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a b s t r a c t

We address the problem of designing a stabilizing closed-loop control law directly from input and state
measurements collected in an experiment. In the presence of a process disturbance in data, we have
that a set of dynamics could have generated the collected data and we need the designed controller to
stabilize such set of data-consistent dynamics robustly. For this problem of data-driven control with
noisy data, we advocate the use of a popular tool from robust control, Petersen’s lemma. In the cases of
data generated by linear and polynomial systems, we conveniently express the uncertainty captured in
the set of data-consistent dynamics through a matrix ellipsoid, and we show that a specific form of this
matrix ellipsoid makes it possible to apply Petersen’s lemma to all of the mentioned cases. In this way,
we obtain necessary and sufficient conditions for data-driven stabilization of linear systems through
a linear matrix inequality. The matrix ellipsoid representation enables insights and interpretations
of the designed control laws. In the same way, we also obtain sufficient conditions for data-driven
stabilization of polynomial systems through alternate (convex) sum-of-squares programs. The findings
are illustrated numerically.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

1.1. Motivation and Petersen’s lemma

Data-driven control design is a relevant methodology to tune
ontrollers whenever modeling from first principles is challeng-
ng, the model parameters are possibly redundant and cannot
e unambiguously identified through suitable experiments, while
possibly large) datasets can be obtained from the process to
e controlled. Thanks to the technological trend that measure-
ents are increasingly easier to access and retrieve, using data

o directly design controllers has witnessed a renewed surge in
nterest in recent years (Baggio, Katewa, & Pasqualetti, 2019;
erberich, Romer, Scherer, & Allgöwer, 2020; Coulson, Lygeros, &
örfler, 2019; Dai & Sznaier, 2018; De Persis & Tesi, 2020; Recht,
019; van Waarde, Camlibel, & Mesbahi, 2021).
These recent developments have been drawing results from

lassical areas of control theory such as behavioral theory (Coul-
on et al., 2019; De Persis & Tesi, 2020; Dörfler, Coulson, &
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Markovsky, 2022), set-membership system identification, and ro-
bust control (Berberich, Romer, Scherer, & Allgöwer, 2020; Dai
& Sznaier, 2018). A pivotal role in many of these developments
has been played by the so-called fundamental lemma by Willems,
Rapisarda, Markovsky, and De Moor (2005, Thm. 1); qualitatively
speaking, this result shows that for a linear system, controllabil-
ity and persistence of excitation ensure that its representation
through matrices (A, B) is equivalent to a representation through
a finite-length trajectory; however, such trajectory is assumed
not to be affected by noise. Then, the inevitable presence of noise
in data prevents from representing equivalently the actual system
and induces rather a set of systems that could have generated the
noisy data for a given bound on the noise, i.e., the set of systems
consistent with data. This set, which we call C, plays a central role
since control design must therefore target all systems in C, which
re indistinguishable from each other based on data. We consider
oise in data in the form of process disturbance, but the approach
ould be extended to genuine measurement noise (cf. Remark 3).
A natural way to address this uncertainty induced by noisy

ata is via robust control tools: e.g., system level synthesis (An-
erson, Doyle, Low, & Matni, 2019; Dean, Mania, Matni, Recht,
Tu, 2020; Xue & Matni, 2021), Young’s inequality for ma-

rices (De Persis & Tesi, 2020), matrix generalizations of the
-procedure (Ferizbegovic, Umenberger, Hjalmarsson, & Schön,
019; van Waarde et al., 2021), Farkas’s lemma (Dai & Sznaier,
018, 2021), linear fractional transformations (Berberich, Romer,

cherer, & Allgöwer, 2020; Berberich, Scherer, & Allgöwer, 2020).

rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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e advocate here the use of another robust control tool for
ata-driven control, Petersen’s lemma (Petersen, 1987; Petersen
Hollot, 1986). This lemma, whose strict and nonstrict ver-

ions we report later in Facts 1 and 2, can be seen as a matrix
limination method since, instead of verifying for all matrices
ounded in norm a certain inequality, one can equivalently verify
nother inequality where such matrices do not appear. The utility
f Petersen’s lemma in the realm of robust control has been
eatured in Ji and Su (2016), Khlebnikov and Shcherbakov (2008)
nd Shcherbakov and Topunov (2008). Petersen’s lemma under-
ins the data-based results of this work and its main appealing
eature is its broad applicability to different classes of systems,
uch as linear and polynomial ones; it also provides conceptual
nsights on the rationale of the designed control law and its
elation with least-squares approaches and certainty equivalence
cf. Section 4.2).

.2. Contributions

Our main contributions are the following. (C1) We bring Pe-
ersen’s lemma to the attention as a powerful tool for data-driven
ontrol. (C2) For linear systems, we provide by it necessary and
ufficient conditions for quadratic stabilization, which are alter-
ative to those in van Waarde et al. (2021). These conditions
ake the convenient form of linear matrix inequalities. (C3) We
ive several insights on the design conditions and, in particu-
ar, establish connections with certainty equivalence and robust
ndirect control, which have been extensively investigated for
tochastic noise models, e.g., Dean et al. (2020), Ferizbegovic
t al. (2019) and Treven, Curi, Mutnỳ, and Krause (2021). (C4) For
olynomial systems, we obtain new sufficient conditions for data-
riven control with respect to Dai and Sznaier (2021) and Guo,
e Persis, and Tesi (2021). These conditions are tractably relaxed
nto alternate (convex) sum-of-squares programs.

.3. Relations with the literature

We assume an upper bound on the norm of the sequence
f process disturbances, which is the so-called unknown-but-
ounded disturbance paradigm (Hjalmarsson & Ljung, 1993). This

makes our approach different from those considering stochastic
noise descriptions (Dean et al., 2020; Ferizbegovic et al., 2019;
Recht, 2019; Treven et al., 2021) and similar in nature to set-
membership identification and control (Fogel, 1979; Milanese
& Novara, 2004; Tanaskovic, Fagiano, Novara, & Morari, 2017).
The use of robust control tools to counteract the uncertainty
induced by unknown-but-bounded noise is quite natural and has
been pursued in Berberich, Romer, Scherer, and Allgöwer (2020),
Berberich, Scherer, and Allgöwer (2020), Dai and Sznaier (2021),
De Persis and Tesi (2020), Guo et al. (2021) and van Waarde
et al. (2021). Next, we compare with these works referring to our
aforementioned contributions (C1)–(C4).

(C1) The use of Petersen’s lemma differentiates our approach
rom those in Berberich, Romer, Scherer, and Allgöwer (2020),
erberich, Scherer, and Allgöwer (2020), De Persis and Tesi (2020)
nd van Waarde et al. (2021), which also address data-driven sta-
ilization of linear systems (besides H2, H∞ or quadratic perfor-
ance). In Bisoffi, De Persis, and Tesi (2020), we used Petersen’s

emma only as a sufficient condition (Bisoffi et al., 2020, Fact 1) to
btain a data-driven controller for structurally different bilinear
ystems.
(C2) For linear systems in discrete time, van Waarde et al.

2021) provided necessary and sufficient conditions for data-
ased stabilization as we do here. The differences are illustrated
n detail in Section 4.3. In a nutshell, here we operate under
2

n easy-to-enforce condition stemming from persistence of ex-
itation instead of under a generalized Slater condition, and the
ormer (but not the latter) can be seamlessly satisfied also in the
elevant special case of ideal data (i.e., without noise).

(C3) For the considered noise setting, the uncertainty set C
consists in a matrix ellipsoid, whose center is the (ordinary) least-
squares estimate of the system dynamics, and whose size de-
pends on the noise bound. This justifies why certainty-equivalence
control can be expected to work well in regimes of small un-
certainty (small noise), which agrees with recent works on per-
formance of certainty-equivalence control for linear quadratic
control (Dörfler, Tesi, & De Persis, 2021; Mania, Tu, & Recht,
2019). On the other hand, this also explains why robust design is
generally needed to have stability guarantees, which is also the
main idea behind the robust indirect control approaches (Dean
et al., 2020; Ferizbegovic et al., 2019; Treven et al., 2021) under a
stochastic noise description. On a related note, we introduced the
notion of matrix ellipsoid in Bisoffi, De Persis, and Tesi (2021c),
which had however a quite different focus and research question.

(C4) Data-driven control of polynomial systems was proposed
lso in Dai and Sznaier (2021) and Guo et al. (2021). As in Guo
t al. (2021), we use Lyapunov methods to obtain sufficient condi-
ions for data-based global asymptotic stabilization. Whereas Guo
t al. (2021) parametrizes the Lyapunov function in a specific way
o obtain a convex sum-of-squares program, the present data-
ased conditions parallel naturally the classical model-based ones
n Khalil (2002) since they correspond to enforcing those model-
ased conditions (through Petersen’s lemma) for all systems con-
istent with data, which leads to succinct derivations. Due to this
atural parallel, the present approach appears to be extendible
ith appropriate modifications to other cases where Lyapunov(-

ike) conditions occur, as we do for local asymptotic stabilization
n Corollary 3. On the other hand, Dai and Sznaier (2021) follows
radically different approach. Instead of Lyapunov functions, it
ses density functions by Rantzer (2001) to give a necessary and
ufficient condition for data-based stabilization, which however
eeds to be relaxed into a quadratically-constrained quadratic
rogram through sum of squares and then into a semidefinite
rogram through moment-based techniques for tractability.

.4. Structure

In Section 2, we recall Petersen’s lemma, formulate the prob-
em and derive some properties of the set C. In Section 3 we
rovide our main results for linear systems and we comment the
esults in Section 4. In Section 5 we provide our main result for
olynomial systems. All results are exemplified numerically in
ection 6.

