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Abstract: This paper describes a system to detect anomalies in non-IP (Internet Protocol) industrial 

networks on Industrial Control Systems (ICS). Non-IP industrial networks are widely applied in ICS to 

connect sensors and actuators to control systems or business networks. They were designed to be in an 

air-gapped security environment and therefore contain almost no cyber security features and are 

vulnerable to various attacks. Even though they are part of the communication layers, a few external 

cyber security controls are applied in this crucial tier. As an extension of the work by De Moura et al. 

(2021), this study proposes and tests the proof-of-concept of an agnostic anomaly detection system 

(AADS) to detect anomalies on any non-IP industrial network (e.g., DeviceNet, CANBus) as an 

additional cyber security measure working at the physical network layer. The proof-of-concept is 

comprised of three modules, including hardware and software components: data gathering (sniffer), 

parser, and detection. Testing the proof-of-concept in an industrial lab network (i.e., a Profibus-DP lab 

network) showed the proposal's feasibility with a detection rate above 99% (overall accuracy: 99.59%; 

F1-Score: 99.18%). 

Resumo: Este artigo descreve um sistema para detectar anomalias em redes industriais não IP (Internet 

Protocol) em Sistemas de Controle Industrial (ICS). As redes industriais não IP são amplamente 

aplicadas em ICS para conectar sensores e atuadores a sistemas de controle ou a redes de negócios. Eles 

foram projetados para estar em um ambiente de segurança isolado e, portanto, quase não contêm recursos 

de segurança cibernética e são vulneráveis a vários ataques. Embora façam parte das camadas de 

comunicação, poucos controles externos de segurança cibernética são aplicados nessa camada crucial. 

Como extensão do trabalho de De Moura et al. (2021), este estudo propõe e testa a prova de conceito de 

um sistema agnóstico de detecção de anomalias (AADS) para detectar anomalias em qualquer rede 

industrial não IP (por exemplo, DeviceNet, CANBus) como uma medida adicional de segurança 

cibernética trabalhando no camada física de rede. A prova de conceito é composta por três módulos, 

incluindo componentes de hardware e software: coletor de dados (sniffer), analisador (dados) e detecção. 

O teste da prova de conceito em uma rede industrial de laboratório (ou seja, uma rede de laboratório 

Profibus-DP) mostrou a viabilidade da proposta com uma taxa de detecção acima de 99% (precisão geral: 

99,59%; F1-Score: 99,18%). 
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1. INTRODUCTION 

Increasingly, data from the factory floor is used in critical 

infrastructure environments. This need derives from the 

escalated use of advanced data analytics at Information 

Technology (IT) levels boosted by the advent of Industry 4.0. 

The data is typically generated on Industrial Control Systems 

(ICS) hosted on automation levels supported by industrial 

networks and protected from business networks (De Moura et 

al., 2021). 

Industrial networks are the way how IT systems can consume 

data from ICS. The traditional approach connects network 

layers through gateways, DMZs (Demilitarized Zones), 

firewalls among business security zones, and automation 

layers that allow real-time data exchange. Gateways may 

transfer and translate network variables and messages until 

they reach business networks (Fiedler et al., 2000; Cheminod 

et al., 2012). 

Industrial networks apply to many industries and are 

extensively used in critical infrastructures that usually pose 

risks for assets that control, e.g., nuclear, electric, and 

chemical facilities, which, when attacked, may endanger 

people's lives. This fact corroborates a growing concern with 

the cyber security risks of these environments (De Moura et 

al., 2020). 



 

 

     

 

In the past, ICSs were isolated from other environments. 

However, today, in the highly interconnected era, there is a 

substantial increase in cyber security risks centered on threats 

operating in different modes in the industry (Cazorla et al., 

2016; Rubio et al., 2017). Recent cyber security events, such 

as Stuxnet, Duqu, Shamoon, and Gass (Branquinho et al., 

2014; Gao and Morris, 2014; Hemsley and Fisher, 2018), 

demonstrated that industrial malware could potentially 

impact ICS.  

Non-IP industrial networks (NIPIN) are a type of industrial 

network still very used for ICS and have poor cyber security 

mechanisms (Hijazi et al., 2018). They were created with the 

assumption of isolation (Ullah and Mahmoud, 2017) when 

the main desirable characteristics were determinism and 

performance. NIPIN are over 20 years old (Templeton, 2010) 

and typically cannot undergo security updates due to limited 

equipment resources and low transmission capacity (Luigi 

and Santos, 2018). 

