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ABSTRACT

High-resolution N-body simulations of dark matter halos indicate that the Milky Way contains numerous subhalos.
When a dark matter subhalo passes in front of a star, the light from that star will be deflected by gravitational lensing,
leading to a small change in the star’s apparent position. This astrometric microlensing signal depends on the inner
density profile of the subhalo and can be greater than a few microarcseconds for an intermediate-mass subhalo
(Mvir � 104 M�) passing within arcseconds of a star. Current and near-future instruments could detect this signal,
and we evaluate the Space Interferometry Mission’s (SIM’s), Gaia’s, and ground-based telescopes’ potential as
subhalo detectors. We develop a general formalism to calculate a subhalo’s astrometric lensing cross section over a
wide range of masses and density profiles, and we calculate the lensing event rate by extrapolating the subhalo mass
function predicted by simulations down to the subhalo masses potentially detectable with this technique. We find
that, although the detectable event rates are predicted to be low on the basis of current simulations, lensing events
may be observed if the central regions of dark matter subhalos are more dense than current models predict (�1 M�
within 0.1 pc of the subhalo center). Furthermore, targeted astrometric observations can be used to confirm the
presence of a nearby subhalo detected by gamma-ray emission. We show that, for sufficiently steep density profiles,
ground-based adaptive optics astrometric techniques could be capable of detecting intermediate-mass subhalos at
distances of hundreds of parsecs, while SIM could detect smaller and more distant subhalos.
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1. INTRODUCTION

Numerical simulations of dark matter halos have revealed the
presence of numerous subhalos over a wide range of masses
extending down to the simulations’ resolution limits (e.g.,
Ghigna et al. 1998, 2000; Klypin et al. 1999a; Moore et al. 1999;
Kravtsov et al. 2004; Gao et al. 2004; Reed et al. 2005; Diemand
et al. 2007b; Springel et al. 2008; Diemand et al. 2008). This
substructure is the remnant of hierarchical structure formation;
as halos merge to form larger structures, the inner portions of
the ancestor halos become subhalos. If all halos leave subhalo
remnants, then the subhalo mass function may extend to masses
far smaller than the resolution limit of any simulation (Hu et al.
2000; Chen et al. 2001; Profumo et al. 2006; Diemand et al.
2005).

Although subhalos may be destroyed by gravitational inter-
actions with the host halo, other subhalos, and stars, there are
indications that their dense inner regions survive to the present
day (Hayashi et al. 2003; Kazantzidis et al. 2004; van den Bosch
et al. 2005; Read et al. 2006; Berezinsky et al. 2006; Zhao et al.
2007; Green & Goodwin 2007; Goerdt et al. 2007; Schneider
et al. 2010; Ishiyama et al. 2010). Moreover, high-resolution
simulations of halos similar to the Milky Way’s host suggest
that subhalos with masses greater than 106 M� are present at
the Solar radius (Springel et al. 2008; Diemand et al. 2008).
Although simulations indicate that these large subhalos are sig-
nificantly disrupted by the Galactic disk (D’Onghia et al. 2010;
Romano-Dı́az et al. 2010), the resolution is not sufficient to de-
termine the fate of the subhalos’ innermost regions. It is there-
fore possible that numerous subhalos are located within a few
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kiloparsecs of the solar system, with profound implications for
both direct detection of the dark matter particle (Kamionkowski
& Koushiappas 2008) and indirect detection through its annihi-
lation signature (e.g., Bergström et al. 1999; Calcáneo-Roldán
& Moore 2000; Stoehr et al. 2003; Diemand et al. 2007a; Ando
2009; Kamionkowski et al. 2010).

Unfortunately, both indirect and direct detections of dark
matter continue to be elusive, and gravity still provides the
only uncontested evidence for dark matter. Gravitational lensing
is an especially powerful tool in the study of dark matter
substructure; subhalos within our galaxy could be detected
through their effects on signals from millisecond pulsars (Siegel
et al. 2007), and substructure in lensing galaxies has several
observational signatures. Subhalos have been proposed as the
origin of observed flux-ratio anomalies between the multiple
images of strongly lensed quasars (Mao & Schneider 1998;
Metcalf & Madau 2001; Chiba 2002; Dalal & Kochanek 2002;
Kochanek & Dalal 2004); they can also alter the time delays
between these images (Keeton & Moustakas 2009; Congdon
et al. 2010) and their separations (Koopmans et al. 2002;
Chen et al. 2007; Williams et al. 2008; More et al. 2009). If
the source is extended, then subhalos can distort the image’s
shape and surface brightness (Metcalf 2002; Inoue & Chiba
2005a, 2005b; Koopmans 2005; Vegetti & Koopmans 2009a,
2009b). Intriguingly, the observed lensing anomalies can only
be explained if the central regions of the lensing galaxies contain
significantly more substructure than is predicted by N-body
simulations (Mao et al. 2004; Amara et al. 2006; Macciò et al.
2006; Xu et al. 2009, 2010), although it has been suggested that
these studies use atypical lensing galaxies (Bryan et al. 2008;
Jackson et al. 2010).
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Individual subhalos within a lensing galaxy could be detected
if they strongly lens one quasar image, splitting it into a closely
spaced pair of images (Yonehara et al. 2003; Inoue & Chiba
2005a). Unfortunately, the diffuse nature of dark matter subhalos
implies that they have small Einstein radii (Zackrisson et al.
2008). Consequently, the split images are resolvable only for
the largest subhalos, making it unlikely to find a large enough
subhalo with a sufficiently small impact parameter to detectably
split a quasar image (Riehm et al. 2009).

In this paper, we consider a different way to find subha-
los through gravitational lensing: instead of looking for split
images, we investigate how the astrometric deflection of an im-
age changes as a subhalo moves. This astrometric microlensing
approach has two advantages over strong lensing. First, it is
much easier to measure a change in the position of the centroid
of an image than it is to resolve an image pair into distinct
sources. The minimal separation required to resolve a pair of
images is limited to approximately the resolution of the tele-
scope (�25 mas), whereas at high signal-to-noise ratio (S/N),
the position of the centroid of the image can be measured with
hundreds of times higher precision. Second, strong lensing only
occurs when the angular separation between the source and
the lens is smaller than the lens’s Einstein angle, while astro-
metric deflection is detectable for far larger impact parameters.
The disadvantage associated with astrometric microlensing is
that it must be a dynamical event because we do not know
the true position of the source. As the lens moves relative to
a background star, the star’s image will move as well and that
is the detectable signature of astrometric microlensing. We are
therefore constrained to local subhalos with significant proper
motions.

Astrometric lensing signals from dark matter subhalos are
necessarily small because subhalos are diffuse, and astrometry
has only very recently progressed to the point that an astrometric
dark matter search is feasible. The rapid development of
1–100 μas astrometric precision has been driven by a wide
variety of fields—for example, following orbits in the galactic
center (e.g., Lu et al. 2009; Gillessen et al. 2009), astrometric
detection of planets (e.g., Unwin et al. 2008; Law et al. 2009;
Malbet et al. 2010), accurate parallax determination (e.g., Henry
et al. 2009; Subasavage et al. 2009), and the determination of
stellar orbits (e.g., Hełminiak et al. 2009; Pravdo et al. 2006;
Konopacky et al. 2010; Ireland et al. 2008; Dupuy et al. 2009).

New space-based astrometric missions such as Gaia
(Lindegren et al. 2008) and the Space Interferometry Mission
(SIM; Unwin et al. 2008) are opening the possibility of ultra-
high-precision all-sky and targeted searches. Targeted ground-
based astrometry is already capable of 100 μas precision in
arcminute-sized fields, and new larger telescopes will signifi-
cantly improve that precision (Cameron et al. 2009), while even
higher precisions are possible on bright stars (e.g., Muterspaugh
et al. 2006; van Belle et al. 2008).

These technical advances have inspired considerable interest
in astrometric microlensing by stars and dark compact objects
(Walker 1995; Paczynski 1995, 1998; Miralda-Escude 1996;
Gould 2000; Gaudi & Bloom 2005), and by baryonic clouds
(Takahashi 2003; Lee et al. 2010). In this paper, we investi-
gate if these instruments can also be used to search for dark
matter subhalos. We find that, for standard dark matter models,
observing a subhalo lensing event rate during a blind astro-
metric survey is highly unlikely. If the central regions of dark
matter subhalos are denser than expected, however, the lens-
ing event rate can be significantly enhanced. We also explore

the possibility of using astrometric lensing to confirm the pres-
ence of a subhalo detected through its gamma-ray emission.
We find that ground-based telescopes could detect lensing by
a nearby (∼50 pc) subhalo with a post-stripping mass greater
than 1000 M�, while SIM could probe these subhalos at greater
distances (∼100 pc) and detect nearby subhalos with one-tenth
of this mass.

This article is organized as follows. In Section 2, we describe
the image motion induced by subhalo lenses with a variety of
different density profiles, namely, a singular isothermal profile,
the NFW profile, and a generalized power-law density profile.
In Section 3, we develop an astrometric observing strategy
designed to reliably detect subhalo lensing while rejecting
possible false-positive detections. In Section 4, we calculate
the areas of sky over which particular subhalo lenses are
detectable and determine the all-sky subhalo lensing event rates
for several models of dark matter substructure. In Section 5, we
evaluate current and planned astrometric survey capabilities in
the context of detecting lensing from a subhalo in both all-sky
and targeted searches. We summarize our findings and conclude
in Section 6. To evaluate the lensing signatures and event rates,
we developed models of the concentration–mass relation and
the mass function for local subhalos based on the findings of the
Aquarius simulations (Springel et al. 2008); these models are
presented in Appendix B.

2. ASTROMETRIC SIGNATURES OF LENSING BY
SUBHALOS

The shapes of the intermediate-mass subhalos that we will be
considering cannot be probed by current numerical simulations;
to simplify our analysis we will assume that the subhalos are
spherically symmetric. Numerical simulations can only probe
the shapes of the largest subhalos with masses greater than
108 M� (Kuhlen et al. 2007; Knebe et al. 2010). While these
subhalos are triaxial, they tend to be more spherical than their
host halos. In a simulation that includes baryonic physics, Knebe
et al. (2010) found that subhalos located within half of the virial
radius of the host halo have nearly spherical mass distributions in
their innermost resolved regions, with a median minor-to-major
axis ratio of 0.83. We will see that astrometric microlensing is
only sensitive to the density profile near the center of the subhalo
(r < 0.1 pc); as long as the inner region of the subhalo is nearly
spherically symmetric, the subhalo’s triaxiality is irrelevant for
our analysis, and we do not expect deviations from spherical
symmetry to significantly affect our results.

