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A B S T R A C T   

Background and aims: Mitochondrial dysfunction is associated with increased reactive oxygen species (ROS) that 
are thought to drive disease risk, including stroke. We investigated the association between mtDNA abundance, 
as a proxy measure of mitochondrial function, and incident stroke, using multivariable-adjusted survival and 
Mendelian Randomization (MR) analyses. 
Methods: Cox-proportional hazard model analyses were conducted to assess the association between mtDNA 
abundance, and incident ischemic and hemorrhagic stroke over a maximum of 14-year follow-up in European- 
ancestry participants from UK Biobank. MR was conducted using independent (R2 < 0.001) lead variants for 
mtDNA abundance (p < 5 × 10-8) as instrumental variables. Single-nucleotide polymorphism (SNP)-ischemic 
stroke associations were derived from three published open source European-ancestry results databases (cases/ 
controls): MEGASTROKE (60,341/454,450), UK Biobank (2404/368,771) and FinnGen (10,551/202,223). MR 
was performed per study, and results were subsequently meta-analyzed. 
Results: In total, 288,572 unrelated participants (46% men) with mean (SD) age of 57 (8) years were included in 
the Cox-proportional hazard analyses. After correction for considered confounders (BMI, hypertension, choles
terol, T2D), no association was found between low versus high mtDNA abundance and ischemic (HR: 1.06 [95% 
CI: 0.95, 1.18]) or hemorrhagic (HR: 0.97 [95% CI: 0.82, 1.15]) stroke. However, in the MR analyses after 
removal of platelet count-associated SNPs, we found evidence for an association between genetically-influenced 
mtDNA abundance and ischemic stroke (odds ratio, 1.17; confidence interval, 1.03, 1.32). 
Conclusions: Although the results from both multivariable-adjusted prospective and basis MR analyses did not 
show an association between low mtDNA and increased risk of ischemic stroke, in-depth MR sensitivity analyses 
may suggest evidence for a causal relationship.   

1. Introduction 

Stroke is the second leading cause of death and loss of disability- 
adjusted life years worldwide [1]. Oxidative stress has been 

hypothesized to play an important role in the pathophysiology of stroke 
by aggravating secondary damage and increases reperfusion injury after 
ischemic stroke [2–4]. As a result of direct or indirect reactive oxygen 
species (ROS)-induced damage to the (cerebral) vascular wall, multiple 
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aspects of the vascular system are affected including platelet aggrega
tion, endothelial function, vascular permeability and vasodilation [3]. 
These local vessel changes induced by oxidative stress can also gradually 
develop before stroke onset, and therefore may also lead to an increased 
risk of stroke incidence [5]. 

Mitochondria are a major source of ROS production [6]. Mitochon
drial dysfunction leads to an increase in ROS production due to a change 
in redox homeostasis [7]. Additionally, impaired mitochondrial 
dysfunction, frequently proxied by the mitochondrial copy number 
(mtDNA-CN) [8,9], has been associated with diseases such as diabetes, 
heart failure, and neurological defects [10]. mtDNA-CN can be assessed 
relatively easily in large populations by estimating mtDNA abundance 
from the intensities of genotyping probes representing mitochondrial 
DNA on genotyping arrays [9,11,12]. Increased ROS production drives 
mitochondrial dysfunction causing increased defects in mitochondrial 
fusion, fission, and mitophagy activation [13], which subsequently lead 
to subsequent excessive ROS production [13]. 

Although a relatively small study was not able to provide evidence of 
an association between low mtDNA-CN and increased stroke risk [14], 
we hypothesized that leukocyte mtDNA might affect brain pathologies, 
given the available biological data. Based on the combination of the 
postulated detrimental biological effect of blood oxidative stress on the 
(cerebro)vascular endothelial system and its role in secondary damage 
after stroke occurrence, we investigated the prospective association 
between mtDNA abundance and incident ischemic and hemorrhagic 
stroke in a large cohort of European-ancestry participants from the UK 
Biobank. In addition, we applied Mendelian Randomization (MR) to 
provide evidence for possible causality [15,16] as a way to triangulate 
the results from prospective analyses by obtaining results from two 
analysis methods, both with different assumptions and limitations [15]. 

