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Abstract.20

BACKGROUND: An altered plasma fatty acid (FA) profile and desaturase activities have been associated with several
metabolic diseases, including the MetS, but studies in the general populations are lacking, and only few studies have
investigated a broad spectrum of FA in plasma phospholipids (PL).

21
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OBJECTIVE: We investigated, cross-sectionally, the relationship of the FA profile and desaturase activities in plasma PL
with the prevalence of MetS in a general population in The Netherlands.
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METHODS: Baseline characteristic data from 850 participants (Male: 50.2%) aged 38-68 years recruited in the Lifelines
Cohort study were obtained. The FA profile was determined in fasting plasma PL, and desaturase activities were estimated
from product/precursor ratios. The MetS was defined according to International Diabetes Federation. Logistic regressions
were used to examine the relation of the FA profile with the prevalence of MetS, and Bonferroni correction was applied to
account for multiple testing.
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RESULTS: 151 participants (17.7%) had the MetS. After adjustment for several confounders and Bonferroni correction,
higher tertiles of C18 : 0 (the early precursor of de novo lipogenesis pathway), C18 : 3n6 and C20 : 3n6 (both consistent with
a high �6 desaturase (D6D) activity), and D6D activity itself were associated with a higher prevalence of MetS, while higher
tertiles of C18 : 1n7, C24 : 0, and C24 : 1n9 (very-long-chain FA) as well as stearoyl-CoA desaturase (SCD)-18 were inversely
associated with the MetS.

31

32

33

34

35

CONCLUSIONS: This study shows that a wide-ranging plasma PL FA profile and estimated desaturase activities were
different between adults with and without the MetS in a general representative population and implicates the importance of
monitoring individual FAs and desaturase activities as novel modifiable biomarkers for the MetS.
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List of abbreviations40

MetS metabolic syndrome
PL phospholipids
SCD stearoyl-CoA desaturase
D6D �6 desaturase
D5D �5 desaturase
BP blood pressure
WC waist circumference
TC total cholesterol
TGL total triglycerides
FAME fatty acid methyl esters
EDTA ethylenediaminetetraacetic acid
ISCED International Standard Classification

of Education
FFQ food frequency questionnaire
MVPA non-occupational moderate-to-vigorous

physical activity
IDF International Diabetes Federation
IQR interquartile range
OR the odds ratios
SAFA saturated fatty acids
TFA trans fatty acids
VLC very long chain

1. Introduction41

The metabolic syndrome (MetS), as defined by a42

cluster of metabolic risk factors such as high blood43

pressure, high blood glucose, and high triglyceride44

levels, increases the risk for developing cardiovascu-45

lar disease (CVD) and type 2 diabetes (T2D) [1]. The46

prevalence of MetS is rising all over the world, and the47

estimated global prevalence is about one-quarter of48

the world population [1], thereby posing an important49

public health concern.50

Concentrations of several circulating fatty acids51

(FA) are emerging as novel, potentially modifiable52

biomarkers for the risk of cardiometabolic diseases,53

including the MetS [2, 3]. In fact, an altered FA pro-54

file and estimated activities of main desaturases have55

been associated with metabolic health [4] and the56

development of MetS [5]. Nevertheless, those studies57

have only assessed limited types of FA in popula-58

tions with an elevated risk of CVD. Plus, the current59

consideration of health risks associated with FA is60

largely based on structural groups (e.g., saturated61

FA, trans-FA, and unsaturated FA), but the evidence62

is somewhat conflicting [6]. Thus, it is necessary to63

assess a broader FA profile and understand the health64

impact of each FA within the structural groups to 65

improve risk prediction for health outcomes more 66

efficiently rather than draw generalized conclusions 67

from pooling FA into structural groups. 68

Although an objective assessment of circulating 69

FA profiles in the blood can, to some extent, mitigate 70

the reporting bias of self-reported dietary lipids, the 71

biomarkers of FA in the blood cannot fully reflect 72

the dietary FA intake because it is also affected by 73

non-dietary factors [7]. One of the most critical fac- 74

tors is endogenous synthesis through desaturation by 75

three main desaturases: �5 desaturase (D5D), �6
76

desaturase (D6D), and �9 or stearoyl-CoA desat- 77

urase (SCD) [8]. Therefore, circulating FA profiles 78

in the blood could reflect both diet and endogenous 79

metabolism. It is worth mentioning that other fac- 80

tors, such as sex, genotype, body mass index, alcohol 81

intake, smoking status, and physical activity, can also 82

interfere with circulating FA profiles [9, 10]. 83

In this exploratory study, we aimed to investigate 84

1) potential differences in circulating a wide-ranging 85

FA profile between individuals with and without the 86

MetS and the associations of circulating individual 87

FA with the prevalence of the MetS 2) and the associa- 88

tion of desaturase activities with the prevalence of the 89

MetS to glean insight into the endogenous synthesis 90

of FA. For this, we assessed FA in plasma phospho- 91

lipids (PL) in a general representative population. 92

2. Methods 93

2.1. Study design and population 94

The Lifelines cohort study is a multidisci- 95

plinary prospective population-based cohort study 96

that applies in a unique three-generation design of 97

the health and health-related behaviors of 167 729 98

persons living in The Netherlands. It employs a 99

broad range of investigative procedures in assess- 100

ing the biomedical, socio-demographic, behavioral, 101

physical, and psychological factors which contribute 102

to health and disease of the general population. In 103

short, the first group of participants was recruited 104

via local general practitioners. Then participants 105

could indicate whether their family members were 106

interested as well. Additionally, individuals who 107

were interested in the study could register via an 108

online registration system. Individuals with insuffi- 109

cient knowledge of the Dutch language, with severe 110

psychiatric or physical illness, were excluded from 111
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the study. Before study entry, a signed informed con-112