We will also assume that the dark matter subhalo is transparent
and that it contains no stars. The presence of a star in the center
of the subhalo would change its lensing signature if the star’s
mass is comparable to the dark matter mass in the central 0.1 pc
of the subhalo, but stars further from the center would not have
an effect. Furthermore, the discrepancy between the number of
intermediate-mass subhalos seen in simulations and the number
of dwarf spheroidals observed in the Milky Way, known as the
“missing satellite problem” (Klypin et al. 1999b; Moore et al.
1999), indicates that stars are rare in subhalos with masses less
than 106 M� (Madau et al. 2008). Finally, we will assume that
the subhalo’s diameter is small compared to both the distance dL
between the lens and the observer and the distance dLS between
the lens and the star.

Figure 1 shows a schematic view of lensing by an extended
transparent object like a dark matter subhalo. When a light ray
passes through a spherically symmetric thin lens, the image of
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Figure 1. (a) Diagram showing the position of the source star (in black), its image (in gray), and the lens (gray ellipse). We will generally assume that α � β so that
the ray’s impact parameter in the lens plane (ξ ≡ dLθ ) may be approximated as ξ � dLβ. (b) The same lensing system viewed as projected on the sky. The center of
the lens is moving with velocity vT along the x-axis.

the star is shifted from its true position by an angle

�α = dLS

dS

[
4GM2D(ξ )

ξ

]
ξ̂ , (1)

where dS is the distance between the observer and the star, ξ is
the distance between the center of the lens and the star’s image
in the lens plane (�ξ ≡ dL �θ ), and ξ̂ ≡ �ξ/ξ points from the lens to
the star. Throughout this work, we set the speed of light c = 1.
The mass M2D(ξ ) in Equation (1) is the mass enclosed by the
cylinder interior to ξ and is obtained by integrating the projected
surface mass density Σ over the area of the circle with radius ξ .

As the subhalo moves relative to the background star, the
angle �β that extends from the lens to the star will change and
the position of the star’s image will change accordingly. We take
the star to be fixed at the origin of an xy coordinate system on
the sky and we define the x-axis to be parallel to the subhalo’s
transverse velocity vT, as shown in the right panel of Figure 1.
The vertical component of �β is therefore fixed [βy(t) = βy,0],
and

βx(t) = βx,0 − 4.′′2
( vT

200 km s−1

)(50 pc

dL

)(
t

5 yr

)
, (2)

where βx,0 is the value of βx at t = 0. We see that a nearby
subhalo will move several arcseconds during a multi-year
observational period.

For the subhalos we consider, the deflection angle α will
be on the order of microarcseconds. Since β changes by several
arcseconds over the course of the observation, β 
 α for most of
the observational period. We will further assume that βy,0 
 α
so that we are always considering the weak-lensing regime with
β 
 α. We verify in Appendix A that this condition is satisfied
for all subhalo lensing scenarios, provided that dL � 1000 kpc.
This confirms that we are firmly in the weak-lensing regime
as long as we only consider subhalos in our local group. In
this case, there is only one image of the star, and it is always
located on the line connecting the lens position to the star’s
position, with the star between the image and the lens. We will
use the β 
 α assumption to simplify the lens equation by
approximating �β � �θ . In this case, �ξ may be approximated as
�ξ � dL �β, and Equation (1) becomes a simple equation for the
deflection angle �α in terms of the impact parameter �β. In the
following subsections, we will use Equation (1) to show how
the path taken by the star’s image during a subhalo transit
depends on the subhalo’s density profile.

2.1. Singular Isothermal Sphere

The density profile for a singular isothermal sphere (SIS) is

ρ(r) = σ 2
v

2πGr2
, (3)

where σv is the velocity dispersion of the halo. Although
numerical simulations indicate that large dark matter subhalos
without baryons do not have this steep a density profile (Springel
et al. 2008; Diemand et al. 2008), we consider the SIS case in
detail because it simply illustrates key features that are shared
by the astrometric lensing signatures from dark matter halos
with shallower profiles.

The two-dimensional enclosed mass for an infinite SIS
is M2D(ξ ) = πσ 2

v ξ/G. Since M2D depends linearly on ξ ,
Equation (1) reveals that α is independent of the separation
between the lens and the star. The deflection angle is always the
Einstein angle of the SIS:

θSIS
E =

(
1 − dL

dS

)
4πσ 2

v , (4)

= 10 μas
( σv

0.6 km s−1

)2
(

1 − dL

dS

)
. (5)

There are two images, with �α = ±θSIS
E β̂, only if β < θSIS

E . We
will only consider larger impact parameters, in which case there
is only one image, with �α = θSIS

E β̂. As the SIS moves relative
to the star, the direction of the deflection angle changes. For an
infinite SIS moving from the distant left to the distant right, the
image starts θSIS

E to the right of the star’s true position and then
traces a half-circle with radius θSIS

E until it ends θSIS
E to the left

of the star’s true position.
For an SIS, the mass enclosed in a sphere of radius R is

proportional to R; if the SIS has infinite extent, then its mass
is infinite. It is customary to characterize an SIS by its virial
mass: the mass contained in a sphere with mean density equal to
the virial density ρ̄vir. Bryan & Norman (1998) provide a fitting
formula for the virial density in a flat ΛCDM universe:

ρ̄vir ≡ (
18π2 + 82[ΩM(z) − 1] − 39[ΩM(z) − 1]2

)
ρcrit,

(6)

ΩM(z) = ΩM0(1 + z)3

ΩM0(1 + z)3 + 1 − ΩM0
, (7)

ρcrit(z) =
(

0.0924
M⊕
pc3

)
h2
[
ΩM0(1 + z)3 + 1 − ΩM0

]
, (8)

where H0 ≡ 100 h km s−1 Mpc−1 and ΩM0 is the present-day
matter density divided by the critical density. We will use
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standard cosmological parameters: h = 0.7 and ΩM0 = 0.3.
The virial density is 4.6 M⊕ pc−3 at redshift zero and it increases
monotonically with redshift. The velocity dispersion σv in terms
of the virial mass is

σ 2
v = G

(
πρ̄vir(zv)M2

vir

6

)1/3

, (9)

where zv is the redshift at which the halo’s virial mass is
evaluated. To facilitate comparisons with N-body simulations,
we take zv = 0 in our calculations, but we note that increasing
zv would make the subhalos denser and would enhance their
lensing signals. Inserting this expression into Equation (4) gives

θSIS
E = (1.1 μas)

(
1 − dL

dS

)(
Mvir

104 M�

)2/3(
ρ̄vir(zv)

4.6 M⊕ pc−3

)1/3

.

(10)
These properties describe an SIS in isolation. Once a subhalo

is accreted by a larger halo, the outer tails of its density profile are
stripped of mass. Numerical simulations indicate that a subhalo
in our Galaxy may lose between 99% and 99.9% of its initial
mass due to tidal stripping from the smooth component of the
halo (Hayashi et al. 2003; Kazantzidis et al. 2004; van den
Bosch et al. 2005; Read et al. 2006), and stars will further
strip the outer portions of subhalos (Berezinsky et al. 2006;
Zhao et al. 2007; Green & Goodwin 2007; Goerdt et al. 2007;
Schneider et al. 2010; Ishiyama et al. 2010). We will deal with
this truncation by defining a truncation radius Rt and setting
ρ = 0 for R > Rt . The mass contained within Rt is the
mass of the surviving subhalo Mt. We will describe the tidal
stripping with the parameter mbd ≡ Mt/Mvir, where Mvir is the
original virial mass of the subhalo, evaluated at redshift zv . The
truncation radius is then given by

Rt = (0.56 pc)
( mbd

0.001

)( Mvir

104 M�

)1/3 (4.6 M⊕ pc−3

ρ̄vir(zv)

)1/3

.

(11)
The angular size of the truncated halo is

θt = 0.◦64
( mbd

0.001

)(50 pc

dL

)(
Mvir

104 M�

)1/3

×
(

4.6 M⊕ pc−3

ρ̄vir(zv)

)1/3

. (12)

Thus, we see that θSIS
E � θt for all subhalos of interest.

For a truncated SIS, the two-dimensional enclosed mass is

M2D(ξ < Rt ) = 2σ 2
v

G

⎡
⎣ξ tan−1

√
R2

t

ξ 2
− 1 + Rt −

√
R2

t − ξ 2

⎤
⎦

(13)
and M2D = Mt for ξ � Rt . If ξ � Rt , then the deflection angle
is the same as for a point mass with Einstein angle

θPM
E ≡

√
4GMtdLS

dLdS
=
√

2

π
θSIS

E θt . (14)

Thus, we see that θSIS
E � θt implies that θPM

E � θt . Therefore,
we may approximate the position of the brightest image as
α = (θPM

E )2/β for β > θt . When we insert M2D from
Equation (13) into Equation (1) for α and assume that α � β,
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Figure 2. Deflection angle for a star at 5 kpc as an SIS subhalo 50 pc away
moves at a velocity of 200 km s−1 from the far left to the far right. This
subhalo’s velocity dispersion is 0.72 km s−1, which corresponds to a virial mass
of 5 × 105 M�, but it has been stripped to a radius of 0.02 pc and contains only
5 M�. In the top plot, the subhalo center passes 1 arcsec below the star, and the
circles show the image’s position every year for the 100 years surrounding the
time of closest approach. In the bottom plot, the subhalo center passes 50 arcsec
below the star, and the circles show the image’s position every 10 years for the
300 years surrounding the time of closest approach.

(A color version of this figure is available in the online journal.)

we find that the deflection angle for lensing by a truncated SIS
is

�α = 2

π
θSIS

E β̂

⎧⎪⎪⎨
⎪⎪⎩
F
(

β

θt

)
for θSIS

E < β < θt

θt

β
for β > θt

, (15)

F(x) ≡ tan−1

√
1

x2
− 1 +

1

x
−
√

1

x2
− 1.

Figure 2 shows how the image of a fixed star moves as
a truncated SIS subhalo passes below the star’s true position
on the sky. The lens’s Einstein angle is θSIS

E = 15 μas, which
corresponds to σv = 0.72 km s−1 and Mvir = 5 × 105 M�. The
image motion is highly sensitive to the ratio vT/dL because this
ratio determines how �β changes with time (see Equation (2)).
If vT/dL is decreased, then the change in �β during a set
time interval is decreased, and the image motion slows down.
Throughout this work, we adopt vT = 200 km s−1 because that
is the typical velocity of a dark matter particle in the halo (e.g.,
Drukier et al. 1986; Xue et al. 2008). With this velocity, we
will see that a detectable subhalo must have dL � 100 pc, and
we adopt dL = 50 pc as our fiducial lens distance. Provided
that dL � dS, the distance to the source has a minimal impact
on the image motion because dS only enters through the factor
(1 − dL/dS) in θSIS

E (see Equation (10)). We use dS = 5 kpc
as our fiducial value because this is a reasonable distance to a
target star; changing dS to any value greater than 1 kpc would
have no noticeable effect on the image motion. To illustrate the
effects of subhalo truncation in Figure 2, we assume that the
subhalo has been extremely stripped by close encounters with
stars so that its radius is 0.02 pc (θt = 85′′), which implies
that Mt = 5 M�. We see that the image motion consists of
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Figure 3. Deflection induced over 4 years by a moving SIS lens with the
same properties as in Figure 2. The path of the lens is depicted by a dotted
arrow. To show the image trajectories, the image motion is exaggerated a factor
of 106 relative to the star’s positions; a scale bar corresponding to 20 μas
motion is shown. Twenty equally spaced measurement points over the four-year
observational period are shown for each curve. Note that the stars closest to the
lens position undergo much more rapid position changes.

three stages: as the edge of the subhalo approaches from the
far left, the image very slowly moves rightward until the star is
behind the subhalo, then the image rapidly traces an arc as the
subhalo center passes by the star, and finally the star slowly
returns to its true position as the subhalo moves off to the
right.

