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A B S T R A C T

A crucial challenge in digital image forensics is to identify the source camera model used to generate given
images. This is of prime importance, especially for Law Enforcement Agencies in their investigations of Child
Sexual Abuse Material found in darknets or seized storage devices.

In this work, we address this challenge by proposing a solution that is characterized by two main
contributions. It relies on the extraction of rather small homogeneous regions that we extract very efficiently
from the integral image, and on a hierarchical classification approach with convolutional neural networks as
the underlying models. We rely on homogeneous regions as they contain camera traces that are less distorted
than regions with high-level scene content. The hierarchical approach that we propose is important for scaling
up and making minimal modifications when new cameras are added. Furthermore, this scheme performs better
than the traditional single classifier approach. By means of thorough experimentation on the publicly available
Dresden data set, we achieve an accuracy of 99.01% with 5-fold cross-validation on the ‘natural’ subset of this
data set. To the best of our knowledge, this is the best result ever reported for Dresden data set.
1. Introduction

An intriguing question in digital image forensics is that given an
image, would it be possible to identify the source camera which was
used to capture it? This question is of prime importance to Law En-
forcement Agencies (LEAs) when investigating digital image and video
information. The last two decades have seen rapid growth in the usage
of the Internet, and unfortunately, this has also led to an increase in the
circulation of illicit content of minors especially in darknets. As part of
their investigations, LEAs aim to identify the source of such content
because knowing the source camera used to capture such content will
help them gain additional intelligence in building stronger cases against
suspected offenders. Source Camera Identification (SCI) is an important
low-level problem in the field of computer vision and plays a crucial
role in the forensic investigations of digital images. The methods of SCI
can also be used in a few related applications such as image forgery
detection (Bondi et al., 2017; Cozzolino & Verdoliva, 2019; Li et al.,
2014) for fighting fake news, and image integrity verification (Li et al.,
2009) for verifying digital evidence presented to the courts of law,
among others. Our work is part of the EU-funded 4NSEEK project to
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develop forensic tools for LEAs that will help them further to fight
against child sexual abuse.

In this work, we aim to identify the source camera model of an
image by examining only the pixel values. Clues for identifying the
source camera can also be gathered from the metadata that comes in
the format of the Exchangeable Image File (EXIF) header. However, this
information can be modified when the image is re-saved in a different
format or when it is re-compressed. Moreover, any tampering with the
information in the EXIF headers cannot be detected. This issue makes
the information in the EXIF headers unreliable for the task of SCI, and
we, therefore, avoid using them. In contrast, when the pixel values are
altered in an image, research has shown that it is possible to detect such
image tampering. For example, it is possible to identify some common
image processing operations such as median filtering (Kang et al., 2013;
Kirchner & Fridrich, 2010), Gaussian filtering (Fan et al., 2015; Kang
& Wei, 2008), and JPEG image compression (Kang & Wei, 2008; Luo
et al., 2010; Wang & Zhang, 2016), among others. Therefore, relying
on the pixel values makes SCI more robust when compared to a system
that depends on image meta-data.
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Another approach for SCI involves the examination of digital wa-
termarks. While this is a very effective approach, in practice, such
watermarks are not embedded into images by most consumer-grade
cameras. Digital watermarking is mainly used for identifying copy-
right infringements in commercial digital media, but it has limited
applicability for SCI.

With smartphones becoming a common commodity, and image edit-
ing tools gaining more popularity, it is getting even more challenging
to identify cameras from images. Operations such as image resizing,
filtering, and compression, among others, not only tamper with the
sensor pattern noise but also leave behind operation-specific traces that
are embedded into the image. While the presence of these additional
traces makes SCI more difficult, it is still possible to detect their pres-
ence (Fan et al., 2015; Kang et al., 2013; Kang & Wei, 2008; Kirchner
& Fridrich, 2010; Luo et al., 2010; Wang & Zhang, 2016). Detection of
image forgery is an important forensic task, but falls beyond the scope
of this work, as we consider only unedited images for this study.

It is necessary here to clarify what is meant by camera-model and
camera-device identification. These are two main approaches for SCI.
In model identification, the task is to identify the specific camera model
that was used to capture an image (for example, an iPhone 10, an
iPhone 11, etc.). We refer to the manufactured instances of the same
camera model as devices. Device identification is more challenging and
is also of high interest to forensic investigators. A prerequisite for an
approach with good performance for device identification is a method
that performs very well first and foremost for model identification. In
this work, we focus on camera model identification.

The key contributions of our work are threefold and can be sum-
marized as follows. Firstly, we observed that during the extraction
of camera features from an image, it is important to ensure that the
features correspond to the processing noise and not the scene details.
This is more essential when employing neural networks for feature
extraction. Therefore, in order to prevent any bias due to the involved
scenes, we decided to work only with homogeneous patches. Most of
the images contain such regions, and we propose a method to identify
and extract homogeneous patches from an image. The proposed method
for patch selection ensures that the learning process is not influenced
by the scene content in the images. Secondly, we propose a systematic
hierarchical scheme for data balancing which is more suited to the
problem of camera identification. Finally, we propose a hierarchical
approach for classification, where we perform brand classification in
the first level followed by the classification of camera models in the
second level (refer to Fig. 1). We empirically show that this hierarchical
scheme is more effective than non-hierarchical classification for SCI,
among other advantages. We also share the source code1 for further
dissemination of our approach and experiments.

The rest of the paper is organized as follows: The following section
describes related methods and summarizes the state-of-the-art for SCI.
The proposed methodology is described in Section 3. Section 4 eluci-
dates the systematic experiments performed along with the obtained
results. The discussion on our experiments is presented in Section 5.
Finally, the main conclusions are drawn in Section 6.

2. Related works

Ever since digital cameras gained popularity, SCI has become an im-
portant research problem for forensic analysis of digital media. Camera
identification from images becomes possible due to artefacts introduced
during the generation of a digital image. Fig. 2 captures a high-level
pipeline for image generation inside a digital camera, which involves
a sequence of hardware and software processing steps. The light rays
from the scene enter the camera through a set of lenses, followed by an
anti-aliasing filter, colour filter arrays (CFA), and finally the imaging

1 https://github.com/bgswaroop/scd-images
2

Fig. 1. The proposed hierarchical classification of homogeneous patches extracted
from a single image. At the first level, the patches are classified to determine the
camera brand. A majority voting scheme determines the specific model classifier as
elucidated in Section 2. The model-level classifier is then used to classify all the
homogeneous patches to determine the specific camera model. For example, the Canon
model classifies each patch to either of the three camera models (𝐶1, 𝐶2, or 𝐶3). A
majority voting scheme is once again employed to determine the source camera model
for the given image.