Thus, since NIPIN are being integrated and do not have 

adequate security mechanisms, a relevant cyber security gap 

needs to be addressed by strengthening cyber security 

defenses. Due to limited capabilities, a viable non-intrusive 

option would be to concentrate on detecting cyber-attacks 

rather than on prevention. A significant effort focuses on 

anomaly detection solutions (Yang et al., 2006; Krotofil and 

Gollmann, 2013; Zhou and Gu,2018; Yang et al., 2019; 

Martinez et al., 2019); however, previous solutions rarely 

address non-IP network cases. 

In this work, we focus on an agnostic anomaly detection 

approach. We attempt to detect abnormal network behavior at 

the physical level in a non-intrusive manner. Our proposal is 

based on the premise that attacks at the physical network 

level have the ultimate objective of altering equipment 

behavior on the shop floor. Anomaly detection can facilitate 

early detection of cyber-attacks and faulty equipment, which 

ultimately represent potentially exploitable vulnerabilities. 

Therefore, the contribution of this paper is a proof-of-concept 

for an agnostic anomaly detection system that detects 

anomalies related to cyber security at the physical level in 

any non-IP network. Tests in a lab network (NIPIN) have 

shown the feasibility of the proposed system. 

2. NON-IP INDUSTRIAL NETWORKS AND CYBER 

SECURITY ISSUES 

Technological evolution led mainly by the advent of digital 

electronics and later digital communication allowed the 

emergence and proliferation of digital industrial networks. 

Industrial networks result from the digitization of automation 

equipment initially supported through pneumatic and analog 

controllers (Galloway and Hancke, 2012).  

Networks began to be applied due to the evolution of 

information technology, communication networks in 

companies, and the growing need for integration between 

production and corporate systems (De Moura et al., 2021; 

Knapp, 2015). However, industrial networks have not 

reached de-facto worldwide standards, unlike business 

networks, due to the numerous automation equipment 

manufacturers and the market competition. There are dozens, 

maybe hundreds, of different industrial networks. 

Industrial networks can be defined as mission-critical 

distributed systems applied in industrial areas to enable 

communication between intelligent devices present in ICS 

(Knapp, 2015). Industrial networks are typically used to 

integrate devices in a particular automation subsystem 

responsible for part of the production process in industries. 

The primary objective is to increase efficiency and reduce 

production costs (Knapp, 2015; Galloway and Hancke, 

2012). 

The production process goes through several steps performed 

by different elements present in the industrial environment. 

The trend in the industrial environment is to have several 

subsystems with a certain autonomy, with each one being 

responsible for parts of the production process. These 

subsystems are autonomous, i.e., horizontally independent, 

but vertically integrated into communication silos. Vertical 

integration happens through integration between industrial 

networks and systems that allow, for example, data collected 

on the factory floor to be forwarded to corporate systems (De 

Moura et al., 2021a; Galloway and Hancke, 2012). In 

general, there is no standard for the network hierarchy, 

meaning that the subsystems can be supported through the 

composition of a diversity of industrial networks. 

Compared to business networks, the primary difference is 

that industrial networks are connected to equipment and 

control and monitor physical actions and conditions. In 

general, some other differences are: architecture – industrial 

networks have a much deeper architecture with different 

protocols; failure severity – failure of the system has a much 

more significant impact such as production loss, human 

safety, and damage to equipment; real-time – the response 

time should be less than the sample time of data gathering; 

determinism – the transmission must also be done in a 

predictable or determinist fashion; and periodic and aperiodic 

traffic - industrial networks require the transmission of both 

periodically sampled data and aperiodic events such as 

change of state or alarm conditions (Galloway and Hancke, 

2012). 

NIPIN use the serial bus and point-to-point communication 

links that interconnect devices designed for remote command 

and control (Knapp, 2015), such as Profibus DP, 

Modbus/RTU, and DNP3. This kind of network is usually 

cyclic, deterministic, and repeatable with regular cycles and 

predictable traffic (Luigi and Santos, 2018).  

The cyber security community is broadly unaware of the 

prevalent use of non-IP-based communication; consequently, 

most cyber security mechanisms are based on TCP/IP 

networks (Templeton, 2010). NIPINs were built assuming 

that all entities operating in the network were legitimately 

installed, performed the intended logic, and followed the 

protocol's rules (Goldenberg and Wool, 2013). In general, 

NIPIN do not implement robust cyber security defense 

mechanisms; they do not enforce cryptography; therefore, all 

the data is transferred over the network in plaintext 



 

 

     

 

(Goldenberg and Wool, 2013) because of hardware and 

network bandwidth limitations (Song et al., 2016).  