The impact parameter βy determines how quickly the image
moves as the subhalo passes by the star. In the top half of Figure 2
the lens impact parameter is 1′′, and the image rapidly traces out
a semi-circle of radius θSIS

E during the few years surrounding
the time of closest approach, just as if the lens had infinite
extent. The effect of the SIS’s truncation is more apparent in the
bottom half of Figure 2, where βy = 50′′; the image’s trajectory
is closer to a circle and it will become more and more circular
as βy increases. The image transverses this circle very slowly,
taking 10 years to move 2 μas, in contrast to the image in the
top panel, which moves nearly 30 μas in only 5 years. Thus, we
see that the only detectable portion of the image’s path in the
sky is the period surrounding the moment of closest approach
between the star and the lens, and a small impact parameter is
required to make the image move significantly over the course
of a few years. Figure 3 further illustrates the necessity of a
small impact parameter by showing how the images of stars at
different positions relative to the lens move over the course of
4 years; only the stars along the lens’s path with βy � 2′′ have
images that are significantly moved during the observational
period. For stars that are this close to the center of the subhalo,
with β � θt , the truncation of the density profile does not affect
the image trajectories, as seen in the top panel of Figure 2. We
will therefore assume that β � θt for all interesting lensing
scenarios and ignore the subhalo’s truncation when considering
other density profiles.

2.2. NFW Density Profile

The NFW profile,

ρ(r) = ρs(
r
rs

)(
1 + r

rs

)2 , (16)

was found to be a universally good fit to the density profiles of
galaxy and cluster halos in early numerical simulations (Navarro
et al. 1996, 1997). The two-dimensional enclosed mass for a
subhalo with virial mass Mvir and an NFW density profile with
concentration c ≡ Rvir/rs is

M2D(ξ ) = Mvir

ln(1 + c) − c
1+c

G
(

ξ

rs

)
(17)

G(x) = ln
x

2
+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
1 − x2

cosh−1 1

x
for x < 1

1 for x = 1
1√

x2 − 1
cos−1 1

x
for x > 1

(Bartelmann 1996; Golse & Kneib 2002).
From Equation (1), we see that the magnitude of the deflection

angle α is proportional to M2D/ξ . For the NFW profile, α ∝ ξ
if r � rs and α ∝ ξ−1 if r 
 rs . Therefore, as an NFW
subhalo approaches a star, the deflection angle will increase
until the star crosses the scale radius (ξ � rs), and then it will
decrease until the star crosses the subhalo center, at which point
it will begin to increase again until the star crosses rs on the
other side of the subhalo. In this sense, the scale radius of an
NFW profile plays the same role as the truncation radius for a
truncated SIS. If the impact parameter is close to the scale radius
(βy � rs/dL), then the image trajectory is roughly circular, and
it resembles the bottom half of Figure 2. Unfortunately, the
subhalos that are massive enough to deflect the star’s image
by several microarcseconds (Mvir � 104 M�) have large scale
radii (rs � 2 pc for c � 100); βy � rs/dL is a large impact
parameter, and the image position changes very slowly as the
subhalo moves. Moreover, just as with a truncated SIS lens, the
reversal in the image’s motion as the star crosses the scale radius
(β � rs/dL) is very slow, regardless of the impact parameter βy .

As in the SIS case, the most promising lensing scenario
occurs when the center of the NFW subhalo passes very close
to the source. The key difference is that α is nearly constant for
ξ � Rt if the lens is an SIS, which leads to the semi-circle image
trajectory displayed in the top portion of Figure 2. For an NFW
lens with ξ � rs , the deflection angle is very small, as shown
in the bottom panel of Figure 4. The NFW density profile leads
to a no-win situation: if you decrease the impact parameter βy

in order to enhance the change in the image’s position over a set
time period, the magnitude of the deflection decreases. We are
forced to conclude that astrometric lensing by subhalos is only
detectable if the inner density profile is steeper than ρ ∝ r−1.

2.3. Generalized Density Profile

We have seen that astrometric gravitational lensing by sub-
halos is only detectable if the center of the subhalo passes close
to the star’s position during the observational period, during
which the subhalo moves about 0.001 pc (for a five-year ob-
servational period). Therefore, only the innermost portion of
the subhalo is responsible for the astrometric lensing signature.
Unfortunately, very little is known about the intermediate-mass
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Figure 4. Deflection angle generated by a moving lens with dS = 5 kpc,
dL = 50 pc, and vT = 200 km s−1. The virial mass of the lens is 5 × 105 M�
and its concentration is Rvir/r−2 = 99. The inner density profile of the lens is
given by ρ ∝ r−γ , and the different panels correspond to different values of
γ . The impact parameter is 1 arcsec, and only the portion of the image path
corresponding to the time surrounding the moment of closest approach between
the image and lens is shown. Note that the image path becomes more linear and
the image motion slows down considerably as γ is decreased.

(A color version of this figure is available in the online journal.)

(10 M� � Mt � 106 M�) subhalos that are capable of pro-
ducing detectable astrometric lensing events. High-resolution
N-body simulations can probe the density profiles of only the
largest (Mt � 108 M�) subhalos, and even these profiles are
unresolved at r � 350 pc (Springel et al. 2008; Diemand et al.
2008). For these large subhalos, Diemand et al. (2008) find that
ρ ∝ r−1.2 in the innermost resolved regions, while Springel
et al. (2008) see ρ ∝ r−(1.2–1.7) at their resolution limit for nine
large subhalos, with no indication that the slope had reached
a fixed central value. Meanwhile, at the opposite end of the
mass spectrum, Diemand et al. (2005) find that the first Earth-
mass dark matter microhalos have steeper density profiles with
ρ ∝ r−(1.5–2.0) at redshift z = 26, and higher-resolution simu-
lations indicate that this steep profile extends to within 20 AU
of the microhalo center (Ishiyama et al. 2010).

In light of this uncertainty, we consider a generic density
profile

ρ(r) = ρ0

(
r

r0

)−γ

(18)

with 1 < γ � 2. We assume that a constant-density core,
if present, is significantly smaller than our typical impact
parameters of 0.001 pc, and we assume that the subhalo does not
contain a black hole. Larger cores would decrease the lensing
signal while the presence of a black hole would enhance it by
adding a point mass and steepening the density profile (Bertone
et al. 2005; Ricotti & Gould 2009). If we take this density profile
as infinite when calculating the projected surface density Σ, we
find that

Σ(ξ ) = √
π ρ0r0

Γ [0.5(γ − 1)]

Γ [0.5γ ]

(
ξ

r0

)1−γ

, (19)

M2D(ξ ) = 2π3/2
(
ρ0r

3
0

) Γ [0.5(γ − 1)]

(3 − γ )Γ [0.5γ ]

(
ξ

r0

)3−γ

, (20)

where Γ[x] is the Euler gamma function.

Of course, this density profile does not extend to infinity; the
subhalo’s density profile will be truncated by tidal stripping,
and it may also transition to a steeper power law, as in the
case of an NFW profile. If the density profile is truncated at
r = Rt , then the surface density diverges from Equation (19)
as ξ approaches Rt, but for ξ � Rt , Equations (19) and (20)
are still good approximations. For instance, if γ = 1.5 (1.2),
M2D(ξ ) for a subhalo truncated at Rt is greater than 80% (50%)
the value given by Equation (20) if ξ � 0.1Rt . We will show
in Appendix A that detectible astrometric signatures are only
produced if ξ < 0.03 pc, and Equation (20) is accurate to
within 20% for subhalos with γ � 1.5, Mvir < 108 M�, and
Rt � 0.1 pc. Furthermore, the lower bound on Rt is significantly
smaller for subhalos with Mvir � 108 M�. We will therefore
use Equation (20) and take Rt � 0.1 pc as a conservative
lower bound, although we note that the resulting deflections
may be slightly overestimated, especially if γ � 1.2. As shown
in Figure 4, however, detecting a subhalo with γ � 1.2 is
challenging, and we conclude that Equation (20) is accurate to
within ∼20% for subhalos of interest.

If a dark matter subhalo with a density profile given by
Equation (18) passes in front of a star, Equation (1) tells us
that

�α = θα

(
ξ

r0

)2−γ

ξ̂ , (21)

where we have defined

θα ≡ 0.88 μas

(
Γ [0.5(γ − 1)]

2(3 − γ )Γ [0.5γ ]

)(
1 − dL

dS

)

×
(

pc

r0

)(
ρ0r

3
0

M�

)
. (22)

Like θSIS
E , θα depends on the distances to the lens and the source

only through the factor (1 − dL/dS). We also note that θα is
related to the Einstein angle θE:

θα = θ
γ−1
E

(
r0

dL

)2−γ

. (23)

We will continue to assume that α � β so that ξ (see Figure 1)
is approximately equal to dLβ.

Equation (22) gives the magnitude of the deflection angle
in terms of the parameters of the density profile r0 and ρ0,
but this is not the most useful description of the subhalo.
Instead we characterize the subhalo by either its mass after
tidal stripping (Mt ≡ mbdMvir) or the mass contained within a
radius of 0.1 pc from the subhalo center (M0.1 pc). Although Mt
is a more standard and intuitive description of the subhalo mass,
using M0.1 pc offers two advantages. First, M0.1 pc completely
determines the deflection angle; without loss of generality, we
can set r0 = 0.1 pc, in which case

θα = 8.8 μas

(
Γ [0.5(γ − 1)]

2(3 − γ )Γ [0.5γ ]

)(
1 − dL

dS

)

×
(

3 − γ

4π

)(
M0.1 pc

M�

)
. (24)

Second, M0.1 pc is the portion of the subhalo’s mass that is
actually probed by astrometric microlensing because truncating
the subhalo’s density profile at Rt = 0.1 pc does not affect
its astrometric lensing signature. Therefore, using M0.1 pc to
characterize the subhalo’s mass allows us to consider subhalos
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that are more compact than standard virialized subhalos and
makes it easy to apply our results to more exotic forms of dark
matter substructure.

