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Abstract 

Calcium hydroxide (Ca(OH)2) loaded poly(DL-lactide-co-glycolide) acid (PLGA) 

microspheres (MS) might be employed for apexification requiring a sustained release of 

Ca++. The aim of this study was to formulate and characterize Ca(OH)2-PLGA-MS. The 

Ca(OH)2-loaded MS were prepared by either oil-in-water (O/W) or water-in-oil/in-water 

(W/O/W) emulsion solvent evaporation technique. MS produced by the O/W technique 
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exhibited   a   larger   diameter   (18.63   ±   7.23   μm)   than   the   MS produced by the W/O/W 

technique  (15.25  ±  7.37  μm)  (Mann  Whitney U test P < 0.001). The Ca(OH)2 encapsulation 

efficiency and Ca++ release were calculated from data obtained by absorption techniques. 

Ca++ release profile was evaluated for 30 days. The percentage of encapsulation efficiency 

of the O/W-produced MS was higher (24%) than the corresponding percentage of the 

W/O/W-produced MS (11%). O/W- and W/O/W-produced MS released slower and lower 

Ca++ than a control Ca(OH)2 paste with polyethylene glycol 400 (ANOVA 1 way, Tukey 

HSD P < 0.01). O/W-produced MS released higher Ca++ than W/O/W-produced MS 

(statistically significant differences with t-Student test). We concluded that Ca(OH)2-

PLGA-MS were successfully formulated; the technique of formulation influenced on the 

size, encapsulation efficiency and release profile. The MS were better sustained release 

system than the Ca(OH)2 paste.  

Key words: apexification, calcium hydroxide, microspheres, poly(DL-lactide-co-glycolide) 

acid, sustained drug delivery system.  

 

 

 

 

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 3 

Introduction 

Apexification is the induction of apical closure to produce favorable conditions for 

conventional root canal filling [1]. Calcium hydroxide (Ca(OH)2 is widely used for 

apexification treatment because of its ability to induce mineral tissue formation and apical 

closure [1, 2]. The Ca(OH)2 releases calcium ions (Ca++) and hydroxyl ions; the Ca++ and 

the local increase of pH (~12.5) in the tissues induce cellular activity promoting the mineral 

tissue formation [3-5]. Because the apexification is a long-term treatment, it requires 

sustained release of Ca++ from the Ca(OH)2 and usually to achieve that condition, the 

Ca(OH)2 is replaced on multiple appointments [2]. Thus a biodegradable sustained drug 

delivery system (SDDS) loaded with Ca(OH)2 might be useful for apexification because 

the SDDS would release Ca++ during long time with a single application.  

Among SDDS technologies, microspheres (MS) formulated with polymers have showed 

efficacy to promote sustained release of Ca++ [6-8]. Hunter et al. manufactured calcium 

citrate loaded poly(ethylenglycol)-MS within a range size of 180-2000 µm releasing Ca++ 

for 3-4 days but for pulp capping [6, 7]. For apexification, Strom et al. produced alginate-

based MS loaded with Ca(OH)2 to promote long term release of Ca++; the MS showed a 

longer sustained  Ca++ release profile than that of a Ca(OH)2  paste prepared with distilled 

water [8]. Despite the few approaches to research polymer-based MS for Ca++ sustained 

release, the studies have ignored the use of a biomaterial with advantageous 

physicochemical properties for such purpose: the poly (DL-lactide-co-glycolide) acid 

(PLGA). The PLGA is a biodegradable and biocompatible polymer approved for human 

use by the FDA; its degradation in tissues initiates by hydrolysis of the ester linkages of the 

polymer chain giving the innocuous lactic acid and glycolic acid [9]. Acting as matrix of a 
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MS, the PLGA might entrap a biomolecule that will be released while the polymer 

degradation occurs, this action results in a sustained release that depends on PLGA 

properties but also on the characteristics of the MS [10, 11]. Accordingly we suggest to 

explore the formulation of a sustained release system of Ca(OH)2 loaded PLGA-MS for 

apexification.  

 

The aim of this study was to formulate and characterize Ca(OH)2 loaded PLGA-MS 

(CMS).  To  achieve  this  purpose,  we  performed  two  techniques  −  oil-in-water (O/W) single 

emulsion or water-in-oil-in-water (W/O/W) double emulsion– based on the solvent 

evaporation method to compare physical properties of the CMS and Ca++ release profile.  