Fig. 2. A typical image generation pipeline inside a digital camera. It consists of
hardware followed by software processing steps. The light rays from the scene enter
the camera through a set of lenses, followed by anti-aliasing filters, colour filter
arrays (CFA), and finally the imaging sensor. Once the sensor converts the analog
signal to digital the software processing steps are performed. This generally involves
demosaicing, image compression, and other post-processing steps before the generation
of the final output image.

sensor. The sensor converts the analog signal to digital and produces
a RAW image. This image is further enhanced and typically involves
processing steps such as demosaicing, gamma correction, compression,
and other operations before the generation of the final image.

The exact implementation of these processing steps varies for each
camera model and leaves behind a unique processing trace during the
generation of a digital image. Furthermore, two camera devices of the
same camera model also generate a slightly different processing noise.
This intra-model variance is due to the unique random noise generated
by each imaging sensor in every device. Though challenging to extract,
the noise generated by the sensor makes camera device identification
possible. Note that, we interchangeably use the terms camera traces,
artefacts, and processing noise as they refer to the same thing.

The final image produced can therefore be considered as a combina-
tion of scene details and the in-camera processing noise. An overview
of the classification of this noise is shown in Fig. 3. The camera
noise consists of sensor noise, CFA artefacts, compression artefacts, and
image post-processing artefacts, among others. Besides sensor noise, all
other components are deterministic and when combined can identify
the specific camera model. Lukas et al. (2006) further classified the
sensor noise into shot noise and pattern noise. Shot noise is an additive
random component and can be removed by frame averaging. The pat-
tern noise is a multiplicative deterministic component that is unique to
each camera device. The pattern noise further consists of fixed pattern
noise (FPN) and Photoresponse non-uniform noise (PRNU). FPN is an
additive component caused due to dark currents, i.e. when the sensor is
not exposed to any light. PRNU is a multiplicative noise caused due to
the different sensitivities of pixels when illumined with a light source.
This component is primarily responsible for device identification. For
an elaborate classification of sensor noise we refer the reader to Lukas
et al. (2006).

One of the earliest experiments was conducted by Kurosawa et al.
(1999), where the FPN generated by the dark frames were studied. The
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Fig. 3. Categorization of camera processing noise which is embedded in every image.
There are several sources of camera noise, namely sensor noise, CFA artefacts,
compression artefacts, and post-processing artefacts, among others. The sensor noise
can be further classified into shot noise, which is an additive random component, and
pattern noise, which is a multiplicative deterministic component. The pattern noise is
further classified into FPN and PRNU based on sensor response to light.

authors examined 9 camera devices from 4 models and showed that the
FPN is unique to every camera device. This uniqueness is attributed
to the imperfections in the silicon wafer fabrication process. As the
generation of the dark frame requires access to the physical camera
device, Lukas et al. (2006) proposed a method to directly extract the
PRNU noise from natural images. In their work, a high-pass filter was
used to extract the camera fingerprints, which were in turn compared
using correlation measures to determine their source identity. Further
methods based on PRNU were presented by Chen et al. (2008), Li
(2010), Lin and Li (2015), Rosenfeld and Sencar (2009).

Methods for camera identification were also proposed that aimed
to extract the artefacts introduced by a specific set of processing op-
erations during the image generation inside a camera. Kharrazi et al.
(2004) extracted 34 handcrafted features and used an SVM for the
classification of images. These handcrafted features were designed to
target a specific set of forensic traces. Several approaches were also
proposed that specifically target the demosaicing artefacts, which are
related to the colour-filter arrays (Bayram et al., 2005; Cao & Kot, 2009;
Chen & Stamm, 2015; Swaminathan et al., 2007). Some approaches
use non-trainable features (Xu & Shi, 2012) which cannot be adapted
for newer camera models, while other approaches consider a particular
camera noise model (Thai et al., 2013). All these methods aim to extract
features by assuming that the artefacts were mainly introduced by a
subset of processing steps, and such methods are referred to as the ones
based on a closed set of forensic traces. Such methods require expertise
and effort to design feature descriptors for a specific processing step.
The drawback of these approaches is that they might miss out on some
non-intuitive forensic traces, for example, those that arise because of a
combination of such processing steps. In contrast, we do not make any
assumption on the specific source of artefacts and therefore consider
all possible forensic traces. Methods that do not make any assumptions
about the source of forensic traces, like ours, are referred to as the
ones based on the open set of forensic traces. These methods are more
promising in extracting a wide variety of camera fingerprints.

Recently, methods based on deep learning were presented to address
a variety of image forensic tasks. These methods help in overcoming
the problems associated with feature engineering, which is more suited
for the extraction of open set of forensic traces. Some image forensic
tasks that were recently approached using deep learning include the
detection of image in-painting (Wang et al., 2019; Zhu et al., 2018),
median filtering (Chen et al., 2015; Tang et al., 2018), resizing (Bunk
et al., 2017), and JPEG compression (Barni et al., 2017, 2016), and
suchlike. Though these methods are based on deep learning they are
characterized by a closed set of forensic traces. We are, however,
interested in methods using deep learning and based on an open set
of forensic traces (Bayar & Stamm, 2016; Mayer et al., 2018).
3

Bondi et al. (2016) showed that Convolutional Neural Networks
(ConvNets) can be used to extract forensic traces from images to
identify source camera models. They performed experiments on the
publicly available Dresden data set (Gloe & Böhme, 2010) and showed
that ConvNet based methods achieve state-of-the-art performance when
compared to other approaches. A similar study using ConvNets was
also performed by Tuama et al. (2016). Bayar and Stamm (2018b)
proposed a system based on an open set of forensic traces, which
indicates whether an image was captured by a camera model used
during training, or from the collection of camera models outside the
training set.