2. Materials and methods 

2.1. Population description 

The UK Biobank cohort is a prospective general population cohort 
with 502,628 participants between the age of 40 and 70 years recruited 
from the general population between 2006 and 2010 [17] (more in
formation can be found online https://www.ukbiobank.ac.uk). Blood 
samples were collected for genotyping. Access for information to invite 
participants was approved by the Patient Information Advisory Group 
(PIAG) from England and Wales. All participants in the UK Biobank 
provided a written informed consent and local research ethics commit
tees and institutional review boards approved the study. The present 
study was accepted under project number 56340. 

In the present study, genotyped European-ancestry participants were 
followed (N = 488,377). Exclusion criteria included: 1) non-European 
ancestry; 2) participants who failed genotyping quality control and/or 
with low call rate; 3) related individuals defined by principal compo
nents (PCs); 4) participants with high SD of autosomal probes; 5) history 
of any stroke at baseline; 6) missing covariates. After exclusion, the final 
analyses were performed in 288,572 participants. 

2.2. Mitochondrial DNA abundance 

We used somatic mtDNA abundance as a proxy measure of mtDNA- 
CN, as the exposure, which is determined from the intensities of geno
typing probes on the mitochondrial chromosome on the Affymetrix 
Array. The method for computing mtDNA abundance has been described 
previously [11]. In brief, the relative amount of mtDNA hybridized to 
the array at each probe was the log2 transformed ratio (L2R) of the 
observed genotyping probe intensity divided by the intensity at the same 
probe observed in a set of reference samples. We used the median L2R 
values across all 265 variants passing quality control on the MT chro
mosome as an initial raw measure of mtDNA abundance. To correct for 
confounding induced by poorly performing probes, we weighted L2R 

values of each probe by multiplying the weight of the probe generated 
from a multivariate linear regression model in which those intensities 
statistically significantly predicted normalized mitochondrial coverage 
from exome sequencing data, resulting in a single mtDNA abundance 
estimate for each individual. To eliminate the plate effect, we subse
quently normalized the abundance to mean of zero and SD of one within 
each genotyping plate consisting of 96 wells [9]. 

2.3. Covariates 

In addition to age and sex, we took into account data based on self- 
reported questionnaires (smoking, alcohol consumption, disease status, 
medication use), blood cell counts (white blood cell counts and platelet 
counts), body mass index (BMI) in kg/m2, serum lipid levels (total and 
LDL cholesterol) in mmol/L, and systolic and diastolic blood pressure in 
mmHg. 

2.4. Outcome 

The outcome in the analysis was ischemic and hemorrhagic stroke 
separately, as well as combined, in the time period August 
2006–January 2021. Stroke incidence was obtained via hospital 
admission data and national health register data and used to identify the 
date of the first stroke or stroke-related death after baseline assessment. 
The primary outcomes were any stroke incidence and further specified 
ischemic and hemorrhagic stroke incidence. Incident disease diagnoses 
are coded according to the International Classification of Diseases edi
tion 10 (ICD-10). Ischemic stroke was defined as I63 and hemorrhagic 
stroke as I61. Any stroke was defined as the combination of I63 and I61. 
Follow-up time is computed from baseline visit to diagnosis of incident 
disease, loss-to-follow-up or death, or the end of the study period, 
whichever came first. 

2.5. Data required for Mendelian Randomization analyses 

For MR, genetic variants of mtDNA abundance were used as instru
ment variables. In a previous study, 129 independent single-nucleotide 
polymorphisms (SNPs) as genetic variants were found to be indepen
dently associated with mtDNA abundance at a genome-wide significance 
threshold (p < 5 × 10− 8); SNPs were additionally pruned to an LD R2 <

0.0001 [18]. The study was performed in a total of 465,809 individuals 
using a combined population of the Cohorts for Heart and Aging 
Research in Genomic Epidemiology (CHARGE) consortium and the UK 
Biobank. 

