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We explore the renormalization group flow of quartic perturbations in the low-enegy theory of graphene, in
the strong Coulomb coupling and large-N limits, where N is the number of fermion flavors. We compute the
anomalous dimensions of the quartic couplings u up to leading order in 1 /N and find both relevant and
irrelevant directions in the space of quartic couplings. We discuss possible phase diagrams and relevance for
the physics of graphene.
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I. INTRODUCTION

Graphene, a single layer of graphite, has lately attracted
increasing attention, especially since its experimental
realization.1 This material presents a number of unusual elec-
tronic features, such as a Landau level structure that gives
rise to half-integer quantum Hall effect. In general, those
properties can be traced back to the low-energy spectrum,
governed by two-component massless fermions that come in
four flavors: two due to electronic spin and two from degen-
erate Dirac points in the band structure.2 The quasirelativistic
electronic spectrum is characterized by a velocity �
�c /300�c, where c is the speed of light. However, the
Coulomb interaction, which is instantaneous for all practical
purposes, breaks this emergent Lorentz invariance. In par-
ticular, the electron velocity becomes scale dependent.3

It was noted recently4 that a generalizaton of the low-
energy theory that describes graphene possesses a quantum
critical point. Reference 4 considered a model of N species
of 2+1 dimensional two-component massless Dirac fermions
interacting through a three-dimensional instantaneous
Coulomb interaction with a coupling constant g. It was then
shown, by analyzing the renormalization group �RG�
flow of the fermion velocity, that for sufficiently large
N, the strongly coupled limit g2N /v→� is a quantum critical
point, characterized by a dynamic critical exponent z
=1–8 / ��2N�+O�1 /N2�. It was also argued that real
graphene is close to this critical point for a large momentum
window.

In the present work, we further explore the quantum criti-
cal properties of this theory by studying the RG flow of
various quartic perturbations of the varieties of Thirring5 and
Gross and Neveu.6 These four-fermion interactions are irrel-
evant at weak coupling but obtain nontrivial anomalous di-
mensions of order 1 /N at the strong coupling fixed point. If
a four-Fermi coupling becomes relevant below some N, one
may expect dynamical gap generation, in which case the sys-
tem becomes an insulator or that the system would flow to
another fixed point.

The question of whether the Coulomb interaction makes
graphene an insulator has been considered previously. In Ref.
7, it was found from solving the gap equation with a
screened Coulomb interaction that, for N�8 /��2.55, a gap
opens at sufficiently large coupling. For N�8 /�, the system

remains gapless at all couplings. This was confirmed in Ref.
8 using a similar approach. However, as the approximations
employed in these works are uncontrolled, one would like to
explore alternative approaches to this problem. The RG
analysis in this paper is one of them. �Instability toward fer-
romagnetism has also been considered.9�

We implement a Wilson-Fisher RG transformation and
find the anomalous dimensions of the various couplings.
Throughout the paper, the Coulomb parameter �=g2N /32� is
kept finite and the limit �→� is discussed at the end. In this
limit, we identify both relevant and irrelevant directions in
the parameter space of the quartic couplings and discuss pos-
sible scenarios, including gap generation and the flow to a
non-Gaussian fixed point. At the end of our results in Sec. IV,
we address the relevance of our findings for real graphene.

The paper is organized as follows: the model and Feyn-
man rules are presented in Sec. II, the details of the calcula-
tion are outlined in Sec. III, the results are discussed in Sec.
IV, and the conclusions presented in Sec. V.

