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Abstract - Over the past few years, the research community has 

focused greatly on predicting air traffic flows, yielding remarkable 

outcomes. We found that existing literature in the field mainly 

covers prediction of air traffic flows for conventional aircraft. 

However, there is limited research about prediction of air traffic 

flows for Uncrewed Aircraft Traffic Management (UTM). This 

research study proposes a deep learning-based approach to 

predict air traffic congestion in the context of UTM over a period 

of three minutes. The use of the model aims to address congestion 

considering air traffic uncertainties instead of addressing the 

conventional issues of trajectory prediction or conflict detection 

and resolution. Our model also considers the influence of 

recreational users who fly UAVs at random times, during the 

execution of the above essential missions. Further, the effects of 

airspace structure configurations like static No-Fly Zones (NFZ), 

airfields with variable availability for drone flights, recreational 

areas, emergency UTM operation and environmental factors such 

as weather conditions have also been studied. The proposed model 

shows better performance compared to other approaches such as 

the Shallow neural networks and regression models.  

Keywords - complexity metrics, long short-term memory (LSTM) 

networks, uncrewed aerial vehicle (UAVs), uncrewed aircraft traffic 

management (UTM). 

I. INTRODUCTION 

The strength and numerous uses of uncrewed aerial vehicles 

(UAVs) have the potential to be of significant advantage to both 

commercial and industrial sectors. Worldwide, sales of UAVs 

are forecast to increase by an annual rate of 15.88% over the 

next four years [1]. In order to fulfil the expected rise in 

required services encompassing delivery, surveillance, and 

aerial photography [2], restricted airspace resources are coming 

under intense pressure to expand, leading to a lack of demand-

capacity equilibrium and associated flight backlogs that have 

the capacity to create possible safety problems and inefficacy 

within air traffic control spheres. In order to remedy these 

issues, a precise and timely forecast of traffic flow provides a 

major contribution to pertinent managerial judgements, 

administrative development strategies and functional 

proficiency enhancement. Additionally, traffic flow data 

facilitate more effectual and resourceful decisions by air traffic 

controllers. 

The definition of air traffic density, also referred to as 

congestion, is the frequency of airplanes travelling through a 

specific region over a certain period of time [3]. Congestion 

gives rise to the possibility of air traffic incidents and thus 

necessitates monitoring. Air traffic complexity reflects the 

degree of challenge that an actual traffic scenario poses to air 

traffic control [4]; this parameter has a negative association 

with the capacity of a controller to make choices and 

exacerbates the rate of judgment aberrations [5]. These so-

called “hot spots” of air traffic necessitate close scrutiny from 

controllers so as to determine whether any trajectories need 

modification in order to avoid any conflict. 

Complex and increasingly dense UAV traffic adds a notable 

duty to the administration of air traffic, metropolitan plans and 

the assignment of resources. Given this context, a number of 

key questions are typically voiced, such as ‘do we know if an 

appropriate route in terms of airspace safety and energy 

efficiency for a specific mission at a specific time can be found 

ahead of time? Is it necessary to postpone the launch of some 

UAVs in order to accommodate a higher priority mission 

scheduled at a specific time’? Responding to these queries and 

having the ability to predict the traffic characteristics in 

advance would facilitate more effectual preparation and 

regulation. 

Due to the increasing demand for UAVs, studies have been 

conducted to investigate the many noteworthy issues related to 

UAS traffic management. However, research about prediction 

of air traffic flow for Uncrewed Aircraft Traffic Management 

(UTM) systems is limited. Most researchers focused on 

predicting future traffic density based upon historical data [6]. 

They assumed a static environment with fixed start and 

destination points of vehicles, as well as fixed airspace 

constraints regarding no-fly zones (NFZ). A static environment 

is not directly applicable to UTM systems due to the dynamicity 

of the UAV’s operational environment. Hence, there is a need 

to design practical scenarios that consider uncertainties due to 

weather conditions and static and dynamic obstacles, especially 
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In order to model and predict UTM airspace traffic flow while 

considering air traffic dynamics and uncertainties, this paper 

proposes a learning-based model to predict air traffic 

congestion over a period of three minutes based upon existing 

machine learning techniques. The use of the model aims to 

address issues related to UAV traffic management. It focuses 

on predicting congested regions by considering air traffic 

uncertainties instead of addressing the conventional issues of 

trajectory prediction or conflict detection and resolution. It 

applies a deep learning approach, a long short-term memory 

network (LSTM), to analyze air traffic patterns based upon time 

series. These patterns depend upon defined parameters and 

predict congested regions in UTM systems. The overall 

architecture of the proposed model is presented in Fig. 1. 

 

 

                Fig. 1. UTM traffic flow prediction model. 

The remainder of this paper is as follows: Section II details 

associated research and offers the background for the current 

proposed techniques; Section III describes the research 

methods; Section IV presents the proposed model results and 

discusses the performance of the model comparing with 

existing prediction approaches; Section V indicates the 

conclusions of the work and recommendations for further 

studies. 

II. RELATED WORKS 

Within the domain of air traffic research, air traffic flow 

prediction (ATFP) forms a vital process, with the objective of 

gauging traffic characteristics for a particular airspace at a later 

timepoint according to the real-time traffic context and previous 

operating information. ATFP has become an area of interest for 

scientists worldwide; numerous superlative results have been 

attained within this sphere [7]. A range of methods, essentially 

classified into four cohorts, have been innovated and dedicated 

to ATFP: flight plan-based algorithms and time series, 

probabilistic and machine learning algorithms, respectively. 

