

The minimum unit of core used by RQD is 10 cm in length and is bounded by natural discontinuities. 

Induced fractures caused by the drilling and handling of core are not factored into the RQD 

calculations. Where these features fragment the core, they are ignored and the core length is 

measured between the two closest natural discontinuities (Deere and Deere, 1989).  

To be representative of the in-situ condition of the rock RQD must also be collected on site shortly 

after the core is drilled as certain lithologies, such as clays, and shales often break up. Because of this 

RQD represents a snapshot of core condition; in some clay lithologies RQD may shift from 100 % to 0 

% within hours or days due to post acquisition core fragmentation (Deere and Deere, 1989). 

As a result, despite the extensive applications of RQD in engineering geology it cannot be applied to 

legacy cores due primarily to fragmentation through drying, core fragment size and minor impacts 

from disturbance by transport, handling, and storage. A new method of assessing legacy core 

condition is proposed in order to improve user interaction with the physical material in the NGDC. 

Due to the volume of material currently held in the NGDC this method must be automated. One 

candidate for such automation is the BGS core photography archive which contains over 125,000 

images of core and is detailed below. 

BGS Core Photography Dataset 

Procedures for the acquisition of core photography in BGS were set up during the transfer of core 

from Edinburgh to Keyworth during the closure of the Gilmerton Core Store in 2010 (Howe, 2011). In 

order to demonstrate that the move did not disrupt the core, a decision was taken to photograph 

the core before transportation and upon arrival for a subset to assess whether any damage had 

been caused.  

This resulted in the creation of an archive of 125,000 images over an 18 month period. Since 2012 

core photography has continued in a less intensive fashion, with newly accessioned core being 

prioritised.     
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The core photographs are taken using a Phase One 645DF camera fitted with the Schneider “Blue 

Ring” 55mm f/2.8 lens and the Phase One P45+ digital back. The coreboxes themselves are placed in 

custom fabricated plastic trays supported on a custom built roller table. A ledge at the back of the 

table supports any required scale or colour calibration bars, as well as the 7” LCD screen, which 

displays the core and depth information (Fig. 4). For more detailed information on core photography 

acquisition see; Howe et al. (2012). 

The use of the plastic trays means that each photograph can contain 1 – 6 m of core (approx. 3 – 18 

ft), depending on core diameter and configuration of the containing corebox. As a result, the original 

125,000 images contained 175,000 coreboxes. This gives a maximum core length of 175,000 m, 

though some coreboxes will hold less than 1 m of core due to losses during drilling and the end of 

core runs. Following acquisition, the images are processed and converted into JP2 images and JPEG 

thumbnails. These are then made publicly available through the BGS Photographs and Images 

webpage (BGS, 2021). 

The core photographs are a valuable research resource in themselves, but the consistent nature of 

the acquisition and the large number of images makes them an ideal candidate for automated 

analysis (Martin et al., 2021). The number of images also provides information on a wide range of 

lithologies and types of core providing opportunities to assess additional factors impacting core 

condition (Fig. 1). 

Image Analysis 

Any automated system designed to assess core condition from image data alone must be capable of 

distinguishing between individual core fragments. Traditional approaches which could have been 

used include segmenting based on pixel values or the use of an edge/ line detection algorithm. 

However, such approaches are unlikely to yield accurate results for the following reasons. 

Pixel-based segmentation requires pre-defining a series of ‘rules’ which classify an individual pixel 

based on the RGB color values of that pixel. Unfortunately, the wide variety of samples in the core 

images leads to a wide variety of valid pixel values between individual core fragments. This means 

any predefined pixel values cannot be used to reliably distinguish core fragments from image to 

image. For example, the shaded area in an image of a lighter colour rock, may match the unshaded 

region in a dark rock. 

More fundamentally, pixel-based segmentation only considers individual pixels in isolation. Much of 

the information stored in an image is contained in the spatial context; i.e. the relationship between a 

given pixel and those around it. By considering individual pixels, but not those in the nearby vicinity, 

such a rules-based approach excludes much of the available information. While it would be possible 

to extend the rules-based approach to include nearby pixels, additional pre-processing would still be 

required to normalise rock shades between images, leading to an ever more complex manually 

defined set of rules. 