2.6. Mendelian Randomization outcome datasets 

For the extraction of summary statistics on the associations of the 
mtDNA abundance related SNPs with ischemic stroke, which was 
defined as any ischemic stroke (I63), three large studies were used: the 
MEGASTROKE consortium, the UK Biobank, and the FinnGen study [17, 
19]. Both UK Biobank and FinnGen were not part of the main analyses of 
the MEGASTROKE consortium preventing inclusion of overlapping 
samples in the analyses. In the three studies insufficient data on hem
orrhagic stroke was available. 

The trans-ancestry meta-analysis from the MEGASTROKE con
sortium was used to retrieve the ischemic stroke SNP-outcome data and 
was based on 60,341 cases and 454,450 controls collected from 29 
studies of predominantly European ancestry (86%) [19]. 

For the MR analyses in UK Biobank, cases developed before and after 
enrolment were considered. Follow-up information that included 
ischemic stroke occurrence was retrieved through the routinely avail
able NHS database. In the European-ancestry dataset with full genomics 
data available, we had data on 2404 cases of ischemic stroke and 
368,771 controls. We performed new genome-wide association analyses 
using linear mixed models to assess the associations between genetic 
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instruments and ischemic stroke, adjusted for age, sex and 10 principal 
components, and corrected for familial relationships using BOLT_LMM 
(v2.3.2). 

Data from FinnGen (Freeze 5; https://www.finngen.fi/en/), which is 
an ongoing cohort study launched in 2017, and analyses were based on 
10,551 cases of ischemic stroke, and 202,223 controls. 

Although with lower numbers, we additionally performed MR on 
subtypes of ischemic stroke (Cardio Embolic Stroke: 7193 cases, 
406,111 controls, Large Artery Atherosclerosis: 4373 cases, 406,111 
controls, Small Vessel Stroke: 5386 cases, 192,662 controls) using data 
from MEGASTROKE and hemorrhagic stroke (1,687cases, 201,146 
controls) from FinnGen. 

2.7. Statistical analysis 

2.7.1. Multivariable-adjusted analyses 
For the analyses and presentation purposes, we divided the study 

population in 5 equally-sized groups based on mtDNA abundance, with 
the first quintile containing the group with the lowest levels of mtDNA 
abundance and the fifth quintile containing the highest levels (used as 
reference). 

Baseline characteristics of the study population were presented 
separately per quintile of mtDNA abundance, as mean (SD) for contin
uous variables if they followed a normal distribution, or as median 
(Interquartile range) otherwise, and frequency (proportion) for cate
goric variables. 

The cumulative incidence for competing risk (CICR) was used to plot 
the cumulative incidence of ischemic and hemorrhagic stroke against 
follow-up time separately using a Kaplan-Meier survival curve by 
mtDNA abundance quintiles, where death was accounted for as a 
competing event. For any ischemic and hemorrhagic stroke, a Cox 
proportional hazards model was used to estimate the hazard ratio (HR) 
and 95% confidence interval (CI) presented as stroke incidence, 
comparing the lowest 20% mtDNA abundance with the highest 20%. 
Analyses were additionally done stratified by sex. Two multivariate 
regression models were fitted, where for model 2 covariates were first 
added individually:  

- Model 1: age, sex, batch, the first 10 genetic principal components, 
white blood cell counts, platelet count  

- Model 2: Model 1 + BMI, smoking, alcohol consumption, total 
cholesterol, hypertension, diabetes, cholesterol lowering medica
tion, blood pressure lowering medication 

