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Decoupled hidden sectors can easily and generically result in a period of cannibal domination, during
which the dominant component of the Universe has an equation of state intermediate between radiation and
matter due to self-heating by number-changing interactions. We present for the first time the consequences
of a cannibal-dominated era prior to big bang nucleosynthesis for structure formation on small scales. We
find that an early cannibal-dominated era imprints a characteristic peak on the dark matter power spectrum,
with scale and amplitude directly determined by the mass, lifetime, and number-changing interaction
strength of the cannibal field. This enhancement to the small-scale matter power spectrum will generate
early-forming dark matter microhalos, and we provide a detailed and transparent map between the
properties of the cannibal species and the characteristic mass and formation time of these structures. These
relations demonstrate how the internal workings of a hidden sector leave a potentially observable imprint
on the matter power spectrum even if dark matter has no direct couplings to the Standard Model.
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I. INTRODUCTION

It is easy and generic for the early Universe to contain
self-interacting hidden sectors that are thermally decoupled
from the Standard Model (SM). Such decoupled hidden
sectors can readily be produced during postinflationary
reheating along with the SM [1–4] and can significantly
broaden options for dark matter (DM) models and their
resulting signatures, e.g., [5–11]. Decoupled hidden sectors
can also give rise to nonstandard cosmological histories:
when the lightest particle in the hidden sector is massive, it
can easily come to temporarily dominate the energy density
of the Universe, leading to departures from radiation
domination prior to the onset of big bang nucleosynthesis
(BBN). If the lightest particle in the hidden sector is
effectively pressureless while it dominates the Universe,
then it causes an early matter-dominated era (EMDE)
[8,9,12–14]. An EMDE has profound implications for both
the relic abundance of DM [8,13,15–19] and the abundance
of sub-earth-mass DM microhalos [20–24]. The observa-
tional signatures of this microhalo population are predomi-
nantly controlled by the small-scale cutoff in the matter
power spectrum [23,25–27], so constraints on EMDE

cosmologies cannot be disentangled from early universe
microphysics.
In many familiar theories, from elementary scalars to

confining gauge theories, the lightest hidden particle has
number-changing self-interactions that enable it to maintain
internal pressure support after it becomes nonrelativistic.
Such “cannibal” interactions [28–30] are natural properties
for the lightest particle in a hidden sector with a mass gap,
and metastable cannibal species arise frequently in models
of hidden sector DM [8,9,12,31–34]. As we show here,
cannibal interactions alter the evolution of density pertur-
bations during an early cannibal-dominated era (ECDE)
compared to their evolution during an EMDE and typically
determine the small-scale cutoff in the matter power
spectrum.
In contrast to previous studies of structure formation

with a cannibal species [35–37] or a related toy model [38],
the cannibal here is unstable, decaying to SM particles
during the Universe’s first second. Therefore, it does not
contribute to the present-day dark matter abundance, which
we assume to be composed of a separate species. For
simplicity we consider the DM abundance to have formed
prior to the ECDE, as is easily realized, e.g., when DM is a
thermal relic in the hidden sector. We are thus interested in
the evolution of perturbations in a three-component uni-
verse, consisting of cold decoupled DM, the SM radiation
bath, and the metastable cannibal species.
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We find that an ECDE generates a peak in the power
spectrum of DM density fluctuations on scales that enter
the cosmological horizon during the ECDE. We show that
the shape, amplitude, and scale of the ECDE peak is
determined by the properties of the cannibal particle, with
little sensitivity to DM particle properties. This enhance-
ment to the matter power spectrum will generate DM
microhalos long before structure formation would occur in
the absence of an ECDE, and we relate the characteristic
mass and formation time of these microhalos to the mass of
the cannibal field, the strength of its number-changing
interactions, and its lifetime. Our results reveal a new
window into the thermal history of the pre-BBN Universe
and further establish that hidden sectors can generate
distinctive observational signatures even in the absence
of interactions between DM and the SM.
We begin in Sec. II with a summary of how cannibal

interactions affect the homogeneous evolution of the
cannibal field, including its equation of state. In Sec. III
we examine the evolution of density perturbations in both
the cannibal field and the dark matter and show how an
ECDE generates a peak in the matter power spectrum.
We discuss how the features of this peak determine the
mass and formation time of the first dark matter halos in
Sec. IV, and we relate these quantities to the properties
of the cannibal field. We summarize our findings in
Sec. V. Additional technical details are provided in the
Appendixes. Appendixes A and B contain the equations
that govern the evolution of the homogenous fields and
their density perturbations. In Appendix C, we describe our
computation of the matter power spectrum following an
ECDE. Finally, we evaluate dark matter free streaming
length in Appendix D.

II. HOMOGENEOUS BACKGROUND EVOLUTION

Cannibalism occurs when a particle has number-
changing self-interactions that remain efficient even after
the particle becomes nonrelativistic. During cannibalism,
these interactions heat the cannibal species so that its
temperature Tc drops only logarithmically with scale
factor once Tc ≲m=5, where m is the cannibal mass
[30,31]. Meanwhile the energy density evolves as ρcan ∝
1=½a3 lnða=acanÞ� [30,31], where TcðacanÞ≡m=5. We take
as a representative cannibal model a real scalar with
potential VðϕÞ ¼ 1

2
m2ϕ2 þ g

3!
ϕ3 þ λ

4!
ϕ4. This theory can

also be thought of as a toy model for the lightest glueball in
a pure glue hidden sector [39–42]. The cross section for
number-changing 3 → 2 interactions is then [31,43]

hσv2ican ¼
25

ffiffiffi
5

p
π2α3c

5184m5
þOðTc=mÞ; ð1Þ

where we have defined the effective coupling αc as
ð4παcÞ3 ≡ ðg=mÞ2½ðg=mÞ2 þ 3λ�2.

