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The thermal and expansion history of the Universe before big bang nucleosynthesis is unknown. We

investigate the evolution of cosmological perturbations through the transition from an early matter era to

radiation domination. We treat reheating as the perturbative decay of an oscillating scalar field into

relativistic plasma and cold dark matter. After reheating, we find that subhorizon perturbations in the

decay-produced dark matter density are significantly enhanced, while subhorizon radiation perturbations

are instead suppressed. If dark matter originates in the radiation bath after reheating, this suppression may

be the primary cutoff in the matter power spectrum. Conversely, for dark matter produced nonthermally

from scalar decay, enhanced perturbations can drive structure formation during the cosmic dark ages and

dramatically increase the abundance of compact substructures. For low reheat temperatures, we find that

as much as 50% of all dark matter is in microhalos withM * 0:1M� at z ’ 100, compared to a fraction of

�10�10 in the standard case. In this scenario, ultradense substructures may constitute a large fraction of

dark matter in galaxies today.
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I. INTRODUCTION

The standard cosmological model accounts for a re-
markable span in the Universe’s history, from the epoch
of big bang nucleosynthesis (BBN) to the era of structure
formation to our present dark-energy driven abyss. In the
standard paradigm, inflation [1–3] cures the horizon and
flatness problems of the hot big bang and generates the
spectrum of curvature perturbations needed for the forma-
tion of large-scale structure. Inflation ends when the kinetic
energy of the inflaton field is no longer small compared to
its potential energy. At some point after the end of inflation,
the inflaton decays, and the Universe becomes radiation
dominated.

The inflationary paradigm does not uniquely specify the
reheating and thermal history of the Universe, however.
The only constraint on the Universe’s temperature at the
beginning of the radiation-dominated era comes from the
thermal production of neutrinos; lowering this temperature
lowers the neutrino abundance [4–7], which has ramifica-
tions for BBN, the cosmic microwave background, and
large-scale structure. If the Universe is radiation dominated
at a temperature of �3 MeV, then thermal neutrino pro-
duction is sufficient to produce the observed abundances of
light elements [4–7] and the observed cosmic microwave
background and matter power spectra [8,9], provided that
the Universe is baryon-asymmetric at this temperature with
a baryon-to-photon ratio of � ’ 6� 10�10 [7,10].
While challenging, it is possible to generate this baryon

asymmetry if the Universe is not radiation dominated until
it reaches a temperature of �10 MeV (e.g., [11,12]).
At the end of inflation, it is usually assumed that the

inflaton can be described as a coherently oscillating field
that eventually decays and transfers its energy to a radiative
plasma [13–19]. The inflaton is the first dominant energy
component of the Universe and its decay could be the start
of the standard hot big bang—or this could be a transient
epoch. It is possible that a spectator field during inflation
comes to dominate the energy density of the Universe after
the inflaton decays; this scenario is a generic consequence
of stabilized moduli in string theories [20–22], and it is
how the initial curvature perturbations are created in the
curvaton model [23–26]. In this case, the second scalar
field’s decay supersedes the inflationary reheating epoch,
and its fluctuations set the spectrum of adiabatic perturba-
tions. Clearly, this process could occur multiple times, with
the caveat that thermal relics may survive subsequent
reheatings.
The final round of reheating takes particular importance

because it generates the thermal plasma of the Universe
and fixes the spectrum of perturbations on scales greater
than the horizon size during the last reheating epoch.
Physical processes that occur at temperatures larger than
the temperature of the radiation bath following the last
reheating epoch (the reheat temperature) will be affected
by the altered expansion history of the Universe prior to
reheating. The impact of a low reheat temperature on the
relic abundance of weakly interacting massive particle
(WIMP) dark matter has been studied extensively
[27–34]; a low reheat temperature reduces the relic abun-
dance of thermal dark matter, but the abundance may
be enhanced if the dark matter is also produced
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nonthermally. A low reheat temperature also relaxes
constraints on axion [29,35,36] and neutrino [29,37,38]
dark matter. This prior work on low-temperature reheating
has only considered its impact on the homogeneous con-
tent of the Universe, but deviations from radiation-
dominated expansion also affect density perturbations. In
this paper, we consider how the evolution of the Universe
prior to the creation of the final radiation bath influences
perturbations on scales that enter the horizon before the last
reheating epoch.

A homogeneous scalar field that rapidly oscillates around
the minimum of a quadratic potential has the same dynam-
ics as a pressureless fluid of nonrelativistic matter—its
energy density scales as a�3 [14]. Moreover, it has been
shown that the correspondence between a rapidly oscillat-
ing scalar field and a matter fluid extends to the perturba-
tions [39–42]. In particular, subhorizon perturbations in the

scalar field’s energy density with kphys <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Hm�

p
, where

m� is the mass of the scalar field, grow linearly with the

scale factor while the scalar field dominates the Universe
[41,42]. If the scalar oscillates for a sufficiently long time
before decaying, density perturbations in the scalar field
become nonlinear and could produce gravitational waves
[43,44]. Longer wavelength perturbations enter the horizon
later and remain linear prior to reheating. Nevertheless, the
growth of these perturbations during an early scalar-
dominated phase may have a significant impact on the
subsequent growth of structure.

To assess effects of an early ‘‘matter’’-dominated epoch
on the present-day matter power spectrum, we study the
evolution of perturbations through the reheating era. Our
analysis applies to any scenario in which the energy that
dominates the Universe prior to reheating behaves as a
pressureless fluid and decays perturbatively. This fluid
could be composed of metastable nonrelativisitic particles,
or it could be an oscillating scalar field. We note that a
coherently oscillating scalar field may decay nonperturba-
tively; during preheating, the oscillations of the scalar field
lead to resonant particle production that cannot be captured
by standard perturbation theory [15–17]. A coherently
oscillating scalar field still decays perturbatively, however,
if its couplings to other fields are sufficiently small that
preheating is unimportant. Specifically, our analysis ap-
plies to the decay of coherent scalar fields in the narrow
resonance regime; due to the Universe’s expansion, pre-
heating is inefficient in this regime, and the scalar’s decay
can be treated perturbatively [17].

Inspired by models in which dark matter is a decay
product of a string modulus [45,46], the inflaton [47,48],
or the curvaton [49], we allow the pressureless fluid in our
reheating model to decay into cold dark matter particles
and radiation. We focus on modes that are linear during
scalar domination; these are the largest scales that enter the
horizon prior to radiation domination and thus have
the highest potential for observational impact. We find

that the radiation perturbation retains no memory of the
scalar perturbation’s growth. On the contrary, the radiation
density perturbation on scales that enter the horizon during
the ‘‘matter’’-dominated phase are dramatically sup-
pressed compared to perturbations that enter the horizon
after reheating. Consequently, dark matter that is coupled
to or produced from the radiation after reheating will have
a cutoff in the matter power spectrum inherited from the
last reheating epoch. Alternatively, if nearly-decoupled
dark matter is produced directly at reheating, the dark
matter inherits the enhanced density perturbation that
grew prior to reheating. In this case, we get an enhance-
ment of the small-scale matter power spectrum and an
epoch of early small-scale structure formation during the
cosmic dark ages.
Our paper is organized as follows: In Sec. II, we discuss

our three-fluid model for reheating and its background
evolution, and we present the equations that govern the
evolution of the fluid perturbations and their initial con-
ditions. In Sec. III, we describe the evolution of the per-
turbations in the radiation fluid through reheating. In
Sec. IV, we describe the evolution of the cold dark matter
decay product, including the effects of free-streaming, and
we derive a new transfer function for the matter perturba-
tion. In Sec. V, we show that the new small-scale matter
power spectrum leads to an abundance of low-mass struc-
tures at high redshift. In Sec. VI, we summarize our results
and briefly discuss the prospects for detecting the numer-
ous compact dark matter subhalos predicted by this reheat-
ing scenario. Appendix A contains the derivation of the
perturbation evolution equations, and the initial conditions
for the perturbations are derived in Appendix B. Finally,
Appendix C provides expressions necessary to evaluate the
matter transfer function, including a scale-dependent
growth function for small-scale perturbations.

II. THREE-FLUID MODEL FOR REHEATING

Our reheating model consists of a pressureless fluid that
dominates the energy density of the Universe before it
decays into radiation and dark matter particles. We assume
that the radiation is tightly coupled and behaves like a
perfect fluid with Pr ¼ �r=3. We also assume that the
dark matter particles are nonrelativistic and completely
decoupled from the radiation bath from the moment of
their creation. We initially neglect the velocity dispersion
of these particles, but in Sec. IVB, we consider the impact
of free-streaming by dark matter particles that are created
with a nonzero velocity.
Inspired by the curvaton and inflaton, and to avoid

confusion with dark matter produced during reheating,
we call the pressureless fluid that initially dominates the
Universe a scalar field. As mentioned in the previous
section, an oscillating scalar field behaves like a pressure-
less fluid, with � / a�3, if the period of the scalar oscil-
lations is much shorter than the Hubble time (m� � H).
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We will assume that the decay of this scalar field is slow
enough that the coherence of the scalar oscillations are
irrelevant; in the language of preheating, we are assuming
that the scalar decay is the narrow resonance regime in an
expanding universe. If the scalar decay rate �� satisfies

��=m� � ðm�=mPlÞ2, then momentum modes of the sca-

lar’s decay products redshift through their instability bands
too quickly to be significantly excited.1 In this case, the
decay of the scalar field can be treated perturbatively and
the scalar’s coherence is irrelevant.

In this three-fluid model for reheating, the background
equations for the energy density �� of the scalar field, the

radiation density �r, and the dark matter density �dm are

d

dt
�� þ 3H�� ¼ �����; (1)

d

dt
�r þ 4H�r ¼ þð1� fÞ����; (2)

d

dt
�dm þ 3H�dm ¼ þf����; (3)

where f is the fraction of the scalar’s energy that is trans-
ferred to dark matter particles. For a given reheat tempera-
ture, there is one value of f that gives the observed dark
matter abundance, as discussed below. In these equations,
we have considered only interactions that are linear in the
scalar field; such interactions are required for the scalar to
decay completely [18]. Nonlinear interactions, which cor-
respond to scalar self-annihilations, would introduce terms
proportional to �2

� in the equations above. If one considers

an oscillating scalar field that decays into a massless scalar
field � via an interaction term proportional to ��2, the
Boltzmann equation averaged over many oscillations
implies that �� follows Eq. (2) [50].

Similar three-fluid models for reheating have been used
to calculate the relic abundance of dark matter in low-
reheating-temperature cosmologies [28,29,32]. These
models also include dark matter self-annihilations and
thermal production. By neglecting such interactions in
Eqs. (2) and (3), we are assuming that the dark matter
particles produced in scalar decays far outnumber any dark
matter particles that may have been produced thermally.
We are also assuming that the velocity-averaged self-
annihilation cross section (h�vi) of the dark matter parti-
cles is small enough that the nonthermal dark matter does
not self-annihilate. For any value of h�vi, these assump-
tions are valid for sufficiently low reheat temperatures. If
h�vi is too large, however, these reheat temperatures may
be below 3MeVand are therefore disallowed by BBN [32].

