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The inclusion of a period of (effective) matter domination following inflation and prior to the onset of
radiation domination has interesting and observable consequences for structure growth. During this early
matter-dominated era (EMDE), the Universe was dominated by massive particles, or an oscillating scalar
field, that decayed into Standard Model particles, thus reheating the Universe. This decay process could
also be the primary source of dark matter. In the absence of fine-tuning between the masses of the parent
and daughter particles, both dark matter particles and Standard Model particles would be produced with
relativistic velocities. We investigate the effects of the nonthermal production of dark matter particles with
relativistic velocities on the matter power spectrum by determining the resulting velocity distribution
function for the dark matter. We find that the vast majority of dark matter particles produced during the
EMDE are still relativistic at reheating, so their free streaming erases the perturbations that grow during the
EMDE. The free streaming of the dark matter particles can also prevent the formation of satellite galaxies
around the Milky Way and the structures observed in the Lyman-α forest. For a given reheat temperature,
these observations put an upper limit on the velocity of the dark matter particles at their creation. For
example, for a reheat temperature of 10 MeV, dark matter must be produced with a Lorentz factor γ ≲ 550.
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I. INTRODUCTION

The nature of dark matter remains a pressing question in
cosmology. One of the most common assumptions is that
dark matter was once in thermal equilibrium with Standard
Model (SM) particles in the early Universe. As the SM
plasma cooled, thermal production of dark matter ceased
while annihilations continued. The dark matter abundance
thus began decreasing until its annihilation rate equaled the
Hubble rate, at which point annihilations also ceased, and
the dark matter abundance became constant. A second
common assumption is that this dark matter freeze-out
process occurred during a period of radiation domination.
These assumptions allow one to calculate the annihilation
rate that generates the currently observed dark matter
abundance. The required annihilation cross section is
“miraculously” of the electroweak scale [1]. However, as
we continually place more stringent bounds on dark matter
properties, while failing to receive signals from any

direct [2–4] or indirect [5–10] searches, interest in alter-
natives to this commonly considered scenario grows.
Alternatives to the common scenario often challenge the

assumptions that dark matter was in thermal equilibrium
with SM particles and that it froze out during an era of
radiation domination, both of which, while tenable, are not
strictly necessary. A period of radiation domination is
required at temperatures below ∼3 MeV in order to be
consistent with the successful predictions of light element
abundances from big bang nucleosynthesis (BBN) [11–13].
Inflation, however, is believed to occur at energy scales that
greatly exceed this temperature, and the thermal history of
the Universe between the two periods is entirely uncon-
strained. In the simplest scenario, the inflaton decays into
relativistic particles that come to dominate the energy
density of the Universe, and an era of radiation domination
begins [14,15]. The transition to a radiation-dominated era,
known as reheating, is usually assumed to occur at temper-
atures many orders of magnitude above 3 MeV. It is not
necessary, however, that this be the case: the reheating of
the Universe can occur at any temperature between 3 MeV
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and the energy scale of inflation, and it can be caused by a
number of different mechanisms.
In many models, inflation ends when the scalar field that

drives inflation begins oscillating in its potential minimum
before decaying. If these oscillations occur in a quadratic
potential, the field behaves as pressureless fluid, and the
Universe is effectively matter dominated [16]. Similar
scenarios occur when one considers the scalar (moduli)
fields that are a common component of string theories
[17–24]. These oscillating fields naturally come to domi-
nate the energy density of the Universe following the decay
of the inflaton, providing another viable mechanism to
produce an effectively matter-dominated era. Hidden-sector
theories, in which the dark matter does not couple directly
to the SM, can also alter the thermal history [25–30],
providing yet another means to achieve a period of matter
domination prior to BBN. Thus, an early matter-dominated
era (EMDE) arises in many theories of the early Universe.
The occurrence of an EMDE can profoundly affect dark

matter phenomenology, notably its resulting relic abun-
dance [31–47]. The entropy generated by the decay of the
dominant matter component during the EMDE dilutes the
relic abundance of existing particles; if dark matter ther-
mally decoupled during the EMDE, a smaller annihilation
cross section hσvi is required to compensate for this
dilution and provide the observed dark matter abundance.
Contrarily, if dark matter is a decay product of the
dominating component, its abundance can be significantly
enhanced, requiring a larger hσvi to compensate for the
excess, a scenario already under pressure by γ-ray obser-
vations [48,49]. The correct relic abundance can almost
always be obtained with the appropriate combinations of
hσvi, dark matter branching ratio, and temperature at
reheating [35,36,40,45]. In many scenarios, the dominant
production mechanism for dark matter is by decay, rather
than thermal production.
Another interesting consequence of an EMDE is the

growth of small-scale structure. Subhorizon density per-
turbations in dark matter grow linearly with the scale factor
during an EMDE, as opposed to the much slower loga-
rithmic growth experienced during a radiation-dominated
era [50–52]. This linear growth can provide an enhance-
ment to dark matter structure on extremely small scales
(λ≲ 30 pc for temperature at reheating >3 MeV), provid-
ing observable consequences to this scenario if dark matter
is a cold thermal relic [52–54].
However, if the dark matter is relativistic at reheating, the

perturbation modes that enter the horizon during the EMDE
will be wiped out by the free streaming of dark matter
particles [50,51]. For this reason, Ref. [50] assumed that the
dark matter particles were born from the decay process with
nonrelativistic velocities or had a way of rapidly cooling in
order for the enhancement to substructure to be preserved.
Assuming a nonrelativistic initial velocity for the dark
matter requires a small, finely tuned mass splitting between

the parent and daughter particles, and it is more natural to
assume any daughter particles are produced relativistically.
Reference [51] claimed that the large free-streaming

length of dark matter produced relativistically from scalar
decay would washout any enhancement to structure
growth. However, Ref. [51] reached this conclusion by
assuming that all dark matter particles were created at
reheating, neglecting those particles created during the
EMDE. The momenta of particles born prior to reheating
decreased throughout the EMDE. Consequently, particles
born earlier will be slower at reheating. We investigate
the extent to which the redshifting of the particles’
momenta affects their velocity distribution at reheating,
focusing on the average particle velocity and the fraction of
particles below a given velocity, to determine under what
conditions the EMDE enhancement to structure growth can
be preserved.
We further consider under what conditions the free

streaming of relativistically produced dark matter could
suppress the structures we observe. The Lyman-α forest
provides information on the matter power spectrum at the
smallest observable scales, 0.5 Mpc=h < λ < 20 Mpc=h
[55–57]. The Milky Way’s (MW) satellite galaxies also
constrain the small-scale power spectrum [58]. Preventing
the suppression of power at these scales provides us with
constraints on the allowed dark matter velocity at its
production for a given reheat temperature.
This paper is organized as follows. We begin in Sec. II by

introducing our model for reheating and nonthermal dark
matter production and the resulting evolution of the average
dark matter velocity. In Sec. III we derive a distribution
function for the dark matter and use it to examine the
fraction of dark matter that is nonrelativistic at reheating
and the fraction whose velocity is sufficiently low to
preserve the EMDE-enhanced structure formation. In
Sec. IV we examine conditions under which the dark
matter velocity is high enough to run afoul of constraints
from Lyman-α forest observations and observed MW
satellites. We conclude in Sec. V. Throughout this paper
we will use natural units: c ¼ ℏ ¼ kB ¼ 1.