The challenges with edge/ line detection algorithms associated with the core images is that it is 

difficult to distinguish edges between core fragments, background and shadows, as they are visually 

dissimilar. In addition, fragments themselves tend to contain edges between light and dark areas, 
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which may lead to an edge detection algorithm identifying one core fragment as two (or more) 

fragments. 

Traditional line detection algorithms also require the user to specify a number of parameters which 

constrain the sensitivity of the detection. In the case of the core images, it is difficult to determine 

the correct level of sensitivity due to the range of interfaces between surfaces. Finally, the most 

prominent edges within the photographs are those of the boxes the core is stored in (AlZayer, 2019). 

All of these factors mean that it is not possible to predefine an algorithm with a single set of 

parameters that define an edge. 

Rather than predefining parameters and using them to segment images into core fragments, a more 

pragmatic approach is to use an algorithm capable of automatically learning the parameters 

necessary to segment images. Such algorithms are broadly defined as 'Machine Learning' (ML). Most 

ML approaches trade off the necessity to predefine parameters for a relatively large, representative 

training set. For this reason, the problem presented here is an ideal candidate for an ML based 

solution. 

Workflow Summary 

ML algorithms can be divided into 'supervised' and 'unsupervised'. Supervised algorithms require a 

labelled dataset, where a label refers to a desired output for every data point. A 'data point' in this 

case refers to a single pixel from a core image. An unsupervised algorithm would take the data with 

no labels and attempt to extract underlying patterns, typically by clustering similar data points 

together. Although this could be conceptually useful, the aim of this study was to automatically label 

pixels so a supervised approach was necessary and this choice largely dictated the designed 

workflow. 

Supervised algorithms require, at minimum, a training set and a distinct testing set. Every data point 

(X) in both the training and testing sets requires a corresponding label (Y). For image segmentation 

problems, the algorithm is initiated with randomly assigned parameters and makes predictions on a 

batch of training set images. These predictions are compared to the labels for those images, and the 

internal parameters are adjusted to minimise the difference between the prediction and actual 

values. This process is repeated across the entire training set. To assess model performance, the 

now trained model is used to predict outputs for the testing set and these are compared to the test 

set labels. 

For this project, the data consists of 29 core images which are a subset of the original 125,000 core 

images. This subset was split into 25 training images and 4 test images. For most ML algorithms, such 

a small number of distinct images would be too few for meaningful training. However, in this case, 

the individual images were of relatively high resolution (4784x7107px). This meant the dataset 

contained a sufficient amount of information to train up a classifier when given the appropriate 

choice of algorithm. Five additional unlabelled images were also available for qualitative model 

evaluation. These were manually selected from the core library as images that would be difficult to 

segment manually due to poor core condition. 

To provide labels for each image, a mask was produced. This consisted of an array identical in size to 

the original image. The array consisted of values from 0 to 5, where each value represented the class 
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of the corresponding pixel on the original image. The classes were: void, rock fragment, paper, core 

plug, text and box. The open source tool, label-tool (Kim and Veulemans, 2021) was used to perform 

the labelling, allowing users to draw polygons around appropriate regions of each image and label 

them accordingly (Fig. 5). The labels were saved as .json files and converted into the image masks in 

.png format. 

Following the labelling exercise, a decision was made to combine the labels for Rock Fragment 1 and 

Rock Fragment 2 (Fig. 5). The initial decision for the use of two categories was to distinguish if a 

photograph had multiple cores in. Every photograph will have at least one core in, though it’s 

position in the image may vary. Splitting the rock into two categories which were only valid for 

specific sections of the image reduced the impact of the training data. To mitigate this after the 

labelling process the workflow converts Rock Fragment 1 and Rock Fragment 2 into a single 

category.  

Algorithm Choice and Architecture 

The chosen algorithm for image segmentation was a U-Net. U-Nets are a sub-class of convolutional 

neural networks (CNNs), which are a family of neural networks designed for image analysis. A U-Net 

was specifically chosen as this architecture is designed for image segmentation and performs well on 

training datasets with a limited number of relatively high-resolution images (Ronneberger et al., 

2015). This is in contrast to more general CNN architectures which tend to require a large number of 

relatively low-resolution training images (Krizhevsky, et al., 2017). 

