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3D simulations of linearized scalar fields in Kerr spacetime
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We investigate the behavior of a dynamical scalar field on a fixed Kerr background in Kerr-Schild coordi-
nates using &3+ 1)-dimensional spectral evolution code, and we measure the power-law tail decay that occurs
at late times. We compare evolutions of initial data proportiondl(tQY,n(6,¢), whereY,, is a spherical
harmonic and 1(, 8, ¢) are Kerr-Schild coordinates, to that of initial data proportionaf s.)Y ¢m(0sL , ¢),
where (g_,60g ) are Boyer-Lindquist coordinates. We find that although these two cases are initially almost
identical, the evolution can be quite different at intermediate times; however, at late times the power-law decay
rates are equal.
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I. INTRODUCTION lytical [4] and numerica[3,5] evidence that it decays as a
power law for a Kerr background as well.

The propagation of classical scalar fields in a fixed black For a scalar field in Schwarzschild spacetime, the power-
hole spacetime has been studied extensively ever since th&w decay in the tail phase is computed using the spherical
work of Price[1], who described the behavior of such fields harmonic decomposition of the initial data. The amplitude of
in the Schwarzschild geometry. Higher-spin fields, such agachY,,, mode present in the initial data will eventually
Ii_negrized gravitational perturbations, behave quali'tativelydecay liket=(2€+3) at late times[1,6—§, assuming thats
similar to the zero-spin case, and therefore scalar fields afgjtia|ly falls off quickly enough at infinity* If one measures
often used to gain insight into more general situations. Al'z,// at a single point in space or by some other method that
though the behavior of scalar fields in Schwarzschild spacej,as not select specific spherical harmonic components, the

time Is weI_I understood, th? situation for.a Kerr baCkgrounddecay rate measured at late times will be determined by the
geometry is still under active investigation and has been a . - .

. Smallest¢ present in the initial data, because this is the most
topic of some controversysee, e.g., Refd.2,3] and refer-

ences thereln SIO#]y O|Ietc time rt?or? wior of the scalar field b
The evolution of a scalar field in curved spacetime is gov- € late-time behavior or thé scalar field becomes more

erned by the massless Klein-Gordon equation complicated in Kerr spacetime because of the lack Qf. spheri-
cal symmetry. Although axisymmetry prevents mixing of
Ow(x,y,z1)=0, (1.1 spherical harmonics with differemd values, harmonics with
different values of¢ no longer evolve independently. Be-
where ¢ is the value of the scalar field and is the cause of this mode mixing, if the initial data are proportional
d’Alembertian operator in curved spacetime. According toto & pure spherical harmoni¢, ., , the evolution should
no-hair theorems, the only nonsingular time-independent sgroduce spherical harmonics with different values pfand
lution to Eq.(1.1 in a black hole background ig=0 ev- in particular smaller values of. It is not unreasonable to
erywhere, and furthermore, i/ initially varies in time or assume the same power-law time dependence as the
space, it will evolve until it reaches this time-independentSchwarzschild case, namely~t~(2‘*3) because the tails
solution[1]. When observed at a fixed spatial location as aare due to radiation backscattered off the weak-field
function of time, the evolution of a scalar field in a black asymptotic region of spacetime. Given this assumption, the
hole spacetime consists of three distinct phases, as shown ligte-time behavior of the scalar field should be dominated by
Fig. 1. The first stage is the initial burst, which is determinedthe smallest value of that is produced by mode mixing,
by the initial conditions imposed on the scalar field. Thesince this is the most slowly decaying mode. Given that
second stage is the quasinormal ringing phase, during whickm and that parity is conservéde., the equatorial symme-
outgoing waves interfere with incoming waves that backscattry of the initial data is preservegdthe lowest-order spherical
ter off the black hole’s potential well. During this phage harmonic that may be generated from initial data propor-
oscillates and decays exponentially, and can be written astfonal toY, ,, is {=my if £,—mq is even and’ =my+ 1 if
sum of terms of the forne'“n' for a discrete set of complex oo
eigenfrequencies, . During the third stage, or tail phasg,
depends on incoming radiation that has been backscatteredi y at large distances is initially a static solution of E@.1),
off the spacetime curvature at large distances. During the taihen the late-time decay rafd] is t~(2¢*2). Note that all static
phase, the scalar field decays as a power §aat,” #, for the  solutions of Eq.(1.1) that are regular at infinity diverge at the ho-
case of a Schwarzschild background, and there is good anézon [1,9].
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FIG. 1. The evolution of a scalar field with an initié}, angular
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equal to Minkowski space in spherical coordinatesd(¢)

plus a stationary nonspherical perturbation, which he treats
to linear order. For initial data proportional to
f(r)Y€0m0(0,¢) for some functionf(r), he finds that the
field decays liket~(?0™3) (there is no mode mixing to first
order in the perturbation He then repeats the calculation
using initial data proportional td)(r’)Ygomo(B’,d)’), where
(r’,0",¢") are spheroidal coordinates defined by

r?sirfd r2cog6

ot T 1, 1.9
r’ cosd’' =r cosé, (1.5
¢ =¢, (1.6

for some constard. In this case he finds that the modes mix
because of the nonspherical coordinates, and the scalar field
decays according to Eq1.3).

dependence in Schwarzschild spacetime. Plotted are the L2 norms pojsson then argues that since radiative falloff is essen-

of ¢ and ¢ on a spherical surface of fixed radius defined by
(I1f]]L2)%= (1/4m) [ £2dQ). Here the integration is taken over a sur-
face atr=11.9M. The duration of the initial burst is about /60

tially a weak-field phenomenon, similar conclusions should
be true for scalar fields in a Kerr background, so that coor-
dinate effects would account for the discrepancy between Eq.

