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Path-Based Stability Analysis for Monotone Control Systems
on Proper Cones

Yu Kawano , Member, IEEE, and Bart Besselink , Member, IEEE

Abstract—In this article, we study positive invariance and attrac-
tivity properties for nonlinear control systems, which are mono-
tone with respect to proper cones. Monotonicity simplifies such
analysis for specific sets defined by the proper cones. Instead of
Lyapunov functions, a pair of so-called paths in the state space and
input space play important roles. As applications, our results are
utilized for analysis of asymptotic stability and also input-to-state
stability on proper cones. The results are illustrated by means of
examples.

Index Terms—Monotone systems, nonlinear systems, paths,
proper cones, stability.

I. INTRODUCTION

Dynamical systems that preserve a partial order relationship between
initial states over their trajectories are known as monotone systems,
see [1]–[3]. They appear naturally as models for social dynamics [4]
and chemical reaction processes [5], and have become an important
tool in stability analysis for large-scale interconnected systems, e.g.,
[6], [7]. A distinguishing feature of monotonicity is that it has strong
implications for the asymptotic behavior of autonomous systems, which
has been investigated especially for systems that are monotone with
respect to the positive orthant, i.e., for cooperative systems [1]. Inspired
by such results, stability of cooperative systems has been investigated
in various problem settings [8]–[11]. As an example, stability prop-
erties of cooperative systems can be characterized by using so-called
max-separable Lyapunov functions, i.e., Lyapunov functions that can be
written as the maximum of functions with scalar arguments representing
the state components [8]–[11]. It is well-known that such max-separable
Lyapunov functions are intimately related to so-called paths in the
positive orthant, which opens a door for path-based stability analysis
of cooperative systems, see [6], [7], [10], [12], [13].

Moving beyond cooperativity, nonlinear systems that are monotone
with respect to general proper cones have also received considerable
attention recently, see, e.g., [3], [14]–[16]. These works typically con-
sider a contraction (or differential) framework for analysis of stability
properties. Apart from that, stability of monotone nonlinear systems
has not been well-studied. This is in contrast with the detailed devel-
opment of path-based analysis and separable Lyapunov functions for
cooperative systems.

In this note, our objective is to extend path-based stability analysis
to monotone systems. As the main stepping stone, we study (robust)
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positive invariance and attractivity of specific sets defined on the basis
of the proper cones with respect to which the systems are monotone.
First, we show that monotonicity greatly simplifies the analysis of
(robust) positive invariance of these sets as the direct verification of
(a generalization of) Nagumo’s theorem, e.g., [17], can be avoided.
Second, we prove that the existence of a pair of so-called paths in the
state space and input space guarantees attractivity. Then, we apply our
results to asymptotic stability analysis and input-to-state stability (ISS)
analysis of monotone systems.

In fact, we obtain natural extensions of the results based on max-
separable Lyapunov functions and path-based analysis for cooperative
systems. Especially, our positive invariance condition and attractivity
condition can be hypothesized from similar conditions for cooperative
systems [12], [13]. However, our analysis of monotone systems requires
to handle tangent cones that do not appear in the path-based analysis
of cooperative systems, since the Kamke–Müller condition described
by a tangent cone is not further simplified for monotone systems,
differently from cooperative systems. We regard these generalizations
from positive orthants to general proper cones as a first step to enlarge
the range of applications of monotonicity-based analysis pursued espe-
cially in the systems and control community. Our results are illustrated
by examples, including a tunnel-diode circuit, which is not cooperative
but monotone with respect to some proper cones. For this circuit,
path-based analysis provides less conservative stability conditions than
contraction analysis, which suggests that path-based analysis can be one
of the central tools for analysis of monotone systems as for cooperative
systems.

II. PROBLEM STATEMENT

A. Preliminaries

We use notation similar to that in [2] and [17]. Let R and R+ be the
field of real numbers and set of nonnegative real numbers, respectively.
We denote a norm on Rn as | · | and denote the closed ball of radius
r with respect to this norm as Br , i.e., Br = {x ∈ Rn | |x| ≤ r}. A
continuous function α : [0, r) → R+ is said to be of class K if it is
strictly increasing and α(0) = 0. Moreover, it is said to belong to class
K∞ if r = ∞ and α(r) → ∞ as r → ∞. A continuous function β :
R+ × R+ → R+ is said to be of class KL if for each fixed s, the
mappingβ(·, s) belongs to classK, for each fixed r, the mappingβ(r, ·)
is decreasing and β(r, s) → 0 as s → ∞.

A closed setK ⊂ Rn is said to be a proper cone if it has the following
properties: 1) it is a cone, i.e., cK ⊂ K for any c ∈ R+; 2) it is convex,
i.e., K +K ⊂ K; 3) it is pointed, i.e., K ∩ (−K) = {0}; and 4) it is
solid, i.e., intK �= ∅.

A proper cone K ⊂ Rn allows for introducing a partial order on
Rn, where for x, x′ ∈ Rn, we write x � x′ if and only if x− x′ ∈ K.
This ordering can be strengthened as x � x′ if and only if x− x′ ∈
intK. We will also use the dual K∗ of a cone K defined as K∗ =
{v ∈ Rn | 〈v, x〉 ≥ 0 for all x ∈ K}, where 〈·, ·〉 is the standard inner
product.

Finally, for a closed set S ⊂ Rn, the tangent cone to S at x ∈ S,
denoted by TxS, is defined as

TxS :=

{
z ∈ Rn

∣∣∣∣ lim inf
τ→0+

d(x+ τz, S)

τ
= 0

}
. (1)
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Here, d(x, S) = infy∈S |x− y| for the Euclidean norm | · |. If S is
convex, the lim inf in (1) can be replaced by lim, see [17, p. 102].

