

Electricity Demand Forecast with LSTMs

Ossman, M., & Bi, Y. (2022). Electricity Demand Forecast with LSTMs. In The 21st UK Workshop on
Computational Intelligence, 2022

Link to publication record in Ulster University Research Portal

Published in:
The 21st UK Workshop on Computational Intelligence, 2022

Publication Status:
Published (in print/issue): 01/09/2022

Document Version
Peer reviewed version

General rights
Copyright for the publications made accessible via Ulster University's Research Portal is retained by the author(s) and / or other copyright
owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these
rights.

Take down policy
The Research Portal is Ulster University's institutional repository that provides access to Ulster's research outputs. Every effort has been
made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in
the Research Portal that you believe breaches copyright or violates any law, please contact pure-support@ulster.ac.uk.

Download date: 16/11/2022

https://pure.ulster.ac.uk/en/publications/43bd69d9-b64c-4d35-9c3f-e73763652f29

Electricity Demand Forecast with LSTMs

Mazen Ossman and Yaxin Bi

School of Computing, Ulster University, Belfast, UK
{ossman_m,y.bi}@ulster.ac.uk

Abstract. Long-Short Term Memory (LSTM) networks are able to learn the
complicated relationships between variables from previous and current timesteps
over time series data and use them to do specific forecast tasks. LSTMs are basi-
cally stacks of perceptron algorithms, the more stacks a neural network has, the
deeper the neural network. There are two types of gradient propagations over
LSTM networks – forward and backward. However there is a common vanishing
issue when developing LSTM networks. This paper proposes two LSTM models
developed with sequence-to-sequence and sequence-to-vector frames and inves-
tigates possible empirical solutions to the vanishing issue, particularly, in the
context of predicting multivariate and univariate power demands through com-
parative evaluation on electricity demand data.

Keywords: Long-Short Term Memory networks, Power demand forecast, Se-
quence-to-sequence, Sequence-to-vector.

1 Introduction

Electricity is widely used energy. The main resources of electricity generation are
mainly from fossil fuels, nuclear energy, etc. non-renewable sources. Due to the de-
manding for zero carbon, the world started to turn to renewable sources for generating
electricity, including solar, hydro, and wind [1]. Since renewable sources introduced,
the electricity prices have decreased considerably. For example, in Germany the elec-
tricity price has been widely decreased due to usage of wind energy [2] [3]. In most of
the situations, the electricity generated from renewable energy sources imported to na-
tional grids are intermittent which need to be managed with the distribution of renew-
able energy for the local energy demanding [1] [4]. Smart grid systems can collect data
for the management of national grids and for the improvement of the services [4] [5].
The data collected along with the renewable energy supplied can be grouped into long,
middle and short-terms based on time intervals, which can be used for developing fore-
cast models for responding the demand side management. Specifically, the short-term
is referred from one hour to a week, mid-term is from one week to one month, a long-
term is referred to more than a year [6]. However the definition of these terms is not
unique in the literature, for instance, one research work suggested that short term fore-
casting should be between an hour to three months [7].

2

There recently have been a body of studies on forecasting power consumption, includ-
ing the use of LSTM to forecast energy consumption for short term and its comparison
with support vector machine and rainforest algorithm [6]. Another research created a
model via combining GUI (Graphic User Interface) and LSTM, and compared the
LSTM performance to the real readings [4]. Many other papers have used statistical
methods to estimate the coefficient of variables, such as regression, multiple linear re-
gressions (MLR), and autoregressive integrated moving average (ARIMA) [7]. The
method of backward gradient propagation faces a very common problem in LSTM net-
works called the vanishing and exploding problems, which make the network not learn-
ing fast and affect the parameters of the layers of the network [8]. The exploding prob-
lem can be solved with different techniques such as, HE initialization and using nor-
malization and regularization, while the vanishing problem could be solved by im-
proved LSTM or GRU [9]. LSTM could be efficient at learning long sequence prob-
lems, so as the short sequence problems.

