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Measurements of cosmic microwave background temperature fluctuations by the Wilkinson Microwave

Anisotropy Probe indicate that the fluctuation amplitude in one half of the sky differs from the amplitude

in the other half. We show that such an asymmetry cannot be generated during single-field slow-roll

inflation without violating constraints to the homogeneity of the Universe. In contrast, a multifield

inflationary theory, the curvaton model, can produce this power asymmetry without violating the

homogeneity constraint. The mechanism requires the introduction of a large-amplitude superhorizon

perturbation to the curvaton field, possibly a preinflationary remnant or a superhorizon curvaton-web

structure. The model makes several predictions, including non-Gaussianity and modifications to the

inflationary consistency relation, that will be tested with forthcoming cosmic microwave background

experiments.
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I. INTRODUCTION

Inflation provides a compelling description of the early
Universe [1]. The temperature fluctuations in the cosmic
microwave background (CMB) [2,3] and the distribution of
galaxies [4] agree well with inflationary predictions.
However, there is an anomaly in the CMB: measurements
from the Wilkinson Microwave Anisotropy Probe
(WMAP) [3] indicate that the temperature-fluctuation am-
plitude is larger, by roughly 10%, in one hemisphere than
in the other [5]. Fewer than 1% of simulated isotropic
fluctuation maps exhibit such an asymmetry, and the asym-
metry cannot be attributed to any known astrophysical
foreground or experimental artifact. As opposed to the
‘‘axis of evil’’ [6], an apparent alignment of only the lowest
multipole moments, this asymmetry has gone largely un-
noticed (although see [7,8]), and it warrants further theo-
retical consideration.

In the standard inflation scenario, the Universe under-
goes a very long inflationary expansion before the comov-
ing observable Universe exits the horizon during inflation.
Thus, any remnants of a preinflationary Universe were
inflated away before there could be observable consequen-
ces. This accounts for the smoothness of the primordial
Universe as well as its flatness. It also suggests that pri-
mordial density perturbations should show no preferred
direction. The existence of a hemispherical power asym-
metry in the CMB challenges this basic prediction of
inflation.

A superhorizon perturbation would introduce a preferred
direction in the Universe and has been considered as a
possible origin of the axis of evil [9]. In this article, we
investigate how the hemispherical power asymmetry could
result from a superhorizon perturbation during inflation, as
depicted in Fig. 1. Since the amplitude of the primordial
fluctuations depends on the background value of the fluc-
tuating inflationary field, a large-amplitude superhorizon

fluctuation would generate a power asymmetry by varying
the background value of the field across the observable
Universe. Of course, the superhorizon fluctuation would
make the Universe inhomogeneous, and the near uniform-
ity of the CMB constrains such departures from homoge-
neity [10].
We begin by showing in Sec. II that the power asymme-

try cannot be reconciled with single-field slow-roll infla-
tion without violating constraints to the homogeneity of the
Universe. We then consider an alternative inflationary
theory, the curvaton model [11], which has been suggested
as a possible source of a power asymmetry [7]. In Sec. III,
we demonstrate that a superhorizon fluctuation in the
curvaton field can generate the observed asymmetry with-
out violating the homogeneity constraints. The required
superhorizon fluctuation in the curvaton field may occur,
for example, as a remnant of the preinflationary epoch or as
a signature of superhorizon curvaton-web structures [12].
The proposed model predicts several signatures, which
may soon be tested, in the CMB. We discuss these signa-
tures and summarize our findings in Sec. IV.
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FIG. 1. Measurements of temperature fluctuations in the CMB
show that the rms temperature-fluctuation amplitude is larger in
one side of the sky than in the other. We investigate here whether
this may arise as a consequence of a large-scale mode of an
inflaton or a curvaton.
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II. SINGLE-FIELD MODELS

Inflation postulates that the energy density in the early
Universe was dominated by a scalar field �, the inflaton.