Every image generated by a digital camera consists of scene details
along with camera processing noise, which is embedded into the image.
This raises an important question. Can we extract camera traces from
an image ignoring the scene details? This is a challenge, especially in
the context of ConvNets, where we allow the model to learn its own
feature extractor. In order to prevent the ConvNet from learning high-
level features, some methods have been proposed (Bayar & Stamm,
2018a; Timmerman et al., 2020) to suppress the scene content as a
pre-processing step. These methods, however, do not fully prevent
the ConvNet from learning the high-level scene details. We address
this issue by choosing to extract patches from image regions that
are homogeneous. Further details of our patch filtering and selection
strategy are presented in Section 3.

We further note that training a hierarchy of classifiers is more suited
than training a single classifier for SCI. In machine learning, training
a highly effective single classifier becomes a challenge when there are
multiple camera devices. To overcome these challenges, we propose a
hierarchical classification scheme as shown in Fig. 1. A more detailed
account of this scheme is presented in the following section.

3. Methodology

This section describes our proposed approach, where we use hierar-
chical classification based on deep learning for source camera model
identification. We also describe in detail the data preparation steps
necessary for our pipeline.

3.1. Overview

A high-level overview of the proposed methodology is presented in
Fig. 4. The pipeline highlights three major steps. Firstly, we determine
the homogeneous regions in an image. This is done by dividing the
input image into overlapping blocks of size 128 × 128 pixels. These
blocks are then subjected to the proposed homogeneity criteria, in
order to filter out non-homogeneous patches. In the second step, a pre-
trained ConvNet is used to determine the camera brand for each of
the homogeneous patches. These predictions are then combined using
a majority vote to determine the camera brand. Finally, based on the
determined brand the corresponding model-level classifier is used to
determine the specific camera model for each of the homogeneous
patches. The patch-level predictions are then combined by performing
a majority vote which determines the source camera model for the
given input image. We begin by describing the methodology for patch
selection.

3.2. Homogeneous patch selection and extraction

As described earlier, every image consists of both scene details and
camera processing noise. Image regions can be classified into regions
with high-level scene details (that is, regions containing edges, high
texture details, etc.) and low-level scene details (that is, regions that
are homogeneous, where a group of neighbouring pixels have almost
similar intensity values). The latter type of region contains camera
processing noise that is least distorted by high-level scene details. We
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Fig. 4. The flow chart depicts a high-level pipeline of the proposed methodology, highlighting the three major steps. Firstly, the input image is divided into overlapping blocks
of size 128 × 128 pixels, which are further filtered based on our proposed homogeneity criteria, resulting in homogeneous patches. Secondly, a ConvNet is used to determine the
camera brand for each patch, which is followed by a majority vote on the predictions. Finally, based on the brand-level prediction the corresponding model-level classifier is used
to determine the camera model for each homogeneous patch. The model-level predictions are then combined by performing a majority vote to determine the source camera model
for the given input image.
Fig. 5. An illustration of patch selection using standard deviation. (a) A sample image
of size 2176 × 3968 pixels. (b) The heat map of standard deviations for non-overlapping
patches of size 128 × 128 pixels from the red colour channel. Examples of (c) saturated
patches (std < 0.005), (d) homogeneous patches (0.005 ≤ std ≤ 0.02), and (e) non-
homogeneous patches (std > 0.02). Note that, for the sake of visual clarity, in (b) we
only show non-overlapping tiles of size 128 × 128 pixels. In our experiments, however,
we use a stride of 0.25 times the block size to sample image patches. Furthermore,
this is done for all three colour channels and the std criterion in (c), (d), and (e) must
hold for all three colour channels separately.

now describe the methodology to extract homogeneous patches from
such image regions.

In order to extract patches from an image we tile the input image
with blocks of size 128 × 128 pixels. Using a larger block size, such as
256 × 256 pixels, would result in fewer blocks, and the chances of a
block being homogeneous are reduced. Using a smaller block size, such
as 32 × 32 pixels, or 64 × 64 pixels, would result in more image patches
that are homogeneous, however, extracting camera-specific features
from smaller image patches is more difficult. To account for this trade-
off, we sample the input image using a tile of size 128 × 128 pixels,
and with a stride of 0.25 times the block size. This effectively increases
the number of extracted image regions substantially, while retaining a
sufficiently large image block.

Each block is then examined for homogeneity by determining the
standard deviation of its pixel values. Since there are three colour chan-
nels, we determine three standard deviations, one for each channel.
Fig. 5 depicts a sample input image in part (a) and the correspond-
ing standard deviations of each image block are shown in part (b).
Note that for the sake of clarity, we show the standard deviations
for the red colour channel and use non-overlapping patches with a
stride of 1 block. The standard deviation values of the homogeneous
regions are smaller than the others. We subjectively determined a high
4

threshold with a value of 0.02 to exclude non-homogeneous patches
with significant scene level details. This threshold was determined after
manually examining hundreds of extracted patches. We also set a low
threshold of 0.005 to eliminate saturated patches. A saturated patch is
one that has true loss of data due to having many pixel values clipped
to the maximum intensity (i.e. 255), thereby overriding the camera
noise. This occurs when there is very high incoming light intensity
to the sensor or when certain operations (e.g. denoising) are used by
editing software. In the latter case, such operations may result in a few
regions where the difference between the neighbouring pixels is close
to zero. Finally, for a patch to be considered homogeneous, all three
standard deviations must independently adhere to the threshold limits
defined above. Sample image patches for saturated, homogeneous, and
non-homogeneous are shown in Fig. 5(c–e).

In our experiments, described in Section 4, we determine the num-
ber of homogeneous patches to be extracted from each image as fol-
lows. Suppose a given number of 𝑝 patches need to be extracted. If the
number of homogeneous patches for an image is more than 𝑝, then we
uniformly sample 𝑝 patches so that they are evenly distributed among
the homogeneous regions across the whole image. On the other hand,
when there are fewer than 𝑝 patches per image, we choose all the homo-
geneous patches and choose the remaining patches from the saturated
and non-homogeneous patches with the lowest standard deviations.
Thus, we ensure that homogeneous regions are given priority during
the patch extraction. Finally, we subtract the per-colour-channel mean
from the respective colour channel of the input image. This is done to
minimize the colour information being inadvertently learnt for classifi-
cation. Fig. 6 illustrates this pre-processing step and demonstrates that
the effect of brightness in the input patches is reduced by this operation.
Thereby, the classifier focuses on the noise, which is our matter of
interest. Fig. 7 depicts the ratio of the average number of homogeneous
to non-homogeneous to saturated patches for each camera model in
the Dresden data set. Further details concerning the camera models are
presented in Table 1.