II. MODEL AND FEYNMAN RULES

Consider a model of N /2 flavors of four-component rela-
tivistic fermions �or N flavors of two-component fermions�
�a interacting through an instantaneous Coulomb interaction
and through generic U�N /2�-symmetric quartic interactions.
The corresponding Euclidean action is

SE = −� dtd2x��̄a	0�0�a + v�̄a	i�i�a + iA0�̄a	0�a�

+
1

2g2 � dtd3x��iA0�2 +
1

2N
� dtd2x�u1��̄a�a�2

+ u2��̄a	0	i�a�2 + u3��̄a	0	5�a�2 + u4��̄a	0�a�2

+ u5��̄a	i�a�2 + u6��̄a	5�a�2� , �2.1�

where the 	
, 
=0,1 ,2 �we shall also use Latin indices for
the spatial directions� are Dirac matrices satisfying a Euclid-
ean Clifford algebra �	
 ,	�	=2�
�, and 	5=	0	1	2. We can
choose, for example, a representation of this algebra in
which
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	0 = 
3 0

0 − 3 �, 	i = 
i 0

0 − i � , �2.2�

where i are the Pauli matrices. In the real world, N /2=2,
corresponding to two spin polarizations of the electrons. The
two two-component spinors near the two valleys are com-
bined into a four-component spinor. The action �Eq. �2.1�� is
invariant under spin rotations, but it is not invariant under
rotations in the valley space. �The two degenerate Dirac
points in the band structure of graphene are sometimes re-
ferred to as valleys. Thus, rotations in valley space corre-
spond to operations that mix the upper and lower compo-
nents of the four-component Dirac fermions of our theory.�
Notice that the four-Fermi terms are rotationally invariant,
but not Lorentz invariant: the latter is broken by the Cou-
lomb interaction. Apart from the four-Fermi terms written in
Eq. �2.1�, one can also introduce an independent set equal to
	3 times the vertices already included, where 	3 is linearly
independent from the other 	 matrices and �	3 ,	
	=0. One
possible choice is

	3 = 
0 1

1 0
� . �2.3�

Such matrices, together with the ones already considered,
form a complete basis for the algebra of 4�4 Dirac matri-
ces. We restrict for the moment to the action �Eq. �2.1��, but
we shall comment on these extra vertices in Sec. IV.

We shall use the large-N limit to do calculations at large
values of the coupling g, so N will remain arbitary �but large�
until the end. Notice that, unlike the fermionic degrees of
freedom, the Coulomb field A0 lives in 3+1 dimensions,
which is reflected in its kinetic term. In the strong coupling
g→� limit, this term disappears and the A0 propagator is
dominated by quantum corrections coming from the fermion
loops, as we shall see below.

In 2+1 dimensions, the naive dimensions of the fields and
couplings are as follows: ���=m, �A0�=m, �g�=m0, and
�uj�=m−1.

The Feynman rules are as in Fig. 1, where the fermion
propagator is

G0�p� =
ip”

p2 , �2.4�

where p= �p0 , p��, p� being a two-dimensional momentum
vector. Here and in the rest of the paper, we use the notation
p=	0p0+�	� · p� and p2= p0

2+�2�p� �2. The boson-fermion inter-
action vertex is i	0, and the quartic vertices are −

uj

N � j � � j,
with � j � �1,	0	i ,	0	5 ,	0 ,	i ,	5	.

Finally, the bare boson �A0� propagator is

D0�p� =
g2

2�p� �
. �2.5�

In the large N, finite g2N limit, we must resum the fermion
loop contributions to this propagator �see Fig. 2�.

Such resummation �which is equivalent to the random
phase approximation� results in a dressed boson propagator
that we shall use in the rest of this work, as shown in Figs. 2
and 3,

D�q� = 
2�q� �
g2 +

N

16

�q� �2

q2�−1

=
16

N

q2

�q� �2

1 +

1

�

q2

�q� �
�−1

=
g2

2�q� 
1 + �
�q� �
q2�−1

, �2.6�

where �=g2N / �32��.

III. CALCULATION OF THE RENORMALIZATION
GROUP FLOW

We implement a Wilsonian RG procedure whereby we
integrate out the modes in the momentum shell �1� p��0
and then rescale the coordinates as well as the fields. The RG
equation has the form

�u�p�
� ln p

= �1 − M����u�p� , �3.1�

where �u�i=ui and M��� is a 6�6 matrix. The 1 in the
right-hand side comes from the naive dimension of ui. Fur-
thermore,

G0(p)

D0(p)

iγ0

ujΓj ⊗ Γj

FIG. 1. Feynman rules �see text for details�.