 

Materials and Methods 

Poly (DL-lactide-co-glycolide) (ratio lactide:glycolide 75/25; mol wt 66,000-107,000 kDa), 

dichloromethane   anhydride   (DCM)  ≥99.8%   solvent,   Polyethylene   glycol   (PEG;;  Mn  400)  

and polyvinyl alcohol (PVA) (87.90 % hydrolyzed) were purchased from Sigma-Aldrich 

(St Louis, MO,USA). Calcium hydroxide was purchased from Viarden (Mexico City, DF, 

MX). All reagents were of analytical grade. 

Preparation of the microspheres 

Oil-in-water single-emulsion solvent evaporation technique (W/O) 

The O/W technique was based and adapted from methodologies previously reported [12, 

13]. Briefly, 20 mg Ca(OH)2 and 200 mg PLGA were added into a 10 mL glass tube 

containing 2 mL DCM, this oil phase (drug/matrix dispersion) was vortexed with a Maxi 

Mix II vortex (Thermo Scientific, Pittsburgh, PA, USA) at maximum speed for 3 min. 

Immediately after that, the oil phase was added drop-wise into a 250 mL glass baker 
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containing a 100 mL 1% PVA (continues phase) under stirring at 800 rpm (25°C) (Corning 

PC 4200 stirring hot plate, Corning, NY, USA). After that 100 mL of distilled water was 

added. Then, the stirring continued for 3 h to promote evaporation of DCM. After finishing 

the stirring, the formed MS were recovered by filtration through a filter paper (2 µm Filter 

Paper Ahlstrom, Monterrey, NL MEX) and were profusely washed with distilled water. 

Finally the MS were freeze-dried (Freeze Dry System Freezone 6, Labconco, Kansas City, 

MI, USA) for 4 h and stored at 4°C until its characterization and evaluation of Ca++ 

release. The Ca(OH)2 loaded MS were identified as oCMS. Blank control MS were 

produced following the same method without Ca(OH)2. 

 

Water-in-oil-in-water method double-emulsion solvent evaporation technique (W/O/W) 

The WOW procedure was based and adapted from techniques already reported [12, 13].  

Briefly, a 20 mg/mL Ca(OH)2 dispersion was prepared with double distilled water. This 

dispersion and 200 mg PLGA were added into a 10 mL glass tube containing 2 mL DCM, 

this oil phase (drug/matrix dispersion) was vortexed with a Maxi Mix II vortex (Thermo 

Scientific, Pittsburgh, PA, USA) at maximum speed for 3 min. After that, the procedure 

was performed as described in the paragraph above (see O/W process). The Ca(OH)2 

loaded MS were identified as wCMS. Blank control MS were produced with the same 

method without Ca(OH)2. 

Characterization of the MS 

Morphology of the MS 

Morphology was observed using 1-2 mg MS. They were put on an adhesive tape, and then 

it was coated with gold (20 mA for 4 minutes). The gold-coated MS were observed by a 

scanning electronic microscope (Philips XL-30, Philips, Hillsboro, OR, USA).  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 6 

 

Particle size analysis of the microspheres 

Microspheres were imaged at 100x using a light microscope with a digital camera 

(Olympus, Center Valley, PA, USA). Images were analyzed with ImageJ Software 

(Version 1.45, National Institutes of Health, Bethesda, MD, USA); one hundred of MS 

were measured and its average diameter was calculated. A Mann Whitney U test was 

applied to identify a possible statistical significant difference between CMS and blank MS 

as well as between oCMS and wCMS. Statistical significance was set at p < 0.05.  

Encapsulation efficiency (Ee) 

To calculate the Ee, Ca(OH)2-loaded MS were dissolved in 1 M NaOH. In this dissolution, 

a calcium colorimetric marker (Calcio Arsenazo III, Bio Simex, Guadalajara, JAL, MEX) 

was added for 5 minutes to react with Ca++. The reagent caused a blue color in the samples 

thus absorbance of the samples was measured by a UV-VIS system at 650 nm (Cary 50 

UV-Visible Spectroscopy System, Agilent Technologies, Mexico City, MEX). A 

calibration curve was previously performed to obtain the calcium concentration in relation 

to absorbance values. Ee was calculated as the ratio of the experimental loading to the 

theoretical loading, of the drug in the microspheres. 