The patch selection approach that we propose enable us to process
images of different dimensions. In contrast, methods that use a full
image (Bennabhaktula et al., 2020) may have to do resizing first, which
can lead to unintended modifications to the forensic traces. Moreover,
our approach of choosing patches gives the ability to choose regions
that are less affected by the scene content. Next, we describe the details
of the ConvNet architecture used for patch classification.

3.3. Patch classification

For each patch to be classified into its source camera brand and
source camera model, we use a ConvNet for feature extraction that
gives input to a fully connected neural network for classification. The
ConvNet architecture that we use is inspired by the MISLNet, which
was proposed by Bayar and Stamm (2018a). The overall design of
the proposed architecture is shown in Fig. 8. The ConvNet architec-
ture is divided into seven blocks. The dimensions of the input layer,
128 × 128 × 3, correspond to the patch size used in our experiments.
This is followed by four convolutional blocks and three fully connected
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Fig. 6. An illustration of the pre-processing step. (a) Examples of homogeneous patches
and (b) the corresponding pre-processed patches after per-channel-mean subtraction.
The resulting images are in the range [−1,+1]. For visualization purposes the resulting
images are shifted to the range [0, 1] by adding 1 and dividing by 2.

Fig. 7. A depiction of the ratio between the average number of homogeneous, non-
homogeneous, and saturated patches for the 18 camera models in the Dresden data
set. This plot is generated by considering the 400 patches (of size 128 × 128 pixels)
with the lowest standard deviations from each image.

Table 1
List of camera models considered for our experiments from the Dresden data set.

Sr. no. Camera model name # Devices Total # images

1 Canon_Ixus70 3 522
2 Casio_EX-Z150 5 850
3 FujiFilm_FinePixJ50 3 630
4 Kodak_M1063 5 2314
5 Nikon_CoolPixS710 5 846
6 Nikon_D200 2 673
7 Nikon_D70 4 676
8 Olympus_mju_1050SW 5 965
9 Panasonic_DMC-FZ50 3 931
10 Pentax_OptioA40 4 638
11 Praktica_DCZ5.9 5 942
12 Ricoh_GX100 5 854
13 Rollei_RCP-7325XS 3 544
14 Samsung_L74wide 3 641
15 Samsung_NV15 3 599
16 Sony_DSC-H50 2 541
17 Sony_DSC-T77 4 906
18 Sony_DSC-W170 2 405

blocks. Bayar and Stamm (2018a) used a constrained convolutional
layer in the design of the MISLNet to suppress the high-level scene
details. As our approach relies on the homogeneous regions in the
images, we skip the constrained convolutional layer. Note that we make
use of all three input colour channels (RGB) to extract better forensic
5

traces instead of relying on monochrome images as done by Bayar and
Stamm (2018a).

As shown in Fig. 8, the first block consists of 96 convolutional filters
each of size 7 × 7 × 3, which are configured to use a stride of 2 × 2 and
a valid zero padding. This convolutional layer is followed by a batch
normalization layer (Ioffe & Szegedy, 2015), which in turn is followed
by a Rectified Linear Unit (ReLU) activation to introduce non-linearity.

Unlike MISLNet, we use ReLU activations for the convolutional
layers instead of the tanh activations. The activation layer is followed
by a max-pooling layer of size 2 × 2, which effectively reduces the
spatial dimensions by a factor of 4. We follow a similar pattern for
blocks 1–4, where each block consists of a convolution layer, batch
normalization, and ReLU transformation followed by a max-pooling
layer. The exact details of these blocks are given in Fig. 8. In the
proposed ConvNet, blocks 1–4 constitute the feature extraction part of
the network, while blocks 5–7 represent the classifier.

The output of the feature extractor block is flattened to obtain a
2048−element feature vector. We use a fully connected neural network
with three layers to classify these features into the desired camera
class. In the case of brand classification, the output of the classifier
is the camera brand (for example Sony, Canon, Nikon, and so on),
while in the case of model classification the number of units in the
output layer is set to match the number of camera models (for exam-
ple Nikon_CoolPixS710, Nikon_D200, or Nikon_D70, among others). In
order to avoid overfitting and achieve regularization, we use a dropout
layer with a dropout factor of 0.3.

The learning parameters, loss function, and data set used for the
experiments are described in Section 4.

3.4. Majority voting

An image may contain many homogeneous regions. Based on the
patch selection scheme numerous homogeneous patches are extracted
from the image. For each patch in a given image, we apply the con-
cerned ConvNet model which gives us a label. All such patch-level
predictions are then combined by taking a majority vote to determine
the label for the given test image. As demonstrated in Section 4 this
scheme of majority voting significantly decreases the error rate for
image-level prediction in comparison to patch-level predictions.

3.5. Hierarchical classification scheme

To classify an input image to its source camera model, we propose
to follow a two-level hierarchical classification approach as shown in
Fig. 1. The first level is concerned with brand classification while the
second one is for model classification. The training of these classifiers
at both brand and model level are performed independently of each
other. The trained classifiers can then be used in a hierarchical fash-
ion to perform predictions on images. In order to predict the source
camera model for a single image, firstly, homogeneous patches are
extracted. Secondly, the brand level classifier determines the brand for
each homogeneous patch. In case the majority vote on the predictions
corresponds to only one camera model, the brand classification trivially
determines the corresponding model-level classification. On the other
hand, if the predicted brand corresponds to multiple camera models,
then a second-level classifier is used to determine the class labels for
the concerned patches. This step is followed by a majority vote to
determine the predicted camera model for the given image.