sent form was obtained from each participant. Adult113

participants (≥18 years) were asked to complete114

several self-administered questionnaires regarding115

various aspects, including demographics, socioeco-116

nomic status, lifestyle factors, and medication use.117

The Lifelines study was conducted according to118

the principles of the Declaration of Helsinki and119

approved by the Medical Ethics Committee of the120

Institutional Review Board of the University Medi-121

cal Center Groningen, The Netherlands (2007/152).122

A detailed description of the Lifelines cohort study123

can be found elsewhere [11, 12]. For the current124

study, a subset of 864 participants from the Lifelines125

baseline database was randomly selected. Cases with126

missing or invalid data on circulating FA or daily127

energy intake were removed before analyses, leaving128

850 participants with complete data (Supplementary129

Figure S1).130

2.2. Clinical measurements131

Anthropometric measurements and blood pressure132

(BP) were measured by well-trained staff. Anthro-133

pometric measurements were measured without134

shoes, in which body weight was measured to 0.1 kg135

by the SECA 761 scale (Seca GmbH, Hamburg,136

Germany); height was measured to 0.5 cm using137

the Frankfort Plane position by the SECA 222138

stadiometer (Seca GmbH, Hamburg, Germany);139

and the waist circumference (WC) was measured140

to 0.5 cm by the SECA 200 measuring tape (Seca141

GmbH, Hamburg, Germany) [11]. Body mass index142

(BMI) was calculated as body weight (kg) divided143

by height squared (m2). The BMI was additionally144

categorized into underweight (BMI < 18.5 kg/m2),145

normal (18.5 ≤ BMI<25 kg/m2), overweight146

(25 ≤ BMI<30 kg/m2), and obese (BMI ≥ 30 kg/m2)147

[13]. BP was measured by Dynamap PRO 100V2148

(GE Healthcare, Freiburg, Germany); systolic149

and diastolic BP were measured ten times150

within ten minutes, and each of the average151

values of the last three readings was used as BP152

parameters [11].153

2.3. Biochemical measurements154

For analyses of lipids and glucose, blood sam-155

ples were drawn in the morning between 8 : 00 and156

10 : 00 am after a period of overnight fasting at157

baseline. Serum levels of total cholesterol (TC) and158

high-density lipoprotein cholesterol (HDL-C) were 159

measured with an enzymatic colorimetric method, 160

while low-density lipoprotein cholesterol (LDL-C) 161

was measured with an enzymatic method, and total 162

triglycerides (TGL) was measured with a colorimet- 163

ric UV method, all on a Roche Modular P chemistry 164

analyzer (Roche, Basel, Switzerland). Fasting blood 165

glucose was measured using a hexokinase method. 166

All biochemical measurements were performed in 167

singles. 168

2.4. Fatty acids analyses and estimation of 169

desaturase activities 170

Ethylenediaminetetraacetic acid (EDTA)-plasma 171

samples were collected at baseline and stored at 172

–80◦C until analyses of fatty acids were carried 173

out. Analyses of fatty acids were performed at the 174

Department of Laboratory Medicine of the Univer- 175

sity Medical Center Groningen, The Netherlands, 176

using the methodology as described by Hoving 177

et al. [14]. In short, total lipids were extracted 178

by the method of Folch et al., using 6 mL of 179

chloroform-methanol (2 : 1) and a 200 �L EDTA- 180

plasma sample [15]. Then, a shortened version of 181

the method of Kaluzny et al. was used to isolate 182

plasma cholesterol esters, triglycerides (TG), and 183

phospholipids (PL), using aminopropyl SPE columns 184

for the separation (Isolute, Biotage) [16]. Fatty acids 185

were transmethylated with methanolic-HCL into 186

fatty acid methyl esters (FAME). The samples were 187

extracted with hexane and eventually redissolved 188

into 100 �L hexane. 100 �L of internal standards for 189

the quantification of fatty acids in cholesterol esters 190

(17 : 0) (50.1 mg/100 mL chloroform-methanol, 2 : 1 191

v/v), and in triglycerides (19 : 0) (19.9 mg/100 mL 192

chloroform-methanol, 2 : 1 v/v), both obtained from 193

Sigma-Aldrich (Zwijndrecht, The Netherlands), were 194

added before isolation of classes. For the quantifica- 195

tion of fatty acids in PL, 100 �L of free fatty acid 196

19 : 0 (50.0 mg/100 mL methanol), obtained from 197

Larodan (Solna, Sweden), was added after isolation 198

of lipid classes according to an internal standard. 199

To prevent fatty acid oxidation, 100 �L Butylated 200

Hydroxytoluene (1 g/100 mL methanol) from Sigma- 201

Aldrich (Zwijndrecht, The Netherlands) was added. 202

Aliquots of 2 �L were injected into an Agi- 203

lent model 6890 gas chromatography equipped with 204

a 200 m×0.25 mm polar column (CP Select for 205

FAME) and detected with an Agilent 7683 series 206

flame ionization detector. FAME was identified by 207
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comparing retention times with those of known208

