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Abstract

‘‘Lubrication force’’ arises from hydrodynamic pressure in the interstitial fluid being squeezed out from the space between two solid

surfaces. In the previous DEM simulations of gas–solid flows this force has not been explicitly taken into account since it may introduce the

famous ‘‘Stokes Paradox’’, which postulates that: Two solid surfaces can never make contact in a finite time in a viscous fluid due to the

infinite ‘‘lubrication force’’ when the distance approaches zero at the last moment of contact. It is easy to imagine that lubrication effect is

critical in liquid–solid systems, but it may not be negligible even in gas–solid systems of light and small particles. Although the lubrication

theory has been well established in liquid–solid systems, its application in gas–solid systems should be used with caution because the

assumptions adopted in the classical lubrication theory are only valid for high viscous systems. In the present study, these assumptions are

examined and semi-theoretical expressions for lubrication force are proposed based on numerical analysis. The paradox of contactless

collision due to infinite lubrication force is effectively avoided by considering surface roughness, non-continuum fluid effect and van der

Waals force. The coefficient of restitution is defined as a criterion for evaluating the significance of lubrication effect in collisions of particles

in fluidized beds. For demonstration the lubrication effect was evaluated for beds of FCC particles and GB (glass beads), with diameters

ranging from 25 to 100 Am and initial approaching velocity from umf to ut. The calculated restitution coefficient ranged from 0 to nearly 1

and clearly showed that lubrication force plays a significant role during a close encounter of two particles even in gas–solid systems.

D 2005 Published by Elsevier B.V.
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UNCO1. Introduction

The DEM (Discrete Element Method) treats the micro-

scopic particle behavior by solving Newton’s equations of

motion for each particle. It has become a popular tool for

granular material simulation and has been applied to a

variety of problems. The soft sphere model, which was

first proposed by Cundall and Struck [1], was introduced

to gas–solid systems by Tsuji [2] in 1993. Subsequently,

Horio et al. [3–8] successfully applied the method to solve

industrial issues relevant to fluidized beds for particle

agglomeration, combustion with immersed tube and

polymerization. However, there still remains a serious
50
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empirism in how to include different interparticle forces in

Newton’s equation of motion plausibly and also in how to

adjust values such as the coefficient of restitution and the

spring constant. To develop DEM further for more realistic

simulation, a more accurate and practical collision model

should be constructed in which the lubrication effect is

included.

Lubrication force is a hydrodynamic viscous force

arising from radial pressure in the interstitial fluid being

squeezed from the space between two close solid surfaces. It

originally received considerable attention in tribology (e.g.

Briscoe and McClune [9]; Safa and Gohar [10]). Recently,

researchers in the field of filtration and coagulation have

also examined the elastohydrodynamic collisions between

spherical particles. Davis [11] obtained both analytical and

numerical solutions for collisions between two smooth

spheres surrounded by thin isoviscous liquid layers with
(2005) xxx – xxx
PTEC-06258; No of Pages 10
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Fig. 1. Schematic of two approaching elastic and rigid spheres in a viscous

fluid.
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consideration of dynamic deformation of particle surface.

Subsequently, his research group developed the classical

lubrication theory by taking into account the interparticle

forces [12] and non-continuum fluid effect [13]. More

recently, Thornton et al. [14] brought forward a simple

analytical approximation based on a Hertzian-like profile for

the elastic deformation of two spheres. Lian et al. [15]

extended the lubrication theory to power–law fluid between

rigid spheres and derived the analytical solutions for

different flow index.