U-Nets consist of an encoder and a decoder. The encoder repeatedly increases the image 

dimensionality by applying 2D kernels. This results in a growing 'stack' of 2D 'filters', which are 

trained to identify distinctive features in the image as the kernel parameters are adjusted. The 

decoder reverses this process; progressively reducing the dimensionality of the stack until a 2D 

image is output. Using an appropriate loss function, the network seeks to minimise the error 

between this output and the corresponding mask for the image. 

The U-Net utilised in this study used the Resnet34 architecture for the encoder-decoder layers, as 

the resnet family have a long history of good performance for image classification problems and are 

easy to implement (He et al., 2015). In this case, Resnet34 was available as a pre-built architecture in 

the FastAI library (Howard et al., 2018) which was used to build and train the U-Net. The code used is 

available at the project github repository (Walsh et al., 2021). 

Model Training and Testing 

The U-Net was initialised with weights and biases from a Resnet34 model pre-trained on the 

ImageNet dataset (Deng et al., 2009). Using a pretrained model reduced overall training time as, 

although ImageNet contains 1000 classes that have no relation to the core segmentation problem, 

many of the resulting filters were expected to correspond to important features within our images. 

Training was carried out on a NVidia Quadro RTX 4000 over 100 epochs, requiring 45 minutes in 

total. Binary crossentropy between the prediction and the mask was used as a loss function, where 

the model sought to maximise the number of pixels in the prediction and the mask with identical 

values. Pixel accuracy was also recorded as a training metric. 
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Of the 25 images in the training set, 3 were used for validation to calculate model training metrics. 

Therefore, 22 images were used to train the model, 3 to validate and 4 to test. The trained model 

was then used to predict masks for the test set. These predictions were compared to the actual 

masks for the test set images to obtain an overall pixel accuracy for the model. 

Results 

The progression of model loss and accuracy over the training epochs are plotted in Fig. 6. As 

expected, training loss fell asymptotically with the number of epochs as the model was able to 

distinguish between increasingly fine features. Unusually, the validation loss was generally lower 

than the training loss. This is probably due to the small number of underlying images forming the 

validation set – just 3 raw images. As the training set contained more variety, it is reasonable to 

assume that prediction on the validation set in this case was relatively easy. 

Performance of the model on the test set images is shown qualitatively in Fig. 7. In addition, 

predictions for the unlabelled images, which were characterised as 'difficult' to manually label by the 

project are shown in Fig. 8. In both cases the predictions clearly exhibit an ability to distinguish 

between core fragments as well as other image artefacts. 

Overall predictive accuracy over the test set was 97.3%. This meant the model correctly predicted 

the class of 97.3% of pixels in the test set images. Model accuracy on predicting the rock 

classification was considered separately as identifying rock fragments is the most important 

application for the model. For the test set, rock prediction accuracy is summarised as follows: 

• The precision was 87.7%, meaning 87.7% of pixels in the test set images that were labelled 

as 'rock' were correctly classified as such. 

• The false positive rate was 5.7%, meaning 5.7% of pixels in the test set images that were 

predicted to be 'rock' were incorrectly classified as such. 

• The false negative rate was 2.3%, meaning 2.3% of pixels in the test set images that were 

predicted not to be rock were actually rock. 

The false positive and false negative predictions are shown in Fig. 9. In general, the relatively high 

false negative rate appears to be due to the model misidentifying areas with few surface features as 

card. Many of these rock areas have a similar colour to the card in the background, so this is 

unsurprising.  

Another contributor to the false negative rate is the model correctly identifying rock plugs as ‘non-

rock’ areas. These predictions are actually correct but were mis-labelled by the human operators in 

the masks. So, these areas actually artificially increase the false negative rate in this case. 

The false positive rate is largely derived from the model being unable to distinguish the core breaks 

between individual fragments. Although the rate is relatively low, correct identification of these 

areas is crucial for the proposed applications as inferring core breaks is the only reliable means to 

automatically count the number of distinct core fragments. This led to a model which does appear to 

predict core condition metrics proportional to the actual values, but is not able to reliably state the 

number of fragments in a highly fragmented core. Future improvements may be possible through 

more extensive training on a training dataset which contains more of these highly fragmented core 
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images. However, a balance may have to be struck between high model sensitivity for core breaks 

and higher rate of false positives for other artifacts that may appear superficially similar to core 

breaks.   

