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1. Introduction

Graphene, a two-dimensional membrane of carbon atoms witjue electronic properties, is
characterized by a low-energy spectrum of Dirac quasipastj with a Fermi velocity ~ 1/300
of the speed of light in vacuun{][{] 2]. As the strength of theulBmb interaction between
the quasiparticles is controlled oy, = € /(4mevg) ~ 2.2/¢, the role of interactions can be en-
hanced to the point that graphene may resemble Quantunrdtlgnamics (QED) in a strongly
coupled regime[]3]. In particular, the unscreened, longgeaCoulomb interaction in graphene
leads to non-trivial velocity renormalization effects. Weak coupling, a logarithmic running
Ve (N) Ve (Ng) = 14 (ag/4)In(ny/n) with carrier densityn is found [4], such thatqg is expected
to become large in the vicinity of the Dirac poimt £ 0). On the experimental side, logarithmic
velocity renormalization is most prominent in ultra-clesuspended graphenld [6] and on boron
nitride (BN) substrateq][7], withi-r/Vg ~ 2— 3 in the former case, whege= 1.

Electron-electron interactions may also trigger a semafviasulator transition due to exci-
tonic pairing of quasiparticles and holes at a critical dmgpa,.. For graphene, Lattice Monte
Carlo (LMC) has been applied to the Dirac theory using a adrifairring interaction [[B] and a
long-range Coulomb interactiof] [§11], and to the tigteling Hamiltonian using interactions
of the Hubbard [[12 £34] and Coulomp J1§417] types. For thea®iheory,ay, ~ 1.11+0.06
was found|[[p], to be compared withy ~ 0.9+ 0.2 in the tight-binding + Coulomb approadh]16].
While such a transition has not yet been observed, the esapifiz/Ve ~ 2 — 3 in suspended
graphene is indicative of interaction-induced spectraiges [[B[]6].

2. Lattice Monte Carlo

The LMC treatment of graphene uses the linearized low-gnidegniltonian [IB]TP] with an
instantaneous Coulomb interaction, such that= (Ao,ﬁ). This gives the Euclidean (continuum)
action

N
— 1 3 2 : 2 m
S = o [ Pxat @A)+ 3 [ xatgDlAdus @)

whereg? = €?/¢, with € = (1+k)/2 for a substrate with dielectric constakt Here, i, is a
four-component Dirac field in 2 1 dimensions withy = wTyO, A, is the gauge (photon) field in
3+ 1 dimensions, anbll; = 2 for a graphene monolayer. The Dirac operator is

2
D[Aq] = o(do +iAo) + Vi kzl YOk + My, (2.2)
where they, satisfy the Euclidean Clifford algebrgy,,y, } = 29,,,, and the bare fermion mass
m, provides an infrared regulator for modes that would be reassivhen the U(g;) chiral sym-
metry of Eq. [2]1) is spontaneously broken. The latticeivarsf Eq. (2.1) is formulated in terms
of “staggered” fermionsi.e. one-component Grassmann variabieg, which partially retain the
U(2N;) chiral symmetry of Eq[(21) at finite lattice spacing (feaggered fermions in odd dimen-
sions, see Ref[TP0]). The fermionic part of Eff. {2.1) is gifer N; = 2 in terms of staggered
fermions by, m Xn Knm[6o] Xm» Wheren = (ng,n;,n,) = (t,x,y) andm denote lattice sites on
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a 2+ 1 dimensional fermion “brane”. This square space-timeckttmbedded in a cubic lattice
should not be understood as a tight-binding theory. Thegstagl Dirac operator is

1 A .
Kmm[eo] = %‘(5n+eo7m U07n o 5n—e0,m Ug,m) + %‘ Z '7;'1(5n+q,m - 5n—e|,m) + m05n,ma (2-3)
i

wheren} = (—1)", n2 = (—1)"*", with  a unit vector in lattice direction The invariance of
Eqg. (2.1) under spatially uniform, time-dependent gaugestiormations is retained by the gauge
links U, = exp(if,). We perform LMC calculations fovg = 1 (thusg? — ¢?/vg) anda/a, = 1,
wherea = g is the temporal lattice spacing, and thuis= 1. At non-zeroay, we haveAg =
Vegr (8/ay)g from whichveg/ve can be obtained, once the asymmetya, ) is known.

