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Abstract

Background: Radiology requests and reports contain valuable information about diagnostic
findings and indications, and transformer-based language models are promising for more accurate
text classification.

Methods: In a retrospective study, 2256 radiologist-annotated radiology requests (8 classes) and
reports (10 classes) were divided into training and testing datasets (90% and 10%, respectively) and
used to train 32 models. Performance metrics were compared by model type (LSTM, Bertje,
RobBERT, BERT-clinical, BERT-multilingual, BERT-base), text length, data prevalence, and training
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strategy. The best models were used to predict the remaining 40,873 cases’ categories of the
datasets of requests and reports.

Results: The RobBERT model performed the best after 4000 training iterations, resulting in AUC
values ranging from 0.808 [95% CI (0.757–0.859)] to 0.976 [95% CI (0.956–0.996)] for the requests
and 0.746 [95% CI (0.689–0.802)] to 1.0 [95% CI (1.0–1.0)] for the reports. The AUC for the
classification of normal reports was 0.95 [95% CI (0.922–0.979)]. The predicted data demonstrated
variability of both diagnostic yield for various request classes and request patterns related to
COVID-19 hospital admission data.

Conclusion: Transformer-based natural language processing is feasible for the multilabel classi-
fication of chest imaging request and report items. Diagnostic yield varies with the information in
the requests.

Keywords
natural language processing, machine learning, data mining, radiology, chest imaging

Introduction

Radiology reports are the primary communication method between radiologists and referring
physicians and contain valuable information that impacts patient care.1,2 Most radiology reports
are for single use, and physicians use the information from them to treat their patients. Data
science can prove valuable by providing information from aggregated data; this is certainly true
for radiology reports.3

Radiology dashboards are suitable for monitoring and predicting radiology volumes and
resource utilization;4,5 however, these systems do not provide in-depth information about referrals
or diagnostic findings. Therefore, these systems are less suitable for providing insight into
aggregate data about, for example, imaging appropriateness.6 Reasons for referrals (or the input
for the radiology process) can be retrieved from the content of the requests.7 The percentage of
positive findings, the diagnostic yield, can be calculated from the information in the radiology
report. The diagnostic yield provides insight into disease prevalence, which not only informs
referring clinicians but also can impact patient management.8 Insight into appropriateness (input)
and diagnostic yield (output) is not routinely assessed, even though this type of information is
valuable—it contributes to effective resource utilization9–12 and allows for the identification of
factors related to overtesting.13

To leverage the great potential of aggregated data, the retrieval of information from ra-
diology requests and reports must be automated. This is particularly the case when documents
need to be classified for multiple co-occurring items. Instead of obtaining this information by
manually categorizing radiology requests and reports, data mining using natural language
processing (NLP) offers a promising alternative.14,15 In the field of chest imaging, traditional
NLP has been successfully applied and can identify pulmonary nodules,16 pneumonia,17 and
pulmonary embolisms18 from radiology reports. Deep learning-based NLP methods perform
equally well or better than traditional NLP models and can also be used to classify chest
radiology reports.19 High-performance transformer-based NLP algorithms, such as Bidi-
rectional Encoding Representations for Transformers (BERT), have been applied to medical
texts and are available open-source in several languages.20–22 The strengths of transformer-
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based NLP models are that they are pretrained on large datasets and account for a word’s
context.20,23 These pretrained models can be applied to various NLP tasks after fine-tuning;
that is, additional training with data from a specific task. Transformer-based models have been
used for different NLP-tasks in radiology such as report section segmentation,24 assessing
spational information in radiology reports,25 dectection of actionable findings,26 image
annotation,27 and radiology report generation.28

In our previous work, we proved BERT’s superior performance during a single-label
classification task compared to other deep learning NLP methods, such as the convolutional
neural network (CNN) and the long short-term memory (LSTM) neural network.29 To our
knowledge, the application of transformer-based models for the multilabel classification of a
combination of chest imaging requests and reports (which can contribute to increased insights
into the role and performance of chest imaging by assessing the diagnostic yield of different
categories) has not yet been reported by other authors. Both the development and evaluation
of a multilabel classification method are prerequisites for further research about the appli-
cation of NLP to the evaluation of clinical care and the leveraging of data for predictive
purposes.