NIPIN's cyber security limitations derive from these 

networks being created when ICS was isolated. There was no 

concern about cyber security, as an attacker would have to be 

physically connected to the network to carry out an attack 

(Knapp, 2015; De Moura et al., 2021). Network components 

do not verify the identity and permissions of other associated 

components, authentication and authorization are not usual, 

and the control is limited to IP address checks (Goldenberg 

and Wool, 2013; De Moura et al., 2021).  

The focus on cybersecurity-related modernization tends to 

overlook these systems, particularly security monitoring and 

attack detection (Templeton, 2010). Updates in NIPIN 

devices' hardware and firmware are often non-viable; some 

manufacturers do not even support upgrades of existing cyber 

security features (Kim, 2012). Furthermore, these networks 

remain intact for many years because they have planned 

operational lives exceeding 20 years, and the existing 

technology works well. Given the size of many critical 

infrastructure operations, exchanging or upgrading 

technology is not feasible until a strong need arises 

(Templeton, 2010). 

The integration and modernization processes expose ICS to 

untrusted networks, which increases vulnerabilities; even so, 

the danger of threats is still underestimated (Gollmann, 

2011). Recent reports of intrusion in industrial networks 

show that relying solely on perimeter protection and network 

segmentation is poor (ICS-CERT, 2022), leading to the 

urgent need to create mechanisms capable of increasing the 

security level of these networks. 

3. ANOMALY DETECTION SYSTEMS 

Anomaly detection systems (ADS) detect and track 

anomalous activities in computing and network resources 

(Yang et al., 2006). ADS are based on the hypothesis that an 

attacker's behavior will be noticeably different from that of a 

legitimate user (Mukherjee et al., 1994). Anomaly detection 

methods assume that everything abnormal is suspicious by 

tracking behavior and learning from continuous monitoring 

and data collection (Yang et al., 2006). Thus, anomalies are 

patterns in data that do not conform to a notion of normal 

behavior (Chandola et al., 2009). 

ADS have requirements that should be delivered to ensure 

their correct and reliable operation (Martinez et al., 2019): 

• Data trustworthiness: The data they collect must be 

trustworthy and protected against tampering. 

• Interoperability: They must interoperate in a non-

intrusive way with other components (industrial 

equipment, for example). 

• Flexibility and scalability: They must be adaptable 

and extensible as needed. 

• Robustness: They are also susceptible to attacks, so 

they must be resilient. 

• Completeness: They must detect all types of 

anomalies (i.e., exploits, misuses, and intrusions). 

• Up-to-date: They must be updatable to detect new 

threats.  

• Configurability: They must allow adjustments 

according to specific environmental settings. 

• Real-time: They must promptly detect and respond 

to anomalies. 

ADS act when something out of the ordinary happens. In 

industrial networks, variations in behavior should be minimal 

due to their repeatable and predictable characteristics (De 

Moura et al., 2021; Branquinho et al., 2014). Clearly defining 

what is "normal" is critical to implementing successful ADS. 

The definition may be derived from rules and policies to 

establish baselines of normal behavior. These policies may 

address various behaviors; therefore, exceptions to these rules 

would show suspicious activities. The level of policies could 

encompass network traffic patterns, user access, and 

operation control (Chandola et al., 2009). 

For NIPIN, an anomaly detection method could be built on a 

deterministic model and applied to analyze execution 

procedures of protocols, the pattern of communications, and 

states of operations to detect causes that result in deviations 

(Zhou and Guo, 2018). A model can be established for these 

networks based on the following behavior indicators (Knapp, 

2015; Tomlin et al., 2016). 

• Network traffic: Set of unique devices' IP addresses, 

traffic volume, and flow duration. 

• Process/control behavior: Set of unique function 

codes, setpoints, or configuration changes. 

• Event/incident activity: Set of expected events by 

criticality. 

• Devices on the network: New physical (MAC) 

addresses appear in the network. 

• Sensors and actuators: Operational process 

variations, abnormal function, or unexpected 

network operations. 

The literature addresses several methodologies to detect 

anomalies. They are mainly based on the knowledge of the 

dynamics of data exchange and the protocol functions for 

attack detection. The described anomaly detection methods 

are, in some cases, quite effective. Regular communications 

can be mapped, and events such as out-of-sequence messages 

can be detected, in which cases the detection rate is around 

99% (Goldenberg and Wool, 2013). 