Ca++ release 

Twenty mg of either oCMS or wCMS was suspended into 1 mL deionized water in an 

Eppendorf tube (1.5 mL) and incubated at 37°C for 30 days and shook at 150 rpm (Incu-

Shaker Mini, Benchmark Scientific; Edison, NJ, USA). The deionized water of the 

Eppendorf tubes was collected at different times; then 1 mL fresh deionized water was 

added in the Eppendorf tube containing the CMS. For Ca++ measuring, the Ca++ in the 

collected supernatant was marked with a calcium colorimetric marker (Calcio Arsenazo III, 
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Bio Simex, Guadalajara, JAL, MEX) and measured by a UV-VIS system at 650 nm (Cary 

50 UV-Visible Spectroscopy System, Agilent Technologies, Mexico City, MEX). Ca++ 

concentration was calculated from the absorbance in the basis of a calibration curve 

performed previously. Ca++ release of experimental groups was compared with a Ca++ 

release of a control paste prepared with Ca(OH)2 and PEG 400 (1.5   mg/10   μL). We 

incubated the Ca(OH)2 paste in a 1.5 cm length dialysis tubing cellulose membrane (Avg. 

flat width 10 mm; typical molecular weight cut-off = 14,000; Sigma-Aldrich, St. Louis, 

MO, USA) with a seal in each extremity. The membrane was used only for the control 

paste to avoid its immediate dispersion in the deionized water. The membrane with the 

paste was suspended into 1 mL deionized water in an Eppendorf tube (1.5 mL) and 

incubated at 37°C for 30 days and shook at 150 rpm. The measurement of Ca++ was 

identically as described for the CMS. All experiments were done in triplicate. ANOVA one 

way test and Tukey HSD test were applied to identify possible statistical significant 

differences between Ca++ release profiles of control and CMS. Statistical significance was 

set at P < 0.01. T-student was applied to identify possible statistical significant differences 

between Ca++ release profiles of oCMS and wCMS.  

Results 

CMS with a similar spherical morphology were obtained with two emulsion solvent 

evaporation techniques. The CMS exhibited different topographical characteristics 

depending on the preparation method (Figure 1). The oCMS showed an average diameter of 

18.63 ± 7.23 µm, while the wCMS showed a diameter of 15.25 ± 7.36 µm. No statistical 

difference in diameter was found between CMS and blank MS. Significantly statistical 

difference was noticed (P < 0.001) between average diameter of oCMS and wCMS. 
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Calculation of Ee was 24% for oCMS, while it was 11% for the wCMS. Compared with the 

control paste, the CMS showed a lower and longer Ca++ releasing activity; the figure 2 

shows the Ca++ releasing activity of the CMS and the control.  

Discussion 

We explored the formulation of CMS by the solvent extraction/evaporation method. In this 

method a drug/matrix oily dispersion is partitioned into microdroplets when it is added in 

an aqueous phase under shear forces. Then, extraction/evaporation of the solvent induces 

PLGA crystallization transforming the microdroplets into solid MS. We employed two 

variants of the method, O/W and W/O/W techniques. They differed in the physical 

presentation of the Ca(OH)2 for the dispersed phase, which was employed as a powder for 

the O/W and diluted in distilled water for the W/O/W techniques. The wCMS showed a 

rough like-porous surface while the oCMS showed a smooth surface; the average diameter 

of the MS was another property varying between the wCMS and the oCMS, these latter 

were the largest ones. The size of the MS depends on factors controlled by the formulation 

technique, for instance speed of stirring, temperature of the aqueous phase, or mass content 

in the dispersed phase [12]. In our study, the phase for the O/W presented larger solid 

content than the dispersed phase for the W/O/W. In that condition, a dispersed phase is 

more resistant against the shear forces causing its partitioning into droplets, and 

consequently larger MS are produced [14]. The oCMS entrapped over twice Ca(OH)2 than 

the wCMS. Higher Ee in oCMS is explained because higher DMC volume in the O/W 

dispersed phase reduces the flux of the used biomolecule (Ca(OH)2 in our case) to aqueous 

phase during solvent extraction/evaporation, and also accelerate PLGA crystallization with 

a consequent increase in the entrapment of the drug [15]. It should be considered that 

Ca(OH)2 is an hydrophilic molecule that easily might go to the aqueous phase from the 
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dispersed phase causing a low Ee. We determined whether CMS released lower Ca++ 

compared to Ca++ released from a Ca(OH)2 paste formulated with PEG 400, a fluid 

polymer used to promote slow and sustained release of Ca++  [2, 16, 17]. The paste showed 

a burst release of 42.6% Ca++ after 1 day of evaluation; then the paste showed a release of 

86.3% Ca++ after 3 days and finally it showed a release of 100% Ca++ after 6 days. The 

PEG is a highly hydrophilic polymer, thus it was rapidly dissolved in the PBS under our 

experimental conditions resulting in a fast release of the Ca++. The CMS behaved as a 

more efficient slow and sustained release system compared to the Ca(OH)2 paste indeed. In 

the CMS, the Ca(OH)2 was entrapped into the PLGA matrix during the MS formulation and 

it was released in a slow and sustained manner because of the gradual degradation of the 

polymer matrix during the evaluation time. The CMS kept a Ca++ release for 30 days. 

