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We extend previous work on applying the � expansion to universal properties of a cold, dilute Fermi gas in
the unitary regime of infinite scattering length. We compute the ratio �=� /�F of chemical potential to ideal gas
Fermi energy to next-to-next-to-leading-order �NNLO� in �=4−d, where d is the number of spatial dimen-
sions. We also explore the nature of corrections from the order after NNLO.
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I. INTRODUCTION AND RESULTS

For a number of years, it has been a challenge to compute
the properties of a dilute Fermi gas with infinite scattering
length �1�. This is known as the unitary regime and is rel-
evant to cold systems for which the interparticle separation is
very small compared to the two-particle scattering length a,
but very large compared to any other distance scales r char-
acterizing two-body interactions: a�n−1/3�r, where n is
the density. In the unitary regime, the only dimensionful pa-
rameter is the number density n, and so all physical quanti-
ties in this limit should be determined by dimensional analy-
sis and universal constants of proportionality. Dimensionless
ratios will be universal �2�. There has been much interest in
recent years in attempting to compute such universal con-
stants of the unitary regime �see, e.g., Refs. �3,4� and refer-
ences therein�.

The problem is nonperturbative in three spatial dimen-
sions. However, inspired by earlier work of Nussinov and
Nussinov �5� on the behavior of the unitary regime as a func-
tion of spatial dimension d, it was recently realized �6� that,
with an appropriately formulated perturbation theory, a per-
turbative solution is possible in d=4−� spatial dimensions
when ��1. Results can be expressed as an asymptotic series
in �, analogous to the � expansion methods that have been
used with great success for 30 years to determine critical
exponents in a variety of second-order phase transitions. One
may then extrapolate to the case of three dimensions, �=1.
For the case of cold, dilute Fermi gases at infinite scattering
length, it is found �6� that

� �
�

�F
= 1

2��/2d��3/2 − 0.0492�5/2 + O��7/2��

= 1
2�3/2 + 1

16�5/2 ln � − 0.0246�5/2 + ¯ , �1.1�

�0

�
= 2 + O��� , �1.2�

�

�
=

2

�
− 0.691 + O��� , �1.3�

where � is the chemical potential, � is the gap for fermionic
excitations, and �0 is the value of p2 /2m for fermionic exci-

tations with the minimum energy �. The Fermi energy �F is
defined as the Fermi energy of an ideal Fermi gas with the
same density n as the strongly interacting gas under consid-
eration.

The ratio � can be equivalently expressed as an energy
density ratio1

� =
E
E0

, �1.4�

where E and E0 are the energy densities in the interacting and
noninteracting cases, respectively, at equal number density n.
For experimental relevance, � can also be expressed as �7,8�

� = �Erel

E0
rel�2

�harmonic trap� �1.5�

for a system in a harmonic trap �in the limit of an arbitrarily
wide trap�, where the “release” energies Erel and E0

rel are the
total system energies in the interacting and noninteracting
cases at equal total particle number N.

Historically, in the simplest application of the � expan-
sion, one computes the first two or three terms in the � ex-
pansion and sees if they are reasonably well behaved for �
=1, which corresponds to three spatial dimensions. Using
this method, the above expansions would give the estimates
�6�

� � 0.475,
�0

�
� 2,

�

�
� 1.31. �1.6�

In this method, it is important to quit when one is ahead:
Because the � expansion is asymptotic, higher-order terms
eventually grow. The simple procedure is to stop including
higher-order terms when this happens. In more sophisticated
applications of the � expansion, however, critical exponents
have been determined fairly precisely for some phase transi-
tions by combining high-order � expansions, information
about the large-order asymptotic behavior, and knowledge of
the behavior at or near lower dimensions such as d=2, to fit
results as a function of dimension using Borel-Padé approxi-

1This can be proven simply by using thermodynamics and scaling
at unitarity �2�.
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mations �9–12�.2 A similar procedure has recently been car-
ried out for the ratio �=� /�F in Ref. �13� using next-to-
leading-order results for the � expansion about both four and
two spatial dimensions �except that the high-order
asymptotic behavior of the � expansion about four dimen-
sions is currently unknown�.

The goal of the current paper is to take the step of com-
puting the next term in the � expansion about four spatial
dimensions for � at zero temperature, and to learn something
about the analytic structure in � by showing that new, non-
trivial logarithms of � appear at yet higher orders. We find

� = 1
2��/2d��3/2 − 0.04916�5/2 − 0.95961�7/2 − 3

8�9/2 ln �

+ O��9/2�� . �1.7�

One may expand

��/2d = 1 + 1
8� ln � + �2� 1

128 ln2 � + 1
32 ln �� + O��3 ln3 ��

�1.8�

if desired, as in Eq. �1.1�. If one intends to naively set �=1,
this expansion is unnecessary since ln � then vanishes and
��/2d=1 order by order in �. We will comment on the large
relative size of the next-to-next-to-leading-order �NNLO�
correction at the end of the paper and discuss there the im-
plications of our result for Borel-Padé extrapolations to d
=3.

In the remainder of this paper, we explain our calculation
of � to NNLO in the � expansion. In the next section, we
briefly review the formalism and diagrammatic rules devel-
oped in Ref. �6� for applying the � expansion to this problem.
At the beginning of Sec. III, we display the diagrams that
need to be evaluated to push the calculation of the effective
potential �which is later used to determine �� to NNLO in �.
Because the efficient evaluation of some diagrams is chal-
lenging, we will then take the time to explain our methods in
detail. Results for all the diagrams are summarized in Appen-
dix A. In Sec. IV, we put everything together to determine �
as in Eq. �1.7�. Finally, in Sec. V, we explain how the dia-
grammatic � power counting of Ref. �6� would break down,
due to infrared issues, if we proceeded to yet one higher
order in � than the calculation reported in this paper. We then
show how the proper power counting of � can be restored.
Finally, we discuss the implications of our result to extrapo-
lating the value of � to d=3 in Sec. VI.

II. REVIEW

We will generally follow the conventions and diagram-
matic methods of Ref. �6�, which we review here. One starts
with the Lagrangian

L = �†�i�t +
�2

2m
�3�� + ��†�3� −

1

c0
�*� + �†�+��

+ �†�−��*, �2.1�

where � is a Hubbard-Stratonovich field, �= �	↑ ,	↓
†�T is a

two-component Nambu-Gor’kov field, �±= 1
2 ��1± i�2�, and

�1,2,3 are the Pauli matrices. The constant c0 determines the
scattering length. In three spatial dimensions,

m

4
a
= −

1

c0
+	 d3p

�2
�3

m

p2 . �2.2�

The integral on the right hand side of Eq. �2.2� is ultraviolet
divergent �and is so in any dimension d�2�. In a physical
system there is always an upper momentum cutoff, for ex-
ample, the inverse of the range of potential. However, if the
system is insensitive to the cutoff, then c0 should always
appear in physical observables in the same combination as in
Eq. �2.2�, so that observables can be expressed in terms of
the scattering length.