. Preliminaries and problem setting

.1. Notation and Petersen’s lemma

For a vector a, |a| denotes its 2-norm. For a matrix A, ∥A∥

enotes its induced 2-norm, which is equivalent to the largest
ingular value of A; moreover, for a scalar a ≥ 0, ∥A∥ ≤ a if and
only if A⊤A ⪯ a2I where I is the identity matrix. For matrices
A, B and C of compatible dimensions, we abbreviate ABC(AB)⊤ to
B·C[⋆]⊤, where the dot in the second expression clarifies unam-
iguously that AB are the terms to be transposed. For matrices
= A⊤, B, C = C⊤, we also abbreviate the symmetric matrix
A B
B⊤ C

]
as

[
A B
⋆ C

]
or

[ A ⋆

B⊤ C

]
. For a positive semidefinite matrix A,

1/2 denotes the unique positive semidefinite root of A. For a
atrix A, A† denotes the Moore–Penrose generalized inverse of A,
hich is uniquely determined by certain axioms (Horn & Johnson,
013, p. 453, 7.3.P7). For positive integers n, r and the set P of
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olynomials p :Rn
→ R (resp., the set Pm of matrix polynomials

: Rn
→ Rr×r ), the set S ⊂ P (resp. Sm ⊂ Pm) denotes

the set of sum-of-squares polynomials (resp., the set of sum-of-
squares matrix polynomials) in the variable x ∈ Rn; see Chesi
2010) and references therein for more details on these and other
um-of-squares notions.
Petersen’s lemma is the essential tool we use to address data-

riven control design. First, we present in the next fact a version
here inequalities are strict.

act 1 (Strict Petersen’s Lemma). Consider matrices C ∈ Rn×n,
E ∈ Rn×p, F ∈ Rq×q, G ∈ Rq×n with C = C⊤ and F = F

⊤

⪰ 0,
nd let F be

:= {F ∈ Rp×q
: F⊤F ⪯ F}. (1)

Then,

C + EFG + G⊤F⊤E⊤
≺ 0 for all F ∈ F (2a)

f and only if there exists λ > 0 such that

+ λEE⊤
+ λ−1G⊤FG ≺ 0. (2b)

For F = I , one obtains the original version by I. R. Petersen
n Petersen (1987), Petersen and Hollot (1986), and the version in
act 1 proposes a slight extension where the bound F is any posi-
ive semidefinite matrix. For this version, then, we give the proof
n the Appendix for completeness. Although one could prove
act 1 with S-procedure arguments as some authors do for non-
trict versions (Khlebnikov & Shcherbakov, 2008; Shcherbakov &
opunov, 2008), we follow the original proof strategy of Petersen
1987) and Petersen and Hollot (1986).

Second, we present in the next fact a version of Petersen’s
emma where inequalities are nonstrict.

act 2 (Nonstrict Petersen’s Lemma). Consider matrices C ∈ Rn×n,
E ∈ Rn×p, F ∈ Rq×q, G ∈ Rq×n with C = C⊤ and F = F

⊤

⪰ 0, and
et F be defined as in (1). Suppose additionally E ̸= 0, F ≻ 0 and
̸= 0. Then,

+ EFG + G⊤F⊤E⊤
⪯ 0 for all F ∈ F (3a)

f and only if there exists λ > 0 such that

+ λEE⊤
+ λ−1G⊤FG ⪯ 0. (3b)

oreover, (3b) implies (3a) without the assumption E ̸= 0, F ≻ 0
and G ̸= 0.

For F = I , one obtains precisely the nonstrict versions of
etersen’s lemma in Khlebnikov and Shcherbakov (2008, §2)
nd Shcherbakov and Topunov (2008, §2); for completeness we
hen report the proof of Fact 2 in Bisoffi, De Persis, and Tesi
2021a). The additional assumption with respect to Fact 1
i.e., E ̸= 0, F ≻ 0 and G ̸= 0) is due to having nonstrict inequali-
ies and is needed to obtain the specific form (3b), see Bisoffi et al.
2021a).

.2. Problem formulation

Consider a discrete-time linear time-invariant system
+

= A⋆x + B⋆u + d (4)

where x ∈ Rn is the state, u ∈ Rm is the input, d ∈ Rn is a
disturbance, and the matrices A⋆ and B⋆ are unknown to us. At
the same time and with the same meaning for the quantities x, u
and d, consider the continuous-time linear time-invariant system

ẋ = A x + B u + d. (5)
⋆ ⋆

3

The modifications required for the continuous-time case are lim-
ited, and this allows us to treat it in parallel to the discrete-time
case. Instead of relying on model knowledge given by A⋆ and B⋆,
we perform an experiment on the system by applying an input
sequence u(t0), u(t1), . . . , u(tT−1) of T samples, so that by (4)/(5)

(ti+1)/ẋ(ti) = A⋆x(ti) + B⋆u(ti) + d(ti)

or i = 0, . . . , T−1. We measure the state response x(t0), x(t1), . . . ,
(tT−1), and, in discrete time, the shifted state response x(t1), x(t2),
. . , x(tT ) or, in continuous time, the state-derivative response
˙(t0), ẋ(t1), . . . , ẋ(tT−1). The disturbance sequence d(t0), d(t1), . . . ,
(tT−1) affects the evolution of the system and is unknown, hence
ata are noisy. We collect the noisy data in the matrices

0 :=
[
u(t0) u(t1) · · · u(tT−1)

]
(6a)

X0 :=
[
x(t0) x(t1) · · · x(tT−1)

]
(6b)

X1 :=
[
x(t1) x(t2) · · · x(tT )

]
in discrete time, or (6c)

X1 :=
[
ẋ(t0) ẋ(t1) · · · ẋ(tT−1)

]
in continuous time. (6d)

We can also arrange the unknown disturbance sequence as D0 :=[
d(t0) d(t1) · · · d(tT−1)

]
, so that D0 and data in (6) satisfy

X1 = A⋆X0 + B⋆U0 + D0 (7)

ince (4) (in discrete time) or (5) (in continuous time) is the
nderlying data generation mechanism. In the former case, we
ave t0, t1, . . . , tT equal to, respectively, 0, 1, . . . , T ; in the latter
ase, t0, t1, . . . , tT−1 are sampled periodically at 0, Ts, . . . , (T −1) ·Ts
or some sampling time Ts, although this is not necessary.

We operate under a certain disturbance model. Specifically, we
ssume that the disturbance sequence D0 has bounded energy,
.e., D0 ∈ D where, for some matrix ∆,

:= {D ∈ Rn×T
: DD⊤

⪯ ∆∆⊤
}. (8)

s we said, D0 is unknown to us and the only a-priori knowledge
n it is given by the set D, and in particular the knowledge of
he positive semidefinite bound ∆∆⊤. This disturbance model en-
orces an energy bound on the disturbance since it constrains the
hole disturbance sequence, unlike an instantaneous disturbance
ound (Bisoffi et al., 2021c). Energy bounds are used in Berberich,
omer, Scherer, and Allgöwer (2020), Berberich, Scherer, and
llgöwer (2020), De Persis and Tesi (2020), van Waarde et al.
2021) and many other works. In fact, model (8) is quite general
s it can capture signal-to-noise-ratio conditions (De Persis &
esi, 2020), over-approximate instantaneous bounds (Bisoffi et al.,
021c), and can also be used to have probabilistic bounds for
aussian noise (De Persis & Tesi, 2021).
With data (6) and set D in (8), we introduce the set C of

atrices consistent with data

:=
{[

A B
]

: X1 = AX0 + BU0 + D,D ∈ D
}
, (9)

.e., the set of all pairs
[
A B

]
of matrices that could generate data

1, X0 and U0 based on (4) or (5) while keeping the disturbance
equence in the set D. This is elucidated by comparing (9) with
he similar (7). We note that D0 ∈ D is precisely equivalent to
A⋆ B⋆

]
∈ C.

emark 1. In the language of set-membership identification (Mi-
anese & Novara, 2004), we have two prior assumptions, the first
ne on the class of dynamical systems (4) or (5) and the second
ne on the noise (8). The set C in (9) corresponds to the feasible
ystems set (Milanese & Novara, 2004, Def. 1). We noted that
A⋆ B⋆

]
∈ C. This corresponds to validation of prior assump-

ions (Milanese & Novara, 2004, Def. 2).



A. Bisoffi, C. De Persis and P. Tesi Automatica 145 (2022) 110537

f

f

s

o

f

s

B
t[
b
B

2

t

C

I
i
r

C

w

[

c[
S
(

A

ξ

t

w

ζ

a
a
t
o
(
a
a
b
o

L

P
T

Q

Q
a

Q

W

a

Our objective is to design a state feedback controller

u = Kx

that makes the closed-loop matrix A⋆ + B⋆K Schur stable (i.e., all
its eigenvalues have magnitude less than 1) in discrete time,
or Hurwitz stable (i.e., all its eigenvalues have real part less
than 0) in continuous time. However, we lack the knowledge
of

[
A⋆ B⋆

]
and the disturbance d induces uncertainty in data,

which results into a set C of matrices consistent with data. Our
objective becomes then to stabilize robustly all matrices A + BK
or

[
A B

]
∈ C; in other words, in discrete time,

ind K , P = P⊤
≻ 0 (10a)

. t. (A + BK )P(A + BK )⊤ − P ≺ 0 for all
[
A B

]
∈ C (10b)

r, in continuous time,

ind K , P = P⊤
≻ 0 (11a)

. t. (A + BK )P + P(A + BK )⊤ ≺ 0 for all
[
A B

]
∈ C. (11b)

oth (10) and (11) are quadratic stabilization problems. Achieving
he objective of robust stabilization of all matrices A + BK for
A B

]
∈ C (hence, also of A⋆ + B⋆K ) guarantees bounded-input

ounded-state stability of x+
= (A⋆ + B⋆K )x + d or ẋ = (A⋆ +

⋆K )x + d by Antsaklis and Michel (2006, Thm. 9.5).

.3. Reformulations of set C and properties

We perform some rearrangements of C. We substitute in (9)
he definition of set D in (8) and obtain

=

{[
A B

]
: X1 = AX0 + BU0 + D,D ∈ Rn×T ,

[ I D ]
[

−∆∆⊤ 0
0 I

] [ I
D⊤

]
⪯ 0

}
.

n this expression we substitute D = X1−AX0−BU0 in the matrix
nequality and collect

[
I A B

]
on the left and its transpose on the

ight of the matrix inequality; then, C rewrites equivalently as

=

{[
A B

]
:
[
I A B

]
·

[
C B⊤

B A

]
[⋆]⊤ ⪯ 0

}
(12)

=
{[

A B
]

= Z⊤
: C + B⊤Z + Z⊤B + Z⊤AZ ⪯ 0

}
(13)

here we define

C B⊤

B A

]
:=

⎡⎢⎢⎢⎢⎣
X1X⊤

1 − ∆∆⊤
−X1

[
X0
U0

]⊤

−

[
X0
U0

]
X⊤

1

[
X0
U0

][
X0
U0

]⊤

⎤⎥⎥⎥⎥⎦ . (14)

Remark 2. For given matrices R = R⊤, Q = Q⊤
≻ 0, S, one

an consider a disturbance model D′
:= {D ∈ Rn×T

: [ I D ]
[

R S⊤

S Q

]
I

D⊤

]
⪯ 0} more general than D in (8), as in Berberich, Romer,

cherer, and Allgöwer (2020), Berberich, Scherer, and Allgöwer
2020) and van Waarde et al. (2021). With D′, one can still carry
out the derivations for a set C′ similar to (12), with slightly differ-
ent expressions of A′, B′, C′. Nonetheless, (8) is general enough to
capture interesting classes of noise, see the discussion after (8).