We compute the renormalizelgy andmg from the staggered fermion propaga@t,x,y) =
(XXX (tg, X0 Yo)) = (Knjr1,0> on anNZ x N, space-time lattice withN,, /4 integer. Heren, is
an arbitrary point of reference, and the brackets denotevarage over ensembles of gauge field
configurations, obtained as a functionfot= v /g? = 1/(4may) andm, with the Hybrid Monte
Carlo algorithm. Fron€;(t,x,y), we formC, (t, py, p,) = S xy €Xp(—ip-X)Cs (t, X,y), for momenta
p; = 2rm/N,, withn=—N,/4,...,N,/4,t =0,....N, — 1, and summation over even lattice sites,
defined by(—1)""**Y = 1. The expression for the “temporal correlat@? with renormalizedng,
A and wave function renormalizaticfy, (for a= 1) is []]

le:at(tv plv p2) = ZRGt(pL p2)7 (24)
fort=0,2,...,N,— 2, and
Z . .
C?t(ta P, P2) =— Z—rrF:R [eXp('Bo) Gi11(P1, P2) — exp(—iBg) Gi_1(P1, P2) |, (2.5)

fort =1,3,...,N, — 1, with anti-periodic boundary conditions. The functiGy(p,, p,) is

N
Gt (1, pZ)EWBZ(BO)

| A(BoC(1) cosBot) sin(at”) + BIBo)D (1) sin(Bet”) costTit’)
+IA(Bo)C(1) Sin(Bgt”) Sin{ 41") — 1B(B)D(14) cosBot ) costipat’) |, (2.6)

where A(X) = cogxN,/2), B(x) = sin(xN./2), C(x) = cosi{xN,/2), D(x) = sinh(xN/2), t* =
N;/2—t, N = 2mg/sinh(2), and sinf(g) = m& + AZsir?(p,) + AZsir?(p,). This expression
for CR includes a constant “background field}, = (6,), as(6,) # 0 in a finite volume. B, is
roughly bounded by-71/N, [RT], and the imaginary part &R vanishes foB, — 0.

We also define the fermion “spatial correlat@, (X, w, p,) = 31, exp(—ip-x)C; (t,x,y), for
w=2m(n—1/2)/N, (due to the anti-periodic temporal boundary conditions},—N, /4,...,N, /4,
spatial slicesx=0,...,N, — 1, and summation over even lattice sites. The expressio€for
can be inferred fron€R. The functionG,(w, p,) is obtained from Eq[(26) by first exchanging
sin <« cos, followed byt — x, N, — N,, iy — 4, andBy — 0. In addition, we haveng — mg/Ag
in Eq. 25),mg — mg/A2 in the expression foN, and sinf(p,) = m&/A2 + sirf(w+B,) /A3 +
sinz(pz). Unlike Eqgs. [2}4) and(3.5ER, is real-valued, with periodic boundary conditions.
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(@) A as a function of3 = 1/(4may) andmy, as obtained (b) Left panel:mg as a function ofg~1= 4mag and
from C;, andCy, on 28 x 8 (upper panels), 32« 12 and my, obtained fronC;, (colored connected symbols) and
32 (lower panels) lattices. Note that the dependencawn C;, (black unconnected symbols) on a3288 lattice.
is negligible, and that the results obtained frém andC;,  Right panel:mg obtained fronC, on 28 x 8 (colored
agree closely. connected symbols) and 32 12 lattices (black uncon-
nected symbols).

Figure 1: LMC calculation of Az andmg, (for a= 1). All lines are intended as a guide to the eye, and
statistical errors are comparable to the size of the symbols

3. Results

In Fig. [L(@), we show\, as obtained from a chi-square fit of Eds.|2.4) ajpd (2.5) to LMC
data. While Eq.[(2]1) is gauge invaria@; andC;, are not, and thus a gauge fixing condition is
imposed on each configuration in order to obtain stabletesebrC;,, a correlated fitis performed
for all (t, p;, p,), and in the case &@;, for all (x, w, p,). The fitted parameters angs, Ag, B, and
Zn. Our lattices havéN, = N,, and the length of the “bulk” dimension (where only the pimsto
propagate) is denoted,. We use the notatiohl? x N,, and simplyN; when Ny =N, =N,. On
the 28 x 8 lattice, LMC data is available for (inverse) lattice cdogk 50 < B! < 15.0, and
for bare quasiparticle masse£025< m, < 0.020, with slightly more restrictive data sets on the
328 x 12 and 32 lattices. We find thaflg increases monotonically as a functionaf from the
non-interacting value of unity, with no appreciable diffieces betweeny as obtained fronC;,
andC;,. We find the dependence am to be almost negligible. Finite size effects fgg are small,
and the fitted values @, agree closely witl{6,).