The energy density is due to kinetic energy ð1=2Þ _�2 plus
some potential energy Vð�Þ. If the slow-roll parameters,
� � ðM2

Pl=16�ÞðV 0=VÞ2 and � � ðM2
Pl=8�ÞðV00=VÞ, are

small, then the field rolls slowly. The energy density is
then dominated by the potential energy, the pressure is
negative, and the expansion of the Universe is inflationary.

Quantum fluctuations in the inflaton give rise to primor-
dial density perturbations characterized by a gravitational-
potential power spectrum P�ðkÞ / V=�, where V and � are
evaluated at the value the inflaton took when the comoving
wave number k exited the horizon during inflation.
Differentiation of the expression for P�ðkÞ suggests that
the power spectrum can be approximated as P�ðkÞ /
kns�1, where the scalar spectral index ns ¼ 1� 6�þ 2�
is close to unity, consistent with current measurements
[3,13].

The power spectrum P�ðkÞ may vary with k because
different values of k sample the quantity V=� at different
values of the inflaton �. This suggests that the power
asymmetry might be explained by a large-amplitude
mode of � with a comoving wavelength that is long
compared with the current Hubble distance (k � H0).
Then one side of the CMB sky would reflect the imprint
of a different value of� than the other side. From P�ðkÞ /
V=�, we infer a fractional power asymmetry,

A � �P�

P�

¼ �2

ffiffiffiffi
�

�

r
ð1� nsÞ��MPl

; (1)

where �� is the change in the inflaton field across the
observable Universe. A 10% variation in the amplitude of
the CMB temperature fluctuations corresponds to a power
asymmetry A ¼ 0:2.

The gravitational-potential perturbation� during matter
domination is related to the inflaton perturbation ��

through �¼ð6=5Þ ffiffiffiffiffiffiffiffiffi
�=�

p ð��=MPlÞ. Thus, a long-

wavelength perturbation ��/ sin½ ~k � ~xþ$�, with kxd�1
(where xd is the distance to the surface of last scatter),
introduces a gravitational-potential perturbation with the
same spatial dependence. It follows from Eq. (1) that
�� ¼ 3A=½5ðns � 1Þ�. An immediate concern, therefore,
is whether this large-amplitude perturbation is consistent
with the isotropy of the CMB.

Gravitational-potential perturbations give rise to tem-
perature fluctuations in the CMB through the Sachs-
Wolfe effect [14] (�T=T ’ �=3). A large-scale potential
perturbation might thus be expected to produce a CMB
temperature dipole of similar magnitude. However, for the
Einstein–de Sitter universe, the potential perturbation in-
duces a peculiar velocity whose Doppler shift cancels the
intrinsic temperature dipole [15]. The same is true for a flat
universe with a cosmological constant [10].

Although the dipole vanishes, measurements of the
CMB temperature quadrupole and octupole constrain the
cosmological potential gradient [15,16]. Here we outline
how these constraints are derived; the full calculation is
presented elsewhere [10]. Since kxd � 1, we first expand

the sinusoidal dependence �ð ~xÞ ¼ � ~k sinð ~k � ~xþ$Þ in

powers of ~k � ~x. Then the terms that contribute to the
CMB quadrupole and octupole are

�ð ~xÞ ¼ �� ~k

�ð ~k � ~xÞ2
2

sin$þ ð ~k � ~xÞ3
6

cos$

�
: (2)

The CMB temperature anisotropy produced by the poten-
tial in Eq. (2) is

�T

T
ðn̂Þ ¼ �� ~k

�
�2

2
ðkxdÞ2�2 sin$þ�3

6
ðkxdÞ3�3 cos$

�
;

(3)

where � � k̂ � n̂ and � ~k is evaluated at the time of decou-

pling (�d). The �i account for the Sachs-Wolfe (including
integrated) effect and the Doppler effect induced by� ~k; for

a �CDM universe with �M ¼ 0:28 and decoupling red-
shift zd ¼ 1090, we find that �2 ¼ 0:33 and �3 ¼ 0:35.