D(p)

FIG. 2. Resummation of the one-loop self-energy contribution
to the boson propagator.

iγ0 iγ0
= −N

16
|�q|2√

q2

q − p

p

FIG. 3. One-loop self-energy contribution to the boson
propagator.
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M��� = Mv��� + Mwf��� , �3.2�

where M� comes from the vertex corrections and Mwf comes
from wave function renormalization.

A. Vertex renormalization

To the first nontrivial order in 1 /N, finding the RG flow of
uj entails computing the diagrams in Fig. 4 using the Feyn-
man rules described in the previous section.

The loop integrals have the same form for all three dia-
grams, namely,

16

N
�

�1

�0 d3q

�2��3

q
q�

q4

�

�q� �
1 + �
�q� �
q2�−1

=
4

N�2 ln��0

�1
�� I0��� for 
 = � = 0

I1���
2

for 
 = � = i , � �3.3�

and vanish for 
��. The integration region is spherically
symmetric. Furthermore, notice that the integrand is indepen-
dent of the azimuthal angle and that the remaining radial and
angular integrals are decoupled because �q� �=q21− t2,
where t=cos � and � is the polar angle, making the calcula-
tion straightforward. We have used the following definitions:

I0��� = �
−1

1

dt
t2

1 − t2

�

1 + �1 − t2

= − 2 +
�

�
+

2�2 − 1

�
ln�� + �2 − 1� , �3.4�

I1��� = �
−1

1

dt
�1 − t2

1 + �1 − t2

= 2 −
�

�
+

2

��2 − 1
ln�� + �2 − 1� . �3.5�

In the large � limit, �→�,

I0��� → − 2 + 2 ln�� + �2 − 1� , �3.6�

while

I1��� → 2. �3.7�

The divergence of I0��→�� is associated with the fact that
the Coulomb interaction is unscreened at zero momentum

and nonzero frequency. As we shall see, however, all such
divergences cancel out in the � functions for ui.

With the above identities at hand, it is not very difficult to
compute the contributions of the diagrams in Fig. 4 to the �
functions. The only significant step that remains to be dis-
cussed is straightforward Dirac algebra to find the products
of a small number of 	 matrices �coming from the vertices
and the fermion propagators�. For instance, for �4=	0, the
calculation of the diagram in the middle of Fig. 4 entails
computing

	0	
	0	�	0 = �	0 for 
 = � = 0

− 	0 for 
 = � = i ,
� �3.8�

where we only need the case 
=� because the integral �Eq.
�3.3�� is otherwise zero. The contribution of this diagram to
the flow of u4 is, therefore,

�u4 = u4
8

N�2 ln��0

�1
��I0 − I1� , �3.9�

where we have included the factor of 2 coming from an
essentially identical diagram where the boson propagator ap-
pears connecting the fermion lines on the right instead of on
the left. For this specific vertex, the first and third diagrams
in Fig. 4 cancel out exactly due to a sign difference in one of
the fermion lines. In this particular case, only diagonal flow
is generated, i.e., this vertex does not contribute to the flow
of the others. In general, however, there is operator mixing:
each vertex contributes not only to its own flow but also to
other vertices.

Our result turns out to be

Mv���

=
8

N�2�
I0 + I1 − 2I1 0 0 0 0

− I1 I0 0 0 0 0

0 0 I0 − I1 0 0 0

0 0 0 I0 − I1 0 0

0 0 0 0 I0 − I1

0 0 0 0 − 2I1 I0 + I1

� .