Covariates were included in regression models given their known 
relation with both exposure and outcome (age, sex, smoking, alcohol 
consumption, total cholesterol, disease status, medication status), or 
were included as a technical correction due to measurement composi
tion (batch, white blood cell count, platelet count). Participants were 
censored in the event of loss-to-follow-up or death. To check whether the 
proportional hazards assumption was fulfilled, a Cox proportional haz
ard assumption test (“cox.zph” from R package “Survival”) was per
formed. Additionally, mtDNA-CN was assessed continuously as a one-SD 
lower mtDNA-CN on stroke incidence. Analyses were performed using 
the “Survival” (cran.r-project.org/web/packages/survival) package in R 
(v4.1.0) 

2.7.2. Mendelian Randomization 
All the analyses were done using R (v4.1.0) statistical software (The 

R Foundation for Statistical Computing, Vienna, Austria). MR analyses 
were performed using the R-based package “TwoSampleMR” (https:// 
mrcieu.github.io/TwoSampleMR/) [20]. 

For our primary MR analysis, Inverse-Variance weighted (IVW) 
regression analyses were performed [16]. Estimates were calculated for 
each genetic instrument using the Wald ratio (SNP – outcome associa
tion divided by the SNP – exposure association) and subsequently 

meta-analyzed using the inverse-weighted meta-analyses weighted on 
the standard error of the SNP-outcome association (assuming no mea
surement error [NOME] in the exposure) [21]. The calculated estimates 
were expressed as odds ratios (OR) on ischemic stroke per SD (obtained 
from the exposure data) difference in mtDNA abundance. 

To ensure that the results obtained from the IVW analyses were not 
biased due to directional pleiotropy, we performed MR-Egger regression 
analysis and Weighted-Median Estimator [21]. Although MR-Egger is 
considered as a relatively inefficient approach (e.g., large confidence 
intervals), this method does not force the regression line to go through 
the intercept. The intercept depicts the estimated average pleiotropic 
effect across the genetic variants, and a value that differs from zero in
dicates that the IVW estimate is biased [22]. The Weighted-Median 
estimator analysis can provide a consistent valid estimate if at least 
half of the instrumental variables are valid [23]. In addition, 
MR-PRESSO (MR Pleiotropy RESidual Sum and Outlier) was applied to 
detect and correct for horizontal pleiotropy through removing outlying 
causal estimates based on individual instruments [24], as implemented 
in the R-based package “MR-PRESSO” (https://github.com/rondolab/ 
MR-PRESSO). The Cochran’s Q statistic was performed in order to test 
the heterogeneity between the estimated Wald ratios from different 
genetic variants [25]. Additionally, a Steiger directionality test was 
performed to ensure consistent causal direction-of-effect. A power 
calculation was performed with mRnd (https://shiny.cnsgenomics. 
com/mRnd/) [26]. With power = 0.80, minimal effect size (OR) was 
1.076. 

Recent research has proven that two-sample MR methods can safely 
be used for one-sample MR in large databases [27]. This allows us to use 
the UK Biobank database in our sample set despite also being used as our 
exposure dataset. As a limitation to this method, results of MR-Egger 
analyses are to be interpreted with caution when used to check for 
pleiotropy [27]. 

The main MR analyses were performed in the individual datasets, 
and subsequently meta-analyzed to derive the pooled estimates for the 
exposure on the risk of ischemic stroke using a fixed-effect model. 
Heterogeneity testing of the estimates across three datasets was per
formed by I2, and corresponding p-value was obtained from the 
Cochran’s Q test. All meta-analyses were performed in the R-based 
“meta” package (https://cran.r-project.org/web/packages/meta/index. 
html). 

2.7.3. Sensitivity analysis after stratification of genetic instruments 
SNPs identified in relation to mtDNA-CN have been found in relation 

to platelet activation and megakaryocyte proliferation [18], which both 
could affect stroke risk and could potentially lead to biased results, we 
first examined the associations between the SNPs and platelet count in 
our study sample (adjusted for age, sex, and the first 10 genetic principal 
components); all SNPs with p<(0.05/123) in its association with platelet 
count were excluded from further MR sensitivity analyses. 