In the current study, we hypothesise that (1) transformer-based NLP models that have been
pretrained with Dutch language data will perform better compared to multilingual or English
models when fine-tuned for radiology requests and reports written in Dutch; (2) multilabel
classification with transformer-based NLP will perform equally well among different request
and report categories and will be comparable to single-label classification; and (3) diagnostic
yield will vary depending on the information in the request. Our research objectives are as
follows:

1. Develop a deep learning-based NLP pipeline for the multilabel classification of radiology
requests and reports.

2. Apply the pipeline to train and test five transformer-based models from a chest imaging
dataset sample, and then compare performance metrics pertaining to model type, training
method, and text characteristics.

3. Use the best-trained model to predict the classifications of requests and reports to dem-
onstrate the feasibility of applying NLP to an extensive dataset in a proof-of-concept study of
chest imaging, and analyse the relationships among the referral reason, diagnostic yield, and
variability of requests over time.

Methods

An NLP pipeline was developed in a Python Jupyter notebook with sections for data import,
training, testing, prediction, data analysis, and visualization (Table 1).

In a retrospective study, we used annotated datasets of radiology requests and reports to train and
test five transformer-based NLP models for multilabel classification: BERTje,30 RobBERT,31

BERT-multilingual,32 BERT-clinical,33 and BERT-base.23 An LSTM model was trained as a
baseline for comparison.

The best-performing models were used to predict the classification of an unannotated dataset of
requests and reports. According to Dutch law regarding medical research on humans, no informed
consent was needed because of the nature of the retrospective chart review. The project was
approved by the local research committee and the hospital’s board of directors.
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Data

All requests for and reports of chest radiographs (CR) and computed tomography (CT) from January
2020 to September 2021 (n = 43,129) were retrieved from the PACS of a general hospital in the
northern part of the Netherlands (Treant Healthcare Group).

The dataset was pseudonymized and stored in both the hospital IT system and secure cloud
storage. Figure 1 shows the data processing flowchart.

Ground Truth

In multilabel classification, each text item has multiple binary labels. For example, a chest imaging
request that says, “Patient with fever and coughing. Infiltrate? Pleural fluid? Signs of COVID-19?”
has positive labels for “Infiltrate”, “Pleural fluid”, and “COVID-19”, but negative labels for other
items such as “Tumor”. In this manner, a model can be trained to classify texts using multiple labels
simultaneously. For model training and testing, the requests (n = 2256) and reports (n = 2256) from
the first 2 weeks of March 2020 and the first 2 weeks of April 2020 were annotated by a board-
certified radiologist with 13 years of chest imaging experience. The two time periods were con-
sidered representative of cases without and with COVID-19, respectively, because the local rise of
COVID-19 cases occurred towards the end of March 2020. The annotation process, performed in
Microsoft Excel, consisted of assigning eight nonexclusive categories to the requests and
10 nonexclusive categories to the reports. The categories were based on the most frequent items
found in the requests and the most frequent findings in the reports. Items had to be explicitly
mentioned to be labelled as positive. For example, the COVID-19 label was given to requests that
explicitly mentioned COVID-19 or coronavirus. For the reports, the “Normal” category was used
only for those devoid of any abnormal findings.

Table 1. The NLP pipeline, organised into sections of Python code.

Data import
Requests Request texts and labels extracted and copied to a separate data frame;

randomization and construction of training (90%) and testing (10%) datasets
Reports Report texts and labels extracted and copied to a separate data frame;

randomization and construction of training (90%) and testing (10%) datasets
Dashboard All data with additional variables indicate the presence or absence of annotations

for reports and requests; different data frames with unannotated requests and
reports are for prediction

Requests pipeline
Training Model training on the request training dataset
Testing Model testing on the request testing dataset

Reports pipeline
Training Model training on the report training dataset
Testing Model testing on the report testing dataset

Analysis pipeline
Predictions Creation of a data frame with predicted labels; copying predicted

labels for reports and requests to the analysis data frame
Visualization Charting of

annotated dataset distribution, model performance metric, use cases
for complete annotated and predicted datasets
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After 5 months, the same radiologist reviewed all annotations to ensure consistency before the
final model training was performed. This quality check resulted in the correction of 86 errors with
the request annotations (4%) and 59 errors with the report annotations (3%).

