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We compute the Fermi velocity of the Dirac quasiparticles inclean graphene at the charge neu-

trality point for strong Coulomb couplingαg. We perform a Lattice Monte Carlo calculation

within the low-energy Dirac theory, which includes an instantaneous, long-range Coulomb in-

teraction. We find a renormalized Fermi velocityvFR > vF , wherevF ≃ c/300. Our results are

consistent with a momentum-independentvFR which increases approximately linearly withαg,

although a logarithmic running with momentum cannot be excluded at present. At the predicted

critical couplingαgc for the semimetal-insulator transition due to excitonic pair formation, we

find vFR/vF ≃ 3.3, which we discuss in light of experimental findings forvFR/vF at the charge

neutrality point in ultra-clean suspended graphene.
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1. Introduction

Graphene, a two-dimensional membrane of carbon atoms with unique electronic properties, is
characterized by a low-energy spectrum of Dirac quasiparticles, with a Fermi velocityvF ≃ 1/300
of the speed of light in vacuum [1, 2]. As the strength of the Coulomb interaction between
the quasiparticles is controlled byαg ≡ e2/(4πεvF) ≃ 2.2/ε , the role of interactions can be en-
hanced to the point that graphene may resemble Quantum Electrodynamics (QED) in a strongly
coupled regime [3]. In particular, the unscreened, long-range Coulomb interaction in graphene
leads to non-trivial velocity renormalization effects. Atweak coupling, a logarithmic running
vF(n)/vF (n0) = 1+(αg/4) ln(n0/n) with carrier densityn is found [4], such thatvFR is expected
to become large in the vicinity of the Dirac point (n = 0). On the experimental side, logarithmic
velocity renormalization is most prominent in ultra-cleansuspended graphene [6] and on boron
nitride (BN) substrates [7], withvFR/vF ≃ 2−3 in the former case, whereε = 1.

Electron-electron interactions may also trigger a semimetal-insulator transition due to exci-
tonic pairing of quasiparticles and holes at a critical coupling αgc. For graphene, Lattice Monte
Carlo (LMC) has been applied to the Dirac theory using a contact Thirring interaction [8] and a
long-range Coulomb interaction [9 – 11], and to the tight-binding Hamiltonian using interactions
of the Hubbard [12 – 14] and Coulomb [15 – 17] types. For the Dirac theory,αgc ≃ 1.11± 0.06
was found [9], to be compared withαgc ≃ 0.9±0.2 in the tight-binding + Coulomb approach [16].
While such a transition has not yet been observed, the empirical vFR/vF ≃ 2− 3 in suspended
graphene is indicative of interaction-induced spectral changes [3, 6].

2. Lattice Monte Carlo

The LMC treatment of graphene uses the linearized low-energy Hamiltonian [18, 19] with an
instantaneous Coulomb interaction, such thatAµ ≡ (A0,

~0). This gives the Euclidean (continuum)
action

SE ≡
1

2g2

∫

d3xdt(∂iA0)
2+

Nf

∑
a=1

∫

d2xdtψ̄aD[A0]ψa, (2.1)

whereg2 ≡ e2/ε , with ε ≡ (1+ κ)/2 for a substrate with dielectric constantκ . Here,ψa is a
four-component Dirac field in 2+1 dimensions withψ̄ ≡ ψ†γ0, A0 is the gauge (photon) field in
3+1 dimensions, andNf = 2 for a graphene monolayer. The Dirac operator is

D[A0] = γ0(∂0+ iA0)+vF

2

∑
k=1

γk∂k+m0, (2.2)

where theγµ satisfy the Euclidean Clifford algebra{γµ ,γν} = 2δµν , and the bare fermion mass
m0 provides an infrared regulator for modes that would be massless when the U(2Nf ) chiral sym-
metry of Eq. (2.1) is spontaneously broken. The lattice version of Eq. (2.1) is formulated in terms
of “staggered” fermions,i.e. one-component Grassmann variablesχ , χ̄, which partially retain the
U(2Nf ) chiral symmetry of Eq. (2.1) at finite lattice spacing (for staggered fermions in odd dimen-
sions, see Ref. [20]). The fermionic part of Eq. (2.1) is given for Nf = 2 in terms of staggered
fermions by∑n,m χ̄n Kn,m[θ0]χm, wheren ≡ (n0,n1,n2) = (t,x,y) and m denote lattice sites on
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a 2+ 1 dimensional fermion “brane”. This square space-time lattice embedded in a cubic lattice
should not be understood as a tight-binding theory. The staggered Dirac operator is

Kn,m[θ0] =
1
2a

(δn+e0,m
U0,n −δn−e0,m

U†
0,m)+

λ
2a ∑

i

η i
n(δn+ei ,m

−δn−ei ,m
)+m0δn,m, (2.3)

whereη1
n = (−1)n0, η2

n = (−1)n0+n1, with ei a unit vector in lattice directioni. The invariance of
Eq. (2.1) under spatially uniform, time-dependent gauge transformations is retained by the gauge
links U0 ≡ exp(iθ0). We perform LMC calculations forvF = 1 (thusg2 → g2/vF ) anda/ax = 1,
wherea ≡ at is the temporal lattice spacing, and thusλ = 1. At non-zeroαg, we haveλR ≡

vFR(a/ax)R from whichvFR/vF can be obtained, once the asymmetry(a/ax)R is known.
We compute the renormalizedλR andmR from the staggered fermion propagatorCf (t,x,y) ≡