2 Methods

In a LSTM, perceptrons are stacked together, in which layers of a perceptron share with
the same weights, bias and structure. They are rolled in together to a single recurrent
layer. A LSTM has the capability of learning from data for a specific task, particularly
learn the relationship among variables within data for a forecast task, and then make
predictions for any new data [8]. There are two types of weight gradient propagation in
neural networks in terms of forward and backward propagation. The forward propaga-
tion networks are most likely used in classification tasks that might not be directly as-
sociated with timestamps like image classification or regression problem. The back-
ward gradient propagation could be more related to time series problems [9].

There are common issues of vanishing and exploding during weight propagation in
LSTM neural networks, which are mainly related to timestamps of sequential data, and
variance difference between the input data before the layers and the output after layer
[9]. These issues prevent weights to be updated effectively in the process of gradient
propagation and optimization step. Specifically when the gap between two timesteps is
too large, the previous information cannot be carried to the next step. In meanwhile, if
weights are either too big(exploding) or too small(vanishing), that will result in the
weights not undated. In [13], the authors presented the propagation scenarios occurred
in four hidden layers with sigmoid activation functions as illustrated in Fig.1, the means
and standard deviations of these activations show that the weights over the last hidden
layer could be updated until 100 episodes and become saturation after 140 episodes. As
the last hidden layer is immediately linked the output layer, the saturation would sig-
nificantly affect the performance of neural networks.

Different methods have been proposed to solve vanishing and exploding problems. For
instance, to avoid variance changes the gradient weights could be initialized using the
input and the output variances [9], applying non-linear activation functions like Relu,

3

leakyRelu reduces saturation as occurred when using a sigmoid function [13]. This
study aims to investigate the impact of different lengths of sequence to sequence and
sequence to vector to resolve vanishing and exploding issues in LSTM neural networks,
particularly in the context of electricity consumption forecast.

Fig.1. Mean and standard deviation (vertical bars) of the activation values (output of
the sigmoid) during supervised learning.

2.1 LSTM Model Design

The process of a LSTM in dealing with time series sequences follows a loop from input
to output over timesteps. The process goes through the gates of forget, input and output
to train a memory state that remembers the important information and filtering out un-
necessary data, preserving discriminative features in the final decision stage. In each
timestep, the LSTM produces an output and accepting it as input for next timestep [9],
for the first timestep, a previous timestep is considered zero.

In this study time series sequences are modelled as sequence-to-sequence and se-
quence-to-vector for forecasting tasks.

• sequence-to-sequence: dividing time series data into a collection of sub-sequences

corresponding timesteps, a LSTM accepts a sequence as an input and produces an
output sequence. For instance, treating the price of power demand over 10 days as
an input sequence, and then outputting a forecasted price for next 10 days.

• sequence to vector: a LSTM accepts a sequence as an input, then produces a vector
of elements at the last time step. For example, a sentiment analysis accepts a vector
of words and outputs a probability distribution over the sentiment categories of
positive, neutral and negative [9].

To study impact of different parameters, six LSTM models have been proosed as shown
in Table 1, three models are sequence-to-sequence based, another three are built on
sequence to vector based. These models have different numbers of neurons and layers
in addition to different activation functions. The models are trained with Mean Absolute
Error (MAE) and Mean Squared Error (MSE) cost functions, their performance is
measured by Root Mean Squared Error (RMSE), MAE and MSE metrics.

 251

Xavier Glorot, Yoshua Bengio

training pairs (x, y) and used to update parameters ✓ in that
direction, with ✓ ✓ � ✏g. The learning rate ✏ is a hyper-
parameter that is optimized based on validation set error
after a large number of updates (5 million).

We varied the type of non-linear activation function in the
hidden layers: the sigmoid 1/(1 + e�x), the hyperbolic
tangent tanh(x), and a newly proposed activation func-
tion (Bergstra et al., 2009) called the softsign, x/(1 + |x|).
The softsign is similar to the hyperbolic tangent (its range
is -1 to 1) but its tails are quadratic polynomials rather
than exponentials, i.e., it approaches its asymptotes much
slower.

In the comparisons, we search for the best hyper-
parameters (learning rate and depth) separately for each
model. Note that the best depth was always five for
Shapeset-3 ⇥ 2, except for the sigmoid, for which it was
four.