The following sections offer an abridged précis of these 

methods with some related literature. 

A. Flight Plan-based Algorithms  

Flight plan-based algorithms are a two-fold ATFP method in 

which a four-dimensional trajectory prediction is employed in 

order to gauge the flight over a period of individual waypoints 

according to the flight plan. This is then utilized to anticipate 

the air traffic flow of the relevant airspaces [8]. The drawback 

of this technique is that it relies significantly on the precision of 

the four-dimensional trajectory projections. Furthermore, this 

method fails to incorporate information regarding the real-time  

 

 

 

traffic context. Corrections applied to the prediction through the 

additional use of real-time assessment of flight positions have 

been proposed [9]. However, the forecast outcome 

demonstrates notable divergence from the ground situation as 

the trajectory predictions for flights are unable to acquire the 

altering worldwide traffic scenario in a timely manner. 

B. Time Series Algorithms 

A number of reviews in relation to time series algorithms 

deployed in the assessment of the utilities of varying domains 

have been published [10], [11], [12]. In the current work, linear 

stochastic paradigms for prediction have been widely used, e.g., 

autoregressive, moving average, autoregressive integrated 

moving average (ARIMA), seasonal ARIMA, autoregressive 

fractionally integrated moving average, autoregressive 

conditional heteroscedasticity (ARCH), and generalized 

ARCH. The models founded on ARIMA are a more useful and 

straightforward strategy than alternative models as the only 

information required is prior data. The principal disadvantage, 



however, is that the impact of the traffic scenario in neighboring 

airspaces is overlooked. Similarly, another dynamic air traffic 

flow paradigm derived from a network failed to take note of the 

time-reliance of historical traffic contexts [13]. 

C. Probabilistic and Stochastic Algorithms  

Rather than providing the deterministic frequency of aircraft 

within an area over a period of time, techniques founded on 

probabilities measure the ambiguities in establishing ATFP and 

offer numerical output as well as associated probability. Such 

models were researched in order to establish the stochastic 

properties of air traffic flow. This method is utilized in order to 

predict traffic flow in more detail [14]; ambiguities are 

considered in order to emphasize probabilistic demand 

prediction. This technique was noted in a further study [15], 

which took into account the divergences induced by random 

phenomena, e.g., an alteration of a departure or arrival time, a 

non-permanent deviation from a trajectory or flying height 

owing to adverse weather or an unscheduled cancellation. 

These data infer that probabilistic forecasting of traffic flow 

according to the properties of error distribution provides 

information which is comparable to the true data. Despite the 

more precise forecasting data, the output of this technique is 

influenced by handcrafted models and flaws within the 

paradigm; therefore, it does not illustrate the entire real traffic 

scenario, which diminishes the accuracy of the prediction. 

D. Machine Learning Algorithms for ATFP 

With successful applications of machine learning and, 

specifically, deep learning-based models for prediction 

purposes in other fields such as road traffic prediction, it is also 

studied to solve the existing problems of air traffic flow 

management (ATM).  

It was observed that the majority of publications are related to 

road or highway traffic flow or ATFP for aircrafts. UAV 

navigation, obstacle avoidance, and/or control approaches are 

some of the issues investigated by the current works [6], [16]. 

 

The work in [7] suggested an aggregate machine learning 

model that takes into account the entire air traffic flow situation 

by considering both spatial and temporal dependencies due to 

adjacent areas, historical traffic situation and flight levels. A 

novel combined machine learning model was trained with the 

integration of convolutional neural networks and recurrent 

neural network (ConvLSTM) for the traffic flow prediction 

using traffic flow matrix (TFM) data. The results of this study 

exhibit better performance compared to existing approaches 

due to the fact that the model predicts the flow distribution at 

different flight levels, thus helping to improve the operational 

efficiency of ATM. 

 

In order to enhance the precision of air traffic predictions, a 

predictive autoregression model was developed utilizing 

support vector machine (SVM) merged with a polynomial 

model and a strong autoregression model so as to generate a 

coalesced predictive paradigm [17]. The latter was trialed with 

true air traffic information obtained from the Beijing ATC area. 

Greater ATFP precision of nearly 3% was achieved with the 

combination model when judged against SVM only. An 

innovative ATFP technique, founded on deep learning 

methods, took both spatial and temporal considerations into 

account [18] by utilizing a stacked auto-encoder paradigm 

trained in a greedy layer-wise manner to learn empirical 

properties of traffic flow.  

 

The work in [19] developed a deep learning model to predict 

road traffic flows. Its main contribution is the development of 

an architecture that combines a linear model with a sequence of 

tanh layers. This work shows that deep learning architectures 

can capture nonlinear spatio-temporal effects. The first layer 

was used to identify spatio-temporal relations among predictors 

and the other layers were used to model nonlinear relations. It 

was shown that deep learning provides precise short-term 

traffic flow predictions. 

 

A further study [20] used a complexity metric for ATFP, which 

was autonomous of any system of traffic control and deployed 

an innovative encoder-decoder LSTM neural network. A mean 

absolute error of 0.08 was obtained in predicting the air traffic 

complexity value 40 minutes in advance. 