After the initial burst, the scalar field settles into the quasinormal(1 2) and Eq.(1.3). Consider initial data proportional to

ringing phase until about 200 when the tail phase begins.

€o—my is odd? Therefore, according to this simple picture
one would expect at late times

Yomgmgt 20+, €o—my even
e 1.2

t~[2(mg+1)+3]

Y(m0+l)mo €o—m0 odd.

However, analytical work by Ho@10] predicts different

f(r)Y¢m,(0.#) where ¢,6, ) are any coordinates in which
the weak-field limit of the Kerr metric is spatially isotropic.
Then the only mode mixing will be due to the strong-gravity
region at early times, and at late times, when the scalar field
probes only the weak-gravity region, each mode that was
generated by the mixing will decay like (?‘*3). One there-
fore expects Eq(1.2) to hold. Now consider initial data pro-
portional tof(r’)YeomO(e’,g{:’) where ¢',6',¢') are any
coordinates in which the weak-field limit of the Kerr metric

behavior for scalar fields in Kerr spacetime. According tois spheroidal. Such coordinates include Boyer-Lindquist co-
Hod’s analysis, the late-time decay rate does not just depengtdinates, the coordinates used in Hod's analysis, which in

on the lowest multipole index permitted by parity and axi-
symmetry; the initial value¢y also plays a role:

Y€0m0t7(2€0+3)1 60—m0<2

lﬂoc Ymomot_(40+m0+l)y €0—m0>2 (ever)

{o—my=2 (odd).
1.3

Y(mo+ 1)m0t_(€0+m0+2),

This is a deeply surprising result, for it implies that the gen-

the weak-field limit reduce to flat space in spheroidal coor-
dinates ¢’,0',¢") with the parametea in Eq.(1.4) equal to
the Kerr spin parameter. For such initial data, if strong-
gravity mode mixing can be ignored relative to the mode
mixing resulting from the spheroidal coordinate systghis
key assumption is discussed in more detail in Sec. JyV C
then the scalar field should behave according to Ed®).
The “memory” effect implied by Eq(1.3), according to this
argument, is due to coordinates and not physics.
Surprising and seemingly contradictory results have re-

erated modes somehow “remember” the properties of thesulted not only from analytic studies of this problem but also

initial data that created them.

It has been recently argued by Poisg@h that both Eq.
(1.3) and the simple picture leading to E(l.2) are valid
descriptions of the late-time dependence of scalar fields in

from numerical simulations. Early simulatiof] considered
cases for which Eq.1.2) and Eq.(1.3) agree, and were con-
sistent with both predictions, but a more recent simulation
Hl1] yielded the puzzling result that a scalar field initially

rotating spacetime that is weakly curved everywhere; the difproportional toY,q, the lowest multipole mode for which

ference is merely the choice of spatial coordinate®,(¢)

Eq. (1.2 and Egq. (1.3 differ, decays approximately like

used when setting the initial data. Poisson assumes a mettic>>, in conflict with both predictions. Most recently, a2

°The amplitude of this lowest-order mode may, however, turn out

simulation of an initialY ;o0 mode using ingoing Kerr coordi-
nates[ 3] agrees with Eq(1.2) to high accuracy.
Here we solve the scalar wave equation in a fixed Kerr

to be zero, in which case the decay rate would be determined by tHeackground in Kerr-Schild coordinates using-a23numeri-

lowest-order mode with nonzero amplitude.

cal evolution code. We reproduce the known fundamental
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qguasinormal frequency and the known tail falloff behavior Il. BASIC EQUATIONS
for the Schwarzschild case. We find that for a black hole with
nonzero spin, when we choose initial data proportional to ) _ o
f(r)Y.ao(0,¢), where ¢,0,¢) are Kerr-Schild coordinates, We write the spacetime metric in the usuat Bform
we find late-time tail behavior consistent with Ed.2). 242 i o i L i

We then choose a different set of initial data proportional ds'= - a'dt g (dx+Ady(dx+AldY, (2.1
to f(re)Yaolbs . #), where (g ,0g) are the Boyer- whereg;; is the three-metrice is the lapse, ang' is the
Lindquist coordinates. Note that the Boyer-Lindquist coordi-shift. The Klein-Gordon equation will involve these quanti-
nates are spheroidal in the sense discussed earlier and tties and also the extrinsic curvatukg; , defined by
Kerr-Schild coordinates are spherical, and that the transfor-
mation betweenr(, #) and (g, , g, ) is the same transforma- K. = — i(ﬁ_ﬁa)g“ 2.2
tion (1.4—1.5 used by Poisson. For this initial data, we ob- 4 2al gt TA)ZI '
tain a quite different evolution at intermediate times, with ) . o
different magnitudes of lower-order spherical harmonics/N€re£s is a Lie derivative. . . .
generated during the evolution, even though the initial data The Kerr spacetime is expressed in Kerr-Schild coordi-
differ from the Kerr-Schild case by a small amount. How- nates (,x.,y,z). For_a Kgrr black hole with angg[ar momen-
ever, at very late times it appears that the scalar field deca;}gm aM |n.the z dlrect'lon, the .31 de_composmon of the
according to Eq(1.2). Our results indicate that the coordi- spacetime in Kerr-Schild coordinates is