Although the lubrication theory was well established back

in the 1900s, its application into DEM simulation of gas–

solid flows has not been received sufficient attention. The

well-known expression [11] for lubrication force

FL=6klR2v /h indicates its relationship with fluid viscosity

l, particle radius R, relative approaching velocity v and

surface distance h. As the viscosity of air is much lower

than that of liquid, the lubrication force is generally

considered to be negligible compared with gravity, hydro-

dynamic drag force and interparticle forces. Moreover, the

so-called ‘‘Stokes Paradox’’ that results in an infinite

lubrication force when the surface distance approaches zero

may also have been restricting its application to DEM

simulations. Actually, however, even in gas–solid fluid-

ization disregarding of lubrication effect is not acceptable

for Geldart’s A and B powders with relatively small Stokes

numbers. In the realistic collisions, we have several practical

and essential reasons to avoid the paradox of contactless

collision such as consideration of surface roughness, treat-

ment of fluid as a non-continuum in the molecular scale and

consideration of the effect of van der Waals force within

very close surface distance. Among them, the effect of

surface roughness is the most practical one because the

existence of surface roughness effectively prevents particle

surfaces from approaching much closer. And even if the

surfaces are assumed to be ideally smooth, a minimum

molecular distance Z0 of about 4�10�10m due to the

molecular repulsion will remain when the surfaces make

‘‘physical’’ contact [16]. When two surfaces approach to

such small distances, the interstitial fluid cannot be treated

as a continuum any longer according to Hocking’s theory

[17] and adhesive forces such as van der Waals force must

be taken into account.

In the present work, the assumptions in the classical

lubrication theory are re-examined since they were basically

applicable for liquid–solid systems and semi-empirical

expressions for lubrication force are proposed based on

numerical calculations. According to the minimum

approachable surface distance, three cases with and without

considering non-continuum fluid effect and van der Waals

force are investigated in order to construct a more accurate

collision model. Calculated examples for restitution coef-

ficient are presented for two typical bed materials often used

in fluidized beds, FCC (Fluid Cracking Catalyst) particles

and GB (glass beads) with diameters ranging from 25 to 100

Am and initial approaching velocity from umf to ut, to
evaluate the lubrication effect on the approaching process of

two particles.
ED P
ROOF

2. Theoretical development of lubrication theory

2.1. Examination of classical lubrication theory

As illustrated in Fig. 1, let us consider two identical

elastic and spherical particles with radius R and mass m

being immersed in a gaseous fluid and approaching each

other. For the initial condition at t=0, we specify that the

spheres start with a gap h0 between their undeformed

surfaces at r =0 and with a relative approaching velocity v0.

The minimum surface distance that can be approached is

denoted as hmin. Only head-on collisions and no rotational

movements are considered in this paper. And particles of the

present interest are assumed to be rigid during approaching

and separating stage according to Davis’ theory [11].

The kinematic equations of movement are listed below:
dh

dt
¼ � v tð Þ ¼ � v1 þ v2ð Þ ð1Þ

m
dv

dt
¼ � ~F tð Þ ¼ � FL ð2Þ

where lubrication force FL is considered to be the only

dominant force in resultant force term when the surface

distance is small compared with the particle radius.

The classical lubrication theory was originally estab-

lished based on liquid–solid systems, in which the follow-

ing assumptions were adopted:

(1) The initial gap size h0, from which lubrication effect is

considered to be significant, is assumed to be much

smaller than particle radius (usually 0.01 R [11]);

(2) The upper limit of integration of pressure for

lubrication force is extended from particle radius to

infinity;

(3) Paraboloid approximation of undeformed surface is

applied in order to get the simplified gap profile.

H r; tð Þ ¼ h 0; tð Þ þ r2=R ð3Þ

(4) The fluid is treated as a continuum no matter how

close the two surfaces approach.
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Fig. 3. Comparison of lubrication force applying different upper limit for

integration (FCC particles, in air, R =25 Am, v0=u t =0.098 m/s).
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According to the classical lubrication theory (e.g. [11]),

analytical expressions for interstitial pressure distribution

and lubrication force can be derived as:

Bp

Br
¼ � 6lrv

H3
ð4Þ

p r; tð Þ ¼ 3lRv

2 hþ r2=Rð Þ2
ð5Þ

FL;V ¼
Z V

0

2prp r; tð Þdr ¼ 3

2
plR2v=h: ð6Þ

The radial pressure distribution expressed by Eq. (5)

indicates that the pressure decays rapidly to zero within a

small radial distance in the so-called ‘‘inner region’’. The

contribution of the pressure in the outer region to the

integral of lubrication force can thus be reasonably

neglected. Accordingly, the upper limit of integration can

be effectively extended from R to infinity just to obtain the

simplified analytical form of lubrication force. Also, within

this small inner region, paraboloid approximation is

sufficiently accurate.