We make the next assumption on matrix
[

X0
U0

]
in (14).

ssumption 1. Matrix
[

X0
]
has full row rank.
U0

4

Assumption 1 is related to persistence of excitation as we illus-
trate in Section 4.1, and can be checked directly from data. If this
condition holds, it implies T ≥ n + m; otherwise, it can typically
be enforced by collecting more data points (i.e., adding more
columns to

[
X0
U0

]
). An immediate consequence of Assumption 1

for A in (14) is A ≻ 0.

Remark 3. We consider here the case of process disturbance,
see (4). If, in addition, measurement noise is present, (4) needs
to be combined with ξ = x + ν, so that we no longer measure
x but ξ , which is corrupted by measurement noise ν. By (4) and
ξ = x+ ν, the data generation mechanism in terms of ξ becomes

+
= A⋆ξ + B⋆u + d + ν+

− A⋆ν and the data points satisfy
Ξ1 = A⋆Ξ0 + B⋆U0 + D0 + N1 − A⋆N0 for Ξ0 and Ξ1 analogous
o X0 and X1, and the unknown N1 :=

[
ν(t1) · · · ν(tT )

]
and N0 :=[

ν(t0) · · · ν(tT−1)
]
. By following De Persis and Tesi (2020, §V-A),

one can reduce this case to the case of process disturbances. In
particular, based on the relation Ξ1 = A⋆Ξ0 + B⋆U0 + D0 + N1 −

A⋆N0, it is possible to construct a set C analogous to (9) and, under
an assumption slightly more conservative than Assumption 1 and
checkable from data, to pursue the same approach as in the
sequel.

The set C in (13) can be regarded as a matrix ellipsoid, i.e., a
natural extension of the standard (vector) ellipsoid
(Boyd, El Ghaoui, Feron, & Balakrishnan, 1994, p. 42) with pa-
rameters c ∈ R, b ∈ Rp, a ∈ Rp×p:

{z ∈ Rp
: c + b⊤z + z⊤b + z⊤az ≤ 0}.

In fact, if a scalar system with n = m = 1 is considered, C reduces
to a standard ellipsoid with Z⊤

∈ R2. The interpretation of C as
a matrix ellipsoid (introduced in Bisoffi et al., 2021c to compute
a size for this set) proves useful here since it enables a simple
reformulation of C as

C =
{[

A B
]

= Z⊤
: (Z − ζ)⊤A(Z − ζ) ⪯ Q

}
(15)

here, by A ≻ 0 from Assumption 1, we define

:= −A−1B, Q := B⊤A−1B − C, (16)

s can be verified by substituting (16) into (15) and expanding
ll products to obtain (13). We will further discuss later in Sec-
ion 4.2 the interpretation of some of the parameters A, B, C, ζ, Q
f C. The matrix-ellipsoid parametrizations of C in (13), (15) and
19) are analogous to the parametrizations of a standard ellipsoid
s, respectively, a quadratic form (Boyd et al., 1994, Eq. (3.8)), as
center and shape matrix and as a linear transformation of a unit
all (Boyd et al., 1994, Eq. (3.9)). We report the sign definiteness
f A and Q in the next lemma.

emma 1. Under Assumption 1, A ≻ 0 and Q ⪰ 0.

roof. A ≻ 0 from Assumption 1 by Horn and Johnson (2013,
hm. 7.2.7(c)). As for Q, A ≻ 0 allows defining

p :=

[
X0
U0

]⊤ ([
X0
U0

][
X0
U0

]⊤)−1 [
X0
U0

]
.

p is a projection matrix, i.e., Q2
p = Qp as one verifies immedi-

tely. Then, (16) and (14) yield

= X1QpX⊤

1 − X1X⊤

1 + ∆∆⊤. (17)

rite (7) as X1 = [ A⋆ B⋆ ]
[

X0
U0

]
+D0; this expression and Qp being

projection matrix shows that Q X⊤
−X⊤

= Q (
[

X0
]⊤

[ A⋆ B⋆ ]⊤+
p 1 1 p U0
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⊤

0 )− (
[

X0
U0

]⊤

[ A⋆ B⋆ ]⊤ +D⊤

0 ) = (Qp − I)D⊤

0 . Using this expression
in (17) yields

Q = D0(Qp − I)D⊤

0 + ∆∆⊤
⪰ −D0D⊤

0 + ∆∆⊤
⪰ 0 (18)

since Qp ⪰ 0 and D0 ∈ D (i.e., D0D⊤

0 ⪯ ∆∆⊤). □

From A ≻ 0, we have the next desirable property of C.

Lemma 2. Under Assumption 1, C is bounded with respect to any
matrix norm.

Proof. Consider C in (15), which is nonempty as ζ⊤
∈ C. Z⊤

∈ C if
and only if for all v ∈ Rn, v⊤(Z−ζ)⊤A(Z−ζ)v ≤ v⊤Qv. Let λmin(A)
denote the minimum eigenvalue of (symmetric) A. By Lemma 1,
this implies√

λmin(A)|(Z − ζ)v| ≤ |Q1/2v| for all v : |v| = 1

H⇒

√
λmin(A) sup

|v|=1
|(Z − ζ)v| ≤ sup

|v|=1
|Q1/2v|

H⇒ ∥Z − ζ∥ ≤ λmin(A)−1/2
∥Q1/2

∥

H⇒ ∥Z∥ ≤ ∥ζ∥ + λmin(A)−1/2
∥Q1/2

∥

here we used the definition of induced 2-norm and the reverse
riangle inequality in the second and third implication, respec-
ively. All quantities on the right hand side are finite, so each
⊤

∈ C has bounded 2-norm. Recall that any two matrix norms
re equivalent (Horn & Johnson, 2013, p. 352), so for any given
air of matrix norms ∥ · ∥a and ∥ · ∥b, there is a finite constant
ab > 0 such that ∥M∥a ≤ Cab∥M∥b for all matrices M . Hence,

boundedness of C with respect to the induced 2-norm implies
boundedness of C with respect to any other norm, as needed
proving. □

3. Data-driven control for linear systems

So far, we have rewritten the set C of matrices
[
A B

]
consistent

ith data as (15). To derive the main result from Petersen’s
emma, a final reformulation of C is needed. We define

:=
{
(ζ + A−1/2ΥQ1/2)⊤ : ∥Υ ∥ ≤ 1

}
(19)

nd show that it coincides with C in the next proposition.

roposition 1. For A ≻ 0 and Q ⪰ 0, C = E .

roof. It is sufficient to prove E ⊆ C and C ⊆ E .
E ⊆ C) Suppose Z⊤

∈ E , i.e., Z = ζ + A−1/2ΥQ1/2 for
ome matrix Υ with ∥Υ ∥ ≤ 1. Hence, (Z − ζ)⊤A(Z − ζ) =

A−1/2ΥQ1/2)⊤A(A−1/2ΥQ1/2) = Q1/2Υ ⊤ΥQ1/2
⪯ Q. Thus Z⊤

∈

.
C ⊆ E) Suppose Z⊤

∈ C, i.e.,

Z − ζ)⊤A(Z − ζ) ⪯ Q. (20)

e need to find a matrix Υ with ∥Υ ∥ ≤ 1 such that Z =

+ A−1/2ΥQ1/2, i.e.,

Q1/2
= A1/2(Z − ζ). (21)

f Q1/2
= 0, we can take Υ = 0. Otherwise, Q1/2 has p ∈

1, . . . , n} positive eigenvalues that define the diagonal matrix
p := diag(λ1, . . . , λp) ≻ 0. Since Q1/2 is symmetric, there exists
real orthogonal matrix T (i.e., T⊤T = TT⊤

= I) such that
1/2

= TΛT⊤
:= T

[
Λp 0
0 0

]
T⊤, (22)

hich is an eigendecomposition of Q1/2 and admits Λ = Λp if
= n (i.e., Q1/2

≻ 0). Writing T =:
[
T1 T2

]
yields[

T⊤
1 T1 T⊤

1 T2
⊤ ⊤

]
=

[
I 0

]
and T1T⊤

+ T2T⊤
= I (23)
T2 T1 T2 T2 0 I 1 2

5

rom T⊤T = I and TT⊤
= I . Select

Υ = A1/2(Z − ζ)T1Λ−1
p T⊤

1 (24)

(which reduces to A1/2(Z − ζ)Q−1/2 if p = n). We first show
Υ ∥ ≤ 1:
⊤Υ = T1Λ−1

p T⊤

1 (Z − ζ)⊤A1/2A1/2(Z − ζ)T1Λ−1
p T⊤

1
(20)
⪯ T1Λ−1

p T⊤

1 ·Q[⋆]⊤
(22)
= T1Λ−1

p T⊤

1 [ T1 T2 ] ·
[

Λ2
p 0
0 0

]
[⋆]⊤

= T1Λ−1
p T⊤

1 T1·Λ2
p[⋆]

⊤ (23)
= T1T⊤

1

(23)
⪯ I.

Then, we show that (21) holds. (21) is equivalent to

ΥQ1/2 (22)
= Υ [ T1 T2 ]

[
Λp 0
0 0

]
T⊤

= A1/2(Z − ζ)

⇐⇒ [ Υ T1Λp 0 ] = A1/2(Z − ζ)T = A1/2(Z − ζ) [ T1 T2 ]

⇐⇒
(
Υ T1Λp = A1/2(Z − ζ)T1, 0 = A1/2(Z − ζ)T2

)
.