B. Monotone Systems

Consider the nonlinear system

ẋ = f(x, u), (2)

where the vector field f : X̃ × U → Rn is continuous in (x, u) and
locally Lipschitz continuous in x locally uniformly in u. Here, X̃ is
an open subset of Rn, and X̃ contains a closed set X , which is itself
a closure of some open subset. Following [2, Section II] and [1, Re-
mark 3.1.4], we assume that X satisfies the following approximability
property: for all x, x′ ∈ X such that x � x′, there exists sequences
{x�}, {x′

�} with x�, x
′
� ∈ intX such that x� � x′

� for all � and x� → x
and x′

� → x′ as � → ∞.
Moreover, we consider input functions u : R+ → U for some com-

pact set U ⊂ Rm and denote the set of all such functions by U∞.
Following [2, Section II], we assume that, for each initial condition
x(0) = x0 ∈ X and each input function u ∈ U∞, the corresponding
solution x(t) exists for all t ∈ R+. In addition, it satisfies x(t) ∈ X for
all t ∈ R+, i.e., X is (robustly) positively invariant with respect to U∞.
In the remainder of this note, we denote the solution (at time t ∈ R+)
to (2) with initial condition x0 and for input u by φ(t, x0, u).

In this note, we are interested in systems (2) that are monotone. To
define monotonicity, let K ⊂ Rn and Ku ⊂ Rm be proper cones in
the state space and input space, respectively.

Assumption 2.1 (Monotonicity): The system (2) is monotone with
respect to proper cones K and Ku, i.e., the implication

x0 � x′
0, u � u′ ⇒ φ(t, x0, u) � φ(t, x′

0, u
′), ∀t ∈ R+ (3)

holds for all x0, x
′
0 ∈ X and u, u′ ∈ U∞. �

In (3), the partial order� is taken with respect to the respective cone.
Specifically, u � u′ in (3) means u(t)− u′(t) ∈ Ku for all t ∈ R+.

The implication (3) reflects that any order in the initial state is
preserved over system trajectories for input functions that are ordered
as well. A necessary and sufficient condition for monotonicity as in (3)
is given by an extension of the so-called Kamke–Müller condition (e.g.,
[1]) to control systems.

Lemma 2.2 (see [2]): The system (2) is monotone as in (3) if and
only if the implication

x � x′, u � u′ ⇒ f(x, u)− f(x′, u′) ∈ Tx−x′K (4)

holds for all x, x′ ∈ intX and u, u′ ∈ U . �
If f is of classC1, an alternative condition for monotonicity of an au-

tonomous system in terms of ∂f/∂x is found in [3] and [18], but in The-
orem 3.2 below, we show that the condition (4) in terms of tangent cones
is helpful to simplify analysis of positive invariance. For autonomous
systems, monotonicity with respect to Rn

+ (also known as cooperativity)
simplifies analysis of compact omega limit sets, e.g., [1]. This is also
recognized in systems and control theory, where stability analysis of
cooperative systems has been developed both for autonomous and
control systems. Here, so-called max-separable Lyapunov functions
play important roles [3], [8]–[11]. These results however highly depend
on the fact that the cones K = Rn

+ and Ku = Rm
+ are considered. In

this note, our objective is to remove these restrictions and to proceed
with stability analysis of monotone systems with respect to general
proper cones.

III. MAIN RESULTS

In this section, we characterize stability properties of monotone
control systems through two technical results. The interpretation of
these results is postponed to Section IV.

As a first step, we study robust positive invariance of a subset of X
according to the following definition (see [17, Definition 4.3]) .

Fig. 1. Trajectories of a monotone system. From monotonic-
ity, φ(·, x′

0, u
′) ∈ φ(·, x0, u)−K for any x′

0 ∈ x0 −K and u′ ∈ u−Ku.
The convexity of K further implies φ(·, x′

0, u
′)−K ⊂ φ(·, x0, u)−K.

That is, the red cone associated with φ(t, x′
0, u

′) is contained in the blue
cone associated with φ(t, x0, u) at each time.

Fig. 2. Interpretation of Theorem 3.2. If (7) holds, φ(t, v,w) ∈ v −
K and consequently φ(t, v,w)−K ⊂ v −K, t ∈ [0, t1] for sufficiently
small t1 > 0. Moreover, monotonicity implies φ(·, x′

0, u
′) ∈ φ(·, v, w)−

K for any x′
0 ∈ v −K and u′ ∈ w −Ku. Therefore, φ(t, x′

0, u
′) ∈ v −K

for any t ∈ [0, t1]. This inclusion for any x′
0 ∈ v −K and u′ ∈ w −Ku

concludes the positive invariance of v −K. In other words, from mono-
tonicity, if φ(t, v,w) stays in v −K, t ∈ [0, t1], then any trajectory starting
from v −K stays in v −K, i.e., the blue and red cones associated with
trajectories are contained in v −K for all t ∈ R+.

Definition 3.1: A closed subset S ⊂ X is said to be a robustly
positively invariant set of the system (2) with respect to W∞ ⊂ U∞
if for all x0 ∈ S and u ∈ W∞, the condition φ(t, x0, u) ∈ S holds for
all t ∈ R+. �

In the remainder, we will be interested in specific sets S and W∞.
Let v ∈ intX , w ∈ U , and define

S(v) := {x ∈ X | v � x}, (5)

W (w) := {u ∈ U | w � u}. (6)

Similar to before, W∞(w) denotes the class of input functions u :
R+ → W (w).

Now, we are ready to state our first result on robust positive invari-
ance; for its interpretation, see Fig. 2.

Theorem 3.2: Consider a monotone system (2). Let v ∈ intX , w ∈
U , and consider the sets (5) and (6). Then, the set S(v) is a robustly
positively invariant set of the system (2) with respect to W∞(w) if and
only if

f(v,w) ∈ TvS(v). (7)

Proof: See Appendix A. �
The proof of Theorem 3.2 relies on (a generalization of) Nagumo’s

theorem. The main contribution of Theorem 3.2 is that the condition
(7) only involves the single point (v,w) (rather than any x ∈ S(v)
and u ∈ W (w) as in Nagumo’s theorem in (30)). Positive invariance
of a proper cone is also considered in [18, Proposition 1.2], but this
features a condition that needs to be verified on the entire boundary of
the cone as in Nagumo’s theorem. Monotonicity and the use of tangent
cones thus simplify the analysis of robust positive invariance.