Technically, it is cumbersome to carry the integral in Eq.
�2.2� across our formulas, so we will use dimensional regu-
larization. The technical advantage of this regularization
scheme is that the integral 
ddp / p2 vanishes in any dimen-
sion, and so the connection between c0 and a becomes very
simple. In particular, infinite scattering length corresponds to
c0=�, so that there is no term quadratic in � in Eq. �2.1�. As
long as the physics is insensitive to short distances, dimen-
sional regularization will give the same result as other regu-
larization schemes such as a momentum cutoff.3

Following Ref. �6�, we expand � about its superfluid ex-
pectation value �����0 as

� = �0 + g
 , �2.3�

where g is chosen to give the dynamics of 
 a conventional
normalization at leading order in �. In particular, if one com-
putes the small-momentum expansion of the 
 self-energy �
of Fig. 1 to leading order in �, one finds

��p0,p� = ��0� +
g2m2

8
2�
�− p0 +

p2

4m
��1 + O���� + O�p0

2,p4� .

�2.4�

The choice g2m2=8
2��1+O���� will then make the momen-
tum dependence above into a conventionally normalized ki-

2For a textbook overview, see chapters 28 and 41 of Ref. �14�.

3See Ref. �15� for a standard textbook treatment of dimensional
regularization, with emphasis in high-energy physics. For con-
densed matter applications see, for instance, the textbook treatment
in Ref. �14�. For a few examples of use in the theory of cold, dilute
atomic gases, see Ref. �16�.

FIG. 1. The one-loop scalar self-energy �, where solid lines
represent Nambu-Gor’kov fermion fields � and dashed lines repre-
sent the scalar field variation 
. �There is a similar diagram where
one of the external scalar arrows is reversed, mixing 
 with 
*,

which we will discuss later and denote �˜.�
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netic term for a nonrelativistic particle of mass M
=2m for
d=4. Reference �6� found it convenient to define

g2 �
8
2�

m2 �m�0

2

��/2

. �2.5�

Reference �6� then reorganized the Lagrangian in the case
of infinite scattering length as a sum L=L0+L1+L2 corre-
sponding to an unperturbed Lagrangian L0 of a free fermion
field � and a free scalar field 
, plus perturbations L1+L2:

L0 = �†�i�t +
�3�

2

2m
+ �+�0 + �−�0�� + 
*�i�t +

�2

4m
�
 ,

�2.6a�

L1 = g�†�+�
 + g�†�−�
* + ��†�3� + 2�
*
 ,

�2.6b�

L2 = − 
*�i�t +
�2

4m
�
 − 2�
*
 . �2.6c�

Here, L1 can be thought of as the interaction terms. As ex-
plained in Ref. �6�, L2 should be employed as counterterms
to the one-loop diagrams shown in Fig. 2.4 Feynman rules
are shown in Fig. 3, where

�̂0 � − p0 +
p2

4m
. �2.7�

�This is our one deviation from the notation of Ref. �6�. We

find it convenient to define our �̂0 as the negative of their
�0. We have added the hat over � to distinguish it and avoid
notational confusion on this point.� The unperturbed propa-
gators generated by L0 are

G�p0,p� = �p0 − �p + i� �0

�0 p0 + �p − i�
�−1

=
1

p0
2 − Ep

2 + i�
�p0 + �p − �0

− �0 p0 − �p
� �2.8�

and

D�p0,p� =
1

p0 − 1
2�p + i�

, �2.9�

where

�p �
p2

2m
, Ep � ��p

2 + �0
2�1/2. �2.10�

By analyzing the effective potential V��0� for the expec-
tation �0, the minimum is found at �0
� /�, or equivalently
�
��0. The correspondence between the diagrammatic ex-
pansion and the � expansion can then be codified by treating
�0 as O��0� and each insertion of � or g2 �see Eq. �2.5�� as
O���. With one exception, this identification gives the rela-
tive importance of each diagram of the effective potential to
NNLO in the � expansion �the order relevant for the current
calculation�, provided one uses counterterms according to
Fig. 2. The one exception is the one-loop fermion diagram
with a single � insertion, shown in Fig. 4�b�, which produces
a 1/� that compensates for the � and which is not canceled
by any counterterm diagram.

A word of review is in order regarding the nature of the
problem above and below four dimensions. In d=4−�, the
corrections to mean-field theory for the unitary Fermi gas are
controlled by powers of �. For d�4, on the other hand, the
problem becomes qualitatively different, as the short distance
scale R �the range of the potential� renders the problem non-

4The splitup �2.6� might appear unconventional, but the basic idea
behind it, as in many other occasions in condensed matter physics,
is to resum divergent graphs. The graphs that need to be resummed
in our case are multiple insertions of the fermion loop �Fig. 1� into
the 
 propagator. One could, in principle, formulate a set of Feyn-
man rules where the 
 propagator is the inverse of the fermion loop,
and fermion loop insertions into the scalar propagator are forbidden
by hand. However, the resulting 
 propagator would be a very
complicated function of momentum and chemical potential. For
practical calculations it is much more efficient to give the 
 propa-
gator a simpler form, equal to the inverse of the leading 1/� piece
of the fermion loop �Eq. �2.4��, and have it corrected in higher
loops. To do that at the formal level, the splitup �2.6� is introduced.

σ+ig σ−

i µσ3 i2 µ

propagators

vertices

ig i
^Π0

i µ−2

iG iD

FIG. 3. Feynman rules from Eqs. �2.6� �6�.

(a) (c)(b)

FIG. 4. One-loop diagrams through O��2�. Scalar loops are not
shown since these vanish due to the retarded nature of the propa-
gators. We will use the notation �a� V1

�0�, �b� V1
���, and �c� V1

����.

+

+

(a)

(b)

FIG. 2. The rule for using combining divergent subdiagrams
with counterterms from L2 to achieve a simple perturbative expan-
sion in � �6�.
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universal, and ill defined as R→0. This is easy to see if one
solves the two-body problem in arbitrary dimension, as done
by Nussinov and Nussinov �5�. �Precisely at d=4, mean-field
theory acquires logarithmically small corrections of order
1 / log�L /R�, where L
n−1/3 is the typical particle
separation.5�

III. EVALUATING THE NEXT-TO-NEXT-TO-LEADING-
ORDER POTENTIAL

A. The diagrams

Figures 4–6 show the nontrivial diagrams that determine
the effective potential V��0� through NNLO in �, together
with our conventions for labeling momenta. In the figure
captions, we explain the notation we will use for the contri-
bution of various classes of these diagrams to the effective
potential. We have generally not included various one-loop
scalar diagrams which vanish simply because of the retarded

nature of the scalar propagator D of Eq. �2.9�, such as those
shown in Fig. 7.6

B. Cross diagram

As our first example, we will begin by discussing how to
efficiently evaluate the contribution V3

�����0� of the cross
diagram of Fig. 6�a� to the full effective potential V��0� at
O��2�. This is a three-loop diagram and its leading contribu-
tion is already O��2� because of the four explicit factors of
the coupling g. We may therefore ignore any other � depen-
dence at the order of interest and so can evaluate the loop
integrals for exactly d=4. �For this diagram, the loop inte-
grals converge for d=4, which we will see explicitly.� Our
basic approach will be to evaluate all of the frequency inte-
grals. One can then scale all dimensionful parameters out of
the remaining momentum integrals. We then perform the di-
mensionless momentum integrals numerically.