standards (Supelco 37 component FAME mix209

(Sigma-Aldrich)). The precision of the measurements210

was tested by calculating the variation coefficient211

from 10 replicate quality-control samples (pooled212

plasma samples). We have only selected FA detected213

in plasma PL because it is the commonly used com-214

partment to predict disease outcomes [17, 18]. FA in215

plasma PL were expressed as a relative percentage of216

total FA in PL (mol%).217

Desaturase activity was estimated using the218

FA product/precursor ratio [8]. Thus, desaturase219

activities were estimated as the ratio of product to220

precursor of individual FA of plasma PL according221

to the following: SCD-16 = C16 : 1n7/C16 : 0, SCD-222

18 = C18 : 1n9/C18 : 0, D6D=C18 : 3n6/C18 : 2n6,223

and D5D=C20 : 4n6/C20 : 3n6.224

2.5. Other covariates225

Education, smoking status, and medication use226

were derived from self-administrated questionnaires.227

Education, as defined by the highest educational228

level achieved, was categorized as: (1) low - junior229

general secondary education or lower (International230

Standard Classification of Education [ISCED] level231

0, 1 or 2); (2) middle - secondary vocational232

education and senior general secondary education233

(ISCED level 3 or 4); and (3) high - higher voca-234

tional education or university (ISCED level 5 or 6)235

[19]. Smoking status was categorized into never,236

former, and current smoker. Medication use was237

binary classified and obtained from the question,238

“Do you use medicine that has been prescribed by239

a doctor?”. Daily energy intake and alcohol intake240

were estimated from a semi-quantitative self-reported241

food frequency questionnaire (FFQ) by using the242

2011 Dutch food composition database (NEVO)243

[20]. The FFQ was developed and validated by244

Wageningen University to assess the intake of 110245

food items over the last month [21, 22]. Physical246

activity was indicated by non-occupational moderate-247

to-vigorous physical activity (MVPA), which was248

calculated in minutes per week from the validated249

Short QUestionnaire to ASsess Health-enhancing250

physical activity (SQUASH) data, which incorpo-251

rated leisure time and commuting physical activities,252

including sports, at moderate (4.0–6.4 metabolic253

equivalent of task [MET]) to vigorous (≥6.5 MET)254

intensity [23].

2.6. Definition of the metabolic syndrome 255

The MetS was defined according to the Inter- 256

national Diabetes Federation (IDF) which was 257

WC > 94 cm (men) or > 80 cm (women) along with 258

the presence of two or more of the following: 1) Blood 259

glucose greater than 5.6 mmol/L or diagnosed dia- 260

betes; 2) HDL-C<1.0 mmol/L in men,<1.3 mmol/L in 261

women; 3) Blood TGL > 1.7 mmol/L; 4) BP > 130/85 262

mmHg or drug treatment for hypertension [1, 24]. 263

2.7. Statistical analyses 264

Baseline characteristics were presented as 265

mean ± standard deviation (SD) for parametric 266

data, median (interquartile range [IQR]) for non- 267

parametric distributes of the data, or frequencies 268

(%) for nominal variables for the overall study 269

population, and subjects with and without the MetS. 270

Student’s T-test, Mann–Whitney U test, and the 271

Chi-Squared test were used to determine differences 272

in baseline characteristics in participants with and 273

without the MetS for parametric, non-parametric, 274

and categorical variables, respectively. Metabolic 275

risk factors, FA concentrations, and estimated 276

desaturase activities were presented as mean ± SD 277

for normally distributed variables and median (IQR) 278

for variables with a skewed distribution. Differences 279

in metabolic risk factors, FA concentrations, and 280

estimated desaturase activities were analyzed by 281

general linear models where log-transformation was 282

applied for variables with a skewed distribution. And 283

differences in the MetS components were assessed 284

using a logistic regression model adjusting for age, 285

sex, and energy intake for metabolic risk factors, 286

and age and sex for FA concentrations and esti- 287

mated desaturase activities. Correction for multiple 288

comparisons at Bonferroni 2-tailed a < 0.0014 (33 289

FA and four desaturases activities = 37 exploratory 290

comparisons). 291

Logistic regression analysis was carried out to 292

calculate the odds ratios (OR) and 95% confi- 293

dence intervals (CI) to examine the associations 294

between the prevalence of MetS across tertiles of 295

FA and estimated desaturase activities in plasma 296

PL, considering the lowest tertile as the reference 297

and controlling for potential confounding factors: 298

age, sex, energy intake, alcohol intake, BMI, smok- 299

ing status, medication use, education, and MVPA. 300

Correction for multiple comparisons at Bonferroni 301

2-tailed a < 0.0014 (33 FA and four desaturases 302
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activities = 37 exploratory comparisons). Sensitivity303