Authorized licensed use limited to: University of Groningen. Downloaded on November 08,2022 at 14:23:31 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 3. (a) Example of path ρ(s). (b) Interpretation of Theorem 3.8.
If (9) holds, any trajectory starting from the boundary of S(ρ(s)) =
ρ(s)−K goes to its interior at each s ∈ (0, s], i.e., decreases
along S(ρ(s)). Finally, any trajectory converges to S(ρ(0)).

Remark 3.3: Nagumo’s theorem can also directly be exploited for
monotonicity analysis. Namely, monotonicity requires that for the
system ẋ = f(x, u) and its copy ẋ′ = f(x′, u′), the set {(x, x′) ∈
X × X | x � x′} is robustly positive invariant with respect to the
set {(u, u′) ∈ U∞ × U∞ | u � u′}. This perspective is essentially also
taken in [2]. �

Remark 3.4: For linear systems ẋ = Ax+Bu, monotonicity with
respect to the cones K = Rn

+ and Ku = Rm
+ (often also referred to

as positive systems [19]) is well-known to be equivalent to A being a
Metzler matrix (i.e., having nonnegative off-diagonal entries) and B
having nonnegative entries. In this case, (7) reduces to

Av +Bw � 0

which for w = 1 the all-ones vector, recovers existing results in [20]
and [21]. �

While Theorem 3.2 discusses (robust) positive invariance of sets, we
are also interested in attractivity of sets as a stepping stone toward sta-
bility properties. This analysis will rely on the introduction of functions
γ and ρ satisfying the following assumption. They are referred to as
paths by adopting the terminology for analysis in the positive orthants
(K = Rn

+ and Ku = Rm
+ ), see [6], [9], [22].

Assumption 3.5 (Strictly Increasing Paths): Let s̄ > 0 be given. The
functions ρ : [0, s̄] → X and γ : [0, s̄] → U are continuous and strictly
increasing with respect to K and Ku, respectively, i.e., for all s, s′ ∈
[0, s̄], we have

s > s′ ⇒ ρ(s) � ρ(s′), γ(s) � γ(s′). (8)

Moreover, ρ(s) ∈ intX for all s ∈ (0, s̄]. �
Remark 3.6: Later, we will often consider ρ satisfying ρ(0) = 0.

In this case, it is clear from Assumption 3.5 that ρ : [0, s] → {0} ∪
intK ⊂ K. �

The following property of such a strictly increasing function will be
used later.

Lemma 3.7: Consider a strictly increasing path ρ : [0, s̄] → X .
Then, for any x ∈ X satisfying x ≺ ρ(s) and x � ρ(0), there exists
a unique s ∈ (0, s) such that

ρ(s)− x ∈ ∂K.

Proof: The proof can be found in Appendix B. �
We are now in the position to state the main result on attractivity of

sets; Fig. 3 gives an interpretation of this result.
Theorem 3.8: Consider a monotone system (2). If there exist strictly

increasing paths ρ : [0, s̄] → X and γ : [0, s̄] → U such that

−f (ρ(s), γ(s)) ∈ intK, ∀s ∈ (0, s], (9)

then for any s ∈ [0, s), the following hold:
1) for any s ∈ [s, s], S(ρ(s)) is robustly positively invariant with

respect to W∞(γ(s));

Fig. 4. (a) Example of path ρ(s) satisfying ρ(0) = 0. (b) Interpreta-
tion of Theorem 4.3. From g(0) = 0, the cone K is positively invari-
ant. As explained in Fig. 3, any trajectory starting from the boundary
of S(ρ(s)) = ρ(s)−K goes to its interior at each s ∈ [0, s] and con-
verges to S(ρ(0)) = −K. Since −K ∩K = {0}, any trajectory starting
from S(ρ(s)) ∩K converges to the origin.

2) for any x0 ∈ S(ρ(s)) and u ∈ W∞(γ(s))

lim
t→∞

d (φ(t, x0, u), S(ρ(s))) = 0. (10)

In the above, S(·) and W∞(·) are as in (5) and (6).
Proof: The proof can be found in Appendix C. �
The main result of Theorem 3.8 is that robust positive invariance

and attractivity of (specific) sets can be verified by finding paths ρ and
γ satisfying (9). Loosely speaking, the parameter s can be thought of
as a bound on the input signals, whereas s characterizes the largest set
in state space for which 1) robust positive invariance can be guaran-
teed, and 2) from which trajectories converge to a smaller set (again
characterized by the size of the input s).

As Theorem 3.8 considers general (proper) cones, it can be regarded
as an extension of the results for positive orthants [6], [9], [10],
[22]. This will be made more explicit in Section IV, where detailed
comparisons will be given.

IV. INTERPRETATION

To illustrate both the usefulness of Theorem 3.8 and provide insights
in its relevance, this section discusses various applications in the scope
of asymptotic stability for autonomous systems as well as ISS-like
stability for control systems.

A. Asymptotic Stability for Autonomous Systems

Consider the autonomous system

ẋ = g(x) (11)

which is obtained from (2) by defining g(x) = f(x, 0). We assume
g(0) = 0 and, for simplicity, take X = Rn. Solutions to (11) for initial
condition x0 are denoted by φ(·, x0).

Stability of the origin is studied according to the following definition,
which restricts analysis to trajectories in the coneK (which is positively
invariant under Assumption 2.1).

Definition 4.1: Consider the system (11) and a proper cone K. The
origin is said to be stable in K if, for each ε > 0, there exists δ > 0
such that

x0 ∈ Bδ ∩K ⇒ φ(t, x0) ∈ Bε ∩K.

It is said to be asymptotically stable in K if it is stable in K and,
additionally, δ > 0 can be chosen such that

x0 ∈ Bδ ∩K ⇒ lim
t→∞

φ(t, x0) = 0.