A. The background spacetime

nate effects discussed by Poisson play an important role in gij= &+ 2HLl;, (2.3
the details of the evolution at intermediate times, but they do
not affect the asymptotic decay rate, presumably because of a=(1+2HI1YH "2 (2.9
mode mixing in the strong-field region, an effect that was not _
included in Poisson’s analysis. i 2HIY

Because Kerr spacetime is axisymmetric, (2+1)- B :_m' (2.9
dimensional simulation would suffice for the present prob-
lem. We work in 3+1 dimensions because we have available Kij=— (1+2H|t|‘)1’2[|i|,-&tH +2H1 )]
a (3+1)-dimensional coddsee, e.g., Ref§12-14), which
is designed to solve the full nonlinear Einstein evolution —2(1+2HIYYH Y2
equations and is being used to study the binary black hole NIREIL 21tk . , IRIL
problem. This code can be applied to not only the Einstein X LoayHE)+2HA g dly + HELLTROH],
equations, but to any first-order strongly hyperbolic system (2.6

of equations. For such a numerical code it is extremely use-

ful to find test problems that are simpler than, for exampleWhereH andl,, are given in terms of the black hole’s mass

the binary black hole problem, but difficult enough so thatwI and its angular momentuaM by

they still provide nontrivial tests of our numerical algo- 3
. Mr
rithms. _ BL
. : . o , H=———, (2.7)
The simulation of late-time tails is just this type of prob- réﬁazzz
lem. Because it is linear and involves fewer dynamical fields,
this problem is simpler than those involving dynamical black foXtay faV—ax z
holes. Yet our treatment of this problem contains many of the — BL y Tedy . 2.9
features currently thought to be desirable in a solution of the " "f2 482 2 482 'rg /)’
. . . BL BL
binary black hole problem: wave propagation, multiple com-
putational domains, parallelism, black hole excision with noand the Boyer-Lindquist coordinatg, is defined by
boundary condition imposed on the excision surface, and

constraint-preserving boundary conditions on certain fields at x2+y? 72
the outer boundary. These features will be discussed further P t= 1. (2.9
in Sec. Il as+rg. gL

Although this problem is simpler than the evolution of . . N
dynamical black holes, it is still technically challenging in Here and in the following, the quantitywithout a BL sub-

3+1 dimensions because of the requirement for high resolSCript refers to the Kerr-Schild radial coordinate defined by
tion, long integration times, and a distant outer boundary. As r2=x24y2+ 22 (2.10
discussed in Sec. lll, we overcome these difficulties by the ' ’
use of multiple computational domains and a pseudospectral |n Kerr-Schild coordinates, the event horizon is located at
evolution algorithm. The latter yields exponential conver-

gence of spatial numerical errors for smooth problems, al- 22 2
lowing us to achieve a given level of accuracy using a small  r2=(M++\M?—a?)?+a?| 1— —> )
fraction of the computational resources that would be re- (M+VM?—2a?)?
quired by a unigrid finite-difference code. (2.11)
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Notice that the horizon is not spherical in these coordinatespeeds with respect to any two-dimensional surface, such as
We typically seta=0.5; in this case the largest coordinate a boundary. If the normal to the surfacegjs then the char-
sphere contained within the event horizon has a radius ddicteristic fields are

1.8™, and the smallest sphere that is outside the Cauchy

horizon has a radius of 0.82. ut=I=gd;, (2.2
As a consistency check, we compare results for a Kerr 0 J.
background witha=0 to results using a Schwarzschild U= =&y, (2.22
background expressed in Painle@ellstrand[15,16 coordi- v
nates. In these coordinates, the spatial three-metric is flat, ur= 4. (2.23
Ieading to a simple representation of the Schwarzschild SOrhe fieldsu™ propagate along null ray&oordinate velocity
lution: v'=—pB'+af"), and the other fields propagate along the
91 =6 (2.12 normal to the spatial hypersurfageoordinate velocityy'
ne T ' =—'). Note that all characteristic fields propagate caus-
Kij:\/mfsij_?) M/2r3r:r ally. The decomposition into characteristic fields is invalu

it able for the purpose of setting mathematically consistent
(2.13 boundary conditions. At a boundary with norngal bound-
ary conditions must be imposed only on incoming character-
=1 2.1 i
a5 (2.14 istic fields, that is, those having'&<0. Boundary condi-
) ~ tions must not be imposed on other characteristic fields.
B*=~N2M/rr*, (2.19 Note that the definition ofb;, Eq.(2.17), becomes a set