Figure 6�a� gives

− iV3
��� = − �ig�4	

PQK

iG11�P�iG22�Q�iG21�− K�

�iG12�P + Q + K�iD�P + K�iD�− Q − K� , �3.1�

where the overall minus sign on the right-hand side is for the
fermion loop. We will use capital letters P to stand for
�p0 ,p�, where p0 is frequency and p is spatial momentum,
and we will use the short-hand notations

5One can understand this logarithm in the spirit of Nussinov and
Nussinov by recalling that the unitary limit corresponds to the pres-
ence of a zero-energy bound state, whose wave function will be
��r2−d outside of the range R of the potential. The normalization
integral 
ddr ���2

ddrr4−2d for the total probability is UV conver-
gent in d=4−� dimensions, but UV logarithmically divergent in d
=4 dimensions, where it introduces a logarithmic dependence on R.
More technically, if one follows the d=4−� derivations of Nishida
and Son, briefly reviewed here, the source of the small parameters
g2
� and � /�0
� of the expansion about mean-field theory come
from logarithmically divergent �in d=4� integrals: respectively, the
1/� in the self-energy �2.4� above �from Fig. 1� and in the potential
�4.1� �from Fig. 4�b��. These integrals 
ddp / p4 are momentum-
space versions of 
ddrr4−2d. Imagine roughly cutting off the inte-
grals in the ultraviolet at the scale r
R and p
1/R, where the
effective theory breaks down and one would need a treatment of the
details of the two-body potential. In the calculations of Nishida and
Son and in this paper, the infrared is cutoff by the distance scale
s
�m�0�−1/2 associated with the condensate �0. In d=4, we then
see that the role of 1 /� is replaced by ln�s /R�. �The resulting solu-
tion for �0 will relate s and L by a power of this logarithm, and so
ln�s /R�
 ln�L /R� up to corrections suppressed by inverse powers
of the logarithm.� We also learn that, in d=4−� dimensions with �
small, R must be exponentially tiny in order to be in the universal
regime. Specifically, in order for R not to significantly affect

ddp / p4, one must have R�e−1/�s
�1/4e−1/�L.

6Naively, these diagrams can be seen to vanish by closing the loop
frequency integration in the upper half plane, which contains no
poles. There is a technical caveat, however, in that the contribution
from the semicircle at infinity cannot be ignored in all cases. This
can give �0-independent contributions to the effective potential
which vanish in dimensional regularization and which in other
schemes correspond to operator ordering issues, such as whether �
multiplies the Wigner-ordered number operator 1

2 �a†a+aa†� �corre-
sponding to a naive application of the Feynman rules� or the correct
normal-ordered operator a†a.

−Q

P(a) (b) (c) (d)

FIG. 5. Two-loop diagrams. The counterterm diagrams for �a–
c�—a single scalar loop with an appropriate L2 counterterm—are
not shown because they vanish due to the retarded nature of the
scalar propagator. Our notation is �a� V2

�0� and �b–d� V2
���.

−L

Q

P

−K

(a)

−L

Q

P

−K

(b)

−L

Q

P

−K

(c)

−L

Q

P

−K

(d)

(f)

P

−Q

L
−K

(h)(g)(e)

P

−Q

L
−K

FIG. 6. Three-loop diagrams �including counterterms to bosonic
self-energies�. �h� vanishes due to the retarded nature of the scalar
propagator, but we find it useful to include to make more obvious
the cancellation of UV divergences. Our notation is �a� V3

���, �b–d�
V3

����, �e� V3
��˜�˜�, and �f–h� V2

����.
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P

¯ �	 dp0

2


ddp

�2
�d ¯ , 	
p
¯ �	 ddp

�2
�d ¯ .

�3.2�

Since G21=G12, this is the same as

V3
��� =

g4

i3 	
PQK

G11�P�G22�Q�G12�− K�G12�P + Q + K�

�D�P + K�D�− Q − K� . �3.3�

1. The frequency integrals

One could simply use the expressions �2.8� and �2.9� for
the propagators and now do the three frequency integrals �p0,
q0, k0� by brute force. This approach is tedious and yields
complicated expressions with many terms requiring signifi-
cant effort to simplify. It also naturally produces terms with
energy denominators such as �Eq−Ek+ 1

2�q+k�−1 which look
like they produce singularities for certain momenta �e.g., q
=−k in this example�, but all such singularities turn out to
cancel between different terms in the final result.

There is, however, a method for carrying out the fre-
quency integration which directly produces much tidier re-
sults. The first step is to rewrite

G11�P� =
p0 + �p

p0
2 − Ep

2 + i�

=
1

2Ep
� Ep + �p

�p0 − Ep + i��
+

Ep − �p

�p0 + Ep − i��� , �3.4a�

G22�Q� =
q0 − �q

q0
2 − Eq

2 + i�

=
1

2Eq
� Eq − �q

�q0 − Eq + i��
+

Eq + �q

�q0 + Eq − i��� , �3.4b�

G12�S� =
− �0

s0
2 − Es

2 + i�
=

− �0

2Es
� 1

�s0 − Es + i��
−

1

�s0 + Es − i��� ,

�3.4c�

i.e., to decompose the propagators into retarded and ad-
vanced parts. The integrand in Eq. �3.3� then splits into 24

=16 different terms. We shall see that many of these terms

trivially vanish, and others are related by symmetry. It is
useful to give a graphical depiction of these different terms
by schematically rewriting Eqs. �3.4� as in Fig. 8. The first
and second terms on the right of this figure denotes the �p0

−Ep+ i��−1 and �p0−Ep− i��−1 terms on the right-hand side of
Eqs. �3.4�. The + and − signs in Fig. 8 denote the sign of i�,
and the direction of the arrows on the right-hand side of Fig.
8 correspondingly represent the flow of time �forward for a
retarded propagator, backward for an advanced one�.

In this new notation, Fig. 9�a� shows an example of one of
the 216 terms contained in the original diagram of Fig. 6�a�. It
is easy to see that this term vanishes, because there exists a
loop, Fig. 9�b�, where all the arrows have the same orienta-
tion. If we do that loop integration first, then we can close it
in a half plane where there are no poles, and we obtain zero.
There are only six terms that do not contain a similar van-
ishing loop, and they are shown in Fig. 10. The terms repre-
sented by the bottom row are related to those of the top row
by the change of variables

�P,Q,K� → − �Q,P,K� , �3.5�

which is a symmetry of the original integrand �3.3�.7 This
just represents a change of integration variables, and so the
contribution of the second row to the potential will equal that
of the first row. We therefore need only evaluate three terms,
corresponding to Figs. 10�a�–10�c�. Graphically, the opera-
tion �3.5� corresponds to flipping the diagrams of Fig. 10
around the horizontal axis and changing the designations
+↔− on the fermion lines.

The next step is to choose combinations of the three fre-
quency integration variables that make the integrals as
simple as possible. For each of the terms in Fig. 10, one can
find three independent loops that have all arrows but one
going around the loop in the same direction. Choose the
frequency of the single oppositely oriented line of each such
loop to be an integration variable. In Fig. 10, these three
frequencies are shown explicitly for each term in the first
row, where l0�−�p0+q0+k0�, u0�−�q0+k0�, and v0� p0

+k0. By closing the frequency integration contours in the
appropriate half plane, one can pick up a single pole for each
corresponding to the labeled lines in the figure. For instance,
from Fig. 10�a�, one obtains the term

7Another such symmetry is K→−�P+Q+K� with P and Q
unchanged.

(b) (c) (d)(a)

FIG. 7. Examples of diagrams which vanish because of the
purely retarded nature of the scalar propagator D�P�.

P
+=

+ _

FIG. 8. �Color online� Split of fermion propagators into retarded
and advanced terms according to Eq. �3.4�.