The hierarchical scheme takes the advantage of training with fewer
camera devices for each classifier. Since each classifier in the hierar-
chical scheme accounts for only a limited set of camera models, the
training time to learn each classifier is reduced considerably. This also
makes it possible to independently train each classifier in parallel.
Moreover, with this modular approach, issues with any brand-specific
classifier do not impact other brand-specific classifiers, and the classi-
fication scheme can be extended to include additional camera devices
without having to retrain all classifiers.
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Fig. 8. The proposed ConvNet architecture consisting of convolutional (Conv) and fully connected (FC) layers. The first four Conv blocks represent the feature extraction part of
the network. Each Conv layer is followed by a batch normalization (BN), ReLU activations and a max-pooling (MaxPool) layer with a filter of size 2 × 2 pixels along with a stride
of 2 × 2. The convolutional layers transform the input image of size 128 × 128 × 3 pixels into a feature vector of size 2048. The final three fully connected layers classify the
extracted feature vector into a source camera class label. The number of outputs in the FC3 layer is determined upon the sub-problem (brand or model classification) and the type
of available devices. The blocks are not drawn to scale and, therefore, the labelled dimensions must be used for the exact details.
4. Experiments

This section describes the data set used, along with the experiments
performed to train and test the proposed hierarchical approach.

4.1. Data set

To conduct our experiments we used the publicly available bench-
mark Dresden data set (Gloe & Böhme, 2010). It consists of more
than 14,000 images captured by 66 camera devices, 18 camera models,
and 13 major camera brands. The images are divided into several
subsets, namely ‘JPEG’, ‘natural’, ‘flat-field’, and ‘dark-field’, among
others. We conducted our experiments on the ‘natural’ subset of the
data set, which contains 74 camera devices that were used to capture
84 different indoor and outdoor scenes. This high number of diverse
scenes makes the ‘natural’ subset the most challenging and realistic
one, unlike the other subsets which contain images from at most two
different scenes. The methods that we compare our results with also
use the same ‘natural’ subset of Dresden. Of the 74 camera devices,
8 devices were present with a single instance of a camera model. In
order to perform a fair evaluation for camera model identification, we
decided to consider devices that have at least two instances from the
same camera model. This requirement allows us to keep one instance
aside for testing while using the rest for training. We, therefore, conduct
experiments on the remaining 66 devices. Together, they represent 18
camera models, whose distribution is listed in Table 1. As suggested
by Kirchner and Gloe (2015), we combined the models Nikon_D70 and
Nikon_D70s into a single camera model (Nikon_D70) as they correspond
to the same model with a different lens.

The natural images can be further classified into 84 sub-categories,
based on the scene content. In order to perform a reliable evalua-
tion, Bondi et al. (2016) and Rafi, Wu, and Hasan (2020) used a
subset of scenes for testing, while the rest were used for training and
validation. That approach ensured that the model’s accuracy is scene
independent. In our experiments we do not need this setting as the
selection of homogeneous patches ensures that the scene-specific details
are omitted.

4.2. Data balancing

In order to train a robust machine learning model it is necessary
to ensure that the data imbalance is appropriately handled during the
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training phase. This becomes essential for our study as the distribution
of the number of images per camera model varies significantly between
classes. We refer the reader to Table 1 for the exact details of image
distribution per camera model. Traditional data balancing techniques
such as over-sampling and under-sampling of images from camera
models may not result in a representative data set. More specifically,
over-sampling causes repetition in the training data which can lead to
model overfitting. Random under-sampling of data, on the other hand,
can lead to missing out on potentially useful data and, therefore, we
propose a systematic top-down scheme for patch balancing.

Consider the data imbalance problem for brand classification. Let
the total number of image patches that we would like to train be
denoted by 𝑘. The goal is to distribute these 𝑘 patches evenly across the
training data set. The value of 𝑘 is an estimate that will drive the rest of
the patch balancing algorithm. Suppose that brand classification is an
𝑛𝑏-class classification problem, where 𝑛𝑏 represents the total number of
camera brands. Without loss of generality, let 𝑘𝑏 represents the number
of patches to be sampled from any specific brand 𝑏. In order to construct
a balanced data set, 𝑘𝑏 can be determined as:

𝑘𝑏 =
⌊

𝑘
𝑛𝑏

⌉

(1)

where 𝑘, 𝑘𝑏, 𝑛𝑏 ∈ N, and ⌊⋅⌉ denotes the standard rounding function in
Python.2 Let 𝑛𝑚 denotes the number of models representing the brand
𝑏. Without loss of generality, let 𝑘𝑚 denotes the number of patches to
be sampled from a particular model 𝑚. In order to keep the number of
patches the same across different models of the same brand, 𝑘𝑚 can be
set to:

𝑘𝑚 =
⌊

𝑘
𝑛𝑚 ⋅ 𝑛𝑏

⌉

(2)

where 𝑘𝑚, 𝑛𝑚 ∈ N. We continue this process to determine the number
of patches to be sampled at the device-level 𝑘𝑑 , for all the devices 𝑛𝑑
of model 𝑚. The value of 𝑘𝑑 is given by:

𝑘𝑑 =
⌊

𝑘
𝑛𝑑 ⋅ 𝑛𝑚 ⋅ 𝑛𝑏

⌉

(3)

2 The in-built Python function 𝑟𝑜𝑢𝑛𝑑() rounds to the nearest even number
for half-integer values.
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Fig. 9. An illustration of the patch balancing algorithm, where the patches are balanced
at each level of the hierarchy. At the first level, an initial estimate of 𝑘 = 260, 000
patches is distributed equally among the 13 camera brands, resulting in 𝑘𝑏 = 20,000
patches per brand. Thereafter, in the second level, 20,000 patches are evenly distributed
among the 3 Nikon models, resulting in 𝑘𝑚 = 6666 patches per model, and likewise for
Canon models. In the same fashion, patches are equally distributed at device and image
levels.

where 𝑘𝑑 , 𝑛𝑑 ∈ N. Finally, we determine the number of patches to be
sampled from each image 𝑖, captured by the device 𝑑 as:

𝑘𝑖 =
⌊

𝑘
𝑛𝑖 ⋅ 𝑛𝑑 ⋅ 𝑛𝑚 ⋅ 𝑛𝑏

⌉

(4)

where 𝑛𝑖 represents the number of images in the data set belonging to
the device 𝑑. Thus, for an initial estimate of 𝑘, the number of patches
that need to be extracted from an image 𝑖 is determined by 𝑘𝑖, where
𝑑, 𝑚, and 𝑏 correspond to the device, model, and brand of the image,
respectively. It should be noted that these 𝑘𝑖 patches are chosen by
following the patch selection algorithm presented in Section 3.2.