3. Results 

3.1. Baseline characteristics of the study population 

A total of 288,572 participants were included in the final study 
sample (see full procedure in Supplementary Fig. 1) for multivariable- 
adjusted survival analyses. Participants with unavailable genetic data 
(N = 14,251), not used to compute the genetic principal components (N 
= 81,623), or having unrealistic SD of autosomal probes (N = 9440) 
were excluded according to standard UK Biobank quality control rec
ommendations. Subsequently, we excluded related participants (N =
38,642), and those with a non-white British ancestry (N = 65,498). 
Finally, 4602 participants were excluded due to a history of stroke 
before study enrollment. Participants in the lower mtDNA abundance 
quintile (Table 1) had a mean age of 57.5 versus 56.1 year in the highest 
quintile, a mean BMI of 27.7 versus 27.0 kg/m2, T2D prevalence of 2.8% 
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versus 2.0%, and 11.3% were current smokers compared with 8.4% in 
the highest quintile. 

3.2. Multivariable-adjusted survival analyses mtDNA abundance and 
stroke 

A total of 6218 of the 288,572 participants (2.15%) had a stroke 
incidence, of which 3994 (1.38%) were ischemic and 1883 (0.65%) 
hemorrhagic over a median (IQR) follow-up of 11.8 (11.1–12.5) years. 
The incidence of ischemic stroke was higher in the lower mtDNA-CN 
quintiles than in the higher quintiles (Fig. 1A), while hemorrhagic 
stroke incidence was similar in all mtDNA-CN quintiles (Fig. 1B); in both 
cases the analyses fulfilled the proportional hazard assumption (p-value: 
0.84 and 0.88). 

After stratification based on mtDNA-CN (Table 2), in model 1, 
mtDNA abundance was associated with any stroke and ischemic stroke 
incidence, when comparing the first quintile with the highest 20% 

mtDNA abundance (any stroke: hazard ratio (HR), 1.11; 95% confidence 
interval (CI): 1.02 to 1.20; ischemic stroke: HR, 1.15; 95% CI: 1.04 to 
1.27). Similarly, a one-SD increase in mtDNA abundance was associated 
with lower risk of incident ischemic stroke (HR, 0.96; 95% CI: 0.93 to 
0.99). No association was found between mtDNA abundance and inci
dent hemorrhagic stroke. 

After correcting for other confounders, the associations with stroke 
and ischemic stroke attenuated (any stroke: HR, 1.06; 95% CI: 0.97 to 
1.16; ischemic stroke: HR, 1.07; 95% CI: 0.95 to 1.19), as did the 
continuous model on ischemic stroke (HR, 0.98; 95% CI: 0.94 to 1.01). 

3.3. Mendelian Randomization on mtDNA abundance and ischemic 
stroke 

3.3.1. Main analyses 
We did not observe evidence favoring an association between 

genetically-influenced lower mtDNA-CN and ischemic stroke (Fig. 2). 

Table 1 
Baseline characteristics of the study participants stratified by quintiles of mtDNA abundance.   

Q1 Q2 Q3 Q4 Q5 

N 57,715 57,714 57,714 57,714 57,715 
mtDNA abundance (normalized) − 1.4 (0.5) − 0.5 (0.2) 0.0 (0.1) 0.5 (0.2) 1.4 (0.5) 
Age (years) 57.5 (8.0) 57.1 (8.0) 56.8 (8.0) 56.5 (8.0) 56.1 (8.0) 
Sex (female %) 52.0 53.2 54.0 54.3 55.7 
BMI (kg/m2) 27.7 (5.0) 27.5 (4.8) 27.4 (4.7) 27.2 (4.6) 27.0 (4.5) 
Diastolic blood pressure (mmHg) 82.6 (10.2) 82.4 (10.0) 82.3 (10.0) 82.1 (10.1) 81.7 (10.1) 
Systolic blood pressure (mmHg) 139.5 (18.8) 138.6 (18.7) 138.2 (18.6) 137.6 (18.3) 136.7 (18.3) 
White Blood Cell count (109 cells/L) 7.4 (1.8) 7.1 (1.7) 6.9 (1.7) 6.6 (1.7) 6.4 (2.7) 
Platelet count (109 cells/L) 245.5 (58.0) 250.8 (57.7) 253.4 (58.4) 256.3 (59.2) 259.5 (63.8) 
Blood pressure-lowering medication % 