The cannibal number density ncan will freeze out
when the three-particle scattering rate equals the
Hubble rate, which occurs at a scale factor afz
defined by hσv2icann2canðafzÞ ¼ HðafzÞ. Using ncanðafzÞ≈
ρcan;eqðafzÞ=m, where ρcan;eq is the equilibrium cannibal
density, we can estimate that the duration of cannibalism
during an ECDE is afz=acan ∼ 300α2=3c ðGeV=mÞ2=9. Here,
and in similar estimates below, we employ an expression
for ρcan;eq derived in Appendix A,

ρcan;eqðaÞ ≈ 1.5 × 10−4
m4ðacan=aÞ3
lnð5a=acanÞ

; ð2Þ

and we set afz=acan ¼ 10 within the logarithm. In practice,
the freeze-out of cannibal interactions is not instantaneous,
as can be seen from Fig. 1, where we show the evolution of
the equation of state parameter wc ¼ Pcan=ρcan and the
sound speed c2s ¼ ∂Pcan=∂ρcan. The non-negligible sound
speed during cannibalism and the slow decay of the sound
speed after afz will have important implications for per-
turbation growth during cannibal domination.
After cannibal freeze-out, the homogeneous cannibal

fluid evolves like pressureless matter until the Hubble rate
becomes comparable to its decay width, Γ, at which point
the cannibal decays into SM radiation. We define the reheat
temperature, Trh, by equating the Hubble rate in the SM
radiation-dominated universe to the cannibal decay rate,
Γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2g�ðTrhÞ=90

p
ðT2

rh=MPÞ, where MP is the reduced
Planck mass and g� is the SM radiation density divided by
½ðπ2=30ÞT4�. Similarly, we define the scale factor at
reheating arh through this definition of Trh by extrapolating
adiabatic SM evolution backwards from the present day to
Trh: g�sðTrhÞðarhTrhÞ3 ¼ g�sðT0ÞT3

0a
3
0, where T0 and a0 are

the present-day cosmic microwave background (CMB)
temperature and scale factor and g�S is the entropy density
divided by ð2π2=45ÞT3 [44]. The expansion between the

FIG. 1. Evolution of the cannibal sound speed c2s and equation
of state w from initial cannibal temperature TcðaiÞ ¼ 10m. The
red (yellow) dashed line shows the evolution of c2s (w) in thermal
equilibrium, the gray (cyan) dot-dashed lines show the asymp-
totic post-freeze-out evolution, and the solid black (blue) line
shows the full numerical result.
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onset of cannibalism and reheating then goes like
ðarh=acanÞ ∼ 0.2ðm=TrhÞ4=3ð10=g�ðTrhÞÞ1=3.

III. PERTURBATION EVOLUTION

We work in conformal Newtonian gauge and follow the
conventions of Ref. [45], considering the evolution of
δi ≡ ½ρiðt; xÞ − ρ̄iðtÞ�=ρ̄iðtÞ, the local density fluctuation in
fluid i, and θi ≡ ∂jv

j
i , which is the comoving divergence of

the physical fluid velocity, vji ¼ adxj=dt. The resulting
suite of perturbation equations is given in Appendix B. We
set initial conditions when the cannibal is still relativistic,
defining ai through TcðaiÞ ¼ 10m, and take the cannibal to
dominate the energy density of the Universe at ai. For
simplicity we take the DM to be already nonrelativistic with
fixed comoving density at ai. We impose adiabatic initial
conditions for all perturbations, as expected in the minimal
cosmology where both the SM and the dark sector are
populated through the decays of a single inflaton field.
We first consider the case where the cannibal fluid
interacts with DM only gravitationally, and subsequently
comment on the case where DM is tightly coupled to the
cannibal fluid through reheating. Numerically solving the

perturbation equations through the ECDE until well into
radiation domination yields the perturbation evolution
shown in Fig. 2.
The pressure generated by cannibalization, which can

linger substantially after afz, supports oscillations in the
cannibal fluid. We show in Appendix B that the evolution
of subhorizon cannibal density perturbations during the
ECDE is approximately given by

δ00c þ
�ða2HÞ0

a2H
þð1− 3wcÞ

a

�
δ0cþ

3ð1þwcÞ
2a2

�
k2

k2J
− 1

�
δc ¼ 0;

ð3Þ

where primes indicate derivatives with respect to a. Here
we have identified a comoving scale kJ,

kJðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ð1þ wcÞ

r
aH
cs

; ð4Þ

which separates oscillatory modes from growing modes.
The corresponding Jeans horizon 1=kJ is shown in orange
in Fig. 2, while the comoving horizon scale 1=ðaHÞ is

FIG. 2. This figure takes m ¼ 1.8 TeV, Trh ¼ 10 MeV and αc ¼ 0.1 in order to realize large separations of scales, to better highlight
the physics. Results are shown for DM and cannibal fluids that only interact gravitationally, except at bottom right. Modes that enter the
horizon at ai have comoving wave number khor;i ¼ aiHðaiÞ. Top left: evolution of the comoving horizon scale (solid blue) and cannibal
Jeans length (solid orange) relative to k−1hor;i. Horizontal dashed lines mark the comoving wave numbers corresponding to the
perturbations δc and δDM shown in the bottom left panel. Bottom left: evolution of δc (solid) and δDM (dash-dotted) for three selected
comoving wave numbers, relative to primordial metric perturbation amplitude ϕp. Bottom right: absolute value of the transfer function.
The vertical blue dashed line marks the mode that enters the horizon at arh, while the vertical black dashed line marks the mode
corresponding to k−1pk ¼ 1.4k−1J ð2afzÞ. The blue curve shows results for DM coupled only gravitationally to the cannibal, while the
orange curve shows results for DM tightly coupled to the cannibal through reheating. Top right: same as bottom right panel, but with
axes inverted for comparison with top left panel.
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shown in blue. The Jeans horizon grows while the cannibal
is in equilibrium and then decreases for a≳ 2afz following
the post-freeze-out decline of wc and c2s seen in Fig. 1. For
a ≫ afz, c2s ∝ 1=a2 while the comoving horizon grows as
ðaHÞ−1 ∝ a1=2, yielding k−1J ∝ a−1=2. Cannibal perturba-
tions will oscillate while k > kJðaÞ, as shown, for instance,
by the mode with wave number k2 in Fig. 2: the oscillations
seen in the bottom left panel start when the mode enters the
Jeans horizon on the top panel, and cease when the mode
exits. Since the Jeans horizon decreases slowly after freeze-
out, cannibal density perturbations may continue to
oscillate for many e-folds of expansion after cannibal
freeze-out. Once the Jeans horizon becomes smaller than
the scale of the perturbation, i.e., when k < kJðaÞ, the mode
will stop oscillating andbegin the linear growth characteristic
of matter density perturbations in a matter-dominated era.
During the ECDE, the cannibal fluid dominates the