II. NONTHERMAL PRODUCTION
OF DARK MATTER

In the scenario we consider, the energy density of the
Universe is dominated by an oscillating scalar field (or a
massive particle species). As previously mentioned, for
sufficiently rapid oscillations within a quadratic potential,
the field’s energy density scales as ρϕ ∝ a−3, and it exhibits
the same dynamics and perturbation evolution as a pres-
sureless fluid [16,59,60]. The Universe experiences an
early “matter”-dominated era until the expansion rate
equals the decay rate of the field, H ≃ Γϕ, at which
point the Universe transitions from scalar to radiation
domination. We use this transition to define the reheat
temperature, TRH:
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π3G
45

g�;RHT4
RH

r
¼ Γϕ; ð1Þ

where G is the gravitational constant and g�;RH is the
number of relativistic degrees of freedom at TRH. For a
scalar field that decays into both dark matter and relativistic
particles, the equations for the evolution of the energy
densities of the scalar field ρϕ, relativistic SM particles ρr,
and dark matter ρχ are given by

_ρϕ ¼ −3Hρϕ − Γϕρϕ;

_ρr ¼ −4Hρr þ ð1 − fÞΓϕρϕ;

_ρχ ¼ −3Hð1þ wχÞρχ þ fΓϕρϕ: ð2Þ

Here dots represent differentiation with respect to proper
time, f is the fraction of the scalar’s energy that is
transferred to the dark matter, and wχ is the dark matter
equation-of-state parameter.

A. Dark matter abundance

In the above system of equations, we do not allow for
scattering interactions between the dark matter and SM
particles. Also, we neglect both the thermal production and
self-annihilation of dark matter particles, effectively assum-
ing that the velocity-averaged annihilation cross section
is small enough that any amount of dark matter lost to
annihilations is negligible and any produced thermally is
negligible compared to that produced from scalar decay.
However, if dark matter annihilations are s-wave, neglect-
ing annihilations does not change the results of our
conclusions because we are interested in the average dark
matter velocity and the fraction of dark matter that has lost
sufficient momentum to participate in structure formation.
These quantities are dependent on the velocity distribution
of dark matter. For s-wave annihilations, the velocity-
averaged cross section is independent of particle velocity,
and the distribution of particle velocities would be unaf-
fected by the inclusion of annihilations.
Without annihilations, constraining the reheat temper-

ature to be above 3 MeV, as required by BBN, leads to a
direct constraint on the fraction of the scalar’s energy
imparted to the dark matter: f ≲ 10−7 [50] for nonrelativ-
istic dark matter. This branching ratio is quite small and it
would be more natural to expect the energy imparted in the
decay of the scalar to be more evenly allocated to both the
dark matter and the SM. The inclusion of annihilations,
however, significantly reduces the ratio of dark matter to
radiation. This can allow for a more balanced transfer of
energy, f ∼ 0.5, while still achieving a sufficiently small
dark matter abundance through annihilations [35,51]. For
relativistic dark matter, its abundance is also dependent on
the velocity imparted to the particles at decay ðvDÞ.
In our model, we consider the scenario in which the dark

matter is produced via a two-body decay so that all dark

matter particles are born with the same velocity, vD. The
energy density and decay rate of the scalar then govern
the evolution of the equation of state wχ for the dark
matter particles during the EMDE. The rates at which new
particles are produced and the momentum of existing
particles redshifts away determine the average energy
per particle of the dark matter:

hEi ¼
R
a
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

χ þ ðγmχvða; aDÞÞ2
q

dn̂χ
daD

daDR
a
1

dn̂χ
daD

daD
; ð3Þ

where n̂χ is the comoving number density of the dark
matter particles, vða; aDÞ is the velocity at a of a dark
matter particle created at aD, and we integrate over aD with
a ¼ 1 setting the onset of dark matter production.
When evaluating Eq. (3) we use the fact that the

comoving number density of the dark matter evolves
according to

dn̂χ
dt

¼ bΓϕn̂ϕ; ð4Þ

where n̂ϕ is the comoving number density of ϕ particles,
and b is the number of dark matter particles produced per
scalar decay. We can then (following a procedure similar to
that in Ref. [61]) express the term dn̂χ=daD as

dn̂χ
daD

¼ dn̂χ
dt

dt
daD

¼ bΓϕn̂ϕ
_aD

¼
bΓϕ

ρϕ
mϕ

a3D
aDHD

∝
ρϕ
HD

a2D: ð5Þ

The constants b, Γϕ, and mϕ appear in both integrals in
Eq. (3) and consequently do not affect hEi. We numerically
evaluate Eq. (3) to obtain the average energy as a function
of the scale factor; this is made even simpler by noting that
the contribution of the dark matter to the expansion rate at
the time of decay, HD, is entirely negligible compared to
both the scalar and radiation energy densities. The calcu-
lation of the average energy then informs how the dark
matter equation of state evolves:

wχ ¼ −
1

3HhEi
dhEi
dt

: ð6Þ

The mass of the dark matter particle can be pulled from
both the average energy and its derivative, and so wχ at any
given time depends only on the average velocity.
Using Eq. (6), we numerically solve the set of equations

in Eq. (2) with the initial condition ai ≡ aðtiÞ ¼ 1, and we
assume there is no dark matter in existence prior to this
time. Figure 1 shows the evolution of the scalar, radiation,
and relativistic ðvD ¼ 0.99Þ and nonrelativistic ðvD ¼ 0.1Þ
dark matter energy densities in our model. The energy
densities in the figure are given as fractions of the initial
critical energy density ρcrit;i.
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In Fig. 1, we have chosen to fix f ¼ 10−7, which directly
sets the relative abundance of dark matter to radiation
during the EMDE to be ∼10−7, and we have chosen a scalar
decay rate Γ̃ϕ ≡ Γϕ=Hi ¼ 10−10, which sets aRH ≡ Γ̃−2=3≃
5 × 106. It is worth noting that, by this definition,
aRH ≠ ajT¼TRH

. The numerical solutions to Eq. (2) show
that by a scale factor of 3aRH enough of the scalar has
decayed away that it is a negligible source of radiation.
As a result, the radiation energy density then evolves
as in the usual radiation-dominated era from a
temperature Tð3aRHÞ ≃ 0.34TRH onward. This sets the
relation between aRH and TRH to be aRH=a0 ¼
1.54ðT0=TRHÞg−1=3�S ð0.34TRHÞ, where g�S is the number
of relativistic degrees of freedom in the entropy density.
The effects of the dark matter particles’ velocities can

already been seen in Fig. 1. During the EMDE, the energy
density of any species, relativistic or nonrelativistic,
sourced by scalar decay evolves as ρ ∝ a−3=2. At the
end of the EMDE, when the scalar field is no longer
sourcing new particles, the energy densities of the decay
products will begin to scale as ρ ∝ a−3ðwþ1Þ. For a scenario
in which dark matter is born relativistic, the average value
of wχ during reheating is close to 1=3, and the dark matter
behaves more like radiation. In Fig. 1 we can see that,
following reheating, the energy density of relativistic dark
matter (dotted) redshifts away faster than its nonrelativistic
counterpart (dashed). Once the scalar field has decayed
completely and there is no creation of new, hot particles,
the existing particles’ momenta continue to redshift until
the average particle is no longer relativistic, and after
that, the dark matter density scales as a−3.