Yes 19.8 18.4 17.5 16.6 15.6 
No 80.2 81.6 (82.5 83.4 84.4 

Cholesterol (mmol/L) 5.8 (1.2) 5.7 (1.1) 5.7 (1.1) 5.7 (1.1) 5.7 (1.1) 
Cholesterol lowering medication % 

Yes 13.9 13.5 13.1 12.5 12.2 
No 86.1 86.5 86.9 87.5 87.8 

Alcohol consumption % 
Less than once per week 29.1 28.2 27.8 27.3 26.6 
Once or twice per week 25.6 26.4 26.2 26.4 26.6 
More than four times per week 45.3 45.2 45.9 46.3 46.7 

Smoking % 
Never 53.3 54.1 55.0 55.6 56.5 
Past 35.0 35.2 34.8 34.9 34.9 
Current 11.3 10.4 9.9 9.4 8.4 

Type 2 diabetes % 
Yes 2.8 2.5 2.3 2.2 2.0 
No 97.2 97.5 97.7 97.8 98.0 

Data are mean (SD) for continuous variables or percentages for dichotomous variables. mtDNA abundance is presented as normalized in unit standard deviations. BMI, 
Body Mass Index. 

Fig. 1. Cumulative incidence of ischemic (A) and hemorrhagic (B) stroke by quintiles of mtDNA abundance. 
We calculated the cumulative incidence for ischemic and hemorrhagic stroke, accounting for death as a competing event. Differences in cumulative incidence 
between groups were assessed using Gray’s test. 
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The odds ratios per 1 SD less mtDNA-CN were 1.07 (95%CI: 0.95, 1.20) 
in MEGASTROKE, 1.04 (95%CI: 0.79, 1.37) in the UK Biobank, and 0.99 
(95%CI: 0.82, 1.20) in FinnGen. After meta-analysis, in a combined 
sample size of 1,098,740 (of which 73,296 cases), the pooled odds ratio 
was 1.04 (95%CI: 0.95 to 1.15) per 1-SD decrease in genetically- 
influenced mtDNA abundance. 

The exact set of variants, their corresponding coefficients, standard 
errors, and p-values are presented in Supplementary Table 1. Variance 
explained (R2) was 2.0% and calculated based on the derived summary 
statistics. The MR-Egger intercept indicated no pleiotropy (p > 0.05). 
Although several outliers were identified with MR-PRESSO in MEGA
STROKE and FinnGen, results remained similar after removal of these 
outlying SNPs. The Steiger test of directionality showed a correct causal 
direction, indicating that there is no evidence for reverse causation, and 
no different results were observed with MR-sensitivity analyses, MR- 
Egger and weighted median (Supplementary Table 2). 

Sub-analyses performed with separate outcomes, cardioembolic, 
large artery atherosclerosis, small-vessel, and hemorrhagic stroke 
(Supplementary Fig. 2 and 3), showed no evidence favoring a different 
result. 

3.3.2. Additional sensitivity analyses 
A total of 61 SNPS were associated with platelet count, which were 

subsequently excluded from additional sensitivity analyses. In the full 
sample, a 1-SD genetically-determined lower mtDNA abundance was 
associated with a higher risk of ischemic stroke (OR: 1.165; 95% CI: 
1.026 to 1.323), although results from FinnGen did not align with those 
obtained in UK Biobank and MEGASTROKE (Supplementary Fig. 4). 