. . L ] of constraints,
where §;; is the Euclidean metria; is the areal radial coor-

dinate(which fora=0 is the same as the Kerr-Schild and the Y
Boyer-Lindquist radial coordinater;=x; /r is the Euclidean Ci=— o, (2.29
unit vector in the radial direction, and is the mass of the IX

black hole. The event horizon is locatedrat2M. that must be satisfied at all times.@f =0 initially and the

solution is advanced in time by solving Eq2.18—(2.20

B. Klein-Gordon equation exactly, thenC; will remain zero for all times, as long as the
We write the Klein-Gordon equatiofiL.1) in first-order ~ boundary conditions are consistent wi@)=0. However,
form by introducing four new variables: both numerical truncation errors and boundary errors can
causeC; to drift away from zero. Therefore, tracking the
=10y ¢ evolution of C; provides a test of the accuracy of our simu-
=—|—-8—] (2.16  lations.
o ot Ix'
I1l. NUMERICAL METHOD
d
d,= _(// (2.1 A. Computational domain
i
X We solve Eqs(2.18—(2.20 in a 3D spherical shell ex-

tending from a radius =r ,;, lying between the event hori-
zon and the Cauchy horizon to some large radigg ..
Because all characteristic fields propagate causally, placing
the inner boundary inside the event horizon means that all
characteristic fields are outgoiriinto the hole there:v'¢;

B ¥ i—all, (2.18 >0. Therefore we impose no boundary condition at the inner
boundary. Typically we choosg,=1.75M.

The outer boundary must be placed at a large radius be-
cause the power-law tails of interest are due to backscatter-
ing of radiation off the background geometry at large dis-
tances. If we wish to measure the tail contribution to the
+aKII, (219 scalar field at time& and radiusr, then the outer boundary
must be placed roughly at,r+t/2, so that the back-
scattering responsible for the tail contribution occurs within
our computational domain. Because determining the decay
rate of tails requires evolution to approximateky 600M,
whereA , indicates differentiation with respect i0. we typically place our outer boundary 8t4,=300M.

The system(2.18—(2.20 is symmetric hyperbolic, so the To facilitate multiprocessing, the domain is divided into
quantitiesys, I, and®; may be decomposed into character- concentric subdomains, each a spherical shell with a width of
istic fields that propagate with well-determined characteristiclOM. Each subdomain is evolved independently except for

In the background given by EqZ2.1), the Klein-Gordon
equation(1.1) and the commutivity of partial derivatives
yield the following system of evolution equations:

ap
at

Jar_ . i ik ij
E:ﬁ i=ag"®;+ag’'l'j®—g"Pja;

b .
W'Zﬁlq)iyj—pq)jﬂ{i—aHYi—Ha,i. (2.20
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boundary conditions, so each subdomain can be evolved ona
different processor, with interprocessor communication oc- = fn(x, D =P G({fn(x, DD+ P B({fn(x,0}),
curring only at the boundaries. To impose boundary condi- (3.6
tions at an interdomain boundary, we set the time derivative
of each incoming characteristic field equal to the time derivawhere P~ 53;({f\(x;,t)}) encodes the boundary condition
tive of the corresponding outgoing field from the neighbor-placed on the time derivatives of the incoming characteristic
ing subdomain. fields.
For computational subdomains with spherical boundaries,
B. Solution technique it is natural to use spherical coordinates. We choose our basis
functions to be Chebyshev polynomials for the radial coor-
inate and spherical harmonics for the angular coordinates.
Although our basis functions are based on spherical coordi-
nnates, we choose our dynamical scalar field variables and our
gravitational variables to be th@artesiancomponents, and
not the spherical components, of the relevant quantities. This
9 _ allows us to use the same angular basis functions for all
—f(x,t) =F(f(x,t),0f(x,t)/Ix"), (3.1)  variables without regard to regularity.
Jt To eliminate high-frequency numerical instabilities that
sometimes develop during our simulations, we apply a filter
to the right-hand sides of Eq$3.5 before incorporating
boundary conditions via the Bjbus algorithm. The filter
consists of simply setting high-frequency spherical harmonic
N-1 coefficients to zero. The components that are set to zero de-
fau(x,t)= 2 F(1) di(X). (3.2 pend on which equation is being solved?if . is the index
k=0 of the highest frequency basis functidf,,, then typically
ethe largest retained in the right-hand side of thEequation
(2.19 is 3¢ ,/2— 1, and the largest retained in the right-
hand sides of thab; equations(2.20) is 3¢ /2. This is
9 N-1 9 similar to the “3/2 rule” commonly used to eliminate non-
— (X, t)= E T(t) — dr(X). (3.3 linear aliasing errorg19]. No filtering is done for they
X' k=0 X' evolution equation2.18), and filtering is not performed on
_ the radial basis functions. The degree of filtering necessary to
The coefficients,(t) are chosen so that E¢B.1) is sat-  obtain stability depends on both the background geometry
isfied exactly afN, collocation points selected from the spa- and the configuration of subdomains, and is not completely
tial domain. The values of the coefficients are obtained byunderstood. For example, in some cases no filtering is
the inverse transform needed, and in others it suffices to set to zero only modes
with € ={ . In the ®; equations(2.20 and modes withf
={ a1 in thell equation(2.19.