In general, detection systems use detection algorithms 

classified as signature-based, statistical-based, knowledge-

based, anomaly-based, and machine-learning-based. 

Knowledge-based and signature-based techniques perform 

well over highly on periodic and predictable network 

behavior (Krotofil and Gollmann, 2013). However, they are 

limited to unknown attacks based on known standards (Gao 

and Morris, 2014). Statistical or anomaly-based techniques 

increase the unknown attack detection rate (Colbert and 

Hutchinson, 2016). Supervised learning techniques are also 

commonly used for anomaly detection in IP networks and 

have good acceptance among scholars (Ullah and Mahmoud, 

2017; Yang et al., 2019; Hijazi et al., 2018; Javaid et al., 

2016, Anton et al., 2018).  



 

 

     

 

4. PROPOSED AGNOSTIC ANOMALY DETECTION 

SYSTEM  

We propose to detect anomalies in the physical network, the 

last communication layer between the control systems and 

the final equipment. Anomaly detection applied to the 

physical network layer allows the detection of different 

attacks since the attacker has the ultimate objective of acting 

directly on the equipment behavior connected by the network. 

Communication will always occur over the physical network. 

Even if malware invades a programmable logic controller 

(e.g., Stuxnet, Black Energy, Crashoverrride), the supervisory 

system (e.g., Shamoon, Notpetya, triton) or a direct 

compromise of any network components, it will be possible 

to observe abnormal behavior at the physical layer. 

The agnostic anomaly detection system (AADS) proposed 

defines hardware and software applicable in non-IP networks, 

provided the necessary adaptations are enforced. They will be 

required at the physical layer level, using the appropriate 

transceiver, parser modifications, and training of the provided 

models. 

AADS is comprised of three modules: Data Gathering, 

Parser, and Detection. Each module is responsible for a part 

of the process, which is implemented in hardware and 

software. Figure 1 shows a high-level block diagram with the 

interaction among modules.  

The Data Gathering module connects with the serial-based 

industrial network operating as a sniffer without interfering 

with the data traffic. Non-interference is particularly 

important because industrial networks are sensible, and any 

data deviation can disrupt communication.   The function of 

the Data Gathering module is to transform electrical signals 

into a data stream that specific algorithms can process.  

 

Fig. 1 – Proposed Agnostic Anomaly Detection System 

The Parser module transforms the streaming into protocol 

telegrams and separates the data set into frames according to 

the protocol specification. The telegram is the data unit 

processed to evaluate the anomaly detection process. The 

Parser module is also responsible for collecting historical 

data used by the AADS to train and improve the models.  

The Detection module has two different execution times. 

Training time uses historical data to create/improve its 

internal models. Moreover, it analyses protocol telegrams in 

real-time, searching for abnormal behaviors representing a 

cyber-attack or a network fault. After detection, an event is 

created to inform the network operators as soon as an 

anomaly is detected. The Detection module is also 

responsible for informing the anomaly using, for example, 

REST API or another type of message. 

 

4.1 AADS Hardware 

 

The block diagram in Figure 2 presents the minimum 

components that compose the hardware solution. 

 
Fig. 2 – Hardware high-level block diagram of the Agnostic 

Anomaly Detection System 

  

Each hardware component has an essential and indispensable 

function for the anomaly detection system: 

•  The transceiver connects to the NIPIN links. 

• The Ethernet peripheral communicates with the IP 

network (i.e., business network). 

• The real-time processor (RTP) analyses the data 

stream and telegrams.  

• The CPU (Central Processing Unit) core processes 

the telegrams and dispatches events. 

• The shared memory enables communication 

between the real-time processor and the CPU core. 

• The interconnection bus integrates all components. 

The components are applied in parts of the proposed AADS 

process with a specific function detailed in the following 

sections. 

4.2 Data Gathering Module (Hardware and Software) 

 

The Data Gathering module has three components: 

Transceiver, Serial Interface, and Firmware, as shown in 

Figure 3. The function of this Module is to convert electrical 

signals into a data stream. The Transceiver module is part of 

the hardware interfaces that should be specified according to 

the physical layer of the industrial network. Some industrial 

network physical layer standards are applied in many 

industrial networks, such as RS-485, RS-232, and IEC 1158-

2 (Lugli and Santos, 2018), and can share the same 



 

 

     

 

Transceiver module. However, it should be defined according 

to the electrical signals and voltage levels. It should be 

galvanically isolated and adapted for asynchronous data 

transmissions. The transceiver protects the electronic circuit 

from transients and static discharges during device or 

equipment handling with low-energy but high-voltage 

transients (Texas Instruments, 2015). 