However, these assumptions may not remain reasonable

with regard to particle collisions in gas–solid systems.

Among them, the initial gap size h0 should be firstly

checked to define the lubrication effect area. Order-of-

magnitude estimates of different forces in case of FCC

particles with radius of 25 Am and approaching velocity of

terminal velocity ut are indicated in Fig. 2. The drag force

Fd was calculated under laminar conditions with a Reynolds

number of about 0.293. An effective drag coefficient

CD
’=CDe�4.65 was adopted with a bed voidage e of 0.9. It

can be seen that from h0=R the lubrication force should be

taken into account compared with other forces such as

gravity G and drag force Fd. The results agree well with

Brenner’s exact solutions [18] and hybrid approximation

suggested by Leighton [19]. Thus, the particle radius can be

regarded as a characteristic distance to judge whether the
UNC
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Fig. 2. Order-of-magnitude estimates of different forces.
ED P
Rtwo particles have entered the so-called ‘‘lubrication effect

area’’ or ‘‘near contact area’’, in which lubrication force

should be included in the Newton’s equation of motion. Out

of this near contact area where particles are separated from

each other widely, particle movements are dominated by

hydrodynamic drag force and gravity, with lubrication force

being neglected.

Fig. 3 shows the ratio of lubrication force integrated with

different upper limit changing with the relative initial gap

size. The actual lubrication force should be integrated over

the particle surface:

FL;R ¼
Z R

0

2prp r; tð Þdr: ð7Þ

From Fig. 3, we can see that when h0 is much smaller

than the particle radius, the difference is not so significant.

However, when h0 increases to as large as the particle

radius, the actual lubrication force from Eq. (7) is only half

of that integrated from zero to infinity by Eq. (6). Therefore,

the adoption of the upper limit as infinity is unreasonable

when the lubrication effect area is as larger as the particle

radius R.

For estimation of the error introduced by paraboloid

approximation, numerical calculations for accurate pressure

distribution and lubrication force were conducted under

different initial gap size. Without the paraboloid approx-

imation, the distance H(r,t) between particle surfaces has

the following accurate expression:

H r; tð Þ ¼ h 0; tð Þ þ 2R� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

p
: ð8Þ

By combining Eq. (8) with Eq. (4), one can obtain the

pressure distribution numerically.

Fig. 4 shows that the numerical pressure distribution

decays to zero much more slowly than the analytical

solution. The contribution of pressure in the outer region

to the lubrication force may play an important role
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especially when h0 is much smaller than particle radius. The

relative magnitude of analytical and numerical solution for

lubrication force along the radial direction is shown in Fig.

5. The analytical expression for lubrication force with

various integration upper limits is based on paraboloid

approximation.

FL;r;ana ¼
Z r

0

2prp r; tð Þdr ¼ 3

2
plR2v

1

h
� 1

hþ r2=R

��
:

ð9Þ
Variation of FL,r,ana with radial distance indicates the

contribution of pressure within different radial distance to

the lubrication force. We define the radial distance r* as

the radius of inner region and suppose that, within this

inner region, the analytical solution has an accuracy of

90% of the accurate numerical solution. We found that the

inner region expanded with the increase of gap size, thus

making the analytical solution convincing in a wider

region. When h =R, the analytical solution agrees well

with the numerical one in the whole integration range from

zero to R.

Finally, in gas–solid systems, the mean free path l0 of

gaseous molecules is in the order of 10�7 m, which is much

larger than that of liquid molecules. Therefore, the

assumption that the fluid remains a continuum may be

broken when the surface distance is approached to such a

magnitude that is comparable to the mean free path.

With the examination of the assumptions adopted in

liquid–solid systems, we found that all of them were not
U
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the analytical form of Eq.(5). FL;r;num ¼ X
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02pp2 r; tð Þdr, where p2(r,t) is the nume
ED P
ROOvalid when gas–solid systems are concerned. The exact

surface distance, pressure profile and lubrication force

should be solved numerically by combining Eqs. (4), (7)

and (8).