Our numerical methods are essentially the same as tho
we have applied to the evolution problem in full general
relativity [12—14,17. We use a pseudospectral technique o
each subdomain to evolve Eq2.18—(2.20 in time. Given
a system of partial differential equations

wheref is a vector of variables, the solutidi{x,t) is ex-
pressed as a time-dependent linear combinatiohl dfasis
functions ¢(x):

Spatial derivatives are evaluated analytically using th
known derivatives of the basis functions:

Ne—1
T = 2, fn(xi D00 w;, (3.4
C. Outer boundary conditions

wherew; are weights specific to the choice of basis functions  The simplest outer boundary condition is obtained by set-
and collocation points. One can now transform at will, usinging the time derivatives of the incoming characteristic fields
Egs.(3.2) and(3.4), between the spectral coefficierftgt)  u~, u?, and u” to zero. While this works well for a
and the function values at the collocation poiffifgX;,t). ~ Schwarzschild background in Painle@aillstrand coordi-
The differential equationg3.1) are now rewritten, using Egs. nates, for a Kerr background in Kerr-Schild coordinates,
(3.2—(3.4), as a set obrdinary differential equations for the  even fora=0, this boundary condition produces strong vio-

function values at the collocation points, lations of the constrain€; at the outer boundary, even &t
p =0. These constraint violations propagate inward and grow,
EfN(Xi =G Fu(x, 0], (3.5 eventually dominating the numerical solution. Because these

constraint violations appear as oscillations in the variable
but do not affect the fielddl and ®;,, we were able to

whered; depends orfy(x;,t) for all j. reatly reduce them by changing the boundary condition on
Equationg3.5) are integrated in time using a fourth-order g y y ging y

v
Runge-Kutta method. Boundary conditions are incorporatecfiI 0
into the right-hand side of Eg$3.5 using the technique of ou? ,
Bjérhus[18]: if P™ is the projection operator that annihilates o5 all+p'd;. 3.7
all incoming characteristic fields at a boundary, dd is
1-P", then at each boundary pointhe differential equa- This is the same as E@2.18 except thaty; has been re-
tion (3.5 is modified as follows: placed byd; using the constrain2.24). Exactly this type of
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FIG. 3. The same constraint norm as shown in Fig. 2, but plotted
four radial/angular resolutionéhe notationR/¢,,, means that we versus the number of radial clollo.cat‘ion points for three different
useR radial basis functions and retain angular basis functions up taa!ues oft. The angular resolution is f'Xe‘_j ét“_axz 17. These evo-
order €,,). Plotted is||C||, where {|C||)2=(1/4m)/C;C'dQ. lutions correspond to th¥,, case shown in Figs. 6 and 7.

The integration is taken over the surface 11.75M. For compari-

FIG. 2. Constraint violation during a scalar field evolution for

son, the value of the scalar fieldtat 300M atr=11.79M is on the D. Convergence
order of 10 8. This evolution corresponds to the, case shown in The convergence properties of a pseudospectral code are
Figs. 6 and 7. more difficult to analyze than, for instance, a second-order

finite-difference code. This is because in the former there are

boundary condition has been used bef@®] in the field of  several sources of truncation error that scale differently with
numerical relativity, where finding methods of constructingresolution. Spatial truncation errors should converge expo-
boundary conditions that preserve the constraints is a topic Gfentially (and errors associated with the radial direction may
active investigatio21-25. have a different exponential convergence rate than those as-

Figure 2 shows the norm of the constraint for severalsociated with the angular directions because different basis
different resolutions during an evolution of a scalar field infunctions are usadTime integration errors should scale like
Kerr spacetime, using the boundary conditi8tv7). The con-  (At)* because we are using a fourth-order Runge-Kutta time
straint violations decrease rapidly with increasing resolutionimegrator_ Furthermore, the Courant condition constrains
For the higher resolutions, the constraint violation is smallas a function of spatial resolution. For the resolutions we use,
compared to the magnitude of the scalgr flelq. the scaling is roughly max(t)~N, %, whereN, is the num-

Even with the use of Eq3.7), reflections(with a small  per of radial collocation points; the scaling is not simply
constraint-violating contributionoccur when an outgoing AN~ pecause the collocation points are distributed non-
pulse of scalar field reaches the outer boundary. The reﬂed%iforr%ly.
pulse then propagatesausally inward. These reflections  rjgre 3 shows the norm of the constraint as a function of
can be reduced by modifying the boundary conditioruon 1 ia| resolution at different times for the evolutions shown

_ in Fig. 2. The angular resolution is fixed bit is varied so
£=—H/r. (3.9 that the Courant condition remains satisfied. The conver-
at gence is exponential, indicating that the radial spatial errors
dominate both the time integration errors and the angular
This is equivalent to assuming the Sommerfeld condition integration errors. Even at late times, when the scalar field is
=f(t—r)/r, for some unknown functiorf, at the outer very small, the convergence plot is still roughly exponential,
boundary. In practice, imposing this boundary conditionalthough it is noisier than at early times. Figure 4 shows the
proved less critical than imposing E@.7). This is because, norm of the constraint as a function of angular resolution at
as explained in Sec. Il A, for studying tails our integration different times, for fixed(high) radial resolution and fixed
time is less than the time it takes light to travel from the At. At late times, the convergence is exponential for low
black hole to the outer boundary and back again. Thereforggsolution and then saturates when the angular truncation
although it is important that the outer boundary condition iserror drops beneath radial truncation error. For early times
well-behaved when there is no wave there, the magnitudéhe angular truncation error is already small, even at low
and nature of the reflections produced when a wave passessolution(as is expected for initial data that is pufe-2
through the boundary are largely irrelevant, because the evavithout higher angular componeptso except for the differ-
lution ends before these reflections reach the observatioence in the two lowest resolutions one does not see any de-
point. pendence on the number of angular collocation points. Pre-
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FIG. 4. The same constraint norm as shown in Fig. 2, but plotted FIG. 5. The top graph shows the evolution of the power index
versus the angular resolutidn,,, for three different values df The uy evaluated at =11.9M as a function of time for the case shown
radial resolution is fixed aN,=36 andAt is fixed at 0.05M. in Fig. 1, and for the same case run at a lower resolution. The
These evolutions correspond to tiig, case shown in Figs. 6 and 7. bottom graph shows differences jiry, between runs done at differ-