 
Fig. 3 –Data Gathering Module 

 

The transceiver uses the serial interface component to 

establish connections, and serial ports can communicate with 

the RTP, which receives a data stream and sends telegrams to 

the Parser module.  

The firmware software component executes into the RTP. It 

is developed in low-level languages like Assembly or C and 

is responsible for converting electrical signals into data 

streams. The firmware must run in a fast processor to have 

adequate performance. 

 

4.3 Parser Module (Software) 

 

The Parser module is responsible for converting a data stream 

into protocol frames (telegrams). It should be designed to 

identify the start and end message characters and separate 

them according to the protocol rules. Figure 4 shows that 

each telegram is sent to the detection module and stored in 

the local database. 

 
Fig. 4 –Parser Module  

 

The local database is a repository of historical data that can 

be used to refine and improve the AADS model continuously.  

 

4.4 Detection Module (Software) 

 

The anomaly detection module is responsible for detecting 

anomalies in the industrial network physical layer. Its 

algorithms run over the CPU core and can be developed in 

high-level languages like Java and Python. The anomaly 

detection module is the solution's core and uses special 

algorithms to detect anomalies. 

The NIPIN telegram comprises two main parts: Metadata and 

Message Data. The metadata includes source and targets IP 

addresses, commands, and protocol data control. The 

message data is the data collected from sensors or sent to the 

actuators. An anomaly detection system should consider the 

behavior of both parts of the telegram. 

The predictable and repeatable nature of ICS traffic and 

relatively static network topology can be leveraged to detect 

anomalies, whereas known legitimate control 

sequences/codes and unsafe states make them suitable for 

several detection algorithms (Krotofil and Gollmann, 2013). 

This traffic behavior reduces the anomaly detection 

complexity because it can sense the minimum difference 

from the expected behavior. In this situation, a low false-

positive rate technique called Knowledge-based detects many 

types of attacks, predominately those identified through rules 

(Colbert and Hutchinson, 2016; De Moura et al., 2021a). 

However, knowledge-based techniques have difficulties 

detecting new types of attacks because they only evaluate 

specific rules (Colbert and Hutchinson, 2016). Furthermore, 

they have problems detecting attacks in the message data, as 

it can vary, making it unfeasible for evaluations through 

rules. 

 
Fig. 5 –Detection Module (Software) 

 

Unsupervised techniques can reduce this problem; they may 

detect new types of attacks in the message data and eliminate 

the need for rules. However, they have high false-positive 

rates. Even an efficient classifier may not be sufficiently 

discriminative and generate false positives despite robust 

training (De Moura et al., 2021). 

The proposed detection module composes knowledge based 

on unsupervised techniques, as shown in Figure 5, in a voting 

process. The composition can increase the scope of anomaly 

detection and reduce the false-positive rate. A voting 

processor evaluates an anomaly in the metadata or an 

abnormality in the message data detected by the unsupervised 

algorithm; however, variations in the message data statistics 

should also occur in this case. 

 

Knowledge-based Algorithm 

 

The data collected by the Sniffer module is stored in the 

database. The detection algorithm transforms the stored data 

into a list of metadata such as function codes, IP addresses, 



 

 

     

 

message data average size, and the number of messages per 

cycle. The metadata is used as a pattern compared during the 

NIPIN cycles. Any deviation from the pattern indicates an 

anomaly. Due to the regular cycles, anomaly detection should 

typically have a high rate. 

 

Unsupervised technique 

 

The data extracted from messages are clustered in different 

groups representing a specific data behavior. The cluster 

method groups object into meaningful subclasses so that the 

members from the same cluster are similar, and the members 

from different groups are dissimilar. 

K-means is an unsupervised learning clustering technique 

that has shown promising results for anomaly detection 

(Jianliang et al., 2017; Feng et al., 2017; De Moura et al., 

2021). The K-means algorithm creates n clusters representing 

NIPIN cycles; the clusters are extracted with their centroids 

(centers of the clusters) based on Euclidean distance 

assessments. The number of clusters depends on the message 

data behavior and should be evaluated during training. Figure 

6 shows the complete software block diagram.  