gravitational potential. As long as a given cannibal mode is
oscillating, the DM perturbation sees no net gravitational
potential and does not grow, as seen in the bottom left panel
of Fig. 2. Once the cannibal perturbations exit the Jeans
horizon and begin to grow, the DM starts to fall into the
gravitational potential wells sourced by the cannibal,
asymptoting to δDM ¼ δc during this matter-dominated
phase. After reheating, δDM then grows logarithmically
as expected in a radiation-dominated universe. Cannibal
modes that enter the horizon after ∼2afz, on the other hand,
are well approximated as pressureless matter, and hence
give rise to linear growth in cannibal as well as DM
perturbations prior to reheating.
The resulting growth experienced by a given DM mode

in an ECDE, δDMðk; aÞ, compared to the prediction from
uninterrupted radiation domination, δDM;sðk; aÞ, is quanti-
fied by the transfer function TðkÞ≡ δDMðk; aÞ=δDM;sðk; aÞ
evaluated after matter-radiation equality, which is derived
in Appendix C and shown in the right panels of Fig. 2. The
DM mode that experiences the greatest growth during the
ECDE, kpk ∼ kJ;min, is the smallest-scale mode that never
enters the cannibal Jeans horizon, as this mode sees the
maximum amount of linear growth. Modes that enter later
spend fewer e-folds of expansion inside the horizon, while
modes that enter earlier remain inside the Jeans horizon for
some time after 2afz, and thus do not begin growing until
some a > 2afz. Empirically we find k−1pk ≈ 1.4k−1J ð2afzÞ:
this estimate is accurate to within 30% for arh ¼ 5afz and
reaches 3% accuracy for larger arh=afz.
Depending on the phase of the cannibal oscillation when

a given cannibal mode exits the Jeans horizon, overdense
regions at this time may correspond to regions that were
initially either overdense or underdense. If DM and
cannibals interact only gravitationally, DM particles will
remain in regions that were initially overdense until the
cannibal stops oscillating, at which point they will fall into
the gravitational wells sourced by regions with high
cannibal density. The relative phase differences between

DM and cannibal perturbations at the time of Jeans-horizon
exit are responsible for the oscillations exhibited in the
transfer function for k > kpk, as illustrated by the evolution
of the mode k2 shown in Fig. 2. For this mode, cannibal
oscillations cease when initially underdense regions are
overdense, and so the sign of δDM changes as the DM
particles fall into these regions. In the alternative scenario
where the cannibal and DM are tightly coupled through
reheating, DM perturbations will instead oscillate in
tandem with the cannibals throughout the ECDE; the
resulting oscillatory cutoff in the transfer function is the
same, as seen in the bottom right panel of Fig. 2.
Using k−1pk ¼ 1.4k−1J ð2afzÞ and taking 1þ wc ≈ 1, c2s ≈

Tc=m near afz, the maximum perturbation growth occurs
for kpk ∼ 0.3

ffiffiffiffiffiffiffiffiffiffiffiffi
ai=afz

p
khor;i, provided that afz ≪ arh. In

terms of the cannibal properties, we then have

kpk ∼ 40 pc−1
�

αc
0.02

�
−1=3

�
Trh

10 MeV

�
1=3

�
m
TeV

�
7=9

: ð5Þ

The corresponding maximum of the transfer function is
proportional to the maximum duration of linear growth; we
find TðkpkÞ ∼ ð1=5Þarh=afz, or

TðkpkÞ ∼ 5 × 103
�

αc
0.02

�
−2=3

�
m
TeV

�
14=9

�
Trh

10 MeV

�
−4=3

:

ð6Þ

IV. IMPLICATIONS FOR MICROHALO
FORMATION

Early enhancements to perturbation growth lead to the
early formation of sub-earth-mass microhalos, with well
over half of all DM potentially residing in highly con-
centrated microhalos at high redshift (z≳ 20) if DM is
sufficiently cold [20,23]. Moreover, their high densities
imply that most of these microhalos survive within gal-
axies: they may lose a significant fraction of their mass, but
their dense centers remain intact [27,46,47].
The microhalo mass corresponding to kpk can be

estimated as Mpk ≡ 4π
3
ðkpkÞ−3ρ̄m, where ρ̄m is the mean

present-day matter density, giving

Mpk

M⊙
∼ 3 × 10−12

�
αc
0.02

��
10 MeV

Trh

��
TeV
m

�
7=3

: ð7Þ

Since TðkÞ exhibits a relatively narrow peak due to the
cutoff arising from cannibal acoustic oscillations, the first
microhalos that form have masses very close to Mpk.
The collapse of overdense regions into gravitationally

bound microhalos occurs when δDM exceeds order unity.
Therefore, the maximum value of the transfer function
TðkpkÞ determines when the first microhalos form. In the
absence of an ECDE, earth-mass microhalos form around a
redshift of 60 [48], with smaller halos forming only slightly
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earlier. Since perturbations on scales smaller than the
baryon Jeans length grow as δDM ∝ ð1þ zÞ−0.9 during
matter domination [49,50], the formation redshift of the
first microhalos following an ECDE will be roughly a
factor of ½TðkpkÞ�1.11 higher than in the absence of an ECDE
for TðkpkÞ ≲ 30. Halos that form during matter domination
have characteristic central densities that are proportional to
the matter density at their formation [51], so an ECDE
generates microhalos that are ½TðkpkÞ�3.33 times denser than
standard microhalos. If TðkpkÞ ≳ 30, the first microhalos
form during radiation domination, yielding even higher
central densities [26].
The expressions for kpk and TðkpkÞ in Eqs. (5) and (6)

thus allow microhalo properties to be directly related to
cannibal particle properties. We show TðkpkÞ as a func-
tion of cannibal mass and reheat temperature in Fig. 3,
together with contours indicating the corresponding micro-
halo masses Mpk. In this figure we approximate k−1pk ¼
1.4k−1J ð2afzÞ and subsequently determine TðkpkÞ by
numerically solving the relevant perturbation equations
for the mode kpk.
The region of cannibal properties that gives rise to