The edges of core samples (i.e. the interface between the core and the box) also contribute to both 

the false positive and false negative rate. This is possibly due to the presence of shadows in these 

areas. Errors in these areas are of less concern for automating core condition assessment. 

The pixel accuracy is only an indicator of the model’s ability to distinguish correctly between 

different types of material in the image. It does not directly produce an indication for degree of 

fragmentation. In order to do this, a number of metrics were derived from the pixel values in the 

prediction masks. The prediction masks were used to derive the following metrics for each image: 

• Relative Rock Area: the proportion of the image taken up by rock. 

• Total Rock Perimeter: The total perimeter of all rock regions in pixels. More fragmented 

cores are expected to have a higher perimeter. 

• Average Fragment Perimeter: The average perimeter of every individually identified rock 

fragment, where an individual rock fragment is a single contiguous zone of ‘rock’ pixels 

(automatically enumerated by the regionprops function from the scikit-image package). 

• Number of Fragments: The total number of distinct rock fragments distinguished by the 

model. 

• Total Rock Area: The number of pixels identified as rock. 

• Perimeter Complexity: The total perimeter area divided by the total rock area. Higher quality 

cores would be expected to have a less complex perimeter. 

All predicted parameters are shown in table 1. 

Discussion 

Neural Network approaches have been applied to a wide variety of earth science projects in recent 

years, from facies prediction (Martin et al., 2021) through to forecasting of sea ice (Andersson et al., 

2021). These types of approaches are favoured due to the generation of reliable results from a small 

amount of training data. Existing python libraries such as fastai (Howard et al., 2018) and TensorFlow 

(Abadi et al., 2015) also reduce the time taken to produce workflows to address this problem.   

The Machine Learning based approach demonstrated here has the immediate benefit of near-

instant assessment of new images. The training set required an average of 30 minutes per image to 

label, however complex images (e.g. Fig. 5) took several hours to label precisely. Thus, the ML 

approach provides clear time saving benefits while producing consistent predictions, which is not 

guaranteed with human operators.  

Direct time saving comparisons between the ML model and human operators is less relevant than 

the performance of the model itself. However, in this case the resources required to undertake this 

work using human operators is beyond what is practically possible. This is a consequence of the 

number of images held by BGS, currently 125,000. Manually labelling these images would take, on 

average 62500 hours or approximately 21 years of a person’s time working 8 hours a day, 365 days a 

year. As a result, this task could never be undertaken economically without the use of ML methods, 
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which in this case required on the order of hours to train and provide near real-time labelling. Non-

ML automated methods such as those discussed in the ‘image analysis’ section would still require 

significant time from a specialist to pre-determine a set of rules for segmentation. By effectively 

shifting this learning onto the training phase of the algorithm itself, the supervised learning 

approach allowed a non-domain specialist to produce viable predictions for rock presence. 

Areas for model development 

The chosen architecture for CoreScore required a relatively small dataset for training compared to a 

more generic CNN. This is unusual for ML models, but was offset by the advanced image labelling 

required to construct a dataset. Simpler image classification problems tend to require single labels 

for an entire image. In this case, producing polygons for every relevant region in the image was the 

most time-consuming aspect of the process. The polygons themselves provided contiguous regions 

in the images that the U-Net learned to recognize in new images. Although the predicted outputs of 

the network were simple pixel masks, it was relatively simple to extract contiguous zones of 

predicted rock in order to compute the total number of fragments in a given image. It is important to 

note that the algorithm was not explicitly trained to compute the number of fragments – rather it 

was scored on it’s ability to match individual pixels correctly. A further development in the future 

could utilize a custom loss function to reward the learner for correctly predicting the number of 

fragments; or a similar derived metric. 

The nature of the solution presented here allowed for an easy qualitive assessment of model 

performance, in addition to the accuracy metric provided by the model. Every prediction on the test 

set consisted of a prediction mask which can be visualised as an image. Viewing these predicted 

masks alongside the original images not only allows an operator to visually confirm the model is 

capable of making sensible predictions but it may also allow for iterative model improvement. For 

example, in the first test set image (Fig. 7), we see rock regions that are mislabelled as card. If similar 

misclassifications are seen in many test set images, it may be possible to address this in a future 

training run.  