We initialized the biases to be 0 and the weights Wij at
each layer with the following commonly used heuristic:

Wij ⇠ U
h
� 1p

n
,

1p
n

i
, (1)

where U [�a, a] is the uniform distribution in the interval
(�a, a) and n is the size of the previous layer (the number
of columns of W).

3 Effect of Activation Functions and
Saturation During Training

Two things we want to avoid and that can be revealed from
the evolution of activations is excessive saturation of acti-
vation functions on one hand (then gradients will not prop-
agate well), and overly linear units (they will not compute
something interesting).

3.1 Experiments with the Sigmoid

The sigmoid non-linearity has been already shown to slow
down learning because of its none-zero mean that induces
important singular values in the Hessian (LeCun et al.,
1998b). In this section we will see another symptomatic
behavior due to this activation function in deep feedforward
networks.

We want to study possible saturation, by looking at the evo-
lution of activations during training, and the figures in this
section show results on the Shapeset-3 ⇥ 2 data, but sim-
ilar behavior is observed with the other datasets. Figure 2
shows the evolution of the activation values (after the non-
linearity) at each hidden layer during training of a deep ar-
chitecture with sigmoid activation functions. Layer 1 refers
to the output of first hidden layer, and there are four hidden
layers. The graph shows the means and standard deviations
of these activations. These statistics along with histograms
are computed at different times during learning, by looking
at activation values for a fixed set of 300 test examples.

Figure 2: Mean and standard deviation (vertical bars) of the

activation values (output of the sigmoid) during supervised

learning, for the different hidden layers of a deep archi-

tecture. The top hidden layer quickly saturates at 0 (slow-

ing down all learning), but then slowly desaturates around

epoch 100.

We see that very quickly at the beginning, all the sigmoid
activation values of the last hidden layer are pushed to their
lower saturation value of 0. Inversely, the others layers
have a mean activation value that is above 0.5, and decreas-
ing as we go from the output layer to the input layer. We
have found that this kind of saturation can last very long in
deeper networks with sigmoid activations, e.g., the depth-
five model never escaped this regime during training. The
big surprise is that for intermediate number of hidden lay-
ers (here four), the saturation regime may be escaped. At
the same time that the top hidden layer moves out of satura-
tion, the first hidden layer begins to saturate and therefore
to stabilize.

We hypothesize that this behavior is due to the combina-
tion of random initialization and the fact that an hidden unit
output of 0 corresponds to a saturated sigmoid. Note that
deep networks with sigmoids but initialized from unsuper-
vised pre-training (e.g. from RBMs) do not suffer from
this saturation behavior. Our proposed explanation rests on
the hypothesis that the transformation that the lower layers
of the randomly initialized network computes initially is
not useful to the classification task, unlike the transforma-
tion obtained from unsupervised pre-training. The logistic
layer output softmax(b+Wh) might initially rely more on
its biases b (which are learned very quickly) than on the top
hidden activations h derived from the input image (because
h would vary in ways that are not predictive of y, maybe
correlated mostly with other and possibly more dominant
variations of x). Thus the error gradient would tend to
push Wh towards 0, which can be achieved by pushing
h towards 0. In the case of symmetric activation functions
like the hyperbolic tangent and the softsign, sitting around
0 is good because it allows gradients to flow backwards.
However, pushing the sigmoid outputs to 0 would bring
them into a saturation regime which would prevent gradi-
ents to flow backward and prevent the lower layers from
learning useful features. Eventually but slowly, the lower
layers move toward more useful features and the top hidden
layer then moves out of the saturation regime. Note how-
ever that, even after this, the network moves into a solution
that is of poorer quality (also in terms of generalization)

4

In particular the number of output layers within these models depend on the tasks in
case of multivariate (multiple inputs and multiple outputs) forecasting, where the output
layer is defined with dense10 neurons for 10 days forecasting and a single neuron for
univariate forecasting.