The proposed method for patch selection ensures that the patches
are evenly distributed at all levels of the hierarchy. Fig. 9 illustrates
the patch balancing algorithm. Based on the choice of 𝑘, there might
be very minor differences in the number of patches between different
classes which is caused due to the rounding function. For our setting,
this minor difference in class distribution is acceptable and is not
considered a data imbalance.

4.3. Data set split

In line with Kirchner and Gloe (2015) we perform a 5-fold cross-
validation, where we leave out one device per model for the test
and use the remaining for training. For each fold, the device to be
considered as a test device is determined in a round-robin fashion. As
shown in Table 1, the number of camera devices per model is not the
same. The maximum number of devices per model is 5, and for such
models, each device appears exactly once in the test set across the 5
folds. For models where there are 4 or fewer devices, we repeat the
devices in the test set following a round-robin approach across the 5
folds. This strategy of cross-validation accounts for the data set bias
and provides us with reliable results. We report the results for all the
folds, along with the global average.
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Table 2
Classification accuracy for the proposed approach on classifying 200 homogeneous
patches from each image in the test set.

Classification fold 1 fold 2 fold 3 fold 4 fold 5 Average

Brands 0.995 0.992 0.994 0.994 0.995 0.9941 ± 0.0010
Nikon 0.997 0.997 0.999 0.997 0.997 0.9973 ± 0.0006
Samsung 1.000 0.995 0.998 1.000 0.995 0.9976 ± 0.0022
Sony 0.970 0.989 0.965 0.980 0.972 0.9751 ± 0.0085
Hierarchical 0.991 0.991 0.989 0.990 0.989 0.9899 ± 0.0007

4.4. Brand classification

As a first step, we perform camera brand classification. The data set
that we consider consists of 𝑛𝑐 = 13 camera brands. Firstly, we balance
the patches by setting �̂� = 260, 000, which gives us 20,000 patches per
class.

The training loss is determined by computing the categorical cross-
entropy between the target and the predicted output of the network. Let
𝑓 (𝐱𝐢;𝐰) represents the network with weights 𝐰, input example 𝐱𝐢, and
the corresponding softmax output as 𝐲𝐢. The categorical cross-entropy
is a multi-class logistic loss function which is defined as:

(𝑓 (𝐱𝐢;𝐰); 𝐭𝑖) = − log(𝐲𝑖) ⋅ 𝐭𝑖 (5)

 (𝐰) = 1
𝑠

𝑠
∑

𝑖=1
𝑙𝑖 (6)

where  denotes the loss function, 𝐭𝐢 ∈ {0, 1}𝑛𝑐 denotes the one-hot
encoded target vector for the input 𝐱𝐢, and  is the empirical loss for the
mini-batch of size 𝑠. In our experiments, we set the batch size 𝑠 = 512.

We use the technique of stochastic gradient descent (SGD) for the
optimization of the model parameters with a learning rate of 0.1 and
momentum of 0.8. We were able to set such a high initial learning rate
because of the batch normalization layers in the ConvNet. Furthermore,
an exponential learning rate decay is used with a multiplicative factor
of 0.9 for achieving model convergence. The learning rate is decayed
at the end of every epoch. In order to avoid overfitting, we used l2-
regularization by setting the weight decay factor to 0.0005. With these
settings, the model was trained until convergence. We perform early
stopping when the loss converges, and it does not fluctuate more than
0.02 for 5 consecutive epochs. Fig. 10 shows the convergence in the loss
that was achieved with these hyper-parameters. The best epoch is then
determined with the maximum validation accuracy for each fold and
used during the evaluation phase of the brand classifier. The proposed
ConvNet model consists of 2, 585, 149 trainable parameters (for 𝑛𝑐 = 13).

Fig. 11 shows the confusion matrix for the classification of 13 cam-
era brands. We show the confusion matrix only for the first fold (refer
to Fig. 11) and report a summary of the remaining folds in the first
row of Table 2. Note that the results in Table 2 correspond to image-
level classification accuracy and not at the level of patches. During
the training phase, the training data set is balanced in a hierarchical
fashion as shown in Fig. 9. This is, however, not the case during model
evaluation. For a given test image, a set of 200 homogeneous patches
is extracted. The trained model is then used to predict class labels
for all 200 homogeneous patches. Finally, a majority vote is taken to
determine the predicted class label for the given image. Taking the
majority vote on patch-level predictions decreased the average error
rate by almost 50 percent for image-level predictions in comparison
to individual patch-level predictions. Since the test data is skewed
between classes, in addition to accuracy we also report the macro F1
score. It is defined as the empirical average of class-wise F1 scores, with
the F1 score for each class defined as:

F1 = 2 ⋅ TP
2 ⋅ TP + FP + FN (7)

where TP, FP, and FN stand for true positives, false positives, and false
negatives, respectively. The accuracy values reported in our experi-
ments have been determined using the following equation:

Accuracy =
# correct predictions (8)
total # predictions
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Fig. 10. The plots depict the convergence of the loss for fold 1 (out of 5). On the left are three stacked plots each representing the respective training loss plot for Nikon, Samsung,
and Sony classifiers. The loss plot on the right corresponds to the training of the brand-level classifier. In all plots the dashed vertical lines indicate the epoch where the highest
validation accuracy was achieved. The trained model for each classifier was chosen based on that epoch.
Fig. 11. The confusion matrix of the results (fold 1) for the classification of 13 camera
brands. The 13 camera brands are 1. Canon, 2. Casio, 3. FujiFilm, 4. Kodak, 5. Nikon,
6. Olympus, 7. Panasonic, 8. Pentax, 9. Pratica, 10. Ricoh, 11. Rollei, 12. Samsung,
and 13. Sony. Note that each brand in the test set has a different number of images,
which were all used during the evaluation.

We achieved an average accuracy of 0.9941± 0.0010 percent and an
average macro F1 score of 0.992 ± 0.001 for brand-level classification.
Having trained and tested the brand classifier, we now discuss similar
aspects for model-level classifiers.