_

+

+

_

(a) (b)

FIG. 9. �Color online� �a� One of the 16 terms generated from
Fig. 6�a� by the expansions �3.4�. �b� A vanishing loop in this
diagram.
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g4�0
2	

pqk

�Ep − �p��Eq + �q�
2Ep2Eq2Ek2Ep+q+k

	 dp0

2
i

dq0

2
i

dl0

2
i
�p0 + Ep − i��−1

� �− k0 − Ek + i��−1�− l0 − p0 − k0 + Eq − i��−1�− l0 − Ep+q+k

+ i��−1�p0 + k0 − 1
2�p+k + i��−1�p0 + l0 − 1

2�q+k + i��−1, �3.6�

which integrates to

g4�0
2	

pqk

�Ep − �p��Eq + �q�
2Ep2Eq2Ek2Ep+q+k

�Ep + Eq + Ek + Ep+q+k�−1

��Ep + Ek + 1
2�p+k�−1�Ep + Ep+q+k + 1

2�q+k�−1. �3.7�

Doing all the terms of Fig. 10 similarly, we obtain the fol-
lowing result for the contribution of the cross diagram to the
effective potential:

V3
��� = g4�0

2	
pqk
� �Ep − �p�

2Ep2Eq2Ek2ElSpl
� �Eq + �q�

SpkEpqkl

−
�Eq − �q�

Tpq,k
� 1

Spk
+

1

Sqk
�� + �p ↔ q�� , �3.8�

where we introduce short-hand notation which will also be
convenient for other diagrams:

l � − �p + q + k� , �3.9a�

Spk � Ep + Ek + 1
2�p+k, �3.9b�

Tpq,k � Ep + Eq + 1
2�p+k + 1

2�q+k, �3.9c�

Epqkl � Ep + Eq + Ek + El. �3.9d�

The �p↔q� term at the end of Eq. �3.8� represents the sec-
ond row of Fig. 10 �using the �P ,Q ,K�→−�Q , P ,K� sym-
metry discussed earlier combined with parity �p ,q ,k�→
−�p ,q ,k��. One may drop the �p↔q� in favor of multiplying
the rest of the expression by a factor of 2.

Some readers, used to perturbation theory about free
Fermi gases, may wonder at the absence of Fermi-sea step
functions such as ���−�p� in the expression �3.8�. This is
because of the effects of the condensate �0, which is large
compared to the chemical potential �
��0. The system is
not describable as a small perturbation to a free Fermi sea. In
Appendix B, we give a brief, illustrative example of what
happens to a standard ���−�p� factor if one adds a conden-
sate �0 and increases it to �0��.

2. The momentum integrals

The remaining integrals �3.8� that we need to do can be
made dimensionless by rescaling momenta as

p → �2m�0�1/2p , �3.10�

which has the effect of replacing g4�0
2 by g4�0

−3�2m�0�3d/2

outside the integral and replacing �p and Ep by the dimen-
sionless versions

�̄p � p2, Ēp � �p4 + 1�1/2 �3.11�

everywhere inside the integral. Using the formula �2.5� for
g2, this can be written as

V3
��� = �0�m�0

2

�d/2

�2K3
������ , �3.12�

where

K3
������ � 4�4
�3d/2	

pqk

2�Ēp − �̄p�

2Ēp2Ēq2Ēk2ĒlS̄pl
��Ēq + �̄q�

S̄pkĒpqkl

−
�Ēq − �̄q�

T̄pq,k
� 1

S̄pk

+
1

S̄qk
�� �3.13�

is a dimensionless function of �. For a NNLO evaluation of
the potential, we may evaluate K3

��� at �=0, so that

V3
��� = �0�m�0

2

�d/2

�2�K3
��� + O���� , �3.14�

where the numerical constant K3
��� is the result of the integral

�3.13� evaluated in exactly four dimensions.
For numerical evaluation, we use rotational invariance to

rewrite the momentum integrals as a six-dimensional integral
over the magnitudes of and angles between the momenta:

	 d4p

�2
�4

d4q

�2
�4

d4k

�2
�4 =
1

�2
�8	
0

�

p3q3k3dpdqdk	
0




sin2 �p sin2 �q sin �qd�pd�qd�q, �3.15�

(b’)

+

−

+ −−−

+

+ +

−

++

p0

u0

p0 p0

u0 v0
−

+

−

−

q0

(a)

(a’) (c’)

(b)

−

+

−

+

(c)

0−k

−

−

++ 0−l

FIG. 10. �Color online� The six nonzero terms of Fig. 6�a� aris-
ing from the decomposition �3.4� represented by Fig. 8. The con-
ventions for defining the direction of frequency flow are not given
by the arrows here for the fermion lines but by the original diagram
of Fig. 6�a� for p0, q0, and k0 and by the definition l0=−�p0+q0

+k0� for l0.
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corresponding to a choice of Cartesian coordinates aligned
so that

k = k�1,0,0,0� , �3.16a�

p = p�cos �p,sin �p,0,0� , �3.16b�

q = q�cos �q,sin �q cos �q,sin �q sin �q,0� . �3.16c�

We then perform the integral �3.13� numerically using adap-
tive Monte Carlo integration. The result is

K3
��� � 0.15101, �3.17�

where � in this paper will mean that the result has an esti-
mated error of at most ±1 in the last digit. Equations �3.14�
and �3.17� represent our final result for the cross diagram of
Fig. 6�a�.

C. Basic two-loop diagram through O„�2
…

The basic two-loop diagram of Fig. 5�a� is given by

− iV2
�0� = − �ig�2	

PQ

iG11�P�iG22�− Q�iD�P + Q� .

�3.18�

Doing the frequency integrals,

V2
�0� = − g2	

pq

�Ep − �p��Eq − �q�
2Ep2EqSpq

. �3.19�

Rescaling momenta as in Eq. �3.10�,

V2
�0� = �0�m�0

2

�d/2

�K2��� �3.20�

with

K2��� = − 2�4
�d	
pq

�Ēp − �̄p��Ēq − �̄q�

2Ēp2ĒqS̄pq

, �3.21�

If one sets d=4, one has K2�0�=−C2 where

C2 � 2�4
�4	 d4p

�2
�4

d4q

�2
�4

�Ēp − �̄p��Ēq − �̄q�

2Ēp2ĒqS̄pq

,

�3.22�

which gives

C2 � 0.14424 �3.23�

upon numerical integration, all just as in Ref. �6�. For a
NNLO calculation of the potential, however, we need the
next term in the expansion of K2��� in �. We can obtain this
by rewriting the d dimensional integration as

	 ddp

�2
�d

ddq

�2
�d =
8

�4
�d+ 1
2�� d

2��� d−1
2 �
	

0

�

pd−1qd−1dpdq	
0




sind−2 �pqd�pq, �3.24�

where �pq is the angle between p and q, and then expanding
in �. The result is

K2��� = − �1 + � 3
2 − � − ln 2���C2 + �C2

�log� + O��2�

�3.25�

where

C2
�log� = 2�4
�4	 d4p

�2
�4

d4q

�2
�4

�Ēp − �̄p��Ēq − �̄q�

2Ēp2ĒqS̄pq

�ln��p��q�sin �pq� , �3.26a�

with numerical value

C2
�log� � 0.14238. �3.26b�

D. Scalar loop with two self-energy insertions

The next diagrams we consider are those of Figs.
6�f�–6�h�, which correspond to a scalar loop with two self-
energy insertions � and the corresponding counterterm dia-

grams. Individually, the diagrams of Figs. 6�f� and 6�g� are
ultraviolet �UV� divergent; it is only in their combination
that the divergences are eliminated. So we must be careful
not to set d=4 in integrations until we have organized the
terms into absolutely convergent integrals. We will keep d
general in what follows until near the end.