Increasing the velocity imparted to the dark matter
particles upon their creation increases the time it takes
after reheating for the dark matter energy density to begin
scaling as a−3, thus increasing the duration of radiation
domination for a given value of f. The temperature at
matter-radiation equality is Teq ¼ 0.796� 0.005 eV [62],
and so a longer radiation-dominated era implies a higher
temperature at reheating. For a fixed value of f, the reheat
temperature that matches the observed dark matter abun-
dance in a scenario of relativistically produced dark matter
is a factor of γD greater than that of nonrelativistic dark
matter, where γD is the Lorentz factor of the relativistic dark
matter particle at production. For a given reheat temper-
ature, the value of f required to produce the observed dark
matter abundance is

f ≃ 2.3 × 10−7ð3 MeV=TRHÞγD: ð7Þ

In the absence of annihilations, the dark matter density
during the EMDE is also determined by f: if vD ≪ 1 then
ρχ=ρr ≃ ð5=3Þf [50], whereas if vD ≃ 1 then ρχ=ρr ≃ f.
In the latter case, ρχ=ρr ≃ f continues until the dark matter
is no longer relativistic or changes in g� disrupt the
a−4 scaling of ρr. Therefore, for γD ≫ 1, obtaining the
observed dark matter abundance requires that ρχ=ρr ≃
2.3 × 10−7ð3 MeV=TRHÞγD shortly after reheating. This
requirement applies regardless of whether or not annihila-
tions alter the dark matter abundance during the EMDE.
After reheating, but while the dark matter is still relativistic,
the relative dark matter abundance will evolve as

ρχ
ρr

����
T
≃ 2.3 × 10−7

�
3 MeV
TRH

�
γD

×

�
g�SðTÞ

g�Sð0.34TRHÞ
�
4=3 g�ð0.34TRHÞ

g�ðTÞ
; ð8Þ

in either case.
If dark matter is still relativistic at neutrino decoupling, it

could affect the predictions of BBN. Dark matter produced
relativistically at reheating would still be relativistic (γ ≳ 2)
when T ¼ 10 MeV if

γD ≳ 2.4g1=3�S ð0.34TRHÞ
TRH

10 MeV
: ð9Þ

Relativistic dark matter behaves as an additional radiation
component, and can be characterized as a change in the
number of effective neutrinos,ΔNeff . The energy density in
relativistic particles can be written as

ρr þ ρχ;rel ¼
π2

30

�
g� þ

7

8
× 2 × ΔNeff

�
Tν

T

�
4
�
T4;

ρχ;rel ¼
π2

30

�
7

8
× 2 × ΔNeff

�
T4
ν; ð10Þ
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FIG. 1. The energy densities of the scalar (black, solid), radiation
(grey, solid), and dark matter for particles born relativistic
(vD ¼ 0.99; red, dotted) and nonrelativistic (vD ¼ 0.1; blue,
dashed). During the EMDE, both the dark matter and radiation
densities scale as a−3=2 while they are being sourced by the
decaying scalar field. Here f ¼ 10−7 and the scalar decay rate is
Γ̃ϕ ¼ Γϕ=Hi ¼ 10−10. Reheating is marked by the thin vertical

dashed line at aRH ¼ Γ̃−2=3
ϕ .
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where Tν is the neutrino temperature, which we assume
evolves as a−1 after T ¼ Tν ¼ 10 MeV, when g� ¼ g�S ¼
10.75. Thus, the fractional component of the energy density
in dark matter at 10 MeV, is related to ΔNeff by

f10 MeV ≡ ρχ
ρr

����
10 MeV

¼ 7

4
ΔNeffg−1�S ð10 MeVÞ

≃ 0.074ΔNeff : ð11Þ
Bounds from BBN constrain Neff ¼ 2.88� 0.54 at
95% C.L. [63], yielding an upper bound f10 MeV <
0.028. If the dark matter is still relativistic at BBN,
then achieving the observed relic abundance requires
f10MeV≃5×10−7γDð3MeV=TRHÞg−1=3�S ð0.34TRHÞ, as given
by Eq. (8). Therefore, the upper bound on f10 MeV

translates to a bound on γD: γD ≲ 5.4 × 104ðTRH=3 MeVÞ
g1=3�S ð0.34TRHÞ.
This upper bound on γD implies an upper bound on the

value of f in Eq. (7) that can result in the observed relic
abundance. We will see in Sec. IV that restrictions from
small-scale structure on the parameter space of γD and TRH
provide much stronger bounds. As such, annihilations are
still necessary to reduce the dark matter abundance to its
required value following reheating without fine-tuning f.

B. The adiabatic cooling of dark matter

Given that themomentumof a particle scales asp ∝ a−1, a
particle born from a decay at a scale factoraD, with a physical
velocity vD, has a velocity at some later time given by

v2ða; aDÞ ¼
v2D

ð1 − v2DÞð a
aD
Þ2 þ v2D

: ð12Þ

The average velocity over all the dark matter particles at any
given time is then

hv2ðaÞi ¼
�Z

a

1

v2ða; aDÞ
dn̂χ
daD

daD

��Z
a

1

dn̂χ
daD

daD

�
−1
;

ð13Þ
which can be evaluated in the same manner as Eq. (3).
Figure 2 shows the evolution of the average dark matter

particle velocity throughout the EMDE until just after
reheating; the various curves in Fig. 2 represent different
values of vD. We can see that the average velocity is
initially dominated by the few particles born immediately
with the imparted velocity. The velocity of these particles

begins to redshift away, pulling the average down, until a
steady state is reached between the redshifting of the
velocity of existing particles and the creation of new, hot
particles.
In the regime where the average velocity has reached a

constant value—deep into the EMDE and well before
reheating—we can simplify our calculation of the average
velocity even further and analytically solve the integrals of
Eq. (13). During the EMDE, the energy density of the
Universe is dominated by the scalar field, and our expres-
sion in Eq. (5) becomes