With these assumptions, the duration of the radiation-
dominated era after reheating is determined by the

branching ratio f and does not depend on h�vi [32].
If TRH is the reheat temperature, and Teq is the temperature

at matter-radiation equality, then f ’ 0:43ðTeq=TRHÞ�
ð10:75=g�SÞ1=3, where g�S is the entropy density divided
by ð2�2=45ÞT3 and should be evaluated at the reheat
temperature.2 From the cosmic microwave background,

we know that Teq ¼ 0:75 eV [10], so f’ð6:4�10�8Þ�
ð5MeV=TRHÞð10:75=g�SÞ1=3 is required to produce the
observed amount of dark matter.
When numerically solving Eqs. (1)–(3) for the evolution

of these three fluids and their perturbations, we define an
initial time t0 with aðt0Þ � 1 and Hðt0Þ � H1. At t ¼ t0,
the critical density is �crit;0 ¼ 3m2

PlH
2
1=ð8�Þ, and we define

dimensionless density variables ~�� � ��=�crit;0, ~�dm �
�dm=�crit;0, and ~�r � �r=�crit;0. We also define a dimen-

sionless decay rate ~�� � ��=H1. We will assume that the

scalar field initially dominates the energy density of
the Universe. The scalar field decays when H ’ ��.

Since the Universe is effectively matter dominated prior

to the decay of the scalar field,H / a�3=2, and the value of

the scale factor at the time of scalar decay is aRH ’ ~��2=3
� .

At this time, the Universe transitions from scalar domina-
tion to radiation domination.
In the limit that ��t � 1, the Universe is scalar domi-

nated, and the solutions to the background equations are

�� ¼ ��ðt0Þa�3 (4)

�r ¼ 3ð1� fÞ
5

½��ðt0Þ��t0	a�3=2 þ cra
�4 (5)

�dm ¼ f½��ðt0Þ��t0	a�3=2 þ cma
�3: (6)

In these equations, cr and cm are arbitrary constants to be
determined by initial conditions. If there is radiation or
dark matter that does not originate from scalar decay, then
cr and cm are positive. If there was a time when there was
no radiation or dark matter, then cr or cm are negative to
make �r ¼ 0 or �dm ¼ 0 at that time, as in Ref. [29]. In
either case, the contributions to the radiation and matter
densities from the terms proportional to cr and cm become
less significant as the scalar-dominated era continues. We
set our initial condition late in the scalar-dominated era,
after any matter or radiation that did not originate from
scalar decay is diluted and the system loses its memory of
the beginning of scalar decay. In this case, cr ¼ cm ¼ 0,
and the initial values (at t ¼ t0) of ~��, ~�r, and ~�dm are

determined by the chosen values for ~�� and the branching

ratio f. During scalar domination, H ¼ 2=ð3tÞ, which im-

plies that ��ðt0Þ��t0 ¼ ð2=3Þ~����ðt0Þ. It follows that

1This condition follows fromdemanding that q � H=m� � 1,
as in Ref. [17]

2We focus on nonrelativistic dark matter at reheating. Models
with relativistic dark matter at reheating [51] need a higher f for
the same late-time abundance, but we do not consider this case.
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~�dmðt0Þ ¼ 2

3
f~�� ~��ðt0Þ; (7)

~�rðt0Þ ¼ 2

5
ð1� fÞ~��~��ðt0Þ: (8)

Finally, our assumption that the Universe is flat demands
that ~��ðt0Þ þ ~�rðt0Þ þ ~�dmðt0Þ ¼ 1. We want the Universe

to be initially dominated by the scalar energy density, so

we must set ~�� � 1. Figure 1 shows the evolution of the

energy densities of the scalar, matter, and radiation fields

for ~�� ¼ 10�6 and f ¼ 10�8. We see that the Universe

becomes radiation dominated at aRH ’ ~��2=3
� .

As described in Appendix A, the evolution equations for
perturbations in the scalar, radiation, and matter fluids are
derived by perturbing covariant versions of Eqs. (1)–(3)
[52–54]. We work in conformal Newtonian gauge, with

ds2 ¼ a2ð�Þ½�ð1þ 2�Þd�2 þ �ijð1þ 2�Þdxidxj	: (9)

In addition to the metric perturbations � and �, we must
solve for the fractional density perturbations [� �
��ð�; ~xÞ=�0ð�Þ] in the scalar field (��), the radiation

(�r), and the matter (�dm). The three fluids also have
velocity perturbations [vi � dxi=d�], and we solve for
the divergences of the velocity fields for the scalar field

(	� � ~r 
 ~v�), the matter (	dm � ~r 
 ~vdm), and the radia-

tion (	r � ~r 
 ~vr). The perturbation equations are

_��þ	�þ3 _�¼�a���; (10a)

_	�þ _a

a
	�þr2�¼0; (10b)

_�rþ4

3
	rþ4 _�¼ð1�fÞa��

�0
�

�0
r

½����rþ�	;
(10c)

_	rþr2

�
�r

4
þ�

�
¼ð1�fÞa��

�0
�

�0
r

�
3

4
	��	r

�
; (10d)

_�dmþ	dmþ3 _�¼fa��

�0
�

�0
dm

½����dmþ�	; (10e)

_	dmþr2�þ _a

a
	dm¼fa��

�0
�

�0
dm

½	��	dm	; (10f)

where a dot denotes differentiation with respect to confor-
mal time �. We also have the perturbed Einstein field
equation

r2�þ3
_a

a

�
_a

a
�� _�

�
¼�4�Ga2ð�0

���þ�0
r�rþ�0

dm�dmÞ:
(11)

Finally, we close the system of perturbation equations
by noting that the absence of anisotropic stress implies
� ¼ ��.
To numerically solve these equations, we go to Fourier

space and define the following dimensionless parameters:

EðaÞ � HðaÞ=H1, ~k � k=H1, ~	� � 	�=H1, ~	r � 	r=H1,

and ~	dm � 	dm=H1. The equation set that we solve is given
in Appendix B. We use the scale factor a as our time
variable, and we set initial conditions when the Universe
is scalar dominated and the mode is outside the Hubble
horizon. Since we start our solution when a ¼ 1 and

H ¼ H1, these restrictions imply that ~�� � 1 and ~k � 1.

In Appendix B, we derive the following initial conditions:

�ða0Þ ¼ �0 (12a)

��ða0Þ ¼ 2�0 þ 2

3
~k2�0a0 (12b)

�rða0Þ ¼ �0 þ 46

63
~k2�0a0 (12c)

�dmða0Þ ¼ �0 þ 2

3
~k2�0a0 (12d)

~	�ða0Þ ¼ ~	rða0Þ ¼ ~	dmða0Þ ¼ � 2

3
~k2�

ffiffiffiffiffi
a0

p
; (12e)

with a0 ¼ 1. These initial conditions neglect terms that are

Oð~k4a0Þ and Oð~��a0Þ.
The initial conditions presented above differ from the

characteristics of superhorizon adiabatic perturbations in a
radiation-dominated universe, for which �r ¼ 2� and
�dm ¼ ð3=4Þ�r. Since the matter and radiation originated
from a single scalar field, we should be left with adiabatic
perturbations in the matter and radiation after the scalar
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Radiation
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FIG. 1 (color online). The evolution of the energy densities in
the decaying scalar field and its decay products, as fractions of
�crit;0: the critical density at a ¼ 1. The scalar field is modeled as

a pressureless fluid; its energy evolves as � / a�3 until the
expansion rate equals its decay rate at a ’ 104. While the
Universe is scalar dominated, the scalar is feeding energy into
the matter and radiation fields, and both the matter and radiation
fields evolve as � / a�3=2. Once nearly all the scalar density is
transferred to the matter and radiation fields, their energy den-
sities evolve in the usual way: radiation as � / a�4 and matter as
� / a�3.
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vanishes. Indeed, modes that are superhorizon at the time

of reheating [~k < aRHEðaRHÞ] evolve when a ’ aRH, and
this evolution takes the perturbations from the initial values
given above to the conditions for adiabatic superhorizon
modes in a radiation-dominated universe. The gravitational
potential transitions from its initial value �0 � �ðt0Þ to
ð10=9Þ�0 as the Universe transitions from being effec-
tively matter dominated to being radiation dominated.
The radiation density perturbation grows from �rðt0Þ ¼
�0 to 2ð10=9Þ�0. Meanwhile, the matter density perturba-
tion grows from �dmðt0Þ ¼ �0 to ð5=3Þ�0. Thus, after the
Universe becomes radiation dominated, we have �dm ¼
ð3=4Þ�r on superhorizon scales. Once these modes enter
the horizon, they behave exactly as expected for adiabatic
perturbations in a radiation-dominated universe, with� ¼
ð10=9Þ�0 on superhorizon scales. In the following sec-
tions, we will consider the smaller-scale modes that enter
the horizon while the Universe is still scalar dominated.

III. PERTURBATIONS IN THE RADIATION FLUID

We briefly review the standard evolution of a perfect-
fluid radiation perturbation in a radiation-dominated uni-
verse, and then compare this to the evolution of radiation
perturbations when followed through reheating.

In a radiation-dominated universe, the equations de-
scribing the evolution of perfect-fluid radiation perturba-
tions can be solved exactly and take the form

�ð�Þ¼9�0

�3

� ffiffiffi
3

p
sin

�
�ffiffiffi
3

p
�
��cos

�
�ffiffiffi
3

p
��

; (13a)

�rð�Þ¼6�0

�3

�
2

ffiffiffi
3

p ð�2�3Þsin
�
�ffiffiffi
3

p
�
��ð�2�6Þcos

�
�ffiffiffi
3

p
��

;

(13b)

~	rð�Þ¼�3
ffiffiffi
3

p
~k�0

2�2

�
2

ffiffiffi
3

p
�cos

�
�ffiffiffi
3

p
�
þð�2�6Þsin

�
�ffiffiffi
3

p
��

;

(13c)

where�0 is the initial value for� set when the mode is far

outside the horizon [55], and � � k� ¼ ~ka=½a2RDEðaRDÞ	.
Here, aRD denotes a value of the scale factor well after
reheating (deep into radiation domination) and EðaRDÞ is
the dimensionless Hubble factor as discussed in Sec. II. In
Fig. 2, we show the evolution of the radiation perturbations
in the standard scenario. The perturbations are frozen when
a given mode is superhorizon and oscillate after the mode
enters the horizon. As the amplitude of oscillations in �
decay as A� / ��2, the equations for the perfect-fluid

variables �r and ~	r reduce to those of a harmonic oscil-
lator. After they are well in the horizon, the perturbations in

�r and ~	r quickly asymptote to cosine and (out-of-phase)

sine solutions with amplitudes A�r
¼ 6�0 and A~	r

¼
ð~k ffiffiffi

3
p

=4ÞA�r
respectively.