2.2. Lubrication force and avoidance of ‘‘Stokes Paradox’’

In the collision process between practical particles with

roughness, the minimum approachable surface distance hmin

is assumed to be determined by the height of surface

roughness hr. Accordingly, the maximum lubrication force

corresponding to the moment at which physical contact

occurs depends on the surface morphology of particles.

When the surface roughness is of the same order of the mean

free path of gaseous molecules, the interstitial fluid should be

treated as a non-continuum. What’s more, when its

magnitude is comparable to the dominant range of adhesive

forces, the effect of such forces on collision must be taken

into account. According to the relative magnitude of

minimum approachable surface distance hmin, three cases

are discussed below.

Case 1. hmin> l0

In this case, particles have large surface roughness that is

much larger than the mean free path l0 and the interstitial

fluid can be reasonably regarded as a continuum.

Based on the numerical calculation results, the ratio of

numerical solution to analytical one for lubrication force is

found to be a function of the relative approaching distance
1 0.1 1
0.94

0.95

0.96

0.97

0.98

0.99

1.00

distance r/R

h0=R

r*=0.73R

h various integration upper limit. FL;r;ana ¼ X
r

02pp1 r; tð Þdr, where p1(r,t) has
rically solved from Eqs.(4) and (8).
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h /R. The relationship curve can be fitted by a two-order

polynomial correlation with an error smaller than 1.5% in

the range of 0.01<h /R <1 (see Fig. 6).

K1 hð Þ ¼ FL;num

FL;ana
¼ 1:041� 0:2811g

h

R
� 0:0351g 2 h

R

ð10Þ

where FL,ana is the analytical expression for lubrication

force integrated over the particle surface with paraboloid

approximation.

FL;ana hð Þ ¼
Z R

0

2prpdr ¼ 3

2
plR2v

1

h
� 1

hþ R

��
: ð11Þ

Since the surface distance is unable to approach zero due

to the prevention of surface roughness, the continuous

increase of lubrication force in the approaching process is

stopped when the tip of roughness makes contact. Hence,

the infinite lubrication force cannot be reached and the

‘‘Stokes Paradox’’ is accordingly avoided.

Case 2. Z0<hmin< l0

Particles in this case have smaller surface roughness

compared with the mean free path. So the non-continuum

fluid effect should be considered in the last stage of

approaching.

Maxwell slip theory, which was initially introduced by

Hocking [17] in 1973, is adopted in the present paper to

treat the interstitial fluid as a non-continuum. Different

from Eq. (4) for continuum fluid case, the pressure

profile in the non-continuum fluid can be expressed by

[17]:

Bp

Br
¼ � 6lrv

H2 H þ 6l0ð Þ ð12Þ

where l0 is the mean free path of gaseous molecules.
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Similarly with Case 1, another semi-empirical correlation

is proposed here with a relative error smaller than 1% in the

range of h /R <0.01.

K2 hð Þ ¼ FL;num;slip

FL;ana;slip
¼ 1:309� 0:0821g

h

R
� 0:0091g 2 h

R

ð13Þ

FL;ana;slip ¼
plR2v

12l 20
hþ 6l0ð Þln hþ 6l0

h

� ��
� hþ Rþ 6l0ð Þ

�ln
hþ Rþ 6l0

hþ R

� ��
: ð14Þ

From Eq. (14) we can find that when l0<<h, the

expression of FL,ana,slip converges to FL,ana in Eq. (11),

and when l0>>h, the expression of FL,ana,slip converges to:

FL;ana;slip ¼
plR2v

2l0
ln

6l0

h

��
; l0 >> h: ð15Þ

The above expression shows that the increase of the

lubrication force is slowed down because its magnitude is

only proportional to the logarithm of the inverse of the gap

size. Therefore, treatment of the fluid as a non-continuum

also helps us avoid the paradox of the infinite lubrication

force.