ent resolutions.
sumably, for large enough spatial resolution, the fourth-order
time integration error should dominatenless the errors ing the decay of the scalar field during the tail phase, the
drop beneath roundoff level figstout we do not see this for scalar field and its time derivative were combined into a

the resolutions considered here. “numerical power index,” following[27]
IV. RESULTS AND DISCUSSION —t/| 4|2
T (4.4
A. Schwarzschild background ||¢||L2

As a test of our numerical techniques, we began by evolvyyhere the L2 norms are defined by
ing the well-understood case of a scalar field in a Schwarz-
schild background. We write the background in Painleve ) )
Gullstrand coordinates, and we choose initial data of the (|[fll2)?= (1/4m) | f2dQ, (4.5

form
with integration over a surface of fixed We compute¢

=0, 4.0 using Eqg.(2.16 rather than taking numerical time deriva-
_ tives of .
®i=0, (4.2 At finite times during the tail phase, the scalar field be-
M=TIo(r,0,4) haves like
)22 t A+ Ot WD) 4L 4.6
=e (r=rg)“/w Yeomg( 0,¢). (4.3) lpoc ( ) ( )

. ) ) _ which implies that
Figure 1 shows the results of a simulation with=1,

my=0. For all simulations shown here we sgt=12M and UN=pT Ot H+01H 2+, 4.7
w=2M. Plotted are results obtained using resolution 24/9

(where the notatioR/¢ ., means that we usR radial basis At late times, the power index asymptotically approaches
functions and retain angular basis functions up to order Figure 5 shows the evolution of the power index for two
€mad - From roughlyt=40M to 140M the scalar field be- different radial resolutions. The power index is approaching
haves likey~e '®t with @M ~0.29-0.097. This agrees a value of five, which corresponds to the predictetf'*3)

with published value$26] of the least-damped quasinormal decay rate. Moreover, as the resolution increases, the numeri-
frequency for scala€ =1 perturbations of the Schwarzschild cal results converge, as can be seen from the bottom graph in
geometry. Fig. 5.

As time increases, the decay of the scalar tails approaches According to Eq.(4.7), we can obtain a better estimate for
the expected power-law decay<t~#. Since we cannot nu- u« by performing a least-squares polynomial fit gg as a
merically evolve the scalar field out to infinite time, our re- function of t~1. The least-squares fit will also give us an
sults do not exactly match the analytically predicted powererror estimatg28] for . as long as we provide error esti-
law. To facilitate the determination of the power law govern-mates for each of our numerical values @f,. Our code
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FIG. 6. Evolution of a scalar field for three different cases: FIG. 7. The evolution of the power index, evaluated ar
initial data proportional tdYqg, Y5, andY,,. Plotted are the L2 =11.75M for the same cases as Fig. 6. The power indices appear to
norms of s evaluated on the surface=11.75M. The resolution is  asymptotically approach a value of three. For each case, two reso-
20/12 for £,=0, 24/17 for{,=2, and 27/26 for{,=4. Higher lutions are shown to demonstrate convergence.
resolution is needed for larget, in order to resolve the much
smaller late-time tail. taken to have the forr.3), where now (, 6, ¢) are related
to the Kerr-Schild coordinatex(y,z) defined in Sec. Il Ain
providesuy at a discrete set of time valugés To estimate the usual way:
the error inwy at timet; we use

X=r sinf cosq¢, (4.9

Sun(t)=  max ti;hi)— un(tis10) |}, (4.8 . .
mn(ti) jg{|i—j|sw}{|MN( i ) — i j )|} (4.9 y=r sindsing, 4.10
where wy(tj;hi) and uy(tj;10) represent numerical values Z=r cosé. (4.1)

for wy at the highest and next-highest spectral resolution that

we used. The purpose of maximizing the error over neighThe top, middle, and bottom plots in the figure show the
boring points is to treat the cases in whigh(t; ;hi) and decay of a scalar field initially proportional ¥, Y, and
un(tj;lo) spuriously agree at a single point—without the Y40, respectively. Since the latter two cases have the same
maximization this point would have an artificially small error initial value ofmy=0 and are of even parity, we expect that
estimate. The siz&V of the maximization window is typi- a Yoo mode will be generated during these evolutions. Thus,
cally 1/20, wherel is the total number of discrete values of according to the simple mode-mixing picture discussed
un(t;) that we use for the fit. Near the poirtig andt, we  above, all three evolutions in Fig. 6 should follow the same
translate the maximization window in E¢4.8), so that, for ~ power-law decay at late times. Figure 6 supports this predic-
example, fori=0 the window goes fronj=0 to j=2W tion: although the quasinormal ringing phases are dissimilar,
+1. the slope of the tails do appear to match.