ρϕ
HD

a2D ≃
ρϕ;ia−3D
Hia

−3=2
D

a2D ¼ ρϕ;i
Hi

ffiffiffiffiffiffi
aD

p
: ð14Þ

Rewriting the expression for v2 to make its dependence
on the integration variable, aD, more apparent, we have

v2ða; aDÞ ¼
a2D

ðaXÞ2 þ a2D
; ð15Þ

where X ≡ γDvD. And so, deep in the EMDE, our
expression for the average velocity, given by Eq. (13),
takes the form

hv2ðaÞi ¼
�Z

a

1

a5=2D

ðaXÞ2 þ a2D
daD

��Z
a

1

ffiffiffiffiffiffi
aD

p
daD

�
−1
: ð16Þ

The solution to the integral in the numerator is given by

Z
a

1

a5=2D daD
ðaXÞ2 þ a2D

¼ 2

3
ða3=2 − 1Þ þ

�
a
2X

�
3=2

ln

�
1þ ffiffiffiffiffiffi

2X
p þ X

1 −
ffiffiffiffiffiffi
2X

p þ X

a −
ffiffiffiffiffiffiffiffiffi
2aX

p þ X

aþ ffiffiffiffiffiffiffiffiffi
2aX

p þ X

�

þ 2

�
a
2X

�
3=2
�
tan−1ð1 −

ffiffiffiffiffiffi
2X

p
Þ − tan−1ð1þ

ffiffiffiffiffiffi
2X

p
Þ − tan−1

�
1 −

ffiffiffiffiffiffi
2X
a

r �
þ tan−1

�
1þ

ffiffiffiffiffiffi
2X
a

r ��
: ð17Þ
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FIG. 2. The average velocity of the dark matter particles as a
function of scale factor a throughout the EMDE for vD ¼ 0.1,
0.5, 0.9, 0.99 (bottom to top). Reheating is marked by the thin
vertical dashed line.
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The solution to the integral in the denominator is simplyZ
a

1

ffiffiffiffiffiffi
aD

p
daD ¼ 2

3
ða3=2 − 1Þ: ð18Þ

Long after the decays have started (a ≫ 1), both integrals
scale as a3=2 and hv2ðaÞi is constant until just prior to
reheating, at which point our approximation in Eq. (14) is
no longer valid.
The steady state between the cooling of old particles

and the creation of new, hot ones is maintained until just
before reheating, and the average dark matter velocity at
reheating is not reduced significantly from the velocity
imparted at the scalar’s decay. Relativistic-born dark matter,
vD ¼ 0.99, is still considerably relativistic at reheating,ffiffiffiffiffiffiffiffiffi
hv2i

p
≃ 0.93. At reheating, the average dark matter

particle is nonrelativistic only if vD is already largely
nonrelativistic:

ffiffiffiffiffiffiffiffiffi
hv2i

p ≲ 0.01 requires vD < 0.017.
If the comoving size of the horizon at reheating,

k−1RH ¼ ðaRHHRHÞ−1, is smaller than the dark matter free-
streaming horizon, k−1fs , then the random drift of dark matter
particles will erase the growth of density perturbations that
occurred during the EMDE. Reference [50] found that
kRH=kfs < 1 required the dark matter velocity at reheating
to be vRH ≲ 0.06. Preserving enhanced structure growth
requires an even smaller average velocity. Achieving such a
small average velocity at reheating would require the dark
matter particles to be born with a similarly small velocity.

III. DARK MATTER DISTRIBUTION FUNCTION

Although the average dark matter particle may have too
large a velocity to participate in enhanced structure for-
mation, we would like to investigate what fraction of the
dark matter population has a sufficiently low velocity to do
so. Instead of considering the average particle velocity at
reheating, we will consider what fraction of the dark matter
has a velocity at reheating that is less than a percent of the
speed of light. To this end, we begin by deriving the dark
matter distribution function. At a given time, a, the fraction
of dark matter with velocities below a particular threshold
equals the fraction of dark matter born before the corre-
spondingly required “birth time,” aD.
From the fact that v=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
∝ a−1, we know that in

order for a particle born with velocity vD to have a velocity
less than vRH at reheating, that particle must have been born
from decay at a scale factor,

aD <
vRH
vD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2D
1 − v2RH

s
aRH: ð19Þ

Obtaining the distribution function in birth times of the
dark matter particles, fðaDÞ, will then allow us to compute
the fraction of dark matter born before this time.

The fraction, ε, of dark matter particles born within a
particular interval of scale factor, aD;1 > aD > aD;2, is
given by

εaD;12
¼
Z

aD;2

aD;1

fðaDÞdaD: ð20Þ

This fraction can also be directly computed by

εaD;12
¼
R aD;2
aD;1 dn̂χR∞
1 dn̂χ

¼
R aD;2
aD;1

dn̂χ
daD

daDR∞
1

dn̂χ
daD

daD
: ð21Þ

Equating the two expressions for εaD;12
and considering

small intervals in the scale factor, we can derive an
expression for the distribution function:R aD;2

aD;1 dn̂χR
∞
1 dn̂χ

¼
Z

aD;2

aD;1

fðaDÞdaD

≃ fðaDÞΔaD;

fðaDÞ ≃
R aD;2
aD;1 dn̂χ

ΔaD
R∞
1 dn̂χ

: ð22Þ

Numerically evaluating Eq. (22), we obtain the distribution
function of dark matter birth times seen plotted in Fig. 3
as fðaD=aRHÞ ¼ aRHfðaDÞ. From Fig. 3, one can see
that approximately half of the dark matter is born after
reheating, a=aRH > 1.
From Eq. (19) one can find that, even for dark matter

particles imparted with a velocity only half of the speed of
light, only those born before aD ≲ 0.017aRH will have a
velocity at reheating vRH < 0.01. Integrating our distribu-
tion function over this interval in aD, we find the fraction of
dark matter born before this time to be approximately
0.15%. Figure 4 shows the fraction of dark matter that has a
velocity below v ¼ 0.01 at reheating as a function of the
given value of vD. Even for dark matter born at only one
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FIG. 3. The birth time distribution function of dark matter for
our model. The peak production of dark matter occurs just prior
to reheating and fðaD=aRHÞ is maximized at aD ≃ 0.68aRH.
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tenth of the speed of light, only ∼2% of the dark matter has
the required vRH < 0.01.
One of the intriguing consequences of an EMDE is

that density perturbations in matter grow linearly with the
scale factor during an EMDE, which is faster than the
logarithmic growth expected during the typically assumed
radiation-dominated epoch. We now examine what fraction
of the dark matter is able to retain an appreciable pertur-
bation enhancement from this linear growth. Since density
perturbations grow linearly during the EMDE, a mode that
enters the horizon at a scale factor of 0.1aRH will grow by a
factor of ∼10 during the EMDE, which we will consider
“appreciable.” The comoving wavelength of such a mode is
given by the horizon size at this time:

λ ¼ λhorjaRH=10 ¼
1

aRH
10

HðaRH
10
Þ : ð23Þ

Any modes that enter the horizon prior to 0.1aRH will
experience even more growth. The comoving free-streaming
length of a dark matter particle born at aD is given by