Correcting repeated misclassifications may involve designing a pre-processing filter to accentuate or 

remove such regions. Alternatively, a solution may be applied at the model-level by applying a 

custom loss function, tailored to disproportionately increase the loss value for the specific 

misclassification (Ebert-Uphoff et al., 2021); this would make the model more sensitive to these 

regions. 

An important aspect of CoreScore that has not yet been considered in detail is the balancing of the 

training dataset. The training images were selected at random by a human operator from the full 

BGS core image dataset. In initial model tests it was found that performance was worse when 

applied to lighter coloured core material than with darker coloured material (Fig. 10). This is likely a 

result of lighter cores being underrepresented in the initial training dataset. As the full dataset 

consists of a wide variety of lithologies and rock types, representative samples of many of these 

lithologies would probably be necessary to train up a classifier capable of distinguishing fragments in 

any core. It is difficult to predict exactly how many training samples, and the variety thereof that 

would be required to build a truly general classifier that could predict on any unseen new sample, 

future studies could feasibly repeat the work of this study with a test set of explicitly different 

samples to measure sensitivity of the model against training set variability.  
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However, dataset variability cannot be considered in isolation. An ideal dataset would contain 

different lithologies with the same relative frequency we expect to encounter them in any new 

images. The process of representing different classes of data in the correct proportion is referred to 

as 'stratification' and is not possible to achieve perfectly since we can never know how new unseen 

data will be stratified. In addition, stratification should be carried out based on other metrics such as 

core condition. For example, a classifier trained only on core in excellent condition would not be able 

to segment poor quality core.  

Ensuring that the training dataset for future runs is well stratified may prove challenging as 

automatically assessing these attributes in the existing data is difficult without an existing model. 

Although the model does not directly suffer from the nondeterministic bias seen in human 

operators, it is susceptible from bias derived from incorrectly stratified data. To mitigate this, it is 

anticipated that future use of this tool will require a new training set which proportionally 

represents all rock types in the NGDC. 

Another aspect which may artificially raise the model accuracy is positional bias. All training 

photographs were of broadly the same format: split into four horizontal sections. The top section 

housed the colour reference card and background, the second and third sections usually housed 

core, and the bottom section was usually empty. A learner that simply predicted 'background' for 

the top 25% of the image, 'rock' for the middle 50% and 'card' for the bottom 25% would score a 

reasonably high accuracy. Indeed, we see excellent predictive capability for 'card' in the bottom 

section of all test set images.  

To address the issue of positional bias in future iterations, data augmentation through geometric 

transformation will be necessary (Shorten and Khoshgoftaar, 2019).  The simplest solution would be 

to rotate training images in 90 degree increments and duplicate to remove this positional context. 

Another approach to this issue would be to slice the images so that each section of core is separated 

and ‘background’/’card’ areas are minimised. This may be a more comprehensive approach, but the 

additional investment required means that the simpler translational technique will be attempted 

and evaluated first. 

The labelling of the training data may also have introduced errors and artefacts in the model. In the 

initial training phase 5 types of labels were used, despite the principle interest being confined to the 

presence or absence of core. Instructions were provided to interpreters but the authors now believe 

that fewer labels should have been used in the initial development of the tool. This would have 

improved model performance through the reduction of false negatives. However, some false 

negatives would have persisted in cases where core plugs have been taken from intact rock 

fragments (Fig. 8 & 9).  

One limiting factor on the use of Core Score is the available hardware, specifically GPU memory. The 

training set was small enough for the computational time to train the model to not be a major 

concern. However, the high resolution of the input images initially caused the model to exceed the 

available GPU memory of 8Gb. The solution was to train with a batch size of 1, which was 

appropriate due to the small number of images. If higher resolution images are to be used in the 

future, or a batch size increase is necessary, future implementations would require either a higher 

performance GPU, or reduction of input image sizes by slicing to only include the relevant sections. 
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One challenge when applying machine learning techniques to the BGS photography collection is that 

the photographs were not collected with ML techniques in mind. This results in some artefacts in the 

processing in particular caused by shadows at the edges of each core box (AlZayer, 2019; Fig. 10). In 

similar projects, this has not posed major issues, especially when the photography is carried out 

under controlled conditions (Hall et al, 2021). A sufficiently well trained classifier would be able to 

identify these artefacts and account for them. However, artefact removal via pre-processing is 

preferred where applicable. A pre-processing step would be particularly beneficial to the U-Net 

approach since the training set consists of a small number of high-resolution images, so artefacts will 

be seen relatively few times during training. 