 

The work presented in [6] used the image-based trajectory data 

as input to convolutional neural network (CNN) and LSTM 

cascaded deep neural network and predicted the UAV 

instantaneous density using the segmentation method that relies 

on historical data. Although this work used correlation as the 

metrics for the evaluation of the proposed network and 

established a continuous prediction time horizon of one hour 

with good correlation scores, it did not take into account the 

realistic or practical missions as considered in this current work, 

nor did it take into account the effect of dynamical airspace 

structural constraints such as recreational areas and airfields or 

the effects of UAV prioritization; there is always a need to set 

the priority list for different missions The effects of weather 

constraints such as adverse wind, rain and extreme weather 

conditions were also not considered in this work. 

 

The review of traditional ATFP techniques implies that 

contemporary strategies are bottom-up, i.e., predicting the 

traffic flow for a particular airspace rather than the general 

traffic dispersal within the region of interest. Additionally, a 

number of techniques focus on empirical airplane numbers 

within a region, therefore lacking the capacity to differentiate 

between scenarios of greater and lesser complexity for 

equivalent air traffic populations.  

 

However, one of the challenges in forecasting and predicting 

UAVs’ air traffic flow is the unavailability of historical data 

[21], a state of affairs which compelled the development of 

simulation frameworks for data generation that could take all 

the real-time scenarios and anomalies into account. It can be 

debated that there is a strong need to design practical scenarios 

that must take uncertainties into account, such as adverse 

weather conditions and static and dynamic obstacles due to the 



usage of UAVs in urban environments where the safety of 

assets may be of prime interest. Also, the emergency operations 

in UTM domains pose additional constraints on the 

development of simulation scenarios that could provide more 

accurate replicas against real historical data.  

III. METHODLOGY 

A.  Historical Data generation and Pre-processing  

There is special need to develop scenario-driven planning 

approaches that aim to optimize plans for UAVs and enable the 

selection of who to serve, which routes to take and how much 

to deliver [22]. Due to limited resources and other restrictions, 

planning a relief operation is difficult, particularly for last mile 

delivery activities (from distribution centers to beneficiaries) 

[23]. Moreover, the unavailability of historical UTM traffic 

data prompts the generation of data for the prediction of UAV 

traffic flow patterns by using a simulation framework. The 

simulation uses particle swarm optimization (PSO)-based 

optimization algorithm to provide optimal paths from a UAV 

service start point to its delivery point. 

 

The proposed model has been validated using a drone delivery 

system for the essential delivery of Covid-19 test samples, 

package delivery services and emergency fire-surveillance 

tasks, with different priority levels assigned to them. The model 

also considers the influence of recreational users who fly UAVs 

at random times during the execution of the above essential 

missions.  

 

Further, the effects of airspace structure configurations like 

static NFZ, airfields with variable availability for drone flights, 

recreational areas and environmental factors such as weather 

conditions have also been studied.  

 

The suggested method was evaluated and verified by running a 

simulation over the airspace of Bedfordshire, UK. Places that 

may be restricted for flights are airfields, recreational areas, and 

prisons. The test area included four airfields: Luton, Cranfield, 

Halton, and Old Warren (orange); four recreational areas: 

Dunstable, Sandy, Cardington, and Graveley (yellow); and 

Milton Keynes Prison (Blue). Fig. 2 depicts the simulation 

environment and the missions.  

 

To make the simulation more realistic, the following simulation 

parameters were taken into consideration: 

 

1) Fixed start and end position: As part of the simulation, the 

UAV missions’ start, and end positions were set to mimic 

typical everyday operations and emergency services. 

2) Priority levels: Each flight was assigned a service priority 

level, ranging from Level 1 (highest priority) to Level 4 

(lowest priority). The following is a description of each 

level of priority: 

 
Fig. 2. Environment of simulation scenarios and the UAV missions map. 

a. Fire surveillance services (emergency services). 

b. Covid-19 test samples delivery service to multiple 

clinics.  

c. Package delivery service to multiple post offices. 

d. Recreational users who fly UAVs at random times 

(single-leg missions). 

 

3) Dynamic NFZs: At some hours, airfields and recreation 

areas considered for simulation are dynamic in nature. This 

dynamism is random, making some areas available and 

others unavailable for the whole duration of the hour(s).  

4) Random departure time: To make the system more 

realistic, the exact time at which each hobbyist’s UAV 

departs is randomly set between one and 10 minutes in a 1-

hour simulation scenario period. 

5) Weather ambiguity: Different weather conditions 

classified as adverse and severe were considered. The 

details of the weather effects’ implementations were 

presented in [24]. 

6) Deconfliction strategy: When two or more UAVs are in the 

same location at the same time, it is called a conflict. 

Literature [25] discusses some de-confliction strategies to 

resolve any UAV conflict that appears in the scenarios. In 

this simulation setting, de-confliction strategies such as 

ground delay and slow speed were used.  

 

To simulate more complex dynamic airspace, 100 UAV 

trajectories were considered, 73 of which belonged to special 

UAV missions and 27 to random flying by hobbyists. A multi-

mission scenario was also simulated between 9:00 am to 12:00 

pm for the Bedfordshire area, where four missions were taking 

place. Three different sub-scenarios were created based on 

these hours as follows: 

1) First simulation scenario: This simulation ran 

between 9:00 am and 10:00 am. In this scenario, all 

nine NFZs were static with no dynamic obstacles and 



no weather constraints. As a result, no UAV could fly 

above them during this hour.  

