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EXTENSIONS OF BETA AND RELATED FUNCTIONS

MUSHARRAF ALI *, MOHD GHAYASUDDIN, AND RICHARD BRUCE PARIS

ABSTRACT. In this paper, we introduce and investigate a new extension
of the beta function by means of an integral operator involving a product
of Bessel-Struve kernel functions. We also define a new extension of the
well-known beta distribution, the Gauss hypergeometric function and the
confluent hypergeometric function in terms of our extended beta function.
In addition, some useful properties of these extended functions are also
indicated in a systematic way.
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1. Introduction

Throughout in this paper, let N, R and C be the sets of natural numbers,
real numbers and complex numbers, respectively, and let

N:={1,2,3,..}, Ng:={0,1,2,3,..} = NU{0}.
The classical beta function B({1,&2) is defined by (see [18], see also [19])

1
(1.1) B(£1,&) 2/0 y T (1—y)2dy
(R(&1) >0, R(&) > 0).
In 1997, Chaudhry et al. [!] introduced a very useful generalization of the
classical beta function (1.1) by

1
(1.2) Bp(fth) :/0 y§1—1 (1 _y)§2—1 exp |:—y(1p_y):| dy

(§R<£1) > 07 %(52) > 07 %07) > 0)'
Obviously, for p =0, (1.2) reduces to (1.1). The most interesting applications
of (1.2) are given by Chaudhry et al. in [5]. They generalized the classical
Gauss and confluent hypergeometric functions by means of the extended beta
function By (&1, &2) as follows:

DR = (S By(& + 1,83 — &) a”
13 Fp(&,62:8352) = 7;) Bes. &5 — &) ]

(p =0, [z <1, R(&) > R(E&2) > 0)
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and
— Bp(&+n,&3— &) a”

Dy (€2:&33w) = = —

(1.4) p(62isi) ,;) B(&,8 — &) !
(p =0, R(&) > R(&2) > 0).
Among the many interesting properties given in [5], the following integral
representations are recalled:
1
1.5 F,(&1,89:830) = ———
( ) P(fl 52 53 w) B(§2,€3 _62)
b &1 3 p
X 1=yt 1 —xy) Stexp | ———— | d
/Oy (1-y) (1 —ay) p[ y(l—y)} y
(p=0, Jarg(l —z)| <m, R(&3) > R(&2) > 0)
and
1

1.6 P 1€3;0) = —————
(16) pl(&2i &5i ) B(§2,83 — &2)

b &1 p

X 2T (1 =y 2 exp lay — —— | d
/Oy (1-y) p[y y(l_y)} y

(p =0, R(&3) > R(&) > 0).
If we set p = 0in (1.5) and (1.6) then we easily recover the integral representa-

tions of the classical Gauss and confluent hypergeometric functions as follows
(see [18] and also [19]):

1
(1.7) F(&1,&2:83;2) = B(§2§13§2)/0 yet (1- y)§3*£271 1- l“y)fgldy
(larg(l —2)| <, R(&3) > R(&2) > 0)

and
1
BoH6 5 513 _52)/0 y2 !t (1—y)® 7! exp(zy)dy

(R(&3) > R(&2) > 0).

Various generalizations, extensions and unifications of several special func-
tions of (p,q)-variant, and in turn the p-variant have been studied widely
together with the set of related higher transcendental hypergeometric type
special functions by several authors, consult for instance ([6], [11], [12], [15],
[16], [17]). In particular, by introducing an additional parameter ¢, Choi et
al. [3] introduced (p, ¢)-extended Beta function

(18)  (&&s2) =5

! p__ 49
(1.9)  B(&,82;p,9) = Bpg(&1,62) = /o yoTl (1 — )l ey T T dy

(min{R(&1), R(&2)} > 0; min{R(p), R(¢)} = 0).
Further by making use of By, 4(£1,&2), they defined the (p, ¢)-extended Gauss
hypergeometric function and confluent hypergeometric function:
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C o) — = (€)n Bp,q(§2+n753—£2)ﬁ
(Ligy (el = Z:% B(e &~ &) nl
(p>0,qg>0, 2] <1; R(E) > R(&) > 0)
and
ey N Bral 40— &) 2
(1.11) Dy g(82;&s57) = 77,2—:0 Bt &) n

(p=>0,g9>0; R(&) > R(E2) > 0).
The case ¢ = p in (1.9), yields the extended beta function given in (1.2).