 

 
Fig. 6 – Software Block Diagram for the Agnostic Anomaly 

Detection System 

 

5. OVERVIEW OF THE PROOF-OF-CONCEPT AND 

EVALUATION RESULTS 

 

As a proof-of-concept, an experiment in a Profibus-DP 

network was set up in the laboratory using commercial 

components to create a similar environment. Figure 7 shows 

the proof-of-concept diagram. It uses a Beaglebone Black C 

and the transceiver ISO1176T. The Beaglebone Back C has 

two PRUs (Programmable Real-Time Units) and an ARM 

Processor AM3359 (Beaglebone, 2022).  

The PRU runs the firmware code that collects the ISO1176T 

transceiver (Texas Instruments, 2015) data through the serial 

UAR (User Authorization Request) interface. The firmware 

is coded in C. The Parser module (coded in C++) runs over 

the Linux operating system and the ARM process that 

receives messages shared by the PRU. Communication 

between the PRU and ARM processors is handled by the R30 

register from the PRU side and by the rpmsg_pru30 for 

PRU0 via Remote Procedure Message Framework (rpmsg 

driver), which uses a virtual I/O and virtual I/O device ring 

buffer construct. It is based on the Interrupt handling 

technique available in the BeagleBone Black (Beaglebone, 

2022). 

 
Fig. 7 – Proof-of-concept diagram for the Agnostic Anomaly 

Detection System 

 

The ARM process receives the data stream and Parser 

module in individual telegrams stored in a local database and 

sends it to the anomaly detection module developed in 

Python. The detection module processes the information in 

real-time, generates an alert when detecting an anomaly, and 

sends it as a message through the Ethernet interface. The 

detection module has models previously trained with 

historical data (i.e., normal behavior) collected for a month.  

This study extends the De Moura et al. (2021) study that 

tested these algorithms with software-simulated data. The 

proof-of-concept was inserted into a laboratory Profibus-DP 

network with one master and two device slaves, as shown in 

Figure 8. The data collected is real (not software-simulated) 

but comes from a laboratory network, not an operational 

plant network. 

 

 
Fig. 8 – Laboratory Network 

 

Data behavior is evaluated for data sent by masters, slaves, 

and all data (Data, Master, and Slave average data deviation 

and Message average size deviation). These data, over time, 

tend to converge to a particular pattern that can be referred to 

as normal behavior. The metadata summarizes the list of 

addresses used in the network, the list of functions, and the 

number of messages per cycle (New Function Code, New 

Addresses, New Source-Target addresses, Master request 

sequence out of order, Number of messages per cycle). 

For testing purposes, four new nodes were physically added; 

nodes were removed from the network, and the master's 

address was modified. In addition, different commands were 

included at different moments to simulate various attacks. 

The testing window was 50000 messages. The abnormal 

states were identified and counted to enable the metrics 

calculations. 

Metadata uses a rule-based detection that is 100% accurate 

because all deviations were detected. It was an expected 



 

 

     

 

result since this algorithm does not rely on statistical 

inference but on strict rules.  

Accuracy is a ratio of correctly predicted observations to total 

observations. The F1 Score is the weighted average of 

precision and recall; it considers both false positives and false 

negatives (De Moura et al., 2021). After the voting process 

(considering statistical inference – Data and Strict rules – 

Metadata), the results have shown a better F1 Score which 

denotes better performance when compared with each event 

individually with lower rates of false-positive and false-

negative events.  

The overall accuracy and F1-Score were 99.59% and 99.18%, 

as shown in Table 1 (more detail about the data analysis can 

be found in De Moura et al. (2021)), respectively revalidating 

the findings in De Moura et al. (2021) now with real network 

data.  

Table 1. Proof-of-Concept results for AADS 

Anomaly Type Accuracy F1 Score 

Master average data 

deviation 
D 0.9980 0,9448 

Slave average data 

deviation 
D 0.9981 0,9690 

Message average size 

deviation 
D 0.9978 0,9780 

New Function Code M 1,0000 1,0000 

New Addresses M 1,0000 1,0000 

New Source-Target 

addresses 
M 1,0000 1,0000 

Master request 

sequence out of order 
M 1,0000 1,0000 

Number of messages 

per cycle 
M 1,0000 1,0000 

Data deviation D 0.9987 0,9451 

Voting D/M 0.9959 0,9981 

D – Data; M – Metadata 

The proof-of-concept response time measurements showed 

that anomalies were identified between 500 ms and 2 s after 

the occurrence, as shown in Figure 9. 

