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We calculate the momentum distribution nðkÞ of the unitary Fermi gas by using quantum Monte Carlo

calculations at finite temperature T=�F as well as in the ground state. At large momenta k=kF, we find that

nðkÞ falls off as C=k4, in agreement with the Tan relations. From the asymptotics of nðkÞ, we determine the

contact C as a function of T=�F and present a comparison with theory. At low T=�F, we find that C

increases with temperature, and we tentatively identify a maximum around T=�F ’ 0:4. Our calculations

are performed on lattices of spatial extent up to Nx ¼ 14 with a particle number per unit volume

of ’ 0:03–0:07.
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The unitary Fermi gas (UFG) is one of the most interest-
ing strongly interacting systems known to date, as it satu-
rates the unitarity bound on the quantum mechanical
scattering cross section �0 � 4�=k2. Since the proposal
of the UFG as a model for dilute neutron matter by Bertsch
[1] and its realization in ultracold atom experiments [2],
the UFG has garnered widespread attention across multiple
disciplines, including atomic physics [3], nuclear structure
[4], and relativistic heavy-ion collisions [5]. The UFG is
defined as a two-component many-fermion system in the
limit of short interaction range r0 and large s-wave scat-
tering length a:

0 kFr0 � 1� kFa! 1; (1)

with kF � ð3�2nÞ1=3 the Fermi momentum and n the
particle number density. The special properties of the
UFG arise from the fact that it is characterized by a single
scale, given by the interparticle distance �k�1F , without
reference to the details of the interaction. While the ther-
modynamic properties of the UFG are universal [6], the
lack of an obvious dimensionless expansion parameter
makes the UFG a challenging many-body problem.

In spite of the challenges of the unitary limit, much
progress has been made with purely analytical methods.
Notably, in 2005 Tan was able to derive exact thermody-
namic relations [7] in terms of a universal quantity known
as the ‘‘contact’’ C, which determines the number of pairs
separated by short distances. Since then, the Tan relations
have been rederived in multiple ways [8–10] as well as
verified experimentally [11–13].

Recently, C has also been found to determine the pre-
factor of the high-frequency power-law decay of correla-
tors [14,15], as well as the right-hand sides of the shear and
bulk viscosity sum rules [15]. The contact is therefore a
central piece of information on the UFG in equilibrium as
well as away from equilibrium, since it constrains several

thermodynamic quantities with a single number. On the
experimental side, C has been shown to be central to radio-
frequency spectroscopy and laser photoassociation [16], as
well as to govern the rate of decrease of low-energy atoms
due to inelastic two-body scattering processes with a large
energy release. The Tan relations (as well as the above-
mentioned sum rules) remain valid at arbitrary kFa as long
as kFr0 � 1. For further details and a comprehensive
review, see Ref. [16].
The calculation of C itself, however, remains a chal-

lenge, as it depends on the intricate many-body dynamics
of the unitary regime. In principle, C can be extracted from
any one of the Tan relations (as recently done in experi-
ments [12]). One of the simplest relations concerns the
asymptotics of the momentum distribution and asserts that

C � lim
k!1

k4n�ðkÞ; n�ðkÞ � hây�;kâ�;ki; (2)

where n�ðkÞ is the momentum distribution expressed as a

thermal average and the ây�;k and â�;k denote creation and

annihilation operators, respectively, for particles of mo-
mentum k and spin �. If n�ðkÞ is normalized to the particle
number N�, then C is an extensive quantity with dimen-
sions of momentum. We shall consider C in units of kF
divided by the total particle number N ¼ N" þ N#.
In this work, we focus on the momentum distribution of

the homogeneous UFG and the extraction of C via Eq. (2),
by using a quantum Monte Carlo (QMC) approach which
accounts fully for quantum and thermal fluctuations. On a
spatial lattice, the Hamiltonian that captures the physics of
the unitary limit can be written as

Ĥ �X
k

@
2k2

2m
ðây"kâ"k þ ây#kâ#kÞ � g

X
i

n̂"in̂#i; (3)

where m is the mass of the fermions (henceforth set to
unity), g is the bare coupling, and n̂�i denotes the number
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density operator for spin projection � at lattice position i.
The equilibrium thermodynamical properties are obtained
from the grand canonical partition function

Z � Tr exp½��ðĤ��N̂Þ�; (4)

where � � 1=kBT, � is the chemical potential, and

N̂ � N̂" þ N̂# ¼
X
i

n̂"i þ
X
i

n̂#i (5)

denotes the particle number operator.
In our QMC treatment, the system is placed on a