enhanced microhalo formation is bounded. First, BBN
and the CMB require Trh > 8.1 MeV [52,53]. Second,
attaining an epoch of cannibal domination requires
acan < afz, which yields an upper bound on the cannibal
mass in terms of αc: m≲ 1011α3c GeV. Meanwhile, the
hierarchy arh=afz controls the duration of the EMDE
that follows cannibal freeze-out and thus the value
TðkpkÞ. Figure 3 shows results for arh > 5afz, or

m=GeV≳ 20α3=7c ðTrh=10MeVÞ6=7ðg�ðTrhÞ=10Þ3=14. In this
regime neglecting cannibal decays around afz, as assumed

in our numerical work, is a good approximation. Models
with arh < 5afz are physically possible, but, as Fig. 3 makes
clear, do not exhibit interesting enhancements to small-
scale structure. When TðkpkÞ≳ 104, density perturbations
collapse during the ECDE. The decay of the cannibal into
radiation destroys these structures, and the subsequent free
streaming of the released DM particles suppresses later
microhalo formation [26]. DM free streaming [50,54–57]
can also be relevant for TðkpkÞ≲ 10, as shown in Fig. 3 and
discussed in Appendix D.
Additionally, not all of this parameter space is consistent

with DM production via thermal freeze-out. If DM self-
annihilates with cross section hσvi ¼ πα2D=m

2
DM, higher

DMmasses demand larger couplings to obtain the observed
DM abundance. Entropy production during the ECDE
dilutes the DM abundance, but requiring αD < 1 still
establishes an upper bound on mDM. Furthermore, our
calculations assume that DM is already nonrelativistic at
Ti ¼ 10m, and thus that mDM ≫ m. Since higher values of
Trh require higher cannibal masses to ensure cannibal
freeze-out prior to reheating, requiring αD < 1 establishes
an upper bound on Trh, as depicted by the black dashed and
dot-dashed lines in Fig. 3. In the region above these lines,
other production mechanisms for DM must be invoked.

V. SUMMARY

An early cannibal-dominated era (ECDE) is a generic
feature of a decoupled hidden sector; it occurs whenever the
lightest hidden-sector particle comes to dominate the
energy density of the Universe while it is nonrelativistic
and undergoing number-changing interactions. We present
for the first time the consequences of an ECDE for the
evolution of density perturbations and the formation of
DM halos.
Perturbation growth is suppressed for modes that enter

the cannibal Jeans horizon, providing a novel and distinc-
tive small-scale cutoff in the matter power spectrum. Modes
that enter the horizon after cannibal freeze-out but before
cannibal decay, on the other hand, experience the same
growth as modes that enter the horizon during an EMDE.
The location and amplitude of the resulting peak in the
matter power spectrum can be computed from the canni-
bal’s mass, lifetime, and self-interaction cross section.
Moreover, as long as the DM relic abundance is in place
prior to the ECDE, the DM mass and interactions with the
cannibal field have no significant effects on the matter
power spectrum throughout most of the relevant parameter
space. We are thus able to provide a precise and transparent
map between cannibal particle properties and the cutoff
scale. In contrast, prior analyses of the matter power
spectrum following an EMDE have employed rough
estimates of the cutoff scale using either the DM free-
streaming length [14,20,22,23,25] or the mass of the
particle that induces the EMDE [12,26].

FIG. 3. Colored contours of TðkpkÞ as a function of m and Trh
for fixed αc ¼ 0.02. White contours show the microhalo mass
Mpk corresponding to kpk. Above the red lines thermal-relic DM
becomes nonperturbative for fixed mDM=m ¼ 10 (dashed) and
100 (dot-dashed). Above the black lines, DM free streaming
determines the small-scale cutoff for fixed mDM=m ¼ 10
(dashed) and 100 (dot-dashed) if DM kinetically decouples from
the cannibal after cannibal freeze-out.
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The cutoff scale determines both the location and the
amplitude of the peak in the matter power spectrum; the
peak scale then sets the mass of the first generation of
microhalos while the peak amplitude sets their abundance
and formation time [23]. Since early-forming microhalos
are denser than later-forming microhalos [51], higher-
amplitude peaks generate microhalos with stronger lensing
and annihilation signatures, up to the point that halos form
during the ECDE itself. We are therefore able to identify
which regions of cannibal parameter space predict interest-
ing signals for observational probes of the microhalo
population such as pulsar timing arrays [58,59], stellar
microlensing within galaxy clusters [60], and the contri-
bution to the isotropic gamma-ray background from dark
matter annihilations [26,27]. This work shows that the
particle physics of dark sectors, beyond dark matter itself,
can control the small-scale structure of DM in our universe.
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APPENDIX A: HOMOGENEOUS BACKGROUND
EQUATIONS

The Boltzmann equations that describe the evolution of
homogeneous radiation and cannibal densities are

dρcan
dt

þ 3Hρcanð1þ wcðaÞÞ ¼ −Γmncan ðA1Þ

dρr
dt

þ 4Hρr ¼ Γmncan ðA2Þ

dncan
dt

þ 3Hncan ¼ hσv2icann2canðneq;can − ncanÞ − Γncan;

ðA3Þ

where the Hubble rate is given byH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρcan þ ρr þ ρDM

p
=

ð ffiffiffi
3

p
MPÞ. The DM density evolves adiabatically (ρDM ∝

1=a3) throughout our analysis. Note that Eq. (A3) implies
that ncan decreases after the cannibal becomes nonrelativ-
istic, while Eq. (A1) implies that the cannibal’s energy
density is conserved if decays are neglected.
We assume that two-to-two cannibal interactions are fast

enough to maintain internal kinetic equilibrium throughout
our analysis. The cannibal fluid can thus be fully described
in terms of its chemical potential μ and temperature Tc:

ρcan ¼
Z

d3p
ð2πÞ3 Ef

�
E − μ

Tc

�
; ðA4Þ

wcðaÞ ¼
R d3p

ð2πÞ3
p2

3E fðE−μTc
ÞR d3p

ð2πÞ3 EfðE−μTc
Þ
; ðA5Þ

ncan ¼
Z

d3p
ð2πÞ3 f

�
E − μ

Tc

�
; ðA6Þ

where fðxÞ ¼ ðex − 1Þ−1 is the Bose-Einstein distribution.
For a ≪ afz, the cannibal is in chemical equilibrium, i.e.,
μ ¼ 0, and Eq. (A1) is sufficient to describe the equilibrium
cannibal density.
We consider scenarios with arh > 5afz. In this case

cannibal decays are negligible for a ≪ afz and the con-
servation of the comoving cannibal entropy, Sc, enables a
useful parametrization of the evolution of the equilibrium
cannibal fluid after it becomes nonrelativistic [30,37],