Using a linear fit to the form4.7) we obtain u=4.99 The evolution of the power index for these cases is shown
+0.01, and using a quadratic fit we obtain=5.00+0.08. in Fig. 7. The power indices approach a value of three, which
These agree with the accepted value to within about a pe€orresponds to the Price decay rate formutat ™~ (23 for
cent. We perform the fits only for data in the tail region of an¢=0 mode. Estimates qi obtained by least-squares fits
Fig. 5, that is, fort>400M. The estimate ofx is relatively 10 the numerical data can be found in Table |. These esti-

insensitive to the exact region bin Fig. 5 that we choose to mates all fall within a few percent of the valye=3.
perform the fit. The tails have a much smaller magnitude for evolutions

with larger initial valuesf,. For example, for¢,=4, the
scalar field approaches a magnitude of ¥at late times,
and its time derivative is two orders of magnitude smaller.
Following our numerical trials with a Schwarzschild Thus we are forced to use a larger number of spectral coef-
background, we turned our attention to scalar fields arounéicients to resolve the largé; cases. However, because the
rotating black holes. For our background spacetime we usedccuracy of pseudospectral methods increases exponentially
a Kerr geometry with spim=0.5M. Figure 6 displays the with the number of collocation points, increasing the number
evolution of the scalar field on this Kerr background for of coefficients only by roughly a factor of two in each di-
three different choices of initial data. The initial data aremension was sufficient to resolve even thg=4 case.

B. Kerr background
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TABLE I. Numerically determined power-law decay rates. 100L, [
Shown are the spherical harmonic indices of the initial data, the " —KS, V¥,
(r,6) coordinates used in the initial data functidly in Eq. (4.3 “‘ —BL,Vy
[PainleveGullstrand (PG), Kerr-Schild (KS), or Boyer-Lindquist
(BL)], the spin of the hole, and the best-fit power index at late
times. 10

" KS’\II4O E
M = BL,W40

{o Mg (r,0) a/M )

1 0 PG 0 5.06:0.08 of

0 0 KS 05 2.9890.005 10 Wi iy

2 0 KS 0.5 3.06:0.006 ’ =
2 1 KS 0 6.99-0.03 “ iy
2 1 KS 0.5 6.99-0.04 e

3 1 KS 05 5.230.19 10"

4 0 KS 0.5 3.00%0.003 . \ , o

4 0 BL 05 2.8-0.3 0 200 400

t/M

FIG. 8. Scalar field evolution in a Kera(M =0.5) background

Note that thef,=4 case shown in Figs. 6 and 7 is the resulting from initial data proportional ¥, 8, ,#) (labeled by
smallest value of , for which the two analytical predictions, BL), plus a corresponding evolution resulting from initial data pro-
Egs.(1.2) and(1.3), disagree. Our results support the simpleportional to Y, 6,¢) (labeled by K$. Shown are the absolute
picture leading to Eq(1.2), which yields a 2 falloff for this values of selected Kerr-Schild spectral coefficientsyofor both
case, rather than E@1.3), which predicts &5 falloff. cases. For both cases the resolution is 30/29. The initial data for the

Table | summarizes various cases that we have Stud|eﬁs and BL differ by onIy 0.1%, yet the details of the evolutions are
numerically. In addition to then,=0 cases discussed above, auite different.
we have also computed power-law decay ratesnfige=1
and myg=2. These cases allow us to test the predictions o
Egs. (1.2) and (1.3 more thoroughly. For example, initial

Qatg proportional ttf, is forbidden to evo!ve by mode mix- (2.6). Note also that the transformation between the BL and
Ing Into any Iovv_erng mode €=01is for_bldden bym con- KS radial and polar coordinates is exactly the transformation
S?{;{i‘t;‘)’” and€—_1 IS forpldden by par|t)7¢ Thgrefqre, the (1.4) and(1.5) studied in Ref[2]. If the argument of Ref.2]
t law predicts a tail decay rate of ', which is what 5 5jies 16 the Kerr geometry, then for the BL case, the power
we observe. law falloff rate should be~°, in agreement with Eq1.3),
rather thart —3, which is predicted by Eq1.2).

It is quite difficult in the BL case to obtain an accurate
value for the late-time power index by the method used in

It has been arguef@] for a rotating weakly curved space- Secs. IV A and IV B. This is because even though the initial
time that the difference between the predictions of @)  data(4.12) differ only slightly from those used in the KS
and Eq.(1.3) is related to the choice of coordinates, and incase, the evolution proceeds quite differently: The resulting
particular, that Eq(1.3) is correct if the initial data were |ate-time tail is a few orders of magnitude smaller than that
proportional to a spherical harmonic in spheroidal coordi-for the KS case, and by the time the solution displays its
nates. To test whether this might be true for the Kerr backiate-time asymptotic behavior, the scalar field time derivative
ground, we repeated the evolution of initial data proportionais so small (10 % that machine roundoff erromot nu-
to Y4, but with a small coordinate change: We still take merical truncation errgrobscures the results.