Table 1. Details of designed models

Sequence to vector based model Sequence-to-sequence based model
Layers Model A Model B Model C Layers Model D Model E Model F
Layer 1
Dropout 1
Layer 2
Dropout 2
Layer 3

32
None
None
None
None

64
30%
32
None
None

64
30%
32
30%
16

Layer 1
Dropout 1
Layer 2
Dropout 2
Layer 3

30
None
None
None
None

32
30%
64
None
None

32
30%
64
30%
64

3 Experimental Results

3.1 Electricity Demand Data, Pre-processing and Experimental Setting

The dataset used for the evaluation is downloaded from the website [15], which records
electricity demands since January 2019 to May 2022 across the United Kingdom, it
consists of 3 columns:
• National Demand (ND): the sum of metered generation, but excluding generation

required to meet station load, pump storage pumping and interconnector exports.
• Transmission system demand (TSD): being equal to the ND plus the additional

generation required to meet station load, pump storage pumping and interconnector
exports.

• England and Wales Demand: same as ND above but only for England and Wales.

The data has been preprocessed as follows:
• converting every 30 minutes level of granularity data into the format of YYYY-

MM-DD-HH-mm, and creating additional column named by Date. Fig. 2 presents
electricity demands in every 30 minutes before the conversion and Fig.3 presents
the sum of all columns of the dataset in the new format.

• The dataset has been normalized as the LSTM network requires decimal input in
the range of 0 and 1.

• The input data has been formatted in the form of (batch, timestep, features). The
batch is a number of total days; the timestep is a number of days that the models
take for prediction, and the features are a number of outputs. In case of multiple
inputs prediction, the input features are three, while for a single input prediction,
the input features is one.

The data labels have been encoded for predicting a next day or next 10 days of electric-
ity demand. For the sequence to vector based, the models receive the input of 30

5

timesteps or 50 timesteps, and then outputs a vector. The models, for instance, receive
50 days and then predict day 51. Hence the labels were encoded in the form of (batch,
features). On the other hand, for the sequence-to-sequence based model, the labels have
been encoded in the form of (batch, timesteps, features). Every input timestep will out-
put the next timestep. If the models, for example, receive an input of day one data, the
model should predict day two, or next 10 days.

After preprocessing, (934, 50, 3) is for multiple inputs forecasting by the LSTM, (934,
50, 1) for a single input forecasting, and for the 30 timesteps forecasting it is in the form
of (944, 30, 1). Meanwhile the output label (934, 3) is for multiple inputs sequence to
vector forecasting and (934, 49, 3) for sequence-to-sequence forecasting. The output
labels for a single input sequence to vector is (934,1) and (934,49,1) for sequence-to-
sequence.

 Fig.2 Electricity demands every 30 minutes Fig.3 Electricity demands every day.

3.2 Experimental Results

To evaluate six LSTM models described in Table 1, a range of experiments have been
conducted over the processed dataset, the trained models have been applied to forecast
a single day ahead and 10 days ahead with different input timesteps. The results of
MSE, MAE and RMSE have been compared in the following tables.

Table 2. Performance of multiple inputs models with MSE loss function.

Sequence to vector Sequence-to-sequence
Models MSE MAE RMSE Models MSE MAE RMSE

Model A
Model B
Model C

0.0083
0.0078
0.0161

0.0746
0.0741
0.1067

0.0911
0.0884
0.1269

Model D
Model E
Model F

0.0066
0.0054
0.0051

0.0657
0.0580
0.0555

0.813
0.0737
0.0716

Table 3. Performance of multiple inputs models trained with MAE loss function

Sequence to vector Sequence-to-sequence

6

Models MAE MSE RMSE Models MAE MSE RMSE
Model A
Model B
Model C

0.0759
0.0656
0.1296

0.0085
0.0062
0.0240

0.0923
0.0786
0.1549

Model D
Model E
Model F

0.0601
0.0608
0.0579

0.0056
0.0059
0.0055

0.0753
0.0767
0.0740

For single input models and for prediction 10 days ahead with different timesteps,
the transmission system demand has been used, since it includes the national grid
demand plus pumps and loads demands. The performance of the models is evaluated
over the dataset as mentioned same way as the multiple inputs and with the same
models.