4. Discussion 

In the UK Biobank cohort, consisting of 288,572 participants after 
exclusion, an initial association was found between mtDNA abundance 
and incident ischemic stroke, which attenuated after adjustment for 
confounders. Consistent with the prospective analyses, MR analyses, 
using a total sample size of 73,296 cases and 1,025,444 controls, showed 

no evidence for an association between genetically-predicted mtDNA 
abundance and ischemic stroke. However, some in-depth sensitivity 
analyses in which SNPs associated with platelet count were excluded, 
did provide some preliminary evidence for low mtDNA-CN as possible 
causal driver for ischemic stroke. 

Although of specific interest, caution in these results is warranted 
given that they were mainly driven by results derived from MEGA
STROKE, and to a lesser extent by UK Biobank. Furthermore, results 
from these additional MR sensitivity analyses deviated significantly 
from those observed in the prospective multivariable-adjusted analyses, 
and therefore do not meet the requirements for triangulation [15]. 
Collectively, our results indicate that there is only weak evidence for a 
causal association between mtDNA abundance and ischemic stroke, and 
more studies are required to elucidate the nature of the pleiotropy 
identified in our study, which goes beyond the current scope. 

Previously, an association was observed between low mtDNA-CN 
and increased risk of incident stroke in 20,162 participants, followed 
over a 13.5-year period, during which 1584 stroke events occurred [28], 
and therefore deviate from our study done in a larger sample of 288,752 
participants with 6218 stroke cases. Difference in baseline health 
characteristics are possible reasons explaining the observed differences 
in results. 

Recent studies showed that mtDNA-CN could be a marker of stroke 
prognosis after hospitalization [29,30]. By analyzing mtDNA-CN, and 
consequently oxidative stress, our findings did provide some, albeit 
circumstantial, evidence for a relationship between oxidative stress and 
stroke occurrence, although this association attenuated after adjustment 
for confounders. In the Mendelian Randomization analysis, after 
excluding SNPs associated with platelet count, we also found an asso
ciation between genetically determined mtDNA abundance and 
ischemic stroke risk. In contrast to ischemic stroke, we did not find an 
association between mtDNA abundance and hemorrhagic stroke in 
univariate or MR analyses. This difference might be explained because 
hemorrhagic stroke, in contrast to ischemic stroke, is also often caused 
by non-classic cardiovascular mechanisms such as vascular amyloid 
deposition in cerebral amyloid angiopathy [31]. 

Table 2 
The multivariable-adjusted association between mtDNA abundance and incident stroke in European-ancestry participants from UK Biobank.    

Continuous Q1 Q2 Q3 Q4 Q5 

Stroke incidence  HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) 
Any Model 1 0.97 (0.95, 1.00) 1.11 (1.02, 1.20) 1.07 (0.98, 1.16) 1.03 (0.95, 1.12) 1.03 (0.95, 1.12) 1.00 (ref)  

Model 2 0.99 (0.96, 1.02) 1.06 (0.97, 1.16) 1.05 (0.96, 1.15) 1.02 (0.94, 1.12) 1.01 (0.92, 1.10) 1.00 (ref) 
Ischemic Model 1 0.96 (0.93, 0.99) 1.15 (1.04, 1.27) 1.11 (1.00, 1.23) 1.07 (0.96, 1.18) 1.05 (0.95, 1.16) 1.00 (ref)  

Model 2 0.98 (0.94, 1.01) 1.07 (0.96, 1.19) 1.08 (0.97, 1.21) 1.03 (0.92, 1.15) 1.00 (0.89, 1.12) 1.00 (ref) 
Hemorrhagic Model 1 1.02 (0.97, 1.07) 0.97 (0.84, 1.13) 0.98 (0.84, 1.13) 0.93 (0.80, 1.09) 0.92 (0.79, 1.07) 1.00 (ref)  

Model 2 1.02 (0.97, 1.07) 0.98 (0.83, 1.15) 0.99 (0.84, 1.17) 0.97 (0.82, 1.14) 0.93 (0.79, 1.10) 1.00 (ref) 

Estimated hazard ratios per-SD increase in mtDNA abundance (continuous), or for the 1st to the 4th quintile compared with the 5th (reference) quintile (categorical) on 
any, ischemic, and hemorrhagic stroke. Model 1 includes age, sex, batch, PCs, white blood cell count, platelet. Model 2 includes model 1, BMI, smoking, total 
cholesterol, hypertension, diabetes, cholesterol lowering medication, blood pressure lowering medication. CI, confidence interval; HR, hazard ratio. 