To relate θα to the virial mass of the subhalo, we have to
specify the full density profile. If γ = 2.0, we will assume that
the subhalo is a truncated SIS so that Equation (18) holds out to
the truncation radius of the subhalo. In this case, Equation (23)
tells us that θα = θSIS

E , and we can use Equation (10) to evaluate
θα . If γ �= 2, we will assume that the subhalo’s full density
profile prior to any tidal stripping was

ρ(r) = ρ0(
r
r0

)γ (
1 + r

r0

)3−γ
, (25)

which reduces to Equation (18) for r � r0. In this case,
the virial mass does not uniquely determine θα , and we also
have to specify the subhalo’s concentration. We define the
concentration as c ≡ Rvir/r−2, where r−2 is the radius at which
d ln ρ/d ln r = −2. For the profile given by Equation (25),
r−2 = (2 − γ )r0. It follows that

r0 = 27 pc

(
1

2 − γ

)(
94

c

)(
Mvir

106 M�

)1/3

×
(

ρ̄vir(zv)

4.6 M⊕ pc−3

)−1/3

. (26)

We see that r0 is larger than 5 pc for the subhalos we consider
(Mvir � 104 M� and γ � 1.2), and we expect that local subhalos
will be stripped to much smaller radii by encounters with stars.

We can now derive how θα depends on the subhalo’s
virial mass and concentration. Recall from Equation (22) that
θα ∝ ρ0r

2
0 . For the profile given by Equation (25), this factor is

related to the subhalo’s concentration and virial mass through

(
pc

r0

)(
ρ0r

3
0

M�

)
= 810

( c

94

)( Mvir

106 M�

)2/3 (
ρ̄vir(zv)

4.6 M⊕ pc−3

)1/3

×
[

3.57(−1)γ (γ − 2)

B[c(γ − 2); 3 − γ, γ − 2]

]
, (27)

where B[z; a, b] is the incomplete Beta function. In
Appendix B.2, we use the findings of the Aquarius simula-
tion (Springel et al. 2008) to derive a relationship between the
concentration of local subhalos and their virial mass:

c = 94

(
Mvir

106 M�

)−0.067

, (28)

and we use this relation to determine the subhalo concentration
throughout this investigation.

Figure 4 shows the paths taken by the star’s image as the
center of a subhalo passes 1 arcsec below the star’s position
for several values of γ . In this figure, dL = 50 pc, dS = 5 kpc,
vT = 200 km s−1, and the subhalo lens has a virial mass of
5 × 105 M�. We see that the image path depends very strongly
on γ . If γ � 1, the motion is nearly linear, and the image moves
very little and very slowly. As γ increases, an arc appears in the
image path; there is now sufficient mass enclosed in the inner
arcsecond to cause an observable vertical deflection when the
subhalo passes beneath the star. Increasing γ also increases the
motion of the image in a given time period, and the acceleration
of the image as the subhalo approaches the point of closest
approach becomes apparent. As the subhalo center passes from
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Predicted PM
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Detection run

Figure 5. Subhalo lens detection scheme. The dashed line shows the trajectory
of an image induced over 6 years by a subhalo lens with the same properties
as in Figure 4 and γ = 1.8. The image motion during the calibration period
and the detection run are labeled. The dotted line shows the direction of the
proper motion fitted during the calibration period, and the difference between
the measured trajectory and the proper motion prediction is shown by the solid
curve. For clarity, the intrinsic proper motion and parallax of the source are not
shown.

(A color version of this figure is available in the online journal.)

the left to the right of star, the star’s image will jump from right
to left; since the image moves very slowly in the years before
and after the crossing of the subhalo, this shift in the image’s
position offers the best hope for detection.

3. OBSERVING STRATEGY

The image motions shown in Figure 4 suggest a simple
detection strategy for subhalo lensing, illustrated in Figure 5.
A typical high-precision astrometric search program operates
for up to 10 years. We start with an initial few-year calibration
period, during which we assume that the star is relatively far
from the lens. During this calibration period we (1) measure the
star’s intrinsic proper motion, parallax, and starting position and
(2) search for binary stars or other false positives. Stars that show
significant acceleration during the calibration period probably
have binary companions, and we reject them from the rest of
the search. We follow the calibration period with a several-year
detection run, when we essentially wait for a subhalo lens to
come close to one of our target stars and induce significant
lensing.

The timescale of the calibration period is important, as it
needs to be long enough both to detect binary systems and
to obtain a robust parallax and proper motion measurement.
Increasing the calibration period length improves the predicted-
position accuracy, but it also takes time away from the detection
run, reducing the probability of observing a lensing event. The
calibration period must be at least one year long to obtain a
secure parallax, and we suggest two years as a sensible length
to ensure an accurate parallax and proper motion measurement.
The length of the detection run is then set by the duration
of the high-precision astrometric campaign. In this analysis,
we assume a four-year detection run, implying a total of six
years of observations, which is close to the expected mission
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lengths of Gaia and SIM and a reasonable length for long-term
ground-based surveys. We leave a full discussion of the optimal
observing strategy to future work, as the details of the observing
scenario will depend on both the particular astrometric technique
and the time available for the observations.

For the purposes of this paper, we adopt a simple measurement
of the astrometric signal from a lensing event:

S =
√√√√Nepochs∑

i=1

(Xmi − Xpi)2 + (Ymi − Ypi)2, (29)

where Xmi and Ymi give the 2D measured position of the star
at each epoch, and Xpi and Ypi give the 2D position of the star
predicted from the proper motion, parallax, and position deter-
mined during the calibration period. This calculation (following
Gaudi & Bloom 2005) essentially measures the total displace-
ment of the star from its expected position over the course of the
measurements. The signal-to-noise ratio (S/N) is simply S di-
vided by the astrometric uncertainty per 1D datapoint (σ ); σ in-
cludes contributions from the instrument’s intrinsic uncertainty
per datapoint as well as uncertainty in the star’s proper motion,
parallax, and position. The uncertainty in the star’s predicted
position grows in time due to the proper motion uncertainty,
and the parallax uncertainty’s effect on the 2D measurements
varies in direction and magnitude across the sky.

This calculation gives a conservative estimate of the S/N
of a possible lensing detection. The displacements induced by
lensing are all in approximately the same direction, however,
and the effective S/N would likely be improved by fitting a
model to the data that accounts for these correlations. We leave
such enhancements for future work.

3.1. False Positive Removal

In addition to simply detecting a subhalo lensing signal,
we must also distinguish it from other astrometric signals.
Subhalo lensing signals take place over months, do not repeat,
occur without a visible lensing source, and have a near-unique
trajectory. The relatively short event timescales ensure that our
measurements are only sensitive to matter structures on the
spatial scales we consider here. The events’ other properties can
be used to remove false positives, such as those generated by
stellar microlensing and motion in binary systems.

Astrometric microlensing by a passing point-like lens moves
the image centroid along an elliptical path that becomes more
circular as the impact parameter increases (Walker 1995;
Paczynski 1995, 1998; Miralda-Escude 1996; Gould 2000). The
image path can become more complicated if the lens has a small
finite extent and is opaque (Takahashi 2003; Lee et al. 2010). In
all cases, however, the image completes its orbit on observable
timescales, quickly approaching its true position as the compact
object moves further away. We saw in the previous section that
subhalos produce a radically different lensing signature; after
the passage of the subhalo center, the image moves very slowly
and does not approach its true position until the edge of the sub-
halo passes by the star many decades later. Lensing by subhalos
is therefore readily distinguishable from lensing by compact
objects.

The astrometric signal of a stellar binary is easily distin-
guished from subhalo lensing signals in most cases simply be-
cause the binary system produces a repeating signal. Almost
all long-period systems that do not produce repeating signals
in our data set will be removed by our requirement that the

star does not accelerate during the calibration period. Further-
more, roughly circular binary systems induce a very different
astrometric signal from subhalo lenses.

Rare highly eccentric systems with periods much longer than
our observation length (or even very close unbound stellar
encounters) can produce a short-timescale astrometric signal
during periastron, with little signal throughout much of rest
of the orbit. The trajectory is similar to a lensing signature
(with an additional very large radial velocity signal). However,
simple simulations of such systems show that no Keplerian orbit
(of any eccentricity <0.999) that produces a lensing-like signal
can avoid producing detectable acceleration both during the
calibration period and after the putative lensing event.

3.2. Final Subhalo Lens Confirmation

The ultimate test of a candidate subhalo is a prediction of
lensing. We will show in the next section that detectable dark
matter subhalos are probably within 100 pc of our location;
while it is possible to detect a more distant subhalo, the
subhalo would have to be massive (Mvir � 106 M�), and we
expect such objects to rarely pass between us and a target star.
Detectable dark matter subhalos are therefore likely to have
proper motions greater than half an arcsecond per year, and they
will astrometrically affect all stars within several arcseconds of
the subhalo center. If a halo is detected, its path can be predicted
(albeit initially at low precision), and a catalog prepared of stars
that are likely to be affected by lensing over the next few years.
Intensive astrometric monitoring of faint stars in the field could
then provide a fairly rapid confirmation of the existence of the
subhalo lens.

4. CROSS SECTIONS FOR ASTROMETRIC LENSING
BY SUBHALOS

4.1. Signal Calculations

As described in Section 3, we calculate the lensing signal by
taking the square root of the sum of the squared differences be-
tween the star’s position on the sky and the position predicted by
the proper motion and parallax measured during the calibration
period (Equation (29)). At each epoch, the difference between
the measured image position and the predicted position is pro-
portional to the deflection angle �α. This linearity implies that
we may use any vector �η that is proportional to �α to calculate
the signal; we just have to multiply the resulting signal by α/η
to obtain the physical signal that would be measured during
a lensing event. We use this technique to separate the signal’s
dependence on the geometry of the lensing scenario from its
dependence on the properties of the lens. As we describe in
detail below, we can then calculate the geometrical signal once
and then use that result to determine the signal for any lens.

Following our convention, we work in a coordinate system
where the subhalo’s transverse velocity �vT lies along the x-axis.
In this case, βy is the fixed impact parameter and βx,0 specifies
the initial position of the lens. It is useful to define

ϕ ≡ dLβx,0

vTtobs
and β̃ ≡ dLβy

vTtobs
, (30)

where βx,0 and βy are in radians, and tobs is the length of the
observation (not including the calibration period). If we define
Δβ to be the angular distance, in radians, traversed by the lens
during the observational period, we can easily interpret ϕ and
β̃. The normalized impact parameter β̃ = βy/Δβ, while the
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phase ϕ = βx,0/Δβ specifies the location of the point of closest
approach to the star along the subhalo’s path. Since we are only
interested in cases where the subhalo center passes by the star
during the observational period, we constrain 0 < ϕ < 1. With
these definitions Equation (21) may be rewritten as

�α = θα

(
vTtobs

r0

)2−γ

�η (ϕ, β̃, t/tobs, γ ), (31)

which allows us to separate the geometry of the lens-star system
(i.e., ϕ and β̃) from all of the lens characteristics apart from γ .
From Equation (21), we see that

�η = β̂

(
ξ

vTtobs

)2−γ

(32)

=
⎡
⎣
√(

ϕ − t

tobs

)2

+ β̃2

⎤
⎦

1−γ [(
ϕ − t

tobs

)
x̂ + β̃ ŷ

]
.