Table 4. Performance of single inputs models with MSE loss function.
Sequence to vector Sequence-to-sequence

Models MSE MAE RMSE Models MSE MAE RMSE
Model A
Model B
Model C

0.0087
0.0064
0.0165

0.0744
0.0670
0.1012

0.0934
0.0802
0.1284

Model D
Model E
Model F

0.0064
0.0060
0.0058

0.0638
0.0593
0.0614

0.0802
0.0776
0.0765

Table 5. Performance of univariate models with MAE loss function.

Sequence to vector Sequence-to-sequence
Models MAE MSE RMSE Models MAE MSE RMSE

Model A
Model B
Model C

0.0797
0.0656
0.0934

0.0095
0.0062
0.0139

0.0975
0.0786
0.1180

Model D
Model E
Model F

0.0665
0.0589
0.0569

0.0071
0.0057
0.0054

0.0845
0.0754
0.0733

Table 6. Performance of 10 days ahead 50 timesteps with MSE loss function.
Sequence to vector sequence-to-sequence

Models MSE MAE RMSE Models MSE MAE RMSE
Model A
Model B
Model C

0.0164
0.0116
0.0170

0.1017
0.0894
0.1013

0.1281
0.1077
0.1303

Model D
Model E
Model F

0.0106
0.0113
0.0120

0.0106
0.0886
0.0922

0.1029
0.1061
0.1097

Table 7. Performance of 10-days ahead with 50 timesteps with MAE loss function.

Sequence to vector sequence-to-sequence
Models MAE MSE RMSE Models MAE MSE RMSE

Model A
Model B
Model C

0.1036
0.0857
0.1016

0.0173
0.0108
0.0173

0.1315
0.1039
0.1314

Model D
Model E
Model F

0.0866
0.0805
0.0778

0.0109
0.0095
0.0090

0.1045
0.0975
0.0951

Table 8. Performance of 10 days ahead 30 timesteps with loss function

7

Sequence to vector sequence-to-sequence
Models MSE MAE RMSE Models MSE MAE RMSE
Model A
Model B
Model C

0.0152
0.0110
0.0169

0.0985
0.0891
0.1017

0.1233
0.1048
0.1301

Model D
Model E
Model F

0.0117
0.0096
0.0142

0.0117
0.0805
0.0991

0.1081
0.0982
0.1190

Table 9. Performance of 10-days ahead 30 timesteps with MAE loss function

Sequence to vector sequence-to-sequence
Models MAE MSE RMSE Models MAE MSE RMSE
Model A
Model B
Model C

0.0992
0.0823
0.1022

0.0157
0.0100
0.0168

0.1254
0.0999
0.1298

Model D
Model E
Model F

0.0874
0.0795
0.0855

0.0115
0.0094
0.0108

0.1072
0.0969
0.1040

4 Discussions

From the results illustrated in Tables 2-9 above, it can be observed that the sequence-
to-sequence-based models show better performance than the sequence-to-vector-based
models, indicating that the sequence-to-sequence-based models could be more effective
in predicting time series problems.

The loss function used has different effects on the models. MSE is sensitive to outliers,
but MAE is not instead it takes more time during the model training. In general, these
models have better performance when the timesteps is less, and the less forecasting
outputs are, which is due to the vanishing problem of LSTM. The sequence-to-se-
quence-based models have drastically achieved less error in each of the experiments,
where Model B has better forecasting performance in most of experiments, which com-
prises two hidden layers. Investigating further, Model B has scored better than Model
A and Model C in all cases, in terms of overfitting and underfitting parameters. Model
A has underfitting parameters which causes poor accuracy in training set and test set,
while Model C has overfitting which has a good accuracy in training set and bad accu-
racy in test set.

Model E consists of 2 hidden layers as well, which is used to as a benchmark model to
compare the performance of sequence-to-sequence with sequence-to-vector. The fol-
lowing figures show the performance of Models B and E trained on MAE only in each
of the experiments. For the sequence-to-sequence based models, Model E and Model F
has scored better than model D. Model F has fit the data better than Model E. But for
the sake of argument, we focus on comparing two hidden layers models of sequence-
to-sequence and two hidden layers of the sequence-to-vector model.