Choosing k̂ ¼ ẑ, Eq. (3) gives nonzero values for the
spherical-harmonic coefficients a20 and a30. The relevant
observational constraints are therefore

ðkxdÞ2j� ~kð�dÞ sin$j & 5:8Q; (4)

ðkxdÞ3j� ~kð�dÞ cos$j & 32O; (5)

where Q and O are upper bounds on ja20j and ja30j,
respectively, in a coordinate system aligned with the power
asymmetry. We take Q ¼ 3

ffiffiffiffiffiffi
C2

p
& 1:8� 10�5 and O ¼

3
ffiffiffiffiffiffi
C3

p
& 2:7� 10�5, 3 times the measured rms values of

the quadrupole and octupole [17], as 3� upper limits; this
accounts for cosmic variance in the quadrupole and octu-
pole due to smaller-scale modes. The temperature quadru-
pole and octupole induced by the superhorizon mode can
be made arbitrarily small for fixed �� ’ � ~kðkxdÞ cos$ by

choosing k to be sufficiently small. However, we also
demand that � ~k & 1 everywhere, and this sets a lower

bound on ðkxdÞ.
We now return to the power asymmetry generated by an

inflaton perturbation. The largest value of �� is obtained
if $ ¼ 0, in which case the perturbation produces no
quadrupole. The octupole constraint [Eq. (5)] combined
with ðkxdÞ * j��j [i.e., the requirement � ~k & 1] implies

that j��j & ð32OÞ1=3. Given that ð1� nsÞ & 0:06, we see
that the maximum possible power asymmetry obtainable

with a single superhorizon mode is Amax ’ 0:1ð32OÞ1=3 ’
0:0095. This is too small, by more than an order of magni-
tude, to account for the observed asymmetry. The limit can
be circumvented if a number of Fourier modes conspire to
make the density gradient across the observable Universe
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smoother. This would require, however, that we live in a
very special place in a very unusual density distribution.

III. THE CURVATON MODEL

We thus turn our attention to the curvaton model [11] of
inflation. This model introduces a second scalar field�, the
curvaton, with potential Vð�Þ ¼ ð1=2Þm2

��
2. During infla-

tion, it is effectively massless, m� � HI (where HI is the
inflationary expansion rate), and its density is negligible.
Its homogeneous value �� remains classically frozen during
inflation, but quantum effects give rise to fluctuations ��
of rms amplitude ð��Þrms ’ ðHI=2�Þ. Well after inflation,
the curvaton rolls toward its minimum and then later
oscillates about its minimum—i.e., a cold gas of � parti-
cles. These particles then decay to radiation. The fluctua-
tions in the curvaton field will produce gravitational-
potential perturbations with a power spectrum,

P�;� / R2

��
�V

Vð ��Þ
�
2
�
� R2

�
HI

� ��

	
2
; (6)

provided that �� � HI [18]. Here R � ð	�=	totÞ is the
energy density of the curvaton field just prior to its decay
divided by the total energy density of the Universe at that
time.

We hypothesize that the density due to curvaton decay is
small compared with the density due to inflaton decay; i.e.,
R � 1. In this case, the perturbation in the total energy
density, and thus the potential perturbation �, due to a
fluctuation in 	� will be suppressed, making it possible to
satisfy the homogeneity conditions set by the CMB
[Eqs. (4) and (5)], even if 	� has order-unity variations.
We then hypothesize that the power asymmetry comes
from a variation � �� in the value of the mean curvaton
field across the observable Universe. Since R / ��2 for
R � 1, the power spectrum for gravitational-potential per-
turbations produced by the curvaton is proportional to ��2.
A variation � �� in the value of the mean curvaton field
across the observable Universe therefore induces a frac-
tional power asymmetry �P�;�=P�;� ’ 2ð� ��= ��Þ.