Tc;eq ≈
m

3 ln ðmS−1=3cffiffiffiffi
2π

p aÞ
; ðA7Þ

ρcan;eq ≈
mSc

3a3 ln ðmS−1=3cffiffiffiffi
2π

p aÞ
ðA8Þ

≈
150m4

lnð a
20ai

Þ
�
ai
a

�
3

: ðA9Þ

Here in the last relation we have used that Sc can be
evaluated at ai, when the cannibal is still relativistic:
Sc ¼ 2π2ðaiTcðaiÞÞ3=45 ¼ 2π2ð10maiÞ3=45.
Equation (A9) is a good approximation for cannibal
evolution after Tc falls below m=5, which occurs when
a ¼ acan ≈ 100ai.

APPENDIX B: PERTURBATION EQUATIONS

The three components of our model (the cannibal, the
dark matter, and SM relativistic particles) are approximated
as perfect fluids with no anisotropic stresses. Perfect fluids
can be described with two perturbation fields: the density
perturbation δi ≡ ½ρiðt; xÞ − ρ̄iðtÞ�=ρ̄iðtÞ relative to the
homogeneous background density ρ̄i, and the comoving
divergence of the physical fluid velocity, θi ¼ ∂jv

j
i where

vji ¼ adxji=dt. We work in conformal Newtonian gauge
and use the perturbed spacetime metric

ds2 ¼ −½1þ 2ψðx⃗; tÞ�dt2 þ a2ðtÞ½1 − 2ϕðx⃗; tÞ�dx⃗2: ðB1Þ

In the absence of anisotropic stress, ψ ¼ ϕ.
To obtain evolution equations for the perturbations δ and

θ, we perturb the divergence of the energy momentum
tensor∇μTμν ¼ Qν for each fluid, as described in Ref. [20].
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In the absence of cannibal decays,Qν ¼ 0 for all fluids, and
our equations recover those derived in Refs. [37,45]. Due to
the time dilation experienced by moving particles, the
(homogeneous) collision operator describing the energy
lost from the cannibal fluid due to decays can be written as
Γncanm, where ncan is the cannibal number density and Γ its
width. Here we make the approximation that Γncanm ≈
Γρcan to facilitate obtaining a covariant formulation ofQν in
terms of the energy-momentum tensor. This approximation
corresponds to neglecting terms in the perturbation equa-
tions that are proportional to ðΓ=HÞwc and ðΓ=HÞc2s , but
since we only consider scenarios in which reheating occurs
well after cannibal interactions freeze-out (arh > 5afz),
these terms have no significant impact on the peak in
the matter power spectrum that follows an ECDE. With this
approximation, the evolution of perturbations in our three-
fluid system is determined by the following suite of
equations:

δ0cðaÞ ¼ −ð1þ wcÞ
�

θc
a2H

− 3ϕ0
�
−
3

a
ðc2s − wcÞδc −

Γ
aH

ϕ;

ðB2Þ

θ0cðaÞ ¼ −
1

a
ð1 − 3wcÞθc −

w0
c

1þ wc
θc

þ c2s
1þ wc

k2

a2H
δc þ

k2

a2H
ϕ; ðB3Þ

δ0DMðaÞ ¼ −
θDM
a2H

þ 3ϕ0; ðB4Þ

θ0DMðaÞ ¼ −
1

a
θDM þ k2

a2H
ϕþ γ

aH
ðθc − θDMÞ; ðB5Þ

δ0rðaÞ ¼ −
4

3

θr
a2H

þ 4ϕ0 þ Γρcan
aHρr

ðδc − δr þ ϕÞ; ðB6Þ

θ0rðaÞ ¼
1

4

k2

a2H
δr þ

k2

a2H
ϕþ Γρcan

aHρr

�
3

4
θc − θr

�
; ðB7Þ

k2ϕþ 3ðaHÞ2ðaϕ0 þ ϕÞ

¼ −
1

2
a2

1

M2
P
ðρcanδc þ ρrδr þ ρDMδDMÞ: ðB8Þ

Here primes indicate derivatives with respect to a and the
subscripts c, r and DM correspond to perturbations of the
cannibal, SM radiation and DM fluids respectively. We use
Fourier-transformed variables with k being the comoving
Fourier mode.
Equation (B5) includes scattering interactions between

the DM and cannibal particles, with a scattering rate given
by γ ¼ ncanσDMcvc, where σDMc is the cross section for
DM-cannibal scattering. We neglect the DM-cannibal
scattering term in Eq. (B7) because it is suppressed by a

factor of ρDM=ρcan, which is very small during the ECDE.
DM-cannibal interactions are generically s-wave, so in the
nonrelativistic limit we expect hσDMcvi ∝

ffiffiffiffiffi
Tc

p
, implying

that γ ∝ ρcan
ffiffiffiffiffiffiffiffiffiffiffiffi
Tc=m

p
. The specific value of σDMc is model

dependent, and in the bottom right panel of Fig. 1 we show
the transfer function for two limiting cases: one with γ ≪ H
while Tc ≲ 10m and one with γ ≫ H throughout the
ECDE. While γ ≫ H, DM-cannibal interactions force
δDM ≈ δc. However, for perturbation modes that exit the
cannibal Jeans horizon prior to reheating, the DM particles
fall into the gravitational wells created by the cannibal
particles and δDMðarhÞ ≈ δcðarhÞ even if γ ¼ 0. Therefore,
scatterings between DM and cannibal particles have no
impact on the peak in the power spectrum generated by
an ECDE.
We will focus on modes entering the horizon after ai.