During first 9 days of evaluation a similar Ca++ release profile was noticed for both oCMS 

and wCMS, but since day 12th, the Ca++ release profiles behaved different in both CMS. 

We correlated the difference between release profiles to the surface properties of the MS. A 

rough like-porous surface favors a rapid drug release because fluids penetrate easier into 

the MS matrix and facilitates degradation of PLGA, releasing the entrapped drug; in the 

contrary, a smooth surface delays drug release [18,19]. It can also be correlated the fact that 

wCMS loaded less Ca(OH)2, as demonstrated by the percentage of Ee, and this was 

reflected on the release profile.  

 

Our study is the first one researching Ca(OH)2 loaded PLGA-based MS for apexification.  

Others have explored MS for the same purpose. Strom et al. produced Ca(OH)2 loaded 

alginate MS (CAMS) crosslinked by the Ca++ in the polymer matrix [8]. They compared 

the CAMS to a Ca(OH)2 paste (with distilled water; CP) and Ultracal XS calcium 
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 10 

hydroxide paste (UC) [8]. After 4 days, the CAMS released similar Ca++ amount to that 

released from UC but lower to that released from the CP [8]. After 10 days the CAMS 

released significantly lower Ca++ than both CP and UC; at 1 month the CAMS released 

∽18% of its Ca++ content [8].  Although the CAMS and our CMS are different in their 

characteristics, both systems showed a better sustained release profile when compared to a 

Ca(OH)2 paste. 

 

We choose PLGA to produce the MS because of its biocompatibility and biodegradability. 

The CMS were a micro-granular material ad hoc to be introduced into a root canal by a 

double-ended spatula for cement. When needed, the CMS might be easily removed from 

the root canal by flushing with distilled water followed by aspiration. If the CMS were 

located at extra-radicular area –as might occur for apexification– they will be biodegraded 

by action of the tissue fluid [12]. Thus the CMS might be placed into the root canal at 

apical level intending a single application of a SDDS. Using CMS might overcome 

disadvantages of Ca(OH)2 paste for apexification such as replacement of paste requiring 

multiple visits but also risk of root fracture by Ca(OH)2 dressing [20-22].  

We are aware of the limitations of this study. Evaluation time for 30 days was suitable to 

explore the release profile but it was short for a clinical reality; also the evaluation was 

short to know the time in which both oCMS and wCMS releases the total content of Ca++. 

We obtained an Ee 3 times lower than the total amount of Ca(OH)2 employed in the 

formulation of the CMS, the technique should improve to get a higher Ee.  

We concluded that CMS were successfully formulated, the techniques employed to produce 

them influenced on their characteristics. The CMS showed a size suitable for its application 
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into a root canal. The CMS showed a Ca++ sustained releasing activity for 30 days and it 

was better than that of the Ca(OH)2 paste. 
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Figure captions 

Fig 1 SEM images (1000x) showing the morphological properties of the two types of 

Ca(OH)2 loaded microspheres. Oil-in-water produced microspheres (oCMS) shows a 

spherical morphology with a smooth surface (A). Water-in-oil/in-water produced 

microspheres (wCMS) shows a spherical morphology with a porous and like-rough surface 

(B). Blank microspheres (C)  

Fig 2 Ca++ accumulative release profile (A) and release percentage (B). The control 

(Ca(OH)2 with polyethylene glycol 400) released   401.1   ±   128.5   μg/mL,   700.3   ±   38.9  

μg/mL  and  811.2  ±  26.3  μg/mL  after  1,  3  and  6  days  of  evaluation,  respectively. At 6 days, 

the control released 100% of Ca++ (B). The control showed a Ca++ release profile shorter 

than that of the oCMS (oil-in-water produced microspheres) and wCMS (water-in-oil/in-

water produced microspheres); statistically significant differences between the control and 

oCMS and wCMS were found at (*) (A). The oCMS and wCMS exhibited a similar release 

profile after 9 days of evaluation (A). But at (#) significantly statistical differences were 

found between the Ca++ released amounts from oCMS (430.5 ± 63.4 μg/mL) and wCMS 

(292.8 ± 50.7 μg/mL), the differences were observed up to the end of the experiment. The 

total  released  Ca++  was  590.1  ±  89.0  μg/mL  for  the  oCMS  and  297.9  ±  50.6  μg/mL  for  the  

wCMS; that represented 76.6% and 90.9% of Ca++ for the oCMS and wCMS, respectively  
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