First we must ensure that this inhomogeneity does not
violate Eqs. (4) and (5). The potential fluctuation during
matter domination produced by a fluctuation �� in the
curvaton field is

� ¼ �R

5

�
2

�
��

��

	
þ

�
��

��

	
2
�
: (7)

Consider a superhorizon sinusoidal perturbation to the

curvaton field � �� ¼ �k sinð ~k � ~xþ$Þ. If we ignored
the term in Eq. (7) quadratic in ��, then the upper bound
to � �� would be obtained by setting $ ¼ 0. As with
the inflaton, the constraint would then arise from the
CMB octupole. However, the term in Eq. (7) quadratic in

�� gives rise to a term in � quadratic in ð ~k � ~xÞ—i.e.,

�quad¼�ðR=5Þð�k= ��Þ2ð ~k � ~xÞ2 for $¼0. Noting that

ð� ��= ��Þ¼ ð�k= ��Þð ~k � ~xdÞ, the quadrupole bound in
Eq. (4) yields an upper limit,

R

�
� ��

��

	
2
&

5

2
ð5:8QÞ: (8)

While this bound was derived for$ ¼ 0, most other values
for $ yield similar constraints [10].
Most generally, the primordial power will be some

combination of that due to the inflaton and curvaton [19],
P� ¼ P�;� þ P�;� ’ 10�9, with a fraction 
 � P�;�=P�

due to the curvaton. The required asymmetry, A ’
2
ð� ��= ��Þ, can be obtained without violating Eq. (8) by
choosing R & 58Q
2=A2, as shown in Fig. 2.
The only remaining issue is the Gaussianity of primor-

dial perturbations. The curvaton fluctuation �� is a
Gaussian random variable. Since the curvaton-induced
density perturbation has a contribution quadratic in ��, it
implies a non-Gaussian contribution to the density fluctua-
tion. The departure from Gaussianity can be estimated
from the parameter fNL [20], which for the curvaton model
is fNL ’ 5
2=ð4RÞ [21–23]. The current upper limit, fNL &
100 [24], leads to the lower limit to R shown in Fig. 2.

FIG. 2 (color online). The R-
 parameter space for the curva-
ton model that produces a power asymmetry A ¼ 0:2 (top panel)
and A ¼ 0:05 (bottom panel). Here R is the fraction of the
cosmological density due to curvaton decay, and 
 is the fraction
of the power due to the curvaton. The upper limit to R comes
from the CMB-quadrupole constraint. The lower bound comes
from fNL 	 100. The lower limit to 
 comes from the require-
ment that the fractional change in the curvaton field across the
observable Universe be less than 1. If A is lowered, the lower
bound to R remains unchanged, but the upper bound increases,
proportional to A�2. The lower limit to 
 also decreases as A
decreases, proportional to A.
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Figure 2 shows that there are values of R and 
 that lead
to a power asymmetry A ¼ 0:2 and are consistent with
measurements of the CMB quadrupole and fNL. For any
value of A, the allowed region of R-
 parameter space is

5

4fNL;max
&

R


2
& 58

Q

A2
; (9)

where fNL;max is the largest allowed value for fNL. Thus,
we see that measurements of the CMB quadrupole and fNL
place an upper bound,

A &

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð58QÞ

�
4fNL;max

5

	s
; (10)

on the power asymmetry that may be generated by a super-
horizon curvaton fluctuation. For Q ¼ 1:8� 10�5, we
predict (for A ’ 0:2) fNL * 50, much larger than fNL �
1 predicted by standard slow-roll inflation. Values as small
as fNL ’ 5 should be accessible to the forthcoming Planck
satellite, and so there should be a clear signature in Planck
if the power asymmetry was generated by a curvaton
perturbation and A ¼ 0:2.