 
Fig. 9 – Response time for the Agnostic Anomaly Detection 

System  

 

The results imply a promising approach and show the 

advantages of combining unsupervised and knowledge 

techniques with real data. The high rates demonstrate that 

highly cyclic and repeatable networks simplify anomaly 

detection, corroborating with the study by Goldenberg and 

Wool (2013).  

 

6. CONCLUSIONS 

This study proposed an agnostic solution to detect anomalies 

in non-IP industrial networks, aiming to promote the need to 

increase security protections they intrinsically lack. The 

proposed anomaly detection system needs to be agnostic 

because there are currently many non-IP industrial networks 

in the market, and a more comprehensive solution could have 

a greater reach. Although the proposal is agnostic, 

modifications must be made to adapt it to each industrial 

network; adaptations are required at the physical interfaces, 

for example, and the software layer, such as model retraining, 

according to the specificities of the network. The proof-of-

concept shows the proposal's feasibility of achieving a high 

detection rate in cyclical and repeatable networks, as 

expected.  

A limitation of this work is that it uses data from a 

laboratory. However, this work's objective was to achieve 

now that we have implemented an operational AADS that 

includes hardware and software and the possibility of using 

hardware to detect anomalies in non-IP networks.  

Therefore, the initial conclusions were only to test the 

framework's feasibility. Future work may be carried out on 

data collected in the industrial networks from operational 

plants. Real-time tests are also needed to verify the 

performance and algorithms' response time and the 

possibility of implementation on dedicated hardware. 

The proposed anomaly detection system works very well in 

static networks. If the topology, parameters, the number of 

nodes, or even the expected functions are changed, the 

behavior of the network will change, forcing it to retrain the 

models, which remains as future work. The AADS should 

also be turned off in a maintenance/parametrization period to 

avoid false alerts. 

 
REFERENCES 

Anton, S. D., Kanoor, S., Fraunholz, D., and Schotten, H. D. 

(2018). Evaluation of machine learning-based anomaly 

detection algorithms on an industrial Modbus/tcp data 

set., in: Proceedings of the 13th International 

Conference on Availability, Reliability and Security. 1–9. 

Beaglebone, (2022).  Beaglebone Black, 

https://beagleboard.org/. 

Branquinho, L. C., Moraes, M. A., J., and Seidl, J. A. J. B. B. 

(2014). Segurança de Automação Industrial e SCADA., 

1st Edition, Campus. 

Chandola, V.,  Banerjee, A., and Kuma, V. (2009). Anomaly 

detection: A survey., ACM computing surveys (CSUR) 41 

(3) 1–58. 

Cheminod, M., Durante, L., and Valezano, A. (2012). Review 

of security issues in industrial networks, IEEE 

transactions on industrial informatics. 9 (1) 277–2935. 



 

 

     

 

CISA, (2022). ICS-CERT Advisories, 

https://www.cisa.gov/uscert/ics/advisories 

Colbert, E. J. M., and Hutchinson, S. (2016). Intrusion 

detection in industrial control systems., in: Advances in 

Information Security, 209–237. 

De Moura, R. L., Gonzalez, A., Franqueira, V. N. L., and 

Neto, A. L. M. (2020). A cyber-security strategy for 

internationally-dispersed industrial networks, in: 2020 

International Conference on Computational Science and 

Computational Intelligence (CSCI), 62–68. 

De Moura, R. L., Franqueira, V. N. L., and Pessin, G. (2021). 

Towards safer industrial serial networks: An expert 

system framework for anomaly detection, in: IEEE 33rd 

International Conference on Tools with Artificial 

Intelligence (ICTAI), 2021, 1197–1205. 

De Moura, R. L., Gonzalez, A., Franqueira, V. N. L., and 

Neto, A. L. M., and Pessin, G. (2021a).  Geographically 

dispersed supply chains: A strategy to manage 

cybersecurity in industrial networks integration., in: 

Advances in Cybersecurity Management, 97–116. 

Feng, C., Li, T., Chana, D. (2017). Multi-level anomaly 

detection in industrial control systems via package 

signatures and lstm networks., in: IEEE/IFIP 

International Conference on Dependable Systems and 

Networks (DSN)., 261–272. 

Fiedler, P., Bradac, Z., and Zezulka, F. (2000). New methods 

of interconnection of industrial fieldbuses, in: IFAC 

Proceedings, 145–147. 