Data Partitions

The annotated data was split into two groups, training data (90%) and testing data (10%), by using
iterative_train_test_split from the skmultilearn library and used for model development.34,35 The
remaining unannotated data (n = 40,873) from the original dataset was sent through the
best-performing request and report models to receive classification predictions. The combined data
(i.e. the combination of the annotated and predicted data) was used for the proof-of-concept study.

Figure 1. Data processing flowchart.
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Models

The NLP library Simple Transformers (simpletransformers.ai) was used to access the Hugging
Face library,36 in which different pretrained transformer-based NLP architectures are available,
including BERT-based models.23 The models used for multilabel classification are specified in
Table 2.

Acting as a baseline, an LSTMmodel was trained according to the methodology described in our
previous work29 except for the eight request and 10 report classes used for multilabel (instead of
single-label) classification of the last layer.

Training

The training parameters used are defined in Table 3. The request and report models were trained for
16 epochs. The request models had a maximum sequence length of 128, and the report models had a
maximum length of 512. Class weights that were inversely proportional to class frequencies were
applied to reduce the impact of class imbalances. During the training after each epoch, the models
were evaluated for accuracy. The overall best-performing models were identified, overwrote the
poorly performing models, and were saved. (The LSTM models were trained for 3, 8, 16, 32, 64,
128, and 256 epochs; the best-performing request and report models were included in the
evaluation).

Evaluation

For each of the five model types, three trained models—the models with the best accuracy
according to the evaluation during training, the trained model after 2000 iterations, and the trained
model after 4000 iterations—were stored and used for evaluation. This approach was im-
plemented to identify the impact of training duration on performance. For the 15 trained
transformer models and the baseline LSTMmodels using the testing sets, model performance was
evaluated by calculating sensitivity, specificity, positive predictive value (PPV), negative pre-
dictive value (NPV), area under the curve (AUC), and F1-score. This resulted in 128 and 160 sets
of performance metrics for request and report data, respectively. Confidence intervals were
calculated. Using box plots, the following factors were compared to evaluate their impact on
performance:

1. Model type (LSTM vs. Bertje vs. RobBERT vs. BERT-clinical vs. BERT-multilingual vs.
BERT-base),

2. Data type (short requests vs. long reports),
3. Data prevalence (separate analysis of the request and report items), and
4. Training strategy (overall best vs. 2000 iterations vs. 4000 iterations).

Statistical significance was assessed using Python and the SciPy Library. An uncorrected p-value
of <0.05 was considered statistically significant.

Proof-of-concept Study

To identify patterns on a large scale, a proof-of-concept study was performed with automated
annotations of the unlabelled data. Thus, all the predicted request and report data (n = 40,873) was
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entered into the best-performing trained request and report models, respectively, to obtain predicted
labels.

The variable number of items for each request and report equalled the sum of the positive labels
per request or report. For all request categories, the likelihood of positive findings in the corre-
sponding reports was calculated using contingency tables of each combination of requests and
report categories. A heatmap was created that showed the diagnostic yield of the reported item for all
single-item requests.

The variation of request items per week was visualised and combined with hospital admission
data (retrieved from a publicly available dataset37) originating from the same region as the
radiology data.

Results

Data

Figure 2 displays the number of requests and reports included in the study, as well as each file’s word
count, which varied among modality type (CR or CT) and document type (request or report). For
example, the requests’ word count was the lowest. CR requests were the smallest texts, and the
largest texts were CT reports.

Table 4 presents the training and testing datasets’ categories and their prevalence. Both datasets
had the same distribution. The class imbalance across the labels is apparent for both the requests and
the reports. For the requests, the categories “Infiltrate” (31.8%), “Tumor” (20.5%), and “Other”
(47.4%) were seen most frequently. For the corresponding reports, the percentages of positive
findings were smaller than those of the requests. “Other” (69.1%), “Normal” (21.7%), and “In-
filtrate” (15.8%) were the most frequent positive findings.