Case 3. hmin is comparable to Z0

When the surface roughness is so small that the

minimum approachable distance is of the same order of

the repulsive molecular distance Z0=4*10
�10 m, which is

the dominant range of adhesive forces, these forces such as

van der Waals force Fvw should be taken into account. In

this case, the van der Waals force ought to be included in the

resultant force term in the kinematic Eq. (2).

m
dv

dt
¼ � ~ F tð Þ ¼ � FL � Fvwð Þ ð16Þ

where lubrication force FL can be calculated by applying

Eq. (13) with the approximation of K2 to be 1.5, and van der

Waals force Fvw is expressed by

Fvw ¼ � AR

12h2
ð17Þ

where A is the Hamaker constant of the particle material.

As van der Waals force is inversely proportional to the

square of the distance, its magnitude increases dramatically

when the distance approaches Z0. The variation of

lubrication force, van der Waals force and the resultant net

force along with surface distance are shown in Fig. 7. Under

the condition that the net force Fnet=FL�Fvw=0, we

define a critical ‘‘collapse distance’’ hcollapse, above which

the particles resist approaching to each other due to the

lubrication force but below which, on the contrary, the
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particles collapse and make contact in the aid of van der

Waals force. Therefore, the consideration of van der Waals

force in the very last approaching stage essentially saves us

from the paradox of contactless collision.

The collapse distance can be solved from the following

equation:

3

4

plR2v

l0
ln

6l0

hcollapse
¼ AR

12h2collapse
: ð18Þ

In the case of GB with diameter of 50 Am and

approaching velocity of ut / 5, this collapse distance can be

estimated to be hcollapse=10
�9 m.

By deriving the relationship of relative velocity with

surface distance and substituting it into Eq. (18), we can get

the dimensionless correlation:

ÊESt 2 ¼ 1

4

l0

Z0
ĥh2collapseln

6

ĥhcollapse
St þ 1

4
ĥh0ln

ĥh0

16:3

! 
ð19Þ

where the dimensionless parameters are defined as:

ĥh ¼ h

l0
; St ¼ mv0

6plR2
; ÊE ¼ E

1
2
mv20

¼ AR

6Z0mv
2
0

ð20Þ

where E is the depth of the attractive potential well due to

van der Waals force:

E ¼ �
Z V

Z0

AR

12h2
dh ¼ AR

12Z0
: ð21Þ

ĥ is the relative distance compared with the mean free

path, Stokes number, St, provides a measure of the inertia of

an isolated particle relative to the viscous force and Ê is the

dimensionless adhesion energy compared with initial kinetic

energy.

Fig. 8 shows contours of the collapse distance with

dimensionless parameters. The Y-coordinate ÊESt 2 ¼
ED P
ROOF

A
216p2Z0l2R3 represents only the physical properties of

fluid and particles, being independent of approaching

velocity. With respect to a certain condition of particle

and fluid, the collapse distance decreases with increase

of Stokes number, indicating that the lubrication force

dominates the particles’ movement when the Stokes

number of particles is large. Under the constant Stokes

number, the collapse distance increases with increase of

dimensionless adhesive energy Ê. This means that with

increasing Hamaker constant, the dominant range of van

der Waals force which is smaller than hcollapse expands

wider.

2.3. Effective restitution coefficient

The lubrication effect is actually a kind of damping

effect, causing kinetic energy dissipation during both

approaching and separating stage. Restitution coefficient,

which represents the energy loss during collision process, is

usually defined as the ratio of the normal relative velocity at

the instant of rebound to that at the instant of contact.

However, if we consider that the collision process begins

when the particles enter the lubrication effect area and ends

when the surface distance recovers to the initial gap size, the

definition of restitution coefficient can be extended as the

ratio of normal velocity at the instant of escaping from this

area (ve) to that at the instant of entering this area (v0). Thus

restitution coefficient can be regarded as a criterion for

evaluating the lubrication effect during approaching and

separating process.

