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Equation of state of the unitary Fermi gas: An update on lattice calculations
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The thermodynamic properties of the unitary Fermi gas (UFG) have recently been measured to unprecedented
accuracy at the MIT. In particular, these measurements provide an improved understanding of the regime
below T/εF � 0.20, where a transition into a superfluid phase occurs. In light of this development, we present
an overview of state-of-the-art auxiliary field quantum Monte Carlo (AFQMC) results for the UFG at finite
temperature and compare them with the MIT data for the energy, chemical potential, and density. These AFQMC
results have been obtained using methods based on the hybrid Monte Carlo (HMC) algorithm, which was first
introduced within the context of lattice QCD.
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The unitary Fermi gas (UFG) is defined as a two-component
many-fermion system in the limit of short interaction range
r0 and large s-wave scattering length a, such that 0 ←
kF r0 � 1 � kF a → ∞, with kF ≡ (3π2n)1/3 being the Fermi
momentum and n being the particle number density (we choose
units such that h̄ = kB = 1). The UFG also saturates the
unitarity bound on the quantum-mechanical scattering cross
section σ0(k) � 4π/k2, where k is the relative momentum
of the colliding particles. The UFG features special properties
that arise from the fact that it is characterized by a single length
scale, given by the interparticle distance ∼k−1

F , independently
of the details of the interaction. While the thermodynamic
properties of the UFG are universal [1], the lack of a readily
accessible dimensionless expansion parameter renders the
UFG a challenging many-body problem. Since the proposal of
the UFG as a model for dilute neutron matter by Bertsch [2] and
its realization in ultracold-atom experiments (see Ref. [3] for
a review of the experimental situation), the UFG has received
widespread attention across multiple disciplines, ranging from
atomic physics [4] to the study of nuclear matter [5] and
relativistic heavy-ion collisions [6].

On the experimental side, the presence of a superfluid phase
in the UFG below T/εF � 0.15 was demonstrated directly a
few years ago through the creation of an Abrikosov vortex
lattice under rotation [7]. However, a direct thermodynamic
signature of the transition was not unambiguously established
until the recent high-precision measurement at MIT of the
equation of state (EOS) of a homogeneous two-component
UFG over a large temperature range [8]. These measurements
were performed on trapped 6Li atoms (using a Feshbach
resonance to tune the system to the unitary limit), which
enabled a detailed study of the compressibility, density, and
pressure of the UFG. In addition, greatly refined empirical
results were obtained for the associated critical temperature
Tc/εF = 0.167(15) as well as for the “Bertsch parameter” ξ =
0.376(5), which characterizes the ground state of the UFG.

*Present address: Institut für Kernphysik (Theorie), Forschungszen-
trum Jülich, D-52425 Jülich, Germany.

As precision data are now available for the energy, chemical
potential, and density of the UFG in a wide temperature range,
an opportunity presents itself to compare these measurements
with calculations in various theoretical frameworks. Here,
we focus on comparing the MIT data with the most recent
auxiliary field quantum Monte Carlo (AFQMC) results.

The Hamiltonian that captures the physics of the unitary
limit can be written on a spatial lattice as

Ĥ ≡
∑

k,λ=↑,↓

k2

2m
â
†
λ(k) âλ(k) − g

∑

i

n̂↑(r i) n̂↓(r i), (1)

where λ denotes the spin projection, m is the fermion
mass (we also set m = 1), and g is the coupling constant.
The creation and annihilation operators satisfy fermionic
anticommutation relations, and n̂λ(r i) ≡ â

†
λ(r i) âλ(r i) denotes

the number density operator at lattice position r i for spin
projection λ. The thermodynamic equilibrium properties are
obtained from the partition function

Z ≡ Tr exp[−β(Ĥ −μN̂ )], (2)

where N̂ is the total particle number operator, μ is the chemical
potential, and β ≡ 1/T is the inverse temperature.

To evaluate expectation values of observables numerically,
we followed the path-integral approach presented extensively
in Ref. [9], with recent improvements described in Ref. [10].
The system is placed on a cubic spatial lattice of extent L =
Nxl with periodic boundary conditions. The lattice spacing
l (henceforth set to unity) and extent L provide natural
ultraviolet (UV) and infrared (IR) momentum cutoffs, given by
kmax = π/l and k0 = 2π/L, respectively. The imaginary-time
evolution operator exp[−β(Ĥ − μN̂ )] is expanded using a
Trotter-Suzuki decomposition with temporal lattice spacing
τ , and the interaction is represented by means of a Hubbard-
Stratonovich (HS) transformation [11]. As we focus on the
spin-symmetric case, the fermion sign problem is absent. The
resulting path integral formulation is an exact representation
of Eq. (2) up to finite-volume and discretization effects,
which may be controlled by varying the spatial lattice volume
V ≡ N3

x and density n. The thermodynamic and continuum
limits are recovered as V → ∞ and n → 0, respectively. The
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latter requires great care, as too low densities may introduce
shell effects. As our lattice formulation is very similar to that of
Ref. [9], referred to here as determinantal Monte Carlo (DMC),
we shall restrict ourselves to describing three modifications
which significantly improve the results.