〈χ(t,x,y)χ̄(t0,x0,y0)〉 = 〈K−1
n,n0

〉 on anN2
x ×Nt space-time lattice withNx,t/4 integer. Heren0 is

an arbitrary point of reference, and the brackets denote an average over ensembles of gauge field
configurations, obtained as a function ofβ ≡ vF/g2 = 1/(4παg) andm0, with the Hybrid Monte
Carlo algorithm. FromCf (t,x,y), we formCf t(t, p1, p2)≡∑x,y exp(−ip ·x)Cf (t,x,y), for momenta
pi = 2πn/Nx, with n= −Nx/4, . . . ,Nx/4, t = 0, . . . ,Nt −1, and summation over even lattice sites,
defined by(−1)t+x+y = 1. The expression for the “temporal correlator”CR

ft with renormalizedmR,
λR and wave function renormalizationZR (for a= 1) is [21]

CR
ft(t, p1, p2) = ZRGt(p1, p2), (2.4)

for t = 0,2, . . . ,Nt −2, and

CR
ft(t, p1, p2) =−

ZR

2mR

[

exp(iB0)Gt+1(p1, p2)−exp(−iB0)Gt−1(p1, p2)

]

, (2.5)

for t = 1,3, . . . ,Nt −1, with anti-periodic boundary conditions. The functionGt(p1, p2) is

Gt(p1, p2)≡
N

C2(µt)−B2(B0)

×

[

A(B0)C(µt)cos(B0t
⋆)sinh(µtt

⋆)+B(B0)D(µt)sin(B0t
⋆)cosh(µt t

⋆)

+ iA(B0)C(µt)sin(B0t
⋆)sinh(µt t

⋆)− iB(B0)D(µt)cos(B0t
⋆)cosh(µtt

⋆)

]

, (2.6)

where A(x) ≡ cos(xNt/2), B(x) ≡ sin(xNt/2), C(x) ≡ cosh(xNt/2), D(x) ≡ sinh(xNt/2), t⋆ ≡

Nt/2− t, N ≡ 2mR/sinh(2µt), and sinh2(µt) ≡ m2
R+ λ 2

R sin2(p1)+ λ 2
Rsin2(p2). This expression

for CR
ft includes a constant “background field”B0 ≡ 〈θ0〉, as〈θ0〉 6= 0 in a finite volume. B0 is

roughly bounded by±π/Nt [21], and the imaginary part ofCR
ft vanishes forB0 → 0.

We also define the fermion “spatial correlator”Cf x(x,ω , p2)≡ ∑t,yexp(−ip ·x)Cf (t,x,y), for
ω = 2π(n−1/2)/Nt (due to the anti-periodic temporal boundary conditions),n=−Nt/4, . . . ,Nt/4,
spatial slicesx = 0, . . . ,Nx − 1, and summation over even lattice sites. The expression forCR

f x

can be inferred fromCR
ft . The functionGx(ω , p2) is obtained from Eq. (2.6) by first exchanging

sin↔ cos, followed byt → x, Nt → Nx, µt → µx andB0 → 0. In addition, we havemR → mR/λR

in Eq. (2.5),mR → mR/λ 2
R in the expression forN, and sinh2(µx) ≡ m2

R/λ 2
R+ sin2(ω +B0)/λ 2

R +

sin2(p2). Unlike Eqs. (2.4) and (2.5),CR
f x is real-valued, with periodic boundary conditions.
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(a) λR as a function ofβ ≡ 1/(4παg) andm0, as obtained
from Cf t andCf x on 283 ×8 (upper panels), 323 ×12 and

324 (lower panels) lattices. Note that the dependence onm0
is negligible, and that the results obtained fromCf t andCf x
agree closely.
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(b) Left panel: mR as a function ofβ−1 ≡ 4παg and
m0, obtained fromCf t (colored connected symbols) and

Cf x (black unconnected symbols) on a 283 ×8 lattice.

Right panel:mR obtained fromCf t on 283×8 (colored

connected symbols) and 323×12 lattices (black uncon-
nected symbols).

Figure 1: LMC calculation ofλR andmR (for a = 1). All lines are intended as a guide to the eye, and
statistical errors are comparable to the size of the symbols.