Table 3. Model training parameters of the MultiLabelClassificationModel from the simpletransformers
library. Parameters can be changed to optimise the training process for a specific situation.

Parameter Value

num_train_epochs 16
evaluate_during_training True
evaluate_during_training_verbose True
overwrite_output_dir True
save_model_every_epoch False
use_early_stopping True
early_stopping_delta 0.0005
early_stopping_patience 3
num_labels (requests) 8
num_labels (reports) 10
use_cuda False
learning_rate 4.00 × 10�5

Optimizer AdamW
train_batch_size 8
save_steps 2000

8 Health Informatics Journal



Table 4. Prevalence of report (a) and request (b) items in the training and testing datasets. For each case, one
or more items could be absent (0) or present (1). The frequency and percentage of positive labels in the training
set and test set were calculated. Per definition, the sum of items exceeds the total number of cases because, in
multi-label annotation, multiple items can co-occur.

(a) Train Train % Test Test % p-value

Report_Infiltrate 321 15.9 36 15.5 0.999782
Report_Decompensation 48 2.4 5 2.2
Report_Tumor 180 8.9 20 8.6
Report_Pleural_fluid 229 11.3 26 11.2
Report_Pulmonary_embolism 14 0.7 2 0.9
Report_Pneumothorax 31 1.5 4 1.7
Report_Other 1404 69.4 156 67.2
Report_Groundglass 80 4 9 3.9
Report_COVID19 41 2 6 2.6
Report_Normal 440 21.7 49 21.1

(b) Train Train % Test Test % p-value

Request_Infiltrate 646 31.8 72 32.3 0.999999
Request_Decompensation 163 8 18 8.1
Request_Tumor 417 20.5 46 20.6
Request_Pleural_fluid 159 7.8 18 8.1
Request_COVID19 190 9.3 21 9.4
Request_Pulmonary_embolism 76 3.7 8 3.6
Request_Pneumothorax 154 7.6 17 7.6
Request_Other 963 47.4 107 48

Figure 2. Number of and word count for radiography (CR) and computed tomography (CT) requests and
reports.

Olthof et al. 9



Table 5. Comparisons of AUC values in different combinations of models (a), training durations (b), item
prevalence (c), and datasets (d). If two categories within a group were compared, p-values were calculated;
categories that were found to be statistically significantly better are indicated by bold–italic font.

Dataset Category 1 mean1 Category 2 mean2 tstat Pvalue

A. Models
Requests BERTje 0.85 RobBERT 0.89 �2.6188013 0.0101
Requests BERTje 0.85 BERT_multilingual 0.87 �1.174089 0.243
Requests BERTje 0.85 Clinical_BERT 0.85 �0.0394513 0.9686
Requests BERTje 0.85 BERT_base 0.84 0.5062153 0.6138
Requests RobBERT 0.89 BERT_multilingual 0.87 1.37262385 0.1728
Requests RobBERT 0.89 Clinical_BERT 0.85 2.15532423 0.0334
Requests RobBERT 0.89 BERT_base 0.84 2.63919662 0.0096
Requests BERT_multilingual 0.87 Clinical_BERT 0.85 0.94373342 0.3475
Requests BERT_multilingual 0.87 BERT_base 0.84 1.45008372 0.15
Requests Clinical_BERT 0.85 BERT_base 0.84 0.47495099 0.6358
Reports BERTje 0.85 RobBERT 0.89 �2.6188013 0.0101
Reports BERTje 0.85 BERT_multilingual 0.87 �1.174089 0.243
Reports BERTje 0.85 Clinical_BERT 0.85 �0.0394513 0.9686
Reports BERTje 0.85 BERT_base 0.84 0.5062153 0.6138
Reports RobBERT 0.89 BERT_multilingual 0.87 1.37262385 0.1728
Reports RobBERT 0.89 Clinical_BERT 0.85 2.15532423 0.0334
Reports RobBERT 0.89 BERT_base 0.84 2.63919662 0.0096
Reports BERT_multilingual 0.87 Clinical_BERT 0.85 0.94373342 0.3475
Reports BERT_multilingual 0.87 BERT_base 0.84 1.45008372 0.15
Reports Clinical_BERT 0.85 BERT_base 0.84 0.47495099 0.6358