4.5. Model classification

In order to train model-level classifiers, we consider only those
camera brands which have multiple camera models. Of the 13 camera
brands, only 3 brands have multiple camera models, namely Nikon,
Samsung, and Sony. We use the same ConvNet architecture for training
model-level classifiers as described in Section 4.4. In order to create
a level-balanced training data set for model classification, we need to
determine the number of patches to be extracted from each image. This
can be determined using Eq. (4) and by setting 𝑛𝑏 = 1 (since in model-
level classification we are dealing with 1 brand per model). Therefore,
for model-level classification, the number of patches to be extracted
from each image 𝑖 is determined by:

𝑘𝑖 =
⌊

𝑘
𝑛𝑚 ⋅ 𝑛𝑑 ⋅ 𝑛𝑖

⌉

(9)

For the training of the Nikon, Samsung, and Sony classifiers, we
choose 𝑘 = 60,000, 40,000, and 60,000 patches, respectively. We set
these values with the idea of extracting 20,000 patches from each
camera model. Based on the mentioned values for 𝑘, the data sets are
prepared for training the respective classifiers. We continue to perform
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5-fold cross-validation and ensure that the distribution of camera de-
vices remains consistent between the folds of the brand and model-level
classification.

Moreover, the training of each model-level and the brand-level
classifiers can be performed in parallel, as there is no dependency
during the training phase. Using the same hyperparameters, which were
used to train the brand classifier, we train each model-level classifier
for about 40 epochs. The model-level classifiers that achieve the highest
validation accuracy rates are chosen as the final ones.

Fig. 12 shows the confusion matrix for each model-level classifier.
They are generated on the test data for the first fold. The Nikon classi-
fier achieves an average accuracy of 0.9973 ± 0.0006 percent across all
5 folds. Similarly, the Samsung and Sony classifiers achieve an average
accuracy of 0.9976 ± 0.0022 and 0.9751 ± 0.0085 percent, respectively.
As in the case of brand classification, taking a majority vote on patch-
level predictions to determine the image-level prediction reduces the
error rate by almost 60 percent. For complete details regarding the
reduction in error rates, refer to Table 4. Finally, we determine the
macro F1 score to account for the imbalance in the test data set. The
Nikon, Samsung, and Sony classifiers achieve an average F1 score of
0.997 ± 0.001, 0.998 ± 0.002, and 0.976 ± 0.008, respectively. We refer
the reader to Table 3 for complete details concerning the macro F1
scores. The end-to-end hierarchical evaluation pipeline is described in
the following sub-section.

4.6. Hierarchical classification

Having trained the brand-level and model-level classifiers, we now
use them in a hierarchical fashion to predict the source camera model
for a given image. We begin by extracting 200 homogeneous patches
from a given image. At the top of the hierarchy is the brand-level classi-
fier, which selects the brand for each of the 200 patches. A majority vote
is performed to determine the source camera brand. In the trivial case,
when there is only one camera model for a particular brand, the brand
classification directly determines the model classification. Otherwise,
based on the predicted brand, the corresponding model-level classifier
is used to determine the source camera model. In our case, we trained
three different model-level classifiers, one each for the Nikon, Samsung,
and Sony brands. A majority vote is once again performed on all 200
patch predictions that determine the source camera model for the given
image.

The first fold results of the hierarchical evaluation are presented as
a confusion matrix in Fig. 13. We achieve an overall classification accu-
racy of 0.9899 ± 0.0007 and an overall macro F1 score of 0.990 ± 0.001
across all five folds. Tables 2 and 3 summarize the accuracy and the
macro F1 score achieved for each fold, respectively.

In order to compare our method with the state-of-the-art, we choose
methods that have been evaluated on the same ‘natural’ subset of the
Dresden data set. The summary of this comparison is presented in
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Fig. 12. Confusion matrices achieved by the Nikon, Samsung, and Sony model-level classifiers. They are generated by evaluating the test data in fold 1 (out of 5).
Fig. 13. Confusion matrix for classifying 18 camera models, based on the hierarchical
pipeline. The result shown here is generated on the test data for fold 1 of 5. The 18
camera models correspond to the list of camera models in Table 1. Note that each
brand in the test set has a different number of images and all were used during the
evaluation.

Table 3
Macro F1 scores obtained on classifying 200 homogeneous patches from each image
in the test set.

Classification fold 1 fold 2 fold 3 fold 4 fold 5 Average

Brands 0.993 0.992 0.992 0.992 0.993 0.992 ± 0.001
Nikon 0.997 0.997 0.999 0.997 0.997 0.997 ± 0.001
Samsung 1.000 0.995 0.998 1.000 0.995 0.998 ± 0.002
Sony 0.971 0.989 0.967 0.981 0.973 0.976 ± 0.008
Hierarchical 0.989 0.991 0.988 0.990 0.990 0.990 ± 0.001

Table 4
Reduction in error rate (percent) with respect to the accuracy for image-level pre-
dictions (majority vote of 200 homogeneous patches) in comparison to patch-level
predictions.

Classification fold 1 fold 2 fold 3 fold 4 fold 5 Average (%)

Brands 49.2 40.8 47.1 50.9 52.7 48.17 ± 03.75
Nikon 30.3 77.1 65.7 70.2 35.2 55.69 ± 17.47
Samsung 100 29.4 25.5 100 31.1 57.20 ± 31.95
Sony 68.0 88.5 66.6 79.5 69.4 74.43 ± 07.66

Table 5. Similar to the works in Bondi et al. (2016), Rafi, Tonmoy, et al.
(2020), Rafi, Wu, and Hasan (2020) we follow the leave-one-device-
out strategy for cross-validation, and show the results in Table 5. Our
strategy of homogeneous patch selection ensures to ignore scene details
from the image, which allows us to avoid inadvertent classification of
the scene content. It was, therefore, not necessary to employ the scene-
independent test set strategy proposed by Bondi et al. (2016). Marra
et al. (2017) performed experiments on 25 camera models of which
7 models have only one device per model in the Dresden data set. In
their setting, it is not possible to test the generalizability of the trained
classifier for those 7 devices.

Among all the proposed methods that use 18 camera models on the
Dresden data set, we achieve the best classification accuracy and reduce
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Table 5
Comparison with the state-of-the-art on the ‘‘natural’’ subset of the Dresden image data
set for camera model identification.