�
In the study of stability properties, the following lemma on sets of

the form S(ρ(s)) ∩K will turn out to be useful.

Authorized licensed use limited to: University of Groningen. Downloaded on November 08,2022 at 14:23:31 UTC from IEEE Xplore.  Restrictions apply. 
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Lemma 4.2: Let ρ : R+ → K be a strictly increasing path
with ρ(0) = 0, and consider (5). Then, there exist functions α1 and
α2 of class K such that

Bα1(s) ∩K ⊂ S(ρ(s)) ∩K ⊂ Bα2(s) ∩K (12)

for all s ∈ R+.
Proof: To show Bα1(s) ∩K ⊂ S(ρ(s)) ∩K, define

φ(s) = sup
{
r ∈ R+

∣∣ x ∈ Br ∩K ⇒ x ∈ S(ρ(s))
}
.

Note that S(ρ(0)) = S(0) = −K and recall that K is pointed, which
implies φ(0) = 0. For s > 0, it follows from ρ(s) � 0 and intK �= ∅
(K is solid) that φ(s) > 0. In addition, as ρ is strictly increasing, we
have

s > s′ ⇒ S(ρ(s)) � S(ρ(s′))

which implies that φ(s) ≥ φ(s′). Hence, φ is continuous (as ρ is
continuous), positive definite, and nondecreasing. As a result (e.g., [23,
Lemma 4.3]), there exists a class K function α1 satisfying α1(s) ≤
φ(s) for all s ∈ R+, which satisfies (12).

The bound S(ρ(s)) ∩K ⊂ Bα2(s) ∩K is observed by, first, noting
that for s = 0, we have S(ρ(0)) ∩K = {0} by pointedness of K and,
second, that S(ρ(s)) ∩K is compact for any s ∈ R+. Here, compact-
ness can be shown through (a slight extension of) [24, Exercise 2.2.24].

Then, Theorem 3.8 leads to the following result.
Theorem 4.3: Consider a monotone system (11). If there exist a

strictly increasing path ρ : R+ → K satisfying ρ(0) = 0 and

−g (ρ(s)) ∈ intK, ∀s > 0 (13)

then the origin of (11) is asymptotically stable in K.
Proof: To prove stability, let ε > 0, consider the functionsα1 andα2

satisfying (12) in Lemma 4.2, and note that we can always choose α2 to
be of classK∞. Then, define s = α−1

2 (ε) and δ = α1(s). Now, stability
inK follows from (12) and positive invariance ofK andS(ρ(s)), where
the latter is a result of (13) and Theorem 3.8.

Next, to show asymptotic stability, note that (13) implies, through
Theorem 3.8, that (10) holds for any s < s. After recalling that
φ(t, x0) ∈ K for all t ∈ R+ due to monotonicity and noting that

S(ρ(0)) ∩K = {0}
as K is pointed, the result follows from taking s = 0. �

The relevance of Theorem 4.3 is that stability analysis is reduced to
finding a path ρ in K along which the vector field g of (11) satisfies
(13). As (13) merely involves nonlinear algebraic conditions, this is
potentially significantly easier than the construction of a Lyapunov
function for stability analysis. The result of Theorem 4.3 essentially
states that the attractivity condition (9) also implies stability in K. In
the positive orthant case, this can also be concluded from [12, Lemma
2.3]. Theorem 4.3 can thus be viewed as an extension of this fact, where
in addition, we provide an attractivity condition in Theorem 3.8.

Remark 4.4: While Theorem 4.3 focuses on asymptotic stability in
K, it follows from the proof of this theorem that the origin of (11) is
actually asymptotically stable in any set Ω as long as 1) Ω is positively
invariant; 2) int(Ω ∩ S(ρ(s))) is bounded and not empty for each s >
0; and 3) −K ∩Ω = {0}. �

The following example illustrates the use of Theorem 4.3.
Example 4.5: Consider the autonomous nonlinear system

ẋ1 = −x2x1

ẋ2 = −x2
2/2

(14)

where X = R+ × R, which is monotone with respect to

K =

{
x ∈ R2

∣∣∣∣ x = a1

[
−1
0

]
+ a2

[
1
1

]
, a1, a2 ≥ 0

}
.

The strictly increasing pathρ(s) = [ s 4s ]� satisfiesρ(0) = 0 and (13).
Hence, the origin of (14) is asymptotically stable in K.

This example also illustrates a subtlety of Definition 4.10. Namely, it
is clear from (14) that the set of equilibria is given by R × {0}, which
implies that the origin is not asymptotically stable in R2. However,
when analysis is restricted to Ω := X ∩K, the origin is the unique
equilibrium point and Theorem 4.3 guarantees asymptotic stability in
Ω, i.e., attractivity of the equilibrium point for trajectories starting in
Ω. �

Remark 4.6: Although the proof of asymptotic stability in Theo-
rem 4.3 is based purely on the path ρ and monotonicity, there is a
natural way of associating a Lyapunov function to this path. Namely,
define V : K → R+ as

V (x) = s,

where s is the unique element of the set

{s ∈ R+ | ρ(s)− x ∈ ∂K},
see Lemma 3.7. Then, under the conditions of Theorem 4.3, it follows
from its proof that

V (φ(t, x)) < V (x)

for any x ∈ K and t > 0, i.e., V is a Lyapunov function for (11). �
Remark 4.7: In the special case ofK = Rn

+, the path ρ : R+ → Rn
+

in Theorem 4.3 has strictly increasing component functions ρi (defined
such that ρ(s) = [ ρ1(s) · · · ρn(s) ]�) by Assumption 3.5. In addition,
(13) translates to

g (ρ(s)) < 0, ∀s > 0,

where the inequality is understood elementwise. In this case, the asso-
ciated Lyapunov function of Remark 4.6 reads