Fxpressior(4.3) for the initial data® Note that the Kerr back-
ground is expressed in the same coordinate system for both
the BL and the KS evolutions, and is given by E(.3—

C. Coordinate effects

initial data of the form(4.3), but we choose Fortunately, this roundoff error turns out to be largest at
_ high angular frequencies, so it is still possible to determine
II=1lo(reL, b8, 9), (412 the late-time behavior of the BL case for low-frequency

spherical harmonic components of the solution. In Figs. 8
and 9, different spherical harmonic components of the solu-

where g _is the Boyer-Lindquist coordinate defined by tion are plotted as a function of time for both the BL and KS
cosfg =2/rg . Becausedg # 6 andrg #r, these initial

data differ slightly from the form(4.3). In fact, the magni-

tude of this difference is only about one part in a thousand. 3|, principle, instead of evolving these BL initial data, we could
For brevity, here and in the following we will refer to the paye expanded the data in terms of KS spherical harmonics and

evolution of initial data(4.12 as the BL case, and we Wil gyjtaple radial basis functions, and used linearity to compute the

refer to thef,=4 evolution shown in Fig. 6 as the KS case, result. However, this would require knowledge of both the power-

since the two evolutions differ only in which radial and polar law decay rate of each KS spherical harmonic and the mixing rates

coordinategBoyer-Lindquist or Kerr-Schildare used in the between all pairs of KS spherical harmonics.
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J T3 € =0 tail for the KS case. Its power index js=2.8+0.3.
The tail of the =2 component, however, appears tat
=250M and is a few orders of magnitudarger than the
corresponding =2 tail for the KS case. Its power index is
pn=7.0x£0.5. As in the KS case, the tail of tHe=4 compo-
nent cannot be seen because of machine roundoff error.
Although at intermediate times the=2 mode is impor-
tant for the BL case, it is clear from Fig. 9 that at very late
times, thef =0 mode will eventually dominate, resulting in a
decay rate of ~3. In other words, the asymptotic decay rate
appears to be independent of whether the initial data are
expressed in terms of Kerr-Schild or Boyer-Lindquist spheri-
cal harmonics. Thus, the argument in REZ] apparently
does not carry over to the Kerr geometry. This is presumably
because Kerr has strong-gravity regions that influence the

i ‘?|":‘f“.' \ ‘
300 400 500

M scalar field, and strong-gravity effects were not included in
Ref.[2].
FIG. 9. Same as Fig. 8 showing detail at late times. We perform all our evolutions of BL initial data using a

background expressed in KS coordinates; this is because
black hole excision requires coordinates that are regular
evolutions. The spherical harmonic components are comtrough the horizon. A natural question to ask is whether our
puted by results are different than they would be if we had expressed
our background in BL coordinates. The answer is yes, but
lﬂemEJ WY (0, )DQ, (4.13  only because we set “BL initial data” on a hypersurface of
constant KS time, not on a hypersurface of constant BL time.
. , Setting initial data on a hypersurface of constant BL time
where the integral is take_:n over the surfacell.75v. l_\lote would require an integration in BL coordinatés least until
that for all plots shown in Figs. 8 and 9, the spherical har'the solution were known on a full hypersurface of constant

monic appearing in the integré.13 is defined using the - ) -
Kerr-Schild ¢ and ¢ coordinates, and the integral is taken KS time, and from that point on the evolution could proceed

in KS coordinates and is beyond the scope of this paper.
over a surface of constanf not a surface of constant, . owever, for investigating the coordinate effect described in
Thus the quantities plotted in Figs. 8 and 9 are in all case ’ gating

the spherical harmonic componentsfwith respect to the _ef. (2], itis unnecessary FO evolve _initial datf’i on a BL time
Kerr-Schild coordinates. Note also thét,, and the analo- slice; the derivation of this effect in Ref2] involves no

nitw nb dt mbut wer index f rchange in time slicing but only a transformation of spatial
gggﬁ iqnu dailvi dlﬁfrggﬁeric?clluﬁgrmgnﬁg cgrl:wgoi(gr?t € exto coordinates, the same transformation that we have done here.

For the KS evolution shown in Figs. 8 and 9, the initial It would also be interesting to repeat the evolutions in this
data consist of puré=4, but £ =2 and =0 corr;ponents section with an outgoing initial pulse centered far from the

appear at very early times because of mode mixing. The tamaCk hole, so that only the weak-gravity region is seen by
of the =0 component can be seen as early-ad50M, but the scalar field until extremely late times. In this case the
does not exceed the quasinormal ringing of the4 com-  Weak-field approximation assumed in Rig] would be valid
ponent untilt=300M, after which it dominates. Its mea- OF @n extended period of time, so during this time one
sured power index ist=3.001+0.003. The tail of thef should see a difference in decay rates between the BL and
small (~10" 4. Its decay rate is roughly 7, but it is dif- than the ones presented here because it would require a more
ficult to determine the exponent accurately because it is budistant outer boundary and therefore longer integration

ied in the noise. The tail of thé=4 component cannot be times. A single run such as the one shown in Figs. 8 and 9
seen: the¢=4 component is buried in machine roundoff takes about 23 hours on 30 processors of the I1A-32 Linux

error aftert=400M. cluster at NCSA; the run time scales lik¢ if all subdo-
The BL evolution shown in Figs. 8 and 9 is initially al- Mains have the same number of radial collocation pdifts

most identical to the KS case. Initially the BL case is notFuture work may involve a self-gravitating scalar field; in

pure =4 (recall ¢ here refers to the index of the Kerr- this case the equations would be fully nonlinear.

Schild harmonic; the BL casis pure € =4 with respect to

Boyer-Lindquist spherical harmonigsbut also has a very

small mixture of other components, the largest befrrg6 ACKNOWLEDGMENTS
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