(33)

We use �η to calculate the signal of a lensing event. This is
advantageous because the resulting signal is independent of
θα, dL, and vT; we call this signal Sg (for “geometrical signal”)
because it depends only on ϕ, β̃, and γ . The calculation of
Sg takes into account the subtraction of the proper motion and
parallax measured during the calibration period, including any
apparent motion generated by lensing, as shown in Figure 5.
Figure 6 shows Sg(ϕ, β̃) for γ = 1.5 and γ = 1.8. We see that
Sg decreases with increasing impact parameter β̃ and increases
with increasing γ , which is not surprising given the image paths
shown in Figure 4. We also see a preference for geometries in
which the subhalo passes by the star earlier in the observational
period; the signal is enhanced because there are more epochs
after the shift in the star’s position when the subhalo center
passes the star.

To relate the physical signal S to the geometrical signal Sg we
use

S = θα

(
vTtobs

r0

)2−γ

Sg. (34)

This relation completes the procedure for determining if a star is
detectably lensed by a given subhalo. Given a specific lens and a
minimal detectable value for the signal Smin, Equation (34) may
be inverted to obtain the corresponding minimal value for Sg.
We then determine the area Ag of the region in the ϕ − β̃ plane
(with 0 < ϕ < 1 and β̃ > 0) that produces a geometrical signal
that exceeds this minimal value for Sg. Finally, we convert Ag to
a physical area on the sky that gives S > Smin and we call this
area the cross-section A(Smin); in square radians we have

A(Smin) = 2

(
vTtobs

dL

)2

Ag(Sg). (35)

The factor of two accounts for the fact that the stars both above
(β̃ > 0) and below (β̃ < 0) the lens are equally deflected, and
the two factors of (vTtobs/dL) follow from the definitions of ϕ

and β̃ (see Equation (30)).
The geometrical area functions Ag(Sg) are shown in the

bottom panel of Figure 6 for several value of γ . As indicated
by the Sg(ϕ, β̃) surfaces shown in the top panel of Figure 6,
the area Ag that produces a geometrical signal larger than a
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Figure 6. Top: the signal Sg as a function of phase (ϕ) and impact parameter
β̃ ≡ βy/Δβ for a two-year calibration period and a four-year detection run.
Note the decrease in signal toward larger phases, where the image only partially
traverses its lensing path during the observational period. The decrease in Sg
at the smallest phases and impact parameters correspond to lenses that start
to produce large image motion during the calibration period, which is then
partially subtracted out by the proper motion removal during the detection run.
At larger values of β̃ the apparent motions are still relatively large (see Figure 3
for instance), but these motions are difficult to distinguish from the star’s proper
motion, leading to the decrease in Sg. Bottom: the area Ag in the ϕ–β̃ plane that
produces a geometrical signal that is larger than a given value for Sg for a variety
of γ values. Note that the normalized area goes to zero at a value of Sg that is
dependent on γ . For Sg values much smaller than this cutoff, Ag is proportional
to (Sg)p , where the index p depends on γ .

(A color version of this figure is available in the online journal.)

specific Sg value depends strongly on γ and decreases rapidly
with increasing Sg. The left panel also shows that Sg does not go
to infinity as the impact parameter β̃ goes to zero. Consequently,
there is a maximal value of Sg that is obtainable for each value
of γ . At this value of Sg, the area Ag goes to zero, as shown in
the bottom panel of Figure 6. This maximal obtainable value of
Sg implies that there is a minimum subhalo mass that is capable
of generating a detectable signal, as we will see in the next
subsection. For values of Sg that are smaller than half of the
maximal possible Sg value, Ag ∝ (Sg)p, as shown in the bottom
panel of Figure 6. For the four γ values we tested, we found that
p = −1/γ . This simple power-law behavior will be shared by
the physical lensing cross sections.

4.2. Properties of the Lensing Cross Sections

The basic shape of the lensing cross sections can be deduced
from the top panel of Figure 6. This figure shows that Sg does
not depend strongly on the phase ϕ when Sg is smaller than the
maximum obtainable geometrical signal. For Smin values that
correspond to these values of Sg , the lensing cross sections are
rectangular. The width of the rectangle is given by the change in
the lens position during the observational period (Δβ) because
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Figure 7. Area around a subhalo that will produce an astrometric signal greater than Smin as a function of subhalo mass, with dL = 50 pc, dS = 5 kpc, and
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because the subhalo must have Mvir > 108 M� to generate a signal of at least 5 μas if γ = 1.2.

(A color version of this figure is available in the online journal.)

we only consider lensing scenarios with 0 < ϕ < 1. The length
of the rectangle is two times the maximum impact parameter
that a star may have and still be detectably lensed. The impact
parameters that lie within the lensing cross section are therefore
bounded by |βy | � A(Smin)/(2Δβ). For a lens at a distance of
50 pc with vT = 200 km s−1, Equation (2) tells us that Δβ � 3
arcsec for a four-year observational period, so the maximum
impact parameter that produces a lensing signal S > Smin is
βy � A(Smin)/(6 arcsec).

Figure 7 shows how the lensing cross section depends on the
mass of the subhalo for three values of Smin: 5 μas, 20 μas, and
50 μas. We characterize the mass of the subhalo in two ways,
as discussed in Section 2.3. In the top row, we show the cross
section as a function of the mass enclosed in the inner 0.1 pc of
the subhalo (M0.1 pc). Recall that truncating the subhalo density
profile at a radius of 0.1 pc does not significantly alter the lensing
signal, which implies that M0.1 pc directly determines the lens-
ing signature. In the bottom row, we show how the lensing cross
section depends subhalo’s virial mass. We assume that 99.9%
of the subhalo’s virial mass has been lost due to tidal stripping
and take 0.001Mvir as the present-day mass of the subhalo.

From Figure 7, we can see how the inner slope of the density
profile determines the strength of the lens signature; in all cases,
the lensing cross section decreases sharply with decreasing γ .
The dependence on γ is stronger when the virial mass is used to
define the mass of subhalo because a shallower density profile
requires a larger virial mass to get the same mass within a given
radius. The bottom row of Figure 7 indicates that subhalos
with γ < 1.5 are not capable of generating easily detectible
astrometric lensing signatures, and subhalos with γ = 1.5 are
only detectible if a star passes within a couple of arcseconds

of the subhalo center. The situation is far more promising for
subhalos with γ � 1.8; in this case, an intermediate-mass
subhalo could produce a signal of up to 50 μas if a star
passes within 10 arcsec of the subhalo center. Moreover, we
see that small subhalos (Mt � 1000 M�) are so concentrated
that decreasing the inner slope of the density profile from γ = 2
to γ = 1.8 does not significantly change the astrometric lensing
signal. Finally, the top row of Figure 7 shows that if the inner
regions of the subhalos are denser than predicted by their virial
masses, subhalos with shallower density profiles are capable of
producing detectible signals.

For Smin values that correspond to geometrical signals well
below the maximal possible value for Sg (the value of Sg at
which Ag = 0), the cross section has a simple dependence
on Smin: A is proportional to (Smin)p, with p = −1/γ for
the four values of γ we consider. This simple power law is
directly inherited from the geometrical area functions Ag(Sg)
discussed in the previous section and shown in the bottom panel
of Figure 6. Consequently, the power index p is independent
of dL, dS, vT, and subhalo mass, and it is even independent of
whether M0.1 pc or Mvir is used to characterize the subhalo mass.
As Smin increases toward the maximal possible value, the cross
section decreases faster than (Smin)p and rapidly goes to zero
when the maximal possible value for Smin is reached.

4.3. Lensing Event Rates

The lensing cross sections computed in the previous sections
may be combined with a subhalo number density to yield a
probability that any given star on the sky will be detectably
lensed during the observational period. In this section, we
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Figure 8. Probability that a star is detectably lensed, with signal S > Smin, if all subhalos have the same mass M within the inner 0.1 pc. The local number density of
the subhalos is fρdm/M , where ρdm is the local dark matter density and f is the fraction of the dark matter contained within 0.1 pc of a subhalo center. The lensing
probability is proportional to f, and f = 1 is shown here to illustrate the maximal possible lensing probability.

(A color version of this figure is available in the online journal.)

will compute these probabilities using three candidate subhalo
number densities. The first two calculations will assume that all
the subhalos have the same mass; we will assume that a fraction f
of the local dark matter halo is composed of subhalos with mass
M and radii of R = 0.1 pc, and then we will assume that the local
dark matter halo was once in subhalos with virial mass Mvir. We
take the local dark matter density ρdm to be 0.4 GeV cm−3,
which implies that there is 3.5 × 108 M� of dark matter within
2 kpc. Finally, we will use a subhalo mass function derived from
the Aquarius simulations (Springel et al. 2008). Throughout this
section, we will use vT = 200 km s−1 and tobs = 4 years.

We compute the lensing probabilities by summing the indi-
vidual cross sections for all subhalos with dL < dS for some
fixed value of dS. We choose dS to be small enough that we
may neglect the spatial variation in the subhalo number density
within this sphere, and we assume that the subhalos are isotrop-
ically distributed. From Equation (35), we see that the lensing
cross section for an individual halo is A ∝ d−2

L Ag , and Ag de-
pends on dL only through the (1−dL/dS) factor in θα . It follows
that the total cross section is

Atot = 8π (vTtobs)
2 dS nsub(M)

×
∫ 1

0
Ag

[
Smin

θα(x = dL/dS)

(
r0

vTtobs

)2−γ
]

dx, (36)

where nsub(M) is the number density of subhalos with mass M.
Although dS will typically vary from less than 1 kpc to 5 kpc
for stars in a high-precision astrometric survey, we simplify the
calculation by assuming that all the monitored stars are 2 kpc
from us. Since Atot increases linearly with dS, taking dS = 2 kpc
effectively averages over stars that are uniformly distributed
over 1 kpc < dS < 3 kpc.

We will see that the resulting total cross section Atot is
much smaller than the total area of the sky Asky. It is therefore
highly unlikely that the cross section for lensing by one subhalo
will overlap with the cross section associated with a different
subhalo, and we may consider Atot to be the total area on the
sky in which a star would be detectably lensed. Furthermore,
since the individual subhalo lensing cross sections are less than
0.1 arcmin2 (see Figure 7), the probability of having multiple
stars within the cross section of a particular subhalo is low
enough that we may consider each star to be an independent
sample of the sky. In this case, we may interpret the fraction
Atot/Asky as the probability that any single star is detectably

lensed by a subhalo. A subhalo in the Galactic plane is more
likely to be detected than a subhalo near the Galactic pole due
to the higher density of target stars in the plane, but, since
the subhalos are isotropically distributed and can only lens
one star apiece, the average lensing probability (Atot/Asky) is
individually applicable to each star in the sky.