Method Accuracy No. of
models

Evaluation scheme

Tuama et al. (2016) 0.9709 14 5-fold CV
Marra et al. (2017) 0.9627 25 20-fold CV with 7 devices used

for both train and test sets
Marra et al. (2017) 0.9872 25 20-fold CV with 7 devices used

for both train and test sets
Bondi et al. (2016) ∼ 0.965 18 Scene independent test set
Rafi, Tonmoy, et al.
(2020)

0.9703 18 Scene independent test set

Rafi, Wu, and Hasan
(2020)

0.9815 18 Scene independent test set

Ours - 𝟐𝟎𝟎 patches 𝟎.𝟗𝟖𝟗𝟗 𝟏𝟖 Leave-one-device-out 𝟓-fold CV
Ours - 𝟒𝟎𝟎 patches 𝟎.𝟗𝟗𝟎𝟏 𝟏𝟖 Leave-one-device-out 𝟓-fold CV

the classification error rate by 46.49 percent compared to the previous
best result achieved by Rafi, Wu, and Hasan (2020).

5. Discussion

This section describes further experiments that were conducted to
support our hypothesis for SCI.

5.1. Number of patches

The results reported thus far were achieved by using 200 homoge-
neous patches per image during the test phase. In order to understand
the number of patches required for evaluation, we conducted a series
of experiments which are summarized in Fig. 14. As can be seen,
certain brands can work with a few patches while others require more
patches to obtain high accuracy. This behaviour is evident with the
Sony classifier, which significantly improves in performance with an
increasing number of patches. Interestingly, the performance of the
Samsung classifier slightly decreases when the number of patches is
increased from 1 to 10. This minor deviation from the expected trend
is, however, so small that it is probably due to chance. In general,
classification becomes progressively robust with increasing number of
randomly selected homogeneous patches, up to a certain point.

The extraction of too many patches would lead us into the regime
of non-homogeneous patches. Therefore, for the Dresden data set, we
recommend performing prediction using 200 patches. Based on the
homogeneous patch distribution shown in Fig. 7 we can conclude that
most of the images (from all camera models) contain at least 200
homogeneous patches of size 128 × 128 pixels. In fact, in Fig. 14
one can observe that the classification accuracy of the Sony classifier
decreases on considering 400 patches when compared to using only
200 patches. This decrease in accuracy may be due to the inclusion
of non-homogeneous patches when we extract 400 patches (Fig. 7). As
the Dresden data set constitutes images belonging to diverse scenes,
it is reasonable to assume that most natural images contain about 200
homogeneous patches.

It is also important to account for the time taken to extract such
patches. In our experiments, the extraction of patches from an image
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Fig. 14. The image-level accuracy achieved with varying numbers of homogeneous
patches. Each accuracy point corresponds to the average across the 5-folds.

Table 6
Comparison of the classification accuracy between the hierarchical and the flat
approaches. The results are generated by considering 200 homogeneous patches per
image.

Classification fold 1 fold 2 fold 3 fold 4 fold 5 Average

Flat 0.986 0.987 0.988 0.979 0.986 0.9851 ± 0.0033
Hierarchical 0.990 0.991 0.989 0.990 0.989 0.9899 ± 0.0007

of size 3072 × 2304 pixels with patches of size 128 × 128 pixels took
approximately 2.16 seconds when measured on a single core of Intel
Xeon E5-2680 v3 CPU (2.5 GHz). Because we use the integral image for
patch selection and extraction the execution time primarily depends on
the image size and not on the number of homogeneous patches.

5.2. Hierarchical vs flat approach

One of our hypotheses was that a hierarchical approach is better
than using a single classifier (flat approach). In order to evaluate this
hypothesis, we conducted experiments by training all the 18 camera
models using a single classifier. For a fair comparison, the ConvNet
parameters were kept unchanged and were set to match our earlier
experiments. We evaluated the flat ConvNet by using 200 homogeneous
patches and performed a 5-fold cross-validation. The results of these
experiments are summarized in Table 6. We obtained an average clas-
sification accuracy of 0.9851±0.0033. In comparison to the hierarchical
approach, the average error rate increases by more than 50 percent for
the flat approach.

The flat classifiers also took more epochs to converge when com-
pared to their hierarchical counterparts. This difficulty in model learn-
ing is due to the mixing up of different camera models and brands
into a single classifier. When using the hierarchical approach the brand
classifier accounts for inter-brand noise variation, while the model-level
classifiers account for the intra-brand noise variations. This separation
of noise variations allows the hierarchical classifiers to learn better fea-
tures for classification. Notable is also the fact that the results obtained
by the flat approach are also better than existing works (Table 5).

The proposed hierarchical approach has other advantages. It trivi-
alizes parallelization, as each classifier in the hierarchy can be trained
independently of others. Moreover, this approach is robust in handling
the addition of new camera models. In such cases, only the specific
model-level classifier needs to be modified without having to update
other classifiers. This not only saves computation time during the initial
training but also during future updates.

Certain brands can achieve high accuracy with fewer patches. For
instance, referring to Fig. 14 we could use only 10 patches per image to
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determine the camera brand with around 99.5 percent accuracy. This
is also the case with Nikon and Samsung classifiers. The Sony classifier,
however, achieves the highest classification accuracy with 200 patches.
One may, therefore, exploit this result to use the optimal number of
patches per model in order to also maximize the speed of the evaluation
process, something that would not be possible with a single-classifier
approach.

5.3. Future work

One direction for future research is the evaluation of the proposed
approach to varying levels of image quality. In such evaluation one
may consider no-reference image quality measures (Gu et al., 2017,
2016; Mittal et al., 2012), which can be used to determine the visual
quality of images, among others (Gu, Li, et al., 2017; Gu, Zhou, et al.,
2017). Using this information, the relationship between the input image
quality and the resulting performance for SCI can be determined.
This information could be used to assess whether a given image has
sufficient quality for a reliable determination of its camera model.

Another direction would be to extend this work for device-level
identification, which presents further challenges than those of the
model-level identification at hand. Such an approach would be partic-
ularly useful when LEAs need to discriminate between two devices of
the same camera model.

6. Conclusion

We propose a new approach for camera model identification that
leverages the homogeneous regions in given images, which are less dis-
torted by the scene content, for reliable extraction of forensic traces. We
showed that when such input data is trained in a hierarchical fashion,
it results in a classifier that is computationally efficient, modular and
more effective than a flat (single classifier) approach. Modular design
allows the addition of other camera brands without having to retrain
the model classifiers of the already known brands. The accuracy rate
of 99.01% that we achieve is the best ever reported for the ‘natural’
subset of the benchmark Dresden data set of 18 camera models.
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