In addition to this there are also many other artefacts in the images introduced from items within 

the Coreboxes themselves. This includes: Paper Labels (Fig. 10); Sub Sampling (Fig. 2, Fig. 10); Plastic 

/ wrappers (Fig. 1), resin and spacers (an object inserted where a section of core is removed. All of 

these features will impact the performance of the tool, reducing the accuracy of the predictions. The 

overall result may make CoreScore more suitable for reconnaissance level characterisation.  

The capability of the model to automatically identify areas of rock allowed for direct computation of 

parameters that may be used for core assessment. Ideally, the total number of distinct fragments 

identified in each image would be used as a direct proxy for core condition. This method would likely 

automatically downgrade finely laminated cores with planes of weakness which may open post 

drilling. These cores may have an increased value from a geological perspective, so user 

requirements need to be considered as part of the process. In addition, discriminating between 

areas of rock and core breaks was the main contributor to false positive values in the predictions. 

This led to a model which struggled to accurately identify the pixels in ‘transitional zones’ between 

fragments. When deriving core quality metrics from these pixel predictions, there was a tendency 

for smaller fragments to become single larger contiguous zones which were labelled as a single 

fragment.  

However, the total perimeter of rock in each image was also computed and appears to be 

proportional to fragment count. This is visually demonstrated in Fig. 7 where we see a core with 

many fragments that are falsely identified as a few large sections of rock. The prediction is still able 

to trace out a relatively large perimeter around these collections of individual fragments. Future 

iterations of this methodology may seek to better differentiate between individual fragments, or 

alternatively seek to characterise core using a single parameter derived solely from the core area 

and total perimeter. 

All of these factors have an impact on attempts to calculate a single core quality index from 

CoreScore outputs. If the tool was run on a closed dataset where the training images were 

representative of the core as a whole then a normal distribution could be fitted to calculate a 

relative core index (AlZayer, 2019). Such an index can be valuable for specific use cases but the 

development of CoreScore is currently geared towards a single tool which can be applied 

irrespective of core condition. As such a universal index is not currently the target for immediate 

development. BGS also continues to acquire new core photographs as part of its Digital Collections 

program. These new images will be incorporated into the tool, initially on a borehole by borehole 

basis.    It remains a target of the project to introduce core condition categories based on the 

outputs of the tool. It is intuitive that a core with fewer core breaks and higher total rock area will be 
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in a better condition than one with more breaks and a lower rock area. Though at this stage the 

model has only been run on a small number of images so a proposed classification would not be 

meaningful beyond this specific dataset.  

Another method to assess core condition would be to examine core fragmentation and fragment 

size for different core diameters and lithologies to create an index by rock type. It is for example 

expected that clay or mud rich lithologies will have degraded while in storage (Deere and Deere 

,1989) so may have larger numbers of core breaks. Furthermore it is anticipated that non-geological 

parameters such as core diameter or whether the core was archived in whole round or slabbed state 

will also impact core condition. These parameters are not currently stored in machine readable 

formats and the data extraction will be a time-consuming process. However, it remains the authors 

ambition to capture this information and incorporate it into the tool. 

CoreScore applications 

The initial concept for developing CoreScore was to improve efficiency in the BGS Core Scanning 

Facility by not scanning core which was too broken to generate reliable data. However, there are a 

number of legacy cores that are of sufficient quality to be scanned but their condition may still 

impact the scanning data (e.g. Fig. 2). It is difficult to quantify the magnitude of this impact due to 

the lack of publicly available hard rock datasets from core scanning alongside there being no method 

of quantifying legacy core condition in a consistent manner. 

The impact of core condition on core scanning is also dependent on the purpose of collecting core 

scan data. If there is a large contrast in rock properties, such as an interbedded sequence of 

evaporites and muds, volumetric measurements are likely to identify this variation unless the core 

has rubbled. However, if you would like to look at chemical changes which can indicate variations in 

cement type down core then even small fractures can have an impact on the dataset. 

Information on core condition is needed to make sense of core scanning data. For example, the 

dataset from UKGEO’s Glasgow shows that within sections of poor core condition scan data cannot 

be collected (Fig.3). However providing a single grade for a box does not distinguish sections of 

intact core, sections of missing core and sections of core too fragmented to scan. Thus, outputs from 

CoreScore could be used to qualitatively assess core scanning outputs and identify if data gaps are 

associated with missing core or broken core.   