If we show the last two equalities, we have shown (21) and
completed the proof. The first equality holds by the selection of
Υ since Υ T1Λp

(24)
= A1/2(Z − ζ)T1Λ−1

p T⊤

1 T1Λp
(23)
= A1/2(Z − ζ)T1.

The second equality holds since the columns of T2 are in kerQ1/2

and kerQ1/2
⊆ ker(A1/2(Z − ζ)). The columns of T2 are in kerQ1/2

because Q1/2T2
(22)
= T

[
Λp 0
0 0

] [
T⊤
1

T⊤
2

]
T2

(23)
= T

[
Λp 0
0 0

] [
0
I

]
= 0;

kerQ1/2
⊆ ker(A1/2(Z − ζ)) because, if v satisfies Q1/2v = 0, then

0 = v⊤Qv
(20)
≥ v⊤(Z − ζ)⊤A(Z − ζ)v = |A1/2(Z − ζ)v|

2, hence
1/2(Z − ζ)v = 0. □

Considering Q ⪰ 0 rather than Q ≻ 0 is motivated since
t allows us to include seamlessly the relevant special case of
deal data, namely, when the disturbance is not present. This
orresponds indeed to ∆ = 0 and D = {0} in (8) and Q = 0
in (18) by D0 ∈ D. With the equivalent parametrization E of set
and Petersen’s lemma in Fact 1, we reach the next main result.

heorem 1. For data given by U0, X0, X1 in (6) satisfying Assump-
ion 1 and yielding A, B, C in (14), feasibility of (10) is equivalent to
easibility of

ind Y , P = P⊤
≻ 0 (25a)

. t.

⎡⎢⎢⎣
−P − C 0 B⊤

0 −P
[
P Y⊤

]
B

[
P
Y

]
−A

⎤⎥⎥⎦ ≺ 0. (25b)

f (25) is solvable, a controller gain is K = YP−1.

roof. Thanks to Proposition 1, (10b) is equivalent to the fact that
or all

[
A B

]
∈ E

A + BK )P(A + BK )⊤ − P

=
[
A B

] [
I
K

]
PP−1P

[
I
K

]⊤ [
A B

]⊤
− P ≺ 0.

inding P = P⊤
≻ 0, K such that this matrix inequality holds for

ll
[
A B

]
∈ E is equivalent to finding P = P⊤

≻ 0, Y such that[
−P − [ A B ]

[
P
Y

]
−

[
P
Y

]⊤ [ A B ]⊤ −P

]
≺ 0 for all

[
A B

]
∈ E, (26)

y P ≻ 0 and Schur complement. Note that, as claimed in the
tatement, Y and K are related by Y = KP , and Y is preferred
ver K as decision variable since KP makes the matrix inequality
onlinear.

[
A B

]
= Z⊤

∈ E if and only if Z = ζ + A−1/2ΥQ1/2

or some Υ with Υ ⊤Υ ⪯ I , by the parametrization in (19).
ence, (26) is true if and only if (27), which is displayed in Box I,
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0 ≻

[
−P −(ζ + A−1/2ΥQ1/2)⊤

[
P
Y

]
⋆ −P

]
=

[
−P −ζ⊤

[
P
Y

]
⋆ −P

]
+

[
0

−
[
P
Y

]
A−1/2

]
Υ

[
Q1/2 0

]
+

[
Q1/2

0

]
Υ ⊤

[
0 −A−1/2

[
P
Y

]]
(27)

Box I.
t
A

(

olds for all Υ with Υ ⊤Υ ⪯ I . (27) is written in a way that
nables applying Petersen’s lemma in Fact 1 with respect to the
ncertainty Υ . Indeed, simple computations yield that (27) holds
or all Υ with Υ ⊤Υ ⪯ I if and only if there exists λ > 0 such
hat[
−P + λ−1Q −ζ⊤

[
P
Y

]
−

[
P
Y

]⊤
ζ −P + λ

[
P
Y

]⊤ A−1
[
P
Y

]] ≺ 0. (28)

n summary, we have so far that (10) is the same as

ind Y , P = P⊤
≻ 0, λ > 0 subject to (28). (29)

ultiply both sides of (28) by λ > 0 and ‘‘absorb’’ it in P and Y ,
so that (29) is actually equivalent to

find Y , P = P⊤
≻ 0 (30a)

s. t.
[

−P + Q −ζ⊤
[
P
Y

]
−

[
P
Y

]⊤
ζ −P +

[
P
Y

]⊤ A−1
[
P
Y

]] ≺ 0. (30b)

Substitute in (30b) ζ and Q as in (16) to obtain[
−P + B⊤A−1B − C B⊤A−1

[
P
Y

][
P
Y

]⊤ A−1B −P +
[
P
Y

]⊤ A−1
[
P
Y

]]

=

[
−P − C 0

0 −P

]
+

[
B⊤[
P
Y

]⊤

]
A−1 [

B
[
P
Y

]]
≺ 0.

Take a Schur complement of this inequality and replace by it the
one in (30b) to make (30) equivalent to (25). □

Similarly, we use the set E in (19) and Petersen’s lemma
reported in Fact 1 to resolve (11) in the next theorem.

Theorem 2. For data given by U0, X0, X1 in (6) satisfying Assump-
tion 1 and yielding A, B, C in (14), feasibility of (11) is equivalent to
feasibility of

find Y , P = P⊤
≻ 0 (31a)

s. t.

⎡⎢⎢⎣ −C B⊤
−

[
P
Y

]⊤

B −

[
P
Y

]
−A

⎤⎥⎥⎦ ≺ 0. (31b)

If (31) is solvable, a controller gain is K = YP−1.

Proof. The proof follows the same reasoning of the proof of
Theorem 1 and has somehow simplified steps since we do not
need to first apply a Schur complement. It is thus omitted, but
can be found in Bisoffi et al. (2021a). □

Suppose that the set C is given directly in the form (15) as
a matrix-ellipsoid over-approximation of a less tractable set that
is derived from data, which we discuss in Section 4.4. The next
corollary suits this case and can be used instead of Theorems 1–2.

Corollary 1. For the set C =
{[

A B
]

= Z⊤
: (Z − ζ)⊤A(Z − ζ) ⪯ Q

}
as in (15), assume A ≻ 0 and Q ⪰ 0. Then, feasibility of (10) (resp.,
(11)) is equivalent to feasibility of (25) (resp., (31)). If (25) (resp.,

−1
(31)) is solvable, a controller gain is K = YP . d

6

Proof. By assuming A ≻ 0 and Q ⪰ 0, one can follow the
same steps used in the proofs of Theorems 1–2 to draw the same
conclusions. □

Remark 4. Instead of parameters A, B, C of C in (12), we can write
he conditions (25b) and (31b) in Theorems 1 and 2 in terms of
, ζ, Q of C in (15) as⎡⎣ −P+Q ⋆ ⋆

−

[
P
Y

]⊤

ζ −P ⋆

0
[
P
Y

]
−A

⎤⎦ ≺ 0 and

[ [
P
Y

]⊤

ζ+ζ⊤
[
P
Y

]
+Q ⋆[

P
Y

]
−A

]
≺ 0.

These conditions, which are obtained by Schur complement
(see (30b)), are equivalent to (25b) and (31b), respectively.

Finally, (25) or (31) are feasibility programs and, when im-
plemented, any feasible solution is returned. However, one can
consider a cost criterion for the closed loop, e.g., the H2-norm of
the transfer function from d to some performance signal. This can
be accommodated as in Dörfler et al. (2021, §II.A) by turning the
feasibility program in (25) or (31) into an optimization program
with that cost criterion.

4. Discussion and interpretations

This section is devoted to giving an overall interpretation of
the previous developments.

4.1. Assumption 1 and persistence of excitation

Assumption 1 is intimately related to the notion of persistence
of excitation, as we now motivate. With full details in De Persis
and Tesi (2021, §4.2), the result (Willems et al., 2005, Cor. 2),
which was given in the ideal case without disturbance x+

=

A⋆x + B⋆u, can show for the present case

x+
= A⋆x + B⋆u + d = A⋆x +

[
B⋆ I

] [
u

d

]
that: an input sequence and a disturbance sequence both persis-

tently exciting of order n+ 11 imply that
[

X0
U0
D0

]
has full row rank

and so has
[

X0
U0

]
, as required in Assumption 1. In other words,

Assumption 1 holds if the augmented input
[ u
d
]
is persistently

exciting.

4.2. Ellipsoidal uncertainty, least squares and certainty-equivalence
control

The discrete- and continuous-time stability conditions of The-
orems 1 and 2 are equivalent, see Remark 4, to[

−P −ζ⊤
[
P
Y

]
−

[
P
Y

]⊤
ζ −P

]
+

[
Q 0
0

[
P
Y

]⊤ A−1
[
P
Y

]] ≺ 0 and (32)[
P
Y

]⊤

ζ + ζ⊤

[
P
Y

])
+

(
Q +

[
P
Y

]⊤

A−1
[
P
Y

])
≺ 0, (33)

1 See De Persis and Tesi (2020, Def. 1) or Willems et al. (2005, p. 327) for a
efinition.
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espectively, with A as in (14) and ζ, Q as in (16). The matrix ζ

appears only in the first term of the two matrix inequalities and
represents the center of the uncertainty set C, see (15). On the
other hand, the matrices A, Q appearing in the second term of
the two matrix inequalities determine the size of the uncertainty;
in particular, the size of C is given by (detQ)(n+m)/2(detA)−n/2,
see Bisoffi et al. (2021c, §2.2). By Lemma 1, the second terms
in (32) and (33) are positive semidefinite, and the design problem
can thus be interpreted as the problem of finding a controller
that robustly stabilizes the dynamics associated with the center
ζ of the uncertainty set C, where the uncertainty increases with
the noise bound ∆∆⊤, see the expression of Q in (18). Recall
from Section 2.2 that our operative setting of D0 ∈ D implies[
A⋆ B⋆

]
∈ C.