4.3.1. Event Rates: Mono-mass Subhalos

We first consider cases where all the subhalos have the same
mass M0.1 pc within a radius of 0.1 pc. The local subhalo number
density is then nsub = fρdm/M0.1 pc, where f is the fraction of the
dark matter that is contained in the inner 0.1 pc of the subhalos;
f < 1 could mean that there is a smooth component of the local
dark matter distribution or it could mean that the subhalos’ radii
are larger than 0.1 pc and their actual masses are M0.1 pc/f . In
Figure 8, we show the lensing probability with f = 1 for three
values of Smin: 5 μas, 20 μas, and 50 μas. We see that the lensing
probability is highest for each value of γ if the subhalo mass is
just slightly larger than the minimum mass required to generate a
sufficiently large signal. Although more massive subhalos have
larger cross sections, as shown in Figure 7, the dependence of A
on M0.1 pc is not steep enough to compensate for the diminishing
number density of subhalos as M0.1 pc increases.

If we instead assume that all of the local dark matter was
originally in subhalos with virial mass Mvir and that the central
regions of these subhalos survive to the present day, then
the subhalo number density is nsub = ρdm/Mvir. As in the
previous case, the (1/Mvir) factor in nsub implies that the lensing
probability will peak near smallest value of Mvir that is capable
of generating a signal. For Smin = 5μas, the lensing probability
peaks at Mvir � 104 M� for γ = 2 and γ = 1.8, and
Mvir � 106.5 M� for γ = 1.5, as predicted by Figure 7. Since the
cross section for these smaller subhalos does not change much
between γ = 1.8 and γ = 2.0, the lensing probabilities for
these two cases are very similar and they peak at probabilities
of 5 × 10−10 and 7 × 10−10, respectively. The γ = 1.5 case
peaks a far lower probability of 1×10−12. It is not surprising that
these numbers are about four orders of magnitude lower the peak
probabilities in Figure 8; from Figure 7, we see that A(M0.1 pc) ∼
A(Mvir) for M0.1 pc ∼ 10−4Mvir and γ = 2, so by setting nsub =
ρdm/Mvir, we are effectively setting f ∼ 10−4 in Figure 8.

When we assume that all the subhalos have the same mass,
then Atot has the same simple dependence on Smin as A; for
Sg values that are small compared to the maximum accessible
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value, Atot is proportional to (Smin)p, with p = −1/γ as in
Section 4.2. If we instead consider a subhalo mass function and
integrate over subhalo masses, the dependence of Atot on Smin
changes because there is no longer a single value of Smin that
corresponds to the value of Sg at which Ag = 0.

4.3.2. Event Rates: Subhalo Mass Function

To evaluate the lensing probability with a range of subhalo
masses, we will use the local subhalo mass function derived
in Appendix B.1 from the results of the Aquarius simulations
(Springel et al. 2008):

dnsub

dMvir
= 2 × 10−5

(
Mvir

M�

)−1.9

. (37)

As described in Appendix B.1, this subhalo mass function is
applicable within a few kpc of the Sun, and we have assumed
that the subhalos in this region lose 99% of their virial mass due
to tidal stripping by the smooth component of the dark matter
halo and other subhalos (stars are not included). We evaluate
Atot by replacing nsub in Equation (36) with dnsub/dMvir and
integrating over Mvir from Mmin to Mmax. For each value of
γ and Smin, there is a minimal value of Mvir needed to make
Ag nonzero; this minimal virial mass is always larger than
10 M�, so we set Mmin = 10 M�. We choose Mmax such that the
expectation value for the number of subhalos with Mvir � Mmax
within 2 kpc is greater than 1; from Equation (37), we have
Mmax = 3 × 106 M�. Extending the integral to larger values of
Mvir changes the meaning of Atot; it is no longer a sum of cross
sections for the subhalos expected to be within 2 kpc. Instead,
Atot would also include the cross sections for subhalos that we
do not expect to find within 2 kpc, multiplied by the probability
that such a halo is in this volume.

The value of Mmax determines the shape of the Atot(Smin)
function because it determines the value of Smin at which Atot
goes to zero. If Sg(Smin,Mmax) is greater than the maximum
reachable value for Sg, then no subhalo with Mvir < Mmax can
generate a signal and Atot = 0. For γ = 1.2, 1.5, 1.8, and 2.0,
this maximum value for Smin is 0.46, 10, 250, and 750 μas,
respectively. If Smin is much less than these upper limits, then
Atot(Smin) is roughly a power law and the lensing probability is
approximately

Atot

Asky

∣∣∣∣
γ=1.8

= 8.7 × 10−12

(
Smin

5 μas

)−1.74

for Smin < 80 μas,

(38)

Atot

Asky

∣∣∣∣
γ=2.0

= 1.3 × 10−11

(
Smin

5 μas

)−1.44

for Smin < 200 μas.

(39)

For larger values of Smin, Atot(Smin) decreases faster than these
expressions and quickly goes to zero at the values listed above.
If γ = 1.5, then Atot/Asky = 1.4 × 10−12 for Smin = 1 μas, and
there is no power-law behavior between Smin = 1 μas and the
zero point at Smin = 10 μas.

Including the probabilities that larger subhalos are present
within 2 kpc of our location does not significantly affect the
total lensing cross section. If we set Mmax = 1010 M�, then
the dependence of Atot on Smin is slightly shallower than the
power laws given in Equations (38) and (39), but the differences
are not large. For Smin � 20 μas, including subhalos with

3×106 M� < Mvir < 1010 M� increases the lensing probability
by less than 20%. At the largest Smin values described by
Equations (38) and (39), extending the integral to these larger
subhalo masses increases Atot by a factor of three. The inclusion
of larger subhalos has a more pronounced impact on the value of
Atot for Smin � 0.46, 10, 250, and 750 μas for γ = 1.2, 1.5, 1.8,
and 2.0, respectively. The larger value of Mmax implies that the
total cross section does not go to zero at these values of Smin as
it did when we set Mmax = 3×106 M�. This is not an important
change, however, because the lensing probability is less than
10−13 for these large values of Smin. Moreover, even if it were
possible to monitor far more than 1013 target stars, lensing events
would only be observed if a subhalo with Mvir > 3 × 106 M�
lies between us and the target stars.

5. DETECTION PROSPECTS

As discussed in the introduction, it is only recently that
astrometric capabilities have advanced to levels where the
detection of subhalo lenses becomes possible. In this section,
we use the results derived above to evaluate current and
future astrometric subhalo search techniques. We consider two
scenarios: (1) a large-area search for subhalo lenses and (2)
a confirmation of a subhalo suspected on the basis of other
detection methods.

5.1. Achievable Smin

We start by evaluating the achievable Smin for an astrometric
survey. For a particular astrometric observing strategy, both
the number of epochs and the astrometric precision affect
Smin. For the purposes of this discussion we calculate the best
Smin for each technique using the six-year observation setup
described in Section 3. We include the single epoch instrumental
uncertainty, as well as a detailed Monte Carlo simulation of the
extra per-epoch uncertainties introduced by the measurement
and subtraction of the target star’s calibration-period position,
proper motion, and parallax. We marginalize over a wide range
of possible parallaxes and proper motions, as well as the full
range of possible sky positions.

For a particular observational setup, the simulations produce a
scaling factor between the instrumental astrometric uncertainty
per epoch (σinst) and the final total uncertainty per datapoint (σ )
used to calculate S/N. For the observational setup described
in Section 3, σ = 1.47σinst. For a typical S/N = 3 detection,
an instrument’s Smin is then 4.4σinst. We note that the summed
nature of Smin means that astrometric displacements smaller than
σinst are indeed detectable in this scheme.

5.2. Large-area Surveys

A practical all-sky search for subhalo lenses requires enough
stars that the lensing probabilities described above lead to a
significant probability of detection. For example, following the
left panel of Figure 8, if all subhalo lenses are SISs and have an
M0.1 pc of 2 M�, and our survey is capable of detecting Smin =
5 μas, we need to survey ∼5f −1 × 105 stars to have a good
chance of detecting a subhalo lens, where f is the fraction of
local dark matter that is contained within 0.1 pc of a subhalo
center. Alternately, at an Smin of 50 μas we need to survey
∼3f −1 × 106 stars.

Ground-based all-sky surveys are currently limited to mil-
liarcsecond precisions at best (e.g., Ivezić et al. 2008), so we do
not consider them further here. The Gaia mission will have an
astrometric uncertainty of σinst � 35 μas per epoch at mV � 12
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for its best targets, with an average of 83 epochs per target.5 From
a search of the USNO-B1 catalog, we find that ∼5×106 stars are
covered at this precision (Monet et al. 2003). For these targets,
Gaia’s Smin is ∼260 μas because coverage of 106 stars requires
S/N ∼ 5 to avoid false positives; this precision is too low to
detect intermediate-mass subhalos. Orders of magnitude more
stars are covered by Gaia at lower precision, but an extremely
large (and very unlikely) subhalo mass would be required to
produce detectable lensing at those precisions. Although there
remains a small probability that Gaia could see a lens, we con-
clude that Gaia’s astrometric precision is probably insufficient
for a useful all-sky subhalo search. That said, it is prudent to at
least attempt a subhalo lens search using the Gaia data set, as
the data will be available and can be readily searched for such
signals.

For the N-body simulation-based lensing probabilities dis-
cussed in Section 4.3.2, where typical lensing probabilities are
∼10−11 at Smin = 5 μas, much improved instrumentation ca-
pabilities would be required for detection. The only currently
planned instrument capable of reaching Smin = 5 μas routinely
is SIM, but SIM will at most cover tens of thousands of tar-
gets during its lifetime (Unwin et al. 2008). If the subhalo mass
functions derived from simulations are correct, a SIM-precision
all-sky search would have to cover 1011 targets to have a good
chance of making a detection. This capability will most certainly
not be available in the near future. However, it is worth stating
that a SIM-precision mission covering 108 targets (a possible ca-
pability for a next-generation all-sky astrometric survey), would
place unique constraints on the subhalo mass function. In par-
ticular, such a survey could usefully evaluate if the simulations
underpredict the subhalo mass function or if the subhalos are
more dense than expected (the scenario in Figure 8).

Similar conclusions can be drawn for blind searches of subar-
eas of the sky: current and planned astrometric capabilities are
insufficient for a large-area survey for subhalo lenses. However,
if a local subhalo is suspected on the basis of other detection
methods, targeted surveys are capable of either detecting the
lens directly or stringently constraining its properties.