We now compare the subhorizon behavior of the radia-
tion perturbations following a period of reheating to the
standard behavior given in Eq. (13). To make this com-
parison, we must take care to compare modes that have the
same physical wave vector at some temperature TRD long
after the reheating process is complete. These modes have
not typically spent the same amount of time inside the
Hubble horizon. If a mode enters the horizon prior to
reheating, then it does so earlier than it would have if the
Universe never had an epoch of early scalar domination.
For instance, the mode shown in Fig. 2 enters the horizon at
a ¼ 1000 if the Universe was always radiation dominated.
But if the Universe was scalar dominated up to a ’ 104,
then this mode enters the horizon when a ¼ 100. In
general, for modes that enter the horizon during scalar
domination, the value of a at horizon entry in the scalar-
dominated scenario is kRH=k times the value it would have
been in the standard scenario, where kRH ¼ aRHHðaRHÞ is
the wave number of the mode that enters the horizon at
reheating.
Figure 3 shows the same mode as Fig. 2 in a universe

that is scalar dominated for a & 104 (corresponding to the

choice ~�� ¼ 10�6). The evolution of this mode is drasti-

cally different than the standard evolution shown in Fig. 2.
Initially, �r grows considerably while the Universe is
scalar dominated. However, after reheating, this enhance-
ment is lost and �r oscillates with a small amplitude. The
late-time oscillations have the same period as the oscilla-
tions given by Eq. (13), but the amplitude of the fluid
perturbations is suppressed by a factor of �70:6 with
respect to the standard case, with A�r

’ ð6=70:6Þ�0 ’
0:085�0 and A~	r

¼ ð~k ffiffiffi
3

p
=4ÞA�r

. The � solution does

not begin to decay until after reheating in this scenario
but subsequently decays as ��2 with a similarly suppressed

-5

 0

 5
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15

20

100 101 102 103 104 105

scale factor (a)

δr / Φ0

θr / (H1 Φ0)

Φ / Φ0

FIG. 2 (color online). Evolution of �r=�0, ~	r=�0, and �=�0

for a mode that enters the horizon at a ’ 1000. In this cosmo-
logical scenario, the Universe is radiation dominated; there is no
era of scalar domination.
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amplitude relative to the standard evolution. Figure 4

shows the ~k ¼ 0:1 mode in a universe with ~�� ¼ 10�9.

The late-time solution exhibits similar behavior, only now
with an amplitude suppressed by�7600with respect to the
standard case, so that A�r

’ ð6=7600Þ�0 ’ 0:0007�0. In

short, the radiation perturbation at late times follows, up to
a phase shift, Eq. (13) with a suppressed amplitude that
depends on the value of k=kRH. For k=kRH * 20, we find
A�r

& 10�3�0 with the precise value modulating by an

order of magnitude as a function of k=kRH. For 20 *
k=kRH * 3, A�r

increases with decreasing k, reaching a

peak of A�r
’ 10�0. For smaller values of k, A�r

decreases

as k decreases and flattens out at a value of A�r
’ ð60=9Þ�0

for k=kRH & 0:1. Modes with k=kRH & 0:1 are superhor-
izon at the time of reheating and thus their evolution
follows Eq. (13) with �0 ! ð10=9Þ�0 since in this sce-
nario �0 is defined during a period of matter domination.
This behavior can be understood by reexamining

Eqs. (10c) and (10d). During the scalar-dominated epoch,
_� ¼ 0, �� / a, and �� grows large. Since the scalar is

decaying to radiation, this large scalar overdensity be-
comes a source for �r, and �r grows considerably. The
increase in the radiation overdensity �r in turn sources a
higher 	r, representing an outflow of radiation fluid in real
space, through Eq. (10d). This outflow slows the growth in

�r, which eventually saturates and has _�r ¼ 0. Meanwhile,
as the decay continues, 	r keeps growing and the outflow
balances the source terms from scalar decay in Eq. (10c).
Eventually, the scalar source term becomes subdominant,
and �r decreases as the outflow continues. This decrease in
�r slows the outflow, and 	r decreases to a point where �r

and 	r begin to oscillate out of phase. Because of the
relatively large value of ��, these oscillations are forced;

the equilibrium point is shifted to positive �r, and the first
trough in �r is very shallow. However, by the time �r

emerges from the first underdensity, the scalar density is
zero and henceforth �r undergoes free oscillations with a
small amplitude.
In summary, the radiation perturbation long after reheat-

ing is described by Eq. (13), but with �0 replaced by
TðkÞ�0 and a ! aþ a0, where a0 is the phase shift re-
sulting from the fact that oscillations started at reheating
rather than horizon entry. For k * 20kRH, TðkÞ & 10�3,
and the perturbations are suppressed. As k decreases, TðkÞ
increases, reaching TðkÞ ’ 1:5 for 2 & k=kRH & 4. For
smaller values of k, TðkÞ again decreases until it levels
out at Tðk=kRH & 0:1Þ ¼ 10=9. The major effect of a
period of scalar domination on the radiation perturbation
is a suppression of power on scales that entered the horizon
during the scalar-dominated era. These scales are very
small as kRH is given by

kRH ¼ 1690

�
TRH

100 GeV

��
100

g�S

�
1=3

�
g�
100

�
1=2

pc�1

¼ 0:0117

�
TRH

1 MeV

��
10:75

g�S

�
1=3

�
g�

10:75

�
1=2

pc�1

where TRH is the temperature of the radiation bath when
the Universe becomes radiation dominated. In this expres-
sion, g� � �r=½ð�2=30ÞT4	, and both g� and g�S are eval-
uated at TRH. If the dark matter is a thermal relic that
decoupled from the radiation bath after reheating, pertur-
bations with k > kRH will be suppressed.
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FIG. 3 (color online). Evolution of �r=�0, ~	r=�0, and �=�0

for a mode (~k ¼ 0:1) that enters the horizon at a ’ 100. In this
cosmological scenario, the Universe was scalar dominated for
a & 104, and then it became radiation dominated. When the
Universe is radiation dominated, �r oscillates with an amplitude
of 0:085�0. For this mode, k=kRH ’ 11.
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FIG. 4 (color online). Evolution of �r=�0, ~	r=�0, and �=�0

for a mode (~k ¼ 0:1) that enters the horizon at a ’ 100. In this
cosmological scenario, the Universe was scalar dominated for
a & 106, and then it became radiation dominated. When the
Universe is radiation dominated, �r oscillates with an amplitude
of 0:0007�0. For this mode, k=kRH ’ 114.
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This suppression of density perturbations is in principle
relevant for any theory in which dark matter has origins in
the thermal bath after reheating, such as the standard
WIMP paradigm. The characteristic kinetic decoupling
temperature TKD in WIMP models is necessarily below
the chemical decoupling temperature and thus the reheat
temperature TRH if they are thermally produced after re-
heating [56]. However, in models where kinetic decoupling
occurs immediately after chemical decoupling, the nomi-
nal cutoff from kinetic decoupling and the cutoff from
altered perturbation evolution in this reheating scenario
can be comparable, and a more detailed analysis including
both effects is warranted. In models where the dark matter
is never in equilibrium with the standard model but is
nevertheless produced from a thermal plasma after reheat-
ing, such as in FIMP models where the dark matter abun-
dance freezes-in [57], in hylogenic models [12], in some
hidden-sector models [51,58], and generally for models
where TKD * TRH, the reheating cutoff is expected to be
the dominant cutoff in the small-scale matter power
spectrum.

IV. PERTURBATIONS IN THE MATTER FLUID

Since the radiation perturbation does not retain any of its
growth during the scalar-dominated era, an epoch of scalar
domination results in primordial structure growth only if
the dark matter decouples from the radiation before the
Universe becomes radiation dominated. We now consider
the evolution of the decay-produced matter perturbation
�dm for modes that enter the horizon while the Universe is
dominated by the oscillating scalar field. For these modes,
�dm grows linearly with a between horizon entry and
reheating, and then �dm grows logarithmically after the
Universe becomes radiation dominated. An example is
shown in Fig. 5, which shows the evolution of �dm for
~k ¼ 0:2 and ~�� ¼ 10�6; this mode enters the horizon

when a ¼ 25, and the Universe becomes radiation domi-
nated when a ¼ 104.

We now derive an analytic model for the evolution of
�dm. Prior to the decay of the scalar field, the Universe is
effectively matter dominated; a2EðaÞ ¼ ffiffiffi

a
p

, and � re-
mains constant after the mode enters the Hubble horizon.
The solutions derived in Appendix B for the velocities
~	�ðaÞ and ~	dmðaÞ hold until the Universe becomes radia-

tion dominated. It follows that

�0
dmðaÞ ¼

2

3
~k2�0 þ 3

2a
½�� � �dm ��	: (14)

The quantity in the square brackets is initially zero, and it
remains zero until the Universe becomes radiation domi-

nated, as one can verify by considering _�� � _�dm.

Therefore, during scalar domination,

�dmðaÞ ¼ �0 þ 2

3
~k2�0a; (15)

and we see that the early-time solution derived in
Appendix B holds after the mode enters the Hubble hori-
zon. This model for �dmðaÞ is depicted in Fig. 5, and we see
that it matches the numerical solution for a & aRH.
The linear growth begins when the linear term exceeds

the initial value [ð2=3Þ~k2a * 1]. We define alin � 3=ð2~k2Þ.
For modes that enter the horizon during scalar domination,

ahor ¼ ~k�2, so alin is larger than ahor. Since �dm ¼ �0

prior to the onset of linear growth, at the time of scalar

decay �dmðaRHÞ ¼ ðaRH=alinÞ�0 ¼ ð2=3Þ~k2aRH�0. After
the Universe becomes radiation dominated, �dmðaÞ grows
logarithmically, and a�0

dmðaÞ is constant. We can therefore

set a�0
dmðaÞ ¼ aRH�

0
dmðaRHÞ ¼ ð2=3Þ~k2�0aRH. It follows

that, for modes with k=kRH * 1,

�dmðaÞ ¼ 2

3
aRH~k

2�0

�
1þ ln

�
a

aRH

��
(16)

after reheating. This model for �dmðaÞ is depicted in Fig. 5,
and we see that it matches the numerical solution for
a * aRH.

A. The matter transfer function

Because of the superhorizon evolution of � during the
transition from scalar domination to radiation domination,
the definition of the transfer function is ambiguous. It is
standard to define the transfer function TðkÞ through the
relation

 1
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Φ
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FIG. 5 (color online). The evolution of the fractional density
perturbation in the matter field (�dm). This mode enters the
horizon when a ¼ 25, which is during the scalar-dominated
era. During scalar domination, subhorizon matter perturbations
grow linearly with a. The Universe becomes radiation dominated
when a ¼ 104, at which point �dm grows logarithmically. The
long-dashed curve depicts Eq. (15), which describes the evolu-
tion of �dm during scalar domination. The short-dashed curve

depicts Eq. (16) with aRH ¼ 1:29~��2=3
� , which fits the evolution

of �dm after reheating.
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�dmðk; a � aeqÞ ¼ 3

5

k2

�MH
2
0

�pðkÞTðkÞDðaÞ; (17)

where H0 is the present-day Hubble parameter, �M is the
current density of matter divided by the current critical
density, �p is the initial potential fluctuation, and DðaÞ is
the growth function normalized to make DðaÞ ¼ a during
matter domination. With this definition, TðkÞ ¼ 1 on large
scales because modes that enter the horizon after matter-
radiation equality have� ¼ ð9=10Þ�p at horizon entry. In

our scenario, however, these modes enter the horizon with
� ¼ �0, where �0 is the superhorizon potential perturba-
tion during scalar domination. To define our transfer func-
tion, we will use the standard definition above, but we note
that �p is the superhorizon potential perturbation during

radiation domination; �p ¼ ð10=9Þ�0.