λfs ¼
Z

a0

aD

vðaÞ da
a2HðaÞ ; ð24Þ

where a0 is the value of the scale factor today. Similar to our
approach in the previous evaluation, there is a value of aD for
which the dark matter free-streaming length is less than the
horizon size at 0.1aRH (λfs < λhorjaRH=10).
The resulting fraction of dark matter that is born before

this time, and thus that preserves a factor of 10 or more
growth in perturbation amplitude, is shown in Fig. 5. The
integral in Eq. (24) can be broken into three separate
contributing integrals, representing the scalar-, radiation-,
and matter-dominated eras (because the dark matter free-
streaming length does not change significantly after matter-
radiation equality, we neglect dark energy). The contribution
coming from the radiation-dominated era is dependent on

the duration of the era, which, in our formalism, is set by the
relative abundance of dark matter and radiation following
reheating, and this is directly related to the reheat temper-
ature. The dependence on TRH, however, is only logarithmic
and large variations in TRH do not result in significant
changes in the resulting fraction. Due to the interdependency
discussed in Sec. II between the parameters f, TRH, and vD
required to obtain the appropriate dark matter abundance, we
plot the fraction of dark matter able to preserve enhanced
structure growth both as a function of vD for various f in
Fig. 5 and as a function of TRH for various vD in Fig. 6.
Figure 6 shows how insensitive the fractional component of
dark matter that experiences enhanced structure growth is to
the reheat temperature.
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FIG. 4. Fraction of dark matter whose velocity at reheating is
vRH < 0.01 as a function of the assumed velocity imparted to the
dark matter at its production.
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FIG. 5. Fraction of dark matter whose free-streaming length is
smaller than the scale of the perturbation mode that experiences a
factor of 10 in growth during the EMDE as a function of the
assumed dark matter velocity at production. The different lines
represent values of f ¼ 10−7 (solid), 10−5 (dashed), and 10−3

(dotted), or equivalently, TRH ≃ 3γD MeV, TRH ≃ 0.03γD MeV,
and TRH ≃ 0.0003γD MeV, respectively, in order to produce the
observed relic abundance of dark matter without annihilations.
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FIG. 6. Fraction of dark matter whose free-streaming length is
smaller than the scale of the perturbation mode that experiences a
factor of 10 in growth during the EMDE as a function of the
reheat temperature. The different lines represent, from top to
bottom, values of vD ¼ 0.1, 0.5, and 0.99.
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Unfortunately, for dark matter particles born relativisti-
cally throughout an EMDE, the redshifting of their
momentum is not enough to allow an appreciable fraction
of the particles to participate in enhanced structure for-
mation. Studies of mixed dark matter, in which there are
both cold and warm dark matter components, show that the
small-scale matter power spectrum is suppressed by 99%
even when up to half of the dark matter is cold [64].
Therefore, the fraction of dark matter that is cold enough to
benefit from the growth of perturbations during the EMDE
is far too small for these structures to form.

IV. LYMAN-ALPHA AND MW SATELLITE
CONSTRAINTS

We have shown that the redshifting of the momentum of
dark matter particles prior to reheating does not cool the
dark matter enough to preserve the enhanced structure
growth on scales that enter the horizon during the EMDE
(λ≲ 30 pc for TRH > 3 MeV). In this section we consider
if the dark matter is too hot, i.e., if its free-streaming length
is large enough to prevent the formation of the smallest
observed structures. Analysis of Lyman-α data can be used
to probe the matter power spectrum on small scales,
0.5 Mpc=h < λ < 20 Mpc=h [55–57], or 12.6 h=Mpc >
k > 0.06 h=Mpc, and we compare the degree of gravita-
tional clustering at these scales in our model to that of the
traditional model of cold dark matter. The existence of
MW satellite galaxies provides another probe of small-
scale structure formation. Suppression of the power spec-
trum leads to an underabundance of small structures, and
the known abundance of substructures in the vicinity of the
MW provides a bound on the allowed suppression [58].

A. Free-streaming length

We begin by calculating the physical streaming length
today of a particle born at reheating:

λphysfs;0 ¼ a0

Z
a0

aRH

vðaÞ da
a2HðaÞ : ð25Þ

The choice of aD ¼ aRH is beneficial in that the fraction of
dark matter born before reheating, found by our previous
analysis of the distribution of birth times, is 0.51, and we
can say that approximately half of the dark matter will have
a free-streaming length above or below our calculated
value. Another benefit of this choice is that our calculations
of the free-streaming length are made simpler by neglecting
the contribution to the free-streaming length coming from
the EMDE.
Calculating the free-streaming length using Eq. (25)

shows that >75% of this distance is covered after the dark
matter particle has become nonrelativistic, (γ ≤ 1.01). For
the highly relativistic initial velocities we would like to
consider, the dark matter particles remain relativistic well
after reheating, and are still relativistic after changes in the
number of relativistic degrees of freedom have ceased.
Beginning the integral in Eq. (25) at a�, the value of the
scale factor after which g� remains constant, captures most
(≳90%) of the free-streaming length and illuminates the
important features of this scenario by allowing us to assume
that H ∝ a−2 during radiation domination.
We begin by breaking the integral into two separate

contributing integrals, representing the radiation- and
matter-dominated eras (again we neglect dark energy)
and introducing the variable Y ≡ ðγDvDaDÞ2. The free-
streaming length is then

λfs ¼
Z

a0

a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y

Y þ a2

r
da

a2HðaÞ ≃
1

H�a2�

Z
aeq

a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y

Y þ a2

r
daþ 1

Heqa
3=2
eq

Z
a0

aeq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y

Y þ a2

r
daffiffiffi
a

p

¼
ffiffiffiffi
Y

p

H�a2�
ln

0
B@aeq þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y þ a2eq

q
a� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y þ a2�

p
1
CAþ 2

ffiffiffiffiffiffiffiffiffi
i
ffiffiffiffi
Y

pp
Heqa

3=2
eq

F

0
B@i sinh−1

ffiffiffiffiffiffiffiffiffi
i
ffiffiffiffi
Y

p

a

s
;−1

1
CA
������
a0

aeq

; ð26Þ

where Fðϕ; mÞ is the elliptic integral of the first kind. By choosing aD ¼ aRH (contained in the variable Y), the first term in
the above expression can be simplified under the assumption that aeq ≫ aRH, which is reasonable considering that matter-
radiation equality occurs at a temperature of Teq ≃ 0.8 eV and we require TRH > 3 MeV. The expression for the
contribution to the physical free-streaming length today coming from the radiation-dominated era then simplifies to

λRDfs;0 ≃
γDvDaRHa0

H�a2�
ln

0
B@aeq

a�

2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγDvD aRH

a�
Þ2 þ 1

q
1
CA

¼ ð4.66 × 1011 pcÞγDvD
aRH
a0

"
ln

�
2
T�
Teq

�
− ln

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
γDvD

aRH
a0

�
2
�
T�
T0

�
2

þ 1

s !#
; ð27Þ
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where we have used the fact that g� remains constant after T� ¼ 2 × 10−5 GeV to set a�T� ¼ aeqTeq ¼ a0T0. An important
feature of this calculation is that the parameters of our model, the dark matter velocity at its production and the reheat
temperature, only enter into this expression through the combination