Since the beta function and its extensions play a crucial role in the study
of special functions, a number of researchers have introduced and investigated
several extensions of this important function (see, for example, [1]-[4], [3], [10],

(3], [141, [200)-

The Bessel-Struve kernel function S,(At),A € C is the unique solution
of the initial value problem Lyu(t) = A?u(t) subject to the initial conditions

w(0) = 1 and v/(0) = 2D where

T VET(n+d)’
I - d?u(t)  2n+1 (du(t) _ du(0)
T dt? t dt dt

is the Bessel-Struve differential operator. This function is given by (see [7]
and also [9])

Sp(At) = jn(iAt) — ihy(iMt), YV teC,

where j, and h, are the normalized Bessel and Struve functions. The series
representation of the Bessel-Struve kernel function is given as follows:

_T+D) 5~ T
(1.12) Sp(t) = J Z::Om!r(’gjnﬂ)‘

Also, we have the following relations of the Bessel-Struve kernel function with
the exponential function (see [7] and also [9]):

et —1
t

The main object of this paper is to introduce and investigate a new exten-
sion of the beta function by making use of the Bessel-Struve kernel function
(1.12). This is applied to extend the well-known beta distribution arising
in statistical distribution theory. We also define a new class of Gauss and
confluent hypergeometric functions in terms of our introduced beta function.

(1.13) S_1(t)=e" and Sy (t) =

2

2. Extended beta function and its properties

This section deals with a new extension of the beta function and its
associated properties.
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Definition 2.1. The new extended beta function BY?(&y, &) for R(n) > —1
is defined by

1
D,q _ §1—1(1 _ &1 _p __ 9
ey mee - [ era-pets - s -
(R(&)1 >0, R(&2) > 0, R(p) >0, R(q) >0, R(n) > 1)
where S, (t) denotes the Bessel-Struve kernel function given by (1.12).

Remark 2.2. We note that the case n = —% in (2.1) yields the extended beta
function defined by Choi et al. [3], which further for ¢ = p gives the known
extension of the beta function given by Chaudhry et al. [1]. Obviously, when
p=q =0, (2.1) reduces to the classical beta function (1.1).

Theorem 2.3. The following integral representations for the extended beta
function Bh(&1, &) hold true:

™

(2.2) BpU(&1,&) = 2/02 cos?1 71t sin®271 ¢ S, (—psec?t) S, (—qcsc? t)dt,

o0 &1—-1 1
23 Baw = [ e S -] s e+
1
(2.4) Byt &) =278 [ (w1 -wpe!
-1
2p 2q
‘5, [_Hw} s, [_M] o,

25 Ba&) = (-0 08 [ oo i emu)e

‘s [_p<c—a>] S, [_q<c— a>)] .

(w—a) (c—w
Proof. On setting y = cos?t, y = Tho Y = ”Tw and y = ﬁ in (2.1) we
obtain, respectively, the above integral representations (2.2)-(2.5). O

Theorem 2.4. The following relation for the extended beta function BY?(&1,&2)
holds true:

(2.6) B(&1,82) = BpU(&1 + 1,62) + BY(61,62 + 1)
(R(p) > 0,R(g) > 0,R(n) > —1).
Proof. From (2.1), we have

BPA(&1,62) = /Oly&_l (1-yp* Hy+(1-y} S, [—Zﬂ Sy [—q] dy,

whence
B(&1,62) = By(& +1,&) + BR(&1,& + 1),
which is our desired result. O
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Theorem 2.5. The extended beta function Bh(&1, &) satisfies the following
summation formula:

(&)1
I

K

(2.7) Bpi(6,1 - &) = BRi(&i+1,1)

l
(R(p) > 0,R(q) > 0,R(n) > —1).

I
=)

Proof. We have

(28) G-y =3 @y,

=0
where (a)¢ = I'(a + ¢)/T'(a) is the Pochhammer symbol, therefore (2.1) can be

written as
Zm € il [ P]g [ 9
> I Sh y Sh Ty dy.