b. Training duration
Requests 2/3 epochs, 510/765

iterations
0.86 7.8 epochs, 2000

iterations
0.86 �0.131003 0.8959

Requests 2/3 epochs, 510/765
iterations

0.86 15.7 epochs, 4000
iterations

0.85 0.39539041 0.693

Requests 7.8 epochs, 2000
iterations

0.86 15.7 epochs, 4000
iterations

0.85 0.53186221 0.5955

Reports 2/3 epochs, 510/765
iterations

0.86 7.8 epochs, 2000
iterations

0.86 �0.131003 0.8959

Reports 2/3 epochs, 510/765
iterations

0.86 15.7 epochs, 4000
iterations

0.85 0.39539041 0.693

Reports 7.8 epochs, 2000
iterations

0.86 15.7 epochs, 4000
iterations

0.85 0.53186221 0.5955

c. Item prevalence
Requests high 0.89 low 0.84 4.00709611 0.0001
Reports high 0.89 low 0.84 4.00709611 0.0001

d. Dataset
Requests and
reports

Requests 0.9 Reports 0.81 7.57224074 <0.0001
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Model Performance

Training and testing. The models’ performance metrics from the training dataset are summarised in
Figures 3 and 4. Raw data of the model performance metrics with 95% confidence intervals is
provided in the Supplemental appendix (Table A1).

The metrics for the models trained on the request dataset were better than the report dataset
models. In addition, the latter showed considerably more variation in performance. This variation
occurred between the models and the training strategies. Especially true for the reports, the
transformer models that were pretrained with Dutch data performed better, needing only 2–
3 training epochs and improving only modestly after additional training. The specificity of the
multilingual and English pretrained models improved substantially with additional training, but the
AUC did not change significantly when training strategies were compared because the sensitivities
decreased after prolonged training.

For both requests and reports, each model demonstrated a high specificity (> 0.90) and negative
predictive value (> 0.95). Also, the sensitivities and positive predictive values were more variable
and greater for the request and report items of higher prevalence in the datasets.

Combinations of AUC values and F1-scores are compared for statistical significance in Table 5
and Table 6.

The transformer models outperformed the baseline LSTM models, but the RobBERT model
surpassed all the others. The RobBERTmodel that trained for 4000 iterations was chosen as the best
model overall. For the requests, the AUC values varied from 0.808 [95% CI (0.757–0.859)] for the

Figure 3. Summarised performance metrics of five transformer models and one LSTMmodel. For eachmodel
type, three models with different training durations were evaluated. Colours indicate training duration: two
or three epochs (according to evaluation during training), 7.8 and 15.7 epochs for the transformer-based
models, and 256 and 128 epochs for the LSTM models (best performance empirically). The sensitivity (a),
specificity (b), positive predictive value (c), negative predictive value (d), AUC (e), and F1-score (f) were
calculated for all labels and displayed as box plots per model type.
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item Request_Pulmonary_embolism to 0.976 [95% CI (0.956–0.996)] for the item Re-
quest_infiltrate. For the reports, the AUC values varied from 0.746 [95% CI (0.689–0.802)] for the
item Report_COVID-19 to 1.0 [95% CI (1.0–1.0)] for the (infrequent) item Report_Pneumothorax.
The AUC for the classification of normal reports was 0.95 [95% CI (0.922–0.979)]. In the
comparison of F1-scores the differences between models were less pronounced, but did show
significantly better results for longer training duration. Both the comparisons of AUC and F1-score
demonstrated larger differences between results of data prevalence and text size compared to
differences between models.

Predictions and proof-of-concept study. Most requests had one item (26,047; 64%) or two items
(10,448; 26%). Requests with 3 (3587; 8%), 4 (789; 2%) or more items were much less frequent. In
Table 7, the likelihood of report items is depicted, given the presence of specific request items. For
each request item, there was a variable yield of report findings, not only for the item in the request
but also for other items.