Quite interestingly, the center ζ of the uncertainty set C co-
incides with the (ordinary) least-squares estimate of the system
dynamics, i.e., with the solution

[
Als Bls

]
to

min
[A B]

∥X1 − AX0 − BU0∥
2
F

where ∥ · ∥F is the Frobenius norm. Indeed, see Verhaegen and
Verdult (2007, §2.6),[
Als Bls

]
:= argmin

[A B]
∥X1 − AX0 − BU0∥

2
F

= X1

[
X0
U0

]†
=

[
A⋆ B⋆

]
+ D0

[
X0
U0

]†

= (−A−1B)⊤ = ζ⊤

where we rely on Assumption 1. This justifies why certainty-
equivalence control works well in regimes of small uncertainty
(when ∆ is small), in agreement with what has been recently
observed in Dörfler et al. (2021) and Mania et al. (2019). On the
other hand, this also explains why robust control is generally
needed with noisy data, which is also the main idea behind the
robust indirect control approaches (Dean et al., 2020; Ferizbe-
govic et al., 2019; Treven et al., 2021) under a stochastic noise
description. Besides the noise description, a difference between
our work and Dean et al. (2020), Ferizbegovic et al. (2019) and
Treven et al. (2021) is that solving (25) or (31) does not require to
explicitly construct any estimate of the system dynamics, which
is distinctive of indirect methods. Our approach is direct in the
sense that it represents an end-to-end method for controller
design (once data are collected, substituted in (25) or (31) and
these are solved, a controller is obtained). Note that there is a
difference from other papers, e.g., Tanaskovic et al. (2017), where
direct data-driven control methods tune controller parameters by
imposing on them constraints depending on measured data.

We conclude emphasizing that, due to the uncertainty induced
by noisy data and the impossibility of knowing the actual system,
the goal is to robustly stabilize the set C; for this goal, we provide
necessary and sufficient conditions in Theorems 1 and 2. Although
obtaining

[
Als Bls

]
from data is straightforward, a robust con-

troller designed from
[
Als Bls

]
would not be able to ‘‘outperform’’

(25) or (31) in addressing the uncertainty robustly, namely, if a
controller based on

[
Als Bls

]
stabilizes robustly the set C, (25) or

(31) would also be feasible and yield a controller. Moreover, to
tune the robust controller based on

[
Als Bls

]
, users would need

to determine from data some magnitude of the uncertainty with
respect to which the controller needs to be robust, possibly with
conservatism and resulting in sufficient (but not necessary) con-
ditions. On the other hand, our design takes care of embedding
the data-induced uncertainty directly in (25) or (31), which are
linear matrix inequalities and thus simple to implement given the

many available solvers.

7

4.3. Comparison with alternative conditions in van Waarde et al.
(2021)

Section 4.1 leads us to a comparison with the approach based
on a matrix S-procedure in van Waarde et al. (2021). We recall its
main result for data-based stabilization, van Waarde et al. (2021,
Thm. 14), and rephrase it for the context of this paper in the next
fact.

Fact 3 (van Waarde et al., 2021, Thm. 14). Assume that the gener-
alized Slater condition[
I
Z̄

]⊤ [
C B⊤

B A

][
I
Z̄

]
≺ 0

holds for some Z̄ ∈ R(n+m)×n. Then, there exist a feedback gain K
and a matrix P = P⊤

≻ 0 such that (A + BK )P(A + BK )⊤ − P ≺ 0
or all

[
A B

]
∈ C if and only if the next program is feasible

ind P = P⊤
≻ 0, Y , α ≥ 0, β > 0

s. t.
[
−P + βI 0

0
[
P
Y

]
P−1

[
P
Y

]⊤

]
− α

[
C B⊤

B A

]
⪯ 0.

If P and Y are a solution to it, then K = YP−1 is a stabilizing gain
for all

[
A B

]
∈ C.

Fact 3 and Theorem 1 are two alternative approaches since
both propose a necessary and sufficient condition for quadratic
stabilization; indeed, (25b) in Theorem 1 is equivalent, by Schur
complement and changing sign to off-diagonal terms, to[
−P 0
0

[
P
Y

]
P−1

[
P
Y

]⊤

]
−

[
C B⊤

B A

]
≺ 0.

There are some interesting differences, though. Fact 3 operates
under a Slater condition, whereas Theorem 1 under Assump-
tion 1. The Slater condition can capture the case of an unbounded
set C, which cannot occur with Assumption 1 (see Lemma 2); by
contrast, the Slater condition cannot capture the case of ideal data
(van Waarde & Camlibel, 2021, §II.C), which requires different
arguments (van Waarde & Camlibel, 2021).

In addition, while performance specification in the form of
H2 or H∞ control are addressed through the matrix S-procedure
in van Waarde et al. (2021), performance specifications in terms
of, e.g., convergence rate and overshoot can be handled by Pe-
tersen’s lemma as in Bisoffi, De Persis, and Tesi (2021b). Both
approaches seem then to enjoy a similar degree of flexibility.
Whereas Section 3 handles linear systems, the applicability of
the proposed method based on Petersen’s lemma extends to
polynomial systems as in Section 5.

4.4. C as an ellipsoidal over-approximation

As (9) shows, we have derived the set C based on the distur-
bance bound in D and the relation data need to satisfy. On the
other hand, the matrix-ellipsoid form (15) of set C can be fruit-
fully used as an over-approximation of sets of matrices consistent
with data that are not matrix ellipsoids, since ellipsoidal sets are
generally better tractable. In that case, as long as matrices A and Q
in (15) satisfy A ≻ 0 and Q ⪰ 0, one can use directly Corollary 1.
We describe succinctly a relevant case when this could be done
based on Bisoffi et al. (2021c), to which we refer the reader for a
more elaborate discussion.

With the definitions for i = 0, 1, . . . , T − 1

~◦

i := x(ti+1) or ~◦

i := ẋ(ti), ~i := x(ti), υi := u(ti)

that embed discrete or continuous time, consider the disturbance
model D := {d ∈ Rn

: |d|2 ≤ δ}. The corresponding set of
i
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atrices consistent with all data points i = 0, . . . , T − 1 is
Ci :=

⋂T−1
i=0 {

[
A B

]
: ~◦

i = A~i + Bυi + d, d ∈ Di} and, due to the
intersection, its size remains equal or decreases with T . Ci is not a
matrix ellipsoid and the results in Section 3 cannot be applied to
it. Still, a matrix ellipsoid C ⊇ Ci as in (12) can be readily obtained;
its parameters A, B, C := B⊤A−1B−I follow from the optimization
problem

min. − log detA (over A, B, τ0, . . . , τT−1) (34a)

s. t.

⎡⎢⎣−I −
∑T−1

i=0 τiγ i ⋆ ⋆

B −
∑T−1

i=0 τiβi A −
∑T−1

i=0 τiαi ⋆

B 0 −A

⎤⎥⎦ ⪯ 0 (34b)

A ≻ 0, τi ≥ 0 for i = 0, 1, . . . , T − 1 (34c)

with data-related quantities

γ i := ~◦

i ~
◦

i
⊤

− δI, βi := −

[
~i
υi

]
~◦

i
⊤
, αi :=

[
~i
υi

][
~i
υi

]⊤

(35)

for i = 0, . . . , T −1. (This optimization problem is the natural ex-
tension to matrix ellipsoids of the one in Boyd et al., 1994, §3.7.2
for classical ellipsoids.) A feasible solution to (34) guarantees by
construction A ≻ 0 and Q = B⊤A−1B−C = I ⪰ 0 (by the selection
of C); hence, Corollary 1 can be applied to this C. A very desirable
feature of this C, inherited from Di, is that its size generally
decreases with T , and this requires, in turn, a lesser degree of
robustness in the design of the controller if one collects more
data. In summary, when an instantaneous disturbance model
Di is given, the results of Section 3 cannot be applied to the
corresponding set Ci but can be to the set C obtained by (34). The
tightness of the over-approximation is problem-dependent, and it
might be convenient to work directly with Ci at the expense of an
increase in the computational complexity (Bisoffi et al., 2021c).

5. Data-driven control for polynomial systems

We illustrate in this section that Petersen’s lemma proves
useful also for polynomial systems, if applied pointwise. As an
important class of nonlinear input-affine systems, consider the
polynomial systems

ẋ = f⋆(x) + g⋆(x)u + d = A⋆Z(x) + B⋆W (x)u + d (36)

where x ∈ Rn is the state, u ∈ Rm is the input, d ∈ Rn is the
disturbance; x ↦→ Z(x) ∈ RN is a known regressor vector of
monomials of x and x ↦→ W (x) ∈ RM×m is a known regressor
matrix of monomials of x; the rectangular matrices A⋆ ∈ Rn×N and
B⋆ ∈ Rn×M with the coefficients of the regressors are unknown
to us. In (36), ẋ = f⋆(x) + g⋆(x)u + d represents the actual
system, so we emphasize that, by virtue of how (36) is written,
we assume that if a monomial is present in the actual f⋆ or
g⋆, then it is also listed in Z or W , respectively. We allow that
Z or W list more monomials than those in f⋆ or g⋆. In fact,
the typical case is that, due to lack of knowledge, one includes
in Z or W more monomials than necessary. The selection of
the regressors Z and W is a key aspect for feasibility of the
optimization-based control law, and we comment this in detail
in Section 6.3. We will handle data-driven control conditions for
(36) through a sum-of-squares relaxation; since sum-of-squares
tools are most commonly used for continuous-time systems, we
consider directly the continuous-time case in (36).

As in Section 2.2, we perform an experiment on the system
by applying an input sequence u(t0), . . . , u(tT−1) of T samples and
measure the state and state-derivative sequences x(t0), . . . , x(tT−1)
and ẋ(t ), . . . , ẋ(t ). The unknown disturbance sequence d(t ), . . . ,
0 T−1 0

8

d(tT−1) affects the evolution of the system, leading to noisy data.
We collect the data points in the matrices

V0 :=
[
W (x(t0))u(t0) · · · W (x(tT−1))u(tT−1)

]
(37a)

Z0 :=
[
Z(x(t0)) · · · Z(x(tT−1))

]
(37b)

X1 :=
[
ẋ(t0) · · · ẋ(tT−1)

]
. (37c)

ith the unknown disturbance sequence in D0 :=

d(t0) · · · d(tT−1)
]
, data satisfy

1 = A⋆Z0 + B⋆V0 + D0.