BPU(E, 1 — &) = /

Interchanging the order of integration and summation (which is permissible
due to the uniform convergence) in the last expression and further by using
(2.1), we easily obtain the stated result (2.7). O

Theorem 2.6. The extended beta function Bh(&1, &) satisfies the following
summation formula:

(2.9) (&1, &2) ZBM (&1+1,&+1)

(R(p) > 0,R(q) > 0,R(n) > —1).
Proof. By using the fact

1-y&t=1-y* Zy (Jyl < 1),
n (2.1), we easily obtain the stated result (2.9). O

3. An extended beta distribution

In statistical distribution theory, we define an extended beta distribution
as follows:

(3.1)

vt 1=yt S, [-2] sy [—ly] 0<y<)

By q(ﬁl £2) (1-y)

fly) =
0 otherwise
(paq > 07_00 < 61752 < 00 7%(77) > _1)

We now discuss some fundamental properties of the extended beta distribu-
tion (3.1).
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If n is any real number, then the nth moment of X is given by
ng(gl +n, 52)

Byi(&1,62)
(617 62 S ]R7 D, q € RJrv %(77) > _1)

The particular case of (3.2) for n = 1 yields the mean of our proposed extended
beta distribution, that is

(3.2) B(X") =

B"I;,q(gl + 17 62)
Bg’q(glv g?)

The variance of our introduced distribution can be expressed as

Var(X) = B(X?) — [B(X)* = E[(X - E(X))’]

(3.3) E(X) =

_ BR(&1+2,&) By, &) — [Br(& + 1, &)
[BR?(&1,€2)]2 '

The coefficient of variation of this distribution (which is defined as the
ratio of the standard deviation and mean) can be expressed as

_[BRY(&1 4 2,8) BY(&1, &) B
(35 oV = \/ e 6]

The moment generating function (m.g.f.) about the origin of this distri-
bution is given by

(3.4)

Mx(t) = > S B(X"),
n=0
whence
(36) MX(t) WZBP(] &1+, 52)1'

The characteristic function of the proposed distribution can be calculated

as follows:

n=0

o

1
357Q(£1’£2) nZ:qu(gl +n €2)

The cumulative distribution function, or probability distribution function,
of our proposed extended beta distribution (3.1) can be expressed as

F(z) = PX < 2] = /f

’I’Lt’I’L

(3.7) E(e') =

so that

BT (&1, 69)

(3.8) B = Frate, &)
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where BY'%*(£1,&) denotes the (lower) incomplete extended beta function
defined by

20T — ’ §1—1 _ 61 _p 7
mpetee) = [0 a-pet s, |2, [y
(paq > 0’_00 < 51752 < 00 7%(77) > _]‘)

The reliability function (which is simply the complement of the cumula-
tive distribution function) of our proposed distribution is given by

R(z)= PIX > 2] = 1 F(z) = /Oo f(z)da
so that

_ B (&1, &)
By(&1,&)

where B%”q’z (&1,&2) is the (upper) incomplete extended beta function defined
by

(3.9) R(z)

BptE(81,82) :/ y Tt (1 -yt s, [_5] Sy [_1_} dy

(paq > 07_00 < 517{2 < 00 7%(77) > _1)

4. Extended hypergeometric functions and their associated
properties

In this section, we present the following extensions of the Gauss and con-
fluent hypergeometric functions by making use of our extended beta function

By(&1,&2):

Definition 4.1. A new extension of the Gauss hypergeometric function is
defined as follows:

o0 qu§2+l£3—§2)
P,q : :
(41) Fn (51752)53? ; {2,53 — {2) l'

Definition 4.2. A new extension of the confluent hypergeometric function is
defined as follows:

p,q . . —
©7] (527537‘%) - i B(§2,£3 - &-2) l‘
(g 20, |z| <1, R(&3) > R(&2) >0, RN(n) > —1).

N B (& + 1,6 — &) ot
(4.2) 2

Remark 4.3. We note that the case n = —3 in (4.1) and (4.2) yields the known
extended Gauss and confluent hypergeometric functions defined by Choi et al.
[3], which further for ¢ = p gives the known extension of the Gauss and
confluent hypergeometric functions given by Chaudhry et al. [5]. Clearly,
for p = ¢ = 0, (4.1) and (4.2) reduce to the classical Gauss and confluent
hypergeometric functions [18].
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Theorem 4.4. The following integral representations for our extended Gauss
and confluent hypergeometric functions hold true:

1
FP(&1,62;83;2) = Bl & — &)
4.3 Lo . _
43) ></0 y2 Tt (L—y)® e (L —ya) oS, {—Z] Sy [—1_qy] dy
(p7Q7 Z 07 ‘arg(l - $)| <, §)%(53) > §R(6‘2) > 07 %(77) > _1)
and
1
ytlaiaim) = B(£2,&3 — &2)
4.4 v tal m
( ) X/O y£2 1 (1 _y)fs §2—1 jzy 577 [_5] Sﬂ [_qu} dy

(p,q 20, R(&3) > RN(&2) >0, R(n) > —1).