8

a) b)

c) d)
Fig. 4. Model B performance for multiple inputs: a) train and validation over each
epoch; b) predictions and labels for the test set for ND; c) predictions and labels for the
test set for TSD, d) predictions and labels for the test set for England and Wales

a) b)

 c) d)

Fig 5. Model E performance for multiple inputs: a) train and validation over epoch;
b) predictions and labels for the test set for ND; c) predictions and labels for the test
set for TSD; d) prediction and labels for the test set for England and Wales

9

a) b)

Fig 6. Model B performance for single input with 50 timesteps: a) train and validation
over epoch; b) predictions and labels for the test set for TSD

 a) b)

Fig 7. Model E performance for single input problem with 50 timesteps: a) train and
validation epoch model b) predictions and labels for the test set for TSD

a) b)

Fig 8. Model B performance for predicting 10 days ahead with 50 timesteps: a)
train and validation on epoch b) predictions and labels for the test set for TSD

Figs. 4-11present comparative analysis, from these figures it can be seen that
Model E has higher accuracy and less loss on the validation set.

10

a) b)
Fig 9. Model E performance for predicting 10 days ahead with 50 timesteps: a)
train and validation on epoch b) predictions and labels for the test set for TSD

 a) b)

Fig 10. Model B performance for predicting 10 days ahead with 30 timesteps: a)
train and validation on epoch b) predictions and labels for the test set for TSD

 a) b)

Fig 11. Model E performance for predicting 10 days ahead with 30 timesteps
problem: a) train and validation on epoch b) predictions and labels for the test set
for TSD

By contrast Model B has less accuracy on the validation set. As shown in Tables
4, 5, 6 and 7, the LSTM performance is drastically reduced, due to the output
length, which were single day output in Tables 4, 5, and 10 days output in Tables
6 and 7. Model B has scored 0.0802 and 0.0786 RMSE when trained using MSE
and MAE, respectively, in a single day input. As opposed to the single input, in a
single input 10 days ahead, Model B has scored 0.1077, and 01039 RMSE. For

11

Model E which it scored 0.0776 and 0.0754 when trained using MSE and MAE.
However, in 10 days ahead prediction the error has increased from 0.0776 to
0.1061 and from 0.0754 to 0.0975 on average as shown in Table 10.

Table10. Performance comparison between Model E and Model B for 10 days

ahead, and single day ahead.

Models trained on MSE Models trained on MAE
Models 1 day 10 days Models 1 day 10 days
Model B
Model E

0.0802
0.0776

0.1077
0.1061

Model B
Model E

0.0786
0.0754

0.1039
0.0975

For predicting 10 days ahead with 30 timesteps and 50 timesteps, Model B has
scored better in case of 30 timesteps, because the more timesteps is involved, the
more the vanishing problem the model will suffer. As opposed to this the se-
quence-to-sequence models didn’t suffer much from the timesteps, since the se-
quence-to-sequence models predict outputs at each timestep, which is not affected
much by timesteps shown in Table 11.

Table 11. Performance comparison between Model E and Model B for 10 days
ahead with 30 time-steps, and 60 timesteps.

Models trained on MSE Models trained on MAE
Models 10 day-30 10 days-60 Models 10 days-30 10 days-60
Model B
Model E

0.1048
0.0982

0.1077
0.1061

Model B
Model E

0.0999
0.0969

0.1039
0.0975

Generally, sequence-to-sequence models perform better than sequence-to-vector in
timeseries analysis, but vice versa in some cases. This can be also observed from our
experiments. In Experiment 2 of predicting 1 day ahead for TSD, Model B has scored
pretty much close to Model D. For Experiment 3 of predicting 10 days ahead with 50
timesteps, Model B has better performance than Model F with the MSE metric, than
Model D with the MAE. For Experiment 4 of predicting 10 days ahead with 30
timesteps, Model B performs better than Model D and Model F with the MSE. The
possible reason for this could be that if the loss function and model complexity do not
fit the data well, a sequence-to-vector model could perform better.