As in Section 2.2, the set of matrices consistent with data X1,
0, V0 and disturbance model D in (8) is

˜ :=
{[

A B
]
: X1 = AZ0 + BV0 + D,D ∈ D

}
nd we have D0 ∈ D. As in the linear case, D0 ∈ D is precisely
quivalent to

[
A⋆ B⋆

]
∈ C̃. We can then follow closely the

ationale of Section 2.3, and we briefly outline only the key steps.
he set C̃ can be reformulated as

C̃ =

{[
A B

]
:
[
I A B

]
·

[
C̃ B̃⊤

B̃ Ã

]
[⋆]⊤ ⪯ 0

}
[

C̃ B̃⊤

B̃ Ã

]
:=

⎡⎢⎢⎣ X1X⊤

1 − ∆∆⊤
−X1

[
Z0
V0

]⊤

−

[
Z0
V0

]
X⊤

1

[
Z0
V0

] [
Z0
V0

]⊤

⎤⎥⎥⎦ .

he next assumption is analogous to Assumption 1.

ssumption 2. Matrix
[

Z0
V0

]
has full row rank.

˜ ≻ 0 by Assumption 2, and C̃ can be rewritten as

˜ =
{[

A B
]

= Z⊤
: (Z − ζ̃)⊤Ã(Z − ζ̃) ⪯ Q̃

}
(38)

˜ := −Ã−1B̃, Q̃ := B̃⊤Ã−1B̃ − C̃.

he logical steps of Lemmas 1, 2 and Proposition 1 can be re-
eated in the same way after replacing

[
X0
U0

]
with

[
Z0
V0

]
, so their

esults are summarized in the next lemma without proof.

emma 3. Under Assumption 2, we have: Ã ≻ 0, Q̃ ⪰ 0, C̃ is
ounded with respect to any matrix norm, and

˜ =
{
(ζ̃ + Ã−1/2Υ Q̃1/2)⊤ : ∥Υ ∥ ≤ 1

}
. (39)

As in Section 3, the matrix-ellipsoid parametrization in (39) is
ey to apply Petersen’s lemma, which allows us to obtain the next
esult for data-driven control of the polynomial system in (36).

roposition 2. Let Assumption 2 hold and Z(0) = 0. Given positive
efinite2 polynomials ℓ1, ℓ2 with ℓ1 radially unbounded,3 suppose
here exist polynomials V , k, λ with V (0) = 0 and k(0) = 0 such
hat for each x

(x) − ℓ1(x) ≥ 0 (40)⎡⎢⎢⎣
ℓ2(x) +

∂V
∂x (x)ζ̃

⊤ [ Z(x)
W (x)k(x)

]
⋆ ⋆

Ã−1/2
[ Z(x)
W (x)k(x)

]
−λ(x)I ⋆

λ(x)Q̃1/2 ∂V
∂x (x)

⊤ 0 −4λ(x)I

⎤⎥⎥⎦ ⪯ 0 (41)

λ(x) > 0. (42)

2 That is, zero at zero and positive elsewhere.
3 That is, ℓ (x) → +∞ as |x| → +∞.
1
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hen, the origin is globally asymptotically stable for

˙ = AZ(x) + BW (x)k(x) =: fA,B(x)

for all
[
A B

]
∈ C̃, and in particular for

[
A⋆ B⋆

]
∈ C̃, i.e., for the

losed loop ẋ = fA⋆,B⋆ (x).

Let us comment the conditions and the conclusion of Propo-
ition 2. Condition (40) imposes positive definiteness and radial
nboundedness of the Lyapunov function V ; condition (42) is
he positivity of the multiplier used in Petersen’s lemma; con-
ition (41) imposes decrease of the Lyapunov function for all
A B

]
∈ C̃. In particular, suppose ζ̃

⊤
=

[
A⋆ B⋆

]
in (41); then,

the block (1, 1) alone of the matrix in (41) would express a
model-based condition for global asymptotic stability for ẋ =

⋆Z(x)+B⋆W (x)k(x). The conclusion is global asymptotic stability
or the closed loop ẋ = fA,B(x) for all

[
A B

]
∈ C̃. Similarly

o the linear case (see comment below (11)), this is relevant
or the closed loop with disturbance ẋ = fA⋆,B⋆ (x) + d obtained
from (36) because global asymptotic stability guarantees input-
to-state stability with ‘‘small disturbances’’ as shown in Sontag
(1990, Thm. 2), to which we refer for precise characterizations.

Proof of Proposition 2. Note first that since Z(0) = 0 and
(0) = 0, the origin is an equilibrium of fA,B for all

[
A B

]
∈ C̃. Then,

the proof consists in showing that V is a Lyapunov function for
all systems ẋ = fA,B(x),

[
A B

]
∈ C̃. Specifically, we show that (i) V

s positive definite and radially unbounded, and (ii) its derivative
long solutions satisfies

∇V (x), fA,B(x)⟩ =
∂V
∂x (x) [ A B ]

[ Z(x)
W (x)k(x)

]
≤ −ℓ2(x) ∀x, ∀

[
A B

]
∈ C̃.

(43)

f the previous properties (i)-(ii) hold, classical Lyapunov the-
ry (Khalil, 2002, Thm. 4.2) yields the conclusion of the propo-
ition. Positive definiteness of V follows from V (0) = 0, (40) and
1 positive definite; radial unboundedness of V follows from (40)
nd ℓ1 radially unbounded. We then address the derivative of V
long solutions. Set

[
A B

]
= Z⊤

∈ C̃ in (43) and substitute the
arametrization of Z from (39); (43) holds if and only if, for each
,

− ℓ2(x) ≥ ⟨∇V (x), fA,B(x)⟩ =
∂V
∂x (x)ζ̃

⊤ [ Z(x)
W (x)k(x)

]
+

[ Z(x)
W (x)k(x)

]⊤

Ã−1/2Υ Q̃1/2 1
2

∂V
∂x (x)

⊤ (44)

+
1
2

∂V
∂x (x)Q̃

1/2Υ ⊤Ã−1/2 [ Z(x)
W (x)k(x)

]
∀Υ with ∥Υ ∥ ≤ 1.

e now show that this is true thanks to (41) and (42). By Schur
omplement for nonstrict inequalities (Boyd et al., 1994, p. 28)
nd (42), (41) is equivalent to

− ℓ2(x) ≥
∂V
∂x (x)ζ̃

⊤ [ Z(x)
W (x)k(x)

]
+

[ Z(x)
W (x)k(x)

]⊤

·
Ã−1

λ(x) [⋆]
⊤

+
∂V
∂x (x)·

λ(x)Q̃
4 [⋆]⊤. (45)

n other words, we have by (41) and (42) that for each x, there
xists 1/λ(x) > 0 such that (45) holds. Apply Fact 2 pointwise

(i.e., for each x) to (45) with E and G⊤ corresponding respectively
o

[ Z(x)
W (x)k(x)

]⊤

Ã−1/2 and 1
2

∂V
∂x (x)Q̃

1/2; the fact that for each x, there
xists 1/λ(x) > 0 such that (45) holds implies that for each
, (44) holds or, equivalently, that for each x, (43) holds. All
roperties required of V have been shown, and the conclusion
f the proposition follows. □

When writing the Lyapunov derivative along solutions as
n (43) and substituting the expression of C̃ as in (44), the utility
f Petersen’s lemma beyond the case of linear systems becomes
lear. We use the nonstrict version of it in Fact 2 (instead of
he strict version in Fact 1) in view of the next sum-of-squares
9

relaxation and the subsequent numerical implementation, where
only nonstrict inequalities can effectively be implemented. Poly-
nomial positivity in the conditions of Proposition 2 is impractical
to verify, so we turn them into sum-of-squares conditions in the
next theorem.

Theorem 3. Let Assumption 2 hold and Z(0) = 0. Given positive
definite polynomials ℓ1, ℓ2 with ℓ1 radially unbounded and a positive
scalar ϵλ, suppose there exist polynomials V , k, λ with V (0) = 0 and
k(0) = 0 such that

V − ℓ1 ∈ S (46a)

−

⎡⎢⎢⎣
ℓ2 +

∂V
∂x ζ̃

⊤ [
Z
Wk

]
⋆ ⋆

Ã−1/2
[

Z
Wk

]
−λI ⋆

λQ̃1/2 ∂V
∂x

⊤
0 −4λI

⎤⎥⎥⎦ ∈ Sm (46b)

− ϵλ ∈ S. (46c)

hen, (40)–(42) and the conclusion of Proposition 2 hold.

roof. (46a) and (46c) imply (40) and (42), respectively. Call
↦→ Q (x) the matrix polynomial in (46b), so that (46b) rewrites
Q ∈ Sm. By definition of Sm, see Chesi (2010, Eq. (9)), we have

that for each x, Q (x) ⪯ 0, i.e., (41). □

Let us comment Theorem 3. Quantities Z andW are the known
regressors; ζ̃, Ã, Q̃ are obtained from data X1, Z0, V0; ℓ1, ℓ2
nd ϵλ are design parameters; finally, V , k and λ are decision
ariables. Then, the blocks (1, 1), (3, 1) and (1, 3) of the matrix
n (46b) entail products between decision variables, which make
ondition (46b) bilinear and the feasibility program in (46) not
onvex. A suboptimal strategy that is widely adopted in the sum-
f-squares literature, see Jarvis-Wloszek, Feeley, Tan, Sun, and
ackard (2005), is to alternately solve for V with k and λ fixed,
nd solve for k and λ with V fixed. We illustrate this strategy in
ection 6.
As in Section 3, when the set C̃ is given directly in the form (38)

s a matrix-ellipsoid over-approximation of a less tractable set
see the discussion in Section 4.4), one can use the next corollary
nstead of Theorem 3.

orollary 2. Let Ã ≻ 0 and Q̃ ⪰ 0 hold for the set C̃ =
{[

A B
]

=

⊤
: (Z − ζ̃)⊤Ã(Z − ζ̃) ⪯ Q̃

}
as in (38) and Z(0) = 0. Given positive

efinite polynomials ℓ1, ℓ2 with ℓ1 radially unbounded and a positive
calar ϵλ, suppose there exist polynomials V , k, λ with V (0) = 0
nd k(0) = 0 satisfying (46). Then, (40)–(42) and the conclusion of
roposition 2 hold.

n the next section, we obtain C̃ as described in Section 4.4
nd, in particular, through the optimization problem in (34). This
rovides a set C̃ directly in the form (38), so we will apply
orollary 2.
Finally, we follow up on the comparison with Guo et al.