Combining Eqs. ), (1), (2), (10)-(14) to eliminate the time

term and integrating in the approaching and separating

stage, we can obtain the expression for the restitution

coefficient e.

e ¼ ec �
1þ ec

2St
Ste* ð22Þ

where ec is the restitution coefficient due to particle

deformation in the collision process. If we assume that the
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t1.1Table 1

Physical properties of particles and fluid t1.2

FCC GB t1.3

Particles t1.4
Particle diameter d (Am) 25¨100 25¨100 t1.5
Particle density qp (kg/m

3) 1400 2650 t1.6
Young’s Modulus E (N/m2) 1.0�1011 8.0�1010 t1.7
Poisson’s ratio v 0.28 0.3 t1.8
Roughness hr (m)* 1 /10 of the

particle radius

1 /1000 of the

particle radius t1.9
Hamaker constant A (J) – 1.0�10�19 t1.10

t1.11

Fluid: Air at p=1 atm, T=300 K t1.12
Viscosity l (Pa s) 1.94�10�5 t1.13
Density qf (kg/m

3) 1.16 t1.14
Mean free path l0 (m) 7.15�10�8 t1.15

* Surface roughness of particles is estimated based on the optical

observation of surface morphology using laser microscopy and SEM. t1.16
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collision process is an elastic one with ec being equal to

unity, Eq. (22) can be simplified into:

e ¼ 1� Ste*

St
¼ 1� 2Stc*

St
ð23Þ

where the two critical Stokes number are defined as:

Stc* ¼ mvc*

6plR2
; Ste* ¼ mve*

6plR2
ð24Þ

where vc* is called ‘‘critical contact velocity’’. Particles with

initial approaching velocity v0 smaller than vc* cannot make

contact due to the repulsive lubrication force; ve* is called

‘‘critical escape velocity’’. Particles with v0>vc* but v0<ve*,

however have sufficient kinetic energy to make contact, yet

cannot escape from the lubrication effect area due to the

attractive lubrication force during the separating stage and

will be brought to rest.

By derivation, Ste* has the following expression:

Ste* ¼ f h0ð Þ � f hminð Þ ¼ 2Stc* ð25Þ

where f (h) is called ‘‘characteristic function’’, h0 is

considered to be equal to particle radius and hmin is

practically determined by surface roughness.

For Case 1 with continuum fluid:

f1 hð Þ ¼ 0:962ln
h

hþ R

��
� 0:079ln2

h

hþ R

��

� 0:004ln3
h

hþ R

��
: ð26Þ

For Case 2 with non-continuum fluid:

f2 hð Þ ¼ 1

36
6þ h

l0

�� 2

ln 1þ 6l0

h

��

� 1

36
6þ hþ R

l0

�� 2

ln 1þ 6l0

hþ R

��

� ln 1þ R

h

��
� R

6l0
: ð27Þ

For Case 3 with non-continuum fluid and van der Waals

force:

StTe ¼ f3 h0ð Þ � f3 hcollapse
	 


; f3 hð Þ ¼ f2 hð Þ: ð28Þ

In Case 3, the characteristic function f3(h) is the same as

that for Case 2 (Eq. (27)). However, the minimum

approachable distance hmin in Eq. (25) should be replaced

by the collapse distance hcollapse because particles with

enough inertia to approach hcollapse can further make contact

in the aid of van der Waals force even if the velocity at this

moment has decreased to zero. Nevertheless, the effect of

van der Waals force on the restitution coefficient is not so

significant since most of the energy loss is dissipated by

lubrication force before they nearly make contact. This can
also be demonstrated by the similar value of f2(hmin) and

f3(hcollapse) in Eqs. (25) and (28).
ED P
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3. Calculated examples and discussion

In the present paper, two typical powders for fluidized bed

processes, i.e., FCC particles and GB (Glass Bead), are

adopted to evaluate the lubrication effect on collision

process. The particle size ranges from 25 to 100 Am
corresponding to Geldart’s A and B classification and the

initial approaching velocity varies from umf to ut. The

physical properties of particles and fluid are listed in Table 1.

3.1. Case 1: FCC particles with large surface roughness

From observation of the surface morphology of FCC

particles by laser microscopy, the surface roughness of each

tested particle is approximately one tenth of the particle

radius. Within the range of particle size investigated in this

paper, hmin is much larger than the mean free path of air

molecules. Therefore, the interstitial fluid can be reasonably

treated as a continuum in the case of FCC particles.

Fig. 9 shows the variation of lubrication force and

relative velocity during the approaching and separating

stage with the surface distance. At the moment when the

surface distance equals to the surface roughness, physical

contact between the surfaces occurs. Subsequently, the

separating stage begins until the surface distance returns to

the initial value h0. Due to the energy dissipation by the

lubrication force both in approaching and separating stage,

the relative velocity keeps decreasing in the whole process.