CoreScore utilisation has implications for methodologies for core preservation and sampling in a 

Core Store environment. Currently users taking destructive samples from core held at BGS Keyworth 

must either access core photographs or attend site in person to identify sample locations in 

conjunction with the chief curator or conservator. Where there is a significant section of core (e.g. a 

hundred metres) this process can involve a lot of physical effort and time to retrieve the cores and 

lay them out in viewing bays. CoreScore will streamline this process by pre-screening core to identify 

sections where there is sufficient intact rock to allow for sampling. This will minimise unnecessary 

core handling, decreasing both risks of damage to core material and manual handling injuries to the 

repository staff. This objective remains an aspiration that is yet to be realised, but CoreScore 

represents progress toward this aim. 

ACCEPTED M
ANUSCRIP

T

Downloaded from https://www.lyellcollection.org by NERC Library Service on Nov 14, 2022



CoreScore can also promote core preservation. Take for example the case where two boreholes in 

an area which sampled the same stratigraphy. One borehole is mentioned in a publication and has 

been heavily sampled but the other has not. CoreScore could identify this and be used to direct 

users to the second core allowing preservation of the first borehole while improving the type and 

quantity of samples a user can take. It could also flag where samples had been taken allowing 

individuals to investigate what historical data may be available.  

The ability to automatically generate simple metrics to assess core can be used to improve the 

visualisation of long stretches of core. Due to hardware and performance considerations it can be 

impractical to load hundreds of metres of core images into visualisation software. The text outputs 

of CoreScore allows users to present core condition over hundreds of metres but then load high 

resolution photography for sections of interest. In addition to this, if a section of fresh core was 

repeatedly photographed over time then CoreScore could also be used to assess the speed of core 

degradation in different lithologies and to inform future curation best practice.    

Conclusions 

Project CoreScore has demonstrated that ML methods and workflows can be used to rapidly assess 

core condition from images alone. This methodology has been demonstrated to perform with a high 

degree of accuracy (over 95%) and precision (87.7%) when compared to a manually labelled image.  

CoreScore represents an opportunity to change how users interact with physical core material 

stored in the NGDC. This has implications for all users of the NGDC, from a PhD student taking a 

single sample from a core to large basin-scale multi well characterisation studies by industry or 

consortia.   

The utilisation of existing U-Net algorithms has allowed this to be achieved with a minimal training 

dataset. This has not only reduced the time spent compiling training datasets but also means that 

the model can be easily adapted to focus on lithologies not currently represented in the dataset, 

initially on a project by project basis. 

However, the content and collection of the training dataset has implications for the deployment of 

the tool. Results suggest that model performance would be replicated in lighter lithologies such as 

limestones or darker lithologies such as shales. As a result ongoing tool development will require the 

collection of training data from areas of interest, either spatially or Stratigraphically.     

The model has been shown to segment images that humans would find difficult or time consuming 

to manually assess. It also provides a consistent methodology which would be difficult to achieve 

with human operators. It is worth noting that economically it would be difficult for humans to 

interpret the existing core photography dataset within BGS based on size alone. As a result, ML tools 

represent one of the few options of unlocking information from this photography dataset.  

Scaling up the existing prototype to the full dataset (125,000+ images) would require rapid 

assessment of new images and require enhanced computing power. We cannot yet conclude that 

such a model would be able to achieve high segmentation accuracy on new data from the full range 

of lithologies housed in the NGDC. However, by scaling up our current implementation of an image 

processing pipeline and U-Net, we hope to extend the predictive capability of this model across a 

comprehensive range of core samples.   
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The workflows utilised in this project have been applied to a number of geoscience problems. This 

demonstrates the versatility of these types of approaches, particularly to consistent datasets of 

images, and even legacy datasets where factors impacting machine learning were not considered at 

the time. An example of this is the performance of CoreScore on core images where items such as 

plastic and paper obscure sections of the core. 