2021) discussed in Section 1. As the proof of Proposition 2
hows, the data-based conditions (40)–(42) correspond naturally
o enforcing model-based conditions (Khalil, 2002, Thm. 4.2) for
ll systems consistent with data. This makes this approach ex-
endible to other cases such as local asymptotic stability. Indeed, if
e consider (Khalil, 2002, Thm. 4.1), we obtain the next corollary.

orollary 3. Let Assumption 2 hold and Z(0) = 0. Given positive
efinite polynomials ℓ0, ℓ1, ℓ2 and a positive scalar c yielding Dc :=

x ∈ Rn
: ℓ0(x) ≤ c}, suppose there exist polynomials s1, s2, V , k, λ

ith V (0) = 0 and k(0) = 0 such that for each x

1(x) ≥ 0, s2(x) ≥ 0, (47)

(x) − ℓ (x) + s (x)(ℓ (x) − c) ≥ 0 (48)
1 1 0
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⎡⎢⎢⎢⎣
{
ℓ2(x) +

∂V
∂x (x)ζ̃

⊤ [ Z(x)
W (x)k(x)

]
− s2(x)(ℓ0(x) − c)

}
⋆ ⋆

Ã−1/2
[ Z(x)
W (x)k(x)

]
−λ(x)I ⋆

λ(x)Q̃1/2 ∂V
∂x (x)

⊤ 0 −4λ(x)I

⎤⎥⎥⎥⎦ ⪯ 0

(49)

(x) > 0. (50)

hen, the origin is locally asymptotically stable for ẋ = fA,B(x) for all
A B

]
∈ C̃, and in particular for

[
A⋆ B⋆

]
.

he proof would follow the same rationale as the proof of Propo-
ition 2, so we sketch only the key steps to highlight that the
onditions (47)–(50) in Corollary 3 follow naturally from Khalil
2002, Thm. 4.1). (47) and (48) imply that V (x) ≥ ℓ1(x) for
ll x ∈ Dc and give (Khalil, 2002, Eq. (4.2)). To have (Khalil,

2002, Eq. (4.4)), we would like to impose for all
[
A B

]
∈ C̃

that ⟨∇V (x), fA,B(x)⟩ ≤ −ℓ2(x) for all x ∈ Dc . This is implied
by the fact that for all x, for all Υ with ∥Υ ∥ ≤ 1, ℓ2(x) +
∂V
∂x (x)(ζ̃+Ã−1/2Υ Q̃)⊤

[ Z(x)
W (x)k(x)

]
−s2(x)(ℓ0(x)−c) ≤ 0. This condition

is indeed obtained from (47), (49)–(50) and Petersen’s lemma.
With Corollary 3, it is immediate to write its sum-of-squares
relaxation for decision variables s1, s2, V , k, λ in the same way we
wrote Theorem 3 with Proposition 2. We note that local asymp-
totic stability can be verified from data for a polynomial system
by specializing (Martin & Allgöwer, 2021), whereas Corollary 3
addresses control design.

6. Numerical illustration

In this section we consider as a running example the system
in Khalil (2002, Example 14.9), i.e.,[
ẋ1
ẋ2

]
=

[
x21 − x31 + x2

0

]
+

[
0
1

]
u + d. (51)

his continuous-time polynomial system can be cast in the form
n (36). We consider it as such in Section 6.3 to illustrate Theo-
em 3; we consider its linearization

˙ =

[
0 1
0 0

]
x +

[
0
1

]
u + d =: Act

⋆ x + Bct
⋆ u + d (52)

in Section 6.2 to illustrate Theorem 2; with an Euler discretization
and sampling time τs, we consider

x+
= Adt

⋆ x + Bdt
⋆ u + d := (I + τsAct

⋆ )x + (τsBct
⋆ )u + d (53)

in Section 6.1 to illustrate Theorem 1. We emphasize that these
systems are used only for data generation, but the vector fields
in (51)–(53) are not known to the data-based schemes. For δ > 0,
the disturbance d in (51)–(53) is taken as (

√
δ cos(2π0.4t),

√
δ

in(2π0.4t)), where t corresponds to integer multiples of τs in
iscrete time. Hence, d satisfies |d|2 ≤ δ. From this bound on
, the disturbance sequence D in (8) satisfies then the bound
D⊤

⪯ TδI . For the linear systems (52)–(53), we convert the
ound on d into ∆ :=

√
TδI in (8); for the polynomial system (51),

e retain the bound on d and consider C̃ as an ellipsoidal over-
pproximation of the type described in Section 4.4. We solve
ll numericals programs using YALMIP (Löfberg, 2004) with its
um-of-squares functionality (Löfberg, 2009), MOSEK ApS and
ATLAB

®
R2019b.

.1. Linear system in discrete time

Consider (53) with τs = 0.5, T = 100 and δ = 0.1. The exper-
ment generating data U0, X0 and X1 in (6) is depicted in Fig. 1. A
niform random variable in [−1, 1] is used as input u. Matrices
and U satisfy Assumption 1. Using the semidefinite program
0 0

10
Fig. 1. Experiment yielding data from (53): input and state. Dots on the curve
of u indicate the discrete-time instants.

Fig. 2. Phase plot of (53) with d = 0 in closed loop with the data-based
controller K obtained in Section 6.1. Solutions are gray, where dots correspond
to the different discrete-time instants. The level sets of the Lyapunov function
are colored and their corresponding values are annotated. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 3. Experiment yielding data from (52): input and state.

in Theorem 1, a controller K =
[
−0.1521 − 1.3475

]
is de-

signed, whose stabilization properties are certified by a Lyapunov
function x⊤P−1x = x⊤

[
0.0043 0.0115
0.0115 0.1000

]
x. The resulting closed-loop

solutions for d = 0 and the level sets of this Lyapunov function
are depicted in Fig. 2.

6.2. Linear system in continuous time

Consider (52) with T = 100 and δ = 0.1. The experiment
generating data U0, X0 and X1 in (6) is depicted in Fig. 3. A
sweeping sine with minimum & maximum frequencies 0 & 0.8
and amplitude 2 is used as input u. Matrices X0 and U0 satisfy
Assumption 1. The times t0, t1, . . . , tT−1 when state and state
derivative are evaluated for X and X are uniformly spaced by
0 1
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F
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c
l
x

Fig. 4. Phase plot of (52) with d = 0 in closed loop with the data-based
controller K obtained in Section 6.2. Solutions are gray. The arrows represent
the closed-loop vector field, and their color indicates their actual magnitude as
in the right color bar. The level sets of the Lyapunov function are colored and
their corresponding values are annotated. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 5. Experiment yielding data from (51): state. The input is the same as in
ig. 3.

/T = 5/100. Using the semidefinite program in Theorem 2, a
ontroller K =

[
−21.4762 − 9.2835

]
is designed, whose stabi-

ization properties are certified by a Lyapunov function x⊤P−1x =
⊤

[
0.5214 0.1430
0.1430 0.0590

]
x. The resulting closed-loop solutions for d = 0

and the level sets of this Lyapunov function are depicted in Fig. 4.

6.3. Polynomial system

Consider (51) with T = 1000 and δ = 0.01. Input and
disturbance of the experiment generating data V0, Z0 and X1
in (37) take the same form as in Section 6.2 with times t0, t1,
. . . , tT−1 uniformly spaced by 5/T = 5/1000. Since (51) is now
nonlinear unlike (52), these input and disturbance result in a
different state evolution x, which is reported in Fig. 5.

Whereas the setup of the semidefinite programs in Theo-
rems 1 and 2 is quite straightforward, the setup of the sum-of-
squares program from Theorem 3 is less so, and we illustrate its
most relevant aspects.

(1) The selection of the regressors Z and W in (36) is a key
step. On one hand, the system is unknown and some of the
monomials in the regressors may not appear in the ‘‘true’’ vec-
tor fields; on the other hand, the more the monomials and the
associated unknown coefficients are, the larger the uncertainty
typically is in such coefficients and a too large uncertainty
affects feasibility of the sum-of-squares program in a critical
way. Therefore, a parsimonious number of monomials is desir-
able; which monomials should be taken can be determined by
trial and error by solving the program with different selections
of regressors. We select here Z(x) := (x2, x21, x

2
2, x

3
1, x

3
2) and

W (x) := 1, which determine from (36) and (51)[
A⋆ | B⋆

]
:=

[
1 1 0 −1 0
0 0 0 0 0

0
1

]
.
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(2) The numerical experiment is likewise important. Intuitively,
the richer the data, the better; for this reason we selected as
input a sweeping sine. Moreover, when the set C̃ is obtained as
an ellipsoidal over-approximation as described in Section 4.4,
the size of C̃, the associated uncertainty, and the degree of
robustness required in the design of the controller all decrease
with T , in general; hence, more data points T enlarge the feasi-
bility set of the sum-of-squares program in (46). We obtain the
ellipsoidal over-approximation C̃ by solving the optimization
problem (34) with (35) and, for i = 0, . . . , T − 1,

~◦

i := ẋ(ti), ~i := Z(x(ti)), υi := W (x(ti))u(ti).

C̃ is then defined by the matrices Ã, B̃, C̃ := B̃⊤Ã−1B̃−I returned
by (34) or, alternatively, by Q̃ = I and ζ̃ := −Ã−1B̃. Matrix ζ̃
is especially relevant as the center of the ellipsoid C̃. For the
experiment in Fig. 5, we obtain

ζ̃
⊤

=
[

0.9569 1.0243 0.0000 −1.0084 −0.0627
−0.0160 0.0146 −0.0336 −0.0037 0.0334

0.0009
1.0101

]
which should be compared against

[
A⋆ | B⋆

]
.