Lubrication force increases more rapidly when the surfaces

approach closer. At the moment of contact in this example,

its magnitude increases to a maximum value which is about

20 times of its initial value at h =h0.

Fig. 10 shows how restitution coefficient varies with

initial approaching velocity ranging from umf to ut. Results

applying classical lubrication theory are also displayed using



T

OF

ARTICLE IN PRESS

474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

497
498
499
500
501
502
503
504
505

506

507
508
509
510
511
512
513
514
515
516
517

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25
R

el
at

iv
e 

lu
br

ic
at

io
n 

fo
rc

e 
F

L/
F

L,
0

Relative surface distance h/h0

0.0 0.2 0.4 0.6 0.8 1.0

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
el

at
iv

e 
ap

pr
oa

ch
in

g 
ve

lo
ci

ty
 v

/v
0

Relative surface distance h/h0

hmin/h0

hmin/h0

contact 
contact 

approaching 

separating 

approaching 

separating 

Fig. 9. Variation of lubrication force and approaching velocity with relative surface distance (FCC particles, dp=50 Am, v0=u t / 5, h0=R, hmin=hr =0.1 R).

W. Zhang et al. / Powder Technology xx (2005) xxx–xxx8
ORREC

dotted lines for comparison. With the increase of initial

velocity, restitution coefficient approaches to unity, indicat-

ing that lubrication effect is not so significant at high

velocities. Nevertheless, when the initial velocity is smaller

than the critical escape velocity ve
*, e decreases to zero.

Particles with initial velocity of umf and ut / 50 which are

smaller than vc
* do not have enough inertia to make contact

and will come to rest in the approaching stage. Yet particles

with an initial velocity of ut / 20 can make contact but do not

have enough inertia to escape from the ‘‘lubrication effect

area’’ and will come to rest in the separating stage. Therefore,

collisions with an initial approaching velocity less than ve
*

will result in agglomeration. The results calculated by

classical lubrication theory show a similar tendency and

smaller values of a restitution coefficient due to the

assumption of the upper limit of infinity in the integration

of the lubrication force.

Results of restitution coefficient with different particle

size and different initial approaching velocity are shown in

Fig. 11. It can be found that under the same initial velocity,

the effect of the lubrication force on larger particles is less

significant than on smaller particles. The independent

effects of particle size and initial approaching velocity on
UNC
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Fig. 10. Variation of restitution coefficient with initial approaching velocity

(FCC particles, dp=50 Am, h0=R, hmin=hr =0.1 R).
ED P
ROthe collision process can be included in the consideration of

Stokes numbers. As can be seen from Fig. 12, the effect of

lubrication force on particles with larger St is less

significant. The lubrication effect can be completely

neglected when the Stokes number is larger than 1000.

Fig. 12 also shows the influence of different surface

roughness on the restitution coefficient. For the same Stokes

number, the lubrication effect on the collision is more

significant in case of smoother particles.

3.2. Case 2: GB with small surface roughness

Glass beads with surface roughness that is approximately

equal to 1 /1000th of the particle radius are much smoother

than FCC particles. The particle surfaces can approach to a

much closer distance so that the lubrication effect is more

significant and the fluid should be treated as a non-

continuum in the last approaching stage.

Fig. 13 shows the comparison of lubrication force along

with surface distance with and without considering the non-

continuum fluid effect. It can be seen that the magnitude of

lubrication force decreases greatly when the surface distance

is of the same order of a mean free path of air by taking into
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Fig. 11. Restitution coefficient with different size of FCC particles and

different initial approaching velocity (FCC particles, h0=R, hmin=hr =0.1

R, velocity range: umf ¨u t; diameter range: 25¨100 Am).
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account the non-continuum fluid effect. Therefore, treatment

of the fluid as a non-continuum in the last approaching stage

significantly slows down the increase of lubrication force to

infinity.