Together, Figs. 6�f�–6�h� give

− iV3
���� = 1

2	
V

�iD�V��2�− i���V� − �̂0�V���2, �3.27�

where V= �v0 ,v� is the frequency and momentum of the sca-
lar line, � is the one-loop scalar self-energy given by

− i��V� = − �ig�2	
P

iG11�P�iG22�P − V� , �3.28�

and the corresponding counterterm �̂0 is given by Eq. �2.7�.
The frequency integral in Eq. �3.28� is straightforward,

especially using Eq. �3.4�, yielding
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��V� = g2	
p

1

2Ep2Ep−v
� �Ep + �p��Ep−v + �p−v�

v0 − Ep − Ep−v + i�

−
�Ep − �p��Ep−v − �p−v�

v0 + Ep + Ep−v − i�
� . �3.29�

The momentum integral would be UV divergent if we set
d=4. We will isolate this divergence by isolating the large p
behavior of the integrand by writing

��V� = �div�V� + �reg�V� , �3.30�

where the divergent piece of the momentum integral is

�div�V� � g2	
p

1

v0 − �p − �p−v + i�
, �3.31�

and the remainder is

�reg�V� = g2	
p
� 1

2Ep2Ep−v
� �Ep + �p��Ep−v + �p−v�

v0 − Ep − Ep−v + i�
−

�Ep − �p��Ep−v − �p−v�
v0 + Ep + Ep−v − i�

� −
1

v0 − �p − �p−v + i�
� . �3.32�

The strategy here is to have chosen the form of �div to be simple enough that we can manage to evaluate the integral in
general dimension d. The result of evaluating Eq. �3.31� is8

�div�V� = − g2��1 − d
2�� m

4

�d/2

�− v0 + 1
2�v − i��d/2−1 = −

�

2
��1 − d

2��− v0 + 1
2�v��− v0 + 1

2�v − i�

2�0
�−�/2

, �3.33�

where Eq. �2.5� has been used for g2. Now use our split �3.30� of � to rewrite the contribution to the potential given by Eq.
�3.27� as

V3
���� = −

1

2i
	

V

�D�V��2���reg�V��2 + 2�reg�V���div�V� − �̂0�V�� + ��div�V� − �̂0�V��2� . �3.34�

In dimensional regularization, the terms which do not involve �reg integrate to zero because of their scaling properties. For
example, changing integration variables

�v0,v� → ��2v0,�v� �3.35�

for an arbitrary constant �,

	 dv0

2


ddv
�2
�d �D�V��2��div�V��2 =	 �2dv0

2


�dddv
�2
�d ��−2D�V��2��d−2�div�V��2. �3.36�

So this integral must equal itself times �3�d−2� and so must vanish. For similar reasons, we may dispense which each term
generated by expanding the square in

−
1

2i
	

V

�D�V��2��div�V� − �̂0�V��2 = 0.

For the first term in Eq. �3.34�, we continue by performing the v0 integration, using Eq. �3.32� for �reg. One may avoid the
bother of dealing with the double pole from D�K� by closing in the upper-half plane. The result is

−
1

2i
	

V

�D�V��2��reg�V��2 = −
g4

2
	

pqk
� �Ep − �p��Ek − �k�

2Ep2Eq2Ek2ElSpk
2 � �Eq − �q��El − �l�

Sql
+

�Eq + �q��El + �l�
Epqkl

−
2Eq2El

�Ep + �q + Ek + �l�
�

+ �pk ↔ ql�� , �3.37�

where we have used the notation of Eqs. �3.9� and the momentum naming conventions shown in Fig. 6�f� �so v=p+k�. This
integral is absolutely convergent in d=4, and so we may evaluate it numerically just as we did for the cross diagram in Sec.
III B 2, giving

−
1

2i
	

V

�D�V��2��reg�V��2 = �0�m�0

2

�d/2

�2�K3
���,1� + O���� �3.38�

with

8The dependence of Eq. �3.33� only on the combination −v0+ 1
2�v is a result of Galilean invariance. Galilean invariance is broken by the

condensate �0, but �0 does not appear in our definition of �div.
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K3
���,1� � 0.006 753. �3.39�

Finally, we need the second term from the right-hand side of Eq. �3.34�. Taking �reg and �div from Eqs. �3.32� and �3.33�,
and closing the v0 integration in the upper half plane to avoid the branch cut in �div, one finds

−
1

i
	

V

�D�V��2�reg�V���div�V� − �̂0�V�� = g2	
pk

�Ep − �p��Ek − �k�
2Ep2EkSpk

2 ��div�V� − �̂0�V���−v0+ 1
2

�v=Spk

= g2	
pk

�Ep − �p��Ek − �k�
2Ep2EkSpk

�−
�

2
��1 − d

2�� Spk

2�0
�−�/2

− 1� . �3.40�

If we expand about four dimensions, we obtain absolutely
convergent integrals at every order in �. We are therefore free
to expand the integrand in � to obtain

�1 + O����
�g2

2
	

pk

�Ep − �p��Ek − �k�
2Ep2EkSpk

�1 − � − ln� Spk

2�0
�� .

�3.41�

Rescaling momenta in the usual way then gives

−
1

i
	

V

�D�V��2�reg�V���div�V� − �̂0�V��

= �0�m�0

2

�d/2

�� 1
2 �1 − � + ln 2�C2 − C2

�log,S���2 + O��3��
�3.42�

with C2 given by Eqs. �3.22� and �3.23�,

C2
�log,S� � 2�4
�4	 d4p

�2
�4

d4q

�2
�4

�Ēp − �̄p��Ēq − �̄q�

2Ēp2ĒqS̄pq

1
2 ln�S̄pq�

�3.43a�

giving

C2
�log,S� � 0.194 08. �3.43b�

Our final result for the contribution of Figs. 6�f�–6�h� to the
effective potential is the sum of Eqs. �3.38� and �3.42�:

V3
���� = �0�m�0

2

�d/2

��K3
���,1� + 1

2 �1 − � + ln 2�C2

− C2
�log,S���2 + O��3�� . �3.44�

E. Remaining diagrams

The remaining diagrams are relatively easy, and we sum-
marize results in Appendix A. Here, we will just make a few
comments on method.

A simple way to handle diagrams with self-energy inser-
tions is to consider the diagram without any such insertions,
and then replace �p by �p

���p−� in both �p and Ep= ��p
2

+�0
2�1/2 for fermion energies, and replace 1

2�v by 1
2�v−2� for

boson energies. For instance, to simultaneously evaluate all

of the two-loop diagrams of Figs. 5�b�–5�d� with chemical
potential insertions, replace Eq. �3.19� for the basic two-loop
result V2

�0� by

− g2	
pq

�Ep
� − �p

���Eq
� − �q

��
2Ep

�2Eq
��Ep

� + Eq
� + 1

2�p+q − 2�� , �3.45�

where Ep
�����p−��2+�0

2�1/2. Then Taylor expand the inte-
grand to the desired order in �, which in this case is first
order. The same method can be used on the one-loop inte-
grals of Fig. 4 starting from the basic one-loop integral of
Fig. 4�a�, 9

V1
�0� = i	

P

ln det�− iG−1�P�� = − 	
p

Ep. �3.46�

IV. RESULT FOR �

Combining the results given previously and in Appendix
A, the full effective potential at NNLO in � is