�3.10�

B. Wave function renormalization

Upon integration of the high-momentum degrees of free-
dom, coordinates and fields are defined, which are rescaled
versions of the original ones. Doing this explicitly results in
the following action:

Seff = −� dt�d2x��Z0
−1b1

−2�̄a	0�0��a + Z1
−1b1

−1b0
−1�̄a	i�i��a

+ ¯ 	 , �3.11�

where the subscript “eff” indicates that this action describes
modes with momenta �p � ��1=b1�0. Here, t�=b0t, x�=b1x,
0�b0, b1�1, and … contain all the terms in the action,
which are not quadratic in the fermion fields. We shall renor-
malize the field as

a

ba

b

a a

a a

b b

b b

ΓΓ Γ ΓΓ Γ

FIG. 4. Contributions to the RG flow of uj coming from vertex
renormalization. a and b are flavor indices and � is a generic four-
Fermi vertex. The dashed line is intended to show the difference
between the loops in the various diagrams. Exchange of dummy
indices leads to the same diagrams and results in an overall factor of
2.
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�a → �a� = Z0
−1/2b1

−1�a �3.12�

and enforce the nonrenormalization of the fermion velocity
by requiring

Z1
−1b1

−1b0
−1

Z0
−1b1

−2 =
Z0b1

Z1b0
= 1, �3.13�

which means that the integration shells should actually be
nonspherical and have radii related by

b0 =
Z0

Z1
b1. �3.14�

However, Z0 /Z1=1+O�1 /N�, therefore the deviation from
spherical symmetry is small and is not important to the order
of 1 /N we are considering. Thus, we can compute the loop
integral, assuming that the integration region is spherically
symmetric.

The one-loop self-energy correction to the inverse fer-
mion propagator was computed in Ref. 4. In our notation, it
corresponds to

Z0
−1 = 1 − �Z0 = 1 +

4

N�2 �I0��� − I1����ln��0

�1
� ,

�3.15�

Z1
−1 = 1 − �Z1 = 1 +

4

N�2 I0���ln��0

�1
� . �3.16�

The correction to the fermion propagator is suppressed by
1 /N, which is another reason to work in the large-N limit.
Without this small parameter, the diagram of Fig. 5 would be
of order 1.

To see how the wave function renormalization affects the
running of the four-Fermi coupling, we write down a generic
quartic term in the action

u� dtd2x
�
a=1

N

�̄a��a�2

. �3.17�

Rescaling of the momenta and the fields as discussed above
leads to a renormalization of the coupling constant u accord-
ing to

u → u� = b1
−2b0

−1�u + �u��Z0
−1/2b1

−1�−4

= b1�u + �u + u��Z0 + �Z1�� + O�u2/N� , �3.18�

where we have also included the contribution �u from the
vertex renormalization, and where �Z0+�Z1 comes from

wave function renormalization. From Eqs. �3.15� and �3.16�,
we find

Mwf��� = −
4

N�2 �2I0��� − I1���� . �3.19�

IV. RESULTS AND DISCUSSION

Combining Eqs. �3.10� and �3.19�, we find

M��� =
4

N�2 I1����
3 − 4 0 0 0 0

− 2 1 0 0 0 0

0 0 − 1 0 0 0

0 0 0 − 1 0 0

0 0 0 0 1 − 2

0 0 0 0 − 4 3

� .

�4.1�

Notice that the terms containing I0��� cancel out, as antici-
pated, so that the limit �→� is finite. The eigenvalues yield
the anomalous dimensions: 	a= 8

N�2 �5,−1,−1,−1,−1,5�.
The two operators with the lowest anomalous dimensions,
−40 /N�2, are

2��̄a�a�2 − ��̄a	0	i�a�2, 2��̄a	5�a�2 − ��̄a	i�a�2.