analyses investigated the relationship between FA304

profile, estimated desaturase activities in plasma PL,305

and metabolic risk factors through partial correla-306

tion analysis controlling for age, sex, energy intake,307

alcohol intake, smoking status, medication use, edu-308

cation, MVPA, and BMI (Supplementary Table S1).309

In multivariable logistic models, missing covari-310

ates (education, n = 13; medication, n = 4; energy and311

alcohol intake, n = 86; MVPA: n = 81) were imputed312

using chained multiple imputations. All analyses313

were performed with Stata, version 13.1 (StataCorp,314

Texas, USA).315

3. Results316

The baseline characteristics of the 850 partici-317

pants (50.2% men) according to the MetS status are318

described in Table 1. The prevalence of MetS in the319

study population was 17.7% (n = 151). Of the total320

population, 56.4%, 56%, and 3.3% were overweight321

or obese, used prescribed medication, and had T2D,322

respectively. As expected, most of the characteris-323

tics associated with the MetS were different between324

participants with and without the MetS, except for325

daily energy intake, alcohol intake, and MVPA, for326

which no difference was observed (p = 0.3, 0.2, and327

0.06, respectively). Participants with the MetS were328

older than those without the MetS (median [interquar-329

tile range]: 63 [58–67] vs. 54 [39–63], p < 0.001),330

had higher prevalence of obesity (39.7% vs. 8.9%,331

p < 0.001), T2D (11.9% vs. 1.4%, p < 0.001), and332

poorer education (18.5% vs. 38% for high education;333

50.7% vs. 29.4% for low education; p < 0.001).334

The metabolic risk factors between the MetS335

and non-MetS participants are detailed in Table 2.336

According to the definition of the MetS, the preva-337

lence of MetS in the study population was 17.7%338

(n = 151), while that of its components was 62.3%,339

15.4%, 10.9%, 39.5%, and 14.6%, for elevated WC,340

TGL, HDL-C, BP, and fasting glucose, respectively.341

Almost all metabolic risk factors and components342

contributing to the MetS, together with BMI, were343

different in participants with the MetS compared344

with those without the MetS (p < 0.001 for all), with345

the exception of TC and LDL-C (p = 0.09 and 0.07,346

respectively) (Table 2).347

Table 3 compares the FA profile and estimated348

desaturase activities in plasma PL in participants with349

and without the MetS. There were, in total, 33 types350

of FA detected and quantified in plasma PL, including 351

11 saturated fatty acids (SAFA), six monounsaturated 352

fatty acids (MUFA), seven omega-6 polyunsaturated 353

fatty acids (PUFA), four omega-3 PUFA, and five 354

trans fatty acids (TFA). Total SAFA accounted for 355

almost half of the FA in plasma PL, followed by total 356

PUFA (37.1 ± 1.83%), total MUFA (12.9 ± 1.45%), 357

and total TFA (0.21 ± 0.068%) (Table 3). Partici- 358

pants with the MetS had lower levels of C17 : 0, 359

C24 : 0 (Lignoceric acid), C18 : 1n7 (cis-Vaccenic 360

acid), C24 : 1n9 (Nervonic acid), C18 : 1n7tr, SCD- 361

18, and higher levels of C18 : 0 (Stearic acid), 362

C18 : 3n6 (�-Linolenic acid), C20 : 3n6 (Dihomo-�- 363

linolenic acid), C20 : 4n6, and D6D (Table 3). 364

The OR for having the MetS by tertiles of indi- 365

vidual FA and estimated desaturase activities in 366

plasma PL are shown in Table 4. After adjust- 367

ing for covariates and performance of Bonferroni 368

correction for multiple testing, logistic regression 369

showed that higher tertiles of C18 : 0, C18 : 3n6, 370

C20 : 3n6, and D6D remained independently associ- 371

ated with a higher prevalence of MetS, while higher 372

tertiles of C24 : 0, C18 : 1n7, C24 : 1n9, and SCD- 373

18 remained inversely associated with the MetS 374

(Table 4). Partial correlation analyses, carried out as 375

sensitivity analyses, showed correlations between the 376

MetS-related FA, estimated desaturase activities, and 377

several metabolic risk factors (Supplementary Table 378

S1). C18 : 0, C18 : 3n6, C20 : 3n6, and D6D were also 379

positively correlated with most metabolic risk fac- 380

tors, and C24 : 0, C18 : 1n7, C24 : 1n9, and SCD-18 381

were inversely correlated with several metabolic risk 382

factors (Supplementary Table S1). 383

4. Discussion 384

In a group of representative and generally healthy 385

adults in the Netherlands, we innovatively investi- 386

gated the relations between a wide-ranging FA profile 387

and the MetS in plasma PL. We found unique dif- 388

ferences in the FA profile and estimated desaturase 389

activities between participants with and without the 390

MetS. Higher proportions of C18 : 0 (Stearic acid), 391

C18 : 3n6 (�-Linolenic acid), C20 : 3n6 (Dihomo-�- 392

linolenic acid), and D6D were associated with an 393

increased risk for the presence of the MetS. In con- 394

trast, higher proportions of C24 : 0 (Lignoceric acid), 395

C18 : 1n7 (cis-Vaccenic acid), C24 : 1n9 (Nervonic 396

acid), and SCD-18 were associated with a lower risk 397

for the presence of the MetS. 398
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Table 1

Baseline characteristics of participants according to the metabolic syndrome (MetS) status

Characteristics Total (N = 850) MetS (n = 151) No MetS (n = 699) p

Age, yrs 60 (42-64) 63 (58-67) 54 (39-63) <0.001
Men, % 50.2 56.3 49 0.1
BMI, kg/m2, % 26.0 ± 4.1 29.4 ± 4.2 25.2 ± 3.6 <0.001

Underweight 0.9 0 1.1 <0.001
Normal 42.7 11.9 49.4
Overweight 42 48.3 40.6
Obese 14.4 39.7 8.9

Medication use, % 56 71.1 52.8 <0.001
T2D, % 3.3 11.9 1.4 <0.001
Smoking status, %

Current smoker 15.3 16.6 15 0.04
Former smoker 41.8 49.7 40.1
Never smoker 42.9 33.8 44.9

Education, %
Low 33.1 50.7 29.4 <0.001
Middle 32.3 30.8 32.6
High 34.7 18.5 38

Energy intake, kcal/d 1971.3 ± 625.1 1924.9 ± 535.8 1981.8 ± 643.6 0.3
Alcohol intake, g/d 6.2 (1.3-12.6) 5.9 (0.4-12) 6.2 (1.5-12.9) 0.2
MVPA, min/week 320 (150-660) 285 (120-600) 345 (160-670) 0.06

BMI: body mass index; T2D: type 2 diabetes; MVPA: non-occupational moderate-to-vigorous physical activity.