V��0� = �m�0

2

�d/2��0

3
�1 + a1� + a2�2� −

�

�
�1 + b1� + b2�2�

−
�2

2�0
� + O��3� , �4.1�

where �0 is treated as O�1� and � as O���. The various
numerical coefficients are

a1 = 1
2� 7

3 − � − ln 2� − 3C2 � 0.098 77, �4.2�

a2 = 1
8� 7

3 − � − ln 2�2 + 19
72 + 3��− 1 + 1

2� + 3
2 ln 2�C2 + C2

�log�

− C2
�log,S� + K3� � − 0.158 40, �4.3�

b1 = 1
2� 1

2 − � + ln 2� � 0.307 97, �4.4�

9There are similar issues as footnote 6 concerning the frequency
integral and the behavior of its integrand at infinity. In general regu-
larization schemes, this could be avoided by defining the integrals
here with �0 �and �� independent subtractions, which will not af-
fect the determination of � from the effective potential: i
P�ln det�
−iG−1�P ;�0��−ln det�−iG−1�P ;0���=−
p�Ep−�p�. But, in dimen-
sional regularization, the subtracted term vanishes anyway by scal-
ing arguments similar to those reviewed in Sec. III D.
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b2 = 1
8� 1

2 − � + ln 2�2 + 1
32 − K2

��� � 0.337 03, �4.5�

where

K3 � K3
��� + K3

���,1� + K3
���� + K3

��˜�˜� � − 0.183 48.

�4.6�

The ratio � can be computed from V��0 ,�� by the procedure
used in Ref. �6�. First, we determine the expectation �0
which minimizes the potential:

�0 =
2�

�
�1 + 0.125 86� + 0.568 45�2 + O��3�� . �4.7�

Then we determine the fermion number density n from the
pressure P=−V��0�, giving

n =
�P

��
= −

�V

��
=

1

�
�m�0

2

�d/2�1 + b1� + b2�2 +

��

�0
+ O��3�� .

�4.8�

Next, we take the formula for the Fermi energy �F�n� of a
d-dimensional ideal Fermi gas with the same density,

�F =
2


m
� 1

2�� d
2 + 1�n�2/d. �4.9�

For the density �4.8�, this then gives

� �
�

�F
=

�2/d�

�0
� 1

2�� d
2 + 1��1 + b1� + b2�2 +

��

�0

+ O��3���−2/d

. �4.10�

Substituting in the expectation �4.7� for �0, and rewriting
�2/d=��/2d�1/2, produces the final result �1.7� through NNLO.
The additional logarithmic term shown in Eq. �1.7� at the
order beyond NNLO is the subject of the next section.

V. THE � EXPANSION BEYOND NEXT-TO-
NEXT-TO-LEADING-ORDER

A. General

In this section, we discuss a difficulty that arises in apply-
ing the diagrammatic expansion of Sec. II if one were to
proceed to yet one higher order in �, attempting to evaluate
the effective potential through O��3� �and so � through
O��9/2��. The problem is an infrared problem arising from the
fact that the scalar excitations, unlike the fermionic excita-
tions, are not gapped.

For the sake of specificity, consider the O��3� contribution
to the effective potential made by the diagram of Fig. 11�a�.
Together with the corresponding counterterm diagram, this
gives a contribution to the effective potential

V4
�example� = −

1

i
	

V

�D�V��2D�− V����V� − �̂0�V����˜�V��2,

�5.1�

where the one-loop self-energy � is given by Fig. 1 and �˜

by Fig. 12. Let us now explore the contribution to this inte-
gral from small scalar frequency and momentum: �v0 � ��0

and 1
2�v��0. At small V, we approximate V as zero inside

the self-energies, and this region of integration contributes

V4
�ex,small V� 
 − ��0���˜�0��21

i
	

V

�D�V��2D�− V� ,

�5.2�

where the integration is restricted to small V. �Note that

�̂0�0�=0.� The frequency integral is simple, giving

V4
�ex,small V� 
 ��0���˜�0��2	

v

1

�v
2 . �5.3�

The momentum integral is IR divergent in d�4. So our
evaluation of diagrams has broken down in the infrared if

��0� and �˜�0� are nonzero.10

Another example of a diagram producing similar prob-
lems is shown in Fig. 11�b�. Adding one or more additional
self-energy or chemical potential insertions to the scalar loop
in either diagram would generate even more severe �power-
law� infrared divergences.

10If one blindly tried to regulate the IR divergences using dimen-
sional regularization �which we have previously used only to regu-
late the UV�, then the IR momentum integral in Eq. �5.3� would
generate a factor of 1 /�, which would in any case destroy the �
counting of Sec. II. The integral does not generate zero �by scaling
arguments like those of Sec. III D� because the 1/�v

2 integrand is an
approximation valid only for �v � ��0. The behavior of the full
result changes for �v � ��0, and so �0 provides a scale. �We say
“blindly tried to regulate” because dimensional regularization
throws away nonlogarithmic divergences, and it does not distin-
guish between IR and UV logarithmic divergences. This means it
can be a dangerous procedure unless you already know that all
divergences will cancel in the final result.�

(a) (b)

FIG. 11. Two examples of diagrams that produce logarithmic
infrared divergences. FIG. 12. The self-energy �˜ that mixes 
 with 
*.
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We shall see in a moment that ��0� and �˜�0� are both
O���. The problem, then, is that when v is small enough that
�v is of order ���0, it is no longer a good approximation to
treat the scalar self-energies, or the chemical potential 2�, as
perturbations to D−1=−v0+ 1

2�v. One must therefore resum

��0�, �˜�0�, and 2� into scalar propagators in order to re-
cover a well-behaved perturbation theory. Equivalently, one
must use the appropriate low-energy scalar effective theory
when evaluating the contribution of low-energy scalars
��v0 � ��0� to the effective potential. At low energy, the ef-

fective scalar propagator would be generated by the effective
interactions

Leff � 
*�i�t +
�2

4m
�
 + 2�
*
 − ��0�
*


− �˜�0� 1
2 �

 + 
*
*� � 1

2� 



* �†

D−1� 



* � , �5.4�

with corresponding propagator

D�P� = �p0 − 1
2�p + 2� − ��0� + i� − �˜�0�

− �˜�0� − p0 − 1
2�p + 2� − ��0� + i�

�−1

. �5.5�

To better understand the structure of this propagator, we

now evaluate ��0� and �̃�0�. From Eq. �3.29�,

��0� = − g2	
p

Ep
2 + �p

2

4Ep
3 . �5.6�

�˜�0� is given by

�˜�0� =
g2

i
	

P

�G12�P��2 = g2	
p

�0
2

4Ep
3 . �5.7�

In dimensional regularization, the momentum integrals give

��0� = −
g2

�0
�m�0

4

�d/2�1 + d

2��� 1
2 − d

4�
4�� 1

2 + d
4� = 3��1 + O����

�5.8�

and

�˜�0� =
�d − 2�
�d + 2�

��0� = ��1 + O���� , �5.9�

where we have used Eqs. �2.5� and �4.7� for g2 and �0. To
leading order in � for scalars with energy of order �, the
effective low-energy interactions �5.4� are then

Leff � 
*�i�t +
�2

4m
�
 − 1

2��
 + 
*�2 �5.10�

with

D�P� = �p0 − 1
2�p − � + i� − �

− � − p0 − 1
2�p − � + i�

�−1

.

�5.11�

The imaginary part of 
 remains gapless, which must occur
in any consistent approximation since it corresponds to a
Goldstone boson.