V (x) = s = max
i∈In

ρ−1
i (xi), (15)

where In = {1, 2, . . . , n}, and xi is the ith component of the vector
x ∈ Rn

+. Thus, the result of Theorem 4.3 reduces to [10, Th. 3.1] and V
in (15) is a so-called max-separable Lyapunov function. Such Lyapunov
functions are extensively studied in the scope of cooperative systems in,
e.g., [8] and [9]. In particular, the relation among asymptotic stability of
cooperative systems, paths in the positive orthant, and max-separable
Lyapunov functions is well-known and pioneered in the works [6], [7],
[25], [26]. By exploiting Theorem 3.8, the result in Theorem 4.3 extends
(some of) these results to arbitrary proper cones K. The function in
Remark 4.6 can thus be regarded as an extension of the notion of max-
separable Lyapunov function to a proper cone. �

Remark 4.8: To provide further insight in Theorem 4.3, consider the
linear system

ẋ = Ax, (16)

and assume that it is monotone with respect to the cone K. After
choosing a linear function ρ(s) = ρ̄s, the condition (8) holds if and
only if ρ̄ ∈ intK and (13) reduces to

−Aρ̄ ∈ intK. (17)

It will turn out to be useful to consider the dual version of these
conditions. Specifically, ρ̄ ∈ intK and (17) are equivalent to

〈v, ρ̄〉 > 0, ∀v ∈ K∗ \ {0}, (18)

〈v,Aρ̄〉 = 〈A�v, ρ̄〉 < 0, ∀v ∈ K∗ \ {0} (19)

respectively, where we recall thatK∗ is the dual cone toK. After noting
that the system (16) is monotone with respect toK if and only if the dual
system ż = A�z is monotone with respect to K∗ (see, e.g., [24]), it can
be recognized that the conditions (18), (19) are exactly the conditions
for stability of ż = A�z given in [27, Th. 2]. As A� is Hurwitz if and
only if A is Hurwitz, we can view Theorem 4.3 as an extension of (the
dual of) [27, Th. 2] toward nonlinear systems.

Finally, we remark that, for K = Rn
+, ρ̄ ∈ intK and −Aρ̄ ∈ intK

translate to the well-known conditions for a Metzler matrix A to be
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Hurwitz given by ρ̄ > 0 and Aρ̄ < 0 (with the inequalities understood
elementwise), e.g., [24] and [20]. �

B. ISS for Nonautonomous Systems

In the previous section, we have shown that Theorem 3.8 can be used
to guarantee asymptotic stability of autonomous systems on arbitrary
proper cones. In this section, we show that Theorem 3.8 leads in fact
to stronger results when nonautonomous systems (2) are considered.
Specifically, we will show a clear relation with ISS properties.

Similar to the previous section, we assume f(0, 0) = 0, take X =
Rn, and restrict analysis to trajectories in the cone K. This leads to the
following definition of (local) ISS.

Definition 4.9: Consider the system (2) together with proper cones
K and Ku. The system is said to be locally input-to-state stable in K
if there exists δ > 0, a class KL function β, and class K∞ function γ
such that

x0 ∈ Bδ ∩K, u(t) ∈ Bδ ∩Ku, ∀t ∈ R+

⇒ |φ(t, x0, u)| ≤ β(|x0|, t) + γ(‖u‖∞) (20)

for all t ∈ R+. �
In the above, ‖ · ‖∞ denotes the L∞ signal norm, i.e., ‖u‖∞ =

supt∈R+
|u(t)|.

In order to study local ISS properties (in K), we will exploit the sta-
bility notions of local stability and local asymptotic gain, as formulated
next.

Definition 4.10: Consider the system (2) together with proper cones
K and Ku. The system is said to be locally stable in K if there exists
δ > 0 and nondecreasing functions σi : R+ → R+ satisfying σi(0) =
0 such that

x0 ∈ Bδ ∩K, u(t) ∈ Bδ ∩Ku, ∀t ∈ R+

⇒ sup
t≥0

|φ(t, x0, u)| ≤ max{σ1(|x0|), σ2(‖u‖∞)} .

The system is said to have the local asymptotic gain property in K if
there exist δ > 0 and class K function γ such that

x0 ∈ Bδ ∩K, u(t) ∈ Bδ ∩Ku, ∀t ∈ R+

⇒ lim sup
t→∞

|φ(t, x0, u)| ≤ γ(‖u‖∞).

�
The relevance of introducing Definition 4.10 is that local stability

and the asymptotic gain property imply local ISS, whereas the first two
can be shown by using Theorem 3.8. In particular, this leads to the
following main result.

Theorem 4.11: Consider a monotone system (2). If there exist
strictly increasing paths ρ : R+ → K and γ : R+ → Ku satisfy-
ing ρ(0) = 0, γ(0) = 0, and

−f (ρ(s), γ(s)) ∈ intK, ∀s > 0, (21)

then the system (2) is locally ISS in K.1

Proof: It can be concluded from [28] that local stability and the local
asymptotic gain property imply local ISS, see also [29]. The fact that
analysis is restricted to K in Definitions 4.9 and 4.10 does not affect
this result. In the remainder of the proof, we will therefore show local
stability and the local asymptotic gain property.

However, before doing so, recall the result (12) from Lemma 4.2 and
note that, similarly

Bσ(s) ∩Ku ⊂ W (γ(s)) ∩Ku (22)

1Similar to Theorem 4.3, the conditions actually imply ISS in any robustly
positively invariant set Ω ⊂ X satisfying the conditions of Remark 4.4.

for all s ∈ R+ and some class K function σ. Next, define δ > 0 such
that

δ < lim
s→∞

α1(s), δ < lim
s→∞

σ(s). (23)

(Local Stability): Let x0 ∈ Bδ ∩K and u be such that u(t) ∈ Bδ ∩
Ku for all t ∈ R+. Then, define

s = max
{
α−1
1 (|x0|), σ−1(‖u‖∞)

}
(24)

and note that both the inverse functions exist due to the definition of δ
in (23). In fact, we also have s ≤ δ.