Figure 6 shows how �dm at a set value of the scale factor
depends on k. In the cosmology depicted in this figure,
~�� ¼ 10�6, which implies that aRH ¼ 104 and ~kRH �
aRHEðaRHÞ ¼ 0:0088. The matter perturbation is numeri-

cally evaluated at a ¼ 107 for a wide range of ~k values; this
is the solid curve in Fig. 6. We see that the function
�dmð1000aRH; k=kRHÞ contains three different behaviors.
First, for k=kRH & 0:001, we have �dmð1000aRH; k=kRHÞ ¼
5=3�0. These modes have not yet entered the horizon at
a ¼ 107, and so they are fixed at the adiabatic ‘‘initial’’
condition, as described in Sec. II.

Modes with 0:001 & k=kRH & 1 enter the horizon dur-
ing radiation domination. These modes grow logarithmi-
cally once they enter the horizon; as long as ��r � ��dm,
their behavior is well-described by the function

�dmðaÞ ¼ 10

9
�0

�
A ln

�
Ba

ahor

��
(18)

with A ¼ 9:11 and B ¼ 0:594, as given in Ref. [59]. The
long-dashed curve in Fig. 6 shows this function with a ¼
1000aRH and ahorEðahorÞ � ~k. We see that it is an excellent
fit for 0:01 & k=kRH & 1. We conclude that the standard
transfer function can be used for modes with k=kRH & 1;
these modes are unaffected by the era of scalar domination.
Modes with k=kRH * 1 enter the horizon while the

Universe is dominated by the oscillating scalar field. To
obtain the transfer function for these modes, we express
�dmðaÞ in the same form as Eq. (18) and then extract the

values for A and B. From Eq. (16), we see that A ¼
ð3=5ÞaRH~k2 and lnB ¼ 1þ lnðahor=aRHÞ. We now evaluate
A and B in terms of k=kRH. First, we note that we never

used aRH ¼ ~��2=3
� in the derivation of Eq. (16). Rather,

aRH was used as the transition point between linear and
logarithmic growth. We find that Eq. (16) fits the numerical

solution for �dmðaÞ if aRH ¼ 1:29~��2=3
� , as shown in Fig. 5.

We also find that ~�2=3
� ’ 1:29~k2RH for a wide range of values

of ~��. We conclude that we should use aRH ¼ ~k�2
RH when

evaluating A and B. Since these modes enter the horizon
deep in the era of scalar domination, we also have

ahor ¼ ~k�2. We conclude that

�dmðaÞ¼10

9
�0

�
A ln

�
Ba

ahor

��
; A¼3

5

�
k

kRH

�
2
; B¼ek2RH

k2

(19)

for modes with k=kRH * 1 evaluated after scalar decay
while ��r � ��dm. This model, with a ¼ 107 and

ahorEðahorÞ � ~k, is shown by the short-dashed line in
Fig. 6 and we see that it is an excellent fit to the numerical
solution when k=kRH * 10. To smoothly connect this so-
lution to the k & kRH solution (A ¼ 9:11 and B ¼ 0:594),
we found functions Aðk=kRHÞ and Bðk=kRHÞ that fit the
numerical solution for �dmða; kÞ when they are inserted
into Eq. (19). These functions are given in Appendix C.
Now that we have AðkÞ and BðkÞ, we can obtain the

behavior of �dmðaÞ during the matter-dominated era by
matching Eq. (19) to the decaying and growing modes of
the Meszaros equation, which is valid when ��dm � ��r

[60]. While the baryons are still coupled to the photons,
they do not fall into the potential wells created by the dark
matter density perturbations. Prior to baryon decoupling
and after matter-radiation equality, �dmðaÞ is given by [59]

�dm ¼ 3A

2
f1

�
10

9
�0

�
ln

��
4

e3

�
f2=f1 Baeq

ahor

�
DðaÞ; (20)

where f1, f2, and 
 are determined by the baryon fraction
fb � �b=ð�b þ �dmÞ,
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FIG. 6 (color online). The fractional perturbation in the matter

density evaluated after the scalar decays (a ¼ 1000~��2=3
� ). The

solid curve is the numerical evaluation. Modes with k=kRH �
0:001 are still superhorizon at this value of the scale factor. The
long-dashed curve is a plot of Eq. (18) and describes subhorizon
modes that enter the horizon after the scalar decays. The short-
dashed line is a plot of Eq. (19) and describes modes that enter
the horizon during scalar domination.
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f1 ¼ 1� 0:568fb þ 0:094f2b

f2 ¼ 1� 1:156fb þ 0:149f2b � 0:074f3b;

andDðaÞ is the growing solution to the Meszaros equation.
If baryons do not participate in gravitational collapse,

DðaÞ ¼
�
1þ a

aeq

��


2F1

�

;
þ 1

2
; 2
þ 1

2
;

aeq
aþ aeq

�
;

(21)

where 2F1½a; b; c; x	 is Gauss’s hypergeometric function,
and


 ¼ 1

4
½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 24ð1� fbÞ

q
	: (22)

Long after matter-radiation equality, Eq. (21) reduces to
DðaÞ ¼ ða=aeqÞ�
; dark matter overdensities experience

slower than linear growth if the baryons do not fall into
their potential wells. Consequently, matter perturbations
on scales smaller than the baryon Jeans length grow slower
than larger-scale perturbations [55], and we will need to
account for this suppression in our transfer function.

To complete our derivation of the matter transfer func-
tion, we evaluate aeq=ahor for modes that enter the horizon

during scalar domination:

aeq

ahor
¼

ffiffiffi
2

p
k

keq

�
k

kRH

��
g�S½TRH	
3:91

�
2=3

�
3:36

g�½TRH	
�
1=2

: (23)

The terms containing g� and g�S account for changes in the
number of relativistic species between reheating and
matter-radiation equality, and the product of these terms
is always between 1.1 and 1.6. The product Baeq=ahor is

proportional to kRH=keq, and it appears in Eq. (20) loga-

rithmically. Since kRH=keq � 1, the terms containing g�
and g�S have a negligible effect on �dm, and we do not
consider them further. For modes that enter the horizon

during radiation domination, aeq=ahor ¼
ffiffiffi
2

p
k=keq, and in

general, we find that

aeq

ahor
¼

ffiffiffi
2

p
k

keq

�
1þ

�
k

kRH

�
4:235

�
1=4:235

: (24)

fits the numerical solution to k ¼ ahorHðahorÞ for all values
of k.

Inserting Eq. (23) in Eq. (20) and evaluating the transfer
function without baryons gives

Tðk � kRHÞ ¼ 3

4

�
keq

kRH

�
2
ln

��
4

e3

�
e

ffiffiffi
2

p
kRH

keq

�
: (25)

Thus, we see that Tðk � kRHÞ is scale-invariant. These
modes grow linearly with the scale factor between horizon
entry and scalar decay, and they grow linearly with the
scalar factor after the Universe becomes matter dominated.
The transfer function characterizes deviations from linear

growth in �dmðaÞ. During radiation domination, these
modes grew logarithmically instead of linearly, and
so the transfer function depends only on the duration of
the radiation-dominated era: Tðk * kRHÞ � ðkRH=keqÞ�2 �
ln½kRH=keq	. Given current measurements (keq ¼
0:0098 Mpc�1) [10], we note that

kRH
keq

¼ 1:72� 1011
�

TRH

100 GeV

��
100

g�S

�
1=3

�
g�
100

�
1=2

;

¼ 1:18� 106
�

TRH

1 MeV

��
10:75

g�S

�
1=3

�
g�

10:75

�
1=2

;

where g� and g�S are evaluated at TRH.
When we consider structure formation in Sec. V, we will

need a transfer function that is applicable to all k values,
including k & keq, and includes the effects of baryons and

neutrinos on structure formation. We use CAMB Sources
[61] to compute the matter transfer function for k=keq �
8:2� 105. On very small scales (k=keq * 5� 105), the

transfer function computed by CAMB (TCAMB) has the
same scale dependence as the transfer function (TEH) pro-
vided by Eisenstein & Hu (1998) [62], so we extend the
transfer function to larger k by taking

Tðk=keq � 8:2� 105Þ

¼ TEHðkÞ
TCAMBðk=keq ¼ 8:2� 105Þ
TEHðk=keq ¼ 8:2� 105Þ : (26)

When evaluating the transfer function, we take H0 ¼
70:4 km=s=Mpc, �M ¼ 0:272, and �b ¼ 0:0456, follow-
ing Ref. [10].
Even after recombination, the baryons have nonzero

pressure, and they do not participate in gravitational col-
lapse on scales that are smaller than the baryon Jeans
length 1=kJb [55]. While matter perturbations on scales
with k < kJb grow linearly with the scale factor after
recombination, the growth of smaller-scale perturbations
still follows DðaÞ, given by Eq. (21). We account for this
suppression by using CAMB Sources to determine the
density perturbation at a redshift of 50, and then we use
Eq. (17) to find TðkÞDðz ¼ 50Þ, which we refer to as the
transfer function at z ¼ 50. We then apply a scale-
dependent growth function, normalized to unity at
z ¼ 50, to obtain the density perturbation at other red-
shifts. At z ¼ 50, TCAMBðkÞ ’ TEHðkÞ for k=keq & 104,

but TCAMB=TEH decreases as k increases until it reaches a
new plateau: TCAMBðkÞ ’ 0:77TEHðkÞ for k=keq * 5� 105.

This suppression results from the slower growth of these
small-scale perturbations after recombination, which is not
included in TEHðkÞ.
We base our scale-dependent growth function on the ratio

TCAMB=TEH at z ¼ 50; for z * 3, modes with k=keq * 105

are proportional to DðaÞ, while modes with k=keq & 104

are proportional to ð2=3Þ þ ða=aeqÞ. Intermediate scales

smoothly interpolate between these two values; since we
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will primarily be concerned with modes with k=keq � 107,

the details of the transition are unimportant. At later times,
the cosmological constant suppresses perturbation growth,
and we assume that all scales follow the standard growth
function DðaÞ for z & 3. An explicit expression for our
growth function is given in Appendix C.