2) Second simulation scenario: This simulation ran 

between 10:00 am and 11:00 am. The difference from 

the first scenario is that any NFZ corresponding with 

recreational areas were dynamic, making some areas 

available and others unavailable at this hour. This 

scenario also incorporated severe weather effects. 

3) Third simulation scenario: This simulation ran 

between 11:00 am and 12:00 pm. In this scenario, 

airfields are dynamic, while all four recreational areas 

and the prison were kept static. Among the four 

airfields, Luton and Cranfield airfields were available, 

and therefore, UAVs of flying hobbyists could fly over 

Luton and Cranfield areas at some points. The effects 

of adverse rain and wind were considered in this 

scenario. 

 

For simplicity’s sake, the figure of one of these scenarios is 

presented Fig. 3. 

 
Fig. 3. Scenario 2:100 UAVs with extreme weather effects. 

Once the PSO simulation had been completed, the UAV’s states 

were formulated by arranging the five parameters: longitude 

(), latitude (), timestamps (), velocity () and head direction 

() for each UAV. Then, the whole airspace was divided into 

small cubes to identify the neighboring UAVs. The complexity 

matrix, which contains complexity information for each cube in 

the airspace, was evaluated by using negative eigenvalues of 

UAVs, as discussed in the next section. 

B. Complexity Metric Formulation 

In this work, we adapted the inherent complexity metric for a 

linear dynamic system model published previously [26] to 

address the prediction task of the ATFP in UTM domain. It 

calculates a complexity parameter in the neighborhood of an 

aircraft at a certain time (see Fig. 4). The proposed complexity 

metric was formulated to capture the dynamic behavior of 

neighboring UAVs in a reference window of airspace A filter is 

used in order to take into account the flights with a likelihood 

of engagement with the reference flight. For example, a UAV 

at a distance of 50 m [27] from the reference aircraft will not 

interact with the reference aircraft, and so, would not be 

calculated in the metric computation. 

 
Fig. 4.The neighborhood of a reference UAV to calculate the complexity 

metric [26]. 

The dynamic behavior of a system can be represented with the 

following linear equation:  =  +                                                                        1 
The complexity metric can be formulated by including the 

motion of neighboring UAVs. Motion of the UAVs through the 

airspace can be presented using the following linear equation:  =  +                                                                      2 
In the above equation,   is the state transition matrix 

representing the dynamics of UAVs in the neighborhood of the 

reference UAV, whereas b is the input matrix based on the 

speed of the respective neighboring UAV. If the matrices P and 

V were such that: 

 =   …  ⋱  …            =   …  ⋱  … 
           3       

where ,    represent the spatial-temporal coordinates, 

and  ,  represent the velocities for the first UAV in 

the neighborhood of the reference UAV. The state transition 

matrix  can be evaluated as follows: ,‖ −  + ‖                                              4 

When the characteristic information of the state transition 

matrix was scrutinized, it was evaluated that the positive real 

parts of the eigenvalues correspond to divergence from the 

reference neighborhood along the associated eigendirections 

while negative real parts correspond to convergence on a 

reference point. Therefore, the complexity in a neighborhood 

can be mathematically presented as:  =   ||                            5 

Following diagonalization of the matrix , it was observed 

that the system’s asymptotic activity relies only on  

eigenvalues. Positive and negative true eigenvalue components 

equate to divergence along the related eigenvectors and 

convergence toward a key coordinate, respectively (Fig. 5).  

 

Thus, as the dynamic system is closed, the metric  is a 

parameter of the magnitude of the system’s diverging or 

converging activity. 



Given that this system has the tightest approximation of a linear 

dynamic system with a good fit for the present air traffic loci 

and speeds, a robust converging activity equates to quickly 

joining trajectories, which are linked with a significant level of 

complexity. 

 

 
Fig. 5. Eigenvalues of the dynamical system [26]. 

C. Architecture of the Prediction model 

1) One-dimensional (1-D) Convolutional Layer: 

Described as a single-dimension convolutional layer, the initial 

encoder network layers process the input sequence that reflects 

the UAV states. Each such layer is made up of different  

filters, which encompass a kernel of learnable values 

parameters with the dimension  ∗ , where  and  indicate 

the input sequence size and a convolutional layer 

hyperparameter, and the breadth of the kernel, respectively. The 

individual filters amass the result of the input sequence relating 

to the distance and the individual output series elements all 

include data from a number of serial time increments. This can 

be represented more accurately as: 

 

 =  ∅      + , 


                      6 
 

where   is the   vector element of the   sequence term,   is the   vector element of the   sequence term of the 

input,   is the   weight of the kernel of the   filter 

associated with the   dimension of the input sequence, and  is an activation function. 

 

Convolution operations are carried out only along the input 

sequence’s time dimension; thus, it is referred to as being one 

dimensional (1-D). Given that the convolutional strata are of a 

single dimension, it was anticipated that the encoder network 

would recognize dependencies within an extremely brief time 

period. Thus, the LSTM strata could undertake processing of an 

intermediate sequence whereby the individual time increments 

incorporated dynamic data from the earlier and upcoming time 

intervals. This would enable calculation of the embedding for 

the entire sequence. In the absence of the convolutional strata, 

the LSTM layers could only process each time interval 

consecutively without any data from subsequent time 

increments. 
 