(3þ 1)-dimensional Euclidean space-time lattice via a
Suzuki-Trotter decomposition of the Boltzmann weight
in Eq. (4), and the interaction is represented via a
Hubbard-Stratonovich transformation [17]. As we focus
on the spin-symmetric case, the fermion sign problem is
absent. The resulting path integral formulation is an exact
representation of the many-body problem of Eq. (4), up to
finite volume and discretization effects. These may be
addressed by varying the spatial lattice volume V ¼ N3

x

and the density n, such that the thermodynamic and
continuum limits are recovered as V ! 1 and n! 0,
respectively. The latter requires great care, as too low
densities imply a departure from the thermodynamic limit.
We find that n ’ 0:03–0:05 particles per unit volume yield
results accurate to ’ 7% at finite temperature and to� 5%
at T ¼ 0.

Our lattice formulation is very similar to Ref. [18] but
differs in at least three notable aspects. First, we determine
the bare lattice coupling constant g corresponding to the
unitary regime by using Lüscher’s formula [19] as in
Ref. [20]. This procedure yields g ’ 5:14 in the unitary
limit. Second, we use the compact, continuous Hubbard-
Stratonovich transformation

expð�gn̂"in̂#iÞ ¼ 1

2�

Z �

��
d�i½1þ B sinð�iÞn̂"i�

� ½1þ B sinð�iÞn̂#i�; (6)

where �i (not to be confused with the spin projection) is
the Hubbard-Stratonovich auxiliary field, with B2=2 �
expð�gÞ � 1, and � denotes the lattice spacing in the
imaginary-time direction. We find that � ’ 0:05 is suffi-
ciently small to render discretization errors from the
Suzuki-Trotter decomposition insignificant (see also
Fig. 2). The above representation (referred to as ‘‘type 4’’
in Ref. [21]) was found to be superior with respect to
acceptance rate, decorrelation, and signal-to-noise proper-
ties than the more conventional unbounded and discrete
forms [22]. Third, we update the auxiliary field � by using
the hybrid Monte Carlo algorithm [23] (familiar from
lattice QCD), which combines the Metropolis algorithm
with deterministic molecular dynamics. Our implementa-
tion of the hybrid Monte Carlo algorithm enables global
updates at all temperatures and lattice sizes and scales
approximately as �V2 as a function of the spatial lattice

volume, to be contrasted with the �V3 scaling of ap-
proaches based on local updates.
We have performed calculations at T ¼ 0 as well as

T=�F > 0, in the former case by using an approach similar
to Ref. [21]. Our main results correspond to 40–50 parti-
cles at Nx ¼ 10 and 70–80 particles at Nx ¼ 12, in addi-
tion to limited data for Nx ¼ 14. In Fig. 1, we show the
momentum distribution nðkÞ as a function of T=�F. We
have computed nðkÞ by averaging over the angular direc-
tions on the lattice as well as over the imaginary-time
slices. In this way, we find that �200 uncorrelated auxil-
iary field samples for each data point give excellent statis-
tics for nðkÞ. Multiplying nðkÞ by k4, as plotted in Fig. 2, we
find a peak at k ’ kF and a leveling out at high momenta,
with the asymptotic regime setting in at k ’ 2kF at the
lowest temperatures. It is fortuitous that the asymptotic
regime sets in at such low momenta, as there is no obvious
reason for this to be the case. It is then possible to study the
temperature dependence of this ‘‘plateau,’’ which allows
for a determination of the contact C=ðNkFÞ as a function of
T=�F. These results are given in Fig. 3, together with a
comparison with available theoretical analyses. Our results
indicate that nðkÞ follows the expected �k�4 dependence
very accurately up to at least k ’ 4kF, at which point the
signal deteriorates due to lattice artifacts.
The value of C in the ground state can be computed via