With this formula, we can now compute the leading con-
tribution to the effective potential from low-energy scalars
and see that all is well. Analogous to the fermionic result
�3.46�, it is

V�soft 
� � −
i

2
	

P

ln det�− iD−1�P�� = −
i

2
	

P

ln�p0
2 − 1

2�p� 1
2�p

+ 2�� + i�� = 1
2	

p
� 1

2�p� 1
2�p + 2���1/2. �5.12�

This integral has no infrared divergences. If we naively ex-
panded the integrand in powers of �, we would obtain infra-
red divergences starting at third order 
�3
p�p

−2. This is the
same order as the result �5.3� for Fig. 11 that started this
discussion. If we instead integrate Eq. �5.12� up to a UV
momentum cutoff �4m��1/2 for the effective theory, we find
an expansion in � of the form

V�soft 
� � m2�#�3 + # ��2 + # �2� + # �3 ln��

�
�

+ # �3 + ¯ � . �5.13�

The soft effective scalar theory breaks down at �p��0, so
one should very roughly think of the energy scale � as of
order �0.

The moral of this story is that one will have to make a
proper treatment of low-energy scalar fields in order to go to
higher orders in � than the NNLO calculation performed in
the bulk of this paper. In particular, the approach of Sec. II
would lead to logarithmic divergences in the effective poten-
tial at O��3� and worse divergences at higher order, but a
proper resummation of soft scalar physics will resolve these
divergences into O(�3 ln�� /�0�)=O��3 ln ��. This corre-
sponds to a correction to � of order ��/2d�9/2 ln �.
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B. The coefficient of the logarithm

Though we are not prepared to make a full calculation of
the order beyond NNLO in the � expansion, it is simple to
extract the coefficient of the logarithm at that order from the
preceding discussion. Naively expand the integrand in the
formula �5.12� for the soft contribution V�soft 
� to third order
in �. The third-order term is

V��3� = �3	
p

1

�p
2 . �5.14�

In four dimensions, this is the logarithmically divergent in-
tegral

V��3� =
�3

8
2	
0

� p3dp

�p
2 =

m2�3

4
2 	
0

� d�p

�p
. �5.15�

But, from the discussion surrounding Eq. �5.13�, we know
that this logarithm is cutoff in the infrared by the energy
scale �, due to the necessity of resummation, and in the
ultraviolet by the energy scale �0, the energy scale where the
self-energies are no longer well approximated by their zero-
momentum values. Thus, even though we cannot easily com-
pute the constant under the logarithm, we can write11

V��3� =
m2�3

4
2 �ln��0

�
� + O�1�� . �5.16�

We can now use this to obtain the explicit logarithm
shown in our final result �1.7� for � beyond NNLO by in-
cluding Eq. �5.16� in the analysis of Sec. IV. Because
�V��3� /��0 does not have a logarithm, there is no logarithm
in the NNNLO result for the location �0 of the minimum of
the effective potential. The logarithm appears in � only
through its effect on the density n=−�V /��. Equation �4.8�
for n is modified to

n =
1

�
�m�0

2

�d/2�1 + b1� + b2�2 +

��

�0
−

3��2

�0
2 ln

�0

�
+ O��3�� ,

�5.17�

giving

� �
�

�F
=

�2/d�

�0
� 1

2�� d
2 + 1��1 + b1� + b2�2��

�0
−

3��2

�0
2 ln

�0

�

+ O��3���−2/d

. �5.18�

Substituting the expectation �4.7� for �0 then produces the
NNNLO logarithm shown in the final result �1.7� for �.

VI. EXTRAPOLATION OF � AT d=3

Because of the large relative size of the O��7/2� term in
our result �1.7� for �, the next-to-next-to-leading-order
�NNLO� result will likely only be useful in conjunction with

more sophisticated analysis of dimension dependence than
the naive prescription of setting �=1. In this respect, the
situation appears somewhat analogous to the � expansion for
the critical exponent � in the Ising model. � is the exponent
characterizing corrections to scaling, and its � expansion is
�12�

�Ising = � − 0.629 63�2 + 1.618 22�3 + O��4� . �6.1�

Despite the large size of the NNLO �3 term, historical
analysis using the terms shown above gave ��0.79 with a
simple Borel-Padé approximation �9�. The latter is within a
few percent of the correct result.12

Unfortunately, the ratio � does not have as simple an ana-
lytic structure as do critical exponents. Our result for � may
be written as

� = 1
2�1+2/db��� �6.2�

with

b��� = 1 − 0.049 16� − 0.959 61�2 − 3
8�3 ln � + O��9/2� .

�6.3�

Critical exponents have a simple asymptotic expansion in
powers of �. But, even if we factor out the overall �1+2/d and
focus only on b��� above, our expansion contains powers of
ln �.

The Borel transform of a series

f��� = �
n

fn�n �6.4�

is the faster-converging series

F�t� = �
n

fn

n!
tn. �6.5�

The original f��� may be recovered from its Borel transform
by

f��� = 	
0

�

dte−tF��t� �6.6�

if F�t� does not have any singularities on the positive real
axis which make the integral ill defined. The standard ap-
proach for critical exponents is to fit some type of Padé-like
approximation to the Borel transform. A simple �M /N� Padé
approximation would be

F�t� =
1 + p1t + p2t2 + ¯ pMtM

1 + q1t + q2t2 + ¯ qNtN , �6.7�

11The coefficient of this logarithm has also been computed by
Nishida �17�.

12See, for instance, the results for �=�� and � from three-
dimensional �3D� series techniques, the � expansion, numerical
Monte Carlo simulations, and experiments all reviewed in Ref. �12�
for the O�N� model. �The Ising universality class corresponds to
N=1 in these tables.� The current results presented there for � from
3D series techniques and the � expansion are 0.799�11� and
0.814�18�.
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where we assume f��� is normalized so that f�0�=1. More
sophisticated versions have been used for accurate estimates
to critical exponents from high-order � expansions. However,
such estimates must necessarily break down for the Borel
transform B�t� of Eq. �6.3� because of the ln � terms. The
appearance of ln � in the small � expansion of b��� gives rise
to ln t terms in the small t expansion of its Borel transform,
and these are not accommodated by Padé approximants such
as Eq. �6.7�.13

Clearly, what is needed to make full use of � expansion
results is a full understanding of the analytic structure of ����
in �, in order to inform the strategy for how best to extrapo-
late to d=3. Nonetheless, it is interesting to see what hap-
pens if one naively extrapolates ���� using simple Padé esti-
mates �6.7� to the Borel transform B�t�. This was carried out
by Nishida and Son in Ref. �13�, constraining the Padé ap-
proximants by �i� the next-to-leading-order �NLO� result
near the expansion of � in 4−d, and �ii� a next-to-leading-
order result for the expansion of � in d−2. Since the leading-
order 4−d result has already been used to normalize b�0�
=1 above, this represents three constraints on B�t�, and so the
possible Padé approximants are those with M +N=3. Ex-
trapolating to three dimensions, they then found �=0.391,
0.364, and 0.378 with �3/0�,�1/2�, and �0/3� Padé approxi-
mants. They did not find any solution satisfying the con-
straints for a �2/1� approximant. These values for � span
0.378±0.014.