2) Encoder-Decoder LSTM: 

A category of networks, recurrent neural networks (RNN), were 

engineered in order to manage serial data, e.g., text streams, 

audio extracts and time-series information [28]. Nevertheless, 

the empirical RNN stratum experiences challenges in learning 

long-term dependencies when the linear dimensions of the 

sequence are sizeable. This issue has been termed the vanishing 

gradient problem [29]. Its resolution has been attempted with a 

number of RNN layer configurations with long-term memory, 

e.g., LSTM [30]. The latter is an enhanced block of RNN which 

includes four regulatory gates, i.e., input, forget, cell and 

output, respectively, together with concealed units. The overall 

configuration of a lone LSTM block is depicted in Fig. 6. The 

mathematical description is as follows: 

 

where the respective activations of the input, forget, cell and 

output gates are denoted by   ,   ,   and  , and ℎ 

indicates the hidden unit. The t superscript indicates the 

forecasting moment. W represents the weight tensor; the vector 

of the information transmission is given by the subscripts. The 

bias within the equivalent part is shown by b. 

 

Sequence-to-sequence prediction issues are difficult to resolve 

due to the fact that input and output sequences comprise 

differing item populations. The encoder-decoder LSTM, is 

engineered in order to deal with such situations. Its 

configuration is formed by a pair of models. The first encodes 

the input sequence into a vector of fixed length, and the second 

decodes the latter and provides an output of the forecast 

sequence [20].  

 

The novelty of this configuration is the utilization of a fixed 

dimensional intrinsic representation within the model’s center, 

which is termed sequence embedding [31]. The encoder and 

decoder both fall under the description of RNNs, i.e., LSTMs.   

 

 
Fig. 6.The general architecture of LSTM [7]. 

 =   + ℎ +  +    =   + ℎ +  +    =  ∘  +   ∘  + ℎ +                   7   =   + ℎ +  +   ℎ =   ∘  



3) Model training: 

A sequence-to sequence regression assignment forms the goal 

of the current supervised learning model. In order to accomplish 

this, a training set has to be constructed utilizing training 

input/output pairings made up of sequences of UAV states 

matched with complexity value sequences for the whole 

airspace. In order to engineer the training outputs, an  ×  

complexity metric matrix was described   for each time 

increment  . For a specific time   , the input vector   was 

obtained by the concatenation of all UAV states existing within 

the airspace at that time. Such states from the database were 

entered into the 1-D convolution layer versus the timestep. The 

consequent output was then introduced into a number of LSTM 

layers.  

 

The encoding sequence is formed by the hidden states of the 

final LSTM layer. This is the only encoder data that will be 

conveyed to the decoder network, which is itself made up of a 

number of LSTM layers, of which the hidden states are 

stimulated by the encoding sequence, together with numerous 

dense layers. The output vector from the latter has an  

dimension, which is equivalent to the complexity metric’s 

matrix. 

 

Two elements form the decoder input, namely, the encoder’s 

output and the output sequence term which was predicted or 

decoded previously. In training, the coder network is instigated 

by a method referred to as teacher forcing, which indicates that 

in training, the true output sequence is used as a further input 

into the decoder network, but translocated by a single time 

increment, i.e., the additional input into the decoder network is 

the output it should have forecast at the preceding time juncture. 

At the inference mechanism, the prediction determined at the 

earlier time interval was thus taken into account. 

 

The root mean squared error (RMSE) represents the loss 

function and can be expressed as: 

 =  1  − 
                                               8      

Where   represents the total number of airspace (x, y) 

coordinates.  represents the actual amount of congestion at 

any specific point and  presents the predicted congestion at 

that specific (x, y) coordinate. 

 

The list of model hyperparameters are shown in TABLE 1.  
TABLE 1. LIST OF HYPERPARAMETER VALUES 

Parameter Value 

Batch size 128 

(1-D) kernel width  3 

(1-D) filter  512 

Hidden layers (LSTM) 128 

Activation ReLU 

Optimizer Adam optimizer [32] 

Learning rate 0.001 

Epochs 500 

Loss function  RMSE -Equation (8) 

IV. RESULTS AND DISCUSSION 

This section presents the results of the performance of the 

proposed architecture in the scenarios explained in section III 

above. These three scenarios perturb the ideal mission plans 

with the introduction of various dynamic random factors such as 

recreational areas, airfields, and various uncertain weather 

conditions. The proposed model is trained on 90% of the dataset 

and then tested on the rest of 10% of this data. 

A. Prediction result for First Scenario of Simulations: 

 A scenario of 100 UAVs with a no-fly zone with no weather 

conditions has been considered in this case to evaluate the air 

space congestion. A heatmap of the congestion matrices for this 

scenario is presented in Fig. 7. The congestion in the 

Bedfordshire airspace due to neighboring UAVs has been 

presented in the heat map. The lowest and highest congestion 

has been presented with blue and red colors respectively. 

 
Fig. 7. Actual and predicted complexity in the airspace for the first scenario. 