3. Results

In Fig. 1(a), we showλR as obtained from a chi-square fit of Eqs. (2.4) and (2.5) to LMC
data. While Eq. (2.1) is gauge invariant,Cf t andCf x are not, and thus a gauge fixing condition is
imposed on each configuration in order to obtain stable results. ForCf t , a correlated fit is performed
for all (t, p1, p2), and in the case ofCf x for all (x,ω , p2). The fitted parameters aremR, λR, B0 and
ZR. Our lattices haveNt = Nx, and the length of the “bulk” dimension (where only the photons
propagate) is denotedNb. We use the notationN3

x ×Nb, and simplyN4
x whenNb = Nt = Nx. On

the 283 × 8 lattice, LMC data is available for (inverse) lattice couplings 5.0 ≤ β−1 ≤ 15.0, and
for bare quasiparticle masses 0.0025≤ m0 ≤ 0.020, with slightly more restrictive data sets on the
323 × 12 and 324 lattices. We find thatλR increases monotonically as a function ofαg from the
non-interacting value of unity, with no appreciable differences betweenλR as obtained fromCf t

andCf x. We find the dependence onm0 to be almost negligible. Finite size effects forλR are small,
and the fitted values ofB0 agree closely with〈θ0〉.

In Fig. 1(b), we show the physical quasiparticle massmR as a function ofβ−1 andm0, with
emphasis on asymmetries between the temporal and spatial correlations, and on finite size effects.
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As Eq. (2.1) treats space and time asymmetrically, the spatial and temporal correlation lengthsξ
may exhibit unequal critical scaling, such thatξs ∝ |β −βc|

−νs andξt ∝ |β −βc|
−νt . The dynamical

critical exponentz≡ νt/νs is an important characteristic of a quantum critical point (QCP), and
implies that the dispersion relation is modified toE ∝ pz. At largeNf , Ref. [5] predictedz≃ 0.8
for graphene in the strong-coupling limit. However, arguments have also been put forward which
indicatez= 1 for a QCP withd < 4 in theories with a long-range Coulomb interaction [23]. From
Fig. 1(b), we find that the values ofmR obtained fromCf t andCf x agree very closely forβ−1 ≤ 11.0,
which is consistent withz≃ 1. We also find no sign of non-linear dispersion. A more accurate
analysis is possible following Ref. [8], in terms of the equation of state (EOS)

m0 = A(β −βc)m(δ ·βm−1)/νt
R +Bmδ ·βm/νt

R , (3.1)

for mR computed fromCf t , whereδ andβm are critical exponents characterizing the QCP atβ = βc.
An analogous EOS withνt → νs can be given formR as obtained fromCf x. We also find from
Fig. 1(b) that finite size effects are under control forβ−1 ≤ 9.0, but not for smallerβ (stronger
coupling), especially in the region of the phase diagram where a dynamically generated gap exists,
and limm0→0 mR 6= 0. In principle, Eq. (3.1) can be used to computez andmR in the limit m0 → 0,
i.e. the gap in the quasiparticle spectrum. The lattice spacing asymmetry(a/ax)R could then be
inferred by measuring the gap in terms of temporal and spatial correlations. For reliable conclu-
sions, such an EOS analysis should be combined with an extrapolation to infinite volume, similar
to that of Ref. [22] for QED4. For the present analysis, we note from Fig. 1(b) that the values ofmR

computed fromCf t andCf x differ by no more than≃ 10% at the smallest values ofβ . Assuming
this trend persists in the limits of infinite volume and vanishing m0, we find 1.0 ≤ (a/ax)R ≤ 1.1
over the range ofαg studied. In the absence of substantial indications for(a/ax)R 6= 1, we takeλR

as a measure ofvFR/vF .

4. Conclusions

In Fig. 2, we summarize our LMC results forvFR/vF as a function ofαg ≡ 1/(4πβ ), and com-
pare with available experimental data. Throughout our analysis, we have assumed thatvFR is con-
stant, while in reality we should expect it to run logarithmically with the momentump and diverge
at the Dirac point, according tovF(p)/vF(p0) = 1+(αg/4) ln(p0/p), wherep0 is the momentum
scale at whichvFR= vF . At present, we cannot distinguish between this and the simpler expression
vFR/vF = 1+Cαg, and much larger lattices appear to be required to detect a logarithmic running
of the Fermi velocity withp. On the other hand, we find a pronounced dependence ofvFR/vF on
αg. We find thatvFR increases linearly withαg from the non-interacting valuevF up toαg ≃ 0.5,
above which the increase becomes more rapid. At the predicted critical couplingαgc ≃ 1.1, we
find vFR(αgc)/vF ≃ 3.3 within our present linearized treatment of the velocity renormalization.
Since all of the empiricalvFR(p= 0)/vF fall short of this, we find a plausible explanation for the
non-observation of excitonic insulating phases in graphene monolayers. We note that the result of
Ref. [6] is tantalizingly close to≃ 3.3, which suggests that further refinements in the quality of
suspended graphene may suffice to trigger the excitonic instability. It would be of interest to study
the logarithmic running ofvFR with momentum on larger lattices.
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Figure 2: Plot of vFR(αg)/vF for asymmetry(a/ax)R ≃ 1. The black line isvFR/vF = 1+Cαg, and the
predicted insulating phase occurs forαg > αgc (gray shaded area). We find a linear dependence ofvFR/vF

on αg up toαg ≃ 0.5 (solid black line). Note thatvFR(αg = 0)/vF ≡ 1. Horizontal bands indicate empirical
data onvFR(p = 0)/vF from Ref. [6] (suspended graphene) and Ref. [7] (on BN substrate). Note that the
expected logarithmic momentum-dependence ofvFR/vF cannot be resolved on present lattices.
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