Full utilisation of the CoreScore outputs will depend on integration with other processes that involve 

legacy core, such as core scanning. There are however, many other potential use cases and 

discussions with future stakeholders will be critical to the development of CoreScore.  
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Figure captions 

Fig. 1: Image of a 50 cm section from three legacy cores selected to show core in poor condition 

from three different boreholes stored in the National Geoscience Data Centre.  Two of these cores 

(Centre and Right) have degraded significantly since acquisition making it difficult to undertake 

certain types of research. The left-hand core is still suitable for some research, but it would not be 

possible to obtain a core plug from. Contains British Geological Survey materials © UKRI 2022. 

Fig. 2: Image showing how surface profile core scanning (in this example X-ray fluorescence) is 

affected by core condition. The highlighted core plugs and associated loss of material result in a 

significant reduction in signal (recorded in total Counts Per Second). Left: Depth in core scan section. 

Centre Left: Total raw unprocessed counts from XRF surface profile. Centre Right: Optical Image. 

Right: Highlighted features which have an impact on quality of core scan data, HP: Horizontal Plug; 

VP: Vertical Plug, CB: Core Break. 

Fig. 3: Example showing how surface profile core scanning intervals are adjusted based on core 

condition using visual grading system from Damaschke et al. (202X). As core quality reduces Surface 

profile scanning can only be collected over smaller areas of the core.  Rank 4 core has not been 

included as it is not possible to collect surface profile data on such cores (Fig. 1). 

Fig. 4: Example of a core photograph from the BGS core photography collection. Contains British 

Geological Survey materials © UKRI 2022. 

Fig. 5: Example of a labelled image used in the ML workflow. Human operators traced round each 

core fragment to create a series of labelled polygons known as a mask. This was then input to the 

processing workflow to train the model. Contains British Geological Survey materials © UKRI 2022. 

Fig. 6: Progression of model loss and accuracy values over the course of the training run. The 

accuracy score is the number of correct predictions made on the training data set. The loss is the 

difference between the desired target state. As the model begins to correctly identify core 

fragments, the training accuracy increases, i.e. more core fragments are correctly identified. There is 

no sign of an accuracy loss discrepancy, i.e. the loss continues to fall, while the accuracy remains the 

same. If the model was over trained, a single wrong prediction would lead to a significant difference 

in loss, with no change in accuracy.  

Fig. 7: Original test set images, shown with ground-truth masks and predictions from the trained 

model. Even with a small training dataset the model can recognise the majority of core within the 

box. Left hand panel; Original core image, Centre Panel; Mask generated by human operator (Fig. 5); 

Right hand panel; prediction of core from trained ML model when applied to the original image. 

Contains British Geological Survey materials © UKRI 2022.    

Fig. 8: Original images (Left) and model predictions (right) for core identified as being in particularly 

poor condition. Given the condition of the core, these images were not labelled by human operators 

due to the time required to produce a mask. The ML model prediction captures a significant amount 

of the core variability even with a small training dataset. Contains British Geological Survey materials 

© UKRI 2022. 
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Fig. 9: Visualisation of the areas of test set images that were mislabeled for the 'rock' class. Left; 

Original Image. Centre Left; Mask produced by human operator. Centre Right; Areas of the core 

where the model predicted core but the human operator did not. Right; areas where the human 

operator labelled the image as rock but the model did not. The false negatives in the second image 

show the model recognizing core plugs even though these were not specifically labeled in the 

training dataset. Contains British Geological Survey materials © UKRI 2022.  

Fig. 10: CoreScore model performance and artefacts on an unseen image. Oval highlight the effect of 

paper on the model. Shadows on the core caused by the edge of the corebox are highlighted by the 

white rectangle. The white polygon shows an area of lighter core that is not well identified by the 

model and is likely the result of lighter material being underrepresented in the training dataset. 

Contains British Geological Survey materials © UKRI 2022.  

Table Caption 

Table 1. Predicted metrics for the test set images shown in Fig. 7. These parameters may be used as a 

summary for overall core quality.  
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Image Relative 
Rock Area 
(Pixels) 

Total Rock 
Perimeter 
(Pixels) 

Average 
Fragment 
Perimeter 

Number of 
Fragments 

Total Rock 
Area 
(Pixels) 

Perimeter 
Complexity 

test set 1 0.16 8984.79 598.99 15 85269 0.11 

test set 2 0.15 5414.20 541.42 10 81267 0.07 

test set 3 0.15 10695.59 1782.60 6 80044 0.13 

Table 1 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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