Fig. 2. Causal association between mtDNA abundance and ischemic stroke occurrence.  
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Our data on mtDNA abundance was obtained from leukocytes. 
Although some of the leukocytes may be directly involved in the pa
thology of stroke, additional cell types such as endothelial and smooth 
muscle cells, that we did not query for mitochondrial abundance, are 
clearly more directly involved. This could potentially explain our overall 
null findings. Studies on the differences in mitochondrial function 
within an individual between cell groups are largely non-existent. 
However, mtDNA-CN measured in blood has been associated with 
gene expression in other tissues, which suggests mtDNA-CN derived 
from leukocytes can reflect metabolic health across multiple tissues 
[32]. Thus, the evidence so far indicates that mitochondrial dysfunction, 
as measured with leukocyte mtDNA-CN, is systemic. Of interest, using 
similar methodology as in our study, low genetically-influenced mtDNA 
has recently been associated with increased dementia risk [12]. This 
would further indicate that lower mtDNA-CN, although measured in 
leukocytes, can reflect processes of a systemic increase in disease risk. 

A key strength of this study is the statistical power of the analyses of 
the association between stroke and mitochondrial abundance (288,572 
participants for the multivariable survival analysis and 1,098,740 for the 
MR, respectively). Additionally, we adopted the triangulation of causal 
inference [15]. By using two different approaches in observational 
research to study the association between low mtDNA abundance and 
(ischemic) stroke risk, we increased the credibility of our results. 
Although results from both our used approaches were not exactly 
similar, they were directionally consistent. 

Some limitations are to be considered. First, mtDNA abundance was 
determined from intensities of genotyping probes on mitochondrial DNA, 
whereas the assessment with whole-exome sequencing is generally 
considered to result in more reliable mtDNA abundance estimates [33,34]. 
Although Hägg et al. showed a moderate correlation between mtDNA 
based on SNP array intensities and exome sequencing of 0.33 [11], ana
lyses still indicated the measurements of SNP array intensities reflect un
derlying biology of mtDNA abundance. For this reason, the increased 
variance is most likely the result of nondifferential measurement error, and 
therefore considered to mainly cause a reduction in statistical power. As a 
consequence, the true associations, particularly those from the 
multivariable-adjusted prospective analyses, are most likely larger than 
observed. Second, our study population consists of predominantly Cauca
sian participants, limiting the generalizability of the results to other 
ancestry groups. Third, Mendelian Randomization functions on several 
assumptions. However, using several sensitivity analyses such as MR-Egger 
and MR-PRESSO, we can establish with some conviction that these are 
fulfilled. In addition, although in a one-sample MR (as conducted in the UK 
Biobank) the assumption of independence does not hold up, previous 
studies have shown that two-sample MR methods can be used reliably with 
large enough biobanks [27]. Last, despite a large sample size in the 
multivariable adjusted analysis, stroke, especially hemorrhagic stroke 
incidence, was relatively few. However, as an association was found before 
correction, we think our analyses had enough power to detect a difference 
between groups. In addition, we used one of the larger data sets available. 

In conclusion, despite a large sample size, our prospective study did not 
find evidence for an association between mtDNA abundance and ischemic 
or hemorrhagic stroke. After exclusion of pleiotropic SNPs associated with 
platelet count, we found some preliminary evidence for an association 
between genetically determined lower mtDNA-CN and ischemic stroke risk 
using MR. However, further studies are required for validation and to 
examine the nature of this type of pleiotropy. 
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