�4.2�

Including the vertices of the form 	3� j � 	3� j, which
were mentioned in the Introduction, one can repeat the cal-
culation and obtain a copy of the above matrix as a result.
This is simply a consequence of �	3 ,	
	=0. There is no
mixing between these new vertices and the ones considered
in our calculation. The list of the most relevant operators
may then be extended to include

2��̄a	3�a�2 − ��̄a	3	0	i�a�2, 2��̄a	3	5�a�2 − ��̄a	3	i�a�2,

�4.3�

whose the anomalous dimensions are also −40 /N�2.
In the large-N limit, the anomalous dimensions are small;

hence, all four-Fermi operators have dimensions close to 4
and are irrelevant. However, as one decreases N, the dimen-
sions of some operators decrease as well. Naively, at

N � Ncrit =
40

�2 � 4.05, �4.4�

the operators in Eqs. �4.2� and �4.3� would have dimensions
less than 3 and become relevant. Of course, this is only an
extrapolation of our leading-order result to finite N. Never-
theless, it is quite interesting that Ncrit is close to the real-
world value of N=4. �For comparison, for the Lorentz-
invariant Thirring model, the critical number of four-
component Dirac fermions is quoted as 6.6�1�,10 to be
compared with Ncrit /2�2.� Due to the limitation of our cal-
culations, we cannot determine whether the exact Ncrit is
smaller or larger than 4.

If Ncrit�4, then the physics at N=4 and infinite coupling
is governed by the strong coupling fixed point discussed in

iγ0 G0(p − k) iγ0

D(k)

FIG. 5. One-loop self-energy correction to the fermion
propagator.
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Ref. 4. If Ncrit�4, then there are two further possibilities for
N=4, �=�. It may turn out that the system develops a gap
and becomes an insulator. In this case, one expects a bifer-
mion operator to have a nonzero expectation value, breaking
a discrete symmetry. Unfortunately, simply from the form of
the operators in Eqs. �4.2� and �4.3�, it is not possible to
conclude, with definiteness, which of the discrete symmetries
will be spontaneously broken. Another possibility is that the
coupling flows into a new stable fixed point �a similar situ-
ation was discussed in Ref. 11�. In this case, the system
remains gapless, but with a dynamic critical behavior. This
case is illustrated in Fig. 6, where we also show the � func-
tion of the coupling u.

In real graphene, on the other hand, � is large but not
infinite, so in the above discussion, we should take into ac-
count that the anomalous dimensions are functions of both N
and �. In real graphene, one has

� =
e2N

32�0�v
, �4.5�

where N=4 and v=106 m /s, so that the anomalous dimen-
sion of the operators in Eqs. �4.2� and �4.3� is 	�−0.72.

Thus, all four-Fermi operators are irrelevant, at least to the
order of 1 /N we are considering. It is conceivable, however,
that higher-order corrections will push 	 to be below −1. On
the other hand, for graphene one a SiO2 substrate with di-
electric constant �=5.5, the coupling � is reduced by a factor
of 2 / �1+��, and 	�−0.45, substantially above −1. In this
case, one can conclude that the four-Fermi interactions are
irrelevant and will become more irrelevant as the fermion
velocity v interactions are irrelevant �and will become more
irrelevant as the fermion velocity v increases in the infrared�.

V. CONCLUSION

We have studied the RG flow of various four-Fermi cou-
plings u in the low-energy theory of graphene, generalized to
include N different fermion flavors. We computed the
anomalous dimensions of the various couplings to the first
nontrivial order in 1 /N. In the limit of infinitely strong Cou-
lomb interaction, the operators with lowest dimensions be-
come relevant for N�Ncrit, where Ncrit is estimated to be 4.
In real graphene with N=4 but at finite Coulomb coupling,
the four-Fermi interactions are irrelevant, at least to the lead-
ing nontrivial order in 1 /N.

It would be interesting to further investigate the phase
diagram of our model. One can try to push the calculations to
another order in 1 /N. In addition, one should try to perform
numerical simulations of the model. The most interesting
values of N where nontrivial phases may exist, as indicated
by our calculations, are lower values such as N=2 and N
=4.

Note added. After this work was completed, the authors
learned of Ref. 12, in which the running of four-Fermi inter-
actions is also considered. Our lowest anomalous dimension
coincides with the value found in Ref. 12, but our values of
other anomalous dimensions disagree with Ref. 12. We thank
Igor Aleiner for bringing Ref. 12 to our attention.
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