First, the bare-lattice coupling constant g corresponding
to the unitary regime is determined by means of Lüscher’s
formula [12] as in Ref. [13]. This procedure yields g � 5.14
in the unitary limit. Our lattice Hamiltonian contains g as
the sole parameter characterizing the interaction. Finite-range
effects are induced by the presence of the UV cutoff of
the lattice. In order to minimize such discretization effects,
the dilute limit should be approached as closely as possible.
Recent theoretical developments [14–16] have explored the
use of improved transfer matrices and operators, with multiple
parameters tuned to unitarity. The implementation of such
methods is an objective of future AFQMC calculations.

Second, we use a compact, continuous HS transforma-
tion referred to as “Type 4” in Ref. [17], which found it
superior with respect to acceptance rate, decorrelation, and
signal-to-noise properties compared to the more conventional
unbounded and discrete HS transformations [18].

Third, we update the HS auxiliary field σ using hybrid
Monte Carlo (HMC), which combines molecular dynamics
(MD) evolution of σ with a Metropolis accept-reject step [19].
The result is the determinantal hybrid Monte Carlo (DHMC)
algorithm, introduced in Ref. [10]. In DHMC, global MD
updates of σ take place via introduction of a momentum field
π conjugate to σ , such that the dynamics is given by the
Hamiltonian

H ≡
∑

i

π2
i

2
− ln det[(1 + U [σ ])2], (3)

where U[σ ] encodes the dynamics of the fermion degrees of
freedom (for more details onU , see, e.g., Ref. [9]). The DHMC
algorithm produces greatly enhanced decorrelation between
successive MC samples for all temperatures and lattice sizes
and removes the necessity to spend an increasing number of
decorrelation steps at larger V (note that the computational
cost of a full sweep of the lattice scales as ∼V in a local
algorithm such as DMC). This is replaced by a fixed number
of operations, typically of O(102), required to produce one
MD “trajectory,” independently of V .

The DHMC algorithm allows for an extension of the
AFQMC analysis beyond the capabilities of DMC, which
is currently limited to Nx � 10 in the spatial lattice extent,
n � 0.1 in particle number density, and N � 100 in the particle
number. The improved scaling of the CPU time has allowed us
to study lattices up to Nx = 16, while simultaneously main-
taining a relatively large number of particles, N � 45,75,110,
and 160 for Nx = 10,12,14, and 16, respectively, which
corresponds to densities in the range n � 0.040–0.045. The
Nx = 8 data (which are not identical to Ref. [9]) correspond
to N � 35 and n � 0.070, which was not reduced further in
order to avoid shell effects. We generated �200 uncorrelated
snapshots of σ for each value of T/εF , which yields a
statistical uncertainly of �1% for the observables. Expressions
for the AFQMC computation of the latter were obtained by
differentiating Z with respect to β and μ as conventional in
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FIG. 1. (Color online) AFQMC results for (top) the total energy
E in units of the energy of a free Fermi gas and (bottom) the chemical
potential μ in units of the Fermi energy as a function of T/εF . Results
are shown for Nx = 8 (green squares), Nx = 10 (red circles), Nx = 12
(purple triangles), Nx = 14 (blue inverted triangles), and Nx = 16
(black asterisks), where V ≡ N3

x is the (spatial) lattice volume.

thermodynamics, with the exception that Z is replaced by its
discretized form in terms of the HS field.

In Fig. 1, we present AFQMC results (for various lattice
sizes) for the total energy E in units of the energy of a free
Fermi gas EFG = 3/5NεF and for the chemical potential μ in
units of εF = k2

F /2m as a function of T/εF . Before comparison
with the MIT data [8], we performed an extrapolation to the
infinite volume limit Nx → ∞. This required interpolation
of the data series for each value of Nx , as the physical
temperature T/εF is not known beforehand. Apart from this
minor complication, the extrapolation to infinite volume is
greatly facilitated by the lack of a systematic variation in the
results with the lattice volume above Nx � 10. Since we have
not performed an extrapolation to the continuum limit (which
requires n → 0), our results may be affected to some degree
by systematic errors due to the effective range reff. Our results
currently reach kF reff � 0.3, which is non-negligible and may
produce significant deviations, in particular at low T/εF , as
shown by Carlson et al. [20].