μ≡ γDvDaRH
a0

¼ γDvD
T0g

1=3
�S;0

3½Tg1=3�S �T¼0.34TRH

; ð28Þ

where g�S is the number of relativistic degrees of freedom in the entropy density and again we assume entropy is conserved
after a ¼ 3aRH. Expressed in terms of the variable μ, the physical free-streaming length calculated from the contribution
from both the radiation- and matter-dominated eras is

λphysfs;0 ¼ ð4.66 × 105 MpcÞμ
"
ln

�
2
T�
Teq

�
− ln

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2
�
T�
T0

�
2

þ 1

s !#

þ ð4.66 × 105 MpcÞ
ffiffiffiffiffiffiffi
T0

Teq

s ffiffiffiffiffiffiffi
2iμ

p "
Fðisinh−1

ffiffiffiffiffi
iμ

p
Þ − F

 
isinh−1

ffiffiffiffiffiffiffiffiffiffiffiffi
iμ

Teq

T0

s !#
: ð29Þ

The above equation gives the scale at which the power
spectrum of our model begins to differ from that of the
standard ΛCDM power spectrum. Figure 7 shows the free-
streaming length calculated by Eq. (29) as a function of
the Lorentz factor at decay, γD, for different values of the
reheat temperature. We define kfs ¼ ðλphysfs;0 Þ−1, and above
the horizontal dashed line, the free-streaming length of the
dark matter reaches scales probable by the Lyman-α
forest: k≲ 12.6 h=Mpc; λphysfs;0 ≳ 0.08 Mpc=h. Since the
free-streaming lengths of our model enter the observable
regime, we consider a more precise determination of the
effects of the dark matter free-streaming length in the
next section.

B. Transfer function

We use the Cosmic Linear Anisotropy Solving System
(CLASS) [65] to obtain the dark matter transfer function,

T2ðkÞ≡ PnCDMðkÞ
PCDMðkÞ

; ð30Þ

which describes suppression of structure due to non-cold
dark matter (nCDM) compared to that of the standard CDM
scenario; PnCDMðkÞ and PCDMðkÞ are the matter power
spectra in each respective case.
Acquiring the power spectrum for our scenario requires

us to determine the momentum distribution function of our
dark matter model. Shortly after reheating (a ∼ 3aRH), the
scalar field has decayed almost entirely, and essentially no
new dark matter particles are being produced. After this
point, the distribution of the comoving momenta of the dark
matter particles does not change. We scale the comoving
momenta of the dark matter particles by the comoving
momentum of a particle born at the scale factor that
maximizes fðaDÞ, amax ¼ 0.68aRH, and express our dis-
tribution function in terms of

q≡ ap
amaxpD

¼ aD
amax

; ð31Þ

where pD is the physical momentum of a particle with
velocity vD. Since we assume that all dark matter particles
are produced with the same velocity, the distribution in
momentum for particles in our scenario can be entirely
determined from the distribution in the particles’ scale
factor at production, which we have already determined.
The two distribution functions can be related through
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FIG. 7. The free-streaming length of the dark matter as
calculated by Eq. (29) as a function of the Lorentz factor at
decay, γD, for (left to right) TRH ¼ ð3; 30; 300; 3000Þ MeV. The
horizontal dashed line marks λphysfs;0 ≳ 0.08 Mpc=h, approximately
the lower limit to scales probed by Lyman-α observations.
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4πq2fðqÞ ¼ fðaDÞ
daD
dq

¼ 0.68 f

�
aD
aRH

�
: ð32Þ

This distribution function is shown in Fig. 8, and we also
show for comparison the Fermi-Dirac distribution that is
maximized at q ¼ 1. We can see that, compared to the
thermal case, we have a broader distribution function.
With our distribution function fðqÞ, we are able to use

CLASS to obtain transfer functions for any combination of
the velocity imparted to the dark matter and the reheat
temperature by also providing the present-day physical
momentum of a dark matter particle with q ¼ 1:

p0 ¼
amaxpD

a0
∝
aRHγDvD

a0
: ð33Þ

Again we find that, just as in our calculations of the free-
streaming length, the relevant combination of parameters is
μ ¼ γDvDaRH=a0. In Figs. 9 and 10 we show the transfer
functions for dark matter produced at different velocities,
but in scenarios with the same reheat temperature, 3 MeV.
As expected, dark matter particles born at greater velocities
result in the suppression of larger scales (smaller k). The
vertical dashed lines in Fig. 9 mark the free-streaming
horizon kfs ¼ ðλphysfs;0 Þ−1 given by Eq. (29) for each of the
different velocities at production, confirming that it is
the scale at which our model begins to show deviation,
TðkÞ ≃ 0.95, from the CDM scenario.
Transfer functions in nCDMmodels, such as this, can be

well described by a fitting formula [66]:

TðkÞ ¼ ½1þ ðαkÞβ�γ: ð34Þ

Using Lyman-α data, the fitting parameters α, β, and γ can
be constrained [66,67], and the parameters of our model,
vD and TRH, can be constrained as well. The typical scale of
the suppression is set by α, whereas the general shape is
determined by β and γ. When fitting our transfer function at

values TðkÞ > 0.01, the overall shape of our transfer
function varies little across wide ranges of our parameter
space, and β and γ can be expressed as functions of α,
as seen in Fig. 11. The cutoff parameter α is then our only
free parameter, and it can be robustly constrained using
Lyman-α data.
We find typical values of β and γ for our model to be

approximately 2.4 and −1.1 respectively, for α near the
constrainable regime. These values are noticeably different
from those that describe the thermal warm dark matter
(WDM) transfer function, βWDM ¼ 2.24 and γWDM ¼
−4.46. If we compare our transfer functions to those of
WDM with the same value of the half-mode scale1 khm, we
can see in Figs. 9 and 10 that the transfer functions in the
two models are quite similar. However, due to the differ-
ence in the shape parameters of the transfer function fit
between the two models, matching their half-mode scales
requires the cutoff parameter in the WDM transfer function
to be roughly a factor of 2 smaller than that in the
corresponding nonthermal transfer function, α ≃ 2αWDM.
The cutoff in the transfer function of our model is not
as sharp as that of WDM, but they only begin to differ
significantly at scales at which the power in the nCDM
model is already greatly suppressed, TðkÞ≲ 0.1.
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FIG. 8. The distribution function of dark matter for our model
(solid) and a Fermi-Dirac distribution (dashed) for comparison.

10-2

10-1

100

10-1 100 101 102 103

T
(k

)

k (h/Mpc)

FIG. 9. The transfer function for several values of the dark
matter velocity at production, vD. Right to left (cool to warm
colors), the solid lines represent dark matter produced with
increasing Lorentz factor γD ¼ 100, 300, 900, 2700, 8100,
respectively. In all cases TRH ¼ 3 MeV. Vertical dashed lines
represent the scale of the free-streaming horizon calculated using
Eq. (29). The red dotted line represents the typical transfer
function for dark matter with a thermal distribution (βWDM ¼
2.24 and γWDM ¼ −4.46) with a cutoff parameter αWDM ≃
0.16 Mpc=h in order to match the same half-mode scale khm
as our far left curve with α ¼ 0.31 Mpc=h.