It can be seen from the figure above that the proposed model 

can capture most of the highly complex regions appearing in 

the future timestamp. The performance of the LSTM trained 

architecture can be evaluated by the RMSE value of the 

prediction. In this scenario, an RMSE reached a value of 0.30. 

This small value of the RMSE metric indicates the high 

accuracy of our model. 



B. Prediction result for Second Scenario of Simulations: 

To add more complexity to the Bedfordshire airspace, the 

second scenario of 100 UAVs with extreme weather conditions 

and the recreational areas being dynamic was considered. The 

congestion heatmap is presented in Fig. 8 below. 

 

 
Fig. 8. Actual and predicted complexity in the airspace for the second scenario 

It can be seen from the above heatmap that the encoder-decoder 

model has captured a major complexity in the airspace by 

observing the dynamic behavior of UAVs, their speed, and 

areas of congestion. To quantify the performance of this model, 

the loss value for training and validation at each epoch has 

reached the value of 0.39. 

C. Prediction result for Third Scenario of Simulations: 

Similarly, to understand airspace density behavior under 

different scenario parameters, the third scenario with 100 

UAVs in airspace was considered with adverse rain and wind 

as weather uncertainties. In addition, the airfields’ areas were 

dynamic, while all the four recreational areas and the prison 

were kept static. A heatmap of the congestion for this scenario 

is in Fig. 9. 

The below figure shows that the proposed model learns the 

spatial and temporal transition patterns of flight flow in air 

traffic. The key characteristics of air traffic flow are captured in 

order to forecast future air traffic flow. In this scenario, a RMSE 

reached the value of 0.34. It can be seen from the RMSE that 

the prediction of the trained model architecture is sufficiently 

close calculated true congestion value based on dynamical 

model discussed earlier in section III-B, which reflects the 

optimal performance of the proposed air traffic flow prediction 

architecture. 

 

 
Fig. 9. Actual and predicted complexity in the airspace for the third scenario. 

D. Comparison between the Proposed model with the 

Existing approaches 

To evaluate the performance of the proposed encoder-decoder 

LSTM architecture for the prediction of air traffic flow patterns, 

a comprehensive comparative analysis is presented in this 

section. The proposed model has been compared with two 

prediction approaches, which were discussed in the literature. 

All three scenarios were used to evaluate the performance of 

each approach. The selected architectures for the comparative 

analysis with the proposed model are : a shallow NN-based 

model with dense network connections that was proposed in 

[33] and a regression architecture-based Nonlinear Auto 

Regression with External input (NARX) model, which has been 

presented in [12]. The performance of all the selected 

approaches has been evaluated on some of the key performance 

metrics as follows: 

  =  1  − 
                                                                 9 

   =  1   −  −                10
  

  =  1   −  
 × 100%                                             11 



Where  denotes the total number of airspace trajectories (x, 

y).   represents the true congestion values evaluated using 

dynamic linear model of UAVs presented earlier in section III-

B and   represents the predicted congestion at that specific 

airspace (x, y) coordinate using LSTM encoder-decoder 

architecture. The standard deviation has been used to evaluate 

how much the predicted point is deviating from the mean of the 

data. Each predicted point variation has been evaluated and 

summed up to present the total deviation in the predicted values 

from the mean value. 

Absolute mean percentage error (AMPE) measures prediction 

accuracy of the model as a percentage. Equation (8) presents 

the RMSE which used to evaluate the prediction model 

performances for all three prediction approaches. 

 

The results of the comparison of different prediction 

approaches are presented in Fig. 10 , Fig. 11 and Fig. 12. 

 
Fig. 10. Comparison of different prediction approaches for the first scenario. 

 
Fig. 11. Comparison of different prediction approaches for the second scenario. 

 
Fig. 12.Comparison of different prediction approaches for the third scenario. 

According to the comparative results, we can see that the deep 

learning model shows the superior performance over the exiting 

approach. 

Regression and Shallow networks are easy to construct as the 

toolbox is available, but they do not capture the complex 

relation of states and complexity metrics. 

 

The encoder-decoder LSTM predictive model is a better tool 

not just for better prediction but also due to its input and output 

structures, which help provide predictions of airspace 

complexity with a consecutive step in time. Moreover, this 

helps evaluate the airspace complexity more intuitively by 

presenting the airspace congestion on a spatial and temporal 

scale, which helps the UTM operator to look into the future with 

a perspective of how the complexity will be changing in the 

airspace concerning different slots of time. 

 

Due to modelling of both spatial and temporal dependencies, 

the proposed model showed better prediction performance 

compared to the other approaches with different weather 

ambiguities simulated in the three scenarios above. 

 

The regression model only presents the influence of historical 

data (temporal with the absence of spatial correlations). This 

means that it is highly dependent on the size of the data and 

look-ahead horizon. Furthermore, the regression model is 

susceptible to any unexpected changes in air traffic flow such 

as flow patterns or weather conditions. 

 

The Shallow NN used with a dense network connection is better 

for capturing system behavior due to its advanced architecture. 

The spatial coordinates of airspace complexity were better 

predicted than by the regression model. However, the proposed 

model has performance superiority over the Shallow NN. 