Note that at ai the cannibal is still relativistic, because ai is
defined by the condition that TðaiÞ ¼ 10m. We consider
the perturbations to be adiabatic, which implies that the
initial conditions for superhorizon modes at ai are

δr ¼
4

3
δDM ¼ δc ¼ −2ϕp; ðB9Þ

θr ¼ θDM ¼ θc ¼
1

2

k2

aH
ϕp; ðB10Þ

where ϕp is the primordial metric perturbation. This
adiabatic initial condition for both hidden sector and SM
perturbations is naturally obtained in the minimal scenario
where both sectors originate from the decays of a single
inflaton field.
The approximate equation describing cannibal evolution

deep inside the horizon during the ECDE, Eq. (2) of the
main paper, is obtained by using Eq. (B3) to eliminate θc in
Eq. (B2), under the following approximations: (i) neglect-
ing derivatives of wc and c2s , as both quantities are slowly
varying until they become negligibly small; (ii) neglecting
terms proportional to c2s − wc; (iii) dropping terms propor-
tional to Γ=H; and (iv) neglecting ϕ0 in Eq. (B2), since deep
inside the horizon that term is negligible in comparison to
θc=ða2HÞ. Then, using Eq. (B8) to eliminate ϕ in the limit
k ≫ aH, we obtain Eq. (2). An analogous approximate
equation for DM perturbations can be derived using the
same approximations. Setting γ ¼ 0, we find

δ00DMðaÞ þ
�ða2HÞ0

a2H
þ 1

a

�
δ0DM ¼ 3

2a2
ρcan
ρ

δc: ðB11Þ

Here the rhs arises from the metric perturbation term in
Eq. (B5). When k > kJ, δc is oscillating (and thus sources
an oscillatory potential ϕ) and its time-averaged contribu-
tion to the above equation is approximately zero. Making
the approximation that the cannibal density dilutes as 1=a3,
the coefficient of δ0DM in Eq. (B11) becomes 3=ð2aÞ.
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It follows that there are two solutions for dark matter
perturbations while δc is oscillating: δDM ∝ a−1=2 and
δDM ∝ a0. Consequently, δDM remains constant while δc
is oscillating, as seen in Fig. 2.
The SM radiation is well described as a perfect fluid

throughout the ECDE because the SM particles form a
tightly coupled plasma. However, the perfect fluid approxi-
mation can break down for both the cannibal and DM
particles, which both deviate from perfect-fluid behavior
after they kinetically decouple. The impact of the DM
particles’ random thermal motions will be considered in
Appendix D. The cannibal particles generally remain kineti-
cally coupled long after the freeze-out of number-changing
interactions, butmay lose internal kinetic equilibriumprior to
their decay in some models. We have verified that even in
these cases, the thermalmotion anddispersion of the cannibal
particles cannot affect the location and amplitude of the peak
in the ECDE transfer function. The relevant dispersion scales
never significantly exceed the cannibal Jeans horizon at the
time of kinetic decoupling, which is always much smaller
than the peak scale since the Jeans horizon shrinks after
cannibals freeze out.

APPENDIX C: THE ECDE TRANSFER
FUNCTION

We are ultimately interested in the modification to the
late-time linear matter power spectrum, encapsulated in the
transfer function TðkÞ. To compute this quantity, we first
recall how DM perturbations that enter the horizon during
radiation domination evolve as the Universe transitions
from radiation domination to matter domination. After
entering the horizon at some scale factor ahor, DM density
perturbations initially evolve as

δDMða ≪ aeqÞ ¼ −AsϕpðkÞ ln
�
Bsa
ahor

�
; ðC1Þ

where As ¼ 9.11 and Bs ¼ 0.594 are numerical fitting
factors [49], and aeq is the scale factor at matter-radiation
equality. The logarithmic growth of δDM continues until
matter-radiation equality, after which δDM grows linearly
with the scale factor. The evolution of δDM after matter-
radiation equality can be determined by solving the
Meszaros equation, which is a second-order homogeneous
differential equation for δDMðaÞ that is applicable while
ρrδr ≪ ρDMδDM, and then using Eq. (C1) to set initial
conditions for δDMða ≪ aeqÞ and δ0DMða ≪ aeqÞ [49]. After
matter-radiation equality, δDM is then dominated by the
growing solution to the Meszaros equation:

δDMða ≫ aeqÞ ¼ −
3AsϕpðkÞ

2
ln

�
4Bse−3aeq

ahor

�
D1ða=aeqÞ;

ðC2Þ
where D1ðyÞ ¼ 2=3þ y.

In a cosmology with an ECDE, modes that entered the
horizon prior to Trh will grow logarithmically during
the period of radiation domination that follows after Trh.
The evolution of these modes while ρrδr ≫ ρDMδDM can
also be described by Eq. (C1) with the numerical factors As
and Bs replaced by k-dependent values AðkÞ and BðkÞ that
encode the evolution of δDM prior to reheating. Similarly,
after matter-radiation equality the evolution of δDM can be
described using Eq. (C2) with As and Bs replaced by AðkÞ
and BðkÞ. Thus the ECDE transfer function is given by

TðkÞ≡ δDMðk;a≫ aeqÞ
δDM;sðk;a≫ aeqÞ

¼ AðkÞ
As

ln½4BðkÞe−3aeq=ahorðkÞ�
ln½4Bse−3aeq=ahor;sðkÞ�

;

ðC3Þ

which is independent of a for a ≫ aeq. Note that Eq. (C3)
differentiates between the value of the scale factor at
horizon entry in a cosmology with an ECDE (ahor) and
the value of the scale factor at horizon entry in a cosmology
with uninterrupted early radiation domination (ahor;s).
Both Eqs. (C1) and (C2) ignore baryonic pressure, which

prevents baryons from participating in gravitational col-
lapse prior to their decoupling from photons and on scales
smaller than their Jeans length [49]. For simplicity, we
neglect these baryonic effects when deriving the ECDE
transfer function, but we note that they can be incorporated
via the procedure developed for the EMDE transfer
function derived in Ref. [20]. The most important conse-
quence of baryonic pressure is that it alters D1ðyÞ so that
δDMða ≫ aeqÞ ∝ a0.9 on sub-kiloparsec scales [49,50].
We can obtain a semianalytical estimate for the peak

value of the transfer function, TðkpkÞ as follows. We expect
the amplitude of δDMðkpk; arhÞ at reheating to equal the
amplitude of the cannibal perturbation, δcðkpk; arhÞ. Since
the cannibal density perturbations with k < kJ grow lin-
early after horizon entry, and the peak wave number kpk
enters the horizon at a scale factor ahor;pk ∝ afz, we expect
δcðkpk; arhÞ ∝ ϕpðkpkÞarh=afz. This relation, particularly
the assumed linear scaling of ahor;pk ¼ kpk=Hðahor;pkÞ with
afz, does receive logarithmic corrections owing to the
cannibal interactions, but the logarithmic nature of those
corrections implies that the linear scaling provides a useful
estimate. After reheating, we expect the DM perturbation to
grow logarithmically. Thus we expect that the behavior of
δDMðkpkÞ during the postreheating epoch of radiation
domination can be parametrized as