If ð��= ��Þ � 1, the power due to the curvaton is P�;� ’
ð2R=5Þ2hð��= ��Þ2i. The power required from the curvaton

fixes Rð��= ��Þrms ’ 8� 10�5
1=2, from which it follows
that ð��= ��Þrms & 0:2 for the allowed parameter space in
Fig. 2, thus verifying that this parameter is small. We find
from ð� ��= ��Þ ¼ A=2
 & 1 that the required cross-horizon
variation � ��= �� in the curvaton is large compared with the
characteristic quantum-mechanical curvaton fluctuation
ð��= ��Þrms; the required � �� is at least a �5� fluctuation.
It may therefore be that this large-scale mode is a super-
horizon inhomogeneity not completely erased by inflation.
Another possibility is that positive- and negative-value
cells of �� created during inflation may be large enough
to encompass the observable Universe; if so, we would
observe an order-unity fluctuation in �� near the �� ¼ 0wall
that divides two cells [12].

IV. SUMMARYAND DISCUSSION

The hemispherical power asymmetry in the CMB chal-
lenges the assumption that the Universe is isotropic and
homogeneous. A superhorizon perturbation in an inflation-
ary field would introduce a preferred direction in the
Universe, and we have investigated this mechanism for
generating the observed power asymmetry. We found that
the required superhorizon fluctuation in the inflaton field is
inconsistent with measurements of the CMB octupole. A
superhorizon fluctuation in a subdominant scalar field,
however, is a viable alternative. A superhorizon curvaton
perturbation can generate the observed power asymmetry
without introducing unacceptable anisotropy and non-
Gaussianity in the CMB.

We have considered the specific asymmetry A ’ 0:2
reported for WMAP, but our results can be scaled for

different values of A, should the measured value for the
asymmetry change in the future. In particular, the fNL
constraint (the lower bound to R) in Fig. 2 remains the
same, but the upper bound (from the quadrupole) increases
as A is decreased. The lower limit to 
 also decreases as A
is decreased. Here we have also considered a general
model in which primordial perturbations come from
some combination of the inflaton and curvaton. Although
it may seem unnatural to expect the two field decays to
produce comparable fluctuation amplitudes, our mecha-
nism works even if 
 ¼ 1 (the fluctuations are due entirely
to the curvaton). Thus, the coincidence is not a requirement
of the model.
If the power asymmetry can indeed be attributed to a

superhorizon curvaton mode, then the workings of inflation
are more subtle than the simplest models would suggest.
Fortunately, the theory makes a number of predictions that
can be pursued with future experiments. To begin, the
modulated power should produce signatures in the CMB
polarization and temperature-polarization correlations
[25]. The curvaton model predicts non-Gaussianity, of
amplitude fNL * 50 for A ’ 0:2, which will soon be ex-
perimentally accessible. However, the theory also predicts
that the small-scale non-Gaussianity will be modulated
across the sky by the variation in �� (and thus in 
 and
R). The presence of curvaton fluctuations also changes
other features of the CMB [23]. The ratio of tensor and
scalar perturbations (r) is reduced by a factor of ð1� 
Þ
and the scalar spectral index is ns ¼ 1� 2�� ð1� 
Þ�
ð4�� 2�Þ. The tensor spectral index (nT), however, is
unaltered by the presence of the curvaton, and so this
model alters the inflationary consistency relation between
nT and r and possibly the prospects for testing it [26].
Here we have assumed simply that the curvaton decays

to the same mixture of baryons, dark matter, and radiation
as the inflaton. However, if the inflaton and curvaton decay
products differ, then there may be an isocurvature compo-
nent [21,27]. Finally, the simplest scenario predicts a scale-
invariant power asymmetry; the asymmetry has been found
at multipole moments ‘ & 40, but there are claims that it
does not extend to higher ‘ [28]. If this result holds, it will
be interesting to see whether the departure from scale
invariance can be obtained by suitably altering the power
spectra for the curvaton and inflaton. For instance, a sudden
drop in both V0ð�Þ and Vð�Þ could enhance the
gravitational-potential fluctuations from the inflaton while
suppressing the fluctuations from the curvaton [7]; the
resulting drop in 
 would reduce the power asymmetry
on smaller scales. We leave such elaborations for future
work.
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