diffusion Monte Carlo (DMC) calculations, as first done in
Ref. [24] by using density-density correlations, which
yielded CðT ¼ 0Þ=ðNkFÞ ’ 3:4, up to errors associated
with fixing the nodes of the wave function. A more recent
and comprehensive DMC calculation [25] came to the
same conclusion by using the equation of state, the
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FIG. 1 (color online). Momentum distribution nðkÞ from QMC
calculations for Nx ¼ 10 as a function of k=kF, for various
temperatures ranging from zero to T=�F ’ 0:5. The curves are
intended as a guide to the eye, and the statistical errors are the
size of the symbols. Inset: nðkÞ for Nx ¼ 14 in a log-log scale,
showing the asymptotic �k�4 behavior.
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momentum distribution, and the density-density correla-
tion. In contrast, our present results indicate that
CðT ¼ 0Þ=ðNkFÞ ’ 2:95� 0:10. The cause of this dis-
agreement is being explored. The main sources of uncer-
tainty in our determination of C=ðNkFÞ are due to finite
density effects. While we find that such effects tend to

overestimate C=ðNkFÞ as well as degrade the formation of
an asymptotic �k�4 tail in nðkÞ at larger values of T=�F,
larger lattices are needed in order to maintain the thermo-
dynamic limit at lower densities.
The temperature dependence of C at unitarity was first

determined analytically in Ref. [26], which considered
two different limits. At very low temperatures T � Tc ’
0:15�F, the dominant excitations are of phononic origin,
and the T dependence of C is of the form C=ðNkFÞ /
ðT=�FÞ4. On the other hand, at very high temperatures
T 	 �F, one finds C=ðNkFÞ ’ 16=3ð�F=TÞ within the
second-order virial expansion. An interpolation between
these limits then suggests that CðT=�FÞ should present a
maximum for T � �F. Recently, C has also been computed
by using two different types of t-matrix approximations
[27,28], as well as a third-order virial expansion [29]. The
latter has shown evidence for convergence of the virial
expansion down to T � �F. In light of these findings and
upon analysis of various model calculations at low T,
Ref. [29] conjectured that the contact is likely a monotoni-
cally decreasing function of T, except possibly in the
phononic regime at very low T. While the virial expansion
is on solid ground at high T, where it agrees with the
t-matrix approaches of Refs. [27,28], the actual T depen-
dence in the strongly correlated low-T regime has re-
mained an open question, particularly since the UFG is
strongly correlated even above Tc [30].
Our results show that C grows with T well beyond the

superfluid phase and are suggestive of a maximum Cmax ’
3:4 at T=�F ’ 0:4. This scenario is in qualitative agreement
with Ref. [26], as well as the t-matrix calculation of
Ref. [27]. As C measures the number of particle pairs (of
both spins) whose separation is small, the appearance of a
maximum indicates an enhancement in such short-range
correlations. This may be a result of local pairing order
[27], which in turn suggests that Cmax is directly related to
pairing above Tc, i.e., to a pseudogap. We find the scale at
which the k�4 law sets in (see Fig. 2) to be k ’ 2kF at finite
T=�F and somewhat lower for the ground state, in agree-
ment with Ref. [12]. This universal property of the unitary
limit characterizes the ‘‘healing distance’’ of the two-
particle boundary condition on the many-body wave func-
tion and therefore separates the microscopic properties
from the universal macroscopic aspects of the unitary
regime. Direct comparison of our data with ultracold
atom experiments can be achieved by means of the virial
expansion and the local density approximation. While we
defer this issue to a follow-up paper, we note that, in light
of the work of Ref. [31], the features of CðT=�FÞ found in
this study are unlikely to conflict with current experiments.
In summary, we have computed the momentum distri-

bution nðkÞ and the contact C=ðNkFÞ for the UFG at zero
and finite T=�F, by using the auxiliary field QMC method
in conjunction with the hybrid Monte Carlo algorithm.
While the ground-state momentum distribution was first
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determined via DMC calculations in Ref. [32], our results
represent the first fully nonperturbative calculation of nðkÞ
free of uncontrolled approximations. We find that the con-
tact at T ¼ 0 assumes the value ’ 2:95� 0:10 and in-
creases as a function of T=�F in the low- and
intermediate-temperature regimes that we have explored,
which is consistent with the phononic scenario. Notably,
DMC calculations find a somewhat larger value of
C=ðNkFÞ ’ 3:4, while the analytic approach of Ref. [33],
which interpolates smoothly between the strong- and
weak-coupling limits, yields C=ðNkFÞ ’ 3:0, which is con-
sistent with our data. Our results complement the calcu-
lations of Refs. [26–29] and are suggestive of a maximum
in C=ðNkFÞ at T=�F ’ 0:4, which agrees qualitatively with
Ref. [27] but disagrees with Ref. [28]. While calculations
at higher T=�F � 1 are feasible, an improved understand-
ing of the finite density effects is clearly called for.
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