δDMðkpk; a > arhÞ ¼ −b1
arh
afz

ϕpðkpkÞ ln
�
b2

a
arh

�
; ðC4Þ

where b1 and b2 reflect, respectively, the deviation of
δDMðkpkÞ from perfect linear growth between arh and afz,
and the transition of δDM from linear to logarithmic growth
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around arh. Empirically we find that both b1 and b2 are
Oð1Þ; for instance, in the parameter point shown in Fig. 2,
b1 ¼ 2.5 and b2 ¼ 1.7. Both b1 and b2 are insensitive to
variations in arh=afz as long as δDM achieves linear growth
by the time of reheating, or equivalently arh=afz ≳ 200.
However, while b2 is insensitive to variations in afz=ai, b1
has a logarithmic dependence on afz=ai arising from the
logarithmic corrections to the assumed proportional-
ity ahor;pk ∝ afz.
Comparing Eq. (C4) with Eq. (C1) lets us identify

AðkpkÞ ¼ b1
arh
afz

BðkpkÞ ¼ b2
ahor;pk
arh

: ðC5Þ

Using these relations of AðkpkÞ and BðkpkÞ in the transfer
function, Eq. (C3), yields

TðkpkÞ ¼
b1
As

arh
afz

�
1−

lnðBsb−12 arh=ahor;sÞ
lnð4Bse−3aeq=ahor;sÞ

�
∼
1

5

arh
afz

; ðC6Þ

where in the second relation we dropped the logarithmic
factors (since arh ≪ aeq) and estimated b1 ∼ 2. This simple
dependence of TðkpkÞ on arh=afz yields the dependence of
TðkpkÞ on αc, m, and Trh given in Eq. (5). Figure 3, which
uses a full numerical calculation of TðkpkÞ, illustrates this

dependence for αc ¼ 0.02, and we further show results for
other values of αc in Fig. 4.

APPENDIX D: DARK MATTER FREE
STREAMING

The random thermal motions of DM particles will
suppress perturbations on scales smaller than the DM
free-streaming horizon [50,54,55] and its collisionless
Jeans length [56]. Since we assume that DM does not
interact with the SM, the DM temperature is determined by
its interactions within the hidden sector. To quantify the
DM temperature, we assume that DM kinetically decouples
from the cannibal particles while nonrelativistic, which
implies that the DM temperature is proportional to a−2 after
decoupling. In the absence of gravitational forces, thermal
motion will cause DM particles to traverse a comoving
distance given by the free-streaming horizon:

λfs ¼
Z

vDMðaÞ
dt
a
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TcðakdÞ
mDM

s Z
akd
a3H

da; ðD1Þ

where akd is the value of the scale factor when DM
kinetically decouples from the cannibal particles.
In cosmologies that include an ECDE, the gravitational

potential oscillates too rapidly to generate coherent
gravitational forces while a perturbation mode lies within
the cannibal Jeans horizon and after the decay of the
cannibal gives rise to a radiation-dominated era. While
DM particles will free stream while the cannibal pertur-
bations are oscillating, the free-streaming horizon prior to
reheating is necessarily smaller than the cosmological
horizon at this time. Since the perturbation mode that
maximizes the ECDE transfer function enters the horizon
near the time that the cannibal freezes out, perturbations
on this scale cannot be affected by DM free streaming
prior to cannibal freeze-out. Moreover, even if their
thermal motions cause DM particles to disperse while
a given perturbation mode lies within the cannibal Jeans
horizon, the gravitational forces established after that
mode exits the Jeans horizon during the ECDE will cause
DM to fall back into overdense regions, as illustrated by
the evolution of the k2 mode in the bottom left panel of
Fig. 2. Therefore, DM free streaming prior to reheating
can only affect modes that do not exit the cannibal Jeans
horizon prior to cannibal decay.
In contrast, DM free streaming after the ECDE can

suppress perturbations that would otherwise be enhanced
by the ECDE. The free-streaming horizon quickly asymp-
totes to a constant value after matter-radiation equality, so
we can neglect dark energy when evaluating Eq. (D1). We
also make the approximations that entropy production
ceases at a ¼ arh and g�ðTrhÞ ¼ g�SðTrhÞ. With our defi-
nitions of arh and Trh, these approximations imply that

FIG. 4. Same as Fig. 3 but for different values of αc. Smaller
values of αc reduce the parameter space for cannibalism.
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λfs ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TcðakdÞ
mDM

s
akd
a2rhΓ

×
Z

a0

arh

da
a3

�
GðaÞ

�
1

a

�
4

þGðaeqÞ
�

1

a3aeq

��
−1=2

;

ðD2Þ

where GðaÞ≡ g�ðaÞg1=3� ðarhÞ=g4=3�S ðaÞ. The quantityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TcðakdÞ

p
akd increases with increasing akd up until akd ≈

2afz and then becomes constant. Therefore, the free-
streaming horizon is maximized if DM decouples from
the cannibal after cannibal freeze-out, in which case the
free-streaming horizon is independent of akd because

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TcðakdÞ

p
akd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TcðarhÞ

p
arh ¼ csðarhÞarh

ffiffiffiffiffiffiffi
3

5
m

r
: ðD3Þ

Perturbation modes with k > λ−1fs will be suppressed by
DM free streaming [50,54,55], so the peak in the ECDE
transfer function will be affected if kpkλfs ≳ 1. Given that
HðarhÞ ≈ Γ, and that kJ ∝

ffiffiffi
a

p
after cannibal interactions

freeze out,

kpk ¼ kJð2afzÞ=1.4 ≈ kJðarhÞ
ffiffiffiffiffiffiffiffi
2afz
arh

s
≈

ffiffiffi
3

2

r
arhΓ

csðarhÞ

ffiffiffiffiffiffiffiffi
2afz
arh

s
:

ðD4Þ
Since TðkpkÞ ∼ arh=ð5afzÞ, we see that kpkλfs ∼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið9=5Þm=½5mDMTðkpkÞ�
p