(3) To solve the sum-of-squares program of Theorem 3, we
commented after it that we adopt the common practice of
solving alternately two sum-of-squares programs. Specifically, we
first solve (46b) and (46c) with respect to the controller k
and multiplier λ with fixed Lyapunov function V ; with the
returned controller and multiplier, we solve (46a) and (46b)
with respect to V with fixed k and λ. To start up this procedure,
we need an initial guess for V . In keeping with the data-based
approach, we use the quadratic Lyapunov function that Theo-
rem 2 returns for the linearized system with same disturbance
level, in this case x⊤

[
0.0278 0.0127
0.0127 0.0216

]
x. (This correspond to an

experiment with small signals in a neighborhood of the origin,
so that the linear approximation is trustworthy; the theoretical
legitimacy of such an initial guess is based on De Persis and
Tesi (2020, Thm. 6).) The initialization of V is all the more
important whenever the feasibility set is small. In the specific
example, we run 15 iterations of this procedure (solving a total
of 30 sum-of-squares programs).
(4) Finally, we mention two aspects regarding the solution of
the two alternate programs above. An important aspect for
feasibility of each of those is the selection of the minimum &
maximum degrees of polynomials, as lucidly explained in Tan
(2006, Appendix). In this example we select the minimum &
maximum degrees for V , k, λ as respectively 2 & 4, 1 & 3, 0 &
4. A minor aspect is that we can take in (46) the parameter ℓ2 as
decision variable for greater flexibility since ℓ2 appears linearly
anyway; when we solve for k and λ, we also solve for ℓ2 and
capture that it needs to be positive definite by imposing ℓ2 ∈ S
(minimum & maximum degrees equal to 2 & 4).
With this procedure and design parameters ℓ1(x) := 10−3(x21+

x22) and ϵλ := 10−3, the obtained V , k, λ are in the next table; the
corresponding closed-loop solutions for d = 0 and the level sets
of V are depicted in Fig. 6.

Qty Expression

V 4.0698x21 + 4.3023x1x2 + 3.5364x22 + 0.003475x31
+ 0.02465x21x2 − 0.01500x1x

2
2 + 0.001575x32

+ 0.008769x41 + 0.003686x31x2 + 0.01263x21x
2
2

+ 0.0006249x1x
3
2 + 0.02279x42

k − 1.0291x1 − 1.7292x2 − 0.8793x21 + 0.2927x1x2 − 0.07565x22
− 0.5511x31 − 1.6307x21x2 + 0.08336x1x

2
2 − 2.5235x32

λ 0.04905 − 0.006151x1 + 0.002003x2 + 0.1106x21
+ 0.004398x1x2 + 0.1123x22
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Fig. 6. Phase plot of (51) with d = 0 in closed loop with the data-based
controller k(·) obtained in Section 6.3. See the caption of Fig. 4 for the
interpretation of this figure.

6.4. Certainty equivalence and computation times

In Section 4.2 we discussed the interpretation of ζ⊤ as the
least-squares model

[
Als Bls

]
and the relation of our control

law with certainty-equivalence control. We follow on from that
section and analyze the performance of the two approaches for
the discrete-time system of Section 6.1. Based on

[
Als Bls

]
, we

design a controller through the program

find K , P = P⊤
≻ 0

s. t. (Als + BlsK )P(Als + BlsK )⊤ − P ≺ 0,

which is the counterpart of (10) for a known model and is thus
a fair comparison due to the same underlying strategy to design
the controller. This program is equivalent, by a Schur complement
and a change of variables, to

find Y , P = P⊤
≻ 0 (54a)

s. t.
[

−P [ Als Bls ]
[
P
Y

][
P
Y

]⊤ [ Als Bls ]⊤ −P

]
≺ 0. (54b)

If (54) is feasible, we call the returned solution (Yls, Pls), and
a controller gain is Kls := YlsP−1

ls . This least-squares controller
stabilizes all systems corresponding to matrices

[
A B

]
∈ C if and

only if (10) is feasible for K = Kls or, under Assumption 1, if and
only if (25) is feasible for K = Kls by Theorem 1, i.e., if and only
if

find P = P⊤
≻ 0 (55a)

s. t.

[
−P−C 0 B⊤

0 −P [ P Y⊤
ls ]

B
[

P
Yls

]
−A

]
≺ 0 (55b)

is feasible. To compare feasibility of (25) and feasibility of (55)
after a controller is designed from the least-squares estimate as
in (54), we consider a grid of points (δ, T ) where |d|2 ≤ δ as in
Section 6.1. For each value (δ, T ) in this grid, each element of the
input sequence is obtained from a uniform random variable in
[−1, 1] and each element of the unknown disturbance sequence
is obtained from a uniform random variable in {d ∈ Rn

: |d|2 ≤ δ},
so that the disturbance sequence D in (8) satisfies DD⊤

⪯ TδI .
For x0 =

[
3

−1

]
, the resulting state sequence determines U0, X0,

X1 and A, B, C, and we test feasibility of (25). A, B determine
also ζ⊤

=
[
Als Bls

]
and we test feasibility of (55). For each

value (δ, T ), we consider a total of ntot = 25 different sequences
and count the times nTheorem 1 and nls when, respectively, (25)
and (55) are feasible. The ratios nTheorem 1/ntot and nls/ntot are
in Fig. 7. The figure confirms the discussion in Section 4.2 and
in particular that for small values of uncertainty (corresponding

here to small δ), certainty-equivalence control is able to stabilize
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Fig. 7. For different values of (δ, T ), the ratio nTheorem 1/ntot of feasible instances
of (25) (top) and the ratio nls/ntot of feasible instances of (55) (bottom) are
depicted.

Fig. 8. For different values of δ, the average elapsed time to certify (25)
as feasible or infeasible is depicted as a function of T . These times are
approximately constant across T .

ll systems consistent with data but it fails to do so for larger
evels of uncertainty, which confirms the need to explicitly take
he uncertainty into account as (25) does.

For different values of δ and T , we measure the elapsed time4
o certify (25) as feasible or infeasible and find the average over
he ntot sequences. The resulting times are reported as a function
f T in Fig. 8, which shows that the average elapsed time is
pproximately constant across T . This follows from the fact that
he number of neither decision variables nor constraints in (25)
epends on T .

ppendix. Proof of Fact 1

To give the proof, we need some auxiliary results. The first one
s in the next fact.

act 4 (Petersen & Hollot, 1986, Lemma A.4). Consider matrices A,
, B in Rr×r with A = A⊤

⪰ 0, C = C⊤
⪰ 0 and B = B⊤

≺ 0.
uppose further that

w⊤Bw)2 − 4w⊤Aww⊤Cw > 0 for all w ∈ Rr
\{0}. (A.1)

hen λ2A + λB + C ≺ 0 for some λ > 0.

4 This elapsed time is obtained by the MATLAB
®

R2019b function tic toc
on a machine with processor Intel

®
Core™ i7 with 4 cores and 1.80 GHz.
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By Horn and Johnson (2013, Thm. 7.2.7), F = F
⊤

is positive
emidefinite if and only if there exists a s-by-q matrix Φ such
hat F = Φ⊤Φ; hence, F in (1) rewrites as

:= {F ∈ Rp×q
: F⊤F ⪯ Φ⊤Φ}. (A.2)

he second auxiliary result is in essence (Petersen, 1987,
emma 3.1), of which however we need a slight extension to
andle, in the set F in (A.2), the condition F⊤F ⪯ Φ⊤Φ (with
ositive semidefinite bound) instead of F⊤F ⪯ I , which appears
n Petersen (1987, Lemma 3.1). This is done in the next lemma, for
hich we present also a short proof to account for the required
odification.

emma 4. For vectors x in Rp, y in Rq and set F in (A.2),
axF∈F (x⊤Fy)2 = |x|2 |Φy|2.

roof. By Cauchy–Schwarz’s inequality and (A.2),

x⊤Fy| ≤ |x||Fy| = |x|
√
y⊤F⊤Fy ≤ |x|

√
y⊤Φ⊤Φy,

hat is, |x⊤Fy| ≤ |x||Φy|. From this relation we have that the
tatement is true if x = 0 or Φy = 0. The proof is complete if, for
x ̸= 0 and Φy ̸= 0, we obtain F ∈ F such that |x⊤Fy| = |x||Φy|,
s we do in the rest of the proof. Since x ̸= 0 and Φy ̸= 0, take

the specific selection

F := xy⊤Φ⊤Φ/
(
|x||Φy|

)
.

First, we show F ∈ F . Indeed,

F⊤F =
Φ⊤(Φyx⊤xy⊤Φ⊤)Φ

|x|2|Φy|2
=

Φ⊤(Φyy⊤Φ⊤)Φ
|Φy|2

nd F ∈ F because Φyy⊤Φ⊤
⪯ |Φy|2I (for all v ∈ Rs,

⊤
(
Φyy⊤Φ⊤

)
v ≤ |v⊤Φy||y⊤Φ⊤v| ≤ |Φy|2|v|

2). Second,

x⊤Fy)2 =

(
x⊤

xy⊤Φ⊤Φ

|x||Φy|
y
)2

= |x|2|Φy|2

nd we have also shown |x⊤Fy| = |x||Φy|. □

With Fact 4 and Lemma 4, we can prove Fact 1. The direction
2b) H⇒ (2a) is easy since for all F ∈ F in (A.2),

0 ≻ C + λEE⊤
+ λ−1G⊤Φ⊤ΦG

⪰ C + λEE⊤
+ λ−1G⊤F⊤FG (by λ > 0)

= C + EFG + G⊤F⊤E⊤

+ (
√

λE⊤
−

√
λ

−1
FG)⊤(

√
λE⊤

−
√

λ
−1

FG)
⪰ C + EFG + G⊤F⊤E⊤.

We turn then to the direction (2a) H⇒ (2b). (2a) is equivalent to
the fact that for all x ̸= 0 and for all F ∈ F , x⊤Cx + 2x⊤EFGx < 0
and to the fact that for all x ̸= 0, 0 > x⊤Cx+2maxF∈F (x⊤EFGx) =

x⊤Cx+2maxF∈F |x⊤EFGx| because, for each x, maxF∈F (x⊤EFGx) ≥

maxF∈F,x⊤EFGx≥0(x⊤EFGx) = maxF∈F,x⊤EFGx≤0(−x⊤EFGx). Apply
Lemma 4 and obtain that for all x ̸= 0, x⊤Cx + 2|E⊤x||ΦGx| < 0.
For this to hold, we necessarily have x⊤Cx < 0 for all x ̸= 0,
i.e., C ≺ 0. Under C ≺ 0, x⊤Cx + 2|E⊤x||ΦGx| < 0 for all x ̸= 0 is
equivalent to the fact that for all x ̸= 0, (x⊤Cx)2 > 4|E⊤x|2|ΦGx|2.
This relation corresponds to (A.1) and the hypothesis of Fact 4
is verified. Hence, we conclude from Fact 4 that λ2EE⊤

+ λC +

G⊤Φ⊤ΦG ≺ 0 for some λ > 0, which is equivalent to λ2EE⊤
+

λC + G⊤FG ≺ 0 and (2b).
13
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