To modify the transfer function to include a period
of scalar domination, we multiply it by the ratio
�dmðTRHÞ=�dmðTRH ¼ 1Þ, where �dm is evaluated after
matter-radiation equality and before baryon decoupling.
From Eq. (20), we see that, for modes with k � keq, includ-

ing a period of scalar domination takes TðkÞ ! RðkÞTðkÞ,
where

RðkÞ ¼ AðkÞ ln½ð 4
e3
Þf2=f1 BðkÞaeq

ahorðkÞ 	
9:11 ln½ð 4

e3
Þf2=f10:594

ffiffi
2

p
k

keq
	
: (27)

In this expression, ahorðkÞ is given by Eq. (24), and AðkÞ and
BðkÞ are given by the fitting functions inAppendixC for k �
0:05kRH. For k � 0:05kRH, �dm is not affected by the period
of scalar domination, as seen in Fig. 6. Therefore, we take
Rðk � 0:05kRHÞ ¼ 1. The resulting transfer functions
(evaluated at z ¼ 0) are shown in Fig. 7 for four values of
the reheat temperature. As expected from Fig. 6, we see that
the transfer function deviates from its standard valuewhen k
exceeds kRH, and it is scale-invariant for k * 10kRH.

B. Free-streaming effects

We have thus far assumed that the dark matter has no
momentum when it is produced from the decay of the
scalar field. We now relax that assumption and introduce
hvRHi: the average velocity (d~x=d�) of the dark matter

particles when the Universe became radiation dominated.
We will continue to assume that the dark matter is always
nonrelativistic, so hvRHi � 1.
If the dark matter particles have momentum, then their

free-streaming will tend to erase structures on scales
smaller than the free-streaming horizon �fsh [55,63,64]:

�fshðtÞ ¼
Z t

tRH

hvi
a

dt; (28)

where hvi ¼ hvRHiðaRH=aÞ is the average velocity of the
dark matter particles after reheating. The free-streaming
horizon does not change significantly after matter-
radiation equality, so we may neglect dark energy and take

�fshðaÞ ¼ hvRHiaRH
H0

ffiffiffiffiffiffiffi
�r

p Z a

aRH

da0

a0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a0=aeq

q ; (29)

where �r is the present-day radiation density divided by
the critical density. This integral can be evaluated analyti-
cally [64]:

�fshðaÞ ¼ 2hvRHiaRH
H0

ffiffiffiffiffiffiffi
�r

p �
sinh�1

ffiffiffiffiffiffiffiffi
aeq
aRH

s
� sinh�1

ffiffiffiffiffiffiffi
aeq
a

r �
: (30)

The effects of free-streaming on the matter power spec-
trum can be approximated by introducing a Gaussian cutoff
to the transfer function:

TðkÞ ¼ exp

�
� k2

2k2fsh

�
T0ðkÞ; (31)

where T0ðkÞ is the transfer function without free-streaming
calculated in the previous section, and kfsh ¼ ��1

fsh

[55,63,65,66]. If kRH=kfsh > 1, then the free-steaming cut-
off in the transfer function will exponentially suppress the
scale-invariant portion of T0ðkÞ given by Eq. (25). The
growth of density perturbations during scalar domination
will be completely erased by the free-streaming of the dark
matter particles after reheating. The ratio kRH=kfsh depends
only weakly on the reheat temperature; if we neglect
changes in the number of relativistic species after reheating,

kRH
kfsh

¼ 2hvRHi
�
sinh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kRH

ffiffiffi
2

p
keq

vuut � sinh�1

ffiffiffiffiffiffiffi
aeq

a

r �
: (32)

For a wide range of reheating temperatures (10 MeV &
TRH & 10 GeV), kRH=kfsh ’ hvRHi=0:06.
If the dark matter produced via decay does not interact

with the radiation fluid, then a low hvRHi will occur if the
mass of the dark matter (or more generally the total mass of
the decay products) is nearly degenerate in mass with the
decaying scalar. If the dark matter instead interacts with the
plasma through a higher-dimensional effective operator
(such as a four-fermion operator), then we generically
expect a larger interaction cross section at higher energies.
In this case, we expect dark matter particles born with large
momentum to rapidly lose energy to the plasma until
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FIG. 7 (color online). The matter transfer function in the
absence of free-streaming effects for four values of the reheat
temperature: TRH ¼ 8:5 MeV, 85 MeV, 780 MeV, and 6.0 GeV,
corresponding to kRH=keq ¼ 107, 108, 109, and 1010, respec-

tively. Perturbation modes that enter the horizon while the
Universe is radiation dominated have TðkÞ / ln½k	=k2, but
modes that enter the horizon prior to reheating have a
constant-valued TðkÞ.
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interactions become inefficient, and the diffusion length to
be far shorter than the free-streaming length would be
without interactions. Calculating the evolution of dark
matter perturbations including the thermalization and dif-
fusion of high-energy dark matter particles goes beyond
the scope of this work, but after interactions become
inefficient we expect the formalism developed here will

describe subsequent perturbation evolution with hvRHi �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EKD=mDM

p
set by the energy at which particles typically

kinetically decouple from the plasma. Finally, we mention
that if some fraction or all of the dark matter did not
originate from scalar decay and was present during the
scalar-dominated era, then these particles likely have low
velocity [67], and we expect that they would experience the
same perturbation growth described at the beginning of
Sec. IV.

V. PRIMORDIAL STRUCTURES

We have shown that matter perturbations on scales
smaller than the horizon size at reheating and larger than
the matter particle’s free-streaming horizon are enhanced
relative to their amplitudes in a universe that was always
radiation dominated. We will now use the Press-Schechter
formalism [68] to analyze the ramifications this enhance-
ment has on the formation of dark matter halos. We must
first compute the rms density perturbation in a sphere
containing an average mass M:

�2ðM; zÞ ¼
Z d3k

ð2�Þ3 ½D50ðk; zÞT50ðkÞ	2PpðkÞF2ðkRÞ; (33)

where T50ðkÞ is the transfer function evaluated z ¼ 50;
D50ðz; kÞ is the scale-dependent growth function described
in Appendix C; PpðkÞ is the power spectrum of super-

horizon density perturbations during radiation domination;
and FðkRÞ is a filter function that suppresses contributions

from modes with k�1 � R ¼ ½3M=ð4��m;0Þ	1=3, where
�m;0 is the present-day matter density. We determine

PpðkÞ by setting the power spectrum of superhorizon cur-

vature fluctuations �2
RðkÞ ¼ 2:44� 10�9 � ðk=k0Þn�1,

where k0 ¼ 0:002 Mpc�1 and n is the scalar spectral
index: n ¼ 0:963
 0:012 [10].

It is customary to use a spherical top-hat window func-
tion in real space as a filter when computing �ðMÞ; this
choice implies FðkRÞ ¼ 3½sinðkRÞ � ðkRÞ cosðkRÞ	=ðkRÞ3.
However, this filter function is problematic when the ef-
fects of a scalar-dominated era are considered. We showed
in Sec. IVA that TðkÞ is scale-invariant for k * kRH. Since
PpðkÞ / kn, the integrand in Eq. (33) for k * kRH is pro-

portional to knþ2F2ðkRÞdk. With the top-hat filter function,
F2ðkRÞ ’ cos2ðkRÞ=ðkRÞ4 for k � R�1, so for kR � 1 and
k * kRH, the integrand in Eq. (33) is proportional to
kn�2dk. Since n is only slightly less than unity, this integral
is nearly divergent, and the portion of the integral with
k � 1=R makes a significant contribution to �2ðMÞ. In

short, the standard top-hat filter fails to prevent modes with
k�1 � R from contributing to �2ðMÞ when TðkÞ is scale-
invariant for large k.
To solve this problem, we use a different filter function

when calculating�2ðMÞ; we convolve the spherical top-hat
window function with a Gaussian window function with a
much smaller radius. The resulting filter function is

FðkRÞ¼exp

�
�1

2
k2ð
RÞ2

�
� 3

ðkRÞ3 ½sinðkRÞ�ðkRÞcosðkRÞ	
(34)

with 
 � 1. For 
 & 10�4, this window function is vir-
tually indistinguishable from a top-hat of radius R in real
space, and �ðMÞ for R � 1=kRH changes by less than
0.01% compared to its value with 
 ¼ 0. This robustness
prompts us to set 
 ¼ 10�4 when computing �ðMÞ. We
note, however, that the variance on smaller scales is
more sensitive to the choice for 
; for R � 1=kRH, chang-
ing 
 by a factor of 10 in either direction changes �ðMÞ by
about 10%.
The filter function ensures that �ðMÞ is sensitive to

scales that enter the horizon during scalar domination
only if RðMÞ & k�1

RH. Consequently, it is useful to define a
characteristic mass MRH such that RðMRHÞ � k�1

RH:

MRH¼32:7M�
�
10MeV

TRH

�
3
�
g�S½TRH	
10:75

��
10:75

g�½TRH	
�
3=2

: (35)

For M>MRH, the filter function effectively restricts the
integral in Eq. (33) to k & kRH, and �ðMÞ is insensitive to
the reheat temperature. In contrast, if M<MRH, �ðMÞ is
most sensitive to scales with k > kRH. The transfer function
is scale-invariant at these scales, so the density power
spectrum is a simple power law PðkÞ / kn. It follows that

�ðM & MRHÞ / M�ðnþ3Þ=6, as shown in Fig. 8.
As discussed in Sec. IVB, we can include the effects of

the dark matter particles’ random motions by adding a
Gaussian cutoff to the transfer function, as in Eq. (31).
Since the resulting transfer function is no longer scale-
invariant for k > kfsh, we expect �ðM & MRHÞ to deviate
from the power law behavior shown in Fig. 8 when M &
Mfsh, whereRðMfshÞ � k�1

fsh ¼ �fsh. Figure 9 shows that this

is the case; in this figure,TRH is 8.5MeV, and�ðMÞ is shown
for four values of hvRHi. For hvRHi ¼ 0:01, 0.001, and
0.0001, Eq. (30) implies Mfsh ¼ 0:31M�, 3:1� 10�4M�,
and 3:1� 10�7M�, respectively, and we see that �ðMÞ is
nearly constant forM & Mfsh. Figure 9 also shows that the
growth of thematter density perturbations prior to reheating
is completely erased by free-streaming if hvRHi * 0:01; this
is also true for other values of TRH.
We have seen that the growth of matter perturbations

during the scalar-dominated era leads to an enhancement
�ðMÞ for M & MRH, provided that hvRHi & 0:01. Since
MRH & 1000M�, the amplitude of �ðM & MRHÞ depends
on the amplitude of the scalar power spectrum
on scales that are much smaller than the pivot scale
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k0 ¼ 0:002 Mpc�1. Consequently, �ðM & MRHÞ is very
sensitive to changes in the scalar spectral index n. We
can quantify the dependence of �ðMÞ on n by noting that