If we naively follow the same procedure but add the in-
formation from our NNLO coefficient, we find �=0.300,
0.367, 0.359, and 0.376 in three dimensions from �4/0�,
�3/1�, �2/2�, and �0/4� approximants. We did not find a
solution for �1/3�. The �4/0� value is an outlier, which

makes a certain amount of sense. �4/0� corresponds to a
simple polynomial form for B�t�. This does not allow for any
singularities in the Borel plane and so will not produce an
asymptotic series in �, whereas the large NNLO coefficient
suggests that the asymptotic nature of the expansion should
not be ignored at this order. If we focus only on the other
values, they span �=0.367±0.009. This is consistent with the
NLO results, but not an obvious improvement. The fits of �
as a function of d are shown in Fig. 13 and are quite similar
to the earlier fits of Ref. �13� discussed above which did not
use the NNLO result for d=4−�.

For comparison, the same figure also shows the result of
avoiding any fancy extrapolation but simply naively using
the truncated NNLO result �= 1

2�1+2/d�1−0.049 16�
−0.959 61�2� for d=4−� or the corresponding NLO result
�=1− �̄ of Ref. �13� for d=2+ �̄. It is amusing that both of
these naive extrapolations happen to give consistent values
of ��0 at d=3. We imagine that this is a coincidence.

Figure 14 summarizes a selection of estimates of � from
experiment and numerical simulations, and compares them
to results obtained so far from the � expansion. The current
Padé-Borel extrapolated � expansion results, however, need
to be taken with a significant grain of salt because their as-
sumptions of analytic structure are not consistent with what
we have learned in Sec. V about higher-order corrections.
Further study will be required to develop more consistent
extrapolations.

13Specifically, the Borel transform of b���=1+��+��2+��3 ln �
+��3 is B�t�=1+�t+ 1

2!�t2+ 1
3!�t3 ln t+ 1

3! ��−�	�4��t3, where 	�z�
is the digamma function. This can be demonstrated by checking Eq.
�6.6�.
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FIG. 13. Extrapolations of � vs dimension d. The thin solid lines
show the result of Padé-Borel extrapolations of type �4/0�, �2/2�,
�3/1�, and �0/4� from bottom to top. For comparison, the thick solid
lines show simple truncations of the expansions about four �right�
and two �left� dimensions, as discussed in the text. The thick dashed
line is the truncated d=4−� expansion at NLO rather than NNLO.
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FIG. 14. A selection of estimates of � in three spatial dimen-
sions. Experimental values �circles� include 0.74�7� �18�, 0.34�15�
�19�, 0 .32−0.10

+0.13 �20�, and the more recent 0.51�4� �8� and 0.46�5�
�21�. Simulations include fixed-node Green’s function and diffusion
Monte Carlo upper bounds of 0.42�1� �4� �square�. Other simulation
methods have estimated 0.22�3� �22�, 0.07���0.42 �23�, and
�0.44 �24� �the last two are based on finite-temperature calcula-
tions�. The NLO 4−� value is that of Eq. �1.6� �6�. The rest are the
Padé-Borel estimates discussed in this section, with the purely NLO
result from Ref. �13�.
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APPENDIX A: SUMMARY OF RESULTS BY DIAGRAM
TYPE

Figure 4�a�:

V1
�0� = − 	

p
Ep = �0�m�0

2

�d/2 ��−

1

2
−

d

4
�

21+ d
2��1

2
+

d

4
�

= �0�m�0

2

�d/21

3
�1 +

1

2
� 7

3 − � − ln 2��

+ � 1
8� 7

3 − � − ln 2�2 + 19
72��2 + O��3�� .

Figure 4�b�:

V1
��� = + �	

p

�p

Ep
= ��m�0

2

�d/2 ��−

d

4
�

2d/2��d

4
�
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�

�
�m�0

2

�d/2

�1 + 1
2� 1

2 − � + ln 2��

+ � 1
8� 1

2 − � + ln 2�2 + 1
32��2 + O��3�� .

Figure 4�c�:

V1
���� = − 1
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p

1
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�2

�0
�m�0
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�d/2 ��3

2
−

d
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2
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2��1

2
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d

4
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−
�2

�0
�m�0

2

�d/21

2
�1 + O���� .

Figure 5�a�: See Eqs. �3.19� through �3.23�.
Figures 5�a�–5�d�:

V2
��� = − �g2�0

2	
pq

�Ep − �p�
2EpEq

2Spq
� 1

Eq
+

1

Spq
�

= ��m�0

2

�d/2

��K2
��� + O��2�� , �A4�

K2
��� � − 0.25835. �A5�

Figure 6�a�: See Eqs. �3.8�, �3.14�, and �3.17�.
Figures 6�b�–6�d�:

V3
���� = g4	

pqk

�Ep − �p��Eq − �q�
2Ep2Eq�2Ek�2 �2�Ek − �k�2

Spk
2 Sqk

− �0
2� 2

EkSpkTpq,k
+

2

Spk
2 Tpq,k

+
1

EkSpkSqk
��

= �0�m�0

2

�d/2

��2K3
���� + O��3�� , �A6�

K3
���� � − 0.03046. �A7�

Figure 6�e�:

V3
��˜�˜� = − g4�0

4	
pqk

1

2Ep2Eq2Ek2ElSpkSql
� 1

1
2�p+k

+
1

Epqkl
�

= �0�m�0

2

�d/2

��2K3
��˜�˜� + O��3�� , �A8�

K3
��˜�˜� � − 0.31080. �A9�

Figures 6�f�–6�h�: See Eqs. �3.44�, �3.39�, and �3.43�
We have used the shorthand notation of Eq. �3.9�. In the

momentum integrals shown in Eqs. �A4� and �A6�, we have
used symmetry to simplify the expressions. For expressions
that correspond to simply doing the frequency integrals of
these diagrams without using such symmetry, simply sym-
metrize the integrands under p↔q.

APPENDIX B: WHAT HAPPENED TO �„�−�p…?

In this appendix, we give a quick, illustrative example of
the effect of �0 on what otherwise would be a Fermi-sea
step-function ���−�p�. The example will be the mean-field
theory result for the fermion number density n in the pres-
ence of both a non-negligible chemical potential � and a
condensate �0. In terms of diagrams, this corresponds to the
one-loop fermion diagram of Fig. 4�b� if we take the cross to
represent the fermionic number operator and �unlike the rest
of this paper� include the chemical potential � in the fermion
propagator rather than treating it as a perturbation. It will be
clearer if we give a regularization-independent version of the
result rather than continuing to work in dimensional regular-
ization. In terms of diagram evaluation, this can be achieved
by subtracting the vacuum contribution ��=�=0� to n be-
fore doing any integrals. The result, after frequency integra-
tion, is then the standard mean-field formula for the number
equation14

n = 	
p
�1 −

�p
�

Ep
�� = 	

p
�1 −

��p − ��
���p − ��2 + �0

2�1/2� . �B1�

In the limit �0→0, the above formula gives the usual result
for a free fermion gas:

14For comparison, the result to leading order in � in dimensional
regularization could be obtained by applying n=−�V /�� to the re-
sult V1=−
pEp

� discussed in Sec. III E, giving n=−
p�p
� /Ep

� in di-
mensional regularization. This appears to differ from Eq. �B1� by

p1, but 
p1 vanishes in dimensional regularization.
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n = 2	
p

��� − �p� .

It would be problematical to treat � perturbatively in such an
expression. However, in the opposite limit ���0 relevant
to this paper, there is no obstruction to treating � perturba-
tively. To leading order in �,

n = 	
p
�1 −

�p

Ep
� .

We thus find fractions involving energies rather than � func-
tions, similar to results we have derived for other diagrams in
this paper.
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