In Fig. 2, we compare our AFQMC results (extrapolated
to infinite volume) with the measured energy E of the
homogeneous UFG. The overall agreement is satisfactory
throughout the range of temperatures studied. At low T/εF ,
AFQMC slightly overpredicts the experimental data. Our new
results show a noticeable improvement over the results of
Ref. [9] with Nx = 8, likely due to decreased finite-volume and
effective-range effects. In contrast to the case of E/EFG, our
results for μ/εF in Fig. 3 deviate noticeably from experiment
at low T/εF , where μ/εF � 0.38 at T/εF � 0.1. AFQMC
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FIG. 2. (Color online) Energy E/EFG (red dots), as obtained by
Ku et al. [8]. Our AFQMC results extrapolated to infinite volume
are shown by open black circles. The results for Nx = 8 (open blue
squares) were obtained with the DMC algorithm in Ref. [9]. The green
square shows the QMC result of Ref. [20] for ξ at T = 0. The inset
shows the vicinity of the superfluid phase transition at Tc/εF � 0.15.
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FIG. 3. (Color online) Chemical potential μ in units of εF as
measured by Ku et al. [8]. The notation for the AFQMC results is
identical to Fig. 2. The solid green square shows the result of Ref. [20]
assuming μ/εF (T = 0) = ξ .
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FIG. 4. (Color online) Density n(μ,T ) of the UFG (red circles)
as obtained by Ku et al. [8], normalized to the density n0(μ,T ) of
a noninteracting Fermi gas. The notation for the AFQMC results is
identical to Fig. 2. The diagrammatic MC results of Refs. [21,22]
(solid up and down triangles) and the Bold Diagrammatic MC results
of Ref. [23] are shown as well (solid squares). The inset shows the
vicinity of the superfluid phase transition at Tc/εF � 0.15.

overpredicts this by �5%, which clearly exceeds the statistical
uncertainty. However, the larger lattices used here represent
a dramatic improvement over Ref. [9], in particular above
Tc/εF � 0.15. Nevertheless, the discrepancy below Tc/εF

cannot be accounted for at present. In Fig. 4, we show the
particle number density relative to the temperature-dependent
density of the noninteracting Fermi gas. Again, a discrepancy
at low T/εF is found, which is analogous to that observed for
μ/εF .

While the agreement between our AFQMC calculation
and the data of Ref. [8] is satisfactory in general, notable
discrepancies persist. We have achieved a significant reduction
of the density from n � 0.1 to n � 0.04, with a concomitant
decrease in discretization (finite-range) effects. Nevertheless,
since finite-range effects scale as ∼n1/3, this still only
implies an effective reduction from n1/3 � 0.46 to �0.34. The
possibility that the discrepancies between our AFQMC data
and experiment are due to residual finite-range effects can
therefore not be ruled out at present.

As the region where the discrepancies are largest appears
to be at very low T/εF (at least for E/EFG and μ/εF ), the
task of performing calculations at significantly lower values
of n1/3 for such temperatures is extremely demanding, indeed
largely beyond the capabilities of extant algorithms. In this
situation, accounting for the finite-range effects by improving
the transfer matrix (as in Refs. [14,15]) provides a systematic
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way to remove the finite-range effects from both the action
and the observables at a given density, without modifying
the temperature scale of the calculation. Preliminary results
have appeared in Ref. [16]. Another source of error under
investigation is the Trotter-Suzuki step τ . This was found to
be a small effect for the Tan contact in Ref. [10] as well as for
the energy in Ref. [15].

In spite of these shortcomings, the introduction of HMC
into the AFQMC study of the UFG has largely solved the
issue of sufficiently large spatial lattice dimension Nx and
particle number N , which in turn has allowed calculations
with a large particle number at lower densities. DHMC studies
for Nx > 16 are in progress. These improvements will also
apply to calculations away from the unitary limit. Finally,
we would like to stress that the AFQMC method is entirely
ab initio: once the coupling g is fixed by solving the two-body
problem, no tuning with respect to experiment is required.
While a more sophisticated analysis of the systematic errors
cannot be provided at this point in time, the fact that theory
and experiment agree reasonably well for both E/EFG and

μ/εF over a wide range of temperatures is both remarkable
and encouraging.
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Väisälä Foundation of the Finnish Academy of Science and
Letters and by the Magnus Ehrnrooth, the Waldemar von
Frenckell, and the Ruth and Nils-Erik Stenbäck foundations of
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