By (24) and the inclusions (12) and (22), we have that

x0 ∈ S(ρ(s)), u ∈ W∞(γ(s))

after which item 1) of Theorem 3.8 implies that

φ(t, x0, u) ∈ S(ρ(s))

for all t ∈ R+. In fact, as (2) is monotone, we also haveφ(t, x0, u) ∈ K
for all t ∈ R+. Turning attention to (12) again, this in fact shows that
φ(t, x0, u) ∈ Bα2(s), i.e.,

|φ(t, x0, u)| ≤ α2(s)

= max
{
α2(α

−1
1 (|x0|)), α2(σ

−1(‖u‖∞))
}

for all t ∈ R+. Hence, we have local stability inK as in Definition 4.10
(with σ1 = α2 ◦ α−1

1 and σ2 = α2 ◦ σ−1).
(Local Asymptotic Gain): Let x0 ∈ Bδ ∩K and u be such that

u(t) ∈ Bδ ∩Ku for all t ∈ R+. In a similar manner as in the proof
of local stability, define

s = σ−1(‖u‖∞), s = σ−1(δ),

and note that s ≤ s. Again using (12) and (22), this implies

x0 ∈ S(ρ(s)), u ∈ W∞(γ(s))

such that item 2) of Theorem 3.8 gives

lim sup
t→∞

|φ(t, x0, u)| ≤ α2(s).

Here, we have again used (12). This proves the local asymptotic gain
property (see Definition 4.10) with γ = α2 ◦ σ−1. �

Remark 4.12: It follows from the proof of Theorem 4.11 that if ρ
and γ are such that the class K functions α in (12) and σ in (22) can
in fact be chosen to be of class K∞, then ISS can be shown globally in
K, i.e., the dependence on the balls Bδ in (20) can be removed. �

The paper [13] derives the ISS condition (21) when the state and
input cones are positive orthants. A difficulty of generalizing analysis
to proper cones is to handle tangent cones for positively invariance
analysis as in Theorem 3.2.

We illustrate Theorem 4.11 by an example.
Example 4.13: Consider a tunnel-diode circuit [23, Section 1.2.2]

modeled as

ẋ =

[
−h(x1)/C + x2/C
−x1/L− (R/L)x2

]
+

[
0

1/L

]
u, (25)

where the tunnel diode is characterized by the function h satisfy-
ing h(0) = 0 and h(x1) > 0 for x1 > 0, and thus choose X = R+ ×
R.

The system (25) is monotone with respect to K ⊂ X and R+, where

K =

{
x ∈ R2

∣∣∣∣ x = α1

[
1
−k

]
+ α2

[
0
1

]
, α1, α2 ≥ 0

}
, k > 0

if and only if

−dh(x1)

dx1

≥ k +
C

Lk
− CR

L
, ∀x1 ∈ R+. (26)
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Note that the system (25) is not monotone with respect to R2
+ for the

state and R+ for the input, as the term −x1/L prohibits monotonicity
with respect to the positive orthant.

Next, we check our condition for local ISS in K. Choose

ρ(s) =

[
s
0

]
, γ(s) = s/2.

Then, for any s > s′

ρ(s)− ρ(s′) =

[
s− s′

0

]
∈ intK,

γ(s)− γ(s′) = s/2− s′/2 > 0

such that Assumption 3.5 is satisfied. Moreover

−f (ρ(s), γ(s)) =

[
h(s)

s− s/2

]
=

[
h(s)
s/2

]
∈ intK

for any s > 0. As a result of Theorem 4.11, (25) is locally ISS in K
(for the input cone R+) if and only if the system is monotone. The
right-hand side of (26) is minimized for k =

√
C/L that gives the

weakest monotonicity condition. It is worth mentioning that even if we
do not know h explicitly, it may be possible to check monotonicity, i.e.,
(26) for given positive constants R, L, and C.

We do not impose strict differential positivity, i.e., which would
require the strict inequality in (26). Strict differential positivity guar-
antees multistability of bounded solutions [3]. In this note, we show
local ISS in K without assuming boundedness of a solution. For
monotone systems, contraction conditions have been derived [11], but
the proposed condition is easier to check and less conservative in this
particular example.

Finally, as an illustration of Remark 4.6, we construct the Lyapunov
function corresponding to the path ρ. From Lemma 3.7, we have that,
for any given x ∈ K \ {0}, there exists either β1 ≥ 0 or β2 ≥ 0 such
that either [

s
0

]
−
[
x1

x2

]
= β1

[
0
1

]
(27)

or [
s
0

]
−

[
x1

x2

]
= β2

[
1
−k

]
(28)

has the unique solution s > 0. If −x2 ≥ 0, then by choosing β1 =
−x2, (27) has the unique solution s = x1. Note that x ∈ K \ {0}
and −x2 ≥ 0 imply x1 > 0. If x2 > 0, then by choosing β2 = x2/k,
k > 0, (28) has the unique solution s = x1 + x2/k. Note that x ∈ K
implies x1 ≥ 0. Therefore, the corresponding Lyapunov function is
constructed as

V (x) =

{
x1 if x2 ≤ 0
x1 + x2/k if x2 > 0

, x ∈ K.

The complex structure of this function suggests that path-based analysis
provides a simpler way of verifying ISS than searching for a Lyapunov
function directly. �

V. CONCLUSION

Stability analysis of monotone systems is considered, resulting in
two main differences from existing results. First, our analysis does not
require proper cones being positive orthants. Second, our analysis is
purely based on paths, i.e., there is no need to construct Lyapunov func-
tions corresponding to paths in order to conclude stability properties.
An advantage of this pure path-based analysis is that differentiability
arguments of corresponding Lyapunov functions are not needed any-
more. Finally, our results are illustrated by the ISS analysis of a tunnel
diode circuit, which is not monotone with respect to the positive orthant
but is with respect to some proper cones.