V. CONCLUSION & FUTURE WORK 

To meet the critical need for accurate congestion prediction in 

ATFM systems, we have proposed a learning-based model to 

predict air traffic congestion over a period of three minutes 

based on the existing machine learning techniques. It applies a 

deep learning approach, a long-short term memory network 

(LSTM). In this model, we designed practical scenarios which 

consider uncertainties due to adverse weather conditions, and 

static and dynamic obstacles, especially in urban environments, 

where the safety of people and assets is of prime interest. Also, 

emergency UTM operations pose additional constraints in 

developing simulation scenarios. 

The encoder-decoder model has the ability to extract effective 

features from simulated historical congestion, for a broad range 

of UAV missions’ trajectories. Moreover, it can predict the 

UTM airspace complexity three minutes in advance and with 

acceptable accuracy. 

Thus, the proposed model enables the UTM operator to regulate 

and reconfigure UAV paths based upon complexity prediction 

graphs representing air traffic hotspots. It can also be used to 

mitigate congestion in predicted UAV traffic hotspots and 



suggest appropriate conflict-free trajectories by changing head 

directions, ground delay, or speed. Our model mainly seeks to 

reduce the workload of the air traffic controller, by predicting 

congested areas in advance and enabling appropriate action to 

prevent their formation. 

 

In future work, we will propose a recommendation system that 

assists the UTM controller to predict the safe actions to mitigate 

the congestion hotspots, which may lead to conflict, thus, 

threatening the airspace safety. Keeping in view of the safety-

critical aspects and certification, our proposed advisory system 

will seek to meet the requirements of the trust for such an 

automation system such as explainability and accuracy. 

 

REFERENCES 

 
[1] M. Intelligence, “DRONES MARKET - GROWTH, TRENDS, 

COVID-19 IMPACT, AND FORECASTS (2021 - 2026).pdf.” 2020. 

[2] H. Hildmann and E. Kovacs, “Review: Using Unmanned Aerial 
Vehicles (UAVs) as Mobile Sensing Platforms (MSPs) for Disaster 

Response, Civil Security and Public Safety,” Drones, vol. 3, no. 3, p. 

59, 2019, doi: 10.3390/drones3030059. 
[3] B. Hilburn, “Cognitive complexity in air traffic control : a literature 

review COGNITIVE COMPLEXITY IN AIR TRAFFIC 
CONTROL : A LITERATURE REVIEW Center for Human 

Performance Research,” no. November, 2017. 

[4] M. Prandini, L. Piroddi, S. Puechmorel, and S. L. Brázdilová, 
“Toward air traffic complexity assessment in new generation air 

traffic management systems,” IEEE Trans. Intell. Transp. Syst., vol. 

12, no. 3, pp. 809–818, 2011, doi: 10.1109/TITS.2011.2113175. 
[5] E. M. Pfleiderer, C. A. Manning, and S. Goldman, “Relationship of 

complexity factor ratings with operational errors,” no. May, 2007, 

[Online]. Available: 
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&i

dentifier=ADA467731. 

[6] Z. Zhao et al., “Machine learning-based traffic management model 
for UAS instantaneous density prediction in an urban area,” 

AIAA/IEEE Digit. Avion. Syst. Conf. - Proc., vol. 2020-Octob, 2020, 

doi: 10.1109/DASC50938.2020.9256471. 
[7] Y. Lin, J. wei Zhang, and H. Liu, “Deep learning based short-term air 

traffic flow prediction considering temporal–spatial correlation,” 

Aerosp. Sci. Technol., vol. 93, p. 105113, 2019, doi: 
10.1016/j.ast.2019.04.021. 

[8] Y. Lin, J. wei Zhang, and H. Liu, “An algorithm for trajectory 

prediction of flight plan based on relative motion between positions,” 
Front. Inf. Technol. Electron. Eng., vol. 19, no. 7, pp. 905–916, 2018, 

doi: 10.1631/FITEE.1700224. 

[9] W. Tian and M. Hu, “Study of air traffic flow management 
optimization model and algorithm based on multi-objective 

programming,” ICCMS 2010 - 2010 Int. Conf. Comput. Model. 

Simul., vol. 2, pp. 210–214, 2010, doi: 10.1109/ICCMS.2010.20. 
[10] P. Hendikawati, Subanar, Abdurakhman, and Tarno, “A survey of 

time series forecasting from stochastic method to soft computing,” J. 

Phys. Conf. Ser., vol. 1613, no. 1, 2020, doi: 10.1088/1742-
6596/1613/1/012019. 

[11] S. Mehrmolaei and M. R. Keyvanpour, “Time series forecasting 

using improved ARIMA,” 2016 Artif. Intell. Robot. IRANOPEN 
2016, pp. 92–97, 2016, doi: 10.1109/RIOS.2016.7529496. 

[12] E. Cadenas, W. Rivera, R. Campos-Amezcua, and C. Heard, “Wind 

speed prediction using a univariate ARIMA model and a multivariate 
NARX model,” Energies, vol. 9, no. 2, pp. 1–15, 2016, doi: 

10.3390/en9020109. 

[13] D. Chen, M. Hu, H. Zhang, J. Yin, and K. Han, “A network based 
dynamic air traffic flow model for en route airspace system traffic 

flow optimization,” Transp. Res. Part E Logist. Transp. Rev., vol. 

106, pp. 1–19, 2017, doi: 10.1016/j.tre.2017.07.009. 
[14] C. Wang and L. Yang, “Probabilistic methods for airspace sector flow 

and congestion prediction,” Xinan Jiaotong Daxue Xuebao/Journal 

of Southwest Jiaotong University, vol. 46, no. 1. pp. 162–166, 2011, 

doi: 10.3969/j.issn.0258-2724.2011.01.026. 
[15] W. Tian, H. Xu, Y. Guo, B. Hu, and Y. Yao, “Probabilistic En Route 

Sector Traffic Demand Prediction Based upon Statistical Analysis of 

Error Distribution Characteristics,” J. Adv. Transp., vol. 2018, 2018, 
doi: 10.1155/2018/8184513. 

[16] Z. Sándor, “Challenges caused by the unmanned aerial vehicle in the 

air traffic management,” Period. Polytech. Transp. Eng., vol. 47, no. 
2, pp. 96–105, 2019, doi: 10.3311/PPtr.11204. 

[17] H. H. Zhang, C. P. Jiang, and L. Yang, “Forecasting traffic 

congestion status in terminal areas based on support vector machine,” 
Adv. Mech. Eng., vol. 8, no. 9, pp. 1–11, 2016, doi: 

10.1177/1687814016667384. 

[18] Y. Lv, Y. Duan, W. Kang, Z. Li, and F. Y. Wang, “Traffic Flow 
Prediction with Big Data: A Deep Learning Approach,” IEEE Trans. 

Intell. Transp. Syst., vol. 16, no. 2, pp. 865–873, 2015, doi: 

10.1109/TITS.2014.2345663. 
[19] N. G. Polson and V. O. Sokolov, “Deep learning for short-term traffic 

flow prediction,” Transp. Res. Part C Emerg. Technol., vol. 79, pp. 

1–17, 2017, doi: 10.1016/j.trc.2017.02.024. 
[20] L. Shi-garrier et al., “Predicting Air Traffic Congested Areas with 

Long Short-Term Memory Networks To cite this version : HAL Id : 

hal-03344406 Predicting Air Traffic Congested Areas with Long 
Short-Term Memory Networks,” 2021. 

[21] S. Bijjahalli, R. Sabatini, and A. Gardi, “Advances in intelligent and 

autonomous navigation systems for small UAS,” Prog. Aerosp. Sci., 
vol. 115, no. June, p. 100617, 2020, doi: 

10.1016/j.paerosci.2020.100617. 
[22] G. Radzki, P. Golinska-Dawson, G. Bocewicz, and Z. Banaszak, 

“Modelling Robust Delivery Scenarios for a Fleet of Unmanned 

Aerial Vehicles in Disaster Relief Missions,” J. Intell. Robot. Syst. 
Theory Appl., vol. 103, no. 4, 2021, doi: 10.1007/s10846-021-01502-

2. 

[23] T. Larrabee, H. Chao, M. Rhudy, Y. Gu, and M. R. Napolitano, 
“Wind field estimation in UAV formation flight,” Proc. Am. Control 

Conf., pp. 5408–5413, 2014, doi: 10.1109/ACC.2014.6859266. 

[24] A. Alharbi, I. Petrunin, and D. Panagiotakopoulos, “Identification 
and Characterization of Traffic Flow Patterns for UTM application,” 

AIAA/IEEE Digit. Avion. Syst. Conf. - Proc., vol. 2021-Octob, 2021, 

doi: 10.1109/DASC52595.2021.9594494. 
[25] A. Alharbi, A. Poujade, K. Malandrakis, I. Petrunin, D. 

Panagiotakopoulos, and A. Tsourdos, “Rule-based conflict 

management for unmanned traffic management scenarios,” 
AIAA/IEEE Digit. Avion. Syst. Conf. - Proc., vol. 2020-Octob, 2020, 

doi: 10.1109/DASC50938.2020.9256690. 

[26] A. García, D. Delahaye, and M. Soler, “Air Traffic Complexity Map 
based on Linear Dynamical Systems,” no. Dd, 2020, [Online]. 

Available: https://hal-enac.archives-ouvertes.fr/hal-02512103. 

[27] M. Ribeiro, J. Ellerbroek, and J. Hoekstra, “Analysis of conflict 
resolution methods for manned and unmanned aviation using fast-

time simulations,” SESAR Innov. Days, no. December, 2019. 

[28] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence 
learning with neural networks,” Adv. Neural Inf. Process. Syst., vol. 

4, no. January, pp. 3104–3112, 2014. 

[29] J. Rosindell and Y. Wong, “On the difficulty of training recurrent 
neural networks,” Phylogenetic Divers. Appl. Challenges Biodivers. 

Sci., no. 2, pp. 41–71, 2018, doi: 10.1007/978-3-319-93145-6_3. 

[30] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” 
Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997, doi: 

10.1162/neco.1997.9.8.1735. 

[31] L. Lu, X. Zhang, and S. Renais, “On training the recurrent neural 
network encoder-decoder for large vocabulary end-to-end speech 

recognition,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal 

Process. - Proc., vol. 2016-May, pp. 5060–5064, 2016, doi: 
10.1109/ICASSP.2016.7472641. 

[32] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic 

optimization,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. 
Track Proc., pp. 1–15, 2015. 

[33] B. Geng, R., Cui, D. and Xu, “Support vector machine-based 

combinational model for air traffic forecasts. Journal of Tsinghua 
University (Science and Technology), 48(7), pp.1205-1208..pdf.” . 

 