A comparison of the restitution coefficient of different

sized GB under different initial approaching velocities is

shown in Fig. 14. Results indicate that lubrication effect on

GB collisions cannot either be neglected especially for

smaller particles and lower initial approaching velocity. The

differences of restitution coefficient with and without non-

continuum effect also indicate that consideration of non-

continuum effect weakens the lubrication effect and thus

lead to an increase in the restitution coefficient.

3.3. Case 3: smooth GB without surface roughness

In most DEM simulations, GB is assumed to be ideally

smooth without surface roughness. However, even in this

case, the paradox of contactless collision can be essentially

avoided by the attractive interaction of adhesive forces in the

range of distance smaller than hcollapse. This collapse distance

hcollapse can thus be regarded as the minimum approachable

surface distance hmin.
UNC
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D P
ROFig. 15 shows the calculated results of the restitution

coefficient with and without considering the effects of non-

continuum fluid and van der Waals force. Comparing with

Fig. 14, we can find that the differences between two sets of

results are much larger because, with the assumption of

smooth GB surface, particles can approach more closely so

that the effect of non-continuum fluid may be more

significant.
E
4. Conclusions

Although the classical lubrication theory has been well

established in liquid–solid systems, its application into

gas–solid systems has not received enough attention. The

assumptions adopted in the previous lubrication theory do

not remain reasonable as to gas–solid systems based on the

numerical analysis. The lubrication effect area in gas–solid

systems can be as large as the particle radius. The numerical

calculation results show that the pressure distribution in the

outer region cannot be neglected and their contribution to

lubrication force is related to the relative surface distance.

Semi-empirical expressions for lubrication force with and
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without considering non-continuum fluid effect are pro-

posed according to the numerical analysis.

Surface roughness of practical particles helps us avoid

the classical ‘‘Stokes Paradox’’ since it prevents particles

from approaching to a closer distance. Moreover, in the last

approaching stage where the surface distance is of the order

of the mean free path of fluid, the interstitial fluid should be

treated as a non-continuum, thus slowing down the increase

of lubrication force. Finally, within a critical collapse

distance where van der Waals force dominates over

lubrication force, the paradox of contactless collision is

essentially avoided since the particles can be driven together

to make contact in the aid of van der Waals force.

Restitution coefficient is adopted as a criterion for

evaluating the lubrication effect on collision process. It is a

strong function of Stokes number of isolated particle and

critical Stokes number that can be determined by corre-

sponding characteristic functions. The lubrication effect is

more pronounced for particles with smaller Stokes numbers.

Calculation results clearly show that the lubrication effect

cannot be neglected during the collision process in gas–solid

systems with FCC and GB of particle sizes ranging from 25

to 100 Am and initial approaching velocity from umf to ut.

Further research should be aiming at incorporating

lubrication force and an effective restitution coefficient

defined in this paper into DEM simulations with a more

accurate collision model.

Nomenclature

A Hamaker constant, J

dp Particle diameter, Am
E Attractive potential, J

e Restitution coefficient in Eq. (22)

ec Restitution coefficient by deformation

Fd Drag force, N

FL Lubrication force, N

Fvw Van der Waals force, N

Fnet Resultant net force, N

G Gravity, N

H Surface distance, m

h Surface distance at r =0, m

h0 Initial surface distance at r =0, m

hmin Minimum surface distance, m

hr Surface roughness, m

hcollapse Critical collapse distance, m

K1 Correction factor in Eq. (10)

K2 Correction factor in Eq. (13)

l0 Mean free path of molecules, m

m Particle mass, kg

P Hydrodynamic pressure, Pa

R Particle radius, m

r Radial distance in Fig. 1, m

r* Radius of inner region, m

St Stokes number

Stc* Critical contact Stokes number
ED P
ROOF

Ste* Critical escape Stokes number

umf Minimum fluidized velocity, m/s

ut Terminal velocity, m/s

v Relative approaching velocity, m/s

v0 Initial approaching velocity, m/s

vc* Critical contact velocity, m/s

ve* Critical escape velocity, m/s

Z0 Repulsive molecular distance, m

Greek letters

e Bed voidage

l Viscosity of fluid, Pa s

qp Particle density, kg/m3

qf Fluid density, kg/m3
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