APPENDIX

A. Proof of Theorem 3.2

By Nagumo’s theorem, see [17, Th. 4.10] or [2, Th. 4], positive
invariance of S(v) in (5) is equivalent to the condition

f(x, u) ∈ TxS(v), ∀x ∈ S(v), ∀u ∈ W (w). (29)

In the remainder of this proof, we use Lemma 2.1. However, as this result
only considers the interior of the invariant set X , we cannot directly
consider the set S(v). In fact, it can be concluded from the results in
[2, Section III] that (29) is equivalent to

f(x, u) ∈ TxS(v), ∀x ∈ S̄(v), ∀u ∈ W (w), (30)

where S̄(v) := S(v) ∩ intX . In the remainder of the proof, we will
therefore show equivalence between (7) and (30).

(Sufficiency) By the definition of the tangent cone, (7) implies

lim inf
τ→0+

infz∈S(v) |v + τf(v,w)− z|
τ

= 0. (31)

At the same time, by Assumption 2.1 and Lemma 2.2, we have that, for
any v � x and w � u (i.e., x ∈ S̄(v) and u ∈ W (w))

lim
τ→0+

infy∈K |v − x+ τ(f(v,w)− f(x, u))− y|
τ

= 0 (32)

as is again immediate from (1). Note that lim inf is replaced by lim
as K is convex (recall the remark below (1)).

Next, the triangle inequality gives

| − x− τf(x, u)− y + z|

≤ |v + τf(v,w)− z|

+ |v − x+ τ(f(v,w)− f(x, u))− y|

where the norms in (31) and (32) appear on the right-hand sides. Since
taking the infimum does not change the inequality, we have

inf
(y,z)∈K×S(v)

| − x− τf(x, u)− y + z|

≤ inf
(y,z)∈K×S(v)

(|v + τf(v,w)− z|

+ |v − x+ τ(f(v,w)− f(x, u))− y|)

= inf
z∈S(v)

|v + τf(v,w)− z|

+ inf
y∈K

|v − x+ τ(f(v,w)− f(x, u))− y| (33)

for any τ > 0, where the equality follows as the two infima are over
independent variables (z and y, respectively). After dividing the result
(33) by τ and taking the lim inf , we obtain

lim inf
τ→0+

inf(y,z)∈K×S(v) | − x− τf(x, u)− y + z|
τ

≤ lim inf
τ→0+

(
infz∈S(v) |v + τf(v,w)− z|

τ

+
infy∈K |v − x+ τ(f(v,w)− f(x, u))− y|

τ

)

= lim inf
τ→0+

infz∈S(v) |v + τf(v,w)− z|
τ

+ lim
τ→0+

infy∈K |v − x+ τ(f(v,w)− f(x, u))− y|
τ

.
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Here, the equality follows from convexity of K. As a result, we can
conclude from (31) and (32) that

lim inf
τ→0

inf(y,z)∈K×S(v) | − x− τf(x, u)− y + z|
τ

= 0.

To simplify this result, note that the triangular inequality gives

| − x− τf(x, u) + z| ≤ | − x− τf(x, u)− y + z|+ |y|.
By a similar reasoning as earlier, using that infy∈K |y| = 0 (from 0 ∈
K), we have

lim inf
τ→0+

infz∈S(v) |x+ τf(x, u)− z|
τ

= 0. (34)

From the definition of the tangent cone, this is exactly (30) at (x, u).
As x ∈ S̄(v) and u ∈ W (w) are chosen arbitrarily, this finalizes the
proof of sufficiency.

(Necessity) As (30) is a necessary and sufficient condition for robust
positive invariance of a closed subset, we let (30) hold and follow a
similar idea as in the proof of sufficiency. Indeed, motivated by the
norms in (32) and (34), consider the triangle inequality

|v + τf(v,w)− (y + z)|

≤ |x+ τf(x, u)− z|

+ |v − x+ τ(f(v,w)− f(x, u))− y|.
In a similar manner as the sufficiency proof, it can be shown that

lim inf
τ→0

inf(y,z)∈K×S̄(v) |v + τf(v,w)− (y + z)|
τ

= 0.

By using the triangular inequality again, (7) can be obtained. �

B. Proof of Lemma 3.7

Sinceρ(s)− x ∈ intK (asx ≺ ρ(s)) and intK is open, there exists
ε > 0 such that, for any z ∈ X

|ρ(s)− x− z| < ε ⇒ z ∈ intK.

Specifically, we can choose z = ρ(s1)− x for some s1 < s. As ρ is
continuous, for any ε > 0, there exists δ > 0 such that for any s1 ∈
[0, s)

s− s1 < δ ⇒ |ρ(s)− ρ(s1)| < ε.

In summary, we have constructed s1 < s such that

s− s1 < δ

⇒ |ρ(s)− x− (ρ(s1)− x)| = |ρ(s)− ρ(s1)| < ε

⇒ ρ(s1)− x ∈ intK.

By repeating this reasoning, one can construct a strictly decreasing
sequence {si} satisfying

ρ(si)− x ∈ intK.

We note that the assumption x � ρ(0) can be written as ρ(0)− x /∈ K.
This, together with the fact that ρ is strictly increasing, implies that
si > 0, i.e., the strictly decreasing sequence {si} is lower bounded.
Thus, {si} converges to some s ≥ 0. As ρ is continuous (recall again
Assumption 3.5), {ρ(si)− x} is a convergent sequence also, which
converges to ρ(s)− x. SinceK is closed, it follows that ρ(s)− x ∈ K.
In fact, ρ(s)− x ∈ ∂K as ρ(s)− x ∈ intK contradicts the conver-
gence of {si}. Continuity of ρ implies that ρ(s)− x does not depend
on the choice of the sequence {si}, such that s is unique.

We have already shown (by construction of the strictly decreasing
sequence) that s < s. The property 0 < s follows from the assumption
x � ρ(0).

C. Proof of Theorem 3.8

Before proving Theorem 3.8, we give two useful lemmas.
Lemma 5.1: Let the conditions in the statement of Theorem 3.8 hold.