5.3. Targeted Observations

If we have some idea of where a lens might be, searching for
that lens becomes much easier. For example, it has been sug-
gested that the Fermi Large Area Telescope (Atwood et al. 2009)
could detect subhalos in gamma-ray emission (e.g., Siegal-
Gaskins 2008; Ando 2009; Buckley & Hooper 2010). Fermi’s
first point-source catalog (Abdo et al. 2010) contains a large
number of unidentified sources that could be subhalos capa-
ble of producing detectable lensing signals (Buckley & Hooper
2010). Sources in the Fermi point-source catalog are localized
to 6 arcmin (median; 95% confidence) or even 1.5 arcmin (best
50 sources; 95% confidence). The lensing search therefore re-
quires coverage of only 0.01 deg2 or less. Furthermore, since
Fermi has many plausible sources, we can pick the targets with
the best likelihood of detection, such as sources close to the
Galactic plane with many astrometric target stars. The aim here
is to place the best possible limits on the lens properties (with
the possibility of an actual detection), and even current tech-
niques (reaching Smin � 50 μas) could place useful limits on
the lens properties. If astrometric lensing is detected around a
gamma-ray source, then the magnitude of the deflection pro-

5 http://www.rssd.esa.int/index.php?project=GAIA&page=Science_
Performance

vides a measurement of the subhalo’s central density, the shape
of the image’s path provides information about the inner density
profile, and the rate of change in the image’s position provides
information about vT/dL. If no lensing is detected, constraints
could be placed on a combination of the object’s distance, mass,
and density profile.

Since it is unlikely that we will know the exact position of
a suspected subhalo, moderately wide-field astrometric tech-
niques are favored for this type of search. From space, the Hub-
ble Space Telescope (HST) has demonstrated ∼1 mas precision
crowded-field astrometry in the cores of globular clusters us-
ing the Advanced Camera for Surveys (ACS) instrument (e.g.,
Anderson & van der Marel 2010). However, much better pre-
cision has been demonstrated on arcminute scales from the
ground.

AO-equipped 5–10 m telescopes routinely achieve 100 μas
precision astrometry (Cameron et al. 2009; Lu et al. 2009).
These techniques minimize systematics by observing in narrow
NIR bands, at consistent air masses, and with careful attention
to other sources of systematic error. Such surveys require only a
field with several stars within an arcminute field of view (such as
is common in the Galactic plane) and a few minutes of observing
time per field. Using these techniques, relatively small 2 m class
telescopes equipped with low-cost adaptive optics systems can
reach 50–100 μas precision in tens of minutes and can perform
large, intensive astrometric surveys (Britton et al. 2008; Baranec
et al. 2009; Law et al. 2009). The precision can be further
improved; in the absence of systematics, a 10 m class telescope is
predicted to reach 10 μas in similar integration times (although
currently systematics limit precisions to the ∼100 μas level,
development is continuing). On the same basis, a 30 m class
telescope could reach few-μas precision in a few minutes over a
small field (Cameron et al. 2009), although the systematic errors
are again likely to dominate such observations until technique
improvements are made.

Current ground-based techniques with precisions of 50–
100 μas can detect Smin down to ∼200 μas with S/N = 3. This
precision may be enough to detect nearby large subhalos (Mvir �
5 × 107 M� or M0.1 pc � 400 M� for γ � 1.8) in the Galactic
plane with current instruments. If the astrometric accuracy is
improved, current 10 m class telescopes could potentially reach
Smin < 50 μas in 10 minute observations. In crowded regions,
such a system performing a long-term astrometric survey could
detect subhalos down to stripped masses (mbd = 0.001) of
∼1000 M� at ∼50 pc distances, while 30 m class telescopes
could detect subhalos at least an order of magnitude smaller.

SIM offers another possible route for subhalo lens confirma-
tion. The instrument can reach a best precision of 1 μas (and
so a detectable Smin of ∼5 μas). Crowding limits require that
SIM’s target stars are separated by at least ∼5 arcsec from each
other, and so the lensing area must subtend at least ∼25 arcsec2.
With these capabilities, SIM would be capable of confirming a
lens 50 pc away down to a stripped virial mass of ∼100 M�
(for γ =2.0 or 1.8) or equivalently M0.1 pc of 10 M� (Fig-
ure 7). Because SIM is a pointed mission, it can target faint (mV
= 20) stars at the cost of observing time, making it relatively
easy to obtain a sufficient sample of stars near to a putative
subhalo position. Although it may not be possible to obtain 1
μas precision observations of all stars near to a suspected lens
because of observation time constraints, we estimate that Smin
of 4–18 μas would be obtainable in modest amounts (weeks)
of SIM observation time. SIM observations could thus confirm
suspected subhalos near the Galactic plane down to stripped
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subhalo masses (mbd = 0.001) of hundreds of solar masses or
M0.1 pc of tens of solar masses.

6. SUMMARY AND CONCLUSIONS

When a dark matter subhalo moves relative to a more distant
star, the star’s apparent position changes due to gravitational
lensing. By studying the image motion generated by subhalos
with isothermal and NFW density profiles, we have determined
that the change in the image’s position is detectable only if
the subhalo’s center passes by the star with a small impact
parameter (�0.01 pc in the lens plane). Therefore, only the
inner 0.1 pc of a subhalo is relevant for astrometric lensing,
and we adopt a general power-law density profile in this region.
We used the findings of the Aquarius simulation (Springel et al.
2008) to derive a relationship between the concentration of local
subhalos and their virial masses, which allows us to convert
between a subhalo’s virial mass and the mass enclosed within
0.1 pc of the subhalo center. We found that the image paths
due to lensing by a subhalo with ρ ∝ r−γ depend strongly
on γ , with cuspier profiles producing much larger deflections
than shallower profiles. For γ � 1.5, an intermediate-mass
subhalo (Mvir � 105 M�) within a kpc of the Sun can produce
astrometric deflections that are detectable by current and near-
future instruments.

We have designed an observing strategy that can be used to
detect subhalo lensing in data from typical astrometric surveys
(such as Gaia, SIM, or ground-based methods). The setup makes
use of the typical subhalo lensing signature: the image starts out
essentially fixed in position, and as the subhalo center passes by,
the star rapidly moves to a new position. The star’s image then
remains nearly stationary for the next several years. Under our
observing scheme, a star’s position, proper motion, and parallax
are measured during an initial calibration period, and then the
star is monitored over the next several years. We define the
lensing signal as the difference between the lensed trajectory
and the path predicted by the measured proper motion and
parallax. This strategy is immune to the most important false-
positive possibilities: eccentric binary stars and point-source
microlensing.

The magnitude of the resulting astrometric signal depends
on the impact parameter between the subhalo and the star. For
a given minimal signal required for detection, a given subhalo
will detectably lens all stars within a certain area on the sky.
We computed this cross section for lensing as a function of both
the subhalo virial mass and the mass enclosed within 0.1 pc for
several values of γ . Combining these cross sections with a local
subhalo number density allows us to calculate the probability
that a given star’s image will be detectably deflected by a subhalo
within a given observation time. To evaluate the subhalo lensing
probability predicted by N-body simulations, we derive a mass
function for local subhalos based on the findings of the Aquarius
simulation (Springel et al. 2008).

Finally, we use these cross sections and event rates to evaluate
the detectability of subhalo lensing signatures. We consider
two scenarios: (1) a large-area survey for subhalo lenses and
(2) a confirmation of a subhalo suspected on the basis of
other detection methods. We find that Gaia all-sky astrometric
measurements are close to being able to constrain subhalos with
abnormally high central densities, as could arise if substructure
formed very early (Ricotti & Gould 2009; Berezinsky et al.
2010). A subhalo’s astrometric lensing signature would also
be enhanced if it contains a black hole (Bertone et al. 2005;
Ricotti & Gould 2009); the black hole would steepen the inner

density profile and would add a point mass to the subhalo center,
resulting in a distinctive astrometric lensing signature. Given
these possibilities, it is certainly prudent to attempt a subhalo
lensing search using Gaia, and we leave a thorough investigation
of these more exotic scenarios for future work. Unfortunately,
a full-sky survey with much higher astrometric precision than
Gaia is required to usefully constrain the dark matter subhalo
mass function currently predicted by N-body simulations.

A targeted search for astrometric lensing by subhalos is far
more promising; if a subhalo’s presence is suspected by other
means (for example, as a Fermi gamma-ray source) current and
near-future ground based astrometry surveys are capable of di-
rectly searching for the subhalo’s lensing signature, down to
stripped masses (0.001Mvir) of ∼1000 M� at ∼50 pc distances.
The SIM astrometric satellite could confirm suspected subhalos
near the Galactic plane even if the subhalo is 1–2 orders of mag-
nitude less massive or more distant. Fermi has already observed
gamma-ray sources of unknown origin, and the possibility that
these sources are dark matter subhalos has been investigated
(Buckley & Hooper 2010). If Fermi detects a gamma-ray source
that is consistent with a nearby intermediate-mass subhalo, then
high-precision astrometry could at a minimum constrain the
object’s distance, mass, and density profile, and it may even
provide definitive confirmation for the detection of dark matter
substructure.

We thank Niayesh Afshordi, Latham Boyle, Marc
Kamionkowski, Annika Peter, and Kris Sigurdson for useful
discussions and comments on the manuscript.

APPENDIX A

STRONG LENSING AND TRUNCATION EFFECTS

The lensing cross sections presented in Section 4.2 confirm
that we are firmly in the weak-lensing regime (α � β in
Figure 1). It follows from Equation (23) that the condition
α � β is equivalent to the condition θE � β. In our coordinate
system, with the lens moving along the x-axis, the minimal value
for β is the impact parameter βy ; we are in the weak-lensing
regime only if θE � βy . We should excise the area with θE � βy

from our cross sections because our solution to the lens equation
is not valid in this region. If Δβ is the angular distance traversed
by the lens during the observation period, then the area that
should be excised is Ax = Δβ × θE . This area is much smaller
than the total cross section for lensing, A = 2(Δβ)2Ag from
Equation (35), if Δβ 
 θE/(2Ag). For all the subhalos that we
consider (Mvir < 108 M�, γ � 2), θE/(2Ag) � 5 μas. With
this bound and vT > 5 km s−1, Δβ 
 θE/(2Ag) is satisfied if
dL � 1000 kpc. We therefore conclude that Ax is an insignificant
contribution to the lensing cross section and we need not
exclude it.