1We follow the convention of Ref. [68] and define the half-
mode scale via TðkhmÞ ¼ 0.5, noting that this convention is
different from the half-mode scale, k1=2, defined in Refs. [66] and
[67] for which T2ðk1=2Þ ¼ 0.5.
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Reference [67] provided marginalized bounds on all
three fitting parameters in Eq. (34). The predictable shape
of our transfer function determines the values of β and γ
as a function of α, as shown in Fig. 11, and allows us to
obtain a bound on the remaining free parameter, the scale
of the cutoff: α < 0.011 Mpc=h (68% C.L.) and α <
0.026 Mpc=h (95% C.L.). Following Ref. [67], these limits
have been obtained by performing a comprehensive
Markov chain Monte Carlo (MCMC) analysis of the full
parameter space affecting the one-dimensional flux power
spectrum, which is the Lyman-α forest physical observable,
with a data set consisting of the high-resolution and high-
redshift (4.2 < z < 5.4) quasar samples from MIKE and
HIRES spectrographs [69]. The flux power spectra to be
compared against observations are estimated by interpolat-
ing in the multidimensional space defined by the sparse
grid of precomputed hydrodynamic simulations described
in Ref. [67]. Whenever some of the parameters assume
values not enclosed by the template of simulations, the
corresponding values of the power spectra are linearly
extrapolated.
As in the reference analysis from Ref. [67] (but see also,

e.g., Refs. [70], and [71]), the other cosmological and
astrophysical parameters impacting our likelihood are
treated as nuisance parameters to marginalize over. We
adopt conservative flat priors on both σ8, i.e., the normali-
zation of the linear matter power spectrum, and neff , i.e., the
slope of the matter power spectrum at the scale of the
Lyman-α forest (k ∼ 1h=Mpc), in the intervals [0.5, 1.5]
and ½−2.6;−2.0�, respectively; and on the instantaneous
reionization redshift zreio (in the range [7, 15]). Concerning
the astrophysical parameters, we model the redshift evo-
lution of the temperature of the intergalactic medium as a

power law, imposing flat priors on both its amplitude and
tilt (once again, see Ref. [67] for further details). Finally, we
adopt conservative Gaussian priors on the mean Lyman-α
forest fluxes hFðzÞi, with standard deviation σ ¼ 0.04 [57],
and a flat prior on fUV, which is an effective parameter
accounting for spatial ultraviolet fluctuations in the ioniz-
ing background.
Last but not least, we adopt a flat prior on α in the

interval ½0; 0.1� Mpc=h, while the parameters β and γ are
derived analytically, per each MCMC step, according to
the expressions reported in Fig. 11. For further details on
the data set, simulations, and methods that we have used,
we address the reader to any of the aforementioned
references [67,70,71].
For comparison, just as matching the half-mode scale

of the thermal WDM transfer function with that of our
nonthermal model requires α ≃ 2αWDM, the αWDM value of
a 3 keV WDM particle, αWDM ≃ 0.015 Mpc=h [67], is
approximately a factor of 2 smaller than that of our
95% C.L. bound on α. Our limits on γD and TRH
corresponding to our 68% and 95% C.L. bounds on α
are shown in Fig. 12. Scenarios in which the dark matter is
born at too high of a velocity (large γD) or in which the
radiation-dominated era is too short (low TRH) are part of
the excluded parameter space for our relativistic non-
thermal dark matter model. The thin grey lines represent
contours of constant f, the fraction of the scalar’s energy
imparted to the dark matter particle that is required to
obtain the correct relic abundance for a given reheat
temperature without dark matter annihilations. We can
see that, in the absence of annihilations, the allowed values
of γD are not large enough for the required value of f to be
of order unity.
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FIG. 10. The solid lines show the same transfer functions
shown in Fig. 9. Dashed lines show the thermal WDM transfer
functions with matched half-mode scales. Due to the difference
in the shape parameters β and γ in the fitting form of Eq. (34)
between the two models, matching the half-mode scales
requires the cutoff parameters, α, to be related by approxi-
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We also show the outline (dashed) of the parameter
space in which the free-streaming length, calculated
by Eq. (29), is naively probable by Lyman-α data, i.e.,
kfs < 12.6 h=Mpc. As can be seen in Fig. 12, limiting the
free-streaming length provides a bound that is comparable
to those obtained from the full consideration of effects to
the matter power spectrum; the free-streaming scales of a
particle on the boundary of our 68% and 95% C.L. regions
are kfs ¼ 11.4 and 28 h=Mpc, respectively. While examin-
ing effects on the matter power spectrum leads to more
robust bounds within our parameter space, calculations
of the free-streaming length are more readily performed.
Fortunately, as both the free-streaming length and the dark
matter distribution function depend on the same combina-
tion of our parameters, γDvDaRH=a0, there is a simple
relationship between the scale of suppression, α, and the
free-streaming length calculated by Eq. (29):

α ≃ 0.177

�
λphysfs;0

Mpc

�0.908 Mpc
h

ð35Þ

We show this relationship in Fig. 13. In our model, the
bounds on α can be easily used to limit the free-streaming
length, and thereby the parameters γD and TRH on which it
depends.

C. Milky Way satellites

In addition to structures inferred by Lyman-α data, we
can also constrain our model using observed structures in
the Milky Way. Simulations of thermal warm dark matter

provide an indication of how the suppression expected in
the matter power spectrum decreases the abundance of
collapsed objects. The subhalo mass function in simula-
tions with WDM characterizes this underabundance [72],

dN
dM

����
WDM

¼ dN
dM

����
CDM

�
1þ δ

Mhm

M

�
−ε
; ð36Þ

where M is the subhalo mass, δ ¼ 2.7 and ε ¼ 0.99, and
Mhm is the mass scale associated with the half-mode scale2:

Mhm ¼ 4π

3
ΩDMρcrit;0

�
π

khm

�
3

; ð37Þ

where ΩDM is the fraction of the critical density in dark
matter.
Knowing the abundance of satellites of our own galaxy,

constraints can be placed on the amount of allowed
suppression in the subhalo mass function. Using a prob-
abilistic analysis of the MW satellite population and
marginalizing over astrophysical uncertainties, Ref. [58]
found an upper limit on Mhm in Eq. (36), Mhm < 3.1 ×
108 M⊙ (95% C.L.), which implies that the half-mode scale
must satisfy khm > 36 h=Mpc. This bound on khm can be
used to constrain any dark matter model that has a transfer
function comparable to WDM, as we have shown ours to
be in Fig. 10. Though the transfer function of our model
does differ slightly from that of WDM, the differences
occur only when the nCDM power spectrum is already
greatly suppressed compared to that of CDM, TðkÞ≲ 0.1.
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FIG. 13. A plot of the relationship between the fitting parameter
α and the free-streaming length as calculated by Eq. (29). Black
dots represent points for which we have used our model
parameters to calculate the free-streaming length and obtain
the transfer function using CLASS. The grey line shows the fit to
the data given by Eq. (35).