Figure 5(a) and Figure 5(b) illustrates the variability of the diagnostic yield per request category.
For example, infiltrates are found when they are specifically mentioned in requests, but they can also
be found even if requests specify other categories.

Figure 6 shows the variability in request volume over time. Radiology data can be combined with
data from other sources; in this case, the rise of COVID-19 requests corresponds to an increase in
hospital admissions. The first wave of COVID-19 led to an overall reduction of imaging, including
requests in the “Infiltrate” category.

Discussion

In this study, we developed a pipeline for deep learning NLP in the context of radiology and
compared five transformer models and one LSTMmodel. Distinctive characteristics of our work are

Figure 3. continued.

12 Health Informatics Journal



the number of different models that we compared, as well as the multilabel (instead of single-label)
classification of both radiology reports and requests. We now discuss (1) the possible reasons for the
obtained results, (2) this work’s contribution and its comparison with published research, and (3) the
challenges and limitations of this study.

Explanation of Results

The major difference between the LSTM models and the transformer models was that the
former was trained only on the training data and the latter was pretrained on large corpora and
took the context of words into account. This meant that, in our study, the transformer models
needed less training with the training data to reach high performance levels. The Bertje and
RobBERT models were pretrained with Dutch text, and not only was their better performance
with short training duration expected, but it also confirmed one of our hypotheses. The
multilingual and English models’ performance improved substantially after longer training,
indicating the adaptability of transformer models. However, for pretraining, both language
and type of text are relevant. For example, BERT-clinical was trained with English medical
texts and, consequently, performed better than BERT-base. The results did not empirically
explain the superior performance of the RobBERT model, but the model characteristics
provide clues that can explain the differences. First, the RobBERT model was pre-trained on a
corpus in the Dutch language, and second, the size of this corpus surpassed that of the other
pre-trained Dutch model.

Prevalence impacts model performance, especially regarding sensitivity and positive predictive
value. Accordingly, classification metrics change because of the differences in the prevalence of
request and report labels. The datasets’ class imbalances were greater for the reports than for the
requests; they were probably not fully compensated for by the application of class weighting. The
word counts (and variations in word count) of the reports were greater than those of the requests,

Figure 3. continued.
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which explains the higher performance of the request models compared to the report models. This
variability of performance, dependent on text characteristics and prevalence, confirmed our hy-
pothesis about the comparable performance of multilabel classification compared to the single-label
classification of our previous work.29 The study results confirm previous results that transformer
algorithms have higher performance in classification task on shorter texts and text with less class
imbalance.29

The proof-of-concept study illustrated and confirmed our hypothesis regarding diagnostic yield
variations among different request categories. The degree of variation was difficult to estimate
beforehand: just as one disease can cause several abnormalities, this was reflected in the radiology
report findings. Therefore, multilabel classification provides a better reflection of the data than
single-label classification.

Contributions and Comparison with the Literature

Natural language processing is increasingly applied to radiology reports,15 but comparable studies
of transformer-based models applied to chest imaging are scarce. Our work adds to the existing
evidence that transformer models can reliably classify radiology reports and demonstrates the
feasibility of combining both request and report classification models in the same pipeline. In
addition, the study demonstrated the impact of dataset characteristics, such as item prevalence and
text length. The ability of transformer models to classify both radiology requests and reports is
important because the information provided by NLP models enables large-scale data retrieval for
a myriad of other downstream tasks, such as analysing imaging results over extensive periods, as
demonstrated in the proof-of-concept study. This work, therefore, contributes to the notion that
NLP just as other applications of artificial intelligence can augment the ability of radiologists in
patient care.38

Wood et al. applied BioBERT to neuroradiology reports and achieved superior performance
compared to our study.39 It is important to remember that BioBERTcombines language and medical

Figure 3. continued.
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context in the pretraining dataset; however, both studies saw differences in performance dependent
on class labels.