Galloway, B. and Hancke, G. P. (2012). Introduction to 

industrial control networks, IEEE Communications 

surveys and tutorials 15 (2) 860–880. 

Gao, W., and Morris, T. (2014). On cyber-attacks and 

signature-based intrusion detection for modbus based 

industrial control system, Journal of Digital Forensics, 

Security and Law, 9 (1) 37–56. 

Goldenberg, N., and Wool, A. (2013). Accurate modelling of 

modbus/tcp for intrusion detection in SCADA systems., 

International Journal of Critical Infrastructure 

Protection 6 (2) 63–75. 

Gollmann, D. (2011). From insider threats to business 

processes that are secure-by-design., in: INCoS, 627. 17 

Hemsley, K., Fisher, R. R. (2018). A history of cyber 

incidents and threats involving industrial control 

systems., in: International Conference on Critical 

Infrastructure Protection., 215–242. 

Hijazi, A., El Safadi, A.  and Flaus, J. (2018). A deep 

learning approach for intrusion detection system in 

industry network., in: BDCSIntell, 55–62. 

Javaid, A., Niyaz, Q., Sun, W., and Alam, M. (2016). A deep 

learning approach for network intrusion detection 

system., in: Proceedings of the 9th EAI International 

Conference on Bio-inspired Information and 

Communications Technologies (formerly BIONETICS)., 

21–26. 

Jianliang, M., S. Haikun, and Ling, B. (2009). The 

application on intrusion detection based on k-means 

cluster algorithm., in International Forum on 

Information Technology and Applications, 150–152. 

Kim, H. (2012). Security and vulnerability of SCADA 

systems over IP-based wireless sensor networks., 

International Journal of Distributed Sensor Networks 8 

(11) 268478. 

Knapp, E. D. (20115). Industrial Network Security, 2nd 

Edition, Syngress.  

Krotofil, M., and Gollmann, D. (2013). Industrial control 

systems security: What is happening?, in: 2013 11th 

IEEE International Conference on Industrial Informatics 

(INDIN), 670–675. 

Lugli, A. B., and Santo, M. M. D. (2018). Redes industriais 

para automação industrial, 2nd Edition, Erica. 

Martinez, C. V., Sollfrank, M., and Vogel-Heuser, B. (2019). 

A multi-agent approach for hybrid intrusion detection in 

industrial networks: Design and implementation., in: 

2019 IEEE 17th International Conference on Industrial 

Informatics (INDIN)., 351–357. 

Mukherjee, B., Heberlein, L. T. and Levitt, K. N. (1994).  

Network intrusion detection., IEEE Network 8 (3) (1994) 

26–41. 

Rubio, J. E., Alcaraz, C., Roman, R., and Lopez, J.  (2017). 

Analysis of intrusion detection systems in industrial 

ecosystems., in: The 14th International Joint Conference 

on e-Business and Telecommunications (ICETE 2017), 

116–128. 

Song, H. M., Kim, H. R., and Kim, K. (2016). Intrusion 

detection system based on the analysis of time intervals 

of can messages for in-vehicle network., in: 2016 

International conference on information networking 

(ICOIN), 2016, p. 63–68. 

Templeton, S. (2020). Security monitoring and attack 

detection in non-ip based systems., in: In International 

Conference on Cyber Warfare and Security, 473. 

Texas Instruments, (2015). Iso1176 isolated RS-485 profibus 

transceiver. 

Tomlin, L., Farnam, M. R., and Pan, S. (2016). A clustering 

approach to industrial network intrusion detection., in: 

Proceedings of the 2016 Information Security Research 

and Education (INSuRE). 

Ullah, I., and Mahmoud, Q. H. (2017).  A hybrid model for 

anomaly-based intrusion detection in SCADA networks, 

in: 2017 IEEE International Conference on Big Data 

(BIGDATA), 2160–2167. 

Yang, D., Usynin, A., and Hines, J. W. (2006).  Anomaly-

based intrusion detection for SCADA systems, in: 5th 

intl. topical meeting on nuclear plant instrumentation, 

control and human machine interface technologies., 12–

16. 

Yang, H., Cheng, L., and Chuah, M. C. (2019).  Deep-

learning-based network intrusion detection for SCADA 

systems., in: 2019 IEEE Conference on Communications 

and Network Security (CNS), 1–7. 

Zhou, L., Gu, H. (2018). Anomaly detection methods for 

IIoT networks., in: 2018 IEEE International Conference 

on Service Operations and Logistics, and Informatics 

(SOLI), 214–219. 

 