Table 2

Metabolic risk factors and the metabolic syndrome (MetS) components according to the MetS status

Total (N = 850) MetS (n = 151) No MetS (n = 699) p*

Metabolic risk factors
BMI, kg/m2 26 ± 4.1 29.4 ± 4.2 25.2 ± 3.6 <0.001
WC, cm 91.6 ± 12.3 102.7 ± 10.3 89.2 ± 11.4 <0.001
TC, mmol/L 5.2 ± 1.0 5.5 ± 1.2 5.1 ± 1.0 0.09
HDL-C, mmol/L 1.5 ± 0.4 1.2 ± 0.3 1.6 ± 0.4 <0.001
LDL-C, mmol/L 3.3 ± 0.9 3.5 ± 1.1 3.2 ± 0.9 0.07
TGL, mmol/L 1.0 (0.8-1.4) 1.7 (1.3-2.5) 0.9 (0.7-1.2) <0.001
SBP, mmHg 125.9 ± 17.1 140.1 ± 14.3 122.9 ± 16.1 <0.001
DBP, mmHg 73.4 ± 9.6 78.5 ± 9.7 72.2 ± 9.3 <0.001
Glucose, mmol/L 5.1 ± 0.7 5.8 ± 0.8 4.9 ± 0.6 <0.001
MetS components
Elevated WC, % 62.3 100 54.2 /
Elevated TG, % 15.4 54.3 7.0 <0.001
Reduced HDL-C, % 10.9 39.1 4.9 <0.001
Elevated BP, % 39.5 88.7 28.9 <0.001
Elevated glucose, % 14.6 55.0 5.9 <0.001

BMI: body mass index; WC: waist circumference; TC: total cholesterol; HDL-C; high density lipoprotein cholesterol; LDL-C: low density
lipoprotein cholesterol; TGL: total triglycerides; SBP: systolic blood pressure; DBP: diastolic blood pressure. *p value for comparison
between-groups calculated by general linear models and logistic regression models (both adjusted for age, sex, and energy intake) for the
metabolic risk factors and the MetS component, respectively.

As one of the main upstream FA in de novo lipo-399

genesis, C18 : 0 was positively associated with the400

MetS in our study, agreeing with results reported by401

Warensjö et al. [25]. However, other studies found402

null associations of C18 : 0 with TC, LDL-C, and403

HDL-C [26] and the MetS [5], which could result404

from different types of population and FA compart-405

ments used in those studies. On the other hand, a406

higher level of C18 : 0 could indicate a more active 407

de novo lipogenesis, which is an intricate and highly 408

regulated pathway and can lead to adverse metabolic 409

consequences when deregulated [27, 28]. Besides the 410

positive association between C18 : 0 and the MetS, we 411

observed a negative association between SCD-18 and 412

the MetS. This indicates that endogenous metabolism 413

of C18 : 0 via SCD-18 might have metabolic benefits 414
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Table 3

Baseline fatty acid composition and estimated desaturase activities in the plasma phospholipids fraction according to the metabolic syndrome
(MetS) status

Fatty acids (%) Total (N = 850) MetS (n = 151) Non-MetS (n = 699) p*

Total SAFA 49.5 ± 1.71 49.8 ± 1.47 49.4 ± 1.75 0.02
C14 : 0 (Myristic acid) 0.49 ± 0.13 0.49 ± 0.13 0.49 ± 0.13 0.6
C15 : 0 (Pentadecylic acid) 0.29 ± 0.069 0.27 ± 0.06 0.29 ± 0.071 0.002
C16 : 0 (Palmitic acid) 31.2 ± 1.76 30.9 ± 1.5 31.3 ± 1.81 0.1