102

103

104

105

106

107

101 102 103

γ D

TRH (MeV)

BBNf = 10-1

f = 10-3

f = 10-5

FIG. 12. Limits on the Lorentz factor γD and the reheat
temperature. The shaded regions correspond to the 1σ and 2σ
bounds, α ¼ 0.011 Mpc=h and 0.026 Mpc=h, respectively. The
thick dashed line represents kfs ¼ ðλfsÞ−1 ¼ 12.6 h=Mpc as
calculated by Eq. (29). The discontinuity at TRH ≃ 170 MeV
occurs due to the sudden change in g� during the QCD phase
transition. Thin solid lines show the contours of f required to
obtain the observed dark matter abundance in the absence of
annihilations. The thick solid line shows the bound on γD as a
function of TRH imposed by BBN, derived in Sec. II A.

2We have verified with the authors of Ref. [72] that they used
the same definition of khm that we have presented here.
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The fitting form to our transfer function, Eq. (34), implies
that the half-mode scale is given by

khm ¼ 1

α

��
1

2

�
1=γ

− 1

�
1=β

; ð38Þ

and the constraint khm > 36 h=Mpc directly translates to
α < 0.026 Mpc=h, matching our 95% C.L. bound from
Lyman-α constraints.

V. CONCLUSION

The inclusion of a period of effective matter domination
between inflation and BBN is an amply motivated alter-
native to the standard thermal history of the Universe. If
dark matter is produced nonthermally during this era, the
viable parameter space for the dark matter annihilation
cross section widens greatly, as large ranges of production
and annihilation efficiencies can combine to result in the
correct relic abundance.
Nonstandard thermal histories could potentially have

observable consequences. Unlike the typically assumed
period of radiation domination following inflation, in
which subhorizon density perturbations grow logarithmi-
cally, EMDEs provide an era of linear growth. Linear
growth would enhance structure formation on scales that
enter the horizon during this era, possibly leading to
observable effects. However, in the absence of fine-tuning,
it is likely that dark matter produced nonthermally will be
imparted with relativistic velocities, and its subsequently
large free-streaming length will wipe out this enhancement
to structure formation.
By investigating the velocity evolution and distribution

of dark matter produced nonthermally from the decay of a
massive scalar field, we have confirmed that retaining the
linear enhancement to structure growth requires the dark
matter to be produced largely nonrelativistic. Despite the
early creation of many particles, and their loss of momen-
tum due to adiabatic cooling, the continuous creation of
new, hot particles prevents the average dark matter velocity
from decreasing appreciably during the EMDE. The
average particle at reheating is nearly as relativistic as
those newly produced from decay. And because a majority
of the dark matter is created around reheating, essentially
negligible fractions of dark matter particles have velocities
low enough to preserve enhanced structure formation.
We next investigated the upper limit on the dark matter

velocity required to preserve the structures we observe.
Dark matter particles born with relativistic velocities have
free-streaming lengths that may also washout observed
small-scale structures. Lyman-α forest data provides the
best-known probes of inhomogeneity at small scales, and
ensuring that structure formation at these scales is not
observably suppressed constrains the parameter space of
nonthermal dark matter.

Using the software CLASS, we obtained the matter
power spectrum resulting from our model of nonthermal
dark matter. A transfer function was used to compare our
spectrum to that of the standard CDM scenario and showed
a cutoff in the power at small scales in our nonthermal
scenario similar to that due to WDM.We fit the form of our
transfer functions using three free parameters, one of
which, α describes the scale of the cutoff in the transfer
function and the other two describe its overall shape. The
shape of our transfer function varies slightly with the cutoff
scale and the two parameters describing its shape are well
determined by analytic functions of α.
We obtained limits on the allowed scale of the cutoff in the

transfer function by performing a comprehensive MCMC
analysis using Lyman-α observations: α < 0.011 Mpc=h
(68% C.L.) and α < 0.026 Mpc=h (95% C.L.). From this
constraint, we were able to place limits on the allowed
velocity imparted at scalar decay for a given temperature at
reheating, summarized in Fig. 12. We also found a simple
relation between α and the dark matter free-streaming length
that allows one to use the limits on α to limit the free-
streaming length which can be calculated analytically from
γD and TRH.
Observations of the abundance of MW satellite galaxies

provide another probe of the small-scale power spectrum.
Using the halo-mass function obtained from WDM simu-
lations, limits on the cutoff scale can also be placed on the
WDM transfer function by requiring consistency between
the decreased abundance of collapsed objects expected in
WDM scenarios, compared to CDM, and the abundance
of satellites observed orbiting the MW. These constraints
are applicable to any model of dark matter with a transfer
function comparable to that of WDM. Comparison of the
parameter values that fit the transfer function of our model to
those that fit WDM naively imply marked differences
between the two models; however, matching the transfer
functions at the same half-mode scale shows the two models
to be remarkably similar, differing significantly only on
scales at which the power was already greatly suppressed.
In our model, MW satellite considerations provide a practi-
cally identical bound on α to those of Lyman-α data.
Using the impact on the matter power spectrum expected

in the model of nonthermal dark matter we have presented
here, we have constrained the physical parameters of our
model: the velocity imparted at the dark matter production,
characterized by the Lorentz factor γD, and the temperature
at reheating, TRH. Constraints in this parameter space also
inform the allowed value of f, the fraction of the decaying
component’s energy allocated to the dark matter, that is
required to obtain the correct relic abundance in the absence
of dark matter annihilations. While naturalness would
suggest a value of f ∼ 0.5, our constraints show that f
must be less than ∼10−4, implying that annihilations must
be considered to avoid finely tuning f. Our limits within the
parameter space of TRH and γD can also be equivalently
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viewed as limits on the scalar decay rate Γϕ [see Eq. (1)] and
the mass hierarchy between the scalar parent and daughter
dark matter particles for a two-body decay ðmϕ ¼ 2γDmχÞ.
There are many opportunities for extensions to our

model. We have assumed here that all dark matter particles
are born from the decay process with the same velocity,
though this need not necessarily be the case. Including a
range of possible velocities could tighten or relax our
bounds, depending on the exact distribution of the imparted
velocity. We have also assumed that any annihilations take
place via s-wave processes. If annihilations occur prefer-
entially for faster particles, this could shift the peak of our
velocity distribution to lower velocities. Finally, we have
only considered the cooling of dark matter due to the
redshifting of its momentum. If dark matter is allowed to

exchange momentum with Standard Model particles, this
could provide an additional mechanism to reduce its
momentum and lower the peak velocity of the velocity
distribution, perhaps allowing for the formation of micro-
halos from perturbations that grow linearly during the
EMDE. We leave these investigations for future work.
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