Proof. Each of the above representations can be readily established by using
the integral representation of the extended beta function in (2.1) on the right-
hand sides of (4.1) and (4.2), respectively. O

Theorem 4.5. The following integral representation holds true:

O1(62;833w) = B(;;I;%

1
(4.5) X/ (1 _y)£2—1 y§3—§2—1 e~y Sy [_ p ] Sy [_q] dy
0 -y Y
(p,q =0, R(&3) > R(&2) > 0, R(n) > —1).
Proof. On replacing y by 1 —y in (4.4), we easily get our desired result (4.5).
O

Theorem 4.6. The following differential formulas for the extended Gauss and
confluent hypergeometric functions hold true:

k
(4.6) % {FD(&, &5 6352) ) = (51();)&2)1%75@(& + k& + ki &3+ ko)
(p,g >0, R(n) > -1, k€ No)
and
(4.7) &t (0P9(69; €530) ) = (&2)k gp.q P
: dxk ui 275371:)} - (53)]C n (52—1_ ag3+ 71:)

Proof. On differentiating (4.1) with respect to x, we obtain

d ¢ pp, e N G B (G +1,& — &) ol
T AR € & 65 0) } = l;

B(&2, &3 — &2) (-1
On replacing [ by | 4+ 1, we then have

d, . e = (@) BR UG H 1+ 1,6 - &) o
dx (e &)} = ; ;(52,53 — &) un
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Now by using B(&, & —&) = £B(&+1,6-&) and (&)1 = &(&+1),
on the right-hand side of the above equation, we find

d G xm (G + 1) BY(&+1+1,6— &)
4.8) — (FPU&,E383:x) ) = l
48) g (G &ieo} =50 =g e ey a

~ 882 (e 1 L&+ 156 + L)
3
Again differentiating (4.8) with respect to x, we have
d? L& +1)6(E+1)

2 [fpa - _ [P 9 9. 9. ).
da2 { n (51)5275371‘)} 53(§3+1) n (£1+ 2+ 2,83+ 7$)
Continuing this process, by induction we obtain the required result (4.6). Sim-
ilarly, we can establish the result (4.7). O

Theorem 4.7. The following transformation formulas for the extended Gauss
and confluent hypergeometric functions hold true:

(4.9)  FPI(&, &y 650) = (1—2) S FEP <£1,53 — &6 —(1_x$)>
(p.q 20, R(n) > -1, |arg (1 — )| <)
and
(4.10) P 9(&2; &35 @) = exp(x) PP (§3 — €23 &35 —)
(p.g >0, R(n) > -1).
Proof. On replacing y by (1 — %) in (4.3) and then using [1 — z(1 —y)]™& =
(1—z)% [1 + ﬁy} 7&, we have

1— )&
F%)’q(§17§2;§3;x) = B((EQE‘:)—SQ)

1 -1
E3—&2—1 _on\62—1 x _9q __b
></oy =) (Hl—wy) S"[ y}sn[ l—y]dy’

which in view of (4.3), yields the right-hand side of (4.9). In a similar way,
we can establish (4.10). O

Theorem 4.8. The following generating function for the extended Gauss hy-
pergeometric function holds true:
0 k

(411 Do FPE + b o) 3y = (1= ) P (60, i )

1—=z2
k=0

Proof. Let & be the left-hand side of (4.11). By the virtue of (4.1), we have

o0 [e.9]

S = (EL+ k) By (& +1,& —&)at| 28
o k:o(gl)k ; B(&2,83 — &) 0Nk
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Now by using the identity (£1)x(§14+%); = (£1)1(£1+1) in the above expression,
we obtain

g Sy Brl@tLe - &) (5 ] ol
J—%(&)z B(&, &3 — &2) kzo(gl+l)kk! Tk

On applying the binomial theorem to the inner summation, we obtain

o BRUG + 18— &) !
&= N ’ 1—z)~@+h=
2 g —e) YT
which upon further use of (4.1) yields the stated result (4.11). O
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