Then

f (ρ(s), γ(s)) ∈ Tρ(s)S(ρ(s)), ∀s ∈ (0, s]. (35)

Proof: Note that ρ(s) ∈ intX and γ(s) ∈ U . Moreover, by the
dynamics (2) and robust positive invariance of intX with respect
to W∞(γ(s)) following that of X (see [2, Lemma 3.6]), we also have

ρ(s) +

∫ t

0

f (φ(τ, ρ(s), γ(s)), γ(s)) dτ ∈ intX

for all t ≥ 0. Thus, for sufficiently small τ > 0, this implies ρ(s) +
τf(ρ(s), γ(s)) ∈ intX . Moreover, from (9), we obtain that ρ(s) �
ρ(s) + τf(ρ(s), γ(s)) for any τ > 0. Together, these conditions imply

ρ(s) + τf (ρ(s), γ(s)) ∈ S(ρ(s)) (36)

as follows from the definition of S(·) in (5). The result (36) in turn
implies (35) after recalling the definition of the tangent cone (1).

Lemma 5.2: Let the conditions in the statement of Theorem 3.8 hold
and define the set

Ωδ :=
{
x ∈ X

∣∣ d (x, S(ρ(s))) < δ
}
.

Then, for each δ > 0, there exists s > s such that

S(ρ(s)) ⊂ Ωδ. (37)

Proof: Let δ > 0 be given. Then, by continuity of ρ, there exists
s > s such that

|ρ(s)− ρ(s)| < δ.

To show that (37) holds for this s, take x ∈ S(ρ(s)) and define

y = ρ(s)− ρ(s) + x.

Then, a direct computation yields the results

|x− y| = |ρ(s)− ρ(s)| < δ,

ρ(s)− y = ρ(s)− x ∈ K, (38)

where the inclusion in (38) follows as x ∈ S(ρ(s)). Thus, we have
constructed y ∈ S(ρ(s)) for which d(x, y) < δ. Stated differently, x ∈
Ωδ as desired. �

We are now in the position to prove Theorem 3.8.
(Proof of 1) According to Theorem 3.2, condition (35) is a nec-

essary and sufficient condition for the robust positive invariance
of S(ρ(s)) with respect to W∞(γ(s)). The increasing property of γ
implies W∞(γ(s)) ⊂ W∞(γ(s)) for any s ∈ [s, s]. Hence, from Def-
inition 3.1, S(ρ(s)) is also robustly positively invariant with respect
to W∞(γ(s)).

(Proof of 2) We now turn to attractivity of S(ρ(s)). Let u ∈
W∞(γ(s)) and x0 ∈ S(ρ(s)) and note that φ(t, x0, u) ∈ S(ρ(s)) for
all t ∈ R+ due to the result of item 1). We now consider three cases.

In the first case, let x0 ∈ S(ρ(s)). Then, (10) follows immediately
from robust positive invariance (item 1)).

Second, let x0 /∈ S(ρ(s)), but assume that the trajectory φ(·, x0, u)
entersS(ρ(s)), i.e., there exitsT > 0 such thatφ(T, x0, u) ∈ S(ρ(s)).
In this case, the result (10) follows again from robust positive invariance
of S(ρ(s)).
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In the third and final cases, let x0 /∈ S(ρ(s)) and φ(t, x0, u) /∈
S(ρ(s)) for all t ∈ R+. In the remainder of this proof, we will show
that (10) still holds in this case, i.e., S(ρ(s)) is attractive.

Consider the solution φ(t1, x0, u) to the system (2) at some time
t1 > 0. Note that φ(t1, x0, u) � ρ(s) for any t1 ≥ 0 from the robust
positive invariance of S(ρ(s)). Then, from a slight modification of
Lemma 3.7, there exists s1 ∈ (s, s] such that

ρ(s1)− φ(t1, x0, u) ∈ ∂K.

In addition, monotonicity (3) implies that

φ(t, ρ(s1), γ(s1)) � φ(t+ t1, x0, u), ∀t ∈ R+. (39)

On the other hand, from the continuity of f(x, u)
and φ(t, ρ(s1), γ(s1)), condition (9) implies that there exists a
sufficiently small t2 > 0 such that

−
∫ t

0

f (φ(r, ρ(s1), γ(s1)), γ(s1)) dr ∈ intK, ∀t ∈ (0, t2],

and thus

ρ(s1)− φ(t, ρ(s1), γ(s1))

= ρ(s1)−
(
ρ(s1) +

∫ t

0

f (φ(r, ρ(s1), γ(s1)), γ(s1)) dr

)

∈ intK, ∀t ∈ (0, t2].

This inclusion and (39) imply

ρ(s1) � φ(t, ρ(s1), γ(s1)) � φ(t+ t1, x0, u), ∀t ∈ (0, t2].

By virtue of Lemma 3.7, there exists s2 ∈ (s, s1) such that

ρ(s2)− φ(t2 + t1, x0, u) ∈ ∂K.

By repeating this procedure, we obtain a strictly decreasing se-
quence {s�}, which is lower bounded by s and satisfies

ρ(s�)− φ(t� + · · ·+ t1, x0, u) ∈ ∂K.

As {s�} is a lower bounded sequence, {s�} converges to some r ≥
s. Now, we show r = s by contradiction. Suppose that r > s. For
any φ(t̄1, x0, u) of the system starting from x0 ∈ S(ρ(r)) with u ∈
W∞(γ(s)) at time t̄1 ≥ 0, one can find s̄1 ∈ [s, r] such that

ρ(s̄1)− φ(t̄1, x0, u) ∈ ∂K.

Then, we again obtain a strictly decreasing sequence {s̄�}, which
contradicts the convergence of {s�}.

Hence, we have constructed a sequence {s�} that converges to s. As
a consequence of Lemma 5.2, this is sufficient to show that

lim
t→∞

d (φ(t, x0, u), S(ρ(s))) = 0

for any x0 ∈ S(ρ(s)) and u ∈ W∞(γ(s)), completing the
proof. �
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