�ðM;n1Þ
�ðM;n2Þ

’
�

1

k0R�ðMÞ
�ðn1�n2Þ=2

; (36)

where R�ðMÞ is the average scale that contributes signifi-
cantly to �ðMÞ. For M * MRH, R�ðMÞ ¼ RðMÞ because
the transfer function and filter function suppress the con-
tribution from smaller scales. For M & MRH and hvRHi ¼
0, all scales between 
R and R contribute equally, so
R�ðMÞ ’ RðMÞ ffiffiffiffi



p

. Free-streaming introduces an addi-

tional small-scale cutoff; for 
R & �fsh & R, R�ðMÞ ’ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðMÞ�fsh

p
, and R�ðMÞ ’ �fsh if R & �fsh. For example,

if TRH ¼ 8:5 MeV and hvRHi ¼ 0, �ð0:001MRHÞ increases
by 37% if n is 0.987 instead of 0.963. If we instead take
hvRHi ¼ 0:001, then �ð0:001MRHÞ increases by 32% for
the same change in n; the introduction of a free-streaming
cutoff has reduced effects of increasing the scalar spectral
index.
Now that we have calculated �ðMÞ, we can use the

Press-Schechter formalism [68] to obtain a halo mass
function:

dn

d lnM
¼

ffiffiffiffi
2

�

s
�m;0

M

��������d ln�

d lnM

�������� �c

�ðM; zÞ exp
�
� �2

c

2�2ðM; zÞ
�
;

(37)

where n is the comoving number density of halos with
mass M at redshift z, and �c is the critical linear over-
density. For z * 2, �c ¼ 1:686, and it decreases slightly at
smaller redshift. Since an era of scalar domination changes
�ðMÞ for M & MRH, only the abundance of these small-
mass halos will be affected. These small-mass halos form
at very high redshift, and then they merge to form larger-
mass halos. The Press-Schechter mass function does not
account for subhalos, however, so it will be most useful for
us to examine the halo mass function at high redshift,
before halos withM & MRH are absorbed into larger halos.
Rather than consider the number density of these objects, it
is more enlightening to compute the fraction of the mass
that is contained in these objects as a function of redshift:

df

d lnM
¼ M

�m;0

dn

d lnM
: (38)

The ratio �c=� plays a pivotal role in the Press-
Schechter mass function, and it is useful to define a func-
tion M�ðzÞ such that �ðM�; zÞ ¼ �c. Figure 10 shows
M�ðzÞ for different values of the reheat temperature and
hvRHi. We see that M�ðzÞ decreases precipitously with
increasing redshift for M * MRH. For smaller masses,
M�ðzÞ transitions to a power law. Free-streaming by the
dark matter particles steepens this power law slightly
because �ðMÞ increases less quickly with decreasing M
if hvRHi is nonzero, as shown in Fig. 9. Also recall that
�ðMÞ is nearly constant for M & Mfsh; this constancy
would cause M�ðzÞ to decrease rapidly with increasing
redshift if M� & Mfsh. We see in Fig. 10, however, that if
hvRHi & 0:001, M� * Mfsh for all z < 500. Therefore, we
expect that free-streaming will not prevent structures from
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FIG. 8 (color online). The present-day rms density perturba-
tion � in a sphere containing an average massM for three values
of the reheat temperature: TRH ¼ 8:5 MeV, 85 MeV, and
780 MeV. For these values of TRH, MRH ¼ 54M�, 0:054M�,
and 5:4� 10�5M�. We also show �ðMÞ for reheat temperatures
greater than 12 GeV; in the mass range shown here, the presence
of a scalar-dominated era does not affect �ðMÞ if TRH >
12 GeV. Note that �ðM * MRHÞ depends only weakly on M
and is independent of TRH, while �ðM & MRHÞ is significantly
enhanced compared to � for higher values of TRH. Also, for all
values of TRH, �ðM & MRHÞ / M�ðnþ3Þ=6, where n ¼ 0:963 is
the scalar spectral index.

101

102

103

104

105

106

107

10-8 10-6 10-4 10-2 100 102

σ(
M

)

M/M⊕

vRH = 0

vRH = 0.0001

vRH = 0.001

vRH = 0.01

FIG. 9 (color online). The rms density perturbation � in a
sphere containing an average mass M for four values of the
mean dark matter particle velocity at reheating ðvRHÞ, in units
where c ¼ 1. The reheat temperature is 8.5 MeV. If the dark
matter particles have a nonzero velocity dispersion, free-
streaming erases density perturbations on scales smaller than
the free-streaming horizon, making �ðMÞ nearly constant for
small masses.
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growing at redshifts z & 500, provided that hvRHi &
0:001.

Before we consider the effects of free-streaming on the
halo mass function further, we examine the mass function
with hvRHi ¼ 0. If �ðMÞ is a power law, as it is for M �
MRH, then the mass function depends on redshift only
through the ratio M=M�ðzÞ. In this case, the differential
bound mass fraction df=d lnM peaks at M ¼ M�; for
d ln�=d lnM ¼ �ðnþ 3Þ=6, the maximum value is
df=d lnMjM� ¼ 0:32, and 31% of the dark matter is con-

tained in halos withM� � M � 5M�. Since the abundance
of halos with M * M� is exponentially suppressed, a neg-
ligible fraction of the mass is contained in halos with
M> 5M�. Provided that 5M� � MRH, the fact that �ðMÞ
is not a power law for M * MRH will not affect the bound
fraction.

The 5M� � MRH case is exemplified by the z ¼ 100
curve in Fig. 11, which shows the differential bound frac-
tion df=d lnM for TRH ¼ 8:5 MeV. For this reheat
temperature, MRH ¼ 54M�, and Fig. 10 shows that M� ¼
0:18M� at z ¼ 100. Integrating the z ¼ 100 curve in
Fig. 11 reveals that almost half of the dark matter is
contained in halos with M> 0:1M� at this redshift. In
the standard cosmology, the fraction of the dark matter
contained in such halos is only 10�10 at z ¼ 100. As the
redshift increases past 100, the differential bound fraction
will keep the same shape as the z ¼ 100 curve while the
peak slides to smaller masses. The other curves in Fig. 11
show what happens to the bound mass function as the
redshift decreases. While z * 11, M� >MRH, and the
peak in df=d lnM follows M�, moving to larger masses
as the redshift decreases. The peak height decreases be-
cause jd ln�=d lnMjM� is decreasing, as seen in Fig. 8.

When z & 11, M� >MRH for TRH ¼ 8:5 MeV, and
larger-mass halos begin to form. These larger halos absorb
some of the microhalos formed at higher redshift, and so
the fraction of mass in these microhalos decreases, as seen
in Fig. 11. The transfer of mass from small halos to larger
halos is more apparent in Fig. 12, which also shows
the differential bound fraction without a scalar-dominated
era. We see that a period of scalar domination does not
affect the abundance of halos with M � MRH. Without a
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FIG. 10 (color online). The value of M� such that �ðM�Þ ¼ �c

plotted as a function of redshift for different values of the reheat
temperature TRH and the average particle velocity at reheating,
hvRHi, in units where c ¼ 1. For TRH ¼ 8:5 MeV and TRH ¼
85 MeV, the reheat horizon mass isMRH ¼ 54M� and 0:054M�,
respectively. We see that M�ðzÞ is a power law for M� & MRH.
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FIG. 11 (color online). The differential fraction of the dark
matter mass that is bound into halos of mass M [see Eq. (38)]
plotted at several redshifts for TRH ¼ 8:5 MeV. While z * 11,
the critical mass M� is smaller than the reheating horizon mass
MRH, and the peak moves to larger masses as the redshift
decreases. When z � 10,M� >MRH, and the peak remains fixed
at 2M�. The peak decreases in amplitude because the fraction of
mass contained in these microhalos decreases as they are ab-
sorbed into larger halos.
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FIG. 12 (color online). The differential fraction of the dark
matter mass that is bound into halos of massM plotted at several
redshifts. The solid curves show the bound fraction for TRH ¼
8:5 MeV, while the dashed curves show the bound fraction in the
absence of a scalar-dominated era. The two scenarios are indis-
tinguishable forM * 1000M�. The abundance of halos is higher
for halos with M * 1010M� because baryons fall into these
halos, making them grow faster.
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scalar-dominated era, however, halos with M & MRH are
far less abundant and they form much later. For example, if
TRH ¼ 8:5 MeV, the abundance of Earth-mass microhalos
peaks at a redshift of z ¼ 32 when df=d lnMjM� ¼ 0:25.

In contrast, isolated Earth-mass microhalos are most abun-
dant at a redshift of z ¼ 12 in the standard scenario, and
even then df=d lnMjM� ¼ 0:010.

Given our understanding of the bound mass fraction
when hvRHi ¼ 0, we can now examine the effects of free-
streaming. Figure 10 shows that free-streaming decreases
M� whenM� & MRH, and Fig. 9 shows that free-streaming
decreases d ln�=d lnM whenM & MRH. We conclude that
free-streaming will shift the peak in the bound mass frac-
tion to smaller halo masses and decrease its amplitude.
Figure 13 confirms that this is indeed the case. We see that
free-streaming delays the formation of microhalos of a
given mass and suppresses their abundance; for example,
if hvRHi ¼ 0:001 and TRH ¼ 8:5 MeV, the abundance of
Earth-mass microhalos peaks at a redshift of z ¼ 22 when
df=d lnMjM� ¼ 0:17. This is still significantly higher than

the standard abundance of these microhalos. We conclude
that free-streaming does not erase the structural imprints of
an extended scalar-dominated era, provided that hvRHi &
0:001. Microhalos with M<MRH still form earlier and in
far greater numbers than they would in the standard
scenario, but free-streaming does slightly delay their for-
mation and suppress their abundances.

VI. SUMMARYAND DISCUSSION

The content of the Universe prior to the onset of big bang
nucleosynthesis is unknown. It is possible that the inflaton
continued to dominate the energy density of the Universe

long after inflation ended. After inflation, the inflaton
oscillates around the minimum of its potential, and if the
potential is quadratic around its minimum, then the time-
averaged pressure of the scalar field vanishes. It is also
possible that the inflaton decayed quickly to radiation, and
then a second oscillating scalar field may have come to
dominate the Universe, as in some versions of the curvaton
scenario [23–26] and in several realizations of string theory
[20–22]. Finally, the inflaton may have decayed into a
short-lived heavy particle that dominated the energy den-
sity of the Universe prior to its decay. In all of these
scenarios, the Universe was effectively matter dominated
prior to nucleosynthesis.
During this early matter-dominated era, subhorizon per-

turbations in the dominant component of the Universe
grow linearly with the scale factor [39–42]. We have
investigated what happens to these density perturbations
after the dominant component during the early matter-
dominated era decays and the Universe becomes radiation
dominated. We model the reheating of the Universe using
three fluid components: a pressureless ‘‘scalar’’ that decays
into a tightly-coupled radiation plasma and decoupled non-
relativistic dark matter. These dark matter particles may
have a small, but nonzero, velocity dispersion when they
are created, and we examine the effects of free-streaming
on their perturbations.
We find that, although subhorizon radiation perturba-