C17 : 0 (Margaric acid) 0.40 ± 0.068 0.38 ± 0.074 0.40 ± 0.066 <0.001
C18 : 0 (Stearic acid) 13.3 ± 1.29 14.0 ± 1.18 13.1 ± 1.26 <0.001
C20 : 0 (Arachidic acid) 0.48 ± 0.12 0.46 ± 0.13 0.48 ± 0.12 0.4
C22 : 0 (Behenic acid) 1.47 ± 0.28 1.46 ± 0.31 1.47 ± 0.27 0.4
C23 : 0 (Tricosylic acid) 0.52 (0.41-0.64) 0.53 (0.42-0.64) 0.52 (0.41-0.64) 0.02
C24 : 0 (Lignoceric acid) 1.23 ± 0.24 1.19 ± 0.25 1.24 ± 0.24 0.003
C25 : 0 (Pentacosylic acid) 0.023 (0.013-0.037) 0.022 (0.012-0.038) 0.023 (0.013-0.037) 0.5
C26 : 0 (Cerotic acid) 0.0026 (0.0019-0.0040) 0.0024 (0.0018-0.0039) 0.0026 (0.0020-0.0040) 0.5
Total MUFA 12.9 ± 1.45 12.4 ± 1.36 13.0 ± 1.45 0.004
C16 : 1n7 (Palmitoleic acid) 0.57 ± 0.19 0.60 ± 0.21 0.56 ± 0.18 0.08
C18 : 1n7 (cis-Vaccenic acid) 1.22 ± 0.20 1.15 ± 0.21 1.23 ± 0.19 <0.001
C20 : 1n7 (Paullinic acid) 0.0034 (0.0025-0.0052) 0.0031 (0.0023-0.0050) 0.0034 (0.0025-0.0052) 0.3
C18 : 1n9 (Oleic acid) 8.78 ± 1.36 8.51 ± 1.24 8.84 ± 1.38 0.2
C20 : 1n9 (Gondoic acid) 0.14 ± 0.051 0.14 ± 0.051 0.14 ± 0.050 0.04
C24 : 1n9 (Nervonic acid) 2.16 ± 0.44 2.02 ± 0.48 2.19 ± 0.43 <0.001
Total PUFA 37.1 ± 1.83 37.2 ± 1.72 37.0 ± 1.85 0.5
C18 : 2n6 (Linoleic acid) 20.7 ± 2.56 19.9 ± 2.70 20.8 ± 2.50 0.002
C18 : 3n6 (�-Linolenic acid) 0.073 (0.049-0.11) 0.096 (0.068-0.13) 0.070 (0.047-0.10) <0.001
C20 : 2n6 (Eicosadienoic acid) 0.28 (0.25-0.32) 0.28 (0.25-0.31) 0.28 (0.25-0.32) 0.5
C20 : 3n6 (Dihomo-�-linolenic acid) 2.88 ± 0.67 3.16 ± 0.68 2.81 ± 0.65 <0.001
C20 : 4n6 (Arachidonic acid) 8.41 ± 1.70 8.84 ± 1.94 8.32 ± 1.62 0.001
C22 : 4n6 (Docosatetraenoic acid) 0.25 ± 0.066 0.26 ± 0.072 0.24 ± 0.064 0.008
C22 : 5n6 (Osbond acid) 0.15 (0.11-0.18) 0.15 (0.11-0.18) 0.14 (0.11-0.18) 0.02
C18 : 3n3 (�-Linolenic acid) 0.25 (0.20-0.35) 0.24 (0.19-0.34) 0.26 (0.20-0.36) 0.08
C20 : 5n3 (Eicosapentaenoic acid) 0.87 (0.69-1.12) 0.93 (0.75-1.14) 0.87 (0.67-1.12) 0.3
C22 : 5n3 (Docosapentaenoic acid) 0.69 ± 0.17 0.73 ± 0.16 0.68 ± 0.074 0.6
C22 : 6n3 (Docosahexaenoic acid) 2.37 ± 0.82 2.47 ± 0.88 2.35 ± 0.81 0.7
Total TRANS 0.21 ± 0.068 0.19 ± 0.060 0.21 ± 0.070 0.001
C16 : 1n7tr (Palmitelaidic acid) 0.020 ± 0.0085 0.019 ± 0.0078 0.021 ± 0.0086 0.009
C18 : 1n9tr (Elaidic acid) 0.049 (0.038-0.063) 0.052 (0.041-0.066) 0.049 (0.038-0.063) 0.4
C18 : 1n7tr (trans-Vaccenic acid) 0.096 ± 0.041 0.087 ± 0.038 0.097 ± 0.042 0.001
C18 : 2n6trtr (Linoelaidic acid) 0.0037 (0.0027-0.0057) 0.0036 (0.0025-0.0057) 0.0037 (0.0027-0.0057) 0.8
CLA 0.031 (0.022-0.043) 0.030 (0.021-0.041) 0.032 (0.022-0.044) 0.05
Desaturase activity, arbitrary unit
SCD-16 0.018 ± 0.0061 0.019 ± 0.0068 0.018 ± 0.0058 0.03
SCD-18 0.67 ± 0.14 0.61 ± 0.11 0.68 ± 0.14 <0.001
D6D 0.0036 (0.0023-0.0053) 0.0050 (0.0035-0.0073) 0.0033 (0.0021-0.0050) <0.001
D5D 3.08 ± 0.94 2.94 ± 0.94 3.11 ± 0.94 0.02