. Therefore, the peak scale is only
affected by DM free streaming for relatively small values of
TðkpkÞ, as seen in Fig. 3.
In addition to DM free streaming in the absence of

gravitational forces, we must also consider how the thermal
motions of DM particles may prevent them from falling
into the gravitational wells created by the cannibal particles

on scales outside the cannibal Jeans horizon. We have
already noted that Eq. (B5) for the evolution of θDM
neglects the anisotropic stress σ of the dark matter particles
[45]. For collisionless and pressureless particles, σ ¼
−ð5=3Þσ21Dδ, where σ21D ¼ T=m is the one-dimensional
velocity dispersion [56]: the factor of 5=3 follows from the
assumption that the particles’ phase space density remains
unperturbed [57]. When σ is included in Eq. (B5),
Eq. (B11) becomes

δ00DMðaÞ þ
�ða2HÞ0

a2H
þ 1

a

�
δ0DM

þ 1

a2

�
k2

ðaHÞ2
�
5TDM

3mDM

�
δDM −

3

2

ρcan
ρ

δc

�
¼ 0: ðD5Þ

If the thermal motion of DM particles is neglected, δDM is
stagnant during the ECDE until the growth of jδcj makes it
equal to δDM, and δDM ≈ δc thereafter, as seen in Fig. 2. To
determine when thermal effects hinder the growth of δDM
during the ECDE, we may take δDM ≈ δc and ρcan ¼ ρ in
Eq. (D5), which leads to the definition of a collisionless
Jeans scale for the DM:

kJ;DM ¼ aH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9mDM

10TDM

s
: ðD6Þ

If DM kinetically decouples from the cannibals prior to
the end of the ECDE, modes with k > kJ;DM will be
suppressed by the thermal motions of DM particles.
However, since TDM ≤ Tc after decoupling and we assume
that mDM > 10m, kJ;DM is always larger than the cannibal
Jeans wave number. Therefore, the thermal motions of DM
particles cannot affect the evolution of modes that exit the
cannibal Jeans horizon during the ECDE, and thus do not
alter the position or amplitude of the peak in the matter
power spectrum generated by an ECDE.
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CANNIBAL DOMINATION AND THE MATTER POWER SPECTRUM PHYS. REV. D 103, 103508 (2021)

103508-11

https://doi.org/10.1016/S0550-3213(99)00748-8
https://doi.org/10.1103/PhysRevD.64.023508
https://doi.org/10.1103/PhysRevD.64.023508
https://doi.org/10.1142/S0218271815300220
https://doi.org/10.1142/S0218271815300220
https://doi.org/10.1088/1475-7516/2015/12/024
https://doi.org/10.1103/PhysRevD.100.015049
https://doi.org/10.1103/PhysRevD.100.015049
https://doi.org/10.1103/PhysRevD.84.083503
https://doi.org/10.1103/PhysRevD.84.083503
https://doi.org/10.1007/JHEP04(2014)138
https://doi.org/10.1007/JHEP04(2014)138
https://doi.org/10.1103/PhysRevD.90.043536
https://doi.org/10.1103/PhysRevD.90.043536
https://doi.org/10.1103/PhysRevD.92.103505
https://doi.org/10.1103/PhysRevD.101.035002
https://doi.org/10.1103/PhysRevD.101.035002
https://doi.org/10.1103/PhysRevD.94.063502
https://doi.org/10.1103/PhysRevD.94.063502
https://doi.org/10.1103/PhysRevD.100.103010
https://doi.org/10.1103/PhysRevD.100.123546
https://doi.org/10.1103/PhysRevD.100.123546
https://arXiv.org/abs/1705.03689
https://doi.org/10.1086/171833
https://doi.org/10.1086/171833
https://doi.org/10.1103/PhysRevD.94.035005
https://doi.org/10.1103/PhysRevD.94.035005
https://doi.org/10.1103/PhysRevD.94.083516
https://doi.org/10.1103/PhysRevD.94.083516
https://doi.org/10.1007/JHEP12(2016)033
https://doi.org/10.1007/JHEP12(2016)033
https://doi.org/10.1007/JHEP10(2018)136
https://doi.org/10.1086/174465
https://doi.org/10.1086/176322
https://doi.org/10.1086/176322
https://doi.org/10.1103/PhysRevD.98.083517
https://doi.org/10.1103/PhysRevD.98.083517
https://doi.org/10.1088/1475-7516/2019/04/018
https://doi.org/10.1088/1475-7516/2019/04/018
https://doi.org/10.1103/PhysRevD.89.115017
https://doi.org/10.1103/PhysRevD.90.095016
https://doi.org/10.1103/PhysRevD.93.115025
https://doi.org/10.1103/PhysRevD.95.015032
https://doi.org/10.1103/PhysRevD.95.015032
https://doi.org/10.1007/JHEP12(2016)039
https://doi.org/10.1086/176550
https://doi.org/10.1086/176550
https://doi.org/10.1103/PhysRevD.100.063505
https://doi.org/10.1103/PhysRevD.100.083529
https://doi.org/10.1038/nature03270
https://doi.org/10.1038/nature03270
https://doi.org/10.1086/177989
https://doi.org/10.1103/PhysRevD.74.063509
https://doi.org/10.1103/PhysRevD.100.023523
https://doi.org/10.1103/PhysRevD.100.023523
https://doi.org/10.1103/PhysRevD.92.123534
https://doi.org/10.1088/1475-7516/2019/12/012
https://doi.org/10.1088/1475-7516/2019/12/012
https://doi.org/10.1088/1475-7516/2005/08/003
https://doi.org/10.1088/1475-7516/2005/08/003
https://doi.org/10.1103/PhysRevD.71.103520
https://doi.org/10.1103/PhysRevD.71.103520
https://doi.org/10.1088/1475-7516/2013/11/002
https://doi.org/10.1103/PhysRevD.62.063511
https://doi.org/10.1103/PhysRevD.62.063511
https://doi.org/10.1103/PhysRevD.100.023003
https://doi.org/10.1103/PhysRevD.100.023003
https://doi.org/10.1088/1475-7516/2020/12/033
https://doi.org/10.1088/1475-7516/2020/12/033
https://doi.org/10.3847/1538-3881/ab5e83