tions grow during the scalar-dominated era due to the
coupling between the radiation and the scalar field, this
growth is erased after the Universe becomes radiation
dominated. When the scalar field energy density vanishes,
these radiation perturbations begin to oscillate, but the
amplitude of these oscillations is much smaller than the
maximum value of the radiation density perturbation dur-
ing the scalar-dominated era. Moreover, the amplitude of
the oscillations in the radiation density perturbations for
modes that enter the horizon well before reheating is sig-
nificantly smaller than the amplitude of modes that enter
the horizon after the Universe becomes radiation domi-
nated. An early era of matter domination suppresses per-
turbations in the radiation density field on scales smaller
than the horizon scale at reheating. If the dominant form of
dark matter is not created directly from reheating
but instead from the radiation bath after reheating, this
radiation suppression results in a suppression of the
matter power spectrum for k * 23:4ðTRH=2 MeVÞ kpc�1.
Depending on the details of the dark matter microphysics,
this reheating suppression may be the primary cutoff in the
matter power spectrum. This could include corners of
WIMP parameter space with inefficient kinetic coupling
[56], FIMP models [57], and hylogenic models [12].
The effects of reheating on dark matter produced di-

rectly from the decay of the scalar can be much more
dramatic. Unlike the radiation density perturbation, the
perturbation in this dark matter density is enhanced by
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FIG. 13 (color online). The differential fraction of the dark
matter mass that is bound into halos of mass M for different
values of the mean dark matter particle velocity at reheating, as a
fraction of the speed of light (vRH). The reheat temperature is
TRH ¼ 8:5 MeV, and the function is shown at two redshifts. We
see that free-streaming moves the peak in the bound mass
fraction to smaller masses and decreases its amplitude.
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the growth it experiences during the scalar-dominated era.
While the Universe is scalar dominated, dark matter den-
sity perturbations grow linearly with the scale factor after
they enter the Hubble horizon. When the Universe be-
comes radiation dominated, the dark matter perturbations
grow logarithmically from their amplitude at the moment
of reheating. Consequently, perturbations on scales that
enter the horizon prior to reheating are significantly en-
hanced compared to larger-scale perturbations, and the
matter power spectrum on small scales is proportional to
kn, where n is the scalar spectral index. Free-streaming
breaks this scale invariance and exponentially suppresses
the power spectrum on scales smaller than the free-
streaming horizon. We found that free-streaming com-
pletely erases the perturbations that grow prior to reheating
if the average velocity dispersion of the dark matter parti-
cles at reheating is greater than 0:01c.

We used the Press-Schechter halo mass function [68] to
investigate how the growth of perturbations prior to reheat-
ing affects the formation of dark matter halos. As expected,
only halos with masses less than the horizon mass at
reheating are impacted. The reheating horizon mass
(MRH) is proportional to T�3

RH and equals 260M� if the

reheat temperature was TRH ¼ 5 MeV. We found that
microhalos with M<MRH form much earlier than they
would if the reheat temperature were higher, and they
contain a much larger fraction of the dark matter. For
instance, if TRH ¼ 8:5 MeV, then the Press-Schechter
mass function predicts that 15%, 43%, and 65% of the
dark matter is contained in microhalos with masses greater
than 10�6M� at redshifts of 100, 50, and 25, respectively.
In contrast, the corresponding fractions are 10�10, 0.04%,
and 5% if the reheat temperature is higher than 100 MeV.
Numerical simulations of the formation of the first micro-
halos confirm this prediction; they find that only 1.5% of
the dark matter is in bound in these microhalos at a redshift
of 31 [69], and 5% of the dark matter is in these microhalos
at a redshift of 26 [70].

We conclude that low-temperature reheating with direct
dark matter production results in an abundance of earth-
mass or smaller microhalos. Prior to the formation of larger
dark matter halos, these microhalos contain a significant
fraction of the dark matter. What happens to these micro-
halos as they merge to form larger halos, and do they
survive until the present day in the Milky Way’s halo?
The fate of the earth-mass microhalos that form in the
standard cosmological scenario has been studied exten-
sively [69–76]; these subhalos survive their absorption
into larger halos, but then they lose most of their mass
due to interactions with stars. The survival probability for a
microhalo near the Sun has been calculated to be as high as
0.17 [72], but this factor depends strongly on the micro-
halo’s orbit, and some studies predict that nearly all the
local microhalos are either destroyed by stellar encounters
[71,73,75] or lose a significant fraction of their mass

[74,76]. In the low-temperature reheating scenarios con-
sidered here, however, these microhalos are far more
numerous than in the standard scenario; even if there is a
high probability that they do not survive inside the Galaxy,
there may still be a sizable population in our stellar
neighborhood.
Furthermore, the microhalos in the low-temperature-

reheating scenario form far earlier than their standard coun-
terparts, and consequently, they are far denser. The virial
density of a microhalo is proportional to the critical density
at the time of its formation; at high redshifts, the mean
density of a microhalo that formed at a redshift zf is there-

fore proportional to ð1þ zfÞ3. Ref. [77] found that the

microhalo survival probability near the Sun increases
sharply as the mean density within the clump increases;
while a microhalo that formed at a redshift of 65 has a
survival probability of 0.17 at the Sun’s location, a micro-
halo that formed at a redshift of 120 has survival probability
of 0.5, and a microhalo that formed at a redshift of
300 has survival probability of 0.9. It is therefore reasonable
to expect that many of the microhalos produced in the
low-temperature-reheating scenario are intact subhalos
today.
How could we detect these small and dense subhalos?

While a complete analysis of their observational signatures
lies beyond the scope of this work, we briefly highlight a
few promising detection avenues here. If the dark matter
self-annihilates, these compact microhalos will be gamma-
ray sources; they may be observed as point sources, and
they would make a significant contribution to the observed
gamma-ray background [69,70,74,76,78–80]. Unfor-
tunately, since the dark matter particles in these microhalos
were created through scalar decay and cannot be thermal
relics, there is no lower limit on their self-annihilation
cross section. Numerous and dense subhalos near our
location would also affect direct detection rates by chang-
ing the local dark matter density [76,81] and the direction
of the dark matter wind [80], which would alter both the
event rate and its annual modulation. If dark matter parti-
cles are directly detected, then the temporal correlation of
the signal can be used to probe the abundance of local
small subhalos because the event rate will change as a
microhalo passes through the Solar System [80].
Of course, it is entirely possible that the dark matter

particles in these microhalos do not self-annihilate and
interact too weakly to be detected directly. The only guar-
anteed observational signatures of dark matter microhalos
are gravitational. Dark matter microhalos are gravitational
lenses; we could hope to detect them through their impact
on individual images of a strongly lensed quasar
[70,82,83]. Unfortunately, even though the early-forming
microhalos that result from perturbation growth during
reheating are more compact than their standard counter-
parts, their virial radii are still much larger than their
Einstein radii, and it is unlikely that they could act as
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strong lenses. Recently, it has suggested that we may be
able to detect subhalos within our galaxy through their
astrometric microlensing signatures [84] or their impact
on the pulse arrival times from millisecond pulsars [85].
These studies found that subhalos in the standard scenario
are too rare and too diffuse to be detectable through these
methods given our current level of astrometric and timing
precision, but the abundant and dense microhalo popula-
tion resulting from low-temperature reheating with direct
dark matter production would significantly enhance both
signals. It is also possible that these microhalos may be
dense enough to be detected through photometric micro-
lensing [86].

Finally, we note that the Laser Interferometer Space
Antenna (LISA) will be able to detect compact objects
with masses greater than 1016 g that pass near its detectors;
if these objects are the primary component of the dark
matter, then a few such events are expected per decade
[87]. LISA may also be sensitive to small and dense dark
matter microhalos, if their radii are smaller than LISA’s
arm length (� 5� 1011 cm) [77]. Microhalos that form
before z ¼ 340 can have virial masses greater than 1016 g
and virial radii less than 5� 1011 cm. Such microhalos are
less massive than the earth-mass microhalos that we have
focused on and would form at high redshift for larger
values of the reheat temperature. For instance, if TRH ¼
12 GeV, then the critical mass at z ¼ 500 is M� ¼ 2:5�
1016 g, which is much less than the reheat horizon mass
(MRH ¼ 4� 1019 g). The Press-Schechter mass function
predicts that 30% of the dark matter is contained in halos
with M ’ M� if M� � MRH. If these microhalos survive
their absorption into larger halos, they could make up a
significant fraction of the Galaxy’s dark matter halo, and
they could be detectable by LISA. It would be interesting
to explore this possibility, and the possibility of detecting
early-forming microhalos through astrometric, photomet-
ric, and timing microlensing in more detail; detecting these
small structures or constraining their abundance would
probe the origins of dark matter and the state of the
Universe between inflation and nucleosynthesis.
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APPENDIX A: DERIVATION
OF PERTURBATION EQUATIONS

We treat the oscillating scalar field, the radiation, and
the dark matter as perfect fluids with energy momentum
tensors

T�
 ¼ ð�þ pÞu�u
 þ pg�
; (A1)

where � and p are the fluid’s density and pressure, respec-
tively, and u� � dx�=d� is its four-velocity. In this appen-
dix, we will take x0 to be the proper time t. The dark matter
and the oscillating scalar fields are both pressureless fluids,
while the radiation has p ¼ �=3. Since the scalar field is
decaying into radiation and matter, these three fluids are
exchanging energy, as described in Eqs. (1)–(3). We can
express this energy exchange covariantly:

r�ððiÞT�

Þ ¼ QðiÞ


 ; (A2)

where i denotes the individual fluids. It follows from
Eqs. (1)–(3) that

Qð�Þ

 ¼ ð�ÞT�
u

�
��� (A3a)

QðrÞ

 ¼ �ð1� fÞQð�Þ


 (A3b)

QðdmÞ

 ¼ �fQð�Þ


 : (A3c)

Thus we see that, in our three-fluid model,

Qð�Þ

 þQðrÞ


 þQðdmÞ

 ¼ 0; (A4)

as required by the conservation of energy and momentum.
We obtain the perturbation equations by evaluating

Eq. (A2) with the perturbed metric

ds2 ¼ �ð1þ 2�Þdt2 þ a2ðtÞ�ijð1þ 2�Þdxidxj (A5)

and with perturbations in the density of each fluid:
�iðt; ~xÞ ¼ �0

i ðtÞ½1þ �iðt; ~xÞ	. We also introduce perturba-
tions to the four-velocity of each fluid: u0 ¼ ð1��Þ and
ujðiÞ ¼ ð1��ÞVj

ðiÞ, where V
j
ðiÞ � dxj=dt is the fluid veloc-

ity of the ith fluid. It follows that

Qð�Þ
0 ¼ ���

0
�ð1þ �� þ�Þ (A6)

Qð�Þ
j ¼ ����

0
�a

2�kjV
k
�; (A7)

to the first order in the perturbations. Thus, we see thatQð�Þ
j

is a first-order quantity, while Qð�Þ
0 has both a zero-order

component ½Qð�Þ;ð0Þ
0 ¼ ���

0
�	 and a first-order component

½Qð�Þ;ð1Þ
0 ¼ ���

0
�ð�� þ�Þ	.