In Fig. [L(B), we show the physical quasiparticle magsas a function o3~t and m,, with
emphasis on asymmetries between the temporal and spatielatimns, and on finite size effects.
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As Eq. [2.]1) treats space and time asymmetrically, the alpatid temporal correlation lengtds
may exhibit unequal critical scaling, such ti§at] |3 — B.| Vs andé, 0|8 — B, ". The dynamical
critical exponentz = v, /v, is an important characteristic of a quantum critical pol@C), and
implies that the dispersion relation is modified&d] p?. At largeN;, Ref. [§] predictedz ~ 0.8
for graphene in the strong-coupling limit. However, argaisehave also been put forward which
indicatez= 1 for a QCP withd < 4 in theories with a long-range Coulomb interactipr] [23Jorr
Fig.L(b), we find that the values of, obtained fronC;, andC;, agree very closely fgB -1 < 11.0,
which is consistent witlz ~ 1. We also find no sign of non-linear dispersion. A more adeura
analysis is possible following Ref][8], in terms of the efipra of state (EOS)

my=A(B—f.) m(R5'l3m—1)/Vt +B n]g'ﬁm/vl’ (3.1)

for mg computed fron€C;,, whered andp,,, are critical exponents characterizing the QCP at 3.
An analogous EOS witly, — vg can be given fomg as obtained fronC;,. We also find from
Fig. [L(b) that finite size effects are under control fort < 9.0, but not for smalle3 (stronger
coupling), especially in the region of the phase diagramresaedynamically generated gap exists,
and limy ,omg # 0. In principle, Eq.[(3]1) can be used to comprzndmy in the limit my — 0,
i.e. the gap in the quasiparticle spectrum. The lattice spaciygneetry(a/a,)g could then be
inferred by measuring the gap in terms of temporal and dpatdiaelations. For reliable conclu-
sions, such an EOS analysis should be combined with an eltam to infinite volume, similar
to that of Ref. [2P] for QELD. For the present analysis, we note from [fig.]1(b) that theesabfmg
computed fronC;, andC;, differ by no more than~ 10% at the smallest values Bf Assuming
this trend persists in the limits of infinite volume and véuig m,, we find 10 < (a/a,)g < 1.1
over the range ofly studied. In the absence of substantial indicationgdga, ) # 1, we takeAg
as a measure ofg/Vg.

4. Conclusions

In Fig. 2, we summarize our LMC results fasr/vi- as a function ofr; = 1/(4mB), and com-
pare with available experimental data. Throughout ounyeislwe have assumed thai, is con-
stant, while in reality we should expect it to run logaritleadly with the momentunp and diverge
at the Dirac point, according - (p)/Ve (py) = 1+ (ag/4) In(py/p), Wherep, is the momentum
scale at whiclveg = ve. At present, we cannot distinguish between this and thelsinegpression
Ver/Ve = 1+Cay, and much larger lattices appear to be required to detegaitbmic running
of the Fermi velocity withp. On the other hand, we find a pronounced dependeneggf/- on
ag. We find thatve increases linearly witt, from the non-interacting valug- up toag ~ 0.5,
above which the increase becomes more rapid. At the preldectecal couplingog. ~ 1.1, we
find Ver(0ge) /Ve = 3.3 within our present linearized treatment of the velocityaenalization.
Since all of the empiricalg(p = 0) /v fall short of this, we find a plausible explanation for the
non-observation of excitonic insulating phases in graphraonolayers. We note that the result of
Ref. [] is tantalizingly close te- 3.3, which suggests that further refinements in the quality of
suspended graphene may suffice to trigger the excitoniabiligy. It would be of interest to study
the logarithmic running o¥r with momentum on larger lattices.
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Figure 2: Plot of vep(ag)/Ve for asymmetry(a/a,)g =~ 1. The black line isig/ve = 1+Cay, and the
predicted insulating phase occurs oy > a, (gray shaded area). We find a linear dependeneg9fve
onag up toag =~ 0.5 (solid black line). Note that-g(ay = 0)/vg = 1. Horizontal bands indicate empirical
data onve(p = 0)/ve from Ref. [§] (suspended graphene) and Rff. [7] (on BN sabsgr Note that the
expected logarithmic momentum-dependence-gf/ve cannot be resolved on present lattices.
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