SAFA: saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; TRANS: trans fatty acids; CLA:
conjugated linoleic acid; SCD-16: stearoyl-CoA desaturase-16; SCD-18: stearoyl-CoA desaturase-18; D5D: �5 desaturase; D6D: �6
desaturase. *p value for comparison between-groups calculated by general linear models adjusted for age and sex.

as SCD-18 converts the detrimental C18 : 0 to more415

non-toxic forms, including C24 : 1n9, that was also416

negatively associated with the MetS. Previous studies417

found no difference or association between SCD-418

18 and the MetS, and such inconsistency might be419

related to the characteristics of the study popula-420

tion, i.e., in men [29] or subjects at high risk of421

CVD [5]. C18 : 1n7, another FA in de novo lipogen- 422

esis, was negatively associated with the MetS, which 423

corresponds to a longitudinal study that reported 424

C18 : 1n7 was associated with non-CVD mortality, 425

and, more specifically, cancer and dementia mor- 426

tality [18]. More studies are needed to confirm its 427

non-cardiometabolic detrimental health effects. 428
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Table 4

Odds ratio associated with having the metabolic syndrome (MetS) according to tertiles of fatty acids
concentrations and estimated desaturase activities in the plasma phospholipids fraction

Fatty acids Tertile
t1 (n = 284) t2 (n = 283) t3 (n = 283) p-trend

SAFA 1 1.42 (0.82-2.45) 1.93 (1.15-3.22) 0.01
C14 : 0 (Myristic acid) 1 1.31 (0.80-2.18) 1.06 (0.64-1.75) 0.8
C15 : 0 (Pentadecylic acid) 1 0.91 (0.56-1.47) 0.53 (0.32-0.89) 0.02
C16 : 0 (Palmitic acid) 1 1.07 (0.66-1.72) 0.63 (0.37-1.07) 0.1
C17 : 0 (Margaric acid) 1 0.71 (0.44-1.15) 0.54 (0.31-0.93) 0.02
C18 : 0 (Stearic acid) 1 1.73 (0.93-3.24) 4.61 (2.58-8.24) <0.001
C20 : 0 (Arachidic acid) 1 1.25 (0.77-2.04) 0.69 (0.41-1.14) 0.2
C22 : 0 (Behenic acid) 1 0.52 (0.31-0.86) 0.56 (0.34-0.92) 0.02
C23 : 0 (Tricosylic acid) 1 0.73 (0.44-1.23) 0.54 (0.31-0.94) 0.03
C24 : 0 (Lignoceric acid) 1 0.42 (0.25-0.69) 0.42 (0.25-0.69) <0.001
C25 : 0 (Pentacosylic acid) 1 0.61 (0.36-1.02) 0.84 (0.51-1.37) 0.5
C26 : 0 (Cerotic acid) 1 0.85 (0.52-1.39) 1.02 (0.62-1.66) 0.9
MUFA 1 0.72 (0.45-1.16) 0.52 (0.30-0.89) 0.02
C16 : 1n7 (Palmitoleic acid) 1 0.84 (0.50-1.41) 1.17 (0.71-1.95) 0.5
C18 : 1n7 (cis-Vaccenic acid) 1 0.52 (0.32-0.84) 0.38 (0.22-0.65) <0.001
C20 : 1n7 (Paullinic acid) 1 0.75 (0.46-1.22) 0.96 (0.59-1.57) 0.8
C18 : 1n9 (Oleic acid) 1 0.71 (0.44-1.14) 0.84 (0.50-1.41) 0.4
C20 : 1n9 (Gondoic acid) 1 0.98 (0.60-1.58) 0.56 (0.33-0.93) 0.03
C24 : 1n9 (Nervonic acid) 1 0.41 (0.25-0.69) 0.34 (0.20-0.57) <0.001
PUFA 1 1.37 (0.82-2.27) 1.10 (0.66-1.85) 0.8
C18 : 2n6 (Linoleic acid) 1 1.27 (0.80-2.03) 0.75 (0.44-1.29) 0.4
C18 : 3n6 (�-Linolenic acid) 1 1.55 (0.87-2.76) 2.86 (1.65-4.96) <0.001
C20 : 2n6 (Eicosadienoic acid) 1 0.98 (0.59-1.61) 1.05 (0.64-1.73) 0.8
C20 : 3n6 (Dihomo-�-linolenic acid) 1 1.84 (1.05-3.24) 2.68 (1.55-4.63) <0.001
C20 : 4n6 (Arachidonic acid) 1 0.79 (0.46-1.33) 1.22 (0.74-1.99) 0.4
C22 : 4n6 (Docosatetraenoic acid) 1 1.30 (0.77-2.16) 1.32 (0.79-2.19) 0.3
C22 : 5n6 (Osbond acid) 1 1.04 (0.63-1.72) 1.38 (0.83-2.29) 0.2
C18 : 3n3 (�-Linolenic acid) 1 0.99 (0.60-1.64) 0.75 (0.45-1.25) 0.3
C20 : 5n3 (Eicosapentaenoic acid) 1 1.12 (0.67-1.86) 1.29 (0.78-2.15) 0.3
C22 : 5n3 (Docosapentaenoic acid) 1 1.15 (0.68-1.95) 1.23 (0.72-2.10) 0.5
C22 : 6n3 (Docosahexaenoic acid) 1 0.91 (0.54-1.54) 0.91 (0.53-1.54) 0.7
TRANS 1 0.81 (0.50-1.31) 0.68 (0.40-1.14) 0.1
C16 : 1n7tr (Palmitelaidic acid) 1 1.02 (0.63-1.64) 0.65 (0.39-1.09) 0.1
C18 : 1n9tr (Elaidic acid) 1 1.18 (0.72-1.93) 0.81 (0.48-1.37) 0.4
C18 : 1n7tr (trans-Vaccenic acid) 1 0.58 (0.36-0.95) 0.51 (0.30-0.86) 0.01
C18 : 2n6trtr (Linoelaidic acid) 1 0.78 (0.48-1.28) 1.11 (0.68-1.81) 0.7
CLA 1 0.91 (0.56-1.48) 0.84 (0.50-1.39) 0.5
Desaturases
SCD 16 1 0.83 (0.49-1.39) 1.16 (0.70-1.93) 0.5
SCD 18 1 0.66 (0.42-1.05) 0.39 (0.22-0.69) 0.001
D6D 1 1.62 (0.91-2.89) 2.83 (1.62-4.94) <0.001
D5D 1 0.76 (0.47-1.23) 0.57 (0.35-0.95) 0.03

SAFA: saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; TRANS:
trans fatty acids; CLA: conjugated linoleic acid; SCD-16: stearoyl-CoA desaturase-16; SCD-18: stearoyl-CoA
desaturase-18; D5D: �5 desaturase; D6D: �6 desaturase. Odds ratio (95% confidence interval) by logistic regres-
sion analysis adjusted by age, sex, education, smoking status, medication use, body mass index (BMI), energy
intake, alcohol intake, and non-occupational moderate-to-vigorous physical activity (MVPA).

Omega-6 PUFA have been intensively studied for429

their health effects because most of them are sensi-430

tive to dietary intake and are considered an essential431

or conditionally essential FA [30]. In our study,432

C18 : 3n6 and C20 : 3n6, as a reflection of D6D activ-433

ity, were positively associated with the MetS. D6D 434

activity itself was also positively associated with 435

the MetS. A similar association between D6D and 436

metabolic health was also reported in previous studies 437

as a reflection of endogenous metabolism [5, 25]. It 438
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is worth mentioning that a strong positive association439