The� ¼ 0 component of Eq. (A2) implies that, for each
fluid

d�

dt
þð1þwÞ	

a
þ3ð1þwÞd�

dt
¼ 1

�0
½Qð0Þ

0 ��Qð1Þ
0 	; (A8)
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where w � p=� is the fluid’s equation of state parameter,
	 � a@iV

i is the divergence of the fluid’s conformal ve-

locity, and Qð0Þ
0 and Qð1Þ

0 are the zero-order and first-order

components of Q0 for this fluid. The divergence of the
spatial components of Eq. (A2) implies that

d	

dt
þ ð1� 3wÞH	þr2�

a
þ w

1þ w

r2�

a

¼ 1

�0

�
@iQi

að1þ wÞ þQð0Þ
0 	

�
: (A9)

Evaluating these equations for each fluid using Eq. (A3)
yields the perturbation equations given by Eq. (10).

APPENDIX B: INITIAL CONDITIONS
FOR THE PERTURBATIONS

The equation suite that we solve is

a2EðaÞ�0
�ðaÞ þ ~	�ðaÞ þ 3a2EðaÞ�0ðaÞ ¼ a~���ðaÞ; (B1a)

a2EðaÞ~	0�ðaÞ þ aEðaÞ~	� þ ~k2�ðaÞ ¼ 0; (B1b)

a2EðaÞ�0
rðaÞ þ 4

3
~	rðaÞ þ 4a2EðaÞ�0ðaÞ ¼ ð1� fÞ ~�

0
�ðaÞ
~�0
rðaÞ

a~��½��ðaÞ � �rðaÞ ��ðaÞ	; (B1c)

a2EðaÞ~	0rðaÞ þ ~k2�ðaÞ � ~k2
�rðaÞ
4

¼ ð1� fÞ ~�
0
�ðaÞ
~�0
rðaÞ

a~��

�
3

4
~	�ðaÞ � 	rðaÞ

�
; (B1d)

a2EðaÞ�0
dmðaÞ þ ~	dmðaÞ þ 3a2EðaÞ�0ðaÞ ¼ f

~�0
�ðaÞ

~�0
dmðaÞ

a~��½��ðaÞ � �dmðaÞ ��ðaÞ	; (B1e)

a2EðaÞ~	0dmðaÞ þ aEðaÞ~	dm þ ~k2�ðaÞ ¼ f
~�0
�ðaÞ

~�0
dmðaÞ

a~��½~	�ðaÞ � ~	dmðaÞ	 (B1f)

~k2�þ 3aE2ðaÞ½a2�0ðaÞ þ a�ðaÞ	 ¼ 3

2
a2½~�0

�ðaÞ��ðaÞ þ ~�0
rðaÞ�rðaÞ þ ~�0

dm�dmðaÞ	; (B1g)

where a prime denotes differentiation with respect to a.
We chose the initial time t0 such that all modes of

interest are super-Hubble (~k < 1). In conformal
Newtonian gauge, super-Hubble perturbations do not

evolve; to zeroth order in ~k2 we may set �0 ¼ �0
� ¼ 0.

By choosing ~�� � 1, we have ensured that the Universe is

initially dominated by the scalar field energy density,

which implies that EðaÞ ¼ a�3=2 and ~�� � ~�r, ~�dm.

Also, ~��ðt0Þ ’ 1 implies that ~�� ’ a�3 prior to the decay

of the scalar field. With these conditions, and neglecting

terms that are proportional to ~k2, and�0, Eq. (B1g) implies
that ��ðt0Þ ¼ 2�ðt0Þ. Equation (B1b) reduces toffiffiffi

a
p

~	0�ðaÞ þ
1ffiffiffi
a

p ~	� þ ~k2� ¼ 0: (B2)

The solution to this equation is ~	� ¼ �ð2=3Þ~k2� ffiffiffi
a

p
.

The solutions for �dmðtÞ and �rðtÞ prior to the decay of
the scalar field [Eqs. (6) and (5)] imply

ð1� fÞ ~�
0
�ðaÞ
~�0
rðaÞ

a~�� ¼ 5

2
ffiffiffi
a

p ; (B3)

f
~�0
�ðaÞ

~�0
dmðaÞ

a~�� ¼ 3

2
ffiffiffi
a

p : (B4)

Therefore, the right-hand sides of Eqs. (B1c) and (B1e) are

not negligible at t ¼ t0, even though ~�� � 1. The left-

hand sides of Eqs. (B1c) and (B1e) are initially zero,
however, because the density perturbations and � do not
evolve while the mode is superhorizon, and the velocity

terms are proportional to ~k2. To solve these equations at the
initial time, we must set the right-hand sides of Eqs. (B1c)
and (B1e) to zero by demanding that �r ¼ �dm ¼ �� ��.

Therefore, our first-order initial conditions for the matter
and radiation perturbations are �rðt0Þ ¼ �dmðt0Þ ¼ �ðt0Þ.
For superhorizon modes in a universe dominated by an

oscillating scalar field, Eq. (B1d) becomes

ffiffiffi
a

p
~	0rðaÞ þ 2~k2�þ 5

2
ffiffiffi
a

p ~	r ¼ 0; (B5)

we have used ~	� ¼ �ð2=3Þ~k2� ffiffiffi
a

p
and �r ¼ � to arrive at

this equation. The solution to this equation is ~	r ¼
�ð2=3Þ~k2� ffiffiffi

a
p

. For superhorizon modes in a universe
dominated by an oscillating scalar field, Eq. (B1f) also
becomes

ffiffiffi
a

p
~	0dmðaÞ þ 2~k2�þ 5

2
ffiffiffi
a

p ~	dm ¼ 0; (B6)

where we have again used ~	� ¼ �ð2=3Þ~k2� ffiffiffi
a

p
. Since this

is the same equation as we obtained for ~	r, we have the

same initial condition for ~	dm.
We can obtain more accurate initial conditions for the

density perturbations by inserting the early-time solutions
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for the velocity perturbations into Eq. (B1). Together,

Eqs. (B1g) and (B1a) imply that the Oð~k2Þ term in the

early-time solution for �ðaÞ is proportional to a�5=2 and
has an undetermined coefficient. Since this is a decaying
mode that diverges as a approaches zero, we choose this
coefficient to be zero and continue to set � ¼ �0 and

�0ðaÞ ¼ 0 at early times. If we do not neglect the ~k2�
term in Eq. (B1g), we see that

��ðaÞ ¼ 2�0 þ 2

3
~k2�0a (B7)

at early times. Using this solution and ~	r ¼ ~	dm ¼
�ð2=3Þ~k2� ffiffiffi

a
p

in Eqs. (B1c) and (B1e) gives

�rðaÞ ¼ �0 þ 46

63
~k2�0a (B8)

�dmðaÞ ¼ �0 þ 2

3
~k2�0a (B9)

at early times. Like our initial condition for �, these
solutions also include undetermined decaying modes, and
we set these modes to zero. As long as the Universe is

scalar dominated, which implies ~��a � 1, these early-

time solutions for the perturbations satisfy Eq. (B1), with

one exception: there is a neglected Oð~k4aÞ term in
Eq. (B1d). Therefore, we expect that the radiation pertur-
bation will deviate from this early-time solution when the
mode enters the horizon. The scalar and matter perturba-
tions, however, will follow these solutions until the
Universe becomes radiation dominated.

APPENDIX C: FITTING FUNCTIONS
FOR THE TRANSFER FUNCTION

We want to find functions Aðk=kRHÞ and Bðk=kRHÞ such
that

�dmða; kÞ ¼ 10

9
�0

�
A ln

�
Ba

ahor

��
; (C1)

where k ¼ ahorHðahorÞ. We know that A ¼ 9:11 and B ¼
0:594 for k=kRH & 1. We also know that A and B are given
by Eq. (19) for k=kRH * 10. We found that the numerical
solution for �dmða; kÞ for 0:05 & k=kRH & 100 is well-fit
by the following expressions for Aðk=kRHÞ and Bðk=kRHÞ:

AðxÞ ¼ exp

�
0:609

f1þ 2:15ðlnx� 1:52Þ2g1:38
�

�
�
9:11Sð5:02� xÞ þ 3

5
x2Sðx� 5:02Þ

�

lnBðxÞ ¼ lnð0:594ÞSð5:02� xÞ þ ln

�
e

x2

�
Sðx� 5:02Þ;

(C2)

where

S ðyÞ ¼ 1

2

�
tanh

�
y

2

�
þ 1

�
(C3)

serves as a smooth step function. We have tested these
fitting functions for several values of kRH and a, and we
find that Eq. (C1) fits the numerical solution for �dmða; kÞ
to within 5% for 0:05< k=kRH, provided that the modes
have entered the Hubble horizon and ��r � ��dm.
We also want to find a scale-dependent growth function

Dðk; zÞ such that

�dmðk; zÞ ¼ D50ðk; zÞ � �dmðk; z ¼ 50Þ: (C4)

The function D50ðk; zÞ should mimic the scale dependence
of TCAMB=TEH at redshift z ¼ 50. This ratio is approxi-
mately unity for k=keq & 104, and then it decreases to

0.773 for k=keq * 105. This transition follows

TCAMB=TEH ’ DsðkÞ, where
DsðkÞ � Da �Db

1þ ð k=keq48 500Þ2:1
þDb (C5)

with Da ¼ 1 and Db ¼ 0:773. For redshifts 3 & z & 500,
the modes with TCAMB=TEH ’ 1 are proportional to
ð2=3Þ þ ða=aeqÞ, while the modes with TCAMB=TEH ’
0:773 are proportional to DðaÞ as defined by Eq. (21).
Therefore, we define our scale-dependent growth function
in this redshift range as D50ðk; zÞ ¼ DsðkÞ with

DaðzÞ ¼
2=3þ ð1þ zeqÞ=ð1þ zÞ
2=3þ ð1þ zeqÞ=51 (C6)

DbðzÞ ¼ DðzÞ
Dðz ¼ 50Þ : (C7)

At lower redshifts, the dark energy slows the growth of
density perturbations. Since we expect the microhalos
described in Sec. V to be contained within larger structures
at these redshifts, the transfer function at z & 3 is not very
important to our analysis. To facilitate comparisons with
the standard cosmological scenarios, however, we do re-
port TðkÞ and �ðMÞ evaluated at the present day, and so we
need to extend our growth function to z ¼ 0. We take

D50ðk; zÞ ¼
8<
:
Dsðk; zÞ for z � 2:67

D1ðzÞ
D1ðz¼2:67ÞDsðk; z ¼ 2:67Þ for z < 2:67

(C8)

where DsðkzÞ is defined by Eqs. (C5)–(C7), and

D1ðzÞ ¼ 5�M

2

HðzÞ
H0

Z ð1þzÞ�1

0

H3
0

½aHðaÞ	3 da: (C9)

We chose z ¼ 2:67 to be the transition point because

D1ðz ¼ 2:67Þ
D1ðz ¼ 50Þ ¼ Daðz ¼ 2:67Þ: (C10)

Consequently, on large scales (k=keq & 104),

D50ðz < 2:67Þ ¼ D1ðzÞ
D1ðz ¼ 50Þ : (C11)
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