The cross section for lensing also tells us how far a star may be
from the center of the subhalo and still be detectably deflected.
As discussed in Section 2.3, we do not truncate the density
profile when calculating the surface density of the subhalo, and
this approximation is valid only if ξ is much smaller than the
truncation radius (Rt) of the subhalo. In Section 2.3 we stated
that this condition is safely satisfied if Rt � 0.1 pc, and we will
now verify that claim. We assume that we are only interested in
subhalos with virial masses less than 108 M� and signals greater
than 1 μas. These restrictions define a lower bound on detectable
values of the geometric signal; for γ = {2.0, 1.8, 1.5, 1.2}, we
have Sg > {0.0020, 0.0056, 0.098, 1.22}. At these small values,
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Sg is nearly independent of the phase ϕ, as illustrated in the top
panel of Figure 6. Since ϕ is confined to be between 0 and 1,
the maximal value of β̃ that keeps Sg above these lower bounds
is just the area Ag evaluated at the minimal value of Sg: for
γ = {2.0, 1.8, 1.5, 1.2}, we have β̃ < {37, 28, 10, 0.2}. From
the definition of β̃, we see that ξy = vTtobsβ̃, and so the maximal
distance (in the lens plane) between the star and the subhalo
center is ξmax = vTtobs

√
1 + β̃2

max. With tobs = 4 years and vT =
200 km s−1, we have ξmax = {0.03, 0.02, 0.008, 0.0008} pc
for γ = {2.0, 1.8, 1.5, 1.2}. If we take Rt � 0.1 pc, then
ignoring the truncation of the density profile overestimates
M2D(ξmax) by less than 20% for γ � 1.5 and less than 40%
for γ = 1.2. Moreover, these are very conservative estimates;
for Mvir � 108 M� or Smin 
 1 μas, the minimal values of Sg
will be much larger, leading to smaller values of ξmax and less
disparity between the truncated and infinite values of M2D(ξmax).

APPENDIX B

SUBHALO PROPERTIES

We are interested in intermediate-mass subhalos (10 M� �
Mt � 106 M�) that are located within a few kpc of the Sun.
Fortunately, numerical simulations have recently reached the
resolutions required to probe substructure within a few kpc of the
Sun (Springel et al. 2008; Diemand et al. 2008), with minimum
resolvable subhalo masses of ∼105 M�. In this Appendix, we
will use the Aquarius simulation results presented by Springel
et al. (2008) to derive a mass function and a concentration–mass
relation for these local subhalos.

The Aquarius simulation suite includes simulations of six
galaxy-size dark matter halos with ∼2 × 108 particles in each
halo and a higher resolution simulation of one of these six
halos (Aq-A) with 1.4 × 109 particles. In the Aq-A simulation,
each particle has a mass of 1712 M�, making it possible to
identify subhalos with masses greater than 105 M�. Springel
et al. (2008) defines the interior of the host halo as a sphere
with a mean density that is 50 times the critical density; the
radius of this sphere called r50 and the mass enclosed is M50.
The Aq-A halo has M50 = 2.5 × 1012 M� and r50 = 433.5 kpc.
The mass of a subhalo (Mt) is determined by the SUBFIND

algorithm (Springel et al. 2001), which counts the number of
gravitationally bound particles and then multiplies by the mass
per particle to obtain Mt. We will continue to use Mt ≡ mbdMvir
to parameterize the effects of tidal stripping on the subhalo’s
mass.

B.1. Subhalo Mass Function

The subhalo mass function measured in the Aq-A halo for all
subhalos with r < r50 is

dN

dMt

= a0

(
Mt

m0

)−1.9

, (B1)

with a0 = 8.21 × 107M−1
50 and m0 = 10−5M50. Springel et al.

(2008) also report that the subhalo number density has the same
spatial dependence for all subhalo masses 105 M� � Mt �
1010 M�:

n(M, r) = n0(M) exp

[
− 2

α

{(
r

0.46 r50

)α

− 1

}]
, (B2)

with α = 0.678. To determine the function dn0/dMt , we
integrate Equation (B2) over r < r50 and match the result to

Equation (B1). The resulting mass function is

dn

dMt

= a0

1.985 r3
50

(
Mt

m0

)−1.9

exp

[
− 2

α

{(
r

0.46 r50

)α

− 1

}]
.

(B3)
The Aq-A halo is larger than the Milky Way’s halo (e.g.,

Dehnen et al. 2006; Li & White 2008; Xue et al. 2008; Reid et al.
2009), so we must use appropriate values of r50 and M50 when
evaluating Equation (B3). We use the density profile presented
by Xue et al. (2008) to derive approximate values of r50 and M50
for the Milky Way: M50 � 9.5 × 1011 M� and r50 � 310 kpc.
With these parameters,

dn

dMt

= 2.5 × 10−8

pc3 M�

(
Mt

M�

)−1.9

× exp

[
− 2

α

{(
r

140 kpc

)α

− 1

}]
. (B4)

For r � 20 kpc, the subhalo number density is no longer strongly
dependent on r, and it changes by only 7% as you move 2 kpc
away from the solar radius (R0 � 8 kpc). We will neglect these
small variations so that we may treat the local subhalo number
density as isotropic. If we evaluate Equation (B4) at r = 8 kpc,
we find

dn

dMt

= 3 × 10−7

pc3 M�

(
Mt

M�

)−1.9

. (B5)

We now need to convert this mass function for subhalo mass
Mt to a mass function for virial mass Mvir. We will assume that
all subhalos within 2 kpc of the Sun lose the same fraction of
their mass due to tidal stripping. If Mt = mbdMvir, where mbd is
constant, then we have

dn

dMvir
= 3 × 10−7 m−0.9

bd

pc3 M�

(
Mvir

M�

)−1.9

. (B6)

There is great uncertainty surrounding the local value for mbd.
Diemand et al. (2007b) monitored subhalo mass evolution in
the Via Lactea simulation, and unsurprisingly found that the
fraction of mass lost due to tidal stripping increases closer to the
center of the host halo. They found that subhalos in the region
containing the inner sixth of the host halo mass lose roughly
80% of their mass between a redshift z ∼ 2 and the present
day. This sample contains subhalos that are far further from
the host’s center than the Sun, so we may consider mbd � 0.2
to be a rough upper bound. Meanwhile, van den Bosch et al.
(2005) developed a semi-analytical model for tidal stripping
and concluded that 0.001 � mbd � 0.1 for all subhalos in a
Milky Way sized host, with most subhalos losing 99% of their
original virial mass. Finally, Equation (B6) implies that the total
mass in a sphere with radius 2 kpc that was once part of a subhalo
with Mvir � 108 M� is 6m−0.9

bd ×105 M�. This mass must be less
than all the dark matter contained in this sphere (3.5×108 M�),
so mbd � 0.001 on average. We adopt a middle-of-the-road
value of mbd = 0.01 for local subhalos when evaluating the
lensing event rates in Section 4.3.2. This value for mbd does not
include stripping by stellar encounters; here Mt is the subhalo
mass measured in N-body simulations that do not include stars.

B.2. Subhalo Concentrations

Many methods for assigning concentrations to dark matter
halos have been proposed (e.g., Bullock et al. 2001; Neto
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et al. 2007; Duffy et al. 2008; Macciò et al. 2008), but these
models focus on isolated halos that are far more massive than
the subhalos we consider. Furthermore, numerical simulations
indicate that subhalos nearer to the center of the host halo
have higher concentrations than both isolated halos (Ghigna
et al. 1998; Bullock et al. 2001) and subhalos in the outskirts
of the host halo (Diemand et al. 2007b; Springel et al. 2008;
Diemand et al. 2008). In light of this distinction, we adopt
a c(Mvir) relation for local subhalos that is based on the
findings of the Aquarius simulation (Springel et al. 2008).
Since the virial radius of a subhalo is not easily measured, a
different concentration parameter is often used to characterize
the concentration of subhalos in simulations:

δV ≡ 2V 2
max

(H0rmax)2
, (B7)

where Vmax is the maximum circular velocity within the subhalo
and rmax is the distance from the subhalo center at which
the circular velocity is maximized. The Aquarius team found
that δV depends on subhalo mass Mt and distance from the
host halo center r; when they average over all subhalos with
Mt � 3 × 106 M�, they find

δV = 3.8 × 106

(
r

kpc

)−0.63

(B8)

and when they average over all subhalos, they find6

δV = 5.8 × 104

(
Mt

108 M�

)−0.18

, (B9)

with considerable scatter in both cases (Springel et al. 2008).
Inspired by these relations, we adopt a model

δV = Nδ

(
r

kpc

)−0.63 (
Mt

108 M�

)−0.18

, (B10)

and we use the position-dependent subhalo mass function
derived in the previous subsection to compare this model with
Equations (B8) and (B9). Matching Equation (B8) gives Nδ =
2.4 × 106 while matching Equation (B9) gives Nδ = 1.5 × 106.
Since increasing the subhalo concentration enhances the lensing
signal, we adopt the latter value to be conservative.

Given a full (pre-stripped) density profile for the subhalo, it
is possible to relate δV to c ≡ Rvir/r−2, where r−2 is the radius
at which d ln ρ/d ln r = −2 (e.g., Diemand et al. 2007b). For
the density profile given by Equation (25),

δV =
[
ρ̄vir(zv)

ρcrit,0

](
c

ymax

)3
B[ymax(γ − 2); 3 − γ, γ − 2]

B[c(γ − 2); 3 − γ, γ − 2]
,

(B11)
where zv is the redshift at which Rvir is evaluated, ρcrit,0 is the
present-day critical density, ymax ≡ rmax/r−2, and B[z; a, b] is
the incomplete Beta function. For 1 � γ < 2, ymax � 2.1, and
the function δV (c) is not strongly dependent on γ . Since we
are interested in subhalos with 104 M� < Mvir < 108 M� and
r � 8 kpc, we only need to consider the range 105 < δV < 107.
In this range, δV (c) is well-approximated by a simple power
law:

δV � 0.049

[
ρ̄vir(zv)

ρcrit,0

]
c2.67. (B12)

6 The exponent is reported incorrectly in the caption of Figure 28 of Springel
et al. (2008), but the curve shown in Figure 28 is correct.

We obtain a final expression for c(Mvir) by inverting
Equation (B12) and inserting Equation (B10). With Nδ =
1.5 × 106, we find

c = 94 m−0.067
bd

(
ρ̄vir(zv)

4.6 M⊕ pc−3

)−0.37 (
Mvir

106 M�

)−0.067

×
(

r

8 kpc

)−0.24

, (B13)

where we have defined mbd ≡ Mt/Mvir. Since c(Mvir) changes
little for 0.01 < mbd < 1, we will take mbd = 1 when
evaluating the concentration. The dependence of c(Mvir) on
the subhalo’s location is also fairly weak; for a fixed value
of Mvir, c decreases by only 10% between 8 kpc < r <13 kpc
and increases by only 25% between 3 kpc < r <8 kpc. We
conservatively take r = 8 kpc when evaluating the concentration
of local subhalos. Finally, we note that subhalos in simulations
that include baryons tend to be more concentrated than subhalos
in simulations without baryons (Romano-Dı́az et al. 2010), so it
is possible that our model underestimates the concentration of
local subhalos.
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