Bressem et al.40 compared four BERT models’ classifications of chest radiography reports. The
best-performing model achieved the best pooled AUC of 0.98. The higher performance compared to
our study can be explained by the inclusion of chest radiographs from intensive care patients, which
would increase the prevalence of dataset findings, and the exclusion of reports that provided in-
formation about a single item without mentioning the absence or presence of other items. Our
dataset is, therefore, less homogenous, but better reflects data in daily practice. Preselection can
improve results, but this type of exclusion must be taken into account when applying the trained
model to new data. The omission of preselection allowed us to use the trained models for predictive
purposes on an unseen dataset.

Venturelli et al. assessed the appropriateness of referrals for imaging and other diagnostic
procedures by analysing the requests’ content using a commercial software package.41 Their study’s
focus was on classification results (appropriate vs. not appropriate) and not the applied method’s
performance, which impeded comparison with our study. However, the study demonstrated the
feasibility of using requests for assessing appropriateness and is an excellent example of a future
application for transformer-based NLP.

A systematic review of studies regarding the diagnostic yield of head CT scans of patients with
syncope declared that a small sample size was a limitation of many studies and advocated large
prospective research.42 Our pipeline can be applied to such research in various subspecialties
because of its applicability to large datasets. Pons et al. applied NLP to the long-term evaluation of
the diagnostic yield of head CT for patients with minor head injuries.43 Similar to our study was the
use of information about the indications of imaging and information about the diagnostic results.
The authors also used a small part of the data to train a model to extract information from a larger
dataset.

Annarumma et al.44 applied NLP to annotate chest radiographs to train a deep-learning
image classification model for critical, urgent, nonurgent, and normal categories. The F1-
scores for the extraction of the presence or absence of radiologic findings within the free-text

Figure 3. continued.
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reports ranged from 0.81–0.99 and were in the same range as our study. Annarumma et al.
used a rule-based approach compared to deep learning in our study. The advantage of a deep
learning pipeline is that it can be used for other annotated datasets; in contrast, a rule-based
method requires manual feature engineering. Niehues reported a computer vision model for
chest radiographs that was trained with labels derived from transformer-based NLP and
demonstrated promising results comparable to those from expert radiologists.27

The exceptional performance of the multilabel classification of radiology reports is not unique for
transformer models. Short et al. reported a multilabel classification of mammography reports45 and
compared rule-based methods with a combination of convolutional and recurrent neural networks.
Besides the methods applied, other differences between our studies included the relatively
structured, homogeneous data used and the word-level (instead of document-level) classification
performed.

Challenges and Limitations

No formal assessment of randomness of data or evaluation metrics was performed. Because all
models were trained with the same data set, this is not supposed to have an impact on the results.
Another limitation is that during training for all models all parameters were kept constant. Further
performance optimization could be possible by hyperparameter tuning.

As already mentioned, model performance was impacted by class imbalances. This was
relevant for both the training and testing datasets. Sensitivity values would have been more robust
with a larger testing dataset size. Future research should incorporate additional methods to
overcome low sensitivity due to class-imbalance.46 Alternative performance measures can be
considered in case of class-imbalance.47 Furthermore, manual annotation was performed by a

Figure 3. continued.
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Figure 4. Summarised performance metrics for all request and report items, as well as all models and training
schedules. Request and report items are sorted in descending order, from left to right, according to
prevalence.
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Table 6. Comparisons of F1 scores in different combinations of models (a), training durations (b), item
prevalence (c), and datasets (d). If two categories within a group were compared, p-values were calculated;
categories that were found to be statistically significantly better are indicated by bold–italic font.