5 Conclusion

The paper investigates the six LSTM models developed on the basis of sequence-to-
sequence and sequence-to-vector models for dealing with vanishing problems in fore-
casting power demands. The loss functions of MAE and MSE have been incorporated
into the development of LSTMs. The LSTM models were evaluated on predicting mul-
tiple outputs using multiple inputs with 50 timesteps.

12

Multiple days ahead with 30 timesteps and 50 timesteps, single day ahead with 50
timesteps. MAE had better performance for most of the models compared with than
MSE. The study also reveals that sequence-to-sequence based models has scored better
than the sequence-to-vector, providing an empirical solution to cope with the vanishing
problem in LSTM family neural networks.

References

1. M.S. Hossain, N. A. Madlool, N. A. Rahim, J. Selvaraj, A. K. Pandey, and A. F. Khan, “Role
of smart grid in renewable energy: An overview,” Renew. Sustain. Energy Rev., vol. 60, pp.
1168-1184, 2016.

2. U. Ugurlu, I. Oksuz, and O. Tas, “Electricity price forecasting using recurrent neural net-
works,” Energies, vol. 11, no. 5, pp. 1–23, 2018.

3. Díaz, G.; Planas, E. A note on the normalization of Spanish electricity spot prices. IEEE
Trans. Power Syst. 2016, 31, 2499–2500

4. B. Rohith, T. Santhosh, R. B. Alfred and R. R. Singh, "GUI Energy Demand Forecast using
LSTM Deep Learning Model in Python Platform," 2021 Innovations in Power and Ad-
vanced Computing Technologies (i-PACT), 2021, pp. 1-6, doi:
10.1109/iPACT52855.2021.9696760.

5. L. Li, H. Xiaoguang, C. Ke and H. Ketai, "The applications of WiFi-based Wireless Sensor
Network in Internet of Things and Smart Grid," 2011 6th IEEE Conference on Industrial
Electronics and Applications, 2011, pp. 789-793, doi: 10.1109/ICIEA.2011.5975693.

6. E. Yuniarti, N. Nurmaini, B. Y. Suprapto and M. Naufal Rachmatullah, "Short Term Elec-
trical Energy Consumption Forecasting using RNN-LSTM," 2019 International Conference
on Electrical Engineering and Computer Science (ICECOS), 2019, pp. 287-292.

7. P. Bunnoon, K. Chalermyanont, and C. Limsakul, “Mid-term load forecasting: Level suita-
bly of wavelet and neural network based on factor selection,” Energy Procedia, vol. 14, pp.
438–444, 2012

8. F. Chollet, Deep learning with Python, 1st ed. Shelter Island, NY 11964: Manning Publica-
tions Co., 2018, pp. 31-37,46-52, 72, 97, 98, 101-110.

9. A. Géron and R. Demarest, Hands-on machine learning with Scikit-Learn and TensorFlow,
2nd ed. Sebastopol (Clif.) [etc.]: O’Reilly, 2019, pp. 135-138, 293, 333-338, 365-367,
466470, 497-518.

10. D. Foster, in Generative deep learning, Sebastopol, CA: O’Reilly Media, Inc., 2019, pp. 37–
44.

11. C. Szegedy et al., "Going deeper with convolutions," 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015, pp. 1-9, doi: 10.1109/CVPR.2015.7298594.

12. Chollet, F., 2017. Xception: Deep learning with depthwise separable convolutions. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition (pp. 1251-
1258)

13. Glorot, X. and Bengio, Y., 2010, March. Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the thirteenth international conference on artifi-
cial intelligence and statistics (pp. 249-256). JMLR Workshop and Conference Proceedings.

14. Lane, H., Howard, C. and Hapke, H., 2019. Natural Language Processing in Action Video
Edition. Shelter Island, NY 11964: Manning Publications Co., pp.274-285.

15. https://data.nationalgrideso.com/demand/ historic-demand-data> [Accessed 13 June 2022].
16. Gavin, C., 2014. Seasonal variations in electricity demand. [online] Assets.publishing.ser-

vice.gov.uk.https://assets.publishing.service.gov.uk/government/uploads/system/up-
loads/attachment_data/file/295225/Seasonal_variations_in_electricity_demand.pdf.