of D6D activity with diabetes incidence was reported440

previously [31]. As the MetS is mainly character-441

ized by insulin resistance, our findings might indicate442

that the differences in omega-6 PUFA and desaturase443

activities observed here might be partly mediated by a444

relatively high degree of insulin resistance in individ-445

uals with the MetS. Of the four desaturase activities,446

SCD-16 and D5D were not associated with the MetS447

in the adjusted model. SCD-16 level was slightly448

higher in people with the MetS but was not associ-449

ated with the MetS after adjusting for BMI and dietary450

factors. Since higher levels of SCD-16 might reflect451

a higher intake of SAFA and lower intake of PUFA,452

the slight difference in SCD-16 observed between453

individuals with and without the MetS was probably454

explained by dietary factors. Though not significant,455

D5D activity was decreased among individuals with456

the MetS, and individuals with increased D5D activ-457

ity seemed less likely to have the MetS, which was458

in accordance with previous literature [25, 29].459

Surprisingly, we did not observe any association460

between omega-3 PUFA and the MetS after adjust-461

ing for potential confounders. On the one hand, the462

result corresponds to previous studies that the associ-463

ation between omega-3 PUFA and the MetS seemed464

to be null [5, 32]. On the other hand, a meta-analysis465

of randomized controlled trials (RCTs) reported that466

increasing omega-3 PUFA slightly reduced the risk467

of coronary heart disease mortality and events, and468

reduced serum TGL [33], while mentioning that469

the conclusion was based on moderate- and low-470

certainty evidence. A 25-year follow-up study also471

found an inverse association between omega-3 FA472

intake and incidence of chronic kidney disease [34].473

Thus, the evidence regarding omega-3 FA seems to be474

inconsistent, which could be attributable to the het-475

erogeneity within the structural group, as indicated by476

another meta-analysis of RCTs, which showed that477

two omega-3 FA, i.e., EPA and DHA, had differen-478

tial effects on MetS features: while EPA decreased479

serum TC, TGL, and LDL-C, DHA increased serum480

TC, LDL-C, and HDL-C [35]. Therefore, the reason481

for the null associations found of omega-3 FA with the482

MetS in our study remains unclear, and more research483

is warranted.484

We found inverse associations between very long-485

chain FA (VLC FA) and the MetS, including C24 : 0486

and C24 : 1n9. VLC SAFA are the main con-487

stituents of sphingolipids. Circulating C24 : 0 has488

been inversely associated with unfavorable metabolic489

profiles [36], insulin resistance [37], and cardiovas-490

cular health [38]. Studies have suggested that VLC 491

SAFA could have positive effects on beta cells and 492

lead to less apoptotic cell death and pancreatic dys- 493

function [36, 37]. Limited evidence exists regarding 494

the mechanism behind circulating VLC SAFA, and 495

their health effects are not entirely understood. In 496

addition, circulating VLC SAFA are derived from 497

limited dietary resources, such as canola oil and 498

peanuts, and are influenced by genetic factors related 499

to sphingolipid synthesis [38]. Nevertheless, a study 500

reported an inverse association between dietary VLC 501

SAFA and the MetS [39]. We also observed negative 502

associations of C24 : 0 with the MetS, despite the fact 503

that the associations between other VLC SAFA and 504

the MetS were null. These null associations could 505

be related to the FA fraction measured in this study, 506

since plasma PL are considered less correlated with 507

dietary intake compared with other plasma fractions 508

[17]. We furthermore observed negative associations 509

of C24 : 1n9 with BMI and fasting glucose. Recently, 510

dietary supplementation of C24 : 1n9 was found to 511

limit weight gain in a mouse model of diet-induced 512

obesity [38, 40, 41], which to some extent supports 513

the beneficial associations of C24 : 1n9 found in our 514

study. Still, more research is needed to fill the knowl- 515

edge gap regarding the relationship between these 516

relatively uncharacterized FA and metabolic diseases. 517

This study has provided opportunities for future 518

application. Individual FA from each FA group cat- 519

egorized by saturation levels might show different 520

or contradictory relations with metabolic health, as 521

demonstrated in our results. It will always be nec- 522

essary to assess and report individual FA levels to 523

understand the broad impact of metabolic diseases 524

on the FA profile. Simply pooling individual FA into 525

structural groups such as omega-6 PUFA, omega- 526

3 PUFA, or total SAFA and drawing generalized 527

conclusions about their effects on metabolic health 528

will mislead policy makers and the public. A bet- 529

ter understanding of the differences of various FA 530

between metabolic health and disease could improve 531

risk prediction for adverse events more efficiently and 532

economically. In short, as new modifiable biomarkers 533

for metabolic diseases emerge, individual FA from 534

the most suitable fraction might provide informa- 535

tion on how to modify the prevalence of the MetS 536

by dietary means. 537

The main strength of this study is the well- 538

characterized cohort of 850 individuals who were 539

initially recruited from a representative general 540

population cohort, which increases the possibility 541

for generalization of the results. Also, we have 542



U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

10 Y. Zhu et al. / Fatty acids profile and metabolic syndrome

objectively assessed a broader range of FA and desat-543

urase activities in PL, thereby showing more overall544

differences compared with previous studies. Thus,545

we were able to study the relationship between the546

FA profile and the MetS in a more comprehensive547

and comparative approach. Some limitations are wor-548

thy of mentioning. The cross-sectional nature of this549

study only allowed us to study associations, instead550

of possible causation, between FA profile, desaturase551

activities, and the MetS. In addition, we could not552

capture individual genetic and physiological effects553

on the FA profile as the FA profile is influenced by554

genetic, dietary, and physiological factors. Moreover,555

the use of product-to-precursor ratios of individual556

plasma FA as desaturase estimates may reflect FA557

metabolism, but may also be affected by dietary558

FA intake. Unfortunately, we were not able to pro-559

vide such data due to the nature of the questionnaire560

design.561

In conclusion, a wide-ranging FA profile and esti-562

mated desaturase activities differed between adults563

with and without the MetS in a general represen-564

tative population. The early precursor of de novo565

lipogenesis pathway (C18 : 0) and a high D6D activ-566

ity represented by higher levels of C18 : 3n6 and567

C20 : 3n6 were risk factors for the MetS, while VLC568

FA (C24 : 0 and C24 : 1n9), C18 : 1n7, and SCD-18569

showed inverse associations with the MetS. Further570

studies are required to investigate the etiology of571

these observed differences in the FA profile during572

the MetS and the prospective effect of the FA profile573

on the incidence of the MetS.574
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