Dataset categ1 mean1 categ2 mean2 tstat Pvalue

a. Models
Requests BERTje 0.78 RobBERT 0.85 �2.743105605 0.0086
Requests BERTje 0.78 BERT_multilingual 0.83 �1.974551462 0.0543
Requests BERTje 0.78 Clinical_BERT 0.84 �2.087584189 0.0424
Requests BERTje 0.78 BERT_base 0.83 �2.115004455 0.0399
Requests RobBERT 0.85 BERT_multilingual 0.83 1.135570772 0.262
Requests RobBERT 0.85 Clinical_BERT 0.84 0.826261555 0.4129
Requests RobBERT 0.85 BERT_base 0.83 1.084806509 0.2837
Requests BERT_multilingual 0.83 Clinical_BERT 0.84 �0.261854307 0.7946
Requests BERT_multilingual 0.83 BERT_base 0.83 �0.111599521 0.9116
Requests Clinical_BERT 0.84 BERT_base 0.83 0.171520075 0.8646
Reports BERTje 0.72 RobBERT 0.73 �0.188407237 0.8512
Reports BERTje 0.72 BERT_multilingual 0.66 1.264072189 0.2113
Reports BERTje 0.72 Clinical_BERT 0.64 1.59058509 0.1171
Reports BERTje 0.72 BERT_base 0.56 3.136497037 0.0027
Reports RobBERT 0.73 BERT_multilingual 0.66 1.303642356 0.1975
Reports RobBERT 0.73 Clinical_BERT 0.64 1.606876236 0.1135
Reports RobBERT 0.73 BERT_base 0.56 3.033335703 0.0036
Reports BERT_multilingual 0.66 Clinical_BERT 0.64 0.355254186 0.7237
Reports BERT_multilingual 0.66 BERT_base 0.56 1.760136321 0.0837
Reports Clinical_BERT 0.64 BERT_base 0.56 1.356195625 0.1803

b. Training duration
Requests 2/3 epochs, 510/765

iterations
0.82 7.8 epochs, 2000

iterations
0.83 �0.588114756 0.5582

Requests 2/3 epochs, 510/765
iterations

0.82 15.7 epochs, 4000
iterations

0.83 �0.900761647 0.3705

Requests 7.8 epochs, 2000
iterations

0.83 15.7 epochs, 4000
iterations

0.83 �0.271829258 0.7865

Reports 2/3 epochs, 510/765
iterations

0.57 7.8 epochs, 2000
iterations

0.7 �3.153959736 0.0021

Reports 2/3 epochs, 510/765
iterations

0.57 15.7 epochs, 4000
iterations

0.71 �3.413500595 0.0009

Reports 7.8 epochs, 2000
iterations

0.7 15.7 epochs, 4000
iterations

0.71 �0.37444489 0.7089

c. Item prevalence
Requests high 0.89 low 0.81 5.132070191 <0.0001
Reports high 0.75 low 0.62 3.393674964 0.0009

d. Dataset
Requests and
reports

Requests 0.83 Reports 0.66 8.014726402 <0.0001
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Figure 5. (a) Heatmap of the diagnostic yield of single-request items for different report categories. The
colour indicates the percentage of positive findings for a report item. For example, a request mentioning
pleural fluid has a 70% chance of receiving a report with a positive result for pleural fluid. (b) Diagnostic yield
of different report findings for all single-request items. Some report findings are found only on
corresponding requests. For example, pulmonary embolism is only found in examinations with pulmonary
embolism on the request. Other imaging findings, like infiltrate, are found in various examinations
independent of the request.
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single person. Thus, it was not possible to assess inter-annotator agreement. To ensure the quality
of the dataset, the same person performed an unblinded check for label consistency. External
validation of a dataset annotated by multiple radiologists is needed to assess the generalisability of
the trained models.

Figure 6. Radiology CR (a.) and CT (b.) requests per week with positive labels in the categories “Infiltrate” or
“COVID-19” and hospital admissions per week for COVID-19 patients. The request categories are
nonexclusive: each request can have labels in one or more categories.
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Conclusion

Transformer-based NLP is feasible for the multilabel classification of chest imaging request and
report items, even after the fine-tuning needed by pretrained, language-specific models. The de-
veloped pipeline makes it possible to combine information from radiology requests and reports on a
large scale to assess radiology utilization and diagnostic yield. Diagnostic yield in chest imaging
varies with the information in the requests; therefore, the inclusion of NLP analyses of requests is
recommended for quality control of and research into chest imaging.

Highlights
· Transformer-based natural language processing is feasible for the multilabel classification of

radiology requests and reports.
· Training and testing on a dataset containing 2256 requests and reports demonstrated good

results.
· Among five transformer models and one LSTM model, the RobBERT model surpassed the

others and was used for the multilabel classification of 40,873 radiology requests and reports.
· Diagnostic